1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/acpi_iort.h> 9 #include <linux/bitfield.h> 10 #include <linux/bitmap.h> 11 #include <linux/cpu.h> 12 #include <linux/crash_dump.h> 13 #include <linux/delay.h> 14 #include <linux/dma-iommu.h> 15 #include <linux/efi.h> 16 #include <linux/interrupt.h> 17 #include <linux/iopoll.h> 18 #include <linux/irqdomain.h> 19 #include <linux/list.h> 20 #include <linux/log2.h> 21 #include <linux/memblock.h> 22 #include <linux/mm.h> 23 #include <linux/msi.h> 24 #include <linux/of.h> 25 #include <linux/of_address.h> 26 #include <linux/of_irq.h> 27 #include <linux/of_pci.h> 28 #include <linux/of_platform.h> 29 #include <linux/percpu.h> 30 #include <linux/slab.h> 31 #include <linux/syscore_ops.h> 32 33 #include <linux/irqchip.h> 34 #include <linux/irqchip/arm-gic-v3.h> 35 #include <linux/irqchip/arm-gic-v4.h> 36 37 #include <asm/cputype.h> 38 #include <asm/exception.h> 39 40 #include "irq-gic-common.h" 41 42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) 43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) 44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) 45 46 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0) 47 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED (1 << 1) 48 49 #define RD_LOCAL_LPI_ENABLED BIT(0) 50 #define RD_LOCAL_PENDTABLE_PREALLOCATED BIT(1) 51 #define RD_LOCAL_MEMRESERVE_DONE BIT(2) 52 53 static u32 lpi_id_bits; 54 55 /* 56 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to 57 * deal with (one configuration byte per interrupt). PENDBASE has to 58 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). 59 */ 60 #define LPI_NRBITS lpi_id_bits 61 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K) 62 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) 63 64 #define LPI_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI 65 66 /* 67 * Collection structure - just an ID, and a redistributor address to 68 * ping. We use one per CPU as a bag of interrupts assigned to this 69 * CPU. 70 */ 71 struct its_collection { 72 u64 target_address; 73 u16 col_id; 74 }; 75 76 /* 77 * The ITS_BASER structure - contains memory information, cached 78 * value of BASER register configuration and ITS page size. 79 */ 80 struct its_baser { 81 void *base; 82 u64 val; 83 u32 order; 84 u32 psz; 85 }; 86 87 struct its_device; 88 89 /* 90 * The ITS structure - contains most of the infrastructure, with the 91 * top-level MSI domain, the command queue, the collections, and the 92 * list of devices writing to it. 93 * 94 * dev_alloc_lock has to be taken for device allocations, while the 95 * spinlock must be taken to parse data structures such as the device 96 * list. 97 */ 98 struct its_node { 99 raw_spinlock_t lock; 100 struct mutex dev_alloc_lock; 101 struct list_head entry; 102 void __iomem *base; 103 void __iomem *sgir_base; 104 phys_addr_t phys_base; 105 struct its_cmd_block *cmd_base; 106 struct its_cmd_block *cmd_write; 107 struct its_baser tables[GITS_BASER_NR_REGS]; 108 struct its_collection *collections; 109 struct fwnode_handle *fwnode_handle; 110 u64 (*get_msi_base)(struct its_device *its_dev); 111 u64 typer; 112 u64 cbaser_save; 113 u32 ctlr_save; 114 u32 mpidr; 115 struct list_head its_device_list; 116 u64 flags; 117 unsigned long list_nr; 118 int numa_node; 119 unsigned int msi_domain_flags; 120 u32 pre_its_base; /* for Socionext Synquacer */ 121 int vlpi_redist_offset; 122 }; 123 124 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS)) 125 #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP)) 126 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1) 127 128 #define ITS_ITT_ALIGN SZ_256 129 130 /* The maximum number of VPEID bits supported by VLPI commands */ 131 #define ITS_MAX_VPEID_BITS \ 132 ({ \ 133 int nvpeid = 16; \ 134 if (gic_rdists->has_rvpeid && \ 135 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \ 136 nvpeid = 1 + (gic_rdists->gicd_typer2 & \ 137 GICD_TYPER2_VID); \ 138 \ 139 nvpeid; \ 140 }) 141 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS)) 142 143 /* Convert page order to size in bytes */ 144 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) 145 146 struct event_lpi_map { 147 unsigned long *lpi_map; 148 u16 *col_map; 149 irq_hw_number_t lpi_base; 150 int nr_lpis; 151 raw_spinlock_t vlpi_lock; 152 struct its_vm *vm; 153 struct its_vlpi_map *vlpi_maps; 154 int nr_vlpis; 155 }; 156 157 /* 158 * The ITS view of a device - belongs to an ITS, owns an interrupt 159 * translation table, and a list of interrupts. If it some of its 160 * LPIs are injected into a guest (GICv4), the event_map.vm field 161 * indicates which one. 162 */ 163 struct its_device { 164 struct list_head entry; 165 struct its_node *its; 166 struct event_lpi_map event_map; 167 void *itt; 168 u32 nr_ites; 169 u32 device_id; 170 bool shared; 171 }; 172 173 static struct { 174 raw_spinlock_t lock; 175 struct its_device *dev; 176 struct its_vpe **vpes; 177 int next_victim; 178 } vpe_proxy; 179 180 struct cpu_lpi_count { 181 atomic_t managed; 182 atomic_t unmanaged; 183 }; 184 185 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count); 186 187 static LIST_HEAD(its_nodes); 188 static DEFINE_RAW_SPINLOCK(its_lock); 189 static struct rdists *gic_rdists; 190 static struct irq_domain *its_parent; 191 192 static unsigned long its_list_map; 193 static u16 vmovp_seq_num; 194 static DEFINE_RAW_SPINLOCK(vmovp_lock); 195 196 static DEFINE_IDA(its_vpeid_ida); 197 198 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) 199 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu)) 200 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 201 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K) 202 203 /* 204 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we 205 * always have vSGIs mapped. 206 */ 207 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its) 208 { 209 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]); 210 } 211 212 static u16 get_its_list(struct its_vm *vm) 213 { 214 struct its_node *its; 215 unsigned long its_list = 0; 216 217 list_for_each_entry(its, &its_nodes, entry) { 218 if (!is_v4(its)) 219 continue; 220 221 if (require_its_list_vmovp(vm, its)) 222 __set_bit(its->list_nr, &its_list); 223 } 224 225 return (u16)its_list; 226 } 227 228 static inline u32 its_get_event_id(struct irq_data *d) 229 { 230 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 231 return d->hwirq - its_dev->event_map.lpi_base; 232 } 233 234 static struct its_collection *dev_event_to_col(struct its_device *its_dev, 235 u32 event) 236 { 237 struct its_node *its = its_dev->its; 238 239 return its->collections + its_dev->event_map.col_map[event]; 240 } 241 242 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev, 243 u32 event) 244 { 245 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis)) 246 return NULL; 247 248 return &its_dev->event_map.vlpi_maps[event]; 249 } 250 251 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d) 252 { 253 if (irqd_is_forwarded_to_vcpu(d)) { 254 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 255 u32 event = its_get_event_id(d); 256 257 return dev_event_to_vlpi_map(its_dev, event); 258 } 259 260 return NULL; 261 } 262 263 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags) 264 { 265 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags); 266 return vpe->col_idx; 267 } 268 269 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags) 270 { 271 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 272 } 273 274 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags) 275 { 276 struct its_vlpi_map *map = get_vlpi_map(d); 277 int cpu; 278 279 if (map) { 280 cpu = vpe_to_cpuid_lock(map->vpe, flags); 281 } else { 282 /* Physical LPIs are already locked via the irq_desc lock */ 283 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 284 cpu = its_dev->event_map.col_map[its_get_event_id(d)]; 285 /* Keep GCC quiet... */ 286 *flags = 0; 287 } 288 289 return cpu; 290 } 291 292 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags) 293 { 294 struct its_vlpi_map *map = get_vlpi_map(d); 295 296 if (map) 297 vpe_to_cpuid_unlock(map->vpe, flags); 298 } 299 300 static struct its_collection *valid_col(struct its_collection *col) 301 { 302 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0))) 303 return NULL; 304 305 return col; 306 } 307 308 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe) 309 { 310 if (valid_col(its->collections + vpe->col_idx)) 311 return vpe; 312 313 return NULL; 314 } 315 316 /* 317 * ITS command descriptors - parameters to be encoded in a command 318 * block. 319 */ 320 struct its_cmd_desc { 321 union { 322 struct { 323 struct its_device *dev; 324 u32 event_id; 325 } its_inv_cmd; 326 327 struct { 328 struct its_device *dev; 329 u32 event_id; 330 } its_clear_cmd; 331 332 struct { 333 struct its_device *dev; 334 u32 event_id; 335 } its_int_cmd; 336 337 struct { 338 struct its_device *dev; 339 int valid; 340 } its_mapd_cmd; 341 342 struct { 343 struct its_collection *col; 344 int valid; 345 } its_mapc_cmd; 346 347 struct { 348 struct its_device *dev; 349 u32 phys_id; 350 u32 event_id; 351 } its_mapti_cmd; 352 353 struct { 354 struct its_device *dev; 355 struct its_collection *col; 356 u32 event_id; 357 } its_movi_cmd; 358 359 struct { 360 struct its_device *dev; 361 u32 event_id; 362 } its_discard_cmd; 363 364 struct { 365 struct its_collection *col; 366 } its_invall_cmd; 367 368 struct { 369 struct its_vpe *vpe; 370 } its_vinvall_cmd; 371 372 struct { 373 struct its_vpe *vpe; 374 struct its_collection *col; 375 bool valid; 376 } its_vmapp_cmd; 377 378 struct { 379 struct its_vpe *vpe; 380 struct its_device *dev; 381 u32 virt_id; 382 u32 event_id; 383 bool db_enabled; 384 } its_vmapti_cmd; 385 386 struct { 387 struct its_vpe *vpe; 388 struct its_device *dev; 389 u32 event_id; 390 bool db_enabled; 391 } its_vmovi_cmd; 392 393 struct { 394 struct its_vpe *vpe; 395 struct its_collection *col; 396 u16 seq_num; 397 u16 its_list; 398 } its_vmovp_cmd; 399 400 struct { 401 struct its_vpe *vpe; 402 } its_invdb_cmd; 403 404 struct { 405 struct its_vpe *vpe; 406 u8 sgi; 407 u8 priority; 408 bool enable; 409 bool group; 410 bool clear; 411 } its_vsgi_cmd; 412 }; 413 }; 414 415 /* 416 * The ITS command block, which is what the ITS actually parses. 417 */ 418 struct its_cmd_block { 419 union { 420 u64 raw_cmd[4]; 421 __le64 raw_cmd_le[4]; 422 }; 423 }; 424 425 #define ITS_CMD_QUEUE_SZ SZ_64K 426 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) 427 428 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *, 429 struct its_cmd_block *, 430 struct its_cmd_desc *); 431 432 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *, 433 struct its_cmd_block *, 434 struct its_cmd_desc *); 435 436 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) 437 { 438 u64 mask = GENMASK_ULL(h, l); 439 *raw_cmd &= ~mask; 440 *raw_cmd |= (val << l) & mask; 441 } 442 443 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) 444 { 445 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); 446 } 447 448 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) 449 { 450 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); 451 } 452 453 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) 454 { 455 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); 456 } 457 458 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) 459 { 460 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); 461 } 462 463 static void its_encode_size(struct its_cmd_block *cmd, u8 size) 464 { 465 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); 466 } 467 468 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) 469 { 470 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); 471 } 472 473 static void its_encode_valid(struct its_cmd_block *cmd, int valid) 474 { 475 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); 476 } 477 478 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) 479 { 480 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); 481 } 482 483 static void its_encode_collection(struct its_cmd_block *cmd, u16 col) 484 { 485 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); 486 } 487 488 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) 489 { 490 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); 491 } 492 493 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) 494 { 495 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); 496 } 497 498 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) 499 { 500 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); 501 } 502 503 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) 504 { 505 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); 506 } 507 508 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) 509 { 510 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); 511 } 512 513 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) 514 { 515 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); 516 } 517 518 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) 519 { 520 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); 521 } 522 523 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) 524 { 525 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); 526 } 527 528 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa) 529 { 530 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16); 531 } 532 533 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc) 534 { 535 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8); 536 } 537 538 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz) 539 { 540 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9); 541 } 542 543 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd, 544 u32 vpe_db_lpi) 545 { 546 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0); 547 } 548 549 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd, 550 u32 vpe_db_lpi) 551 { 552 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0); 553 } 554 555 static void its_encode_db(struct its_cmd_block *cmd, bool db) 556 { 557 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63); 558 } 559 560 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi) 561 { 562 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32); 563 } 564 565 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio) 566 { 567 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20); 568 } 569 570 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp) 571 { 572 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10); 573 } 574 575 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr) 576 { 577 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9); 578 } 579 580 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en) 581 { 582 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8); 583 } 584 585 static inline void its_fixup_cmd(struct its_cmd_block *cmd) 586 { 587 /* Let's fixup BE commands */ 588 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]); 589 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]); 590 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]); 591 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]); 592 } 593 594 static struct its_collection *its_build_mapd_cmd(struct its_node *its, 595 struct its_cmd_block *cmd, 596 struct its_cmd_desc *desc) 597 { 598 unsigned long itt_addr; 599 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); 600 601 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); 602 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); 603 604 its_encode_cmd(cmd, GITS_CMD_MAPD); 605 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); 606 its_encode_size(cmd, size - 1); 607 its_encode_itt(cmd, itt_addr); 608 its_encode_valid(cmd, desc->its_mapd_cmd.valid); 609 610 its_fixup_cmd(cmd); 611 612 return NULL; 613 } 614 615 static struct its_collection *its_build_mapc_cmd(struct its_node *its, 616 struct its_cmd_block *cmd, 617 struct its_cmd_desc *desc) 618 { 619 its_encode_cmd(cmd, GITS_CMD_MAPC); 620 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 621 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); 622 its_encode_valid(cmd, desc->its_mapc_cmd.valid); 623 624 its_fixup_cmd(cmd); 625 626 return desc->its_mapc_cmd.col; 627 } 628 629 static struct its_collection *its_build_mapti_cmd(struct its_node *its, 630 struct its_cmd_block *cmd, 631 struct its_cmd_desc *desc) 632 { 633 struct its_collection *col; 634 635 col = dev_event_to_col(desc->its_mapti_cmd.dev, 636 desc->its_mapti_cmd.event_id); 637 638 its_encode_cmd(cmd, GITS_CMD_MAPTI); 639 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); 640 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); 641 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); 642 its_encode_collection(cmd, col->col_id); 643 644 its_fixup_cmd(cmd); 645 646 return valid_col(col); 647 } 648 649 static struct its_collection *its_build_movi_cmd(struct its_node *its, 650 struct its_cmd_block *cmd, 651 struct its_cmd_desc *desc) 652 { 653 struct its_collection *col; 654 655 col = dev_event_to_col(desc->its_movi_cmd.dev, 656 desc->its_movi_cmd.event_id); 657 658 its_encode_cmd(cmd, GITS_CMD_MOVI); 659 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); 660 its_encode_event_id(cmd, desc->its_movi_cmd.event_id); 661 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); 662 663 its_fixup_cmd(cmd); 664 665 return valid_col(col); 666 } 667 668 static struct its_collection *its_build_discard_cmd(struct its_node *its, 669 struct its_cmd_block *cmd, 670 struct its_cmd_desc *desc) 671 { 672 struct its_collection *col; 673 674 col = dev_event_to_col(desc->its_discard_cmd.dev, 675 desc->its_discard_cmd.event_id); 676 677 its_encode_cmd(cmd, GITS_CMD_DISCARD); 678 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); 679 its_encode_event_id(cmd, desc->its_discard_cmd.event_id); 680 681 its_fixup_cmd(cmd); 682 683 return valid_col(col); 684 } 685 686 static struct its_collection *its_build_inv_cmd(struct its_node *its, 687 struct its_cmd_block *cmd, 688 struct its_cmd_desc *desc) 689 { 690 struct its_collection *col; 691 692 col = dev_event_to_col(desc->its_inv_cmd.dev, 693 desc->its_inv_cmd.event_id); 694 695 its_encode_cmd(cmd, GITS_CMD_INV); 696 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 697 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 698 699 its_fixup_cmd(cmd); 700 701 return valid_col(col); 702 } 703 704 static struct its_collection *its_build_int_cmd(struct its_node *its, 705 struct its_cmd_block *cmd, 706 struct its_cmd_desc *desc) 707 { 708 struct its_collection *col; 709 710 col = dev_event_to_col(desc->its_int_cmd.dev, 711 desc->its_int_cmd.event_id); 712 713 its_encode_cmd(cmd, GITS_CMD_INT); 714 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 715 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 716 717 its_fixup_cmd(cmd); 718 719 return valid_col(col); 720 } 721 722 static struct its_collection *its_build_clear_cmd(struct its_node *its, 723 struct its_cmd_block *cmd, 724 struct its_cmd_desc *desc) 725 { 726 struct its_collection *col; 727 728 col = dev_event_to_col(desc->its_clear_cmd.dev, 729 desc->its_clear_cmd.event_id); 730 731 its_encode_cmd(cmd, GITS_CMD_CLEAR); 732 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 733 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 734 735 its_fixup_cmd(cmd); 736 737 return valid_col(col); 738 } 739 740 static struct its_collection *its_build_invall_cmd(struct its_node *its, 741 struct its_cmd_block *cmd, 742 struct its_cmd_desc *desc) 743 { 744 its_encode_cmd(cmd, GITS_CMD_INVALL); 745 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id); 746 747 its_fixup_cmd(cmd); 748 749 return desc->its_invall_cmd.col; 750 } 751 752 