1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/acpi_iort.h> 9 #include <linux/bitfield.h> 10 #include <linux/bitmap.h> 11 #include <linux/cpu.h> 12 #include <linux/crash_dump.h> 13 #include <linux/delay.h> 14 #include <linux/dma-iommu.h> 15 #include <linux/efi.h> 16 #include <linux/interrupt.h> 17 #include <linux/iopoll.h> 18 #include <linux/irqdomain.h> 19 #include <linux/list.h> 20 #include <linux/log2.h> 21 #include <linux/memblock.h> 22 #include <linux/mm.h> 23 #include <linux/msi.h> 24 #include <linux/of.h> 25 #include <linux/of_address.h> 26 #include <linux/of_irq.h> 27 #include <linux/of_pci.h> 28 #include <linux/of_platform.h> 29 #include <linux/percpu.h> 30 #include <linux/slab.h> 31 #include <linux/syscore_ops.h> 32 33 #include <linux/irqchip.h> 34 #include <linux/irqchip/arm-gic-v3.h> 35 #include <linux/irqchip/arm-gic-v4.h> 36 37 #include <asm/cputype.h> 38 #include <asm/exception.h> 39 40 #include "irq-gic-common.h" 41 42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) 43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) 44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) 45 #define ITS_FLAGS_SAVE_SUSPEND_STATE (1ULL << 3) 46 47 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0) 48 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED (1 << 1) 49 50 static u32 lpi_id_bits; 51 52 /* 53 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to 54 * deal with (one configuration byte per interrupt). PENDBASE has to 55 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). 56 */ 57 #define LPI_NRBITS lpi_id_bits 58 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K) 59 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) 60 61 #define LPI_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI 62 63 /* 64 * Collection structure - just an ID, and a redistributor address to 65 * ping. We use one per CPU as a bag of interrupts assigned to this 66 * CPU. 67 */ 68 struct its_collection { 69 u64 target_address; 70 u16 col_id; 71 }; 72 73 /* 74 * The ITS_BASER structure - contains memory information, cached 75 * value of BASER register configuration and ITS page size. 76 */ 77 struct its_baser { 78 void *base; 79 u64 val; 80 u32 order; 81 u32 psz; 82 }; 83 84 struct its_device; 85 86 /* 87 * The ITS structure - contains most of the infrastructure, with the 88 * top-level MSI domain, the command queue, the collections, and the 89 * list of devices writing to it. 90 * 91 * dev_alloc_lock has to be taken for device allocations, while the 92 * spinlock must be taken to parse data structures such as the device 93 * list. 94 */ 95 struct its_node { 96 raw_spinlock_t lock; 97 struct mutex dev_alloc_lock; 98 struct list_head entry; 99 void __iomem *base; 100 void __iomem *sgir_base; 101 phys_addr_t phys_base; 102 struct its_cmd_block *cmd_base; 103 struct its_cmd_block *cmd_write; 104 struct its_baser tables[GITS_BASER_NR_REGS]; 105 struct its_collection *collections; 106 struct fwnode_handle *fwnode_handle; 107 u64 (*get_msi_base)(struct its_device *its_dev); 108 u64 typer; 109 u64 cbaser_save; 110 u32 ctlr_save; 111 u32 mpidr; 112 struct list_head its_device_list; 113 u64 flags; 114 unsigned long list_nr; 115 int numa_node; 116 unsigned int msi_domain_flags; 117 u32 pre_its_base; /* for Socionext Synquacer */ 118 int vlpi_redist_offset; 119 }; 120 121 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS)) 122 #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP)) 123 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1) 124 125 #define ITS_ITT_ALIGN SZ_256 126 127 /* The maximum number of VPEID bits supported by VLPI commands */ 128 #define ITS_MAX_VPEID_BITS \ 129 ({ \ 130 int nvpeid = 16; \ 131 if (gic_rdists->has_rvpeid && \ 132 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \ 133 nvpeid = 1 + (gic_rdists->gicd_typer2 & \ 134 GICD_TYPER2_VID); \ 135 \ 136 nvpeid; \ 137 }) 138 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS)) 139 140 /* Convert page order to size in bytes */ 141 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) 142 143 struct event_lpi_map { 144 unsigned long *lpi_map; 145 u16 *col_map; 146 irq_hw_number_t lpi_base; 147 int nr_lpis; 148 raw_spinlock_t vlpi_lock; 149 struct its_vm *vm; 150 struct its_vlpi_map *vlpi_maps; 151 int nr_vlpis; 152 }; 153 154 /* 155 * The ITS view of a device - belongs to an ITS, owns an interrupt 156 * translation table, and a list of interrupts. If it some of its 157 * LPIs are injected into a guest (GICv4), the event_map.vm field 158 * indicates which one. 159 */ 160 struct its_device { 161 struct list_head entry; 162 struct its_node *its; 163 struct event_lpi_map event_map; 164 void *itt; 165 u32 nr_ites; 166 u32 device_id; 167 bool shared; 168 }; 169 170 static struct { 171 raw_spinlock_t lock; 172 struct its_device *dev; 173 struct its_vpe **vpes; 174 int next_victim; 175 } vpe_proxy; 176 177 struct cpu_lpi_count { 178 atomic_t managed; 179 atomic_t unmanaged; 180 }; 181 182 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count); 183 184 static LIST_HEAD(its_nodes); 185 static DEFINE_RAW_SPINLOCK(its_lock); 186 static struct rdists *gic_rdists; 187 static struct irq_domain *its_parent; 188 189 static unsigned long its_list_map; 190 static u16 vmovp_seq_num; 191 static DEFINE_RAW_SPINLOCK(vmovp_lock); 192 193 static DEFINE_IDA(its_vpeid_ida); 194 195 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) 196 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu)) 197 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 198 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K) 199 200 /* 201 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we 202 * always have vSGIs mapped. 203 */ 204 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its) 205 { 206 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]); 207 } 208 209 static u16 get_its_list(struct its_vm *vm) 210 { 211 struct its_node *its; 212 unsigned long its_list = 0; 213 214 list_for_each_entry(its, &its_nodes, entry) { 215 if (!is_v4(its)) 216 continue; 217 218 if (require_its_list_vmovp(vm, its)) 219 __set_bit(its->list_nr, &its_list); 220 } 221 222 return (u16)its_list; 223 } 224 225 static inline u32 its_get_event_id(struct irq_data *d) 226 { 227 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 228 return d->hwirq - its_dev->event_map.lpi_base; 229 } 230 231 static struct its_collection *dev_event_to_col(struct its_device *its_dev, 232 u32 event) 233 { 234 struct its_node *its = its_dev->its; 235 236 return its->collections + its_dev->event_map.col_map[event]; 237 } 238 239 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev, 240 u32 event) 241 { 242 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis)) 243 return NULL; 244 245 return &its_dev->event_map.vlpi_maps[event]; 246 } 247 248 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d) 249 { 250 if (irqd_is_forwarded_to_vcpu(d)) { 251 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 252 u32 event = its_get_event_id(d); 253 254 return dev_event_to_vlpi_map(its_dev, event); 255 } 256 257 return NULL; 258 } 259 260 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags) 261 { 262 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags); 263 return vpe->col_idx; 264 } 265 266 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags) 267 { 268 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 269 } 270 271 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags) 272 { 273 struct its_vlpi_map *map = get_vlpi_map(d); 274 int cpu; 275 276 if (map) { 277 cpu = vpe_to_cpuid_lock(map->vpe, flags); 278 } else { 279 /* Physical LPIs are already locked via the irq_desc lock */ 280 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 281 cpu = its_dev->event_map.col_map[its_get_event_id(d)]; 282 /* Keep GCC quiet... */ 283 *flags = 0; 284 } 285 286 return cpu; 287 } 288 289 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags) 290 { 291 struct its_vlpi_map *map = get_vlpi_map(d); 292 293 if (map) 294 vpe_to_cpuid_unlock(map->vpe, flags); 295 } 296 297 static struct its_collection *valid_col(struct its_collection *col) 298 { 299 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0))) 300 return NULL; 301 302 return col; 303 } 304 305 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe) 306 { 307 if (valid_col(its->collections + vpe->col_idx)) 308 return vpe; 309 310 return NULL; 311 } 312 313 /* 314 * ITS command descriptors - parameters to be encoded in a command 315 * block. 316 */ 317 struct its_cmd_desc { 318 union { 319 struct { 320 struct its_device *dev; 321 u32 event_id; 322 } its_inv_cmd; 323 324 struct { 325 struct its_device *dev; 326 u32 event_id; 327 } its_clear_cmd; 328 329 struct { 330 struct its_device *dev; 331 u32 event_id; 332 } its_int_cmd; 333 334 struct { 335 struct its_device *dev; 336 int valid; 337 } its_mapd_cmd; 338 339 struct { 340 struct its_collection *col; 341 int valid; 342 } its_mapc_cmd; 343 344 struct { 345 struct its_device *dev; 346 u32 phys_id; 347 u32 event_id; 348 } its_mapti_cmd; 349 350 struct { 351 struct its_device *dev; 352 struct its_collection *col; 353 u32 event_id; 354 } its_movi_cmd; 355 356 struct { 357 struct its_device *dev; 358 u32 event_id; 359 } its_discard_cmd; 360 361 struct { 362 struct its_collection *col; 363 } its_invall_cmd; 364 365 struct { 366 struct its_vpe *vpe; 367 } its_vinvall_cmd; 368 369 struct { 370 struct its_vpe *vpe; 371 struct its_collection *col; 372 bool valid; 373 } its_vmapp_cmd; 374 375 struct { 376 struct its_vpe *vpe; 377 struct its_device *dev; 378 u32 virt_id; 379 u32 event_id; 380 bool db_enabled; 381 } its_vmapti_cmd; 382 383 struct { 384 struct its_vpe *vpe; 385 struct its_device *dev; 386 u32 event_id; 387 bool db_enabled; 388 } its_vmovi_cmd; 389 390 struct { 391 struct its_vpe *vpe; 392 struct its_collection *col; 393 u16 seq_num; 394 u16 its_list; 395 } its_vmovp_cmd; 396 397 struct { 398 struct its_vpe *vpe; 399 } its_invdb_cmd; 400 401 struct { 402 struct its_vpe *vpe; 403 u8 sgi; 404 u8 priority; 405 bool enable; 406 bool group; 407 bool clear; 408 } its_vsgi_cmd; 409 }; 410 }; 411 412 /* 413 * The ITS command block, which is what the ITS actually parses. 414 */ 415 struct its_cmd_block { 416 union { 417 u64 raw_cmd[4]; 418 __le64 raw_cmd_le[4]; 419 }; 420 }; 421 422 #define ITS_CMD_QUEUE_SZ SZ_64K 423 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) 424 425 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *, 426 struct its_cmd_block *, 427 struct its_cmd_desc *); 428 429 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *, 430 struct its_cmd_block *, 431 struct its_cmd_desc *); 432 433 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) 434 { 435 u64 mask = GENMASK_ULL(h, l); 436 *raw_cmd &= ~mask; 437 *raw_cmd |= (val << l) & mask; 438 } 439 440 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) 441 { 442 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); 443 } 444 445 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) 446 { 447 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); 448 } 449 450 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) 451 { 452 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); 453 } 454 455 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) 456 { 457 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); 458 } 459 460 static void its_encode_size(struct its_cmd_block *cmd, u8 size) 461 { 462 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); 463 } 464 465 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) 466 { 467 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); 468 } 469 470 static void its_encode_valid(struct its_cmd_block *cmd, int valid) 471 { 472 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); 473 } 474 475 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) 476 { 477 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); 478 } 479 480 static void its_encode_collection(struct its_cmd_block *cmd, u16 col) 481 { 482 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); 483 } 484 485 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) 486 { 487 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); 488 } 489 490 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) 491 { 492 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); 493 } 494 495 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) 496 { 497 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); 498 } 499 500 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) 501 { 502 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); 503 } 504 505 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) 506 { 507 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); 508 } 509 510 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) 511 { 512 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); 513 } 514 515 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) 516 { 517 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); 518 } 519 520 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) 521 { 522 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); 523 } 524 525 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa) 526 { 527 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16); 528 } 529 530 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc) 531 { 532 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8); 533 } 534 535 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz) 536 { 537 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9); 538 } 539 540 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd, 541 u32 vpe_db_lpi) 542 { 543 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0); 544 } 545 546 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd, 547 u32 vpe_db_lpi) 548 { 549 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0); 550 } 551 552 static void its_encode_db(struct its_cmd_block *cmd, bool db) 553 { 554 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63); 555 } 556 557 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi) 558 { 559 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32); 560 } 561 562 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio) 563 { 564 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20); 565 } 566 567 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp) 568 { 569 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10); 570 } 571 572 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr) 573 { 574 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9); 575 } 576 577 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en) 578 { 579 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8); 580 } 581 582 static inline void its_fixup_cmd(struct its_cmd_block *cmd) 583 { 584 /* Let's fixup BE commands */ 585 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]); 586 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]); 587 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]); 588 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]); 589 } 590 591 static struct its_collection *its_build_mapd_cmd(struct its_node *its, 592 struct its_cmd_block *cmd, 593 struct its_cmd_desc *desc) 594 { 595 unsigned long itt_addr; 596 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); 597 598 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); 599 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); 600 601 its_encode_cmd(cmd, GITS_CMD_MAPD); 602 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); 603 its_encode_size(cmd, size - 1); 604 its_encode_itt(cmd, itt_addr); 605 its_encode_valid(cmd, desc->its_mapd_cmd.valid); 606 607 its_fixup_cmd(cmd); 608 609 return NULL; 610 } 611 612 static struct its_collection *its_build_mapc_cmd(struct its_node *its, 613 struct its_cmd_block *cmd, 614 struct its_cmd_desc *desc) 615 { 616 its_encode_cmd(cmd, GITS_CMD_MAPC); 617 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 618 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); 619 its_encode_valid(cmd, desc->its_mapc_cmd.valid); 620 621 its_fixup_cmd(cmd); 622 623 return desc->its_mapc_cmd.col; 624 } 625 626 static struct its_collection *its_build_mapti_cmd(struct its_node *its, 627 struct its_cmd_block *cmd, 628 struct its_cmd_desc *desc) 629 { 630 struct its_collection *col; 631 632 col = dev_event_to_col(desc->its_mapti_cmd.dev, 633 desc->its_mapti_cmd.event_id); 634 635 its_encode_cmd(cmd, GITS_CMD_MAPTI); 636 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); 637 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); 638 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); 639 its_encode_collection(cmd, col->col_id); 640 641 its_fixup_cmd(cmd); 642 643 return valid_col(col); 644 } 645 646 static struct its_collection *its_build_movi_cmd(struct its_node *its, 647 struct its_cmd_block *cmd, 648 struct its_cmd_desc *desc) 649 { 650 struct its_collection *col; 651 652 col = dev_event_to_col(desc->its_movi_cmd.dev, 653 desc->its_movi_cmd.event_id); 654 655 its_encode_cmd(cmd, GITS_CMD_MOVI); 656 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); 657 its_encode_event_id(cmd, desc->its_movi_cmd.event_id); 658 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); 659 660 its_fixup_cmd(cmd); 661 662 return valid_col(col); 663 } 664 665 static struct its_collection *its_build_discard_cmd(struct its_node *its, 666 struct its_cmd_block *cmd, 667 struct its_cmd_desc *desc) 668 { 669 struct its_collection *col; 670 671 col = dev_event_to_col(desc->its_discard_cmd.dev, 672 desc->its_discard_cmd.event_id); 673 674 its_encode_cmd(cmd, GITS_CMD_DISCARD); 675 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); 676 its_encode_event_id(cmd, desc->its_discard_cmd.event_id); 677 678 its_fixup_cmd(cmd); 679 680 return valid_col(col); 681 } 682 683 static struct its_collection *its_build_inv_cmd(struct its_node *its, 684 struct its_cmd_block *cmd, 685 struct its_cmd_desc *desc) 686 { 687 struct its_collection *col; 688 689 col = dev_event_to_col(desc->its_inv_cmd.dev, 690 desc->its_inv_cmd.event_id); 691 692 its_encode_cmd(cmd, GITS_CMD_INV); 693 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 694 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 695 696 its_fixup_cmd(cmd); 697 698 return valid_col(col); 699 } 700 701 static struct its_collection *its_build_int_cmd(struct its_node *its, 702 struct its_cmd_block *cmd, 703 struct its_cmd_desc *desc) 704 { 705 struct its_collection *col; 706 707 col = dev_event_to_col(desc->its_int_cmd.dev, 708 desc->its_int_cmd.event_id); 709 710 its_encode_cmd(cmd, GITS_CMD_INT); 711 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 712 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 713 714 its_fixup_cmd(cmd); 715 716 return valid_col(col); 717 } 718 719 static struct its_collection *its_build_clear_cmd(struct its_node *its, 720 struct its_cmd_block *cmd, 721 struct its_cmd_desc *desc) 722 { 723 struct its_collection *col; 724 725 col = dev_event_to_col(desc->its_clear_cmd.dev, 