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its, 753 struct its_cmd_block *cmd, 754 struct its_cmd_desc *desc) 755 { 756 its_encode_cmd(cmd, GITS_CMD_VINVALL); 757 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); 758 759 its_fixup_cmd(cmd); 760 761 return valid_vpe(its, desc->its_vinvall_cmd.vpe); 762 } 763 764 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its, 765 struct its_cmd_block *cmd, 766 struct its_cmd_desc *desc) 767 { 768 unsigned long vpt_addr, vconf_addr; 769 u64 target; 770 bool alloc; 771 772 its_encode_cmd(cmd, GITS_CMD_VMAPP); 773 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); 774 its_encode_valid(cmd, desc->its_vmapp_cmd.valid); 775 776 if (!desc->its_vmapp_cmd.valid) { 777 if (is_v4_1(its)) { 778 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count); 779 its_encode_alloc(cmd, alloc); 780 } 781 782 goto out; 783 } 784 785 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); 786 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset; 787 788 its_encode_target(cmd, target); 789 its_encode_vpt_addr(cmd, vpt_addr); 790 its_encode_vpt_size(cmd, LPI_NRBITS - 1); 791 792 if (!is_v4_1(its)) 793 goto out; 794 795 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page)); 796 797 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count); 798 799 its_encode_alloc(cmd, alloc); 800 801 /* 802 * GICv4.1 provides a way to get the VLPI state, which needs the vPE 803 * to be unmapped first, and in this case, we may remap the vPE 804 * back while the VPT is not empty. So we can't assume that the 805 * VPT is empty on map. This is why we never advertise PTZ. 806 */ 807 its_encode_ptz(cmd, false); 808 its_encode_vconf_addr(cmd, vconf_addr); 809 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi); 810 811 out: 812 its_fixup_cmd(cmd); 813 814 return valid_vpe(its, desc->its_vmapp_cmd.vpe); 815 } 816 817 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its, 818 struct its_cmd_block *cmd, 819 struct its_cmd_desc *desc) 820 { 821 u32 db; 822 823 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled) 824 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; 825 else 826 db = 1023; 827 828 its_encode_cmd(cmd, GITS_CMD_VMAPTI); 829 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); 830 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); 831 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); 832 its_encode_db_phys_id(cmd, db); 833 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); 834 835 its_fixup_cmd(cmd); 836 837 return valid_vpe(its, desc->its_vmapti_cmd.vpe); 838 } 839 840 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its, 841 struct its_cmd_block *cmd, 842 struct its_cmd_desc *desc) 843 { 844 u32 db; 845 846 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled) 847 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; 848 else 849 db = 1023; 850 851 its_encode_cmd(cmd, GITS_CMD_VMOVI); 852 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); 853 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); 854 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); 855 its_encode_db_phys_id(cmd, db); 856 its_encode_db_valid(cmd, true); 857 858 its_fixup_cmd(cmd); 859 860 return valid_vpe(its, desc->its_vmovi_cmd.vpe); 861 } 862 863 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its, 864 struct its_cmd_block *cmd, 865 struct its_cmd_desc *desc) 866 { 867 u64 target; 868 869 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset; 870 its_encode_cmd(cmd, GITS_CMD_VMOVP); 871 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); 872 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); 873 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); 874 its_encode_target(cmd, target); 875 876 if (is_v4_1(its)) { 877 its_encode_db(cmd, true); 878 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi); 879 } 880 881 its_fixup_cmd(cmd); 882 883 return valid_vpe(its, desc->its_vmovp_cmd.vpe); 884 } 885 886 static struct its_vpe *its_build_vinv_cmd(struct its_node *its, 887 struct its_cmd_block *cmd, 888 struct its_cmd_desc *desc) 889 { 890 struct its_vlpi_map *map; 891 892 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev, 893 desc->its_inv_cmd.event_id); 894 895 its_encode_cmd(cmd, GITS_CMD_INV); 896 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 897 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 898 899 its_fixup_cmd(cmd); 900 901 return valid_vpe(its, map->vpe); 902 } 903 904 static struct its_vpe *its_build_vint_cmd(struct its_node *its, 905 struct its_cmd_block *cmd, 906 struct its_cmd_desc *desc) 907 { 908 struct its_vlpi_map *map; 909 910 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev, 911 desc->its_int_cmd.event_id); 912 913 its_encode_cmd(cmd, GITS_CMD_INT); 914 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 915 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 916 917 its_fixup_cmd(cmd); 918 919 return valid_vpe(its, map->vpe); 920 } 921 922 static struct its_vpe *its_build_vclear_cmd(struct its_node *its, 923 struct its_cmd_block *cmd, 924 struct its_cmd_desc *desc) 925 { 926 struct its_vlpi_map *map; 927 928 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev, 929 desc->its_clear_cmd.event_id); 930 931 its_encode_cmd(cmd, GITS_CMD_CLEAR); 932 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 933 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 934 935 its_fixup_cmd(cmd); 936 937 return valid_vpe(its, map->vpe); 938 } 939 940 static struct its_vpe *its_build_invdb_cmd(struct its_node *its, 941 struct its_cmd_block *cmd, 942 struct its_cmd_desc *desc) 943 { 944 if (WARN_ON(!is_v4_1(its))) 945 return NULL; 946 947 its_encode_cmd(cmd, GITS_CMD_INVDB); 948 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id); 949 950 its_fixup_cmd(cmd); 951 952 return valid_vpe(its, desc->its_invdb_cmd.vpe); 953 } 954 955 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its, 956 struct its_cmd_block *cmd, 957 struct its_cmd_desc *desc) 958 { 959 if (WARN_ON(!is_v4_1(its))) 960 return NULL; 961 962 its_encode_cmd(cmd, GITS_CMD_VSGI); 963 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id); 964 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi); 965 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority); 966 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group); 967 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear); 968 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable); 969 970 its_fixup_cmd(cmd); 971 972 return valid_vpe(its, desc->its_vsgi_cmd.vpe); 973 } 974 975 static u64 its_cmd_ptr_to_offset(struct its_node *its, 976 struct its_cmd_block *ptr) 977 { 978 return (ptr - its->cmd_base) * sizeof(*ptr); 979 } 980 981 static int its_queue_full(struct its_node *its) 982 { 983 int widx; 984 int ridx; 985 986 widx = its->cmd_write - its->cmd_base; 987 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); 988 989 /* This is incredibly unlikely to happen, unless the ITS locks up. */ 990 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) 991 return 1; 992 993 return 0; 994 } 995 996 static struct its_cmd_block *its_allocate_entry(struct its_node *its) 997 { 998 struct its_cmd_block *cmd; 999 u32 count = 1000000; /* 1s! */ 1000 1001 while (its_queue_full(its)) { 1002 count--; 1003 if (!count) { 1004 pr_err_ratelimited("ITS queue not draining\n"); 1005 return NULL; 1006 } 1007 cpu_relax(); 1008 udelay(1); 1009 } 1010 1011 cmd = its->cmd_write++; 1012 1013 /* Handle queue wrapping */ 1014 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) 1015 its->cmd_write = its->cmd_base; 1016 1017 /* Clear command */ 1018 cmd->raw_cmd[0] = 0; 1019 cmd->raw_cmd[1] = 0; 1020 cmd->raw_cmd[2] = 0; 1021 cmd->raw_cmd[3] = 0; 1022 1023 return cmd; 1024 } 1025 1026 static struct its_cmd_block *its_post_commands(struct its_node *its) 1027 { 1028 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); 1029 1030 writel_relaxed(wr, its->base + GITS_CWRITER); 1031 1032 return its->cmd_write; 1033 } 1034 1035 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) 1036 { 1037 /* 1038 * Make sure the commands written to memory are observable by 1039 * the ITS. 1040 */ 1041 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) 1042 gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); 1043 else 1044 dsb(ishst); 1045 } 1046 1047 static int its_wait_for_range_completion(struct its_node *its, 1048 u64 prev_idx, 1049 struct its_cmd_block *to) 1050 { 1051 u64 rd_idx, to_idx, linear_idx; 1052 u32 count = 1000000; /* 1s! */ 1053 1054 /* Linearize to_idx if the command set has wrapped around */ 1055 to_idx = its_cmd_ptr_to_offset(its, to); 1056 if (to_idx < prev_idx) 1057 to_idx += ITS_CMD_QUEUE_SZ; 1058 1059 linear_idx = prev_idx; 1060 1061 while (1) { 1062 s64 delta; 1063 1064 rd_idx = readl_relaxed(its->base + GITS_CREADR); 1065 1066 /* 1067 * Compute the read pointer progress, taking the 1068 * potential wrap-around into account. 1069 */ 1070 delta = rd_idx - prev_idx; 1071 if (rd_idx < prev_idx) 1072 delta += ITS_CMD_QUEUE_SZ; 1073 1074 linear_idx += delta; 1075 if (linear_idx >= to_idx) 1076 break; 1077 1078 count--; 1079 if (!count) { 1080 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n", 1081 to_idx, linear_idx); 1082 return -1; 1083 } 1084 prev_idx = rd_idx; 1085 cpu_relax(); 1086 udelay(1); 1087 } 1088 1089 return 0; 1090 } 1091 1092 /* Warning, macro hell follows */ 1093 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \ 1094 void name(struct its_node *its, \ 1095 buildtype builder, \ 1096 struct its_cmd_desc *desc) \ 1097 { \ 1098 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \ 1099 synctype *sync_obj; \ 1100 unsigned long flags; \ 1101 u64 rd_idx; \ 1102 \ 1103 raw_spin_lock_irqsave(&its->lock, flags); \ 1104 \ 1105 cmd = its_allocate_entry(its); \ 1106 if (!cmd) { /* We're soooooo screewed... */ \ 1107 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1108 return; \ 1109 } \ 1110 sync_obj = builder(its, cmd, desc); \ 1111 its_flush_cmd(its, cmd); \ 1112 \ 1113 if (sync_obj) { \ 1114 sync_cmd = its_allocate_entry(its); \ 1115 if (!sync_cmd) \ 1116 goto post; \ 1117 \ 1118 buildfn(its, sync_cmd, sync_obj); \ 1119 its_flush_cmd(its, sync_cmd); \ 1120 } \ 1121 \ 1122 post: \ 1123 rd_idx = readl_relaxed(its->base + GITS_CREADR); \ 1124 next_cmd = its_post_commands(its); \ 1125 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1126 \ 1127 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \ 1128 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \ 1129 } 1130 1131 static void its_build_sync_cmd(struct its_node *its, 1132 struct its_cmd_block *sync_cmd, 1133 struct its_collection *sync_col) 1134 { 1135 its_encode_cmd(sync_cmd, GITS_CMD_SYNC); 1136 its_encode_target(sync_cmd, sync_col->target_address); 1137 1138 its_fixup_cmd(sync_cmd); 1139 } 1140 1141 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, 1142 struct its_collection, its_build_sync_cmd) 1143 1144 static void its_build_vsync_cmd(struct its_node *its, 1145 struct its_cmd_block *sync_cmd, 1146 struct its_vpe *sync_vpe) 1147 { 1148 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); 1149 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); 1150 1151 its_fixup_cmd(sync_cmd); 1152 } 1153 1154 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, 1155 struct its_vpe, its_build_vsync_cmd) 1156 1157 static void its_send_int(struct its_device *dev, u32 event_id) 1158 { 1159 struct its_cmd_desc desc; 1160 1161 desc.its_int_cmd.dev = dev; 1162 desc.its_int_cmd.event_id = event_id; 1163 1164 its_send_single_command(dev->its, its_build_int_cmd, &desc); 1165 } 1166 1167 static void its_send_clear(struct its_device *dev, u32 event_id) 1168 { 1169 struct its_cmd_desc desc; 1170 1171 desc.its_clear_cmd.dev = dev; 1172 desc.its_clear_cmd.event_id = event_id; 1173 1174 its_send_single_command(dev->its, its_build_clear_cmd, &desc); 1175 } 1176 1177 static void its_send_inv(struct its_device *dev, u32 event_id) 1178 { 1179 struct its_cmd_desc desc; 1180 1181 desc.its_inv_cmd.dev = dev; 1182 desc.its_inv_cmd.event_id = event_id; 1183 1184 its_send_single_command(dev->its, its_build_inv_cmd, &desc); 1185 } 1186 1187 static void its_send_mapd(struct its_device *dev, int valid) 1188 { 1189 struct its_cmd_desc desc; 1190 1191 desc.its_mapd_cmd.dev = dev; 1192 desc.its_mapd_cmd.valid = !!valid; 1193 1194 its_send_single_command(dev->its, its_build_mapd_cmd, &desc); 1195 } 1196 1197 static void its_send_mapc(struct its_node *its, struct its_collection *col, 1198 int valid) 1199 { 1200 struct its_cmd_desc desc; 1201 1202 desc.its_mapc_cmd.col = col; 1203 desc.its_mapc_cmd.valid = !!valid; 1204 1205 its_send_single_command(its, its_build_mapc_cmd, &desc); 1206 } 1207 1208 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) 1209 { 1210 struct its_cmd_desc desc; 1211 1212 desc.its_mapti_cmd.dev = dev; 1213 desc.its_mapti_cmd.phys_id = irq_id; 1214 desc.its_mapti_cmd.event_id = id; 1215 1216 its_send_single_command(dev->its, its_build_mapti_cmd, &desc); 1217 } 1218 1219 static void its_send_movi(struct its_device *dev, 1220 struct its_collection *col, u32 id) 1221 { 1222 struct its_cmd_desc desc; 1223 1224 desc.its_movi_cmd.dev = dev; 1225 desc.its_movi_cmd.col = col; 1226 desc.its_movi_cmd.event_id = id; 1227 1228 its_send_single_command(dev->its, its_build_movi_cmd, &desc); 1229 } 1230 1231 static void its_send_discard(struct its_device *dev, u32 id) 1232 { 1233 struct its_cmd_desc desc; 1234 1235 desc.its_discard_cmd.dev = dev; 1236 desc.its_discard_cmd.event_id = id; 1237 1238 its_send_single_command(dev->its, its_build_discard_cmd, &desc); 1239 } 1240 1241 static void its_send_invall(struct its_node *its, struct its_collection *col) 1242 { 1243 struct its_cmd_desc desc; 1244 1245 desc.its_invall_cmd.col = col; 1246 1247 its_send_single_command(its, its_build_invall_cmd, &desc); 1248 } 1249 1250 static void its_send_vmapti(struct its_device *dev, u32 id) 1251 { 1252 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1253 struct its_cmd_desc desc; 1254 1255 desc.its_vmapti_cmd.vpe = map->vpe; 1256 desc.its_vmapti_cmd.dev = dev; 1257 desc.its_vmapti_cmd.virt_id = map->vintid; 1258 desc.its_vmapti_cmd.event_id = id; 1259 desc.its_vmapti_cmd.db_enabled = map->db_enabled; 1260 1261 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); 1262 } 1263 1264 static void its_send_vmovi(struct its_device *dev, u32 id) 1265 { 1266 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1267 struct its_cmd_desc desc; 1268 1269 desc.its_vmovi_cmd.vpe = map->vpe; 1270 desc.its_vmovi_cmd.dev = dev; 1271 desc.its_vmovi_cmd.event_id = id; 1272 desc.its_vmovi_cmd.db_enabled = map->db_enabled; 1273 1274 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); 1275 } 1276 1277 static void its_send_vmapp(struct its_node *its, 1278 struct its_vpe *vpe, bool valid) 1279 { 1280 struct its_cmd_desc desc; 1281 1282 desc.its_vmapp_cmd.vpe = vpe; 1283 desc.its_vmapp_cmd.valid = valid; 1284 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; 1285 1286 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); 1287 } 1288 1289 static void its_send_vmovp(struct its_vpe *vpe) 1290 { 1291 struct its_cmd_desc desc = {}; 1292 struct its_node *its; 1293 unsigned long flags; 1294 int col_id = vpe->col_idx; 1295 1296 desc.its_vmovp_cmd.vpe = vpe; 1297 1298 if (!its_list_map) { 1299 its = list_first_entry(&its_nodes, struct its_node, entry); 1300 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1301 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1302 return; 1303 } 1304 1305 /* 1306 * Yet another marvel of the architecture. If using the 1307 * its_list "feature", we need to make sure that all ITSs 1308 * receive all VMOVP commands in the same order. The only way 1309 * to guarantee this is to make vmovp a serialization point. 1310 * 1311 * Wall <-- Head. 1312 */ 1313 raw_spin_lock_irqsave(&vmovp_lock, flags); 1314 1315 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; 1316 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm); 1317 1318 /* Emit VMOVPs */ 1319 list_for_each_entry(its, &its_nodes, entry) { 1320 if (!is_v4(its)) 1321 continue; 1322 1323 if (!require_its_list_vmovp(vpe->its_vm, its)) 1324 continue; 1325 1326 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1327 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1328 } 1329 1330 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1331 } 1332 1333 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe) 1334 { 1335 struct its_cmd_desc desc; 1336 1337 desc.its_vinvall_cmd.vpe = vpe; 1338 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); 1339 } 1340 1341 static void its_send_vinv(struct its_device *dev, u32 event_id) 1342 { 1343 struct its_cmd_desc desc; 1344 1345 /* 1346 * There is no real VINV command. This is just a normal INV, 1347 * with a VSYNC instead of a SYNC. 1348 */ 1349 desc.its_inv_cmd.dev = dev; 1350 desc.its_inv_cmd.event_id = event_id; 1351 1352 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc); 1353 } 1354 1355 static void its_send_vint(struct its_device *dev, u32 event_id) 1356 { 1357 struct its_cmd_desc desc; 1358 1359 /* 1360 * There is no real VINT command. This is just a normal INT, 1361 * with a VSYNC instead of a SYNC. 1362 */ 1363 desc.its_int_cmd.dev = dev; 1364 desc.its_int_cmd.event_id = event_id; 1365 1366 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc); 1367 } 1368 1369 static void its_send_vclear(struct its_device *dev, u32 event_id) 1370 { 1371 struct its_cmd_desc desc; 1372 1373 /* 1374 * There is no real VCLEAR command. This is just a normal CLEAR, 1375 * with a VSYNC instead of a SYNC. 1376 */ 1377 desc.its_clear_cmd.dev = dev; 1378 desc.its_clear_cmd.event_id = event_id; 1379 1380 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc); 1381 } 1382 1383 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe) 1384 { 1385 struct its_cmd_desc desc; 1386 1387 desc.its_invdb_cmd.vpe = vpe; 1388 its_send_single_vcommand(its, its_build_invdb_cmd, &desc); 1389 } 1390 1391 /* 1392 * irqchip functions - assumes MSI, mostly. 1393 */ 1394 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) 1395 { 1396 struct its_vlpi_map *map = get_vlpi_map(d); 1397 irq_hw_number_t hwirq; 1398 void *va; 1399 u8 *cfg; 1400 1401 if (map) { 1402 va = page_address(map->vm->vprop_page); 1403 hwirq = map->vintid; 1404 1405 /* Remember the updated property */ 1406 map->properties &= ~clr; 1407 map->properties |= set | LPI_PROP_GROUP1; 1408 } else { 1409 va = gic_rdists->prop_table_va; 1410 hwirq = d->hwirq; 1411 } 1412 1413 cfg = va + hwirq - 8192; 1414 *cfg &= ~clr; 1415 *cfg |= set | LPI_PROP_GROUP1; 1416 1417 /* 1418 * Make the above write visible to the redistributors. 1419 * And yes, we're flushing exactly: One. Single. Byte. 1420 * Humpf... 1421 */ 1422 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) 1423 gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); 1424 else 1425 dsb(ishst); 1426 } 1427 1428 static void wait_for_syncr(void __iomem *rdbase) 1429 { 1430 while (readl_relaxed(rdbase + GICR_SYNCR) & 1) 1431 cpu_relax(); 1432 } 1433 1434 static void direct_lpi_inv(struct irq_data *d) 1435 { 1436 struct its_vlpi_map *map = get_vlpi_map(d); 1437 void __iomem *rdbase; 1438 unsigned long flags; 1439 u64 val; 1440 int cpu; 1441 1442 if (map) { 1443 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1444 1445 WARN_ON(!is_v4_1(its_dev->its)); 1446 1447 val = GICR_INVLPIR_V; 1448 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id); 1449 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid); 1450 } else { 1451 val = d->hwirq; 1452 } 1453 1454 /* Target the redistributor this LPI is currently routed to */ 1455 cpu = irq_to_cpuid_lock(d, &flags); 1456 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 1457 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 1458 gic_write_lpir(val, rdbase + GICR_INVLPIR); 1459 1460 wait_for_syncr(rdbase); 1461 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 1462 irq_to_cpuid_unlock(d, flags); 1463 } 1464 1465 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) 1466 { 1467 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1468 1469 lpi_write_config(d, clr, set); 1470 if (gic_rdists->has_direct_lpi && 1471 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d))) 1472 direct_lpi_inv(d); 1473 else if (!irqd_is_forwarded_to_vcpu(d)) 1474 its_send_inv(its_dev, its_get_event_id(d)); 1475 else 1476 its_send_vinv(its_dev, its_get_event_id(d)); 1477 } 1478 1479 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) 1480 { 1481 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1482 u32 event = its_get_event_id(d); 1483 struct its_vlpi_map *map; 1484 1485 /* 1486 * GICv4.1 does away with the per-LPI nonsense, nothing to do 1487 * here. 1488 */ 1489 if (is_v4_1(its_dev->its)) 1490 return; 1491 1492 map = dev_event_to_vlpi_map(its_dev, event); 1493 1494 if (map->db_enabled == enable) 1495 return; 1496 1497 map->db_enabled = enable; 1498 1499 /* 1500 * More fun with the architecture: 1501 * 1502 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI 1503 * value or to 1023, depending on the enable bit. But that 1504 * would be issuing a mapping for an /existing/ DevID+EventID 1505 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI 1506 * to the /same/ vPE, using this opportunity to adjust the 1507 * doorbell. Mouahahahaha. We loves it, Precious. 1508 */ 1509 its_send_vmovi(its_dev, event); 1510 } 1511 1512 static void its_mask_irq(struct irq_data *d) 1513 { 1514 if (irqd_is_forwarded_to_vcpu(d)) 1515 its_vlpi_set_doorbell(d, false); 1516 1517 lpi_update_config(d, LPI_PROP_ENABLED, 0); 1518 } 1519 1520 static void its_unmask_irq(struct irq_data *d) 1521 { 1522 if (irqd_is_forwarded_to_vcpu(d)) 1523 its_vlpi_set_doorbell(d, true); 1524 1525 lpi_update_config(d, 0, LPI_PROP_ENABLED); 1526 } 1527 1528 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu) 1529 { 1530 if (irqd_affinity_is_managed(d)) 1531 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1532 1533 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1534 } 1535 1536 static void its_inc_lpi_count(struct irq_data *d, int cpu) 1537 { 1538 if (irqd_affinity_is_managed(d)) 1539 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1540 else 1541 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1542 } 1543 1544 static void its_dec_lpi_count(struct irq_data *d, int cpu) 1545 { 1546 if (irqd_affinity_is_managed(d)) 1547 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1548 else 1549 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1550 } 1551 1552 static unsigned int cpumask_pick_least_loaded(struct irq_data *d, 1553 const struct cpumask *cpu_mask) 1554 { 1555 unsigned int cpu = nr_cpu_ids, tmp; 1556 int count = S32_MAX; 1557 1558 for_each_cpu(tmp, cpu_mask) { 1559 int this_count = its_read_lpi_count(d, tmp); 1560 if (this_count < count) { 1561 cpu = tmp; 1562 count = this_count; 1563 } 1564 } 1565 1566 return cpu; 1567 } 1568 1569 /* 1570 * As suggested by Thomas Gleixner in: 1571 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de 1572 */ 1573 static int its_select_cpu(struct irq_data *d, 1574 const struct cpumask *aff_mask) 1575 { 1576 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1577 cpumask_var_t tmpmask; 1578 int cpu, node; 1579 1580 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC)) 1581 return -ENOMEM; 1582 1583 node = its_dev->its->numa_node; 1584 1585 if (!irqd_affinity_is_managed(d)) { 1586 /* First try the NUMA node */ 1587 if (node != NUMA_NO_NODE) { 1588 /* 1589 * Try the intersection of the affinity mask and the 1590 * node mask (and the online mask, just to be safe). 1591 */ 1592 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask); 1593 cpumask_and(tmpmask, tmpmask, cpu_online_mask); 1594 1595 /* 1596 * Ideally, we would check if the mask is empty, and 1597 * try again on the full node here. 1598 * 1599 * But it turns out that the way ACPI describes the 1600 * affinity for ITSs only deals about memory, and 1601 * not target CPUs, so it cannot describe a single 1602 * ITS placed next to two NUMA nodes. 1603 * 1604 * Instead, just fallback on the online mask. This 1605 * diverges from Thomas' suggestion above. 1606 */ 1607 cpu = cpumask_pick_least_loaded(d, tmpmask); 1608 if (cpu < nr_cpu_ids) 1609 goto out; 1610 1611 /* If we can't cross sockets, give up */ 1612 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)) 1613 goto out; 1614 1615 /* If the above failed, expand the search */ 1616 } 1617 1618 /* Try the intersection of the affinity and online masks */ 1619 cpumask_and(tmpmask, aff_mask, cpu_online_mask); 1620 1621 /* If that doesn't fly, the online mask is the last resort */ 1622 if (cpumask_empty(tmpmask)) 1623 cpumask_copy(tmpmask, cpu_online_mask); 1624 1625 cpu = cpumask_pick_least_loaded(d, tmpmask); 1626 } else { 1627 cpumask_copy(tmpmask, aff_mask); 1628 1629 /* If we cannot cross sockets, limit the search to that node */ 1630 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) && 1631 node != NUMA_NO_NODE) 1632 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node)); 1633 1634 cpu = cpumask_pick_least_loaded(d, tmpmask); 1635 } 1636 out: 1637 free_cpumask_var(tmpmask); 1638 1639 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu); 1640 return cpu; 1641 } 1642 1643 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 1644 bool force) 1645 { 1646 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1647 struct its_collection *target_col; 1648 u32 id = its_get_event_id(d); 1649 int cpu, prev_cpu; 1650 1651 /* A forwarded interrupt should use irq_set_vcpu_affinity */ 1652 if (irqd_is_forwarded_to_vcpu(d)) 1653 return -EINVAL; 1654 1655 prev_cpu = its_dev->event_map.col_map[id]; 1656 its_dec_lpi_count(d, prev_cpu); 1657 1658 if (!force) 1659 cpu = its_select_cpu(d, mask_val); 1660 else 1661 cpu = cpumask_pick_least_loaded(d, mask_val); 1662 1663 if (cpu < 0 || cpu >= nr_cpu_ids) 1664 goto err; 1665 1666 /* don't set the affinity when the target cpu is same as current one */ 1667 if (cpu != prev_cpu) { 1668 target_col = &its_dev->its->collections[cpu]; 1669 its_send_movi(its_dev, target_col, id); 1670 its_dev->event_map.col_map[id] = cpu; 1671 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 1672 } 1673 1674 its_inc_lpi_count(d, cpu); 1675 1676 return IRQ_SET_MASK_OK_DONE; 1677 1678 err: 1679 its_inc_lpi_count(d, prev_cpu); 1680 return -EINVAL; 1681 } 1682 1683 static u64 its_irq_get_msi_base(struct its_device *its_dev) 1684 { 1685 struct its_node *its = its_dev->its; 1686 1687 return its->phys_base + GITS_TRANSLATER; 1688 } 1689 1690 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) 1691 { 1692 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1693 struct its_node *its; 1694 u64 addr; 1695 1696 its = its_dev->its; 1697 addr = its->get_msi_base(its_dev); 1698 1699 msg->address_lo = lower_32_bits(addr); 1700 msg->address_hi = upper_32_bits(addr); 1701 msg->data = its_get_event_id(d); 1702 1703 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg); 1704 } 1705 1706 static int its_irq_set_irqchip_state(struct irq_data *d, 1707 enum irqchip_irq_state which, 1708 bool state) 1709 { 1710 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1711 u32 event = its_get_event_id(d); 1712 1713 if (which != IRQCHIP_STATE_PENDING) 1714 return -EINVAL; 1715 1716 if (irqd_is_forwarded_to_vcpu(d)) { 1717 if (state) 1718 its_send_vint(its_dev, event); 1719 else 1720 its_send_vclear(its_dev, event); 1721 } else { 1722 if (state) 1723 its_send_int(its_dev, event); 1724 else 1725 its_send_clear(its_dev, event); 1726 } 1727 1728 return 0; 1729 } 1730 1731 static int its_irq_retrigger(struct irq_data *d) 1732 { 1733 return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 1734 } 1735 1736 /* 1737 * Two favourable cases: 1738 * 1739 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times 1740 * for vSGI delivery 1741 * 1742 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough 1743 * and we're better off mapping all VPEs always 1744 * 1745 * If neither (a) nor (b) is true, then we map vPEs on demand. 1746 * 1747 */ 1748 static bool gic_requires_eager_mapping(void) 1749 { 1750 if (!its_list_map || gic_rdists->has_rvpeid) 1751 return true; 1752 1753 return false; 1754 } 1755 1756 static void its_map_vm(struct its_node *its, struct its_vm *vm) 1757 { 1758 unsigned long flags; 1759 1760 if (gic_requires_eager_mapping()) 1761 return; 1762 1763 raw_spin_lock_irqsave(&vmovp_lock, flags); 1764 1765 /* 1766 * If the VM wasn't mapped yet, iterate over the vpes and get 1767 * them mapped now. 1768 */ 1769 vm->vlpi_count[its->list_nr]++; 1770 1771 if (vm->vlpi_count[its->list_nr] == 1) { 1772 int i; 1773 1774 for (i = 0; i < vm->nr_vpes; i++) { 1775 struct its_vpe *vpe = vm->vpes[i]; 1776 struct irq_data *d = irq_get_irq_data(vpe->irq); 1777 1778 /* Map the VPE to the first possible CPU */ 1779 vpe->col_idx = cpumask_first(cpu_online_mask); 1780 its_send_vmapp(its, vpe, true); 1781 its_send_vinvall(its, vpe); 1782 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 1783 } 1784 } 1785 1786 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1787 } 1788 1789 static void its_unmap_vm(struct its_node *its, struct its_vm *vm) 1790 { 1791 unsigned long flags; 1792 1793 /* Not using the ITS list? Everything is always mapped. */ 1794 if (gic_requires_eager_mapping()) 1795 return; 1796 1797 raw_spin_lock_irqsave(&vmovp_lock, flags); 1798 1799 if (!--vm->vlpi_count[its->list_nr]) { 1800 int i; 1801 1802 for (i = 0; i < vm->nr_vpes; i++) 1803 its_send_vmapp(its, vm->vpes[i], false); 1804 } 1805 1806 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1807 } 1808 1809 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) 1810 { 1811 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1812 u32 event = its_get_event_id(d); 1813 int ret = 0; 1814 1815 if (!info->map) 1816 return -EINVAL; 1817 1818 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1819 1820 if (!its_dev->event_map.vm) { 1821 struct its_vlpi_map *maps; 1822 1823 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps), 1824 GFP_ATOMIC); 1825 if (!maps) { 1826 ret = -ENOMEM; 1827 goto out; 1828 } 1829 1830 its_dev->event_map.vm = info->map->vm; 1831 its_dev->event_map.vlpi_maps = maps; 1832 } else if (its_dev->event_map.vm != info->map->vm) { 1833 ret = -EINVAL; 1834 goto out; 1835 } 1836 1837 /* Get our private copy of the mapping information */ 1838 its_dev->event_map.vlpi_maps[event] = *info->map; 1839 1840 if (irqd_is_forwarded_to_vcpu(d)) { 1841 /* Already mapped, move it around */ 1842 its_send_vmovi(its_dev, event); 1843 } else { 1844 /* Ensure all the VPEs are mapped on this ITS */ 1845 its_map_vm(its_dev->its, info->map->vm); 1846 1847 /* 1848 * Flag the interrupt as forwarded so that we can 1849 * start poking the virtual property table. 1850 */ 1851 irqd_set_forwarded_to_vcpu(d); 1852 1853 /* Write out the property to the prop table */ 1854 lpi_write_config(d, 0xff, info->map->properties); 1855 1856 /* Drop the physical mapping */ 1857 its_send_discard(its_dev, event); 1858 1859 /* and install the virtual one */ 1860 its_send_vmapti(its_dev, event); 1861 1862 /* Increment the number of VLPIs */ 1863 its_dev->event_map.nr_vlpis++; 1864 } 1865 1866 out: 1867 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1868 return ret; 1869 } 1870 1871 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) 1872 { 1873 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1874 struct its_vlpi_map *map; 1875 int ret = 0; 1876 1877 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1878 1879 map = get_vlpi_map(d); 1880 1881 if (!its_dev->event_map.vm || !map) { 1882 ret = -EINVAL; 1883 goto out; 1884 } 1885 1886 /* Copy our mapping information to the incoming request */ 1887 *info->map = *map; 1888 1889 out: 1890 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1891 return ret; 1892 } 1893 1894 static int its_vlpi_unmap(struct irq_data *d) 1895 { 1896 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1897 u32 event = its_get_event_id(d); 1898 int ret = 0; 1899 1900 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1901 1902 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) { 1903 ret = -EINVAL; 1904 goto out; 1905 } 1906 1907 /* Drop the virtual mapping */ 1908 its_send_discard(its_dev, event); 1909 1910 /* and restore the physical one */ 1911 irqd_clr_forwarded_to_vcpu(d); 1912 its_send_mapti(its_dev, d->hwirq, event); 1913 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO | 1914 LPI_PROP_ENABLED | 1915 LPI_PROP_GROUP1)); 1916 1917 /* Potentially unmap the VM from this ITS */ 1918 its_unmap_vm(its_dev->its, its_dev->event_map.vm); 1919 1920 /* 1921 * Drop the refcount and make the device available again if 1922 * this was the last VLPI. 1923 */ 1924 if (!--its_dev->event_map.nr_vlpis) { 1925 its_dev->event_map.vm = NULL; 1926 kfree(its_dev->event_map.vlpi_maps); 1927 } 1928 1929 out: 1930 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1931 return ret; 1932 } 1933 1934 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) 1935 { 1936 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1937 1938 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 1939 return -EINVAL; 1940 1941 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) 1942 lpi_update_config(d, 0xff, info->config); 1943 else 1944 lpi_write_config(d, 0xff, info->config); 1945 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); 1946 1947 return 0; 1948 } 1949 1950 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 1951 { 1952 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1953 struct its_cmd_info *info = vcpu_info; 1954 1955 /* Need a v4 ITS */ 1956 if (!is_v4(its_dev->its)) 1957 return -EINVAL; 1958 1959 /* Unmap request? */ 1960 if (!info) 1961 return its_vlpi_unmap(d); 1962 1963 switch (info->cmd_type) { 1964 case MAP_VLPI: 1965 return its_vlpi_map(d, info); 1966 1967 case GET_VLPI: 1968 return its_vlpi_get(d, info); 1969 1970 case PROP_UPDATE_VLPI: 1971 case PROP_UPDATE_AND_INV_VLPI: 1972 return its_vlpi_prop_update(d, info); 1973 1974 default: 1975 return -EINVAL; 1976 } 1977 } 1978 1979 static struct irq_chip its_irq_chip = { 1980 .name = "ITS", 1981 .irq_mask = its_mask_irq, 1982 .irq_unmask = its_unmask_irq, 1983 .irq_eoi = irq_chip_eoi_parent, 1984 .irq_set_affinity = its_set_affinity, 1985 .irq_compose_msi_msg = its_irq_compose_msi_msg, 1986 .irq_set_irqchip_state = its_irq_set_irqchip_state, 1987 .irq_retrigger = its_irq_retrigger, 1988 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity, 1989 }; 1990 1991 1992 /* 1993 * How we allocate LPIs: 1994 * 1995 * lpi_range_list contains ranges of LPIs that are to available to 1996 * allocate from. To allocate LPIs, just pick the first range that 1997 * fits the required allocation, and reduce it by the required 1998 * amount. Once empty, remove the range from the list. 1999 * 2000 * To free a range of LPIs, add a free range to the list, sort it and 2001 * merge the result if the new range happens to be adjacent to an 2002 * already free block. 2003 * 2004 * The consequence of the above is that allocation is cost is low, but 2005 * freeing is expensive. We assumes that freeing rarely occurs. 2006 */ 2007 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */ 2008 2009 static DEFINE_MUTEX(lpi_range_lock); 2010 static LIST_HEAD(lpi_range_list); 2011 2012 struct lpi_range { 2013 struct list_head entry; 2014 u32 base_id; 2015 u32 span; 2016 }; 2017 2018 static struct lpi_range *mk_lpi_range(u32 base, u32 span) 2019 { 2020 struct lpi_range *range; 2021 2022 range = kmalloc(sizeof(*range), GFP_KERNEL); 2023 if (range) { 2024 range->base_id = base; 2025 range->span = span; 2026 } 2027 2028 return range; 2029 } 2030 2031 static int alloc_lpi_range(u32 nr_lpis, u32 *base) 2032 { 2033 struct lpi_range *range, *tmp; 2034 int err = -ENOSPC; 2035 2036 mutex_lock(&lpi_range_lock); 2037 2038 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { 2039 if (range->span >= nr_lpis) { 2040 *base = range->base_id; 2041 range->base_id += nr_lpis; 2042 range->span -= nr_lpis; 2043 2044 if (range->span == 0) { 2045 list_del(&range->entry); 2046 kfree(range); 2047 } 2048 2049 err = 0; 2050 break; 2051 } 2052 } 2053 2054 mutex_unlock(&lpi_range_lock); 2055 2056 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis); 2057 return err; 2058 } 2059 2060 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b) 2061 { 2062 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list) 2063 return; 2064 if (a->base_id + a->span != b->base_id) 2065 return; 2066 b->base_id = a->base_id; 2067 b->span += a->span; 2068 list_del(&a->entry); 2069 kfree(a); 2070 } 2071 2072 static int free_lpi_range(u32 base, u32 nr_lpis) 2073 { 2074 struct lpi_range *new, *old; 2075 2076 new = mk_lpi_range(base, nr_lpis); 2077 if (!new) 2078 return -ENOMEM; 2079 2080 mutex_lock(&lpi_range_lock); 2081 2082 list_for_each_entry_reverse(old, &lpi_range_list, entry) { 2083 if (old->base_id < base) 2084 break; 2085 } 2086 /* 2087 * old is the last element with ->base_id smaller than base, 2088 * so new goes right after it. If there are no elements with 2089 * ->base_id smaller than base, &old->entry ends up pointing 2090 * at the head of the list, and inserting new it the start of 2091 * the list is the right thing to do in that case as well. 2092 */ 2093 list_add(&new->entry, &old->entry); 2094 /* 2095 * Now check if we can merge with the preceding and/or 2096 * following ranges. 