726 desc->its_clear_cmd.event_id); 727 728 its_encode_cmd(cmd, GITS_CMD_CLEAR); 729 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 730 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 731 732 its_fixup_cmd(cmd); 733 734 return valid_col(col); 735 } 736 737 static struct its_collection *its_build_invall_cmd(struct its_node *its, 738 struct its_cmd_block *cmd, 739 struct its_cmd_desc *desc) 740 { 741 its_encode_cmd(cmd, GITS_CMD_INVALL); 742 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id); 743 744 its_fixup_cmd(cmd); 745 746 return NULL; 747 } 748 749 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its, 750 struct its_cmd_block *cmd, 751 struct its_cmd_desc *desc) 752 { 753 its_encode_cmd(cmd, GITS_CMD_VINVALL); 754 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); 755 756 its_fixup_cmd(cmd); 757 758 return valid_vpe(its, desc->its_vinvall_cmd.vpe); 759 } 760 761 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its, 762 struct its_cmd_block *cmd, 763 struct its_cmd_desc *desc) 764 { 765 unsigned long vpt_addr, vconf_addr; 766 u64 target; 767 bool alloc; 768 769 its_encode_cmd(cmd, GITS_CMD_VMAPP); 770 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); 771 its_encode_valid(cmd, desc->its_vmapp_cmd.valid); 772 773 if (!desc->its_vmapp_cmd.valid) { 774 if (is_v4_1(its)) { 775 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count); 776 its_encode_alloc(cmd, alloc); 777 } 778 779 goto out; 780 } 781 782 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); 783 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset; 784 785 its_encode_target(cmd, target); 786 its_encode_vpt_addr(cmd, vpt_addr); 787 its_encode_vpt_size(cmd, LPI_NRBITS - 1); 788 789 if (!is_v4_1(its)) 790 goto out; 791 792 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page)); 793 794 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count); 795 796 its_encode_alloc(cmd, alloc); 797 798 /* We can only signal PTZ when alloc==1. Why do we have two bits? */ 799 its_encode_ptz(cmd, alloc); 800 its_encode_vconf_addr(cmd, vconf_addr); 801 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi); 802 803 out: 804 its_fixup_cmd(cmd); 805 806 return valid_vpe(its, desc->its_vmapp_cmd.vpe); 807 } 808 809 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its, 810 struct its_cmd_block *cmd, 811 struct its_cmd_desc *desc) 812 { 813 u32 db; 814 815 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled) 816 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; 817 else 818 db = 1023; 819 820 its_encode_cmd(cmd, GITS_CMD_VMAPTI); 821 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); 822 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); 823 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); 824 its_encode_db_phys_id(cmd, db); 825 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); 826 827 its_fixup_cmd(cmd); 828 829 return valid_vpe(its, desc->its_vmapti_cmd.vpe); 830 } 831 832 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its, 833 struct its_cmd_block *cmd, 834 struct its_cmd_desc *desc) 835 { 836 u32 db; 837 838 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled) 839 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; 840 else 841 db = 1023; 842 843 its_encode_cmd(cmd, GITS_CMD_VMOVI); 844 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); 845 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); 846 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); 847 its_encode_db_phys_id(cmd, db); 848 its_encode_db_valid(cmd, true); 849 850 its_fixup_cmd(cmd); 851 852 return valid_vpe(its, desc->its_vmovi_cmd.vpe); 853 } 854 855 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its, 856 struct its_cmd_block *cmd, 857 struct its_cmd_desc *desc) 858 { 859 u64 target; 860 861 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset; 862 its_encode_cmd(cmd, GITS_CMD_VMOVP); 863 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); 864 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); 865 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); 866 its_encode_target(cmd, target); 867 868 if (is_v4_1(its)) { 869 its_encode_db(cmd, true); 870 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi); 871 } 872 873 its_fixup_cmd(cmd); 874 875 return valid_vpe(its, desc->its_vmovp_cmd.vpe); 876 } 877 878 static struct its_vpe *its_build_vinv_cmd(struct its_node *its, 879 struct its_cmd_block *cmd, 880 struct its_cmd_desc *desc) 881 { 882 struct its_vlpi_map *map; 883 884 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev, 885 desc->its_inv_cmd.event_id); 886 887 its_encode_cmd(cmd, GITS_CMD_INV); 888 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 889 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 890 891 its_fixup_cmd(cmd); 892 893 return valid_vpe(its, map->vpe); 894 } 895 896 static struct its_vpe *its_build_vint_cmd(struct its_node *its, 897 struct its_cmd_block *cmd, 898 struct its_cmd_desc *desc) 899 { 900 struct its_vlpi_map *map; 901 902 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev, 903 desc->its_int_cmd.event_id); 904 905 its_encode_cmd(cmd, GITS_CMD_INT); 906 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 907 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 908 909 its_fixup_cmd(cmd); 910 911 return valid_vpe(its, map->vpe); 912 } 913 914 static struct its_vpe *its_build_vclear_cmd(struct its_node *its, 915 struct its_cmd_block *cmd, 916 struct its_cmd_desc *desc) 917 { 918 struct its_vlpi_map *map; 919 920 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev, 921 desc->its_clear_cmd.event_id); 922 923 its_encode_cmd(cmd, GITS_CMD_CLEAR); 924 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 925 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 926 927 its_fixup_cmd(cmd); 928 929 return valid_vpe(its, map->vpe); 930 } 931 932 static struct its_vpe *its_build_invdb_cmd(struct its_node *its, 933 struct its_cmd_block *cmd, 934 struct its_cmd_desc *desc) 935 { 936 if (WARN_ON(!is_v4_1(its))) 937 return NULL; 938 939 its_encode_cmd(cmd, GITS_CMD_INVDB); 940 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id); 941 942 its_fixup_cmd(cmd); 943 944 return valid_vpe(its, desc->its_invdb_cmd.vpe); 945 } 946 947 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its, 948 struct its_cmd_block *cmd, 949 struct its_cmd_desc *desc) 950 { 951 if (WARN_ON(!is_v4_1(its))) 952 return NULL; 953 954 its_encode_cmd(cmd, GITS_CMD_VSGI); 955 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id); 956 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi); 957 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority); 958 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group); 959 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear); 960 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable); 961 962 its_fixup_cmd(cmd); 963 964 return valid_vpe(its, desc->its_vsgi_cmd.vpe); 965 } 966 967 static u64 its_cmd_ptr_to_offset(struct its_node *its, 968 struct its_cmd_block *ptr) 969 { 970 return (ptr - its->cmd_base) * sizeof(*ptr); 971 } 972 973 static int its_queue_full(struct its_node *its) 974 { 975 int widx; 976 int ridx; 977 978 widx = its->cmd_write - its->cmd_base; 979 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); 980 981 /* This is incredibly unlikely to happen, unless the ITS locks up. */ 982 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) 983 return 1; 984 985 return 0; 986 } 987 988 static struct its_cmd_block *its_allocate_entry(struct its_node *its) 989 { 990 struct its_cmd_block *cmd; 991 u32 count = 1000000; /* 1s! */ 992 993 while (its_queue_full(its)) { 994 count--; 995 if (!count) { 996 pr_err_ratelimited("ITS queue not draining\n"); 997 return NULL; 998 } 999 cpu_relax(); 1000 udelay(1); 1001 } 1002 1003 cmd = its->cmd_write++; 1004 1005 /* Handle queue wrapping */ 1006 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) 1007 its->cmd_write = its->cmd_base; 1008 1009 /* Clear command */ 1010 cmd->raw_cmd[0] = 0; 1011 cmd->raw_cmd[1] = 0; 1012 cmd->raw_cmd[2] = 0; 1013 cmd->raw_cmd[3] = 0; 1014 1015 return cmd; 1016 } 1017 1018 static struct its_cmd_block *its_post_commands(struct its_node *its) 1019 { 1020 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); 1021 1022 writel_relaxed(wr, its->base + GITS_CWRITER); 1023 1024 return its->cmd_write; 1025 } 1026 1027 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) 1028 { 1029 /* 1030 * Make sure the commands written to memory are observable by 1031 * the ITS. 1032 */ 1033 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) 1034 gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); 1035 else 1036 dsb(ishst); 1037 } 1038 1039 static int its_wait_for_range_completion(struct its_node *its, 1040 u64 prev_idx, 1041 struct its_cmd_block *to) 1042 { 1043 u64 rd_idx, to_idx, linear_idx; 1044 u32 count = 1000000; /* 1s! */ 1045 1046 /* Linearize to_idx if the command set has wrapped around */ 1047 to_idx = its_cmd_ptr_to_offset(its, to); 1048 if (to_idx < prev_idx) 1049 to_idx += ITS_CMD_QUEUE_SZ; 1050 1051 linear_idx = prev_idx; 1052 1053 while (1) { 1054 s64 delta; 1055 1056 rd_idx = readl_relaxed(its->base + GITS_CREADR); 1057 1058 /* 1059 * Compute the read pointer progress, taking the 1060 * potential wrap-around into account. 1061 */ 1062 delta = rd_idx - prev_idx; 1063 if (rd_idx < prev_idx) 1064 delta += ITS_CMD_QUEUE_SZ; 1065 1066 linear_idx += delta; 1067 if (linear_idx >= to_idx) 1068 break; 1069 1070 count--; 1071 if (!count) { 1072 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n", 1073 to_idx, linear_idx); 1074 return -1; 1075 } 1076 prev_idx = rd_idx; 1077 cpu_relax(); 1078 udelay(1); 1079 } 1080 1081 return 0; 1082 } 1083 1084 /* Warning, macro hell follows */ 1085 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \ 1086 void name(struct its_node *its, \ 1087 buildtype builder, \ 1088 struct its_cmd_desc *desc) \ 1089 { \ 1090 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \ 1091 synctype *sync_obj; \ 1092 unsigned long flags; \ 1093 u64 rd_idx; \ 1094 \ 1095 raw_spin_lock_irqsave(&its->lock, flags); \ 1096 \ 1097 cmd = its_allocate_entry(its); \ 1098 if (!cmd) { /* We're soooooo screewed... */ \ 1099 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1100 return; \ 1101 } \ 1102 sync_obj = builder(its, cmd, desc); \ 1103 its_flush_cmd(its, cmd); \ 1104 \ 1105 if (sync_obj) { \ 1106 sync_cmd = its_allocate_entry(its); \ 1107 if (!sync_cmd) \ 1108 goto post; \ 1109 \ 1110 buildfn(its, sync_cmd, sync_obj); \ 1111 its_flush_cmd(its, sync_cmd); \ 1112 } \ 1113 \ 1114 post: \ 1115 rd_idx = readl_relaxed(its->base + GITS_CREADR); \ 1116 next_cmd = its_post_commands(its); \ 1117 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1118 \ 1119 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \ 1120 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \ 1121 } 1122 1123 static void its_build_sync_cmd(struct its_node *its, 1124 struct its_cmd_block *sync_cmd, 1125 struct its_collection *sync_col) 1126 { 1127 its_encode_cmd(sync_cmd, GITS_CMD_SYNC); 1128 its_encode_target(sync_cmd, sync_col->target_address); 1129 1130 its_fixup_cmd(sync_cmd); 1131 } 1132 1133 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, 1134 struct its_collection, its_build_sync_cmd) 1135 1136 static void its_build_vsync_cmd(struct its_node *its, 1137 struct its_cmd_block *sync_cmd, 1138 struct its_vpe *sync_vpe) 1139 { 1140 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); 1141 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); 1142 1143 its_fixup_cmd(sync_cmd); 1144 } 1145 1146 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, 1147 struct its_vpe, its_build_vsync_cmd) 1148 1149 static void its_send_int(struct its_device *dev, u32 event_id) 1150 { 1151 struct its_cmd_desc desc; 1152 1153 desc.its_int_cmd.dev = dev; 1154 desc.its_int_cmd.event_id = event_id; 1155 1156 its_send_single_command(dev->its, its_build_int_cmd, &desc); 1157 } 1158 1159 static void its_send_clear(struct its_device *dev, u32 event_id) 1160 { 1161 struct its_cmd_desc desc; 1162 1163 desc.its_clear_cmd.dev = dev; 1164 desc.its_clear_cmd.event_id = event_id; 1165 1166 its_send_single_command(dev->its, its_build_clear_cmd, &desc); 1167 } 1168 1169 static void its_send_inv(struct its_device *dev, u32 event_id) 1170 { 1171 struct its_cmd_desc desc; 1172 1173 desc.its_inv_cmd.dev = dev; 1174 desc.its_inv_cmd.event_id = event_id; 1175 1176 its_send_single_command(dev->its, its_build_inv_cmd, &desc); 1177 } 1178 1179 static void its_send_mapd(struct its_device *dev, int valid) 1180 { 1181 struct its_cmd_desc desc; 1182 1183 desc.its_mapd_cmd.dev = dev; 1184 desc.its_mapd_cmd.valid = !!valid; 1185 1186 its_send_single_command(dev->its, its_build_mapd_cmd, &desc); 1187 } 1188 1189 static void its_send_mapc(struct its_node *its, struct its_collection *col, 1190 int valid) 1191 { 1192 struct its_cmd_desc desc; 1193 1194 desc.its_mapc_cmd.col = col; 1195 desc.its_mapc_cmd.valid = !!valid; 1196 1197 its_send_single_command(its, its_build_mapc_cmd, &desc); 1198 } 1199 1200 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) 1201 { 1202 struct its_cmd_desc desc; 1203 1204 desc.its_mapti_cmd.dev = dev; 1205 desc.its_mapti_cmd.phys_id = irq_id; 1206 desc.its_mapti_cmd.event_id = id; 1207 1208 its_send_single_command(dev->its, its_build_mapti_cmd, &desc); 1209 } 1210 1211 static void its_send_movi(struct its_device *dev, 1212 struct its_collection *col, u32 id) 1213 { 1214 struct its_cmd_desc desc; 1215 1216 desc.its_movi_cmd.dev = dev; 1217 desc.its_movi_cmd.col = col; 1218 desc.its_movi_cmd.event_id = id; 1219 1220 its_send_single_command(dev->its, its_build_movi_cmd, &desc); 1221 } 1222 1223 static void its_send_discard(struct its_device *dev, u32 id) 1224 { 1225 struct its_cmd_desc desc; 1226 1227 desc.its_discard_cmd.dev = dev; 1228 desc.its_discard_cmd.event_id = id; 1229 1230 its_send_single_command(dev->its, its_build_discard_cmd, &desc); 1231 } 1232 1233 static void its_send_invall(struct its_node *its, struct its_collection *col) 1234 { 1235 struct its_cmd_desc desc; 1236 1237 desc.its_invall_cmd.col = col; 1238 1239 its_send_single_command(its, its_build_invall_cmd, &desc); 1240 } 1241 1242 static void its_send_vmapti(struct its_device *dev, u32 id) 1243 { 1244 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1245 struct its_cmd_desc desc; 1246 1247 desc.its_vmapti_cmd.vpe = map->vpe; 1248 desc.its_vmapti_cmd.dev = dev; 1249 desc.its_vmapti_cmd.virt_id = map->vintid; 1250 desc.its_vmapti_cmd.event_id = id; 1251 desc.its_vmapti_cmd.db_enabled = map->db_enabled; 1252 1253 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); 1254 } 1255 1256 static void its_send_vmovi(struct its_device *dev, u32 id) 1257 { 1258 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1259 struct its_cmd_desc desc; 1260 1261 desc.its_vmovi_cmd.vpe = map->vpe; 1262 desc.its_vmovi_cmd.dev = dev; 1263 desc.its_vmovi_cmd.event_id = id; 1264 desc.its_vmovi_cmd.db_enabled = map->db_enabled; 1265 1266 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); 1267 } 1268 1269 static void its_send_vmapp(struct its_node *its, 1270 struct its_vpe *vpe, bool valid) 1271 { 1272 struct its_cmd_desc desc; 1273 1274 desc.its_vmapp_cmd.vpe = vpe; 1275 desc.its_vmapp_cmd.valid = valid; 1276 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; 1277 1278 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); 1279 } 1280 1281 static void its_send_vmovp(struct its_vpe *vpe) 1282 { 1283 struct its_cmd_desc desc = {}; 1284 struct its_node *its; 1285 unsigned long flags; 1286 int col_id = vpe->col_idx; 1287 1288 desc.its_vmovp_cmd.vpe = vpe; 1289 1290 if (!its_list_map) { 1291 its = list_first_entry(&its_nodes, struct its_node, entry); 1292 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1293 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1294 return; 1295 } 1296 1297 /* 1298 * Yet another marvel of the architecture. If using the 1299 * its_list "feature", we need to make sure that all ITSs 1300 * receive all VMOVP commands in the same order. The only way 1301 * to guarantee this is to make vmovp a serialization point. 1302 * 1303 * Wall <-- Head. 1304 */ 1305 raw_spin_lock_irqsave(&vmovp_lock, flags); 1306 1307 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; 1308 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm); 1309 1310 /* Emit VMOVPs */ 1311 list_for_each_entry(its, &its_nodes, entry) { 1312 if (!is_v4(its)) 1313 continue; 1314 1315 if (!require_its_list_vmovp(vpe->its_vm, its)) 1316 continue; 1317 1318 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1319 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1320 } 1321 1322 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1323 } 1324 1325 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe) 1326 { 1327 struct its_cmd_desc desc; 1328 1329 desc.its_vinvall_cmd.vpe = vpe; 1330 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); 1331 } 1332 1333 static void its_send_vinv(struct its_device *dev, u32 event_id) 1334 { 1335 struct its_cmd_desc desc; 1336 1337 /* 1338 * There is no real VINV command. This is just a normal INV, 1339 * with a VSYNC instead of a SYNC. 1340 */ 1341 desc.its_inv_cmd.dev = dev; 1342 desc.its_inv_cmd.event_id = event_id; 1343 1344 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc); 1345 } 1346 1347 static void its_send_vint(struct its_device *dev, u32 event_id) 1348 { 1349 struct its_cmd_desc desc; 1350 1351 /* 1352 * There is no real VINT command. This is just a normal INT, 1353 * with a VSYNC instead of a SYNC. 1354 */ 1355 desc.its_int_cmd.dev = dev; 1356 desc.its_int_cmd.event_id = event_id; 1357 1358 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc); 1359 } 1360 1361 static void its_send_vclear(struct its_device *dev, u32 event_id) 1362 { 1363 struct its_cmd_desc desc; 1364 1365 /* 1366 * There is no real VCLEAR command. This is just a normal CLEAR, 1367 * with a VSYNC instead of a SYNC. 1368 */ 1369 desc.its_clear_cmd.dev = dev; 1370 desc.its_clear_cmd.event_id = event_id; 1371 1372 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc); 1373 } 1374 1375 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe) 1376 { 1377 struct its_cmd_desc desc; 1378 1379 desc.its_invdb_cmd.vpe = vpe; 1380 its_send_single_vcommand(its, its_build_invdb_cmd, &desc); 1381 } 1382 1383 /* 1384 * irqchip functions - assumes MSI, mostly. 1385 */ 1386 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) 1387 { 1388 struct its_vlpi_map *map = get_vlpi_map(d); 1389 irq_hw_number_t hwirq; 1390 void *va; 1391 u8 *cfg; 1392 1393 if (map) { 1394 va = page_address(map->vm->vprop_page); 1395 hwirq = map->vintid; 1396 1397 /* Remember the updated property */ 1398 map->properties &= ~clr; 1399 map->properties |= set | LPI_PROP_GROUP1; 1400 } else { 1401 va = gic_rdists->prop_table_va; 1402 hwirq = d->hwirq; 1403 } 1404 1405 cfg = va + hwirq - 8192; 1406 *cfg &= ~clr; 1407 *cfg |= set | LPI_PROP_GROUP1; 1408 1409 /* 1410 * Make the above write visible to the redistributors. 