2097 */ 2098 merge_lpi_ranges(old, new); 2099 merge_lpi_ranges(new, list_next_entry(new, entry)); 2100 2101 mutex_unlock(&lpi_range_lock); 2102 return 0; 2103 } 2104 2105 static int __init its_lpi_init(u32 id_bits) 2106 { 2107 u32 lpis = (1UL << id_bits) - 8192; 2108 u32 numlpis; 2109 int err; 2110 2111 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer); 2112 2113 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) { 2114 lpis = numlpis; 2115 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n", 2116 lpis); 2117 } 2118 2119 /* 2120 * Initializing the allocator is just the same as freeing the 2121 * full range of LPIs. 2122 */ 2123 err = free_lpi_range(8192, lpis); 2124 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis); 2125 return err; 2126 } 2127 2128 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids) 2129 { 2130 unsigned long *bitmap = NULL; 2131 int err = 0; 2132 2133 do { 2134 err = alloc_lpi_range(nr_irqs, base); 2135 if (!err) 2136 break; 2137 2138 nr_irqs /= 2; 2139 } while (nr_irqs > 0); 2140 2141 if (!nr_irqs) 2142 err = -ENOSPC; 2143 2144 if (err) 2145 goto out; 2146 2147 bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC); 2148 if (!bitmap) 2149 goto out; 2150 2151 *nr_ids = nr_irqs; 2152 2153 out: 2154 if (!bitmap) 2155 *base = *nr_ids = 0; 2156 2157 return bitmap; 2158 } 2159 2160 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids) 2161 { 2162 WARN_ON(free_lpi_range(base, nr_ids)); 2163 bitmap_free(bitmap); 2164 } 2165 2166 static void gic_reset_prop_table(void *va) 2167 { 2168 /* Priority 0xa0, Group-1, disabled */ 2169 memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ); 2170 2171 /* Make sure the GIC will observe the written configuration */ 2172 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ); 2173 } 2174 2175 static struct page *its_allocate_prop_table(gfp_t gfp_flags) 2176 { 2177 struct page *prop_page; 2178 2179 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ)); 2180 if (!prop_page) 2181 return NULL; 2182 2183 gic_reset_prop_table(page_address(prop_page)); 2184 2185 return prop_page; 2186 } 2187 2188 static void its_free_prop_table(struct page *prop_page) 2189 { 2190 free_pages((unsigned long)page_address(prop_page), 2191 get_order(LPI_PROPBASE_SZ)); 2192 } 2193 2194 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size) 2195 { 2196 phys_addr_t start, end, addr_end; 2197 u64 i; 2198 2199 /* 2200 * We don't bother checking for a kdump kernel as by 2201 * construction, the LPI tables are out of this kernel's 2202 * memory map. 2203 */ 2204 if (is_kdump_kernel()) 2205 return true; 2206 2207 addr_end = addr + size - 1; 2208 2209 for_each_reserved_mem_range(i, &start, &end) { 2210 if (addr >= start && addr_end <= end) 2211 return true; 2212 } 2213 2214 /* Not found, not a good sign... */ 2215 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n", 2216 &addr, &addr_end); 2217 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 2218 return false; 2219 } 2220 2221 static int gic_reserve_range(phys_addr_t addr, unsigned long size) 2222 { 2223 if (efi_enabled(EFI_CONFIG_TABLES)) 2224 return efi_mem_reserve_persistent(addr, size); 2225 2226 return 0; 2227 } 2228 2229 static int __init its_setup_lpi_prop_table(void) 2230 { 2231 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) { 2232 u64 val; 2233 2234 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2235 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1; 2236 2237 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12); 2238 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa, 2239 LPI_PROPBASE_SZ, 2240 MEMREMAP_WB); 2241 gic_reset_prop_table(gic_rdists->prop_table_va); 2242 } else { 2243 struct page *page; 2244 2245 lpi_id_bits = min_t(u32, 2246 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer), 2247 ITS_MAX_LPI_NRBITS); 2248 page = its_allocate_prop_table(GFP_NOWAIT); 2249 if (!page) { 2250 pr_err("Failed to allocate PROPBASE\n"); 2251 return -ENOMEM; 2252 } 2253 2254 gic_rdists->prop_table_pa = page_to_phys(page); 2255 gic_rdists->prop_table_va = page_address(page); 2256 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa, 2257 LPI_PROPBASE_SZ)); 2258 } 2259 2260 pr_info("GICv3: using LPI property table @%pa\n", 2261 &gic_rdists->prop_table_pa); 2262 2263 return its_lpi_init(lpi_id_bits); 2264 } 2265 2266 static const char *its_base_type_string[] = { 2267 [GITS_BASER_TYPE_DEVICE] = "Devices", 2268 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", 2269 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)", 2270 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", 2271 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", 2272 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", 2273 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", 2274 }; 2275 2276 static u64 its_read_baser(struct its_node *its, struct its_baser *baser) 2277 { 2278 u32 idx = baser - its->tables; 2279 2280 return gits_read_baser(its->base + GITS_BASER + (idx << 3)); 2281 } 2282 2283 static void its_write_baser(struct its_node *its, struct its_baser *baser, 2284 u64 val) 2285 { 2286 u32 idx = baser - its->tables; 2287 2288 gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); 2289 baser->val = its_read_baser(its, baser); 2290 } 2291 2292 static int its_setup_baser(struct its_node *its, struct its_baser *baser, 2293 u64 cache, u64 shr, u32 order, bool indirect) 2294 { 2295 u64 val = its_read_baser(its, baser); 2296 u64 esz = GITS_BASER_ENTRY_SIZE(val); 2297 u64 type = GITS_BASER_TYPE(val); 2298 u64 baser_phys, tmp; 2299 u32 alloc_pages, psz; 2300 struct page *page; 2301 void *base; 2302 2303 psz = baser->psz; 2304 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); 2305 if (alloc_pages > GITS_BASER_PAGES_MAX) { 2306 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", 2307 &its->phys_base, its_base_type_string[type], 2308 alloc_pages, GITS_BASER_PAGES_MAX); 2309 alloc_pages = GITS_BASER_PAGES_MAX; 2310 order = get_order(GITS_BASER_PAGES_MAX * psz); 2311 } 2312 2313 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order); 2314 if (!page) 2315 return -ENOMEM; 2316 2317 base = (void *)page_address(page); 2318 baser_phys = virt_to_phys(base); 2319 2320 /* Check if the physical address of the memory is above 48bits */ 2321 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { 2322 2323 /* 52bit PA is supported only when PageSize=64K */ 2324 if (psz != SZ_64K) { 2325 pr_err("ITS: no 52bit PA support when psz=%d\n", psz); 2326 free_pages((unsigned long)base, order); 2327 return -ENXIO; 2328 } 2329 2330 /* Convert 52bit PA to 48bit field */ 2331 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); 2332 } 2333 2334 retry_baser: 2335 val = (baser_phys | 2336 (type << GITS_BASER_TYPE_SHIFT) | 2337 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | 2338 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | 2339 cache | 2340 shr | 2341 GITS_BASER_VALID); 2342 2343 val |= indirect ? GITS_BASER_INDIRECT : 0x0; 2344 2345 switch (psz) { 2346 case SZ_4K: 2347 val |= GITS_BASER_PAGE_SIZE_4K; 2348 break; 2349 case SZ_16K: 2350 val |= GITS_BASER_PAGE_SIZE_16K; 2351 break; 2352 case SZ_64K: 2353 val |= GITS_BASER_PAGE_SIZE_64K; 2354 break; 2355 } 2356 2357 its_write_baser(its, baser, val); 2358 tmp = baser->val; 2359 2360 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { 2361 /* 2362 * Shareability didn't stick. Just use 2363 * whatever the read reported, which is likely 2364 * to be the only thing this redistributor 2365 * supports. If that's zero, make it 2366 * non-cacheable as well. 2367 */ 2368 shr = tmp & GITS_BASER_SHAREABILITY_MASK; 2369 if (!shr) { 2370 cache = GITS_BASER_nC; 2371 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); 2372 } 2373 goto retry_baser; 2374 } 2375 2376 if (val != tmp) { 2377 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", 2378 &its->phys_base, its_base_type_string[type], 2379 val, tmp); 2380 free_pages((unsigned long)base, order); 2381 return -ENXIO; 2382 } 2383 2384 baser->order = order; 2385 baser->base = base; 2386 baser->psz = psz; 2387 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; 2388 2389 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", 2390 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), 2391 its_base_type_string[type], 2392 (unsigned long)virt_to_phys(base), 2393 indirect ? "indirect" : "flat", (int)esz, 2394 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); 2395 2396 return 0; 2397 } 2398 2399 static bool its_parse_indirect_baser(struct its_node *its, 2400 struct its_baser *baser, 2401 u32 *order, u32 ids) 2402 { 2403 u64 tmp = its_read_baser(its, baser); 2404 u64 type = GITS_BASER_TYPE(tmp); 2405 u64 esz = GITS_BASER_ENTRY_SIZE(tmp); 2406 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; 2407 u32 new_order = *order; 2408 u32 psz = baser->psz; 2409 bool indirect = false; 2410 2411 /* No need to enable Indirection if memory requirement < (psz*2)bytes */ 2412 if ((esz << ids) > (psz * 2)) { 2413 /* 2414 * Find out whether hw supports a single or two-level table by 2415 * table by reading bit at offset '62' after writing '1' to it. 2416 */ 2417 its_write_baser(its, baser, val | GITS_BASER_INDIRECT); 2418 indirect = !!(baser->val & GITS_BASER_INDIRECT); 2419 2420 if (indirect) { 2421 /* 2422 * The size of the lvl2 table is equal to ITS page size 2423 * which is 'psz'. For computing lvl1 table size, 2424 * subtract ID bits that sparse lvl2 table from 'ids' 2425 * which is reported by ITS hardware times lvl1 table 2426 * entry size. 2427 */ 2428 ids -= ilog2(psz / (int)esz); 2429 esz = GITS_LVL1_ENTRY_SIZE; 2430 } 2431 } 2432 2433 /* 2434 * Allocate as many entries as required to fit the 2435 * range of device IDs that the ITS can grok... The ID 2436 * space being incredibly sparse, this results in a 2437 * massive waste of memory if two-level device table 2438 * feature is not supported by hardware. 2439 */ 2440 new_order = max_t(u32, get_order(esz << ids), new_order); 2441 if (new_order >= MAX_ORDER) { 2442 new_order = MAX_ORDER - 1; 2443 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); 2444 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n", 2445 &its->phys_base, its_base_type_string[type], 2446 device_ids(its), ids); 2447 } 2448 2449 *order = new_order; 2450 2451 return indirect; 2452 } 2453 2454 static u32 compute_common_aff(u64 val) 2455 { 2456 u32 aff, clpiaff; 2457 2458 aff = FIELD_GET(GICR_TYPER_AFFINITY, val); 2459 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val); 2460 2461 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8)); 2462 } 2463 2464 static u32 compute_its_aff(struct its_node *its) 2465 { 2466 u64 val; 2467 u32 svpet; 2468 2469 /* 2470 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute 2471 * the resulting affinity. We then use that to see if this match 2472 * our own affinity. 2473 */ 2474 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); 2475 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet); 2476 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr); 2477 return compute_common_aff(val); 2478 } 2479 2480 static struct its_node *find_sibling_its(struct its_node *cur_its) 2481 { 2482 struct its_node *its; 2483 u32 aff; 2484 2485 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer)) 2486 return NULL; 2487 2488 aff = compute_its_aff(cur_its); 2489 2490 list_for_each_entry(its, &its_nodes, entry) { 2491 u64 baser; 2492 2493 if (!is_v4_1(its) || its == cur_its) 2494 continue; 2495 2496 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2497 continue; 2498 2499 if (aff != compute_its_aff(its)) 2500 continue; 2501 2502 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2503 baser = its->tables[2].val; 2504 if (!(baser & GITS_BASER_VALID)) 2505 continue; 2506 2507 return its; 2508 } 2509 2510 return NULL; 2511 } 2512 2513 static void its_free_tables(struct its_node *its) 2514 { 2515 int i; 2516 2517 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2518 if (its->tables[i].base) { 2519 free_pages((unsigned long)its->tables[i].base, 2520 its->tables[i].order); 2521 its->tables[i].base = NULL; 2522 } 2523 } 2524 } 2525 2526 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser) 2527 { 2528 u64 psz = SZ_64K; 2529 2530 while (psz) { 2531 u64 val, gpsz; 2532 2533 val = its_read_baser(its, baser); 2534 val &= ~GITS_BASER_PAGE_SIZE_MASK; 2535 2536 switch (psz) { 2537 case SZ_64K: 2538 gpsz = GITS_BASER_PAGE_SIZE_64K; 2539 break; 2540 case SZ_16K: 2541 gpsz = GITS_BASER_PAGE_SIZE_16K; 2542 break; 2543 case SZ_4K: 2544 default: 2545 gpsz = GITS_BASER_PAGE_SIZE_4K; 2546 break; 2547 } 2548 2549 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT; 2550 2551 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz); 2552 its_write_baser(its, baser, val); 2553 2554 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz) 2555 break; 2556 2557 switch (psz) { 2558 case SZ_64K: 2559 psz = SZ_16K; 2560 break; 2561 case SZ_16K: 2562 psz = SZ_4K; 2563 break; 2564 case SZ_4K: 2565 default: 2566 return -1; 2567 } 2568 } 2569 2570 baser->psz = psz; 2571 return 0; 2572 } 2573 2574 static int its_alloc_tables(struct its_node *its) 2575 { 2576 u64 shr = GITS_BASER_InnerShareable; 2577 u64 cache = GITS_BASER_RaWaWb; 2578 int err, i; 2579 2580 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) 2581 /* erratum 24313: ignore memory access type */ 2582 cache = GITS_BASER_nCnB; 2583 2584 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2585 struct its_baser *baser = its->tables + i; 2586 u64 val = its_read_baser(its, baser); 2587 u64 type = GITS_BASER_TYPE(val); 2588 bool indirect = false; 2589 u32 order; 2590 2591 if (type == GITS_BASER_TYPE_NONE) 2592 continue; 2593 2594 if (its_probe_baser_psz(its, baser)) { 2595 its_free_tables(its); 2596 return -ENXIO; 2597 } 2598 2599 order = get_order(baser->psz); 2600 2601 switch (type) { 2602 case GITS_BASER_TYPE_DEVICE: 2603 indirect = its_parse_indirect_baser(its, baser, &order, 2604 device_ids(its)); 2605 break; 2606 2607 case GITS_BASER_TYPE_VCPU: 2608 if (is_v4_1(its)) { 2609 struct its_node *sibling; 2610 2611 WARN_ON(i != 2); 2612 if ((sibling = find_sibling_its(its))) { 2613 *baser = sibling->tables[2]; 2614 its_write_baser(its, baser, baser->val); 2615 continue; 2616 } 2617 } 2618 2619 indirect = its_parse_indirect_baser(its, baser, &order, 2620 ITS_MAX_VPEID_BITS); 2621 break; 2622 } 2623 2624 err = its_setup_baser(its, baser, cache, shr, order, indirect); 2625 if (err < 0) { 2626 its_free_tables(its); 2627 return err; 2628 } 2629 2630 /* Update settings which will be used for next BASERn */ 2631 cache = baser->val & GITS_BASER_CACHEABILITY_MASK; 2632 shr = baser->val & GITS_BASER_SHAREABILITY_MASK; 2633 } 2634 2635 return 0; 2636 } 2637 2638 static u64 inherit_vpe_l1_table_from_its(void) 2639 { 2640 struct its_node *its; 2641 u64 val; 2642 u32 aff; 2643 2644 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2645 aff = compute_common_aff(val); 2646 2647 list_for_each_entry(its, &its_nodes, entry) { 2648 u64 baser, addr; 2649 2650 if (!is_v4_1(its)) 2651 continue; 2652 2653 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2654 continue; 2655 2656 if (aff != compute_its_aff(its)) 2657 continue; 2658 2659 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2660 baser = its->tables[2].val; 2661 if (!(baser & GITS_BASER_VALID)) 2662 continue; 2663 2664 /* We have a winner! */ 2665 gic_data_rdist()->vpe_l1_base = its->tables[2].base; 2666 2667 val = GICR_VPROPBASER_4_1_VALID; 2668 if (baser & GITS_BASER_INDIRECT) 2669 val |= GICR_VPROPBASER_4_1_INDIRECT; 2670 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, 2671 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)); 2672 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) { 2673 case GIC_PAGE_SIZE_64K: 2674 addr = GITS_BASER_ADDR_48_to_52(baser); 2675 break; 2676 default: 2677 addr = baser & GENMASK_ULL(47, 12); 2678 break; 2679 } 2680 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12); 2681 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK, 2682 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser)); 2683 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK, 2684 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser)); 2685 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1); 2686 2687 return val; 2688 } 2689 2690 return 0; 2691 } 2692 2693 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask) 2694 { 2695 u32 aff; 2696 u64 val; 2697 int cpu; 2698 2699 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2700 aff = compute_common_aff(val); 2701 2702 for_each_possible_cpu(cpu) { 2703 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2704 2705 if (!base || cpu == smp_processor_id()) 2706 continue; 2707 2708 val = gic_read_typer(base + GICR_TYPER); 2709 if (aff != compute_common_aff(val)) 2710 continue; 2711 2712 /* 2713 * At this point, we have a victim. This particular CPU 2714 * has already booted, and has an affinity that matches 2715 * ours wrt CommonLPIAff. Let's use its own VPROPBASER. 2716 * Make sure we don't write the Z bit in that case. 2717 */ 2718 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2719 val &= ~GICR_VPROPBASER_4_1_Z; 2720 2721 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2722 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask; 2723 2724 return val; 2725 } 2726 2727 return 0; 2728 } 2729 2730 static bool allocate_vpe_l2_table(int cpu, u32 id) 2731 { 2732 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2733 unsigned int psz, esz, idx, npg, gpsz; 2734 u64 val; 2735 struct page *page; 2736 __le64 *table; 2737 2738 if (!gic_rdists->has_rvpeid) 2739 return true; 2740 2741 /* Skip non-present CPUs */ 2742 if (!base) 2743 return true; 2744 2745 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2746 2747 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1; 2748 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2749 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1; 2750 2751 switch (gpsz) { 2752 default: 2753 WARN_ON(1); 2754 fallthrough; 2755 case GIC_PAGE_SIZE_4K: 2756 psz = SZ_4K; 2757 break; 2758 case GIC_PAGE_SIZE_16K: 2759 psz = SZ_16K; 2760 break; 2761 case GIC_PAGE_SIZE_64K: 2762 psz = SZ_64K; 2763 break; 2764 } 2765 2766 /* Don't allow vpe_id that exceeds single, flat table limit */ 2767 if (!(val & GICR_VPROPBASER_4_1_INDIRECT)) 2768 return (id < (npg * psz / (esz * SZ_8))); 2769 2770 /* Compute 1st level table index & check if that exceeds table limit */ 2771 idx = id >> ilog2(psz / (esz * SZ_8)); 2772 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE)) 2773 return false; 2774 2775 table = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2776 2777 /* Allocate memory for 2nd level table */ 2778 if (!table[idx]) { 2779 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz)); 2780 if (!page) 2781 return false; 2782 2783 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 2784 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2785 gic_flush_dcache_to_poc(page_address(page), psz); 2786 2787 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 2788 2789 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 2790 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2791 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 2792 2793 /* Ensure updated table contents are visible to RD hardware */ 2794 dsb(sy); 2795 } 2796 2797 return true; 2798 } 2799 2800 static int allocate_vpe_l1_table(void) 2801 { 2802 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2803 u64 val, gpsz, npg, pa; 2804 unsigned int psz = SZ_64K; 2805 unsigned int np, epp, esz; 2806 struct page *page; 2807 2808 if (!gic_rdists->has_rvpeid) 2809 return 0; 2810 2811 /* 2812 * if VPENDBASER.Valid is set, disable any previously programmed 2813 * VPE by setting PendingLast while clearing Valid. This has the 2814 * effect of making sure no doorbell will be generated and we can 2815 * then safely clear VPROPBASER.Valid. 2816 */ 2817 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid) 2818 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast, 2819 vlpi_base + GICR_VPENDBASER); 2820 2821 /* 2822 * If we can inherit the configuration from another RD, let's do 2823 * so. Otherwise, we have to go through the allocation process. We 2824 * assume that all RDs have the exact same requirements, as 2825 * nothing will work otherwise. 2826 */ 2827 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask); 2828 if (val & GICR_VPROPBASER_4_1_VALID) 2829 goto out; 2830 2831 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC); 2832 if (!gic_data_rdist()->vpe_table_mask) 2833 return -ENOMEM; 2834 2835 val = inherit_vpe_l1_table_from_its(); 2836 if (val & GICR_VPROPBASER_4_1_VALID) 2837 goto out; 2838 2839 /* First probe the page size */ 2840 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K); 2841 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2842 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER); 2843 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2844 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val); 2845 2846 switch (gpsz) { 2847 default: 2848 gpsz = GIC_PAGE_SIZE_4K; 2849 fallthrough; 2850 case GIC_PAGE_SIZE_4K: 2851 psz = SZ_4K; 2852 break; 2853 case GIC_PAGE_SIZE_16K: 2854 psz = SZ_16K; 2855 break; 2856 case GIC_PAGE_SIZE_64K: 2857 psz = SZ_64K; 2858 break; 2859 } 2860 2861 /* 2862 * Start populating the register from scratch, including RO fields 2863 * (which we want to print in debug cases...) 2864 */ 2865 val = 0; 2866 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz); 2867 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz); 2868 2869 /* How many entries per GIC page? */ 2870 esz++; 2871 epp = psz / (esz * SZ_8); 2872 2873 /* 2874 * If we need more than just a single L1 page, flag the table 2875 * as indirect and compute the number of required L1 pages. 2876 */ 2877 if (epp < ITS_MAX_VPEID) { 2878 int nl2; 2879 2880 val |= GICR_VPROPBASER_4_1_INDIRECT; 2881 2882 /* Number of L2 pages required to cover the VPEID space */ 2883 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp); 2884 2885 /* Number of L1 pages to point to the L2 pages */ 2886 npg = DIV_ROUND_UP(nl2 * SZ_8, psz); 2887 } else { 2888 npg = 1; 2889 } 2890 2891 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1); 2892 2893 /* Right, that's the number of CPU pages we need for L1 */ 2894 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE); 2895 2896 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n", 2897 np, npg, psz, epp, esz); 2898 page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE)); 2899 if (!page) 2900 return -ENOMEM; 2901 2902 gic_data_rdist()->vpe_l1_base = page_address(page); 2903 pa = virt_to_phys(page_address(page)); 2904 WARN_ON(!IS_ALIGNED(pa, psz)); 2905 2906 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12); 2907 val |= GICR_VPROPBASER_RaWb; 2908 val |= GICR_VPROPBASER_InnerShareable; 2909 val |= GICR_VPROPBASER_4_1_Z; 2910 val |= GICR_VPROPBASER_4_1_VALID; 2911 2912 out: 2913 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2914 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask); 2915 2916 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n", 2917 smp_processor_id(), val, 2918 cpumask_pr_args(gic_data_rdist()->vpe_table_mask)); 2919 2920 return 0; 2921 } 2922 2923 static int its_alloc_collections(struct its_node *its) 2924 { 2925 int i; 2926 2927 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections), 2928 GFP_KERNEL); 2929 if (!its->collections) 2930 return -ENOMEM; 2931 2932 for (i = 0; i < nr_cpu_ids; i++) 2933 its->collections[i].target_address = ~0ULL; 2934 2935 return 0; 2936 } 2937 2938 static struct page *its_allocate_pending_table(gfp_t gfp_flags) 2939 { 2940 struct page *pend_page; 2941 2942 pend_page = alloc_pages(gfp_flags | __GFP_ZERO, 2943 get_order(LPI_PENDBASE_SZ)); 2944 if (!pend_page) 2945 return NULL; 2946 2947 /* Make sure the GIC will observe the zero-ed page */ 2948 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); 2949 2950 return pend_page; 2951 } 2952 2953 static void its_free_pending_table(struct page *pt) 2954 { 2955 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ)); 2956 } 2957 2958 /* 2959 * Booting with kdump and LPIs enabled is generally fine. Any other 2960 * case is wrong in the absence of firmware/EFI support. 2961 */ 2962 static bool enabled_lpis_allowed(void) 2963 { 2964 phys_addr_t addr; 2965 u64 val; 2966 2967 /* Check whether the property table is in a reserved region */ 2968 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2969 addr = val & GENMASK_ULL(51, 12); 2970 2971 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ); 2972 } 2973 2974 static int __init allocate_lpi_tables(void) 2975 { 2976 u64 val; 2977 int err, cpu; 2978 2979 /* 2980 * If LPIs are enabled while we run this from the boot CPU, 2981 * flag the RD tables as pre-allocated if the stars do align. 2982 */ 2983 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR); 2984 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) { 2985 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED | 2986 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING); 2987 pr_info("GICv3: Using preallocated redistributor tables\n"); 2988 } 2989 2990 err = its_setup_lpi_prop_table(); 2991 if (err) 2992 return err; 2993 2994 /* 2995 * We allocate all the pending tables anyway, as we may have a 2996 * mix of RDs that have had LPIs enabled, and some that 2997 * don't. We'll free the unused ones as each CPU comes online. 2998 */ 2999 for_each_possible_cpu(cpu) { 3000 struct page *pend_page; 3001 3002 pend_page = its_allocate_pending_table(GFP_NOWAIT); 3003 if (!pend_page) { 3004 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu); 3005 return -ENOMEM; 3006 } 3007 3008 gic_data_rdist_cpu(cpu)->pend_page = pend_page; 3009 } 3010 3011 return 0; 3012 } 3013 3014 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base) 3015 { 3016 u32 count = 1000000; /* 1s! */ 3017 bool clean; 3018 u64 val; 3019 3020 do { 3021 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 3022 clean = !(val & GICR_VPENDBASER_Dirty); 3023 if (!clean) { 3024 count--; 3025 cpu_relax(); 3026 udelay(1); 3027 } 3028 } while (!clean && count); 3029 3030 if (unlikely(!clean)) 3031 pr_err_ratelimited("ITS virtual pending table not cleaning\n"); 3032 3033 return val; 3034 } 3035 3036 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set) 3037 { 3038 u64 val; 3039 3040 /* Make sure we wait until the RD is done with the initial scan */ 3041 val = read_vpend_dirty_clear(vlpi_base); 3042 val &= ~GICR_VPENDBASER_Valid; 3043 val &= ~clr; 3044 val |= set; 3045 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3046 3047 val = read_vpend_dirty_clear(vlpi_base); 3048 if (unlikely(val & GICR_VPENDBASER_Dirty)) 3049 val |= GICR_VPENDBASER_PendingLast; 3050 3051 return val; 3052 } 3053 3054 static void its_cpu_init_lpis(void) 3055 { 3056 void __iomem *rbase = gic_data_rdist_rd_base(); 3057 struct page *pend_page; 3058 phys_addr_t paddr; 3059 u64 val, tmp; 3060 3061 if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) 3062 return; 3063 3064 val = readl_relaxed(rbase + GICR_CTLR); 3065 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) && 3066 (val & GICR_CTLR_ENABLE_LPIS)) { 3067 /* 3068 * Check that we get the same property table on all 3069 * RDs. If we don't, this is hopeless. 3070 */ 3071 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER); 3072 paddr &= GENMASK_ULL(51, 12); 3073 if (WARN_ON(gic_rdists->prop_table_pa != paddr)) 3074 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 3075 3076 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3077 paddr &= GENMASK_ULL(51, 16); 3078 3079 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ)); 3080 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED; 3081 3082 goto out; 3083 } 3084 3085 pend_page = gic_data_rdist()->pend_page; 3086 paddr = page_to_phys(pend_page); 3087 3088 /* set PROPBASE */ 3089 val = (gic_rdists->prop_table_pa | 3090 GICR_PROPBASER_InnerShareable | 3091 GICR_PROPBASER_RaWaWb | 3092 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); 3093 3094 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3095 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); 3096 3097 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { 3098 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { 3099 /* 3100 * The HW reports non-shareable, we must 3101 * remove the cacheability attributes as 3102 * well. 3103 */ 3104 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | 3105 GICR_PROPBASER_CACHEABILITY_MASK); 3106 val |= GICR_PROPBASER_nC; 3107 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3108 } 3109 pr_info_once("GIC: using cache flushing for LPI property table\n"); 3110 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; 3111 } 3112 3113 /* set PENDBASE */ 3114 val = (page_to_phys(pend_page) | 3115 GICR_PENDBASER_InnerShareable | 3116 GICR_PENDBASER_RaWaWb); 3117 3118 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3119 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3120 3121 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { 3122 /* 3123 * The HW reports non-shareable, we must remove the 3124 * cacheability attributes as well. 3125 */ 3126 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | 3127 GICR_PENDBASER_CACHEABILITY_MASK); 3128 val |= GICR_PENDBASER_nC; 3129 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3130 } 3131 3132 /* Enable LPIs */ 3133 val = readl_relaxed(rbase + GICR_CTLR); 3134 val |= GICR_CTLR_ENABLE_LPIS; 3135 writel_relaxed(val, rbase + GICR_CTLR); 3136 3137 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) { 3138 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3139 3140 /* 3141 * It's possible for CPU to receive VLPIs before it is 3142 * scheduled as a vPE, especially for the first CPU, and the 3143 * VLPI with INTID larger than 2^(IDbits+1) will be considered 3144 * as out of range and dropped by GIC. 3145 * So we initialize IDbits to known value to avoid VLPI drop. 3146 */ 3147 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3148 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n", 3149 smp_processor_id(), val); 3150 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3151 3152 /* 3153 * Also clear Valid bit of GICR_VPENDBASER, in case some 3154 * ancient programming gets left in and has possibility of 3155 * corrupting memory. 3156 */ 3157 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3158 } 3159 3160 if (allocate_vpe_l1_table()) { 3161 /* 3162 * If the allocation has failed, we're in massive trouble. 3163 * Disable direct injection, and pray that no VM was 3164 * already running... 3165 */ 3166 gic_rdists->has_rvpeid = false; 3167 gic_rdists->has_vlpis = false; 3168 } 3169 3170 /* Make sure the GIC has seen the above */ 3171 dsb(sy); 3172 out: 3173 gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED; 3174 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n", 3175 smp_processor_id(), 3176 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ? 3177 "reserved" : "allocated", 3178 &paddr); 3179 } 3180 3181 static void its_cpu_init_collection(struct its_node *its) 3182 { 3183 int cpu = smp_processor_id(); 3184 u64 target; 3185 3186 /* avoid cross node collections and its mapping */ 3187 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 3188 struct device_node *cpu_node; 3189 3190 cpu_node = of_get_cpu_node(cpu, NULL); 3191 if (its->numa_node != NUMA_NO_NODE && 3192 its->numa_node != of_node_to_nid(cpu_node)) 3193 return; 3194 } 3195 3196 /* 3197 * We now have to bind each collection to its target 3198 * redistributor. 3199 */ 3200 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { 3201 /* 3202 * This ITS wants the physical address of the 3203 * redistributor. 3204 */ 3205 target = gic_data_rdist()->phys_base; 3206 } else { 3207 /* This ITS wants a linear CPU number. */ 3208 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 3209 target = GICR_TYPER_CPU_NUMBER(target) << 16; 3210 } 3211 3212 /* Perform collection mapping */ 3213 its->collections[cpu].target_address = target; 3214 its->collections[cpu].col_id = cpu; 3215 3216 its_send_mapc(its, &its->collections[cpu], 1); 3217 its_send_invall(its, &its->collections[cpu]); 3218 } 3219 3220 static void its_cpu_init_collections(void) 3221 { 3222 struct its_node *its; 3223 3224 raw_spin_lock(&its_lock); 3225 3226 list_for_each_entry(its, &its_nodes, entry) 3227 its_cpu_init_collection(its); 3228 3229 raw_spin_unlock(&its_lock); 3230 } 3231 3232 static struct its_device *its_find_device(struct its_node *its, u32 dev_id) 3233 { 3234 struct its_device *its_dev = NULL, *tmp; 3235 unsigned long flags; 3236 3237 raw_spin_lock_irqsave(&its->lock, flags); 3238 3239 list_for_each_entry(tmp, &its->its_device_list, entry) { 3240 if (tmp->device_id == dev_id) { 3241 its_dev = tmp; 3242 break; 3243 } 3244 } 3245 3246 raw_spin_unlock_irqrestore(&its->lock, flags); 3247 3248 return its_dev; 3249 } 3250 3251 static struct its_baser *its_get_baser(struct its_node *its, u32 type) 3252 { 3253 int i; 3254 3255 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 3256 if (GITS_BASER_TYPE(its->tables[i].val) == type) 3257 return &its->tables[i]; 3258 } 3259 3260 return NULL; 3261 } 3262 3263 static bool its_alloc_table_entry(struct its_node *its, 3264 struct its_baser *baser, u32 id) 3265 { 3266 struct page *page; 3267 u32 esz, idx; 3268 __le64 *table; 3269 3270 /* Don't allow device id that exceeds single, flat table limit */ 3271 esz = GITS_BASER_ENTRY_SIZE(baser->val); 3272 if (!(baser->val & GITS_BASER_INDIRECT)) 3273 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); 3274 3275 /* Compute 1st level table index & check if that exceeds table limit */ 3276 idx = id >> ilog2(baser->psz / esz); 3277 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) 3278 return false; 3279 3280 table = baser->base; 3281 3282 /* Allocate memory for 2nd level table */ 3283 if (!table[idx]) { 3284 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 3285 get_order(baser->psz)); 3286 if (!page) 3287 return false; 3288 3289 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 3290 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3291 gic_flush_dcache_to_poc(page_address(page), baser->psz); 3292 3293 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 3294 3295 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 3296 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3297 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 3298 3299 /* Ensure updated table contents are visible to ITS hardware */ 3300 dsb(sy); 3301 } 3302 3303 return true; 3304 } 3305 3306 static bool its_alloc_device_table(struct its_node *its, u32 dev_id) 3307 { 3308 struct its_baser *baser; 3309 3310 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); 3311 3312 /* Don't allow device id that exceeds ITS hardware limit */ 3313 if (!baser) 3314 return (ilog2(dev_id) < device_ids(its)); 3315 3316 return its_alloc_table_entry(its, baser, dev_id); 3317 } 3318 3319 static bool its_alloc_vpe_table(u32 vpe_id) 3320 { 3321 struct its_node *its; 3322 int cpu; 3323 3324 /* 3325 * Make sure the L2 tables are allocated on *all* v4 ITSs. We 3326 * could try and only do it on ITSs corresponding to devices 3327 * that have interrupts targeted at this VPE, but the 3328 * complexity becomes crazy (and you have tons of memory 3329 * anyway, right?). 3330 */ 3331 list_for_each_entry(its, &its_nodes, entry) { 3332 struct its_baser *baser; 3333 3334 if (!is_v4(its)) 3335 continue; 3336 3337 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); 3338 if (!baser) 3339 return false; 3340 3341 if (!its_alloc_table_entry(its, baser, vpe_id)) 3342 return false; 3343 } 3344 3345 /* Non v4.1? No need to iterate RDs and go back early. */ 3346 if (!gic_rdists->has_rvpeid) 3347 return true; 3348 3349 /* 3350 * Make sure the L2 tables are allocated for all copies of 3351 * the L1 table on *all* v4.1 RDs. 3352 */ 3353 for_each_possible_cpu(cpu) { 3354 if (!allocate_vpe_l2_table(cpu, vpe_id)) 3355 return false; 3356 } 3357 3358 return true; 3359 } 3360 3361 static struct its_device *its_create_device(struct its_node *its, u32 dev_id, 3362 int nvecs, bool alloc_lpis) 3363 { 3364 struct its_device *dev; 3365 unsigned long *lpi_map = NULL; 3366 unsigned long flags; 3367 u16 *col_map = NULL; 3368 void *itt; 3369 int lpi_base; 3370 int nr_lpis; 3371 int nr_ites; 3372 int sz; 3373 3374 if (!its_alloc_device_table(its, dev_id)) 3375 return NULL; 3376 3377 if (WARN_ON(!is_power_of_2(nvecs))) 3378 nvecs = roundup_pow_of_two(nvecs); 3379 3380 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3381 /* 3382 * Even if the device wants a single LPI, the ITT must be 3383 * sized as a power of two (and you need at least one bit...). 3384 */ 3385 nr_ites = max(2, nvecs); 3386 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1); 3387 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; 3388 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node); 3389 if (alloc_lpis) { 3390 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis); 3391 if (lpi_map) 3392 col_map = kcalloc(nr_lpis, sizeof(*col_map), 3393 GFP_KERNEL); 3394 } else { 3395 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL); 3396 nr_lpis = 0; 3397 lpi_base = 0; 3398 } 3399 3400 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) { 3401 kfree(dev); 3402 kfree(itt); 3403 bitmap_free(lpi_map); 3404 kfree(col_map); 3405 return NULL; 3406 } 3407 3408 gic_flush_dcache_to_poc(itt, sz); 3409 3410 dev->its = its; 3411 dev->itt = itt; 3412 dev->nr_ites = nr_ites; 3413 dev->event_map.lpi_map = lpi_map; 3414 dev->event_map.col_map = col_map; 3415 dev->event_map.lpi_base = lpi_base; 3416 dev->event_map.nr_lpis = nr_lpis; 3417 raw_spin_lock_init(&dev->event_map.vlpi_lock); 3418 dev->device_id = dev_id; 3419 INIT_LIST_HEAD(&dev->entry); 3420 3421 raw_spin_lock_irqsave(&its->lock, flags); 3422 list_add(&dev->entry, &its->its_device_list); 3423 raw_spin_unlock_irqrestore(&its->lock, flags); 3424 3425 /* Map device to its ITT */ 3426 its_send_mapd(dev, 1); 3427 3428 return dev; 3429 } 3430 3431 static void its_free_device(struct its_device *its_dev) 3432 { 3433 unsigned long flags; 3434 3435 raw_spin_lock_irqsave(&its_dev->its->lock, flags); 3436 list_del(&its_dev->entry); 3437 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); 3438 kfree(its_dev->event_map.col_map); 3439 kfree(its_dev->itt); 3440 kfree(its_dev); 3441 } 3442 3443 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq) 3444 { 3445 int idx; 3446 3447 /* Find a free LPI region in lpi_map and allocate them. */ 3448 idx = bitmap_find_free_region(dev->event_map.lpi_map, 3449 dev->event_map.nr_lpis, 3450 get_count_order(nvecs)); 3451 if (idx < 0) 3452 return -ENOSPC; 3453 3454 *hwirq = dev->event_map.lpi_base + idx; 3455 3456 return 0; 3457 } 3458 3459 static int its_msi_prepare(struct irq_domain *domain, struct device *dev, 3460 int nvec, msi_alloc_info_t *info) 3461 { 3462 struct its_node *its; 3463 struct its_device *its_dev; 3464 struct msi_domain_info *msi_info; 3465 u32 dev_id; 3466 int err = 0; 3467 3468 /* 3469 * We ignore "dev" entirely, and rely on the dev_id that has 3470 * been passed via the scratchpad. This limits this domain's 3471 * usefulness to upper layers that definitely know that they 3472 * are built on top of the ITS. 3473 */ 3474 dev_id = info->scratchpad[0].ul; 3475 3476 msi_info = msi_get_domain_info(domain); 3477 its = msi_info->data; 3478 3479 if (!gic_rdists->has_direct_lpi && 3480 vpe_proxy.dev && 3481 vpe_proxy.dev->its == its && 3482 dev_id == vpe_proxy.dev->device_id) { 3483 /* Bad luck. Get yourself a better implementation */ 3484 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", 3485 dev_id); 3486 return -EINVAL; 3487 } 3488 3489 mutex_lock(&its->dev_alloc_lock); 3490 its_dev = its_find_device(its, dev_id); 3491 if (its_dev) { 3492 /* 3493 * We already have seen this ID, probably through 3494 * another alias (PCI bridge of some sort). No need to 3495 * create the device. 