1411 * And yes, we're flushing exactly: One. Single. Byte. 1412 * Humpf... 1413 */ 1414 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) 1415 gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); 1416 else 1417 dsb(ishst); 1418 } 1419 1420 static void wait_for_syncr(void __iomem *rdbase) 1421 { 1422 while (readl_relaxed(rdbase + GICR_SYNCR) & 1) 1423 cpu_relax(); 1424 } 1425 1426 static void direct_lpi_inv(struct irq_data *d) 1427 { 1428 struct its_vlpi_map *map = get_vlpi_map(d); 1429 void __iomem *rdbase; 1430 unsigned long flags; 1431 u64 val; 1432 int cpu; 1433 1434 if (map) { 1435 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1436 1437 WARN_ON(!is_v4_1(its_dev->its)); 1438 1439 val = GICR_INVLPIR_V; 1440 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id); 1441 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid); 1442 } else { 1443 val = d->hwirq; 1444 } 1445 1446 /* Target the redistributor this LPI is currently routed to */ 1447 cpu = irq_to_cpuid_lock(d, &flags); 1448 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 1449 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 1450 gic_write_lpir(val, rdbase + GICR_INVLPIR); 1451 1452 wait_for_syncr(rdbase); 1453 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 1454 irq_to_cpuid_unlock(d, flags); 1455 } 1456 1457 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) 1458 { 1459 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1460 1461 lpi_write_config(d, clr, set); 1462 if (gic_rdists->has_direct_lpi && 1463 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d))) 1464 direct_lpi_inv(d); 1465 else if (!irqd_is_forwarded_to_vcpu(d)) 1466 its_send_inv(its_dev, its_get_event_id(d)); 1467 else 1468 its_send_vinv(its_dev, its_get_event_id(d)); 1469 } 1470 1471 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) 1472 { 1473 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1474 u32 event = its_get_event_id(d); 1475 struct its_vlpi_map *map; 1476 1477 /* 1478 * GICv4.1 does away with the per-LPI nonsense, nothing to do 1479 * here. 1480 */ 1481 if (is_v4_1(its_dev->its)) 1482 return; 1483 1484 map = dev_event_to_vlpi_map(its_dev, event); 1485 1486 if (map->db_enabled == enable) 1487 return; 1488 1489 map->db_enabled = enable; 1490 1491 /* 1492 * More fun with the architecture: 1493 * 1494 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI 1495 * value or to 1023, depending on the enable bit. But that 1496 * would be issueing a mapping for an /existing/ DevID+EventID 1497 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI 1498 * to the /same/ vPE, using this opportunity to adjust the 1499 * doorbell. Mouahahahaha. We loves it, Precious. 1500 */ 1501 its_send_vmovi(its_dev, event); 1502 } 1503 1504 static void its_mask_irq(struct irq_data *d) 1505 { 1506 if (irqd_is_forwarded_to_vcpu(d)) 1507 its_vlpi_set_doorbell(d, false); 1508 1509 lpi_update_config(d, LPI_PROP_ENABLED, 0); 1510 } 1511 1512 static void its_unmask_irq(struct irq_data *d) 1513 { 1514 if (irqd_is_forwarded_to_vcpu(d)) 1515 its_vlpi_set_doorbell(d, true); 1516 1517 lpi_update_config(d, 0, LPI_PROP_ENABLED); 1518 } 1519 1520 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu) 1521 { 1522 if (irqd_affinity_is_managed(d)) 1523 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1524 1525 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1526 } 1527 1528 static void its_inc_lpi_count(struct irq_data *d, int cpu) 1529 { 1530 if (irqd_affinity_is_managed(d)) 1531 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1532 else 1533 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1534 } 1535 1536 static void its_dec_lpi_count(struct irq_data *d, int cpu) 1537 { 1538 if (irqd_affinity_is_managed(d)) 1539 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1540 else 1541 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1542 } 1543 1544 static unsigned int cpumask_pick_least_loaded(struct irq_data *d, 1545 const struct cpumask *cpu_mask) 1546 { 1547 unsigned int cpu = nr_cpu_ids, tmp; 1548 int count = S32_MAX; 1549 1550 for_each_cpu(tmp, cpu_mask) { 1551 int this_count = its_read_lpi_count(d, tmp); 1552 if (this_count < count) { 1553 cpu = tmp; 1554 count = this_count; 1555 } 1556 } 1557 1558 return cpu; 1559 } 1560 1561 /* 1562 * As suggested by Thomas Gleixner in: 1563 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de 1564 */ 1565 static int its_select_cpu(struct irq_data *d, 1566 const struct cpumask *aff_mask) 1567 { 1568 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1569 cpumask_var_t tmpmask; 1570 int cpu, node; 1571 1572 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC)) 1573 return -ENOMEM; 1574 1575 node = its_dev->its->numa_node; 1576 1577 if (!irqd_affinity_is_managed(d)) { 1578 /* First try the NUMA node */ 1579 if (node != NUMA_NO_NODE) { 1580 /* 1581 * Try the intersection of the affinity mask and the 1582 * node mask (and the online mask, just to be safe). 1583 */ 1584 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask); 1585 cpumask_and(tmpmask, tmpmask, cpu_online_mask); 1586 1587 /* 1588 * Ideally, we would check if the mask is empty, and 1589 * try again on the full node here. 1590 * 1591 * But it turns out that the way ACPI describes the 1592 * affinity for ITSs only deals about memory, and 1593 * not target CPUs, so it cannot describe a single 1594 * ITS placed next to two NUMA nodes. 1595 * 1596 * Instead, just fallback on the online mask. This 1597 * diverges from Thomas' suggestion above. 1598 */ 1599 cpu = cpumask_pick_least_loaded(d, tmpmask); 1600 if (cpu < nr_cpu_ids) 1601 goto out; 1602 1603 /* If we can't cross sockets, give up */ 1604 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)) 1605 goto out; 1606 1607 /* If the above failed, expand the search */ 1608 } 1609 1610 /* Try the intersection of the affinity and online masks */ 1611 cpumask_and(tmpmask, aff_mask, cpu_online_mask); 1612 1613 /* If that doesn't fly, the online mask is the last resort */ 1614 if (cpumask_empty(tmpmask)) 1615 cpumask_copy(tmpmask, cpu_online_mask); 1616 1617 cpu = cpumask_pick_least_loaded(d, tmpmask); 1618 } else { 1619 cpumask_and(tmpmask, irq_data_get_affinity_mask(d), cpu_online_mask); 1620 1621 /* If we cannot cross sockets, limit the search to that node */ 1622 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) && 1623 node != NUMA_NO_NODE) 1624 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node)); 1625 1626 cpu = cpumask_pick_least_loaded(d, tmpmask); 1627 } 1628 out: 1629 free_cpumask_var(tmpmask); 1630 1631 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu); 1632 return cpu; 1633 } 1634 1635 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 1636 bool force) 1637 { 1638 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1639 struct its_collection *target_col; 1640 u32 id = its_get_event_id(d); 1641 int cpu, prev_cpu; 1642 1643 /* A forwarded interrupt should use irq_set_vcpu_affinity */ 1644 if (irqd_is_forwarded_to_vcpu(d)) 1645 return -EINVAL; 1646 1647 prev_cpu = its_dev->event_map.col_map[id]; 1648 its_dec_lpi_count(d, prev_cpu); 1649 1650 if (!force) 1651 cpu = its_select_cpu(d, mask_val); 1652 else 1653 cpu = cpumask_pick_least_loaded(d, mask_val); 1654 1655 if (cpu < 0 || cpu >= nr_cpu_ids) 1656 goto err; 1657 1658 /* don't set the affinity when the target cpu is same as current one */ 1659 if (cpu != prev_cpu) { 1660 target_col = &its_dev->its->collections[cpu]; 1661 its_send_movi(its_dev, target_col, id); 1662 its_dev->event_map.col_map[id] = cpu; 1663 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 1664 } 1665 1666 its_inc_lpi_count(d, cpu); 1667 1668 return IRQ_SET_MASK_OK_DONE; 1669 1670 err: 1671 its_inc_lpi_count(d, prev_cpu); 1672 return -EINVAL; 1673 } 1674 1675 static u64 its_irq_get_msi_base(struct its_device *its_dev) 1676 { 1677 struct its_node *its = its_dev->its; 1678 1679 return its->phys_base + GITS_TRANSLATER; 1680 } 1681 1682 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) 1683 { 1684 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1685 struct its_node *its; 1686 u64 addr; 1687 1688 its = its_dev->its; 1689 addr = its->get_msi_base(its_dev); 1690 1691 msg->address_lo = lower_32_bits(addr); 1692 msg->address_hi = upper_32_bits(addr); 1693 msg->data = its_get_event_id(d); 1694 1695 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg); 1696 } 1697 1698 static int its_irq_set_irqchip_state(struct irq_data *d, 1699 enum irqchip_irq_state which, 1700 bool state) 1701 { 1702 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1703 u32 event = its_get_event_id(d); 1704 1705 if (which != IRQCHIP_STATE_PENDING) 1706 return -EINVAL; 1707 1708 if (irqd_is_forwarded_to_vcpu(d)) { 1709 if (state) 1710 its_send_vint(its_dev, event); 1711 else 1712 its_send_vclear(its_dev, event); 1713 } else { 1714 if (state) 1715 its_send_int(its_dev, event); 1716 else 1717 its_send_clear(its_dev, event); 1718 } 1719 1720 return 0; 1721 } 1722 1723 /* 1724 * Two favourable cases: 1725 * 1726 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times 1727 * for vSGI delivery 1728 * 1729 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough 1730 * and we're better off mapping all VPEs always 1731 * 1732 * If neither (a) nor (b) is true, then we map vPEs on demand. 1733 * 1734 */ 1735 static bool gic_requires_eager_mapping(void) 1736 { 1737 if (!its_list_map || gic_rdists->has_rvpeid) 1738 return true; 1739 1740 return false; 1741 } 1742 1743 static void its_map_vm(struct its_node *its, struct its_vm *vm) 1744 { 1745 unsigned long flags; 1746 1747 if (gic_requires_eager_mapping()) 1748 return; 1749 1750 raw_spin_lock_irqsave(&vmovp_lock, flags); 1751 1752 /* 1753 * If the VM wasn't mapped yet, iterate over the vpes and get 1754 * them mapped now. 1755 */ 1756 vm->vlpi_count[its->list_nr]++; 1757 1758 if (vm->vlpi_count[its->list_nr] == 1) { 1759 int i; 1760 1761 for (i = 0; i < vm->nr_vpes; i++) { 1762 struct its_vpe *vpe = vm->vpes[i]; 1763 struct irq_data *d = irq_get_irq_data(vpe->irq); 1764 1765 /* Map the VPE to the first possible CPU */ 1766 vpe->col_idx = cpumask_first(cpu_online_mask); 1767 its_send_vmapp(its, vpe, true); 1768 its_send_vinvall(its, vpe); 1769 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 1770 } 1771 } 1772 1773 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1774 } 1775 1776 static void its_unmap_vm(struct its_node *its, struct its_vm *vm) 1777 { 1778 unsigned long flags; 1779 1780 /* Not using the ITS list? Everything is always mapped. */ 1781 if (gic_requires_eager_mapping()) 1782 return; 1783 1784 raw_spin_lock_irqsave(&vmovp_lock, flags); 1785 1786 if (!--vm->vlpi_count[its->list_nr]) { 1787 int i; 1788 1789 for (i = 0; i < vm->nr_vpes; i++) 1790 its_send_vmapp(its, vm->vpes[i], false); 1791 } 1792 1793 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1794 } 1795 1796 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) 1797 { 1798 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1799 u32 event = its_get_event_id(d); 1800 int ret = 0; 1801 1802 if (!info->map) 1803 return -EINVAL; 1804 1805 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1806 1807 if (!its_dev->event_map.vm) { 1808 struct its_vlpi_map *maps; 1809 1810 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps), 1811 GFP_ATOMIC); 1812 if (!maps) { 1813 ret = -ENOMEM; 1814 goto out; 1815 } 1816 1817 its_dev->event_map.vm = info->map->vm; 1818 its_dev->event_map.vlpi_maps = maps; 1819 } else if (its_dev->event_map.vm != info->map->vm) { 1820 ret = -EINVAL; 1821 goto out; 1822 } 1823 1824 /* Get our private copy of the mapping information */ 1825 its_dev->event_map.vlpi_maps[event] = *info->map; 1826 1827 if (irqd_is_forwarded_to_vcpu(d)) { 1828 /* Already mapped, move it around */ 1829 its_send_vmovi(its_dev, event); 1830 } else { 1831 /* Ensure all the VPEs are mapped on this ITS */ 1832 its_map_vm(its_dev->its, info->map->vm); 1833 1834 /* 1835 * Flag the interrupt as forwarded so that we can 1836 * start poking the virtual property table. 1837 */ 1838 irqd_set_forwarded_to_vcpu(d); 1839 1840 /* Write out the property to the prop table */ 1841 lpi_write_config(d, 0xff, info->map->properties); 1842 1843 /* Drop the physical mapping */ 1844 its_send_discard(its_dev, event); 1845 1846 /* and install the virtual one */ 1847 its_send_vmapti(its_dev, event); 1848 1849 /* Increment the number of VLPIs */ 1850 its_dev->event_map.nr_vlpis++; 1851 } 1852 1853 out: 1854 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1855 return ret; 1856 } 1857 1858 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) 1859 { 1860 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1861 struct its_vlpi_map *map; 1862 int ret = 0; 1863 1864 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1865 1866 map = get_vlpi_map(d); 1867 1868 if (!its_dev->event_map.vm || !map) { 1869 ret = -EINVAL; 1870 goto out; 1871 } 1872 1873 /* Copy our mapping information to the incoming request */ 1874 *info->map = *map; 1875 1876 out: 1877 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1878 return ret; 1879 } 1880 1881 static int its_vlpi_unmap(struct irq_data *d) 1882 { 1883 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1884 u32 event = its_get_event_id(d); 1885 int ret = 0; 1886 1887 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1888 1889 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) { 1890 ret = -EINVAL; 1891 goto out; 1892 } 1893 1894 /* Drop the virtual mapping */ 1895 its_send_discard(its_dev, event); 1896 1897 /* and restore the physical one */ 1898 irqd_clr_forwarded_to_vcpu(d); 1899 its_send_mapti(its_dev, d->hwirq, event); 1900 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO | 1901 LPI_PROP_ENABLED | 1902 LPI_PROP_GROUP1)); 1903 1904 /* Potentially unmap the VM from this ITS */ 1905 its_unmap_vm(its_dev->its, its_dev->event_map.vm); 1906 1907 /* 1908 * Drop the refcount and make the device available again if 1909 * this was the last VLPI. 1910 */ 1911 if (!--its_dev->event_map.nr_vlpis) { 1912 its_dev->event_map.vm = NULL; 1913 kfree(its_dev->event_map.vlpi_maps); 1914 } 1915 1916 out: 1917 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1918 return ret; 1919 } 1920 1921 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) 1922 { 1923 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1924 1925 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 1926 return -EINVAL; 1927 1928 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) 1929 lpi_update_config(d, 0xff, info->config); 1930 else 1931 lpi_write_config(d, 0xff, info->config); 1932 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); 1933 1934 return 0; 1935 } 1936 1937 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 1938 { 1939 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1940 struct its_cmd_info *info = vcpu_info; 1941 1942 /* Need a v4 ITS */ 1943 if (!is_v4(its_dev->its)) 1944 return -EINVAL; 1945 1946 /* Unmap request? */ 1947 if (!info) 1948 return its_vlpi_unmap(d); 1949 1950 switch (info->cmd_type) { 1951 case MAP_VLPI: 1952 return its_vlpi_map(d, info); 1953 1954 case GET_VLPI: 1955 return its_vlpi_get(d, info); 1956 1957 case PROP_UPDATE_VLPI: 1958 case PROP_UPDATE_AND_INV_VLPI: 1959 return its_vlpi_prop_update(d, info); 1960 1961 default: 1962 return -EINVAL; 1963 } 1964 } 1965 1966 static struct irq_chip its_irq_chip = { 1967 .name = "ITS", 1968 .irq_mask = its_mask_irq, 1969 .irq_unmask = its_unmask_irq, 1970 .irq_eoi = irq_chip_eoi_parent, 1971 .irq_set_affinity = its_set_affinity, 1972 .irq_compose_msi_msg = its_irq_compose_msi_msg, 1973 .irq_set_irqchip_state = its_irq_set_irqchip_state, 1974 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity, 1975 }; 1976 1977 1978 /* 1979 * How we allocate LPIs: 1980 * 1981 * lpi_range_list contains ranges of LPIs that are to available to 1982 * allocate from. To allocate LPIs, just pick the first range that 1983 * fits the required allocation, and reduce it by the required 1984 * amount. Once empty, remove the range from the list. 1985 * 1986 * To free a range of LPIs, add a free range to the list, sort it and 1987 * merge the result if the new range happens to be adjacent to an 1988 * already free block. 1989 * 1990 * The consequence of the above is that allocation is cost is low, but 1991 * freeing is expensive. We assumes that freeing rarely occurs. 1992 */ 1993 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */ 1994 1995 static DEFINE_MUTEX(lpi_range_lock); 1996 static LIST_HEAD(lpi_range_list); 1997 1998 struct lpi_range { 1999 struct list_head entry; 2000 u32 base_id; 2001 u32 span; 2002 }; 2003 2004 static struct lpi_range *mk_lpi_range(u32 base, u32 span) 2005 { 2006 struct lpi_range *range; 2007 2008 range = kmalloc(sizeof(*range), GFP_KERNEL); 2009 if (range) { 2010 range->base_id = base; 2011 range->span = span; 2012 } 2013 2014 return range; 2015 } 2016 2017 static int alloc_lpi_range(u32 nr_lpis, u32 *base) 2018 { 2019 struct lpi_range *range, *tmp; 2020 int err = -ENOSPC; 2021 2022 mutex_lock(&lpi_range_lock); 2023 2024 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { 2025 if (range->span >= nr_lpis) { 2026 *base = range->base_id; 2027 range->base_id += nr_lpis; 2028 range->span -= nr_lpis; 2029 2030 if (range->span == 0) { 2031 list_del(&range->entry); 2032 kfree(range); 2033 } 2034 2035 err = 0; 2036 break; 2037 } 2038 } 2039 2040 mutex_unlock(&lpi_range_lock); 2041 2042 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis); 2043 return err; 2044 } 2045 2046 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b) 2047 { 2048 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list) 2049 return; 2050 if (a->base_id + a->span != b->base_id) 2051 return; 2052 b->base_id = a->base_id; 2053 b->span += a->span; 2054 list_del(&a->entry); 2055 kfree(a); 2056 } 2057 2058 static int free_lpi_range(u32 base, u32 nr_lpis) 2059 { 2060 struct lpi_range *new, *old; 2061 2062 new = mk_lpi_range(base, nr_lpis); 2063 if (!new) 2064 return -ENOMEM; 2065 2066 mutex_lock(&lpi_range_lock); 2067 2068 list_for_each_entry_reverse(old, &lpi_range_list, entry) { 2069 if (old->base_id < base) 2070 break; 2071 } 2072 /* 2073 * old is the last element with ->base_id smaller than base, 2074 * so new goes right after it. If there are no elements with 2075 * ->base_id smaller than base, &old->entry ends up pointing 2076 * at the head of the list, and inserting new it the start of 2077 * the list is the right thing to do in that case as well. 2078 */ 2079 list_add(&new->entry, &old->entry); 2080 /* 2081 * Now check if we can merge with the preceding and/or 2082 * following ranges. 