3496 */ 3497 its_dev->shared = true; 3498 pr_debug("Reusing ITT for devID %x\n", dev_id); 3499 goto out; 3500 } 3501 3502 its_dev = its_create_device(its, dev_id, nvec, true); 3503 if (!its_dev) { 3504 err = -ENOMEM; 3505 goto out; 3506 } 3507 3508 if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE) 3509 its_dev->shared = true; 3510 3511 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); 3512 out: 3513 mutex_unlock(&its->dev_alloc_lock); 3514 info->scratchpad[0].ptr = its_dev; 3515 return err; 3516 } 3517 3518 static struct msi_domain_ops its_msi_domain_ops = { 3519 .msi_prepare = its_msi_prepare, 3520 }; 3521 3522 static int its_irq_gic_domain_alloc(struct irq_domain *domain, 3523 unsigned int virq, 3524 irq_hw_number_t hwirq) 3525 { 3526 struct irq_fwspec fwspec; 3527 3528 if (irq_domain_get_of_node(domain->parent)) { 3529 fwspec.fwnode = domain->parent->fwnode; 3530 fwspec.param_count = 3; 3531 fwspec.param[0] = GIC_IRQ_TYPE_LPI; 3532 fwspec.param[1] = hwirq; 3533 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 3534 } else if (is_fwnode_irqchip(domain->parent->fwnode)) { 3535 fwspec.fwnode = domain->parent->fwnode; 3536 fwspec.param_count = 2; 3537 fwspec.param[0] = hwirq; 3538 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 3539 } else { 3540 return -EINVAL; 3541 } 3542 3543 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 3544 } 3545 3546 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 3547 unsigned int nr_irqs, void *args) 3548 { 3549 msi_alloc_info_t *info = args; 3550 struct its_device *its_dev = info->scratchpad[0].ptr; 3551 struct its_node *its = its_dev->its; 3552 struct irq_data *irqd; 3553 irq_hw_number_t hwirq; 3554 int err; 3555 int i; 3556 3557 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq); 3558 if (err) 3559 return err; 3560 3561 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev)); 3562 if (err) 3563 return err; 3564 3565 for (i = 0; i < nr_irqs; i++) { 3566 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i); 3567 if (err) 3568 return err; 3569 3570 irq_domain_set_hwirq_and_chip(domain, virq + i, 3571 hwirq + i, &its_irq_chip, its_dev); 3572 irqd = irq_get_irq_data(virq + i); 3573 irqd_set_single_target(irqd); 3574 irqd_set_affinity_on_activate(irqd); 3575 pr_debug("ID:%d pID:%d vID:%d\n", 3576 (int)(hwirq + i - its_dev->event_map.lpi_base), 3577 (int)(hwirq + i), virq + i); 3578 } 3579 3580 return 0; 3581 } 3582 3583 static int its_irq_domain_activate(struct irq_domain *domain, 3584 struct irq_data *d, bool reserve) 3585 { 3586 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3587 u32 event = its_get_event_id(d); 3588 int cpu; 3589 3590 cpu = its_select_cpu(d, cpu_online_mask); 3591 if (cpu < 0 || cpu >= nr_cpu_ids) 3592 return -EINVAL; 3593 3594 its_inc_lpi_count(d, cpu); 3595 its_dev->event_map.col_map[event] = cpu; 3596 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3597 3598 /* Map the GIC IRQ and event to the device */ 3599 its_send_mapti(its_dev, d->hwirq, event); 3600 return 0; 3601 } 3602 3603 static void its_irq_domain_deactivate(struct irq_domain *domain, 3604 struct irq_data *d) 3605 { 3606 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3607 u32 event = its_get_event_id(d); 3608 3609 its_dec_lpi_count(d, its_dev->event_map.col_map[event]); 3610 /* Stop the delivery of interrupts */ 3611 its_send_discard(its_dev, event); 3612 } 3613 3614 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, 3615 unsigned int nr_irqs) 3616 { 3617 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 3618 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3619 struct its_node *its = its_dev->its; 3620 int i; 3621 3622 bitmap_release_region(its_dev->event_map.lpi_map, 3623 its_get_event_id(irq_domain_get_irq_data(domain, virq)), 3624 get_count_order(nr_irqs)); 3625 3626 for (i = 0; i < nr_irqs; i++) { 3627 struct irq_data *data = irq_domain_get_irq_data(domain, 3628 virq + i); 3629 /* Nuke the entry in the domain */ 3630 irq_domain_reset_irq_data(data); 3631 } 3632 3633 mutex_lock(&its->dev_alloc_lock); 3634 3635 /* 3636 * If all interrupts have been freed, start mopping the 3637 * floor. This is conditioned on the device not being shared. 3638 */ 3639 if (!its_dev->shared && 3640 bitmap_empty(its_dev->event_map.lpi_map, 3641 its_dev->event_map.nr_lpis)) { 3642 its_lpi_free(its_dev->event_map.lpi_map, 3643 its_dev->event_map.lpi_base, 3644 its_dev->event_map.nr_lpis); 3645 3646 /* Unmap device/itt */ 3647 its_send_mapd(its_dev, 0); 3648 its_free_device(its_dev); 3649 } 3650 3651 mutex_unlock(&its->dev_alloc_lock); 3652 3653 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 3654 } 3655 3656 static const struct irq_domain_ops its_domain_ops = { 3657 .alloc = its_irq_domain_alloc, 3658 .free = its_irq_domain_free, 3659 .activate = its_irq_domain_activate, 3660 .deactivate = its_irq_domain_deactivate, 3661 }; 3662 3663 /* 3664 * This is insane. 3665 * 3666 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely 3667 * likely), the only way to perform an invalidate is to use a fake 3668 * device to issue an INV command, implying that the LPI has first 3669 * been mapped to some event on that device. Since this is not exactly 3670 * cheap, we try to keep that mapping around as long as possible, and 3671 * only issue an UNMAP if we're short on available slots. 3672 * 3673 * Broken by design(tm). 3674 * 3675 * GICv4.1, on the other hand, mandates that we're able to invalidate 3676 * by writing to a MMIO register. It doesn't implement the whole of 3677 * DirectLPI, but that's good enough. And most of the time, we don't 3678 * even have to invalidate anything, as the redistributor can be told 3679 * whether to generate a doorbell or not (we thus leave it enabled, 3680 * always). 3681 */ 3682 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) 3683 { 3684 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3685 if (gic_rdists->has_rvpeid) 3686 return; 3687 3688 /* Already unmapped? */ 3689 if (vpe->vpe_proxy_event == -1) 3690 return; 3691 3692 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); 3693 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; 3694 3695 /* 3696 * We don't track empty slots at all, so let's move the 3697 * next_victim pointer if we can quickly reuse that slot 3698 * instead of nuking an existing entry. Not clear that this is 3699 * always a win though, and this might just generate a ripple 3700 * effect... Let's just hope VPEs don't migrate too often. 3701 */ 3702 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3703 vpe_proxy.next_victim = vpe->vpe_proxy_event; 3704 3705 vpe->vpe_proxy_event = -1; 3706 } 3707 3708 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) 3709 { 3710 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3711 if (gic_rdists->has_rvpeid) 3712 return; 3713 3714 if (!gic_rdists->has_direct_lpi) { 3715 unsigned long flags; 3716 3717 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3718 its_vpe_db_proxy_unmap_locked(vpe); 3719 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3720 } 3721 } 3722 3723 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) 3724 { 3725 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3726 if (gic_rdists->has_rvpeid) 3727 return; 3728 3729 /* Already mapped? */ 3730 if (vpe->vpe_proxy_event != -1) 3731 return; 3732 3733 /* This slot was already allocated. Kick the other VPE out. */ 3734 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3735 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); 3736 3737 /* Map the new VPE instead */ 3738 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; 3739 vpe->vpe_proxy_event = vpe_proxy.next_victim; 3740 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; 3741 3742 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; 3743 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); 3744 } 3745 3746 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) 3747 { 3748 unsigned long flags; 3749 struct its_collection *target_col; 3750 3751 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3752 if (gic_rdists->has_rvpeid) 3753 return; 3754 3755 if (gic_rdists->has_direct_lpi) { 3756 void __iomem *rdbase; 3757 3758 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; 3759 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 3760 wait_for_syncr(rdbase); 3761 3762 return; 3763 } 3764 3765 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3766 3767 its_vpe_db_proxy_map_locked(vpe); 3768 3769 target_col = &vpe_proxy.dev->its->collections[to]; 3770 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); 3771 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; 3772 3773 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3774 } 3775 3776 static int its_vpe_set_affinity(struct irq_data *d, 3777 const struct cpumask *mask_val, 3778 bool force) 3779 { 3780 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3781 int from, cpu = cpumask_first(mask_val); 3782 unsigned long flags; 3783 3784 /* 3785 * Changing affinity is mega expensive, so let's be as lazy as 3786 * we can and only do it if we really have to. Also, if mapped 3787 * into the proxy device, we need to move the doorbell 3788 * interrupt to its new location. 3789 * 3790 * Another thing is that changing the affinity of a vPE affects 3791 * *other interrupts* such as all the vLPIs that are routed to 3792 * this vPE. This means that the irq_desc lock is not enough to 3793 * protect us, and that we must ensure nobody samples vpe->col_idx 3794 * during the update, hence the lock below which must also be 3795 * taken on any vLPI handling path that evaluates vpe->col_idx. 3796 */ 3797 from = vpe_to_cpuid_lock(vpe, &flags); 3798 if (from == cpu) 3799 goto out; 3800 3801 vpe->col_idx = cpu; 3802 3803 /* 3804 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD 3805 * is sharing its VPE table with the current one. 3806 */ 3807 if (gic_data_rdist_cpu(cpu)->vpe_table_mask && 3808 cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask)) 3809 goto out; 3810 3811 its_send_vmovp(vpe); 3812 its_vpe_db_proxy_move(vpe, from, cpu); 3813 3814 out: 3815 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3816 vpe_to_cpuid_unlock(vpe, flags); 3817 3818 return IRQ_SET_MASK_OK_DONE; 3819 } 3820 3821 static void its_wait_vpt_parse_complete(void) 3822 { 3823 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3824 u64 val; 3825 3826 if (!gic_rdists->has_vpend_valid_dirty) 3827 return; 3828 3829 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER, 3830 val, 3831 !(val & GICR_VPENDBASER_Dirty), 3832 1, 500)); 3833 } 3834 3835 static void its_vpe_schedule(struct its_vpe *vpe) 3836 { 3837 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3838 u64 val; 3839 3840 /* Schedule the VPE */ 3841 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & 3842 GENMASK_ULL(51, 12); 3843 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3844 val |= GICR_VPROPBASER_RaWb; 3845 val |= GICR_VPROPBASER_InnerShareable; 3846 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3847 3848 val = virt_to_phys(page_address(vpe->vpt_page)) & 3849 GENMASK_ULL(51, 16); 3850 val |= GICR_VPENDBASER_RaWaWb; 3851 val |= GICR_VPENDBASER_InnerShareable; 3852 /* 3853 * There is no good way of finding out if the pending table is 3854 * empty as we can race against the doorbell interrupt very 3855 * easily. So in the end, vpe->pending_last is only an 3856 * indication that the vcpu has something pending, not one 3857 * that the pending table is empty. A good implementation 3858 * would be able to read its coarse map pretty quickly anyway, 3859 * making this a tolerable issue. 3860 */ 3861 val |= GICR_VPENDBASER_PendingLast; 3862 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; 3863 val |= GICR_VPENDBASER_Valid; 3864 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3865 } 3866 3867 static void its_vpe_deschedule(struct its_vpe *vpe) 3868 { 3869 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3870 u64 val; 3871 3872 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3873 3874 vpe->idai = !!(val & GICR_VPENDBASER_IDAI); 3875 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 3876 } 3877 3878 static void its_vpe_invall(struct its_vpe *vpe) 3879 { 3880 struct its_node *its; 3881 3882 list_for_each_entry(its, &its_nodes, entry) { 3883 if (!is_v4(its)) 3884 continue; 3885 3886 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr]) 3887 continue; 3888 3889 /* 3890 * Sending a VINVALL to a single ITS is enough, as all 3891 * we need is to reach the redistributors. 3892 */ 3893 its_send_vinvall(its, vpe); 3894 return; 3895 } 3896 } 3897 3898 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 3899 { 3900 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3901 struct its_cmd_info *info = vcpu_info; 3902 3903 switch (info->cmd_type) { 3904 case SCHEDULE_VPE: 3905 its_vpe_schedule(vpe); 3906 return 0; 3907 3908 case DESCHEDULE_VPE: 3909 its_vpe_deschedule(vpe); 3910 return 0; 3911 3912 case COMMIT_VPE: 3913 its_wait_vpt_parse_complete(); 3914 return 0; 3915 3916 case INVALL_VPE: 3917 its_vpe_invall(vpe); 3918 return 0; 3919 3920 default: 3921 return -EINVAL; 3922 } 3923 } 3924 3925 static void its_vpe_send_cmd(struct its_vpe *vpe, 3926 void (*cmd)(struct its_device *, u32)) 3927 { 3928 unsigned long flags; 3929 3930 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3931 3932 its_vpe_db_proxy_map_locked(vpe); 3933 cmd(vpe_proxy.dev, vpe->vpe_proxy_event); 3934 3935 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3936 } 3937 3938 static void its_vpe_send_inv(struct irq_data *d) 3939 { 3940 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3941 3942 if (gic_rdists->has_direct_lpi) { 3943 void __iomem *rdbase; 3944 3945 /* Target the redistributor this VPE is currently known on */ 3946 raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock); 3947 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 3948 gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR); 3949 wait_for_syncr(rdbase); 3950 raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock); 3951 } else { 3952 its_vpe_send_cmd(vpe, its_send_inv); 3953 } 3954 } 3955 3956 static void its_vpe_mask_irq(struct irq_data *d) 3957 { 3958 /* 3959 * We need to unmask the LPI, which is described by the parent 3960 * irq_data. Instead of calling into the parent (which won't 3961 * exactly do the right thing, let's simply use the 3962 * parent_data pointer. Yes, I'm naughty. 3963 */ 3964 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 3965 its_vpe_send_inv(d); 3966 } 3967 3968 static void its_vpe_unmask_irq(struct irq_data *d) 3969 { 3970 /* Same hack as above... */ 3971 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 3972 its_vpe_send_inv(d); 3973 } 3974 3975 static int its_vpe_set_irqchip_state(struct irq_data *d, 3976 enum irqchip_irq_state which, 3977 bool state) 3978 { 3979 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3980 3981 if (which != IRQCHIP_STATE_PENDING) 3982 return -EINVAL; 3983 3984 if (gic_rdists->has_direct_lpi) { 3985 void __iomem *rdbase; 3986 3987 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 3988 if (state) { 3989 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); 3990 } else { 3991 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 3992 wait_for_syncr(rdbase); 3993 } 3994 } else { 3995 if (state) 3996 its_vpe_send_cmd(vpe, its_send_int); 3997 else 3998 its_vpe_send_cmd(vpe, its_send_clear); 3999 } 4000 4001 return 0; 4002 } 4003 4004 static int its_vpe_retrigger(struct irq_data *d) 4005 { 4006 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 4007 } 4008 4009 static struct irq_chip its_vpe_irq_chip = { 4010 .name = "GICv4-vpe", 4011 .irq_mask = its_vpe_mask_irq, 4012 .irq_unmask = its_vpe_unmask_irq, 4013 .irq_eoi = irq_chip_eoi_parent, 4014 .irq_set_affinity = its_vpe_set_affinity, 4015 .irq_retrigger = its_vpe_retrigger, 4016 .irq_set_irqchip_state = its_vpe_set_irqchip_state, 4017 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity, 4018 }; 4019 4020 static struct its_node *find_4_1_its(void) 4021 { 4022 static struct its_node *its = NULL; 4023 4024 if (!its) { 4025 list_for_each_entry(its, &its_nodes, entry) { 4026 if (is_v4_1(its)) 4027 return its; 4028 } 4029 4030 /* Oops? */ 4031 its = NULL; 4032 } 4033 4034 return its; 4035 } 4036 4037 static void its_vpe_4_1_send_inv(struct irq_data *d) 4038 { 4039 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4040 struct its_node *its; 4041 4042 /* 4043 * GICv4.1 wants doorbells to be invalidated using the 4044 * INVDB command in order to be broadcast to all RDs. Send 4045 * it to the first valid ITS, and let the HW do its magic. 4046 */ 4047 its = find_4_1_its(); 4048 if (its) 4049 its_send_invdb(its, vpe); 4050 } 4051 4052 static void its_vpe_4_1_mask_irq(struct irq_data *d) 4053 { 4054 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 4055 its_vpe_4_1_send_inv(d); 4056 } 4057 4058 static void its_vpe_4_1_unmask_irq(struct irq_data *d) 4059 { 4060 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 4061 its_vpe_4_1_send_inv(d); 4062 } 4063 4064 static void its_vpe_4_1_schedule(struct its_vpe *vpe, 4065 struct its_cmd_info *info) 4066 { 4067 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4068 u64 val = 0; 4069 4070 /* Schedule the VPE */ 4071 val |= GICR_VPENDBASER_Valid; 4072 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0; 4073 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0; 4074 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id); 4075 4076 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 4077 } 4078 4079 static void its_vpe_4_1_deschedule(struct its_vpe *vpe, 4080 struct its_cmd_info *info) 4081 { 4082 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4083 u64 val; 4084 4085 if (info->req_db) { 4086 unsigned long flags; 4087 4088 /* 4089 * vPE is going to block: make the vPE non-resident with 4090 * PendingLast clear and DB set. The GIC guarantees that if 4091 * we read-back PendingLast clear, then a doorbell will be 4092 * delivered when an interrupt comes. 4093 * 4094 * Note the locking to deal with the concurrent update of 4095 * pending_last from the doorbell interrupt handler that can 4096 * run concurrently. 4097 */ 4098 raw_spin_lock_irqsave(&vpe->vpe_lock, flags); 4099 val = its_clear_vpend_valid(vlpi_base, 4100 GICR_VPENDBASER_PendingLast, 4101 GICR_VPENDBASER_4_1_DB); 4102 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 4103 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 4104 } else { 4105 /* 4106 * We're not blocking, so just make the vPE non-resident 4107 * with PendingLast set, indicating that we'll be back. 4108 */ 4109 val = its_clear_vpend_valid(vlpi_base, 4110 0, 4111 GICR_VPENDBASER_PendingLast); 4112 vpe->pending_last = true; 4113 } 4114 } 4115 4116 static void its_vpe_4_1_invall(struct its_vpe *vpe) 4117 { 4118 void __iomem *rdbase; 4119 unsigned long flags; 4120 u64 val; 4121 int cpu; 4122 4123 val = GICR_INVALLR_V; 4124 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id); 4125 4126 /* Target the redistributor this vPE is currently known on */ 4127 cpu = vpe_to_cpuid_lock(vpe, &flags); 4128 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4129 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 4130 gic_write_lpir(val, rdbase + GICR_INVALLR); 4131 4132 wait_for_syncr(rdbase); 4133 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4134 vpe_to_cpuid_unlock(vpe, flags); 4135 } 4136 4137 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4138 { 4139 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4140 struct its_cmd_info *info = vcpu_info; 4141 4142 switch (info->cmd_type) { 4143 case SCHEDULE_VPE: 4144 its_vpe_4_1_schedule(vpe, info); 4145 return 0; 4146 4147 case DESCHEDULE_VPE: 4148 its_vpe_4_1_deschedule(vpe, info); 4149 return 0; 4150 4151 case COMMIT_VPE: 4152 its_wait_vpt_parse_complete(); 4153 return 0; 4154 4155 case INVALL_VPE: 4156 its_vpe_4_1_invall(vpe); 4157 return 0; 4158 4159 default: 4160 return -EINVAL; 4161 } 4162 } 4163 4164 static struct irq_chip its_vpe_4_1_irq_chip = { 4165 .name = "GICv4.1-vpe", 4166 .irq_mask = its_vpe_4_1_mask_irq, 4167 .irq_unmask = its_vpe_4_1_unmask_irq, 4168 .irq_eoi = irq_chip_eoi_parent, 4169 .irq_set_affinity = its_vpe_set_affinity, 4170 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity, 4171 }; 4172 4173 static void its_configure_sgi(struct irq_data *d, bool clear) 4174 { 4175 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4176 struct its_cmd_desc desc; 4177 4178 desc.its_vsgi_cmd.vpe = vpe; 4179 desc.its_vsgi_cmd.sgi = d->hwirq; 4180 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority; 4181 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled; 4182 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group; 4183 desc.its_vsgi_cmd.clear = clear; 4184 4185 /* 4186 * GICv4.1 allows us to send VSGI commands to any ITS as long as the 4187 * destination VPE is mapped there. Since we map them eagerly at 4188 * activation time, we're pretty sure the first GICv4.1 ITS will do. 4189 */ 4190 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc); 4191 } 4192 4193 static void its_sgi_mask_irq(struct irq_data *d) 4194 { 4195 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4196 4197 vpe->sgi_config[d->hwirq].enabled = false; 4198 its_configure_sgi(d, false); 4199 } 4200 4201 static void its_sgi_unmask_irq(struct irq_data *d) 4202 { 4203 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4204 4205 vpe->sgi_config[d->hwirq].enabled = true; 4206 its_configure_sgi(d, false); 4207 } 4208 4209 static int its_sgi_set_affinity(struct irq_data *d, 4210 const struct cpumask *mask_val, 4211 bool force) 4212 { 4213 /* 4214 * There is no notion of affinity for virtual SGIs, at least 4215 * not on the host (since they can only be targeting a vPE). 