2083 */ 2084 merge_lpi_ranges(old, new); 2085 merge_lpi_ranges(new, list_next_entry(new, entry)); 2086 2087 mutex_unlock(&lpi_range_lock); 2088 return 0; 2089 } 2090 2091 static int __init its_lpi_init(u32 id_bits) 2092 { 2093 u32 lpis = (1UL << id_bits) - 8192; 2094 u32 numlpis; 2095 int err; 2096 2097 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer); 2098 2099 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) { 2100 lpis = numlpis; 2101 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n", 2102 lpis); 2103 } 2104 2105 /* 2106 * Initializing the allocator is just the same as freeing the 2107 * full range of LPIs. 2108 */ 2109 err = free_lpi_range(8192, lpis); 2110 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis); 2111 return err; 2112 } 2113 2114 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids) 2115 { 2116 unsigned long *bitmap = NULL; 2117 int err = 0; 2118 2119 do { 2120 err = alloc_lpi_range(nr_irqs, base); 2121 if (!err) 2122 break; 2123 2124 nr_irqs /= 2; 2125 } while (nr_irqs > 0); 2126 2127 if (!nr_irqs) 2128 err = -ENOSPC; 2129 2130 if (err) 2131 goto out; 2132 2133 bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC); 2134 if (!bitmap) 2135 goto out; 2136 2137 *nr_ids = nr_irqs; 2138 2139 out: 2140 if (!bitmap) 2141 *base = *nr_ids = 0; 2142 2143 return bitmap; 2144 } 2145 2146 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids) 2147 { 2148 WARN_ON(free_lpi_range(base, nr_ids)); 2149 kfree(bitmap); 2150 } 2151 2152 static void gic_reset_prop_table(void *va) 2153 { 2154 /* Priority 0xa0, Group-1, disabled */ 2155 memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ); 2156 2157 /* Make sure the GIC will observe the written configuration */ 2158 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ); 2159 } 2160 2161 static struct page *its_allocate_prop_table(gfp_t gfp_flags) 2162 { 2163 struct page *prop_page; 2164 2165 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ)); 2166 if (!prop_page) 2167 return NULL; 2168 2169 gic_reset_prop_table(page_address(prop_page)); 2170 2171 return prop_page; 2172 } 2173 2174 static void its_free_prop_table(struct page *prop_page) 2175 { 2176 free_pages((unsigned long)page_address(prop_page), 2177 get_order(LPI_PROPBASE_SZ)); 2178 } 2179 2180 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size) 2181 { 2182 phys_addr_t start, end, addr_end; 2183 u64 i; 2184 2185 /* 2186 * We don't bother checking for a kdump kernel as by 2187 * construction, the LPI tables are out of this kernel's 2188 * memory map. 2189 */ 2190 if (is_kdump_kernel()) 2191 return true; 2192 2193 addr_end = addr + size - 1; 2194 2195 for_each_reserved_mem_region(i, &start, &end) { 2196 if (addr >= start && addr_end <= end) 2197 return true; 2198 } 2199 2200 /* Not found, not a good sign... */ 2201 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n", 2202 &addr, &addr_end); 2203 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 2204 return false; 2205 } 2206 2207 static int gic_reserve_range(phys_addr_t addr, unsigned long size) 2208 { 2209 if (efi_enabled(EFI_CONFIG_TABLES)) 2210 return efi_mem_reserve_persistent(addr, size); 2211 2212 return 0; 2213 } 2214 2215 static int __init its_setup_lpi_prop_table(void) 2216 { 2217 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) { 2218 u64 val; 2219 2220 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2221 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1; 2222 2223 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12); 2224 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa, 2225 LPI_PROPBASE_SZ, 2226 MEMREMAP_WB); 2227 gic_reset_prop_table(gic_rdists->prop_table_va); 2228 } else { 2229 struct page *page; 2230 2231 lpi_id_bits = min_t(u32, 2232 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer), 2233 ITS_MAX_LPI_NRBITS); 2234 page = its_allocate_prop_table(GFP_NOWAIT); 2235 if (!page) { 2236 pr_err("Failed to allocate PROPBASE\n"); 2237 return -ENOMEM; 2238 } 2239 2240 gic_rdists->prop_table_pa = page_to_phys(page); 2241 gic_rdists->prop_table_va = page_address(page); 2242 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa, 2243 LPI_PROPBASE_SZ)); 2244 } 2245 2246 pr_info("GICv3: using LPI property table @%pa\n", 2247 &gic_rdists->prop_table_pa); 2248 2249 return its_lpi_init(lpi_id_bits); 2250 } 2251 2252 static const char *its_base_type_string[] = { 2253 [GITS_BASER_TYPE_DEVICE] = "Devices", 2254 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", 2255 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)", 2256 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", 2257 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", 2258 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", 2259 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", 2260 }; 2261 2262 static u64 its_read_baser(struct its_node *its, struct its_baser *baser) 2263 { 2264 u32 idx = baser - its->tables; 2265 2266 return gits_read_baser(its->base + GITS_BASER + (idx << 3)); 2267 } 2268 2269 static void its_write_baser(struct its_node *its, struct its_baser *baser, 2270 u64 val) 2271 { 2272 u32 idx = baser - its->tables; 2273 2274 gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); 2275 baser->val = its_read_baser(its, baser); 2276 } 2277 2278 static int its_setup_baser(struct its_node *its, struct its_baser *baser, 2279 u64 cache, u64 shr, u32 order, bool indirect) 2280 { 2281 u64 val = its_read_baser(its, baser); 2282 u64 esz = GITS_BASER_ENTRY_SIZE(val); 2283 u64 type = GITS_BASER_TYPE(val); 2284 u64 baser_phys, tmp; 2285 u32 alloc_pages, psz; 2286 struct page *page; 2287 void *base; 2288 2289 psz = baser->psz; 2290 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); 2291 if (alloc_pages > GITS_BASER_PAGES_MAX) { 2292 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", 2293 &its->phys_base, its_base_type_string[type], 2294 alloc_pages, GITS_BASER_PAGES_MAX); 2295 alloc_pages = GITS_BASER_PAGES_MAX; 2296 order = get_order(GITS_BASER_PAGES_MAX * psz); 2297 } 2298 2299 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order); 2300 if (!page) 2301 return -ENOMEM; 2302 2303 base = (void *)page_address(page); 2304 baser_phys = virt_to_phys(base); 2305 2306 /* Check if the physical address of the memory is above 48bits */ 2307 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { 2308 2309 /* 52bit PA is supported only when PageSize=64K */ 2310 if (psz != SZ_64K) { 2311 pr_err("ITS: no 52bit PA support when psz=%d\n", psz); 2312 free_pages((unsigned long)base, order); 2313 return -ENXIO; 2314 } 2315 2316 /* Convert 52bit PA to 48bit field */ 2317 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); 2318 } 2319 2320 retry_baser: 2321 val = (baser_phys | 2322 (type << GITS_BASER_TYPE_SHIFT) | 2323 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | 2324 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | 2325 cache | 2326 shr | 2327 GITS_BASER_VALID); 2328 2329 val |= indirect ? GITS_BASER_INDIRECT : 0x0; 2330 2331 switch (psz) { 2332 case SZ_4K: 2333 val |= GITS_BASER_PAGE_SIZE_4K; 2334 break; 2335 case SZ_16K: 2336 val |= GITS_BASER_PAGE_SIZE_16K; 2337 break; 2338 case SZ_64K: 2339 val |= GITS_BASER_PAGE_SIZE_64K; 2340 break; 2341 } 2342 2343 its_write_baser(its, baser, val); 2344 tmp = baser->val; 2345 2346 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { 2347 /* 2348 * Shareability didn't stick. Just use 2349 * whatever the read reported, which is likely 2350 * to be the only thing this redistributor 2351 * supports. If that's zero, make it 2352 * non-cacheable as well. 2353 */ 2354 shr = tmp & GITS_BASER_SHAREABILITY_MASK; 2355 if (!shr) { 2356 cache = GITS_BASER_nC; 2357 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); 2358 } 2359 goto retry_baser; 2360 } 2361 2362 if (val != tmp) { 2363 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", 2364 &its->phys_base, its_base_type_string[type], 2365 val, tmp); 2366 free_pages((unsigned long)base, order); 2367 return -ENXIO; 2368 } 2369 2370 baser->order = order; 2371 baser->base = base; 2372 baser->psz = psz; 2373 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; 2374 2375 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", 2376 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), 2377 its_base_type_string[type], 2378 (unsigned long)virt_to_phys(base), 2379 indirect ? "indirect" : "flat", (int)esz, 2380 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); 2381 2382 return 0; 2383 } 2384 2385 static bool its_parse_indirect_baser(struct its_node *its, 2386 struct its_baser *baser, 2387 u32 *order, u32 ids) 2388 { 2389 u64 tmp = its_read_baser(its, baser); 2390 u64 type = GITS_BASER_TYPE(tmp); 2391 u64 esz = GITS_BASER_ENTRY_SIZE(tmp); 2392 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; 2393 u32 new_order = *order; 2394 u32 psz = baser->psz; 2395 bool indirect = false; 2396 2397 /* No need to enable Indirection if memory requirement < (psz*2)bytes */ 2398 if ((esz << ids) > (psz * 2)) { 2399 /* 2400 * Find out whether hw supports a single or two-level table by 2401 * table by reading bit at offset '62' after writing '1' to it. 2402 */ 2403 its_write_baser(its, baser, val | GITS_BASER_INDIRECT); 2404 indirect = !!(baser->val & GITS_BASER_INDIRECT); 2405 2406 if (indirect) { 2407 /* 2408 * The size of the lvl2 table is equal to ITS page size 2409 * which is 'psz'. For computing lvl1 table size, 2410 * subtract ID bits that sparse lvl2 table from 'ids' 2411 * which is reported by ITS hardware times lvl1 table 2412 * entry size. 2413 */ 2414 ids -= ilog2(psz / (int)esz); 2415 esz = GITS_LVL1_ENTRY_SIZE; 2416 } 2417 } 2418 2419 /* 2420 * Allocate as many entries as required to fit the 2421 * range of device IDs that the ITS can grok... The ID 2422 * space being incredibly sparse, this results in a 2423 * massive waste of memory if two-level device table 2424 * feature is not supported by hardware. 2425 */ 2426 new_order = max_t(u32, get_order(esz << ids), new_order); 2427 if (new_order >= MAX_ORDER) { 2428 new_order = MAX_ORDER - 1; 2429 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); 2430 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n", 2431 &its->phys_base, its_base_type_string[type], 2432 device_ids(its), ids); 2433 } 2434 2435 *order = new_order; 2436 2437 return indirect; 2438 } 2439 2440 static u32 compute_common_aff(u64 val) 2441 { 2442 u32 aff, clpiaff; 2443 2444 aff = FIELD_GET(GICR_TYPER_AFFINITY, val); 2445 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val); 2446 2447 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8)); 2448 } 2449 2450 static u32 compute_its_aff(struct its_node *its) 2451 { 2452 u64 val; 2453 u32 svpet; 2454 2455 /* 2456 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute 2457 * the resulting affinity. We then use that to see if this match 2458 * our own affinity. 2459 */ 2460 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); 2461 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet); 2462 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr); 2463 return compute_common_aff(val); 2464 } 2465 2466 static struct its_node *find_sibling_its(struct its_node *cur_its) 2467 { 2468 struct its_node *its; 2469 u32 aff; 2470 2471 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer)) 2472 return NULL; 2473 2474 aff = compute_its_aff(cur_its); 2475 2476 list_for_each_entry(its, &its_nodes, entry) { 2477 u64 baser; 2478 2479 if (!is_v4_1(its) || its == cur_its) 2480 continue; 2481 2482 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2483 continue; 2484 2485 if (aff != compute_its_aff(its)) 2486 continue; 2487 2488 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2489 baser = its->tables[2].val; 2490 if (!(baser & GITS_BASER_VALID)) 2491 continue; 2492 2493 return its; 2494 } 2495 2496 return NULL; 2497 } 2498 2499 static void its_free_tables(struct its_node *its) 2500 { 2501 int i; 2502 2503 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2504 if (its->tables[i].base) { 2505 free_pages((unsigned long)its->tables[i].base, 2506 its->tables[i].order); 2507 its->tables[i].base = NULL; 2508 } 2509 } 2510 } 2511 2512 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser) 2513 { 2514 u64 psz = SZ_64K; 2515 2516 while (psz) { 2517 u64 val, gpsz; 2518 2519 val = its_read_baser(its, baser); 2520 val &= ~GITS_BASER_PAGE_SIZE_MASK; 2521 2522 switch (psz) { 2523 case SZ_64K: 2524 gpsz = GITS_BASER_PAGE_SIZE_64K; 2525 break; 2526 case SZ_16K: 2527 gpsz = GITS_BASER_PAGE_SIZE_16K; 2528 break; 2529 case SZ_4K: 2530 default: 2531 gpsz = GITS_BASER_PAGE_SIZE_4K; 2532 break; 2533 } 2534 2535 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT; 2536 2537 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz); 2538 its_write_baser(its, baser, val); 2539 2540 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz) 2541 break; 2542 2543 switch (psz) { 2544 case SZ_64K: 2545 psz = SZ_16K; 2546 break; 2547 case SZ_16K: 2548 psz = SZ_4K; 2549 break; 2550 case SZ_4K: 2551 default: 2552 return -1; 2553 } 2554 } 2555 2556 baser->psz = psz; 2557 return 0; 2558 } 2559 2560 static int its_alloc_tables(struct its_node *its) 2561 { 2562 u64 shr = GITS_BASER_InnerShareable; 2563 u64 cache = GITS_BASER_RaWaWb; 2564 int err, i; 2565 2566 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) 2567 /* erratum 24313: ignore memory access type */ 2568 cache = GITS_BASER_nCnB; 2569 2570 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2571 struct its_baser *baser = its->tables + i; 2572 u64 val = its_read_baser(its, baser); 2573 u64 type = GITS_BASER_TYPE(val); 2574 bool indirect = false; 2575 u32 order; 2576 2577 if (type == GITS_BASER_TYPE_NONE) 2578 continue; 2579 2580 if (its_probe_baser_psz(its, baser)) { 2581 its_free_tables(its); 2582 return -ENXIO; 2583 } 2584 2585 order = get_order(baser->psz); 2586 2587 switch (type) { 2588 case GITS_BASER_TYPE_DEVICE: 2589 indirect = its_parse_indirect_baser(its, baser, &order, 2590 device_ids(its)); 2591 break; 2592 2593 case GITS_BASER_TYPE_VCPU: 2594 if (is_v4_1(its)) { 2595 struct its_node *sibling; 2596 2597 WARN_ON(i != 2); 2598 if ((sibling = find_sibling_its(its))) { 2599 *baser = sibling->tables[2]; 2600 its_write_baser(its, baser, baser->val); 2601 continue; 2602 } 2603 } 2604 2605 indirect = its_parse_indirect_baser(its, baser, &order, 2606 ITS_MAX_VPEID_BITS); 2607 break; 2608 } 2609 2610 err = its_setup_baser(its, baser, cache, shr, order, indirect); 2611 if (err < 0) { 2612 its_free_tables(its); 2613 return err; 2614 } 2615 2616 /* Update settings which will be used for next BASERn */ 2617 cache = baser->val & GITS_BASER_CACHEABILITY_MASK; 2618 shr = baser->val & GITS_BASER_SHAREABILITY_MASK; 2619 } 2620 2621 return 0; 2622 } 2623 2624 static u64 inherit_vpe_l1_table_from_its(void) 2625 { 2626 struct its_node *its; 2627 u64 val; 2628 u32 aff; 2629 2630 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2631 aff = compute_common_aff(val); 2632 2633 list_for_each_entry(its, &its_nodes, entry) { 2634 u64 baser, addr; 2635 2636 if (!is_v4_1(its)) 2637 continue; 2638 2639 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2640 continue; 2641 2642 if (aff != compute_its_aff(its)) 2643 continue; 2644 2645 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2646 baser = its->tables[2].val; 2647 if (!(baser & GITS_BASER_VALID)) 2648 continue; 2649 2650 /* We have a winner! */ 2651 gic_data_rdist()->vpe_l1_base = its->tables[2].base; 2652 2653 val = GICR_VPROPBASER_4_1_VALID; 2654 if (baser & GITS_BASER_INDIRECT) 2655 val |= GICR_VPROPBASER_4_1_INDIRECT; 2656 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, 2657 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)); 2658 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) { 2659 case GIC_PAGE_SIZE_64K: 2660 addr = GITS_BASER_ADDR_48_to_52(baser); 2661 break; 2662 default: 2663 addr = baser & GENMASK_ULL(47, 12); 2664 break; 2665 } 2666 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12); 2667 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK, 2668 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser)); 2669 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK, 2670 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser)); 2671 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1); 2672 2673 return val; 2674 } 2675 2676 return 0; 2677 } 2678 2679 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask) 2680 { 2681 u32 aff; 2682 u64 val; 2683 int cpu; 2684 2685 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2686 aff = compute_common_aff(val); 2687 2688 for_each_possible_cpu(cpu) { 2689 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2690 2691 if (!base || cpu == smp_processor_id()) 2692 continue; 2693 2694 val = gic_read_typer(base + GICR_TYPER); 2695 if (aff != compute_common_aff(val)) 2696 continue; 2697 2698 /* 2699 * At this point, we have a victim. This particular CPU 2700 * has already booted, and has an affinity that matches 2701 * ours wrt CommonLPIAff. Let's use its own VPROPBASER. 2702 * Make sure we don't write the Z bit in that case. 2703 */ 2704 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2705 val &= ~GICR_VPROPBASER_4_1_Z; 2706 2707 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2708 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask; 2709 2710 return val; 2711 } 2712 2713 return 0; 2714 } 2715 2716 static bool allocate_vpe_l2_table(int cpu, u32 id) 2717 { 2718 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2719 unsigned int psz, esz, idx, npg, gpsz; 2720 u64 val; 2721 struct page *page; 2722 __le64 *table; 2723 2724 if (!gic_rdists->has_rvpeid) 2725 return true; 2726 2727 /* Skip non-present CPUs */ 2728 if (!base) 2729 return true; 2730 2731 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2732 2733 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1; 2734 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2735 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1; 2736 2737 switch (gpsz) { 2738 default: 2739 WARN_ON(1); 2740 /* fall through */ 2741 case GIC_PAGE_SIZE_4K: 2742 psz = SZ_4K; 2743 break; 2744 case GIC_PAGE_SIZE_16K: 2745 psz = SZ_16K; 2746 break; 2747 case GIC_PAGE_SIZE_64K: 2748 psz = SZ_64K; 2749 break; 2750 } 2751 2752 /* Don't allow vpe_id that exceeds single, flat table limit */ 2753 if (!(val & GICR_VPROPBASER_4_1_INDIRECT)) 2754 return (id < (npg * psz / (esz * SZ_8))); 2755 2756 /* Compute 1st level table index & check if that exceeds table limit */ 2757 idx = id >> ilog2(psz / (esz * SZ_8)); 2758 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE)) 2759 return false; 2760 2761 table = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2762 2763 /* Allocate memory for 2nd level table */ 2764 if (!table[idx]) { 2765 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz)); 2766 if (!page) 2767 return false; 2768 2769 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 2770 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2771 gic_flush_dcache_to_poc(page_address(page), psz); 2772 2773 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 2774 2775 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 2776 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2777 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 2778 2779 /* Ensure updated table contents are visible to RD hardware */ 2780 dsb(sy); 2781 } 2782 2783 return true; 2784 } 2785 2786 static int allocate_vpe_l1_table(void) 2787 { 2788 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2789 u64 val, gpsz, npg, pa; 2790 unsigned int psz = SZ_64K; 2791 unsigned int np, epp, esz; 2792 struct page *page; 2793 2794 if (!gic_rdists->has_rvpeid) 2795 return 0; 2796 2797 /* 2798 * if VPENDBASER.Valid is set, disable any previously programmed 2799 * VPE by setting PendingLast while clearing Valid. This has the 2800 * effect of making sure no doorbell will be generated and we can 2801 * then safely clear VPROPBASER.Valid. 2802 */ 2803 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid) 2804 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast, 2805 vlpi_base + GICR_VPENDBASER); 2806 2807 /* 2808 * If we can inherit the configuration from another RD, let's do 2809 * so. Otherwise, we have to go through the allocation process. We 2810 * assume that all RDs have the exact same requirements, as 2811 * nothing will work otherwise. 2812 */ 2813 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask); 2814 if (val & GICR_VPROPBASER_4_1_VALID) 2815 goto out; 2816 2817 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_KERNEL); 2818 if (!gic_data_rdist()->vpe_table_mask) 2819 return -ENOMEM; 2820 2821 val = inherit_vpe_l1_table_from_its(); 2822 if (val & GICR_VPROPBASER_4_1_VALID) 2823 goto out; 2824 2825 /* First probe the page size */ 2826 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K); 2827 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2828 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER); 2829 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2830 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val); 2831 2832 switch (gpsz) { 2833 default: 2834 gpsz = GIC_PAGE_SIZE_4K; 2835 /* fall through */ 2836 case GIC_PAGE_SIZE_4K: 2837 psz = SZ_4K; 2838 break; 2839 case GIC_PAGE_SIZE_16K: 2840 psz = SZ_16K; 2841 break; 2842 case GIC_PAGE_SIZE_64K: 2843 psz = SZ_64K; 2844 break; 2845 } 2846 2847 /* 2848 * Start populating the register from scratch, including RO fields 2849 * (which we want to print in debug cases...) 2850 */ 2851 val = 0; 2852 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz); 2853 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz); 2854 2855 /* How many entries per GIC page? */ 2856 esz++; 2857 epp = psz / (esz * SZ_8); 2858 2859 /* 2860 * If we need more than just a single L1 page, flag the table 2861 * as indirect and compute the number of required L1 pages. 2862 */ 2863 if (epp < ITS_MAX_VPEID) { 2864 int nl2; 2865 2866 val |= GICR_VPROPBASER_4_1_INDIRECT; 2867 2868 /* Number of L2 pages required to cover the VPEID space */ 2869 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp); 2870 2871 /* Number of L1 pages to point to the L2 pages */ 2872 npg = DIV_ROUND_UP(nl2 * SZ_8, psz); 2873 } else { 2874 npg = 1; 2875 } 2876 2877 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1); 2878 2879 /* Right, that's the number of CPU pages we need for L1 */ 2880 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE); 2881 2882 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n", 2883 np, npg, psz, epp, esz); 2884 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(np * PAGE_SIZE)); 2885 if (!page) 2886 return -ENOMEM; 2887 2888 gic_data_rdist()->vpe_l1_base = page_address(page); 2889 pa = virt_to_phys(page_address(page)); 2890 WARN_ON(!IS_ALIGNED(pa, psz)); 2891 2892 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12); 2893 val |= GICR_VPROPBASER_RaWb; 2894 val |= GICR_VPROPBASER_InnerShareable; 2895 val |= GICR_VPROPBASER_4_1_Z; 2896 val |= GICR_VPROPBASER_4_1_VALID; 2897 2898 out: 2899 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2900 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask); 2901 2902 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n", 2903 smp_processor_id(), val, 2904 cpumask_pr_args(gic_data_rdist()->vpe_table_mask)); 2905 2906 return 0; 2907 } 2908 2909 static int its_alloc_collections(struct its_node *its) 2910 { 2911 int i; 2912 2913 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections), 2914 GFP_KERNEL); 2915 if (!its->collections) 2916 return -ENOMEM; 2917 2918 for (i = 0; i < nr_cpu_ids; i++) 2919 its->collections[i].target_address = ~0ULL; 2920 2921 return 0; 2922 } 2923 2924 static struct page *its_allocate_pending_table(gfp_t gfp_flags) 2925 { 2926 struct page *pend_page; 2927 2928 pend_page = alloc_pages(gfp_flags | __GFP_ZERO, 2929 get_order(LPI_PENDBASE_SZ)); 2930 if (!pend_page) 2931 return NULL; 2932 2933 /* Make sure the GIC will observe the zero-ed page */ 2934 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); 2935 2936 return pend_page; 2937 } 2938 2939 static void its_free_pending_table(struct page *pt) 2940 { 2941 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ)); 2942 } 2943 2944 /* 2945 * Booting with kdump and LPIs enabled is generally fine. Any other 2946 * case is wrong in the absence of firmware/EFI support. 2947 */ 2948 static bool enabled_lpis_allowed(void) 2949 { 2950 phys_addr_t addr; 2951 u64 val; 2952 2953 /* Check whether the property table is in a reserved region */ 2954 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2955 addr = val & GENMASK_ULL(51, 12); 2956 2957 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ); 2958 } 2959 2960 static int __init allocate_lpi_tables(void) 2961 { 2962 u64 val; 2963 int err, cpu; 2964 2965 /* 2966 * If LPIs are enabled while we run this from the boot CPU, 2967 * flag the RD tables as pre-allocated if the stars do align. 2968 */ 2969 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR); 2970 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) { 2971 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED | 2972 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING); 2973 pr_info("GICv3: Using preallocated redistributor tables\n"); 2974 } 2975 2976 err = its_setup_lpi_prop_table(); 2977 if (err) 2978 return err; 2979 2980 /* 2981 * We allocate all the pending tables anyway, as we may have a 2982 * mix of RDs that have had LPIs enabled, and some that 2983 * don't. We'll free the unused ones as each CPU comes online. 2984 */ 2985 for_each_possible_cpu(cpu) { 2986 struct page *pend_page; 2987 2988 pend_page = its_allocate_pending_table(GFP_NOWAIT); 2989 if (!pend_page) { 2990 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu); 2991 return -ENOMEM; 2992 } 2993 2994 gic_data_rdist_cpu(cpu)->pend_page = pend_page; 2995 } 2996 2997 return 0; 2998 } 2999 3000 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set) 3001 { 3002 u32 count = 1000000; /* 1s! */ 3003 bool clean; 3004 u64 val; 3005 3006 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 3007 val &= ~GICR_VPENDBASER_Valid; 3008 val &= ~clr; 3009 val |= set; 3010 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3011 3012 do { 3013 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 3014 clean = !(val & GICR_VPENDBASER_Dirty); 3015 if (!clean) { 3016 count--; 3017 cpu_relax(); 3018 udelay(1); 3019 } 3020 } while (!clean && count); 3021 3022 if (unlikely(val & GICR_VPENDBASER_Dirty)) { 3023 pr_err_ratelimited("ITS virtual pending table not cleaning\n"); 3024 val |= GICR_VPENDBASER_PendingLast; 3025 } 3026 3027 return val; 3028 } 3029 3030 static void its_cpu_init_lpis(void) 3031 { 3032 void __iomem *rbase = gic_data_rdist_rd_base(); 3033 struct page *pend_page; 3034 phys_addr_t paddr; 3035 u64 val, tmp; 3036 3037 if (gic_data_rdist()->lpi_enabled) 3038 return; 3039 3040 val = readl_relaxed(rbase + GICR_CTLR); 3041 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) && 3042 (val & GICR_CTLR_ENABLE_LPIS)) { 3043 /* 3044 * Check that we get the same property table on all 3045 * RDs. If we don't, this is hopeless. 3046 */ 3047 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER); 3048 paddr &= GENMASK_ULL(51, 12); 3049 if (WARN_ON(gic_rdists->prop_table_pa != paddr)) 3050 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 3051 3052 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3053 paddr &= GENMASK_ULL(51, 16); 3054 3055 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ)); 3056 its_free_pending_table(gic_data_rdist()->pend_page); 3057 gic_data_rdist()->pend_page = NULL; 3058 3059 goto out; 3060 } 3061 3062 pend_page = gic_data_rdist()->pend_page; 3063 paddr = page_to_phys(pend_page); 3064 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ)); 3065 3066 /* set PROPBASE */ 3067 val = (gic_rdists->prop_table_pa | 3068 GICR_PROPBASER_InnerShareable | 3069 GICR_PROPBASER_RaWaWb | 3070 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); 3071 3072 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3073 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); 3074 3075 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { 3076 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { 3077 /* 3078 * The HW reports non-shareable, we must 3079 * remove the cacheability attributes as 3080 * well. 3081 */ 3082 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | 3083 GICR_PROPBASER_CACHEABILITY_MASK); 3084 val |= GICR_PROPBASER_nC; 3085 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3086 } 3087 pr_info_once("GIC: using cache flushing for LPI property table\n"); 3088 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; 3089 } 3090 3091 /* set PENDBASE */ 3092 val = (page_to_phys(pend_page) | 3093 GICR_PENDBASER_InnerShareable | 3094 GICR_PENDBASER_RaWaWb); 3095 3096 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3097 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3098 3099 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { 3100 /* 3101 * The HW reports non-shareable, we must remove the 3102 * cacheability attributes as well. 3103 */ 3104 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | 3105 GICR_PENDBASER_CACHEABILITY_MASK); 3106 val |= GICR_PENDBASER_nC; 3107 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3108 } 3109 3110 /* Enable LPIs */ 3111 val = readl_relaxed(rbase + GICR_CTLR); 3112 val |= GICR_CTLR_ENABLE_LPIS; 3113 writel_relaxed(val, rbase + GICR_CTLR); 3114 3115 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) { 3116 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3117 3118 /* 3119 * It's possible for CPU to receive VLPIs before it is 3120 * sheduled as a vPE, especially for the first CPU, and the 3121 * VLPI with INTID larger than 2^(IDbits+1) will be considered 3122 * as out of range and dropped by GIC. 3123 * So we initialize IDbits to known value to avoid VLPI drop. 3124 */ 3125 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3126 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n", 3127 smp_processor_id(), val); 3128 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3129 3130 /* 3131 * Also clear Valid bit of GICR_VPENDBASER, in case some 3132 * ancient programming gets left in and has possibility of 3133 * corrupting memory. 3134 */ 3135 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3136 } 3137 3138 if (allocate_vpe_l1_table()) { 3139 /* 3140 * If the allocation has failed, we're in massive trouble. 3141 * Disable direct injection, and pray that no VM was 3142 * already running... 3143 */ 3144 gic_rdists->has_rvpeid = false; 3145 gic_rdists->has_vlpis = false; 3146 } 3147 3148 /* Make sure the GIC has seen the above */ 3149 dsb(sy); 3150 out: 3151 gic_data_rdist()->lpi_enabled = true; 3152 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n", 3153 smp_processor_id(), 3154 gic_data_rdist()->pend_page ? "allocated" : "reserved", 3155 &paddr); 3156 } 3157 3158 static void its_cpu_init_collection(struct its_node *its) 3159 { 3160 int cpu = smp_processor_id(); 3161 u64 target; 3162 3163 /* avoid cross node collections and its mapping */ 3164 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 3165 struct device_node *cpu_node; 3166 3167 cpu_node = of_get_cpu_node(cpu, NULL); 3168 if (its->numa_node != NUMA_NO_NODE && 3169 its->numa_node != of_node_to_nid(cpu_node)) 3170 return; 3171 } 3172 3173 /* 3174 * We now have to bind each collection to its target 3175 * redistributor. 3176 */ 3177 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { 3178 /* 3179 * This ITS wants the physical address of the 3180 * redistributor. 3181 */ 3182 target = gic_data_rdist()->phys_base; 3183 } else { 3184 /* This ITS wants a linear CPU number. */ 3185 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 3186 target = GICR_TYPER_CPU_NUMBER(target) << 16; 3187 } 3188 3189 /* Perform collection mapping */ 3190 its->collections[cpu].target_address = target; 3191 its->collections[cpu].col_id = cpu; 3192 3193 its_send_mapc(its, &its->collections[cpu], 1); 3194 its_send_invall(its, &its->collections[cpu]); 3195 } 3196 3197 static void its_cpu_init_collections(void) 3198 { 3199 struct its_node *its; 3200 3201 raw_spin_lock(&its_lock); 3202 3203 list_for_each_entry(its, &its_nodes, entry) 3204 its_cpu_init_collection(its); 3205 3206 raw_spin_unlock(&its_lock); 3207 } 3208 3209 static struct its_device *its_find_device(struct its_node *its, u32 dev_id) 3210 { 3211 struct its_device *its_dev = NULL, *tmp; 3212 unsigned long flags; 3213 3214 raw_spin_lock_irqsave(&its->lock, flags); 3215 3216 list_for_each_entry(tmp, &its->its_device_list, entry) { 3217 if (tmp->device_id == dev_id) { 3218 its_dev = tmp; 3219 break; 3220 } 3221 } 3222 3223 raw_spin_unlock_irqrestore(&its->lock, flags); 3224 3225 return its_dev; 3226 } 3227 3228 static struct its_baser *its_get_baser(struct its_node *its, u32 type) 3229 { 3230 int i; 3231 3232 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 3233 if (GITS_BASER_TYPE(its->tables[i].val) == type) 3234 return &its->tables[i]; 3235 } 3236 3237 return NULL; 3238 } 3239 3240 static bool its_alloc_table_entry(struct its_node *its, 3241 struct its_baser *baser, u32 id) 3242 { 3243 struct page *page; 3244 u32 esz, idx; 3245 __le64 *table; 3246 3247 /* Don't allow device id that exceeds single, flat table limit */ 3248 esz = GITS_BASER_ENTRY_SIZE(baser->val); 3249 if (!(baser->val & GITS_BASER_INDIRECT)) 3250 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); 3251 3252 /* Compute 1st level table index & check if that exceeds table limit */ 3253 idx = id >> ilog2(baser->psz / esz); 3254 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) 3255 return false; 3256 3257 table = baser->base; 3258 3259 /* Allocate memory for 2nd level table */ 3260 if (!table[idx]) { 3261 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 3262 get_order(baser->psz)); 3263 if (!page) 3264 return false; 3265 3266 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 3267 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3268 gic_flush_dcache_to_poc(page_address(page), baser->psz); 3269 3270 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 3271 3272 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 3273 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3274 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 3275 3276 /* Ensure updated table contents are visible to ITS hardware */ 3277 dsb(sy); 3278 } 3279 3280 return true; 3281 } 3282 3283 static bool its_alloc_device_table(struct its_node *its, u32 dev_id) 3284 { 3285 struct its_baser *baser; 3286 3287 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); 3288 3289 /* Don't allow device id that exceeds ITS hardware limit */ 3290 if (!baser) 3291 return (ilog2(dev_id) < device_ids(its)); 3292 3293 return its_alloc_table_entry(its, baser, dev_id); 3294 } 3295 3296 static bool its_alloc_vpe_table(u32 vpe_id) 3297 { 3298 struct its_node *its; 3299 int cpu; 3300 3301 /* 3302 * Make sure the L2 tables are allocated on *all* v4 ITSs. We 3303 * could try and only do it on ITSs corresponding to devices 3304 * that have interrupts targeted at this VPE, but the 3305 * complexity becomes crazy (and you have tons of memory 3306 * anyway, right?). 3307 */ 3308 list_for_each_entry(its, &its_nodes, entry) { 3309 struct its_baser *baser; 3310 3311 if (!is_v4(its)) 3312 continue; 3313 3314 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); 3315 if (!baser) 3316 return false; 3317 3318 if (!its_alloc_table_entry(its, baser, vpe_id)) 3319 return false; 3320 } 3321 3322 /* Non v4.1? No need to iterate RDs and go back early. */ 3323 if (!gic_rdists->has_rvpeid) 3324 return true; 3325 3326 /* 3327 * Make sure the L2 tables are allocated for all copies of 3328 * the L1 table on *all* v4.1 RDs. 3329 */ 3330 for_each_possible_cpu(cpu) { 3331 if (!allocate_vpe_l2_table(cpu, vpe_id)) 3332 return false; 3333 } 3334 3335 return true; 3336 } 3337 3338 static struct its_device *its_create_device(struct its_node *its, u32 dev_id, 3339 int nvecs, bool alloc_lpis) 3340 { 3341 struct its_device *dev; 3342 unsigned long *lpi_map = NULL; 3343 unsigned long flags; 3344 u16 *col_map = NULL; 3345 void *itt; 3346 int lpi_base; 3347 int nr_lpis; 3348 int nr_ites; 3349 int sz; 3350 3351 if (!its_alloc_device_table(its, dev_id)) 3352 return NULL; 3353 3354 if (WARN_ON(!is_power_of_2(nvecs))) 3355 nvecs = roundup_pow_of_two(nvecs); 3356 3357 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3358 /* 3359 * Even if the device wants a single LPI, the ITT must be 3360 * sized as a power of two (and you need at least one bit...). 