4216 * Tell the kernel we've done whatever it asked for. 4217 */ 4218 irq_data_update_effective_affinity(d, mask_val); 4219 return IRQ_SET_MASK_OK; 4220 } 4221 4222 static int its_sgi_set_irqchip_state(struct irq_data *d, 4223 enum irqchip_irq_state which, 4224 bool state) 4225 { 4226 if (which != IRQCHIP_STATE_PENDING) 4227 return -EINVAL; 4228 4229 if (state) { 4230 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4231 struct its_node *its = find_4_1_its(); 4232 u64 val; 4233 4234 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id); 4235 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq); 4236 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K); 4237 } else { 4238 its_configure_sgi(d, true); 4239 } 4240 4241 return 0; 4242 } 4243 4244 static int its_sgi_get_irqchip_state(struct irq_data *d, 4245 enum irqchip_irq_state which, bool *val) 4246 { 4247 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4248 void __iomem *base; 4249 unsigned long flags; 4250 u32 count = 1000000; /* 1s! */ 4251 u32 status; 4252 int cpu; 4253 4254 if (which != IRQCHIP_STATE_PENDING) 4255 return -EINVAL; 4256 4257 /* 4258 * Locking galore! We can race against two different events: 4259 * 4260 * - Concurrent vPE affinity change: we must make sure it cannot 4261 * happen, or we'll talk to the wrong redistributor. This is 4262 * identical to what happens with vLPIs. 4263 * 4264 * - Concurrent VSGIPENDR access: As it involves accessing two 4265 * MMIO registers, this must be made atomic one way or another. 4266 */ 4267 cpu = vpe_to_cpuid_lock(vpe, &flags); 4268 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4269 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K; 4270 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR); 4271 do { 4272 status = readl_relaxed(base + GICR_VSGIPENDR); 4273 if (!(status & GICR_VSGIPENDR_BUSY)) 4274 goto out; 4275 4276 count--; 4277 if (!count) { 4278 pr_err_ratelimited("Unable to get SGI status\n"); 4279 goto out; 4280 } 4281 cpu_relax(); 4282 udelay(1); 4283 } while (count); 4284 4285 out: 4286 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4287 vpe_to_cpuid_unlock(vpe, flags); 4288 4289 if (!count) 4290 return -ENXIO; 4291 4292 *val = !!(status & (1 << d->hwirq)); 4293 4294 return 0; 4295 } 4296 4297 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4298 { 4299 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4300 struct its_cmd_info *info = vcpu_info; 4301 4302 switch (info->cmd_type) { 4303 case PROP_UPDATE_VSGI: 4304 vpe->sgi_config[d->hwirq].priority = info->priority; 4305 vpe->sgi_config[d->hwirq].group = info->group; 4306 its_configure_sgi(d, false); 4307 return 0; 4308 4309 default: 4310 return -EINVAL; 4311 } 4312 } 4313 4314 static struct irq_chip its_sgi_irq_chip = { 4315 .name = "GICv4.1-sgi", 4316 .irq_mask = its_sgi_mask_irq, 4317 .irq_unmask = its_sgi_unmask_irq, 4318 .irq_set_affinity = its_sgi_set_affinity, 4319 .irq_set_irqchip_state = its_sgi_set_irqchip_state, 4320 .irq_get_irqchip_state = its_sgi_get_irqchip_state, 4321 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity, 4322 }; 4323 4324 static int its_sgi_irq_domain_alloc(struct irq_domain *domain, 4325 unsigned int virq, unsigned int nr_irqs, 4326 void *args) 4327 { 4328 struct its_vpe *vpe = args; 4329 int i; 4330 4331 /* Yes, we do want 16 SGIs */ 4332 WARN_ON(nr_irqs != 16); 4333 4334 for (i = 0; i < 16; i++) { 4335 vpe->sgi_config[i].priority = 0; 4336 vpe->sgi_config[i].enabled = false; 4337 vpe->sgi_config[i].group = false; 4338 4339 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4340 &its_sgi_irq_chip, vpe); 4341 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY); 4342 } 4343 4344 return 0; 4345 } 4346 4347 static void its_sgi_irq_domain_free(struct irq_domain *domain, 4348 unsigned int virq, 4349 unsigned int nr_irqs) 4350 { 4351 /* Nothing to do */ 4352 } 4353 4354 static int its_sgi_irq_domain_activate(struct irq_domain *domain, 4355 struct irq_data *d, bool reserve) 4356 { 4357 /* Write out the initial SGI configuration */ 4358 its_configure_sgi(d, false); 4359 return 0; 4360 } 4361 4362 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain, 4363 struct irq_data *d) 4364 { 4365 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4366 4367 /* 4368 * The VSGI command is awkward: 4369 * 4370 * - To change the configuration, CLEAR must be set to false, 4371 * leaving the pending bit unchanged. 4372 * - To clear the pending bit, CLEAR must be set to true, leaving 4373 * the configuration unchanged. 4374 * 4375 * You just can't do both at once, hence the two commands below. 4376 */ 4377 vpe->sgi_config[d->hwirq].enabled = false; 4378 its_configure_sgi(d, false); 4379 its_configure_sgi(d, true); 4380 } 4381 4382 static const struct irq_domain_ops its_sgi_domain_ops = { 4383 .alloc = its_sgi_irq_domain_alloc, 4384 .free = its_sgi_irq_domain_free, 4385 .activate = its_sgi_irq_domain_activate, 4386 .deactivate = its_sgi_irq_domain_deactivate, 4387 }; 4388 4389 static int its_vpe_id_alloc(void) 4390 { 4391 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL); 4392 } 4393 4394 static void its_vpe_id_free(u16 id) 4395 { 4396 ida_simple_remove(&its_vpeid_ida, id); 4397 } 4398 4399 static int its_vpe_init(struct its_vpe *vpe) 4400 { 4401 struct page *vpt_page; 4402 int vpe_id; 4403 4404 /* Allocate vpe_id */ 4405 vpe_id = its_vpe_id_alloc(); 4406 if (vpe_id < 0) 4407 return vpe_id; 4408 4409 /* Allocate VPT */ 4410 vpt_page = its_allocate_pending_table(GFP_KERNEL); 4411 if (!vpt_page) { 4412 its_vpe_id_free(vpe_id); 4413 return -ENOMEM; 4414 } 4415 4416 if (!its_alloc_vpe_table(vpe_id)) { 4417 its_vpe_id_free(vpe_id); 4418 its_free_pending_table(vpt_page); 4419 return -ENOMEM; 4420 } 4421 4422 raw_spin_lock_init(&vpe->vpe_lock); 4423 vpe->vpe_id = vpe_id; 4424 vpe->vpt_page = vpt_page; 4425 if (gic_rdists->has_rvpeid) 4426 atomic_set(&vpe->vmapp_count, 0); 4427 else 4428 vpe->vpe_proxy_event = -1; 4429 4430 return 0; 4431 } 4432 4433 static void its_vpe_teardown(struct its_vpe *vpe) 4434 { 4435 its_vpe_db_proxy_unmap(vpe); 4436 its_vpe_id_free(vpe->vpe_id); 4437 its_free_pending_table(vpe->vpt_page); 4438 } 4439 4440 static void its_vpe_irq_domain_free(struct irq_domain *domain, 4441 unsigned int virq, 4442 unsigned int nr_irqs) 4443 { 4444 struct its_vm *vm = domain->host_data; 4445 int i; 4446 4447 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 4448 4449 for (i = 0; i < nr_irqs; i++) { 4450 struct irq_data *data = irq_domain_get_irq_data(domain, 4451 virq + i); 4452 struct its_vpe *vpe = irq_data_get_irq_chip_data(data); 4453 4454 BUG_ON(vm != vpe->its_vm); 4455 4456 clear_bit(data->hwirq, vm->db_bitmap); 4457 its_vpe_teardown(vpe); 4458 irq_domain_reset_irq_data(data); 4459 } 4460 4461 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { 4462 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); 4463 its_free_prop_table(vm->vprop_page); 4464 } 4465 } 4466 4467 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 4468 unsigned int nr_irqs, void *args) 4469 { 4470 struct irq_chip *irqchip = &its_vpe_irq_chip; 4471 struct its_vm *vm = args; 4472 unsigned long *bitmap; 4473 struct page *vprop_page; 4474 int base, nr_ids, i, err = 0; 4475 4476 BUG_ON(!vm); 4477 4478 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids); 4479 if (!bitmap) 4480 return -ENOMEM; 4481 4482 if (nr_ids < nr_irqs) { 4483 its_lpi_free(bitmap, base, nr_ids); 4484 return -ENOMEM; 4485 } 4486 4487 vprop_page = its_allocate_prop_table(GFP_KERNEL); 4488 if (!vprop_page) { 4489 its_lpi_free(bitmap, base, nr_ids); 4490 return -ENOMEM; 4491 } 4492 4493 vm->db_bitmap = bitmap; 4494 vm->db_lpi_base = base; 4495 vm->nr_db_lpis = nr_ids; 4496 vm->vprop_page = vprop_page; 4497 4498 if (gic_rdists->has_rvpeid) 4499 irqchip = &its_vpe_4_1_irq_chip; 4500 4501 for (i = 0; i < nr_irqs; i++) { 4502 vm->vpes[i]->vpe_db_lpi = base + i; 4503 err = its_vpe_init(vm->vpes[i]); 4504 if (err) 4505 break; 4506 err = its_irq_gic_domain_alloc(domain, virq + i, 4507 vm->vpes[i]->vpe_db_lpi); 4508 if (err) 4509 break; 4510 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4511 irqchip, vm->vpes[i]); 4512 set_bit(i, bitmap); 4513 } 4514 4515 if (err) { 4516 if (i > 0) 4517 its_vpe_irq_domain_free(domain, virq, i); 4518 4519 its_lpi_free(bitmap, base, nr_ids); 4520 its_free_prop_table(vprop_page); 4521 } 4522 4523 return err; 4524 } 4525 4526 static int its_vpe_irq_domain_activate(struct irq_domain *domain, 4527 struct irq_data *d, bool reserve) 4528 { 4529 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4530 struct its_node *its; 4531 4532 /* 4533 * If we use the list map, we issue VMAPP on demand... Unless 4534 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs 4535 * so that VSGIs can work. 4536 */ 4537 if (!gic_requires_eager_mapping()) 4538 return 0; 4539 4540 /* Map the VPE to the first possible CPU */ 4541 vpe->col_idx = cpumask_first(cpu_online_mask); 4542 4543 list_for_each_entry(its, &its_nodes, entry) { 4544 if (!is_v4(its)) 4545 continue; 4546 4547 its_send_vmapp(its, vpe, true); 4548 its_send_vinvall(its, vpe); 4549 } 4550 4551 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 4552 4553 return 0; 4554 } 4555 4556 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, 4557 struct irq_data *d) 4558 { 4559 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4560 struct its_node *its; 4561 4562 /* 4563 * If we use the list map on GICv4.0, we unmap the VPE once no 4564 * VLPIs are associated with the VM. 4565 */ 4566 if (!gic_requires_eager_mapping()) 4567 return; 4568 4569 list_for_each_entry(its, &its_nodes, entry) { 4570 if (!is_v4(its)) 4571 continue; 4572 4573 its_send_vmapp(its, vpe, false); 4574 } 4575 4576 /* 4577 * There may be a direct read to the VPT after unmapping the 4578 * vPE, to guarantee the validity of this, we make the VPT 4579 * memory coherent with the CPU caches here. 4580 */ 4581 if (find_4_1_its() && !atomic_read(&vpe->vmapp_count)) 4582 gic_flush_dcache_to_poc(page_address(vpe->vpt_page), 4583 LPI_PENDBASE_SZ); 4584 } 4585 4586 static const struct irq_domain_ops its_vpe_domain_ops = { 4587 .alloc = its_vpe_irq_domain_alloc, 4588 .free = its_vpe_irq_domain_free, 4589 .activate = its_vpe_irq_domain_activate, 4590 .deactivate = its_vpe_irq_domain_deactivate, 4591 }; 4592 4593 static int its_force_quiescent(void __iomem *base) 4594 { 4595 u32 count = 1000000; /* 1s */ 4596 u32 val; 4597 4598 val = readl_relaxed(base + GITS_CTLR); 4599 /* 4600 * GIC architecture specification requires the ITS to be both 4601 * disabled and quiescent for writes to GITS_BASER<n> or 4602 * GITS_CBASER to not have UNPREDICTABLE results. 4603 */ 4604 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) 4605 return 0; 4606 4607 /* Disable the generation of all interrupts to this ITS */ 4608 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); 4609 writel_relaxed(val, base + GITS_CTLR); 4610 4611 /* Poll GITS_CTLR and wait until ITS becomes quiescent */ 4612 while (1) { 4613 val = readl_relaxed(base + GITS_CTLR); 4614 if (val & GITS_CTLR_QUIESCENT) 4615 return 0; 4616 4617 count--; 4618 if (!count) 4619 return -EBUSY; 4620 4621 cpu_relax(); 4622 udelay(1); 4623 } 4624 } 4625 4626 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data) 4627 { 4628 struct its_node *its = data; 4629 4630 /* erratum 22375: only alloc 8MB table size (20 bits) */ 4631 its->typer &= ~GITS_TYPER_DEVBITS; 4632 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1); 4633 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; 4634 4635 return true; 4636 } 4637 4638 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data) 4639 { 4640 struct its_node *its = data; 4641 4642 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; 4643 4644 return true; 4645 } 4646 4647 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) 4648 { 4649 struct its_node *its = data; 4650 4651 /* On QDF2400, the size of the ITE is 16Bytes */ 4652 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE; 4653 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1); 4654 4655 return true; 4656 } 4657 4658 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev) 4659 { 4660 struct its_node *its = its_dev->its; 4661 4662 /* 4663 * The Socionext Synquacer SoC has a so-called 'pre-ITS', 4664 * which maps 32-bit writes targeted at a separate window of 4665 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER 4666 * with device ID taken from bits [device_id_bits + 1:2] of 4667 * the window offset. 4668 */ 4669 return its->pre_its_base + (its_dev->device_id << 2); 4670 } 4671 4672 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data) 4673 { 4674 struct its_node *its = data; 4675 u32 pre_its_window[2]; 4676 u32 ids; 4677 4678 if (!fwnode_property_read_u32_array(its->fwnode_handle, 4679 "socionext,synquacer-pre-its", 4680 pre_its_window, 4681 ARRAY_SIZE(pre_its_window))) { 4682 4683 its->pre_its_base = pre_its_window[0]; 4684 its->get_msi_base = its_irq_get_msi_base_pre_its; 4685 4686 ids = ilog2(pre_its_window[1]) - 2; 4687 if (device_ids(its) > ids) { 4688 its->typer &= ~GITS_TYPER_DEVBITS; 4689 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1); 4690 } 4691 4692 /* the pre-ITS breaks isolation, so disable MSI remapping */ 4693 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP; 4694 return true; 4695 } 4696 return false; 4697 } 4698 4699 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data) 4700 { 4701 struct its_node *its = data; 4702 4703 /* 4704 * Hip07 insists on using the wrong address for the VLPI 4705 * page. Trick it into doing the right thing... 4706 */ 4707 its->vlpi_redist_offset = SZ_128K; 4708 return true; 4709 } 4710 4711 static const struct gic_quirk its_quirks[] = { 4712 #ifdef CONFIG_CAVIUM_ERRATUM_22375 4713 { 4714 .desc = "ITS: Cavium errata 22375, 24313", 4715 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4716 .mask = 0xffff0fff, 4717 .init = its_enable_quirk_cavium_22375, 4718 }, 4719 #endif 4720 #ifdef CONFIG_CAVIUM_ERRATUM_23144 4721 { 4722 .desc = "ITS: Cavium erratum 23144", 4723 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4724 .mask = 0xffff0fff, 4725 .init = its_enable_quirk_cavium_23144, 4726 }, 4727 #endif 4728 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 4729 { 4730 .desc = "ITS: QDF2400 erratum 0065", 4731 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */ 4732 .mask = 0xffffffff, 4733 .init = its_enable_quirk_qdf2400_e0065, 4734 }, 4735 #endif 4736 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS 4737 { 4738 /* 4739 * The Socionext Synquacer SoC incorporates ARM's own GIC-500 4740 * implementation, but with a 'pre-ITS' added that requires 4741 * special handling in software. 4742 */ 4743 .desc = "ITS: Socionext Synquacer pre-ITS", 4744 .iidr = 0x0001143b, 4745 .mask = 0xffffffff, 4746 .init = its_enable_quirk_socionext_synquacer, 4747 }, 4748 #endif 4749 #ifdef CONFIG_HISILICON_ERRATUM_161600802 4750 { 4751 .desc = "ITS: Hip07 erratum 161600802", 4752 .iidr = 0x00000004, 4753 .mask = 0xffffffff, 4754 .init = its_enable_quirk_hip07_161600802, 4755 }, 4756 #endif 4757 { 4758 } 4759 }; 4760 4761 static void its_enable_quirks(struct its_node *its) 4762 { 4763 u32 iidr = readl_relaxed(its->base + GITS_IIDR); 4764 4765 gic_enable_quirks(iidr, its_quirks, its); 4766 } 4767 4768 static int its_save_disable(void) 4769 { 4770 struct its_node *its; 4771 int err = 0; 4772 4773 raw_spin_lock(&its_lock); 4774 list_for_each_entry(its, &its_nodes, entry) { 4775 void __iomem *base; 4776 4777 base = its->base; 4778 its->ctlr_save = readl_relaxed(base + GITS_CTLR); 4779 err = its_force_quiescent(base); 4780 if (err) { 4781 pr_err("ITS@%pa: failed to quiesce: %d\n", 4782 &its->phys_base, err); 4783 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4784 goto err; 4785 } 4786 4787 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER); 4788 } 4789 4790 err: 4791 if (err) { 4792 list_for_each_entry_continue_reverse(its, &its_nodes, entry) { 4793 void __iomem *base; 4794 4795 base = its->base; 4796 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4797 } 4798 } 4799 raw_spin_unlock(&its_lock); 4800 4801 return err; 4802 } 4803 4804 static void its_restore_enable(void) 4805 { 4806 struct its_node *its; 4807 int ret; 4808 4809 raw_spin_lock(&its_lock); 4810 list_for_each_entry(its, &its_nodes, entry) { 4811 void __iomem *base; 4812 int i; 4813 4814 base = its->base; 4815 4816 /* 4817 * Make sure that the ITS is disabled. If it fails to quiesce, 4818 * don't restore it since writing to CBASER or BASER<n> 4819 * registers is undefined according to the GIC v3 ITS 4820 * Specification. 4821 * 4822 * Firmware resuming with the ITS enabled is terminally broken. 4823 */ 4824 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE); 4825 ret = its_force_quiescent(base); 4826 if (ret) { 4827 pr_err("ITS@%pa: failed to quiesce on resume: %d\n", 4828 &its->phys_base, ret); 4829 continue; 4830 } 4831 4832 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER); 4833 4834 /* 4835 * Writing CBASER resets CREADR to 0, so make CWRITER and 4836 * cmd_write line up with it. 4837 */ 4838 its->cmd_write = its->cmd_base; 4839 gits_write_cwriter(0, base + GITS_CWRITER); 4840 4841 /* Restore GITS_BASER from the value cache. */ 4842 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 4843 struct its_baser *baser = &its->tables[i]; 4844 4845 if (!(baser->val & GITS_BASER_VALID)) 4846 continue; 4847 4848 its_write_baser(its, baser, baser->val); 4849 } 4850 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4851 4852 /* 4853 * Reinit the collection if it's stored in the ITS. This is 4854 * indicated by the col_id being less than the HCC field. 4855 * CID < HCC as specified in the GIC v3 Documentation. 