3361 */ 3362 nr_ites = max(2, nvecs); 3363 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1); 3364 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; 3365 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node); 3366 if (alloc_lpis) { 3367 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis); 3368 if (lpi_map) 3369 col_map = kcalloc(nr_lpis, sizeof(*col_map), 3370 GFP_KERNEL); 3371 } else { 3372 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL); 3373 nr_lpis = 0; 3374 lpi_base = 0; 3375 } 3376 3377 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) { 3378 kfree(dev); 3379 kfree(itt); 3380 kfree(lpi_map); 3381 kfree(col_map); 3382 return NULL; 3383 } 3384 3385 gic_flush_dcache_to_poc(itt, sz); 3386 3387 dev->its = its; 3388 dev->itt = itt; 3389 dev->nr_ites = nr_ites; 3390 dev->event_map.lpi_map = lpi_map; 3391 dev->event_map.col_map = col_map; 3392 dev->event_map.lpi_base = lpi_base; 3393 dev->event_map.nr_lpis = nr_lpis; 3394 raw_spin_lock_init(&dev->event_map.vlpi_lock); 3395 dev->device_id = dev_id; 3396 INIT_LIST_HEAD(&dev->entry); 3397 3398 raw_spin_lock_irqsave(&its->lock, flags); 3399 list_add(&dev->entry, &its->its_device_list); 3400 raw_spin_unlock_irqrestore(&its->lock, flags); 3401 3402 /* Map device to its ITT */ 3403 its_send_mapd(dev, 1); 3404 3405 return dev; 3406 } 3407 3408 static void its_free_device(struct its_device *its_dev) 3409 { 3410 unsigned long flags; 3411 3412 raw_spin_lock_irqsave(&its_dev->its->lock, flags); 3413 list_del(&its_dev->entry); 3414 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); 3415 kfree(its_dev->event_map.col_map); 3416 kfree(its_dev->itt); 3417 kfree(its_dev); 3418 } 3419 3420 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq) 3421 { 3422 int idx; 3423 3424 /* Find a free LPI region in lpi_map and allocate them. */ 3425 idx = bitmap_find_free_region(dev->event_map.lpi_map, 3426 dev->event_map.nr_lpis, 3427 get_count_order(nvecs)); 3428 if (idx < 0) 3429 return -ENOSPC; 3430 3431 *hwirq = dev->event_map.lpi_base + idx; 3432 3433 return 0; 3434 } 3435 3436 static int its_msi_prepare(struct irq_domain *domain, struct device *dev, 3437 int nvec, msi_alloc_info_t *info) 3438 { 3439 struct its_node *its; 3440 struct its_device *its_dev; 3441 struct msi_domain_info *msi_info; 3442 u32 dev_id; 3443 int err = 0; 3444 3445 /* 3446 * We ignore "dev" entirely, and rely on the dev_id that has 3447 * been passed via the scratchpad. This limits this domain's 3448 * usefulness to upper layers that definitely know that they 3449 * are built on top of the ITS. 3450 */ 3451 dev_id = info->scratchpad[0].ul; 3452 3453 msi_info = msi_get_domain_info(domain); 3454 its = msi_info->data; 3455 3456 if (!gic_rdists->has_direct_lpi && 3457 vpe_proxy.dev && 3458 vpe_proxy.dev->its == its && 3459 dev_id == vpe_proxy.dev->device_id) { 3460 /* Bad luck. Get yourself a better implementation */ 3461 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", 3462 dev_id); 3463 return -EINVAL; 3464 } 3465 3466 mutex_lock(&its->dev_alloc_lock); 3467 its_dev = its_find_device(its, dev_id); 3468 if (its_dev) { 3469 /* 3470 * We already have seen this ID, probably through 3471 * another alias (PCI bridge of some sort). No need to 3472 * create the device. 3473 */ 3474 its_dev->shared = true; 3475 pr_debug("Reusing ITT for devID %x\n", dev_id); 3476 goto out; 3477 } 3478 3479 its_dev = its_create_device(its, dev_id, nvec, true); 3480 if (!its_dev) { 3481 err = -ENOMEM; 3482 goto out; 3483 } 3484 3485 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); 3486 out: 3487 mutex_unlock(&its->dev_alloc_lock); 3488 info->scratchpad[0].ptr = its_dev; 3489 return err; 3490 } 3491 3492 static struct msi_domain_ops its_msi_domain_ops = { 3493 .msi_prepare = its_msi_prepare, 3494 }; 3495 3496 static int its_irq_gic_domain_alloc(struct irq_domain *domain, 3497 unsigned int virq, 3498 irq_hw_number_t hwirq) 3499 { 3500 struct irq_fwspec fwspec; 3501 3502 if (irq_domain_get_of_node(domain->parent)) { 3503 fwspec.fwnode = domain->parent->fwnode; 3504 fwspec.param_count = 3; 3505 fwspec.param[0] = GIC_IRQ_TYPE_LPI; 3506 fwspec.param[1] = hwirq; 3507 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 3508 } else if (is_fwnode_irqchip(domain->parent->fwnode)) { 3509 fwspec.fwnode = domain->parent->fwnode; 3510 fwspec.param_count = 2; 3511 fwspec.param[0] = hwirq; 3512 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 3513 } else { 3514 return -EINVAL; 3515 } 3516 3517 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 3518 } 3519 3520 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 3521 unsigned int nr_irqs, void *args) 3522 { 3523 msi_alloc_info_t *info = args; 3524 struct its_device *its_dev = info->scratchpad[0].ptr; 3525 struct its_node *its = its_dev->its; 3526 irq_hw_number_t hwirq; 3527 int err; 3528 int i; 3529 3530 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq); 3531 if (err) 3532 return err; 3533 3534 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev)); 3535 if (err) 3536 return err; 3537 3538 for (i = 0; i < nr_irqs; i++) { 3539 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i); 3540 if (err) 3541 return err; 3542 3543 irq_domain_set_hwirq_and_chip(domain, virq + i, 3544 hwirq + i, &its_irq_chip, its_dev); 3545 irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i))); 3546 pr_debug("ID:%d pID:%d vID:%d\n", 3547 (int)(hwirq + i - its_dev->event_map.lpi_base), 3548 (int)(hwirq + i), virq + i); 3549 } 3550 3551 return 0; 3552 } 3553 3554 static int its_irq_domain_activate(struct irq_domain *domain, 3555 struct irq_data *d, bool reserve) 3556 { 3557 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3558 u32 event = its_get_event_id(d); 3559 int cpu; 3560 3561 cpu = its_select_cpu(d, cpu_online_mask); 3562 if (cpu < 0 || cpu >= nr_cpu_ids) 3563 return -EINVAL; 3564 3565 its_inc_lpi_count(d, cpu); 3566 its_dev->event_map.col_map[event] = cpu; 3567 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3568 3569 /* Map the GIC IRQ and event to the device */ 3570 its_send_mapti(its_dev, d->hwirq, event); 3571 return 0; 3572 } 3573 3574 static void its_irq_domain_deactivate(struct irq_domain *domain, 3575 struct irq_data *d) 3576 { 3577 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3578 u32 event = its_get_event_id(d); 3579 3580 its_dec_lpi_count(d, its_dev->event_map.col_map[event]); 3581 /* Stop the delivery of interrupts */ 3582 its_send_discard(its_dev, event); 3583 } 3584 3585 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, 3586 unsigned int nr_irqs) 3587 { 3588 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 3589 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3590 struct its_node *its = its_dev->its; 3591 int i; 3592 3593 bitmap_release_region(its_dev->event_map.lpi_map, 3594 its_get_event_id(irq_domain_get_irq_data(domain, virq)), 3595 get_count_order(nr_irqs)); 3596 3597 for (i = 0; i < nr_irqs; i++) { 3598 struct irq_data *data = irq_domain_get_irq_data(domain, 3599 virq + i); 3600 /* Nuke the entry in the domain */ 3601 irq_domain_reset_irq_data(data); 3602 } 3603 3604 mutex_lock(&its->dev_alloc_lock); 3605 3606 /* 3607 * If all interrupts have been freed, start mopping the 3608 * floor. This is conditionned on the device not being shared. 3609 */ 3610 if (!its_dev->shared && 3611 bitmap_empty(its_dev->event_map.lpi_map, 3612 its_dev->event_map.nr_lpis)) { 3613 its_lpi_free(its_dev->event_map.lpi_map, 3614 its_dev->event_map.lpi_base, 3615 its_dev->event_map.nr_lpis); 3616 3617 /* Unmap device/itt */ 3618 its_send_mapd(its_dev, 0); 3619 its_free_device(its_dev); 3620 } 3621 3622 mutex_unlock(&its->dev_alloc_lock); 3623 3624 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 3625 } 3626 3627 static const struct irq_domain_ops its_domain_ops = { 3628 .alloc = its_irq_domain_alloc, 3629 .free = its_irq_domain_free, 3630 .activate = its_irq_domain_activate, 3631 .deactivate = its_irq_domain_deactivate, 3632 }; 3633 3634 /* 3635 * This is insane. 3636 * 3637 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely 3638 * likely), the only way to perform an invalidate is to use a fake 3639 * device to issue an INV command, implying that the LPI has first 3640 * been mapped to some event on that device. Since this is not exactly 3641 * cheap, we try to keep that mapping around as long as possible, and 3642 * only issue an UNMAP if we're short on available slots. 3643 * 3644 * Broken by design(tm). 3645 * 3646 * GICv4.1, on the other hand, mandates that we're able to invalidate 3647 * by writing to a MMIO register. It doesn't implement the whole of 3648 * DirectLPI, but that's good enough. And most of the time, we don't 3649 * even have to invalidate anything, as the redistributor can be told 3650 * whether to generate a doorbell or not (we thus leave it enabled, 3651 * always). 3652 */ 3653 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) 3654 { 3655 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3656 if (gic_rdists->has_rvpeid) 3657 return; 3658 3659 /* Already unmapped? */ 3660 if (vpe->vpe_proxy_event == -1) 3661 return; 3662 3663 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); 3664 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; 3665 3666 /* 3667 * We don't track empty slots at all, so let's move the 3668 * next_victim pointer if we can quickly reuse that slot 3669 * instead of nuking an existing entry. Not clear that this is 3670 * always a win though, and this might just generate a ripple 3671 * effect... Let's just hope VPEs don't migrate too often. 3672 */ 3673 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3674 vpe_proxy.next_victim = vpe->vpe_proxy_event; 3675 3676 vpe->vpe_proxy_event = -1; 3677 } 3678 3679 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) 3680 { 3681 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3682 if (gic_rdists->has_rvpeid) 3683 return; 3684 3685 if (!gic_rdists->has_direct_lpi) { 3686 unsigned long flags; 3687 3688 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3689 its_vpe_db_proxy_unmap_locked(vpe); 3690 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3691 } 3692 } 3693 3694 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) 3695 { 3696 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3697 if (gic_rdists->has_rvpeid) 3698 return; 3699 3700 /* Already mapped? */ 3701 if (vpe->vpe_proxy_event != -1) 3702 return; 3703 3704 /* This slot was already allocated. Kick the other VPE out. */ 3705 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3706 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); 3707 3708 /* Map the new VPE instead */ 3709 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; 3710 vpe->vpe_proxy_event = vpe_proxy.next_victim; 3711 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; 3712 3713 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; 3714 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); 3715 } 3716 3717 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) 3718 { 3719 unsigned long flags; 3720 struct its_collection *target_col; 3721 3722 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3723 if (gic_rdists->has_rvpeid) 3724 return; 3725 3726 if (gic_rdists->has_direct_lpi) { 3727 void __iomem *rdbase; 3728 3729 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; 3730 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 3731 wait_for_syncr(rdbase); 3732 3733 return; 3734 } 3735 3736 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3737 3738 its_vpe_db_proxy_map_locked(vpe); 3739 3740 target_col = &vpe_proxy.dev->its->collections[to]; 3741 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); 3742 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; 3743 3744 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3745 } 3746 3747 static int its_vpe_set_affinity(struct irq_data *d, 3748 const struct cpumask *mask_val, 3749 bool force) 3750 { 3751 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3752 int from, cpu = cpumask_first(mask_val); 3753 unsigned long flags; 3754 3755 /* 3756 * Changing affinity is mega expensive, so let's be as lazy as 3757 * we can and only do it if we really have to. Also, if mapped 3758 * into the proxy device, we need to move the doorbell 3759 * interrupt to its new location. 3760 * 3761 * Another thing is that changing the affinity of a vPE affects 3762 * *other interrupts* such as all the vLPIs that are routed to 3763 * this vPE. This means that the irq_desc lock is not enough to 3764 * protect us, and that we must ensure nobody samples vpe->col_idx 3765 * during the update, hence the lock below which must also be 3766 * taken on any vLPI handling path that evaluates vpe->col_idx. 3767 */ 3768 from = vpe_to_cpuid_lock(vpe, &flags); 3769 if (from == cpu) 3770 goto out; 3771 3772 vpe->col_idx = cpu; 3773 3774 /* 3775 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD 3776 * is sharing its VPE table with the current one. 3777 */ 3778 if (gic_data_rdist_cpu(cpu)->vpe_table_mask && 3779 cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask)) 3780 goto out; 3781 3782 its_send_vmovp(vpe); 3783 its_vpe_db_proxy_move(vpe, from, cpu); 3784 3785 out: 3786 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3787 vpe_to_cpuid_unlock(vpe, flags); 3788 3789 return IRQ_SET_MASK_OK_DONE; 3790 } 3791 3792 static void its_wait_vpt_parse_complete(void) 3793 { 3794 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3795 u64 val; 3796 3797 if (!gic_rdists->has_vpend_valid_dirty) 3798 return; 3799 3800 WARN_ON_ONCE(readq_relaxed_poll_timeout(vlpi_base + GICR_VPENDBASER, 3801 val, 3802 !(val & GICR_VPENDBASER_Dirty), 3803 10, 500)); 3804 } 3805 3806 static void its_vpe_schedule(struct its_vpe *vpe) 3807 { 3808 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3809 u64 val; 3810 3811 /* Schedule the VPE */ 3812 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & 3813 GENMASK_ULL(51, 12); 3814 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3815 val |= GICR_VPROPBASER_RaWb; 3816 val |= GICR_VPROPBASER_InnerShareable; 3817 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3818 3819 val = virt_to_phys(page_address(vpe->vpt_page)) & 3820 GENMASK_ULL(51, 16); 3821 val |= GICR_VPENDBASER_RaWaWb; 3822 val |= GICR_VPENDBASER_InnerShareable; 3823 /* 3824 * There is no good way of finding out if the pending table is 3825 * empty as we can race against the doorbell interrupt very 3826 * easily. So in the end, vpe->pending_last is only an 3827 * indication that the vcpu has something pending, not one 3828 * that the pending table is empty. A good implementation 3829 * would be able to read its coarse map pretty quickly anyway, 3830 * making this a tolerable issue. 3831 */ 3832 val |= GICR_VPENDBASER_PendingLast; 3833 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; 3834 val |= GICR_VPENDBASER_Valid; 3835 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3836 3837 its_wait_vpt_parse_complete(); 3838 } 3839 3840 static void its_vpe_deschedule(struct its_vpe *vpe) 3841 { 3842 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3843 u64 val; 3844 3845 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3846 3847 vpe->idai = !!(val & GICR_VPENDBASER_IDAI); 3848 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 3849 } 3850 3851 static void its_vpe_invall(struct its_vpe *vpe) 3852 { 3853 struct its_node *its; 3854 3855 list_for_each_entry(its, &its_nodes, entry) { 3856 if (!is_v4(its)) 3857 continue; 3858 3859 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr]) 3860 continue; 3861 3862 /* 3863 * Sending a VINVALL to a single ITS is enough, as all 3864 * we need is to reach the redistributors. 3865 */ 3866 its_send_vinvall(its, vpe); 3867 return; 3868 } 3869 } 3870 3871 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 3872 { 3873 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3874 struct its_cmd_info *info = vcpu_info; 3875 3876 switch (info->cmd_type) { 3877 case SCHEDULE_VPE: 3878 its_vpe_schedule(vpe); 3879 return 0; 3880 3881 case DESCHEDULE_VPE: 3882 its_vpe_deschedule(vpe); 3883 return 0; 3884 3885 case INVALL_VPE: 3886 its_vpe_invall(vpe); 3887 return 0; 3888 3889 default: 3890 return -EINVAL; 3891 } 3892 } 3893 3894 static void its_vpe_send_cmd(struct its_vpe *vpe, 3895 void (*cmd)(struct its_device *, u32)) 3896 { 3897 unsigned long flags; 3898 3899 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3900 3901 its_vpe_db_proxy_map_locked(vpe); 3902 cmd(vpe_proxy.dev, vpe->vpe_proxy_event); 3903 3904 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3905 } 3906 3907 static void its_vpe_send_inv(struct irq_data *d) 3908 { 3909 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3910 3911 if (gic_rdists->has_direct_lpi) { 3912 void __iomem *rdbase; 3913 3914 /* Target the redistributor this VPE is currently known on */ 3915 raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock); 3916 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 3917 gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR); 3918 wait_for_syncr(rdbase); 3919 raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock); 3920 } else { 3921 its_vpe_send_cmd(vpe, its_send_inv); 3922 } 3923 } 3924 3925 static void its_vpe_mask_irq(struct irq_data *d) 3926 { 3927 /* 3928 * We need to unmask the LPI, which is described by the parent 3929 * irq_data. Instead of calling into the parent (which won't 3930 * exactly do the right thing, let's simply use the 3931 * parent_data pointer. Yes, I'm naughty. 3932 */ 3933 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 3934 its_vpe_send_inv(d); 3935 } 3936 3937 static void its_vpe_unmask_irq(struct irq_data *d) 3938 { 3939 /* Same hack as above... */ 3940 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 3941 its_vpe_send_inv(d); 3942 } 3943 3944 static int its_vpe_set_irqchip_state(struct irq_data *d, 3945 enum irqchip_irq_state which, 3946 bool state) 3947 { 3948 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3949 3950 if (which != IRQCHIP_STATE_PENDING) 3951 return -EINVAL; 3952 3953 if (gic_rdists->has_direct_lpi) { 3954 void __iomem *rdbase; 3955 3956 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 3957 if (state) { 3958 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); 3959 } else { 3960 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 3961 wait_for_syncr(rdbase); 3962 } 3963 } else { 3964 if (state) 3965 its_vpe_send_cmd(vpe, its_send_int); 3966 else 3967 its_vpe_send_cmd(vpe, its_send_clear); 3968 } 3969 3970 return 0; 3971 } 3972 3973 static int its_vpe_retrigger(struct irq_data *d) 3974 { 3975 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 3976 } 3977 3978 static struct irq_chip its_vpe_irq_chip = { 3979 .name = "GICv4-vpe", 3980 .irq_mask = its_vpe_mask_irq, 3981 .irq_unmask = its_vpe_unmask_irq, 3982 .irq_eoi = irq_chip_eoi_parent, 3983 .irq_set_affinity = its_vpe_set_affinity, 3984 .irq_retrigger = its_vpe_retrigger, 3985 .irq_set_irqchip_state = its_vpe_set_irqchip_state, 3986 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity, 3987 }; 3988 3989 static struct its_node *find_4_1_its(void) 3990 { 3991 static struct its_node *its = NULL; 3992 3993 if (!its) { 3994 list_for_each_entry(its, &its_nodes, entry) { 3995 if (is_v4_1(its)) 3996 return its; 3997 } 3998 3999 /* Oops? */ 4000 its = NULL; 4001 } 4002 4003 return its; 4004 } 4005 4006 static void its_vpe_4_1_send_inv(struct irq_data *d) 4007 { 4008 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4009 struct its_node *its; 4010 4011 /* 4012 * GICv4.1 wants doorbells to be invalidated using the 4013 * INVDB command in order to be broadcast to all RDs. Send 4014 * it to the first valid ITS, and let the HW do its magic. 4015 */ 4016 its = find_4_1_its(); 4017 if (its) 4018 its_send_invdb(its, vpe); 4019 } 4020 4021 static void its_vpe_4_1_mask_irq(struct irq_data *d) 4022 { 4023 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 4024 its_vpe_4_1_send_inv(d); 4025 } 4026 4027 static void its_vpe_4_1_unmask_irq(struct irq_data *d) 4028 { 4029 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 4030 its_vpe_4_1_send_inv(d); 4031 } 4032 4033 static void its_vpe_4_1_schedule(struct its_vpe *vpe, 4034 struct its_cmd_info *info) 4035 { 4036 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4037 u64 val = 0; 4038 4039 /* Schedule the VPE */ 4040 val |= GICR_VPENDBASER_Valid; 4041 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0; 4042 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0; 4043 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id); 4044 4045 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 4046 4047 its_wait_vpt_parse_complete(); 4048 } 4049 4050 static void its_vpe_4_1_deschedule(struct its_vpe *vpe, 4051 struct its_cmd_info *info) 4052 { 4053 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4054 u64 val; 4055 4056 if (info->req_db) { 4057 /* 4058 * vPE is going to block: make the vPE non-resident with 4059 * PendingLast clear and DB set. The GIC guarantees that if 4060 * we read-back PendingLast clear, then a doorbell will be 4061 * delivered when an interrupt comes. 4062 */ 4063 val = its_clear_vpend_valid(vlpi_base, 4064 GICR_VPENDBASER_PendingLast, 4065 GICR_VPENDBASER_4_1_DB); 4066 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 4067 } else { 4068 /* 4069 * We're not blocking, so just make the vPE non-resident 4070 * with PendingLast set, indicating that we'll be back. 4071 */ 4072 val = its_clear_vpend_valid(vlpi_base, 4073 0, 4074 GICR_VPENDBASER_PendingLast); 4075 vpe->pending_last = true; 4076 } 4077 } 4078 4079 static void its_vpe_4_1_invall(struct its_vpe *vpe) 4080 { 4081 void __iomem *rdbase; 4082 u64 val; 4083 4084 val = GICR_INVALLR_V; 4085 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id); 4086 4087 /* Target the redistributor this vPE is currently known on */ 4088 raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock); 4089 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 4090 gic_write_lpir(val, rdbase + GICR_INVALLR); 4091 4092 wait_for_syncr(rdbase); 4093 raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock); 4094 } 4095 4096 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4097 { 4098 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4099 struct its_cmd_info *info = vcpu_info; 4100 4101 switch (info->cmd_type) { 4102 case SCHEDULE_VPE: 4103 its_vpe_4_1_schedule(vpe, info); 4104 return 0; 4105 4106 case DESCHEDULE_VPE: 4107 its_vpe_4_1_deschedule(vpe, info); 4108 return 0; 4109 4110 case INVALL_VPE: 4111 its_vpe_4_1_invall(vpe); 4112 return 0; 4113 4114 default: 4115 return -EINVAL; 4116 } 4117 } 4118 4119 static struct irq_chip its_vpe_4_1_irq_chip = { 4120 .name = "GICv4.1-vpe", 4121 .irq_mask = its_vpe_4_1_mask_irq, 4122 .irq_unmask = its_vpe_4_1_unmask_irq, 4123 .irq_eoi = irq_chip_eoi_parent, 4124 .irq_set_affinity = its_vpe_set_affinity, 4125 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity, 4126 }; 4127 4128 static void its_configure_sgi(struct irq_data *d, bool clear) 4129 { 4130 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4131 struct its_cmd_desc desc; 4132 4133 desc.its_vsgi_cmd.vpe = vpe; 4134 desc.its_vsgi_cmd.sgi = d->hwirq; 4135 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority; 4136 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled; 4137 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group; 4138 desc.its_vsgi_cmd.clear = clear; 4139 4140 /* 4141 * GICv4.1 allows us to send VSGI commands to any ITS as long as the 4142 * destination VPE is mapped there. Since we map them eagerly at 4143 * activation time, we're pretty sure the first GICv4.1 ITS will do. 4144 */ 4145 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc); 4146 } 4147 4148 static void its_sgi_mask_irq(struct irq_data *d) 4149 { 4150 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4151 4152 vpe->sgi_config[d->hwirq].enabled = false; 4153 its_configure_sgi(d, false); 4154 } 4155 4156 static void its_sgi_unmask_irq(struct irq_data *d) 4157 { 4158 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4159 4160 vpe->sgi_config[d->hwirq].enabled = true; 4161 its_configure_sgi(d, false); 4162 } 4163 4164 static int its_sgi_set_affinity(struct irq_data *d, 4165 const struct cpumask *mask_val, 4166 bool force) 4167 { 4168 /* 4169 * There is no notion of affinity for virtual SGIs, at least 4170 * not on the host (since they can only be targetting a vPE). 4171 * Tell the kernel we've done whatever it asked for. 4172 */ 4173 irq_data_update_effective_affinity(d, mask_val); 4174 return IRQ_SET_MASK_OK; 4175 } 4176 4177 static int its_sgi_set_irqchip_state(struct irq_data *d, 4178 enum irqchip_irq_state which, 4179 bool state) 4180 { 4181 if (which != IRQCHIP_STATE_PENDING) 4182 return -EINVAL; 4183 4184 if (state) { 4185 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4186 struct its_node *its = find_4_1_its(); 4187 u64 val; 4188 4189 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id); 4190 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq); 4191 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K); 4192 } else { 4193 its_configure_sgi(d, true); 4194 } 4195 4196 return 0; 4197 } 4198 4199 static int its_sgi_get_irqchip_state(struct irq_data *d, 4200 enum irqchip_irq_state which, bool *val) 4201 { 4202 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4203 void __iomem *base; 4204 unsigned long flags; 4205 u32 count = 1000000; /* 1s! */ 4206 u32 status; 4207 int cpu; 4208 4209 if (which != IRQCHIP_STATE_PENDING) 4210 return -EINVAL; 4211 4212 /* 4213 * Locking galore! We can race against two different events: 4214 * 4215 * - Concurent vPE affinity change: we must make sure it cannot 4216 * happen, or we'll talk to the wrong redistributor. This is 4217 * identical to what happens with vLPIs. 4218 * 4219 * - Concurrent VSGIPENDR access: As it involves accessing two 4220 * MMIO registers, this must be made atomic one way or another. 4221 */ 4222 cpu = vpe_to_cpuid_lock(vpe, &flags); 4223 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4224 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K; 4225 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR); 4226 do { 4227 status = readl_relaxed(base + GICR_VSGIPENDR); 4228 if (!(status & GICR_VSGIPENDR_BUSY)) 4229 goto out; 4230 4231 count--; 4232 if (!count) { 4233 pr_err_ratelimited("Unable to get SGI status\n"); 4234 goto out; 4235 } 4236 cpu_relax(); 4237 udelay(1); 4238 } while (count); 4239 4240 out: 4241 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4242 vpe_to_cpuid_unlock(vpe, flags); 4243 4244 if (!count) 4245 return -ENXIO; 4246 4247 *val = !!(status & (1 << d->hwirq)); 4248 4249 return 0; 4250 } 4251 4252 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4253 { 4254 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4255 struct its_cmd_info *info = vcpu_info; 4256 4257 switch (info->cmd_type) { 4258 case PROP_UPDATE_VSGI: 4259 vpe->sgi_config[d->hwirq].priority = info->priority; 4260 vpe->sgi_config[d->hwirq].group = info->group; 4261 its_configure_sgi(d, false); 4262 return 0; 4263 4264 default: 4265 return -EINVAL; 4266 } 4267 } 4268 4269 static struct irq_chip its_sgi_irq_chip = { 4270 .name = "GICv4.1-sgi", 4271 .irq_mask = its_sgi_mask_irq, 4272 .irq_unmask = its_sgi_unmask_irq, 4273 .irq_set_affinity = its_sgi_set_affinity, 4274 .irq_set_irqchip_state = its_sgi_set_irqchip_state, 4275 .irq_get_irqchip_state = its_sgi_get_irqchip_state, 4276 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity, 4277 }; 4278 4279 static int its_sgi_irq_domain_alloc(struct irq_domain *domain, 4280 unsigned int virq, unsigned int nr_irqs, 4281 void *args) 4282 { 4283 struct its_vpe *vpe = args; 4284 int i; 4285 4286 /* Yes, we do want 16 SGIs */ 4287 WARN_ON(nr_irqs != 16); 4288 4289 for (i = 0; i < 16; i++) { 4290 vpe->sgi_config[i].priority = 0; 4291 vpe->sgi_config[i].enabled = false; 4292 vpe->sgi_config[i].group = false; 4293 4294 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4295 &its_sgi_irq_chip, vpe); 4296 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY); 4297 } 4298 4299 return 0; 4300 } 4301 4302 static void its_sgi_irq_domain_free(struct irq_domain *domain, 4303 unsigned int virq, 4304 unsigned int nr_irqs) 4305 { 4306 /* Nothing to do */ 4307 } 4308 4309 static int its_sgi_irq_domain_activate(struct irq_domain *domain, 4310 struct irq_data *d, bool reserve) 4311 { 4312 /* Write out the initial SGI configuration */ 4313 its_configure_sgi(d, false); 4314 return 0; 4315 } 4316 4317 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain, 4318 struct irq_data *d) 4319 { 4320 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4321 4322 /* 4323 * The VSGI command is awkward: 4324 * 4325 * - To change the configuration, CLEAR must be set to false, 4326 * leaving the pending bit unchanged. 4327 * - To clear the pending bit, CLEAR must be set to true, leaving 4328 * the configuration unchanged. 4329 * 4330 * You just can't do both at once, hence the two commands below. 4331 */ 4332 vpe->sgi_config[d->hwirq].enabled = false; 4333 its_configure_sgi(d, false); 4334 its_configure_sgi(d, true); 4335 } 4336 4337 static const struct irq_domain_ops its_sgi_domain_ops = { 4338 .alloc = its_sgi_irq_domain_alloc, 4339 .free = its_sgi_irq_domain_free, 4340 .activate = its_sgi_irq_domain_activate, 4341 .deactivate = its_sgi_irq_domain_deactivate, 4342 }; 4343 4344 static int its_vpe_id_alloc(void) 4345 { 4346 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL); 4347 } 4348 4349 static void its_vpe_id_free(u16 id) 4350 { 4351 ida_simple_remove(&its_vpeid_ida, id); 4352 } 4353 4354 static int its_vpe_init(struct its_vpe *vpe) 4355 { 4356 struct page *vpt_page; 4357 int vpe_id; 4358 4359 /* Allocate vpe_id */ 4360 vpe_id = its_vpe_id_alloc(); 4361 if (vpe_id < 0) 4362 return vpe_id; 4363 4364 /* Allocate VPT */ 4365 vpt_page = its_allocate_pending_table(GFP_KERNEL); 4366 if (!vpt_page) { 4367 its_vpe_id_free(vpe_id); 4368 return -ENOMEM; 4369 } 4370 4371 if (!its_alloc_vpe_table(vpe_id)) { 4372 its_vpe_id_free(vpe_id); 4373 its_free_pending_table(vpt_page); 4374 return -ENOMEM; 4375 } 4376 4377 raw_spin_lock_init(&vpe->vpe_lock); 4378 vpe->vpe_id = vpe_id; 4379 vpe->vpt_page = vpt_page; 4380 if (gic_rdists->has_rvpeid) 4381 atomic_set(&vpe->vmapp_count, 0); 4382 else 4383 vpe->vpe_proxy_event = -1; 4384 4385 return 0; 4386 } 4387 4388 static void its_vpe_teardown(struct its_vpe *vpe) 4389 { 4390 its_vpe_db_proxy_unmap(vpe); 4391 its_vpe_id_free(vpe->vpe_id); 4392 its_free_pending_table(vpe->vpt_page); 4393 } 4394 4395 static void its_vpe_irq_domain_free(struct irq_domain *domain, 4396 unsigned int virq, 4397 unsigned int nr_irqs) 4398 { 4399 struct its_vm *vm = domain->host_data; 4400 int i; 4401 4402 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 4403 4404 for (i = 0; i < nr_irqs; i++) { 4405 struct irq_data *data = irq_domain_get_irq_data(domain, 4406 virq + i); 4407 struct its_vpe *vpe = irq_data_get_irq_chip_data(data); 4408 4409 BUG_ON(vm != vpe->its_vm); 4410 4411 clear_bit(data->hwirq, vm->db_bitmap); 4412 its_vpe_teardown(vpe); 4413 irq_domain_reset_irq_data(data); 4414 } 4415 4416 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { 4417 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); 4418 its_free_prop_table(vm->vprop_page); 4419 } 4420 } 4421 4422 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 4423 unsigned int nr_irqs, void *args) 4424 { 4425 struct irq_chip *irqchip = &its_vpe_irq_chip; 4426 struct its_vm *vm = args; 4427 unsigned long *bitmap; 4428 struct page *vprop_page; 4429 int base, nr_ids, i, err = 0; 4430 4431 BUG_ON(!vm); 4432 4433 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids); 4434 if (!bitmap) 4435 return -ENOMEM; 4436 4437 if (nr_ids < nr_irqs) { 4438 its_lpi_free(bitmap, base, nr_ids); 4439 return -ENOMEM; 4440 } 4441 4442 vprop_page = its_allocate_prop_table(GFP_KERNEL); 4443 if (!vprop_page) { 4444 its_lpi_free(bitmap, base, nr_ids); 4445 return -ENOMEM; 4446 } 4447 4448 vm->db_bitmap = bitmap; 4449 vm->db_lpi_base = base; 4450 vm->nr_db_lpis = nr_ids; 4451 vm->vprop_page = vprop_page; 4452 4453 if (gic_rdists->has_rvpeid) 4454 irqchip = &its_vpe_4_1_irq_chip; 4455 4456 for (i = 0; i < nr_irqs; i++) { 4457 vm->vpes[i]->vpe_db_lpi = base + i; 4458 err = its_vpe_init(vm->vpes[i]); 4459 if (err) 4460 break; 4461 err = its_irq_gic_domain_alloc(domain, virq + i, 4462 vm->vpes[i]->vpe_db_lpi); 4463 if (err) 4464 break; 4465 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4466 irqchip, vm->vpes[i]); 4467 set_bit(i, bitmap); 4468 } 4469 4470 if (err) { 4471 if (i > 0) 4472 its_vpe_irq_domain_free(domain, virq, i - 1); 4473 4474 its_lpi_free(bitmap, base, nr_ids); 4475 its_free_prop_table(vprop_page); 4476 } 4477 4478 return err; 4479 } 4480 4481 static int its_vpe_irq_domain_activate(struct irq_domain *domain, 4482 struct irq_data *d, bool reserve) 4483 { 4484 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4485 struct its_node *its; 4486 4487 /* 4488 * If we use the list map, we issue VMAPP on demand... Unless 4489 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs 4490 * so that VSGIs can work. 4491 */ 4492 if (!gic_requires_eager_mapping()) 4493 return 0; 4494 4495 /* Map the VPE to the first possible CPU */ 4496 vpe->col_idx = cpumask_first(cpu_online_mask); 4497 4498 list_for_each_entry(its, &its_nodes, entry) { 4499 if (!is_v4(its)) 4500 continue; 4501 4502 its_send_vmapp(its, vpe, true); 4503 its_send_vinvall(its, vpe); 4504 } 4505 4506 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 4507 4508 return 0; 4509 } 4510 4511 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, 4512 struct irq_data *d) 4513 { 4514 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4515 struct its_node *its; 4516 4517 /* 4518 * If we use the list map on GICv4.0, we unmap the VPE once no 4519 * VLPIs are associated with the VM. 4520 */ 4521 if (!gic_requires_eager_mapping()) 4522 return; 4523 4524 list_for_each_entry(its, &its_nodes, entry) { 4525 if (!is_v4(its)) 4526 continue; 4527 4528 its_send_vmapp(its, vpe, false); 4529 } 4530 } 4531 4532 static const struct irq_domain_ops its_vpe_domain_ops = { 4533 .alloc = its_vpe_irq_domain_alloc, 4534 .free = its_vpe_irq_domain_free, 4535 .activate = its_vpe_irq_domain_activate, 4536 .deactivate = its_vpe_irq_domain_deactivate, 4537 }; 4538 4539 static int its_force_quiescent(void __iomem *base) 4540 { 4541 u32 count = 1000000; /* 1s */ 4542 u32 val; 4543 4544 val = readl_relaxed(base + GITS_CTLR); 4545 /* 4546 * GIC architecture specification requires the ITS to be both 4547 * disabled and quiescent for writes to GITS_BASER<n> or 4548 * GITS_CBASER to not have UNPREDICTABLE results. 4549 */ 4550 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) 4551 return 0; 4552 4553 /* Disable the generation of all interrupts to this ITS */ 4554 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); 4555 writel_relaxed(val, base + GITS_CTLR); 4556 4557 /* Poll GITS_CTLR and wait until ITS becomes quiescent */ 4558 while (1) { 4559 val = readl_relaxed(base + GITS_CTLR); 4560 if (val & GITS_CTLR_QUIESCENT) 4561 return 0; 4562 4563 count--; 4564 if (!count) 4565 return -EBUSY; 4566 4567 cpu_relax(); 4568 udelay(1); 4569 } 4570 } 4571 4572 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data) 4573 { 4574 struct its_node *its = data; 4575 4576 /* erratum 22375: only alloc 8MB table size (20 bits) */ 4577 its->typer &= ~GITS_TYPER_DEVBITS; 4578 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1); 4579 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; 4580 4581 return true; 4582 } 4583 4584 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data) 4585 { 4586 struct its_node *its = data; 4587 4588 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; 4589 4590 return true; 4591 } 4592 4593 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) 4594 { 4595 struct its_node *its = data; 4596 4597 /* On QDF2400, the size of the ITE is 16Bytes */ 4598 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE; 4599 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1); 4600 4601 return true; 4602 } 4603 4604 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev) 4605 { 4606 struct its_node *its = its_dev->its; 4607 4608 /* 4609 * The Socionext Synquacer SoC has a so-called 'pre-ITS', 4610 * which maps 32-bit writes targeted at a separate window of 4611 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER 4612 * with device ID taken from bits [device_id_bits + 1:2] of 4613 * the window offset. 4614 */ 4615 return its->pre_its_base + (its_dev->device_id << 2); 4616 } 4617 4618 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data) 4619 { 4620 struct its_node *its = data; 4621 u32 pre_its_window[2]; 4622 u32 ids; 4623 4624 if (!fwnode_property_read_u32_array(its->fwnode_handle, 4625 "socionext,synquacer-pre-its", 4626 pre_its_window, 4627 ARRAY_SIZE(pre_its_window))) { 4628 4629 its->pre_its_base = pre_its_window[0]; 4630 its->get_msi_base = its_irq_get_msi_base_pre_its; 4631 4632 ids = ilog2(pre_its_window[1]) - 2; 4633 if (device_ids(its) > ids) { 4634 its->typer &= ~GITS_TYPER_DEVBITS; 4635 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1); 4636 } 4637 4638 /* the pre-ITS breaks isolation, so disable MSI remapping */ 4639 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP; 4640 return true; 4641 } 4642 return false; 4643 } 4644 4645 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data) 4646 { 4647 struct its_node *its = data; 4648 4649 /* 4650 * Hip07 insists on using the wrong address for the VLPI 4651 * page. Trick it into doing the right thing... 4652 */ 4653 its->vlpi_redist_offset = SZ_128K; 4654 return true; 4655 } 4656 4657 static const struct gic_quirk its_quirks[] = { 4658 #ifdef CONFIG_CAVIUM_ERRATUM_22375 4659 { 4660 .desc = "ITS: Cavium errata 22375, 24313", 4661 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4662 .mask = 0xffff0fff, 4663 .init = its_enable_quirk_cavium_22375, 4664 }, 4665 #endif 4666 #ifdef CONFIG_CAVIUM_ERRATUM_23144 4667 { 4668 .desc = "ITS: Cavium erratum 23144", 4669 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4670 .mask = 0xffff0fff, 4671 .init = its_enable_quirk_cavium_23144, 4672 }, 4673 #endif 4674 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 4675 { 4676 .desc = "ITS: QDF2400 erratum 0065", 4677 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */ 4678 .mask = 0xffffffff, 4679 .init = its_enable_quirk_qdf2400_e0065, 4680 }, 4681 #endif 4682 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS 4683 { 4684 /* 4685 * The Socionext Synquacer SoC incorporates ARM's own GIC-500 4686 * implementation, but with a 'pre-ITS' added that requires 4687 * special handling in software. 