4856 */ 4857 if (its->collections[smp_processor_id()].col_id < 4858 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER))) 4859 its_cpu_init_collection(its); 4860 } 4861 raw_spin_unlock(&its_lock); 4862 } 4863 4864 static struct syscore_ops its_syscore_ops = { 4865 .suspend = its_save_disable, 4866 .resume = its_restore_enable, 4867 }; 4868 4869 static void __init __iomem *its_map_one(struct resource *res, int *err) 4870 { 4871 void __iomem *its_base; 4872 u32 val; 4873 4874 its_base = ioremap(res->start, SZ_64K); 4875 if (!its_base) { 4876 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); 4877 *err = -ENOMEM; 4878 return NULL; 4879 } 4880 4881 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; 4882 if (val != 0x30 && val != 0x40) { 4883 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); 4884 *err = -ENODEV; 4885 goto out_unmap; 4886 } 4887 4888 *err = its_force_quiescent(its_base); 4889 if (*err) { 4890 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); 4891 goto out_unmap; 4892 } 4893 4894 return its_base; 4895 4896 out_unmap: 4897 iounmap(its_base); 4898 return NULL; 4899 } 4900 4901 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its) 4902 { 4903 struct irq_domain *inner_domain; 4904 struct msi_domain_info *info; 4905 4906 info = kzalloc(sizeof(*info), GFP_KERNEL); 4907 if (!info) 4908 return -ENOMEM; 4909 4910 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its); 4911 if (!inner_domain) { 4912 kfree(info); 4913 return -ENOMEM; 4914 } 4915 4916 inner_domain->parent = its_parent; 4917 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS); 4918 inner_domain->flags |= its->msi_domain_flags; 4919 info->ops = &its_msi_domain_ops; 4920 info->data = its; 4921 inner_domain->host_data = info; 4922 4923 return 0; 4924 } 4925 4926 static int its_init_vpe_domain(void) 4927 { 4928 struct its_node *its; 4929 u32 devid; 4930 int entries; 4931 4932 if (gic_rdists->has_direct_lpi) { 4933 pr_info("ITS: Using DirectLPI for VPE invalidation\n"); 4934 return 0; 4935 } 4936 4937 /* Any ITS will do, even if not v4 */ 4938 its = list_first_entry(&its_nodes, struct its_node, entry); 4939 4940 entries = roundup_pow_of_two(nr_cpu_ids); 4941 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes), 4942 GFP_KERNEL); 4943 if (!vpe_proxy.vpes) 4944 return -ENOMEM; 4945 4946 /* Use the last possible DevID */ 4947 devid = GENMASK(device_ids(its) - 1, 0); 4948 vpe_proxy.dev = its_create_device(its, devid, entries, false); 4949 if (!vpe_proxy.dev) { 4950 kfree(vpe_proxy.vpes); 4951 pr_err("ITS: Can't allocate GICv4 proxy device\n"); 4952 return -ENOMEM; 4953 } 4954 4955 BUG_ON(entries > vpe_proxy.dev->nr_ites); 4956 4957 raw_spin_lock_init(&vpe_proxy.lock); 4958 vpe_proxy.next_victim = 0; 4959 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", 4960 devid, vpe_proxy.dev->nr_ites); 4961 4962 return 0; 4963 } 4964 4965 static int __init its_compute_its_list_map(struct resource *res, 4966 void __iomem *its_base) 4967 { 4968 int its_number; 4969 u32 ctlr; 4970 4971 /* 4972 * This is assumed to be done early enough that we're 4973 * guaranteed to be single-threaded, hence no 4974 * locking. Should this change, we should address 4975 * this. 4976 */ 4977 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX); 4978 if (its_number >= GICv4_ITS_LIST_MAX) { 4979 pr_err("ITS@%pa: No ITSList entry available!\n", 4980 &res->start); 4981 return -EINVAL; 4982 } 4983 4984 ctlr = readl_relaxed(its_base + GITS_CTLR); 4985 ctlr &= ~GITS_CTLR_ITS_NUMBER; 4986 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; 4987 writel_relaxed(ctlr, its_base + GITS_CTLR); 4988 ctlr = readl_relaxed(its_base + GITS_CTLR); 4989 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { 4990 its_number = ctlr & GITS_CTLR_ITS_NUMBER; 4991 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; 4992 } 4993 4994 if (test_and_set_bit(its_number, &its_list_map)) { 4995 pr_err("ITS@%pa: Duplicate ITSList entry %d\n", 4996 &res->start, its_number); 4997 return -EINVAL; 4998 } 4999 5000 return its_number; 5001 } 5002 5003 static int __init its_probe_one(struct resource *res, 5004 struct fwnode_handle *handle, int numa_node) 5005 { 5006 struct its_node *its; 5007 void __iomem *its_base; 5008 u64 baser, tmp, typer; 5009 struct page *page; 5010 u32 ctlr; 5011 int err; 5012 5013 its_base = its_map_one(res, &err); 5014 if (!its_base) 5015 return err; 5016 5017 pr_info("ITS %pR\n", res); 5018 5019 its = kzalloc(sizeof(*its), GFP_KERNEL); 5020 if (!its) { 5021 err = -ENOMEM; 5022 goto out_unmap; 5023 } 5024 5025 raw_spin_lock_init(&its->lock); 5026 mutex_init(&its->dev_alloc_lock); 5027 INIT_LIST_HEAD(&its->entry); 5028 INIT_LIST_HEAD(&its->its_device_list); 5029 typer = gic_read_typer(its_base + GITS_TYPER); 5030 its->typer = typer; 5031 its->base = its_base; 5032 its->phys_base = res->start; 5033 if (is_v4(its)) { 5034 if (!(typer & GITS_TYPER_VMOVP)) { 5035 err = its_compute_its_list_map(res, its_base); 5036 if (err < 0) 5037 goto out_free_its; 5038 5039 its->list_nr = err; 5040 5041 pr_info("ITS@%pa: Using ITS number %d\n", 5042 &res->start, err); 5043 } else { 5044 pr_info("ITS@%pa: Single VMOVP capable\n", &res->start); 5045 } 5046 5047 if (is_v4_1(its)) { 5048 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer); 5049 5050 its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K); 5051 if (!its->sgir_base) { 5052 err = -ENOMEM; 5053 goto out_free_its; 5054 } 5055 5056 its->mpidr = readl_relaxed(its_base + GITS_MPIDR); 5057 5058 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n", 5059 &res->start, its->mpidr, svpet); 5060 } 5061 } 5062 5063 its->numa_node = numa_node; 5064 5065 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 5066 get_order(ITS_CMD_QUEUE_SZ)); 5067 if (!page) { 5068 err = -ENOMEM; 5069 goto out_unmap_sgir; 5070 } 5071 its->cmd_base = (void *)page_address(page); 5072 its->cmd_write = its->cmd_base; 5073 its->fwnode_handle = handle; 5074 its->get_msi_base = its_irq_get_msi_base; 5075 its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP; 5076 5077 its_enable_quirks(its); 5078 5079 err = its_alloc_tables(its); 5080 if (err) 5081 goto out_free_cmd; 5082 5083 err = its_alloc_collections(its); 5084 if (err) 5085 goto out_free_tables; 5086 5087 baser = (virt_to_phys(its->cmd_base) | 5088 GITS_CBASER_RaWaWb | 5089 GITS_CBASER_InnerShareable | 5090 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | 5091 GITS_CBASER_VALID); 5092 5093 gits_write_cbaser(baser, its->base + GITS_CBASER); 5094 tmp = gits_read_cbaser(its->base + GITS_CBASER); 5095 5096 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { 5097 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { 5098 /* 5099 * The HW reports non-shareable, we must 5100 * remove the cacheability attributes as 5101 * well. 5102 */ 5103 baser &= ~(GITS_CBASER_SHAREABILITY_MASK | 5104 GITS_CBASER_CACHEABILITY_MASK); 5105 baser |= GITS_CBASER_nC; 5106 gits_write_cbaser(baser, its->base + GITS_CBASER); 5107 } 5108 pr_info("ITS: using cache flushing for cmd queue\n"); 5109 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; 5110 } 5111 5112 gits_write_cwriter(0, its->base + GITS_CWRITER); 5113 ctlr = readl_relaxed(its->base + GITS_CTLR); 5114 ctlr |= GITS_CTLR_ENABLE; 5115 if (is_v4(its)) 5116 ctlr |= GITS_CTLR_ImDe; 5117 writel_relaxed(ctlr, its->base + GITS_CTLR); 5118 5119 err = its_init_domain(handle, its); 5120 if (err) 5121 goto out_free_tables; 5122 5123 raw_spin_lock(&its_lock); 5124 list_add(&its->entry, &its_nodes); 5125 raw_spin_unlock(&its_lock); 5126 5127 return 0; 5128 5129 out_free_tables: 5130 its_free_tables(its); 5131 out_free_cmd: 5132 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); 5133 out_unmap_sgir: 5134 if (its->sgir_base) 5135 iounmap(its->sgir_base); 5136 out_free_its: 5137 kfree(its); 5138 out_unmap: 5139 iounmap(its_base); 5140 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err); 5141 return err; 5142 } 5143 5144 static bool gic_rdists_supports_plpis(void) 5145 { 5146 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); 5147 } 5148 5149 static int redist_disable_lpis(void) 5150 { 5151 void __iomem *rbase = gic_data_rdist_rd_base(); 5152 u64 timeout = USEC_PER_SEC; 5153 u64 val; 5154 5155 if (!gic_rdists_supports_plpis()) { 5156 pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); 5157 return -ENXIO; 5158 } 5159 5160 val = readl_relaxed(rbase + GICR_CTLR); 5161 if (!(val & GICR_CTLR_ENABLE_LPIS)) 5162 return 0; 5163 5164 /* 5165 * If coming via a CPU hotplug event, we don't need to disable 5166 * LPIs before trying to re-enable them. They are already 5167 * configured and all is well in the world. 5168 * 5169 * If running with preallocated tables, there is nothing to do. 5170 */ 5171 if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) || 5172 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED)) 5173 return 0; 5174 5175 /* 5176 * From that point on, we only try to do some damage control. 5177 */ 5178 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n", 5179 smp_processor_id()); 5180 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 5181 5182 /* Disable LPIs */ 5183 val &= ~GICR_CTLR_ENABLE_LPIS; 5184 writel_relaxed(val, rbase + GICR_CTLR); 5185 5186 /* Make sure any change to GICR_CTLR is observable by the GIC */ 5187 dsb(sy); 5188 5189 /* 5190 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs 5191 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers. 5192 * Error out if we time out waiting for RWP to clear. 5193 */ 5194 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) { 5195 if (!timeout) { 5196 pr_err("CPU%d: Timeout while disabling LPIs\n", 5197 smp_processor_id()); 5198 return -ETIMEDOUT; 5199 } 5200 udelay(1); 5201 timeout--; 5202 } 5203 5204 /* 5205 * After it has been written to 1, it is IMPLEMENTATION 5206 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be 5207 * cleared to 0. Error out if clearing the bit failed. 5208 */ 5209 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) { 5210 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id()); 5211 return -EBUSY; 5212 } 5213 5214 return 0; 5215 } 5216 5217 int its_cpu_init(void) 5218 { 5219 if (!list_empty(&its_nodes)) { 5220 int ret; 5221 5222 ret = redist_disable_lpis(); 5223 if (ret) 5224 return ret; 5225 5226 its_cpu_init_lpis(); 5227 its_cpu_init_collections(); 5228 } 5229 5230 return 0; 5231 } 5232 5233 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work) 5234 { 5235 cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state); 5236 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; 5237 } 5238 5239 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work, 5240 rdist_memreserve_cpuhp_cleanup_workfn); 5241 5242 static int its_cpu_memreserve_lpi(unsigned int cpu) 5243 { 5244 struct page *pend_page; 5245 int ret = 0; 5246 5247 /* This gets to run exactly once per CPU */ 5248 if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE) 5249 return 0; 5250 5251 pend_page = gic_data_rdist()->pend_page; 5252 if (WARN_ON(!pend_page)) { 5253 ret = -ENOMEM; 5254 goto out; 5255 } 5256 /* 5257 * If the pending table was pre-programmed, free the memory we 5258 * preemptively allocated. Otherwise, reserve that memory for 5259 * later kexecs. 5260 */ 5261 if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) { 5262 its_free_pending_table(pend_page); 5263 gic_data_rdist()->pend_page = NULL; 5264 } else { 5265 phys_addr_t paddr = page_to_phys(pend_page); 5266 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ)); 5267 } 5268 5269 out: 5270 /* Last CPU being brought up gets to issue the cleanup */ 5271 if (!IS_ENABLED(CONFIG_SMP) || 5272 cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask)) 5273 schedule_work(&rdist_memreserve_cpuhp_cleanup_work); 5274 5275 gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE; 5276 return ret; 5277 } 5278 5279 /* Mark all the BASER registers as invalid before they get reprogrammed */ 5280 static int __init its_reset_one(struct resource *res) 5281 { 5282 void __iomem *its_base; 5283 int err, i; 5284 5285 its_base = its_map_one(res, &err); 5286 if (!its_base) 5287 return err; 5288 5289 for (i = 0; i < GITS_BASER_NR_REGS; i++) 5290 gits_write_baser(0, its_base + GITS_BASER + (i << 3)); 5291 5292 iounmap(its_base); 5293 return 0; 5294 } 5295 5296 static const struct of_device_id its_device_id[] = { 5297 { .compatible = "arm,gic-v3-its", }, 5298 {}, 5299 }; 5300 5301 static int __init its_of_probe(struct device_node *node) 5302 { 5303 struct device_node *np; 5304 struct resource res; 5305 5306 /* 5307 * Make sure *all* the ITS are reset before we probe any, as 5308 * they may be sharing memory. If any of the ITS fails to 5309 * reset, don't even try to go any further, as this could 5310 * result in something even worse. 5311 */ 5312 for (np = of_find_matching_node(node, its_device_id); np; 5313 np = of_find_matching_node(np, its_device_id)) { 5314 int err; 5315 5316 if (!of_device_is_available(np) || 5317 !of_property_read_bool(np, "msi-controller") || 5318 of_address_to_resource(np, 0, &res)) 5319 continue; 5320 5321 err = its_reset_one(&res); 5322 if (err) 5323 return err; 5324 } 5325 5326 for (np = of_find_matching_node(node, its_device_id); np; 5327 np = of_find_matching_node(np, its_device_id)) { 5328 if (!of_device_is_available(np)) 5329 continue; 5330 if (!of_property_read_bool(np, "msi-controller")) { 5331 pr_warn("%pOF: no msi-controller property, ITS ignored\n", 5332 np); 5333 continue; 5334 } 5335 5336 if (of_address_to_resource(np, 0, &res)) { 5337 pr_warn("%pOF: no regs?\n", np); 5338 continue; 5339 } 5340 5341 its_probe_one(&res, &np->fwnode, of_node_to_nid(np)); 5342 } 5343 return 0; 5344 } 5345 5346 #ifdef CONFIG_ACPI 5347 5348 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) 5349 5350 #ifdef CONFIG_ACPI_NUMA 5351 struct its_srat_map { 5352 /* numa node id */ 5353 u32 numa_node; 5354 /* GIC ITS ID */ 5355 u32 its_id; 5356 }; 5357 5358 static struct its_srat_map *its_srat_maps __initdata; 5359 static int its_in_srat __initdata; 5360 5361 static int __init acpi_get_its_numa_node(u32 its_id) 5362 { 5363 int i; 5364 5365 for (i = 0; i < its_in_srat; i++) { 5366 if (its_id == its_srat_maps[i].its_id) 5367 return its_srat_maps[i].numa_node; 5368 } 5369 return NUMA_NO_NODE; 5370 } 5371 5372 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header, 5373 const unsigned long end) 5374 { 5375 return 0; 5376 } 5377 5378 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header, 5379 const unsigned long end) 5380 { 5381 int node; 5382 struct acpi_srat_gic_its_affinity *its_affinity; 5383 5384 its_affinity = (struct acpi_srat_gic_its_affinity *)header; 5385 if (!its_affinity) 5386 return -EINVAL; 5387 5388 if (its_affinity->header.length < sizeof(*its_affinity)) { 5389 pr_err("SRAT: Invalid header length %d in ITS affinity\n", 5390 its_affinity->header.length); 5391 return -EINVAL; 5392 } 5393 5394 /* 5395 * Note that in theory a new proximity node could be created by this 5396 * entry as it is an SRAT resource allocation structure. 5397 * We do not currently support doing so. 5398 */ 5399 node = pxm_to_node(its_affinity->proximity_domain); 5400 5401 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { 5402 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); 5403 return 0; 5404 } 5405 5406 its_srat_maps[its_in_srat].numa_node = node; 5407 its_srat_maps[its_in_srat].its_id = its_affinity->its_id; 5408 its_in_srat++; 5409 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", 5410 its_affinity->proximity_domain, its_affinity->its_id, node); 5411 5412 return 0; 5413 } 5414 5415 static void __init acpi_table_parse_srat_its(void) 5416 { 5417 int count; 5418 5419 count = acpi_table_parse_entries(ACPI_SIG_SRAT, 5420 sizeof(struct acpi_table_srat), 5421 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5422 gic_acpi_match_srat_its, 0); 5423 if (count <= 0) 5424 return; 5425 5426 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map), 5427 GFP_KERNEL); 5428 if (!its_srat_maps) 5429 return; 5430 5431 acpi_table_parse_entries(ACPI_SIG_SRAT, 5432 sizeof(struct acpi_table_srat), 5433 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5434 gic_acpi_parse_srat_its, 0); 5435 } 5436 5437 /* free the its_srat_maps after ITS probing */ 5438 static void __init acpi_its_srat_maps_free(void) 5439 { 5440 kfree(its_srat_maps); 5441 } 5442 #else 5443 static void __init acpi_table_parse_srat_its(void) { } 5444 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } 5445 static void __init acpi_its_srat_maps_free(void) { } 5446 #endif 5447 5448 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header, 5449 const unsigned long end) 5450 { 5451 struct acpi_madt_generic_translator *its_entry; 5452 struct fwnode_handle *dom_handle; 5453 struct resource res; 5454 int err; 5455 5456 its_entry = (struct acpi_madt_generic_translator *)header; 5457 memset(&res, 0, sizeof(res)); 5458 res.start = its_entry->base_address; 5459 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; 5460 res.flags = IORESOURCE_MEM; 5461 5462 dom_handle = irq_domain_alloc_fwnode(&res.start); 5463 if (!dom_handle) { 5464 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", 5465 &res.start); 5466 return -ENOMEM; 5467 } 5468 5469 err = iort_register_domain_token(its_entry->translation_id, res.start, 5470 dom_handle); 5471 if (err) { 5472 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", 5473 &res.start, its_entry->translation_id); 5474 goto dom_err; 5475 } 5476 5477 err = its_probe_one(&res, dom_handle, 5478 acpi_get_its_numa_node(its_entry->translation_id)); 5479 if (!err) 5480 return 0; 5481 5482 iort_deregister_domain_token(its_entry->translation_id); 5483 dom_err: 5484 irq_domain_free_fwnode(dom_handle); 5485 return err; 5486 } 5487 5488 static int __init its_acpi_reset(union acpi_subtable_headers *header, 5489 const unsigned long end) 5490 { 5491 struct acpi_madt_generic_translator *its_entry; 5492 struct resource res; 5493 5494 its_entry = (struct acpi_madt_generic_translator *)header; 5495 res = (struct resource) { 5496 .start = its_entry->base_address, 5497 .end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1, 5498 .flags = IORESOURCE_MEM, 5499 }; 5500 5501 return its_reset_one(&res); 5502 } 5503 5504 static void __init its_acpi_probe(void) 5505 { 5506 acpi_table_parse_srat_its(); 5507 /* 5508 * Make sure *all* the ITS are reset before we probe any, as 5509 * they may be sharing memory. If any of the ITS fails to 5510 * reset, don't even try to go any further, as this could 5511 * result in something even worse. 5512 */ 5513 if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5514 its_acpi_reset, 0) > 0) 5515 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5516 gic_acpi_parse_madt_its, 0); 5517 acpi_its_srat_maps_free(); 5518 } 5519 #else 5520 static void __init its_acpi_probe(void) { } 5521 #endif 5522 5523 int __init its_lpi_memreserve_init(void) 5524 { 5525 int state; 5526 5527 if (!efi_enabled(EFI_CONFIG_TABLES)) 5528 return 0; 5529 5530 if (list_empty(&its_nodes)) 5531 return 0; 5532 5533 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; 5534 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, 5535 "irqchip/arm/gicv3/memreserve:online", 5536 its_cpu_memreserve_lpi, 5537 NULL); 5538 if (state < 0) 5539 return state; 5540 5541 gic_rdists->cpuhp_memreserve_state = state; 5542 5543 return 0; 5544 } 5545 5546 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, 5547 struct irq_domain *parent_domain) 5548 { 5549 struct device_node *of_node; 5550 struct its_node *its; 5551 bool has_v4 = false; 5552 bool has_v4_1 = false; 5553 int err; 5554 5555 gic_rdists = rdists; 5556 5557 its_parent = parent_domain; 5558 of_node = to_of_node(handle); 5559 if (of_node) 5560 its_of_probe(of_node); 5561 else 5562 its_acpi_probe(); 5563 5564 if (list_empty(&its_nodes)) { 5565 pr_warn("ITS: No ITS available, not enabling LPIs\n"); 5566 return -ENXIO; 5567 } 5568 5569 err = allocate_lpi_tables(); 5570 if (err) 5571 return err; 5572 5573 list_for_each_entry(its, &its_nodes, entry) { 5574 has_v4 |= is_v4(its); 5575 has_v4_1 |= is_v4_1(its); 5576 } 5577 5578 /* Don't bother with inconsistent systems */ 5579 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid)) 5580 rdists->has_rvpeid = false; 5581 5582 if (has_v4 & rdists->has_vlpis) { 5583 const struct irq_domain_ops *sgi_ops; 5584 5585 if (has_v4_1) 5586 sgi_ops = &its_sgi_domain_ops; 5587 else 5588 sgi_ops = NULL; 5589 5590 if (its_init_vpe_domain() || 5591 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) { 5592 rdists->has_vlpis = false; 5593 pr_err("ITS: Disabling GICv4 support\n"); 5594 } 5595 } 5596 5597 register_syscore_ops(&its_syscore_ops); 5598 5599 return 0; 5600 } 5601