4688 */ 4689 .desc = "ITS: Socionext Synquacer pre-ITS", 4690 .iidr = 0x0001143b, 4691 .mask = 0xffffffff, 4692 .init = its_enable_quirk_socionext_synquacer, 4693 }, 4694 #endif 4695 #ifdef CONFIG_HISILICON_ERRATUM_161600802 4696 { 4697 .desc = "ITS: Hip07 erratum 161600802", 4698 .iidr = 0x00000004, 4699 .mask = 0xffffffff, 4700 .init = its_enable_quirk_hip07_161600802, 4701 }, 4702 #endif 4703 { 4704 } 4705 }; 4706 4707 static void its_enable_quirks(struct its_node *its) 4708 { 4709 u32 iidr = readl_relaxed(its->base + GITS_IIDR); 4710 4711 gic_enable_quirks(iidr, its_quirks, its); 4712 } 4713 4714 static int its_save_disable(void) 4715 { 4716 struct its_node *its; 4717 int err = 0; 4718 4719 raw_spin_lock(&its_lock); 4720 list_for_each_entry(its, &its_nodes, entry) { 4721 void __iomem *base; 4722 4723 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE)) 4724 continue; 4725 4726 base = its->base; 4727 its->ctlr_save = readl_relaxed(base + GITS_CTLR); 4728 err = its_force_quiescent(base); 4729 if (err) { 4730 pr_err("ITS@%pa: failed to quiesce: %d\n", 4731 &its->phys_base, err); 4732 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4733 goto err; 4734 } 4735 4736 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER); 4737 } 4738 4739 err: 4740 if (err) { 4741 list_for_each_entry_continue_reverse(its, &its_nodes, entry) { 4742 void __iomem *base; 4743 4744 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE)) 4745 continue; 4746 4747 base = its->base; 4748 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4749 } 4750 } 4751 raw_spin_unlock(&its_lock); 4752 4753 return err; 4754 } 4755 4756 static void its_restore_enable(void) 4757 { 4758 struct its_node *its; 4759 int ret; 4760 4761 raw_spin_lock(&its_lock); 4762 list_for_each_entry(its, &its_nodes, entry) { 4763 void __iomem *base; 4764 int i; 4765 4766 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE)) 4767 continue; 4768 4769 base = its->base; 4770 4771 /* 4772 * Make sure that the ITS is disabled. If it fails to quiesce, 4773 * don't restore it since writing to CBASER or BASER<n> 4774 * registers is undefined according to the GIC v3 ITS 4775 * Specification. 4776 */ 4777 ret = its_force_quiescent(base); 4778 if (ret) { 4779 pr_err("ITS@%pa: failed to quiesce on resume: %d\n", 4780 &its->phys_base, ret); 4781 continue; 4782 } 4783 4784 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER); 4785 4786 /* 4787 * Writing CBASER resets CREADR to 0, so make CWRITER and 4788 * cmd_write line up with it. 4789 */ 4790 its->cmd_write = its->cmd_base; 4791 gits_write_cwriter(0, base + GITS_CWRITER); 4792 4793 /* Restore GITS_BASER from the value cache. */ 4794 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 4795 struct its_baser *baser = &its->tables[i]; 4796 4797 if (!(baser->val & GITS_BASER_VALID)) 4798 continue; 4799 4800 its_write_baser(its, baser, baser->val); 4801 } 4802 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4803 4804 /* 4805 * Reinit the collection if it's stored in the ITS. This is 4806 * indicated by the col_id being less than the HCC field. 4807 * CID < HCC as specified in the GIC v3 Documentation. 4808 */ 4809 if (its->collections[smp_processor_id()].col_id < 4810 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER))) 4811 its_cpu_init_collection(its); 4812 } 4813 raw_spin_unlock(&its_lock); 4814 } 4815 4816 static struct syscore_ops its_syscore_ops = { 4817 .suspend = its_save_disable, 4818 .resume = its_restore_enable, 4819 }; 4820 4821 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its) 4822 { 4823 struct irq_domain *inner_domain; 4824 struct msi_domain_info *info; 4825 4826 info = kzalloc(sizeof(*info), GFP_KERNEL); 4827 if (!info) 4828 return -ENOMEM; 4829 4830 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its); 4831 if (!inner_domain) { 4832 kfree(info); 4833 return -ENOMEM; 4834 } 4835 4836 inner_domain->parent = its_parent; 4837 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS); 4838 inner_domain->flags |= its->msi_domain_flags; 4839 info->ops = &its_msi_domain_ops; 4840 info->data = its; 4841 inner_domain->host_data = info; 4842 4843 return 0; 4844 } 4845 4846 static int its_init_vpe_domain(void) 4847 { 4848 struct its_node *its; 4849 u32 devid; 4850 int entries; 4851 4852 if (gic_rdists->has_direct_lpi) { 4853 pr_info("ITS: Using DirectLPI for VPE invalidation\n"); 4854 return 0; 4855 } 4856 4857 /* Any ITS will do, even if not v4 */ 4858 its = list_first_entry(&its_nodes, struct its_node, entry); 4859 4860 entries = roundup_pow_of_two(nr_cpu_ids); 4861 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes), 4862 GFP_KERNEL); 4863 if (!vpe_proxy.vpes) { 4864 pr_err("ITS: Can't allocate GICv4 proxy device array\n"); 4865 return -ENOMEM; 4866 } 4867 4868 /* Use the last possible DevID */ 4869 devid = GENMASK(device_ids(its) - 1, 0); 4870 vpe_proxy.dev = its_create_device(its, devid, entries, false); 4871 if (!vpe_proxy.dev) { 4872 kfree(vpe_proxy.vpes); 4873 pr_err("ITS: Can't allocate GICv4 proxy device\n"); 4874 return -ENOMEM; 4875 } 4876 4877 BUG_ON(entries > vpe_proxy.dev->nr_ites); 4878 4879 raw_spin_lock_init(&vpe_proxy.lock); 4880 vpe_proxy.next_victim = 0; 4881 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", 4882 devid, vpe_proxy.dev->nr_ites); 4883 4884 return 0; 4885 } 4886 4887 static int __init its_compute_its_list_map(struct resource *res, 4888 void __iomem *its_base) 4889 { 4890 int its_number; 4891 u32 ctlr; 4892 4893 /* 4894 * This is assumed to be done early enough that we're 4895 * guaranteed to be single-threaded, hence no 4896 * locking. Should this change, we should address 4897 * this. 4898 */ 4899 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX); 4900 if (its_number >= GICv4_ITS_LIST_MAX) { 4901 pr_err("ITS@%pa: No ITSList entry available!\n", 4902 &res->start); 4903 return -EINVAL; 4904 } 4905 4906 ctlr = readl_relaxed(its_base + GITS_CTLR); 4907 ctlr &= ~GITS_CTLR_ITS_NUMBER; 4908 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; 4909 writel_relaxed(ctlr, its_base + GITS_CTLR); 4910 ctlr = readl_relaxed(its_base + GITS_CTLR); 4911 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { 4912 its_number = ctlr & GITS_CTLR_ITS_NUMBER; 4913 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; 4914 } 4915 4916 if (test_and_set_bit(its_number, &its_list_map)) { 4917 pr_err("ITS@%pa: Duplicate ITSList entry %d\n", 4918 &res->start, its_number); 4919 return -EINVAL; 4920 } 4921 4922 return its_number; 4923 } 4924 4925 static int __init its_probe_one(struct resource *res, 4926 struct fwnode_handle *handle, int numa_node) 4927 { 4928 struct its_node *its; 4929 void __iomem *its_base; 4930 u32 val, ctlr; 4931 u64 baser, tmp, typer; 4932 struct page *page; 4933 int err; 4934 4935 its_base = ioremap(res->start, SZ_64K); 4936 if (!its_base) { 4937 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); 4938 return -ENOMEM; 4939 } 4940 4941 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; 4942 if (val != 0x30 && val != 0x40) { 4943 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); 4944 err = -ENODEV; 4945 goto out_unmap; 4946 } 4947 4948 err = its_force_quiescent(its_base); 4949 if (err) { 4950 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); 4951 goto out_unmap; 4952 } 4953 4954 pr_info("ITS %pR\n", res); 4955 4956 its = kzalloc(sizeof(*its), GFP_KERNEL); 4957 if (!its) { 4958 err = -ENOMEM; 4959 goto out_unmap; 4960 } 4961 4962 raw_spin_lock_init(&its->lock); 4963 mutex_init(&its->dev_alloc_lock); 4964 INIT_LIST_HEAD(&its->entry); 4965 INIT_LIST_HEAD(&its->its_device_list); 4966 typer = gic_read_typer(its_base + GITS_TYPER); 4967 its->typer = typer; 4968 its->base = its_base; 4969 its->phys_base = res->start; 4970 if (is_v4(its)) { 4971 if (!(typer & GITS_TYPER_VMOVP)) { 4972 err = its_compute_its_list_map(res, its_base); 4973 if (err < 0) 4974 goto out_free_its; 4975 4976 its->list_nr = err; 4977 4978 pr_info("ITS@%pa: Using ITS number %d\n", 4979 &res->start, err); 4980 } else { 4981 pr_info("ITS@%pa: Single VMOVP capable\n", &res->start); 4982 } 4983 4984 if (is_v4_1(its)) { 4985 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer); 4986 4987 its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K); 4988 if (!its->sgir_base) { 4989 err = -ENOMEM; 4990 goto out_free_its; 4991 } 4992 4993 its->mpidr = readl_relaxed(its_base + GITS_MPIDR); 4994 4995 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n", 4996 &res->start, its->mpidr, svpet); 4997 } 4998 } 4999 5000 its->numa_node = numa_node; 5001 5002 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 5003 get_order(ITS_CMD_QUEUE_SZ)); 5004 if (!page) { 5005 err = -ENOMEM; 5006 goto out_unmap_sgir; 5007 } 5008 its->cmd_base = (void *)page_address(page); 5009 its->cmd_write = its->cmd_base; 5010 its->fwnode_handle = handle; 5011 its->get_msi_base = its_irq_get_msi_base; 5012 its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP; 5013 5014 its_enable_quirks(its); 5015 5016 err = its_alloc_tables(its); 5017 if (err) 5018 goto out_free_cmd; 5019 5020 err = its_alloc_collections(its); 5021 if (err) 5022 goto out_free_tables; 5023 5024 baser = (virt_to_phys(its->cmd_base) | 5025 GITS_CBASER_RaWaWb | 5026 GITS_CBASER_InnerShareable | 5027 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | 5028 GITS_CBASER_VALID); 5029 5030 gits_write_cbaser(baser, its->base + GITS_CBASER); 5031 tmp = gits_read_cbaser(its->base + GITS_CBASER); 5032 5033 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { 5034 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { 5035 /* 5036 * The HW reports non-shareable, we must 5037 * remove the cacheability attributes as 5038 * well. 5039 */ 5040 baser &= ~(GITS_CBASER_SHAREABILITY_MASK | 5041 GITS_CBASER_CACHEABILITY_MASK); 5042 baser |= GITS_CBASER_nC; 5043 gits_write_cbaser(baser, its->base + GITS_CBASER); 5044 } 5045 pr_info("ITS: using cache flushing for cmd queue\n"); 5046 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; 5047 } 5048 5049 gits_write_cwriter(0, its->base + GITS_CWRITER); 5050 ctlr = readl_relaxed(its->base + GITS_CTLR); 5051 ctlr |= GITS_CTLR_ENABLE; 5052 if (is_v4(its)) 5053 ctlr |= GITS_CTLR_ImDe; 5054 writel_relaxed(ctlr, its->base + GITS_CTLR); 5055 5056 if (GITS_TYPER_HCC(typer)) 5057 its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE; 5058 5059 err = its_init_domain(handle, its); 5060 if (err) 5061 goto out_free_tables; 5062 5063 raw_spin_lock(&its_lock); 5064 list_add(&its->entry, &its_nodes); 5065 raw_spin_unlock(&its_lock); 5066 5067 return 0; 5068 5069 out_free_tables: 5070 its_free_tables(its); 5071 out_free_cmd: 5072 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); 5073 out_unmap_sgir: 5074 if (its->sgir_base) 5075 iounmap(its->sgir_base); 5076 out_free_its: 5077 kfree(its); 5078 out_unmap: 5079 iounmap(its_base); 5080 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err); 5081 return err; 5082 } 5083 5084 static bool gic_rdists_supports_plpis(void) 5085 { 5086 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); 5087 } 5088 5089 static int redist_disable_lpis(void) 5090 { 5091 void __iomem *rbase = gic_data_rdist_rd_base(); 5092 u64 timeout = USEC_PER_SEC; 5093 u64 val; 5094 5095 if (!gic_rdists_supports_plpis()) { 5096 pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); 5097 return -ENXIO; 5098 } 5099 5100 val = readl_relaxed(rbase + GICR_CTLR); 5101 if (!(val & GICR_CTLR_ENABLE_LPIS)) 5102 return 0; 5103 5104 /* 5105 * If coming via a CPU hotplug event, we don't need to disable 5106 * LPIs before trying to re-enable them. They are already 5107 * configured and all is well in the world. 5108 * 5109 * If running with preallocated tables, there is nothing to do. 5110 */ 5111 if (gic_data_rdist()->lpi_enabled || 5112 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED)) 5113 return 0; 5114 5115 /* 5116 * From that point on, we only try to do some damage control. 5117 */ 5118 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n", 5119 smp_processor_id()); 5120 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 5121 5122 /* Disable LPIs */ 5123 val &= ~GICR_CTLR_ENABLE_LPIS; 5124 writel_relaxed(val, rbase + GICR_CTLR); 5125 5126 /* Make sure any change to GICR_CTLR is observable by the GIC */ 5127 dsb(sy); 5128 5129 /* 5130 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs 5131 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers. 5132 * Error out if we time out waiting for RWP to clear. 5133 */ 5134 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) { 5135 if (!timeout) { 5136 pr_err("CPU%d: Timeout while disabling LPIs\n", 5137 smp_processor_id()); 5138 return -ETIMEDOUT; 5139 } 5140 udelay(1); 5141 timeout--; 5142 } 5143 5144 /* 5145 * After it has been written to 1, it is IMPLEMENTATION 5146 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be 5147 * cleared to 0. Error out if clearing the bit failed. 5148 */ 5149 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) { 5150 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id()); 5151 return -EBUSY; 5152 } 5153 5154 return 0; 5155 } 5156 5157 int its_cpu_init(void) 5158 { 5159 if (!list_empty(&its_nodes)) { 5160 int ret; 5161 5162 ret = redist_disable_lpis(); 5163 if (ret) 5164 return ret; 5165 5166 its_cpu_init_lpis(); 5167 its_cpu_init_collections(); 5168 } 5169 5170 return 0; 5171 } 5172 5173 static const struct of_device_id its_device_id[] = { 5174 { .compatible = "arm,gic-v3-its", }, 5175 {}, 5176 }; 5177 5178 static int __init its_of_probe(struct device_node *node) 5179 { 5180 struct device_node *np; 5181 struct resource res; 5182 5183 for (np = of_find_matching_node(node, its_device_id); np; 5184 np = of_find_matching_node(np, its_device_id)) { 5185 if (!of_device_is_available(np)) 5186 continue; 5187 if (!of_property_read_bool(np, "msi-controller")) { 5188 pr_warn("%pOF: no msi-controller property, ITS ignored\n", 5189 np); 5190 continue; 5191 } 5192 5193 if (of_address_to_resource(np, 0, &res)) { 5194 pr_warn("%pOF: no regs?\n", np); 5195 continue; 5196 } 5197 5198 its_probe_one(&res, &np->fwnode, of_node_to_nid(np)); 5199 } 5200 return 0; 5201 } 5202 5203 #ifdef CONFIG_ACPI 5204 5205 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) 5206 5207 #ifdef CONFIG_ACPI_NUMA 5208 struct its_srat_map { 5209 /* numa node id */ 5210 u32 numa_node; 5211 /* GIC ITS ID */ 5212 u32 its_id; 5213 }; 5214 5215 static struct its_srat_map *its_srat_maps __initdata; 5216 static int its_in_srat __initdata; 5217 5218 static int __init acpi_get_its_numa_node(u32 its_id) 5219 { 5220 int i; 5221 5222 for (i = 0; i < its_in_srat; i++) { 5223 if (its_id == its_srat_maps[i].its_id) 5224 return its_srat_maps[i].numa_node; 5225 } 5226 return NUMA_NO_NODE; 5227 } 5228 5229 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header, 5230 const unsigned long end) 5231 { 5232 return 0; 5233 } 5234 5235 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header, 5236 const unsigned long end) 5237 { 5238 int node; 5239 struct acpi_srat_gic_its_affinity *its_affinity; 5240 5241 its_affinity = (struct acpi_srat_gic_its_affinity *)header; 5242 if (!its_affinity) 5243 return -EINVAL; 5244 5245 if (its_affinity->header.length < sizeof(*its_affinity)) { 5246 pr_err("SRAT: Invalid header length %d in ITS affinity\n", 5247 its_affinity->header.length); 5248 return -EINVAL; 5249 } 5250 5251 node = acpi_map_pxm_to_node(its_affinity->proximity_domain); 5252 5253 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { 5254 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); 5255 return 0; 5256 } 5257 5258 its_srat_maps[its_in_srat].numa_node = node; 5259 its_srat_maps[its_in_srat].its_id = its_affinity->its_id; 5260 its_in_srat++; 5261 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", 5262 its_affinity->proximity_domain, its_affinity->its_id, node); 5263 5264 return 0; 5265 } 5266 5267 static void __init acpi_table_parse_srat_its(void) 5268 { 5269 int count; 5270 5271 count = acpi_table_parse_entries(ACPI_SIG_SRAT, 5272 sizeof(struct acpi_table_srat), 5273 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5274 gic_acpi_match_srat_its, 0); 5275 if (count <= 0) 5276 return; 5277 5278 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map), 5279 GFP_KERNEL); 5280 if (!its_srat_maps) { 5281 pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n"); 5282 return; 5283 } 5284 5285 acpi_table_parse_entries(ACPI_SIG_SRAT, 5286 sizeof(struct acpi_table_srat), 5287 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5288 gic_acpi_parse_srat_its, 0); 5289 } 5290 5291 /* free the its_srat_maps after ITS probing */ 5292 static void __init acpi_its_srat_maps_free(void) 5293 { 5294 kfree(its_srat_maps); 5295 } 5296 #else 5297 static void __init acpi_table_parse_srat_its(void) { } 5298 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } 5299 static void __init acpi_its_srat_maps_free(void) { } 5300 #endif 5301 5302 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header, 5303 const unsigned long end) 5304 { 5305 struct acpi_madt_generic_translator *its_entry; 5306 struct fwnode_handle *dom_handle; 5307 struct resource res; 5308 int err; 5309 5310 its_entry = (struct acpi_madt_generic_translator *)header; 5311 memset(&res, 0, sizeof(res)); 5312 res.start = its_entry->base_address; 5313 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; 5314 res.flags = IORESOURCE_MEM; 5315 5316 dom_handle = irq_domain_alloc_fwnode(&res.start); 5317 if (!dom_handle) { 5318 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", 5319 &res.start); 5320 return -ENOMEM; 5321 } 5322 5323 err = iort_register_domain_token(its_entry->translation_id, res.start, 5324 dom_handle); 5325 if (err) { 5326 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", 5327 &res.start, its_entry->translation_id); 5328 goto dom_err; 5329 } 5330 5331 err = its_probe_one(&res, dom_handle, 5332 acpi_get_its_numa_node(its_entry->translation_id)); 5333 if (!err) 5334 return 0; 5335 5336 iort_deregister_domain_token(its_entry->translation_id); 5337 dom_err: 5338 irq_domain_free_fwnode(dom_handle); 5339 return err; 5340 } 5341 5342 static void __init its_acpi_probe(void) 5343 { 5344 acpi_table_parse_srat_its(); 5345 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5346 gic_acpi_parse_madt_its, 0); 5347 acpi_its_srat_maps_free(); 5348 } 5349 #else 5350 static void __init its_acpi_probe(void) { } 5351 #endif 5352 5353 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, 5354 struct irq_domain *parent_domain) 5355 { 5356 struct device_node *of_node; 5357 struct its_node *its; 5358 bool has_v4 = false; 5359 bool has_v4_1 = false; 5360 int err; 5361 5362 gic_rdists = rdists; 5363 5364 its_parent = parent_domain; 5365 of_node = to_of_node(handle); 5366 if (of_node) 5367 its_of_probe(of_node); 5368 else 5369 its_acpi_probe(); 5370 5371 if (list_empty(&its_nodes)) { 5372 pr_warn("ITS: No ITS available, not enabling LPIs\n"); 5373 return -ENXIO; 5374 } 5375 5376 err = allocate_lpi_tables(); 5377 if (err) 5378 return err; 5379 5380 list_for_each_entry(its, &its_nodes, entry) { 5381 has_v4 |= is_v4(its); 5382 has_v4_1 |= is_v4_1(its); 5383 } 5384 5385 /* Don't bother with inconsistent systems */ 5386 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid)) 5387 rdists->has_rvpeid = false; 5388 5389 if (has_v4 & rdists->has_vlpis) { 5390 const struct irq_domain_ops *sgi_ops; 5391 5392 if (has_v4_1) 5393 sgi_ops = &its_sgi_domain_ops; 5394 else 5395 sgi_ops = NULL; 5396 5397 if (its_init_vpe_domain() || 5398 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) { 5399 rdists->has_vlpis = false; 5400 pr_err("ITS: Disabling GICv4 support\n"); 5401 } 5402 } 5403 5404 register_syscore_ops(&its_syscore_ops); 5405 5406 return 0; 5407 } 5408