1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/efi.h>
15 #include <linux/interrupt.h>
16 #include <linux/iommu.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
22 #include <linux/mm.h>
23 #include <linux/msi.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
32 
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
36 
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39 
40 #include "irq-gic-common.h"
41 
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
45 #define ITS_FLAGS_FORCE_NON_SHAREABLE		(1ULL << 3)
46 
47 #define RD_LOCAL_LPI_ENABLED                    BIT(0)
48 #define RD_LOCAL_PENDTABLE_PREALLOCATED         BIT(1)
49 #define RD_LOCAL_MEMRESERVE_DONE                BIT(2)
50 
51 static u32 lpi_id_bits;
52 
53 /*
54  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
55  * deal with (one configuration byte per interrupt). PENDBASE has to
56  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
57  */
58 #define LPI_NRBITS		lpi_id_bits
59 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
60 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
61 
62 #define LPI_PROP_DEFAULT_PRIO	GICD_INT_DEF_PRI
63 
64 /*
65  * Collection structure - just an ID, and a redistributor address to
66  * ping. We use one per CPU as a bag of interrupts assigned to this
67  * CPU.
68  */
69 struct its_collection {
70 	u64			target_address;
71 	u16			col_id;
72 };
73 
74 /*
75  * The ITS_BASER structure - contains memory information, cached
76  * value of BASER register configuration and ITS page size.
77  */
78 struct its_baser {
79 	void		*base;
80 	u64		val;
81 	u32		order;
82 	u32		psz;
83 };
84 
85 struct its_device;
86 
87 /*
88  * The ITS structure - contains most of the infrastructure, with the
89  * top-level MSI domain, the command queue, the collections, and the
90  * list of devices writing to it.
91  *
92  * dev_alloc_lock has to be taken for device allocations, while the
93  * spinlock must be taken to parse data structures such as the device
94  * list.
95  */
96 struct its_node {
97 	raw_spinlock_t		lock;
98 	struct mutex		dev_alloc_lock;
99 	struct list_head	entry;
100 	void __iomem		*base;
101 	void __iomem		*sgir_base;
102 	phys_addr_t		phys_base;
103 	struct its_cmd_block	*cmd_base;
104 	struct its_cmd_block	*cmd_write;
105 	struct its_baser	tables[GITS_BASER_NR_REGS];
106 	struct its_collection	*collections;
107 	struct fwnode_handle	*fwnode_handle;
108 	u64			(*get_msi_base)(struct its_device *its_dev);
109 	u64			typer;
110 	u64			cbaser_save;
111 	u32			ctlr_save;
112 	u32			mpidr;
113 	struct list_head	its_device_list;
114 	u64			flags;
115 	unsigned long		list_nr;
116 	int			numa_node;
117 	unsigned int		msi_domain_flags;
118 	u32			pre_its_base; /* for Socionext Synquacer */
119 	int			vlpi_redist_offset;
120 };
121 
122 #define is_v4(its)		(!!((its)->typer & GITS_TYPER_VLPIS))
123 #define is_v4_1(its)		(!!((its)->typer & GITS_TYPER_VMAPP))
124 #define device_ids(its)		(FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
125 
126 #define ITS_ITT_ALIGN		SZ_256
127 
128 /* The maximum number of VPEID bits supported by VLPI commands */
129 #define ITS_MAX_VPEID_BITS						\
130 	({								\
131 		int nvpeid = 16;					\
132 		if (gic_rdists->has_rvpeid &&				\
133 		    gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)		\
134 			nvpeid = 1 + (gic_rdists->gicd_typer2 &		\
135 				      GICD_TYPER2_VID);			\
136 									\
137 		nvpeid;							\
138 	})
139 #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
140 
141 /* Convert page order to size in bytes */
142 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
143 
144 struct event_lpi_map {
145 	unsigned long		*lpi_map;
146 	u16			*col_map;
147 	irq_hw_number_t		lpi_base;
148 	int			nr_lpis;
149 	raw_spinlock_t		vlpi_lock;
150 	struct its_vm		*vm;
151 	struct its_vlpi_map	*vlpi_maps;
152 	int			nr_vlpis;
153 };
154 
155 /*
156  * The ITS view of a device - belongs to an ITS, owns an interrupt
157  * translation table, and a list of interrupts.  If it some of its
158  * LPIs are injected into a guest (GICv4), the event_map.vm field
159  * indicates which one.
160  */
161 struct its_device {
162 	struct list_head	entry;
163 	struct its_node		*its;
164 	struct event_lpi_map	event_map;
165 	void			*itt;
166 	u32			nr_ites;
167 	u32			device_id;
168 	bool			shared;
169 };
170 
171 static struct {
172 	raw_spinlock_t		lock;
173 	struct its_device	*dev;
174 	struct its_vpe		**vpes;
175 	int			next_victim;
176 } vpe_proxy;
177 
178 struct cpu_lpi_count {
179 	atomic_t	managed;
180 	atomic_t	unmanaged;
181 };
182 
183 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
184 
185 static LIST_HEAD(its_nodes);
186 static DEFINE_RAW_SPINLOCK(its_lock);
187 static struct rdists *gic_rdists;
188 static struct irq_domain *its_parent;
189 
190 static unsigned long its_list_map;
191 static u16 vmovp_seq_num;
192 static DEFINE_RAW_SPINLOCK(vmovp_lock);
193 
194 static DEFINE_IDA(its_vpeid_ida);
195 
196 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
197 #define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
198 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
199 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
200 
201 /*
202  * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
203  * always have vSGIs mapped.
204  */
205 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
206 {
207 	return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
208 }
209 
210 static u16 get_its_list(struct its_vm *vm)
211 {
212 	struct its_node *its;
213 	unsigned long its_list = 0;
214 
215 	list_for_each_entry(its, &its_nodes, entry) {
216 		if (!is_v4(its))
217 			continue;
218 
219 		if (require_its_list_vmovp(vm, its))
220 			__set_bit(its->list_nr, &its_list);
221 	}
222 
223 	return (u16)its_list;
224 }
225 
226 static inline u32 its_get_event_id(struct irq_data *d)
227 {
228 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
229 	return d->hwirq - its_dev->event_map.lpi_base;
230 }
231 
232 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
233 					       u32 event)
234 {
235 	struct its_node *its = its_dev->its;
236 
237 	return its->collections + its_dev->event_map.col_map[event];
238 }
239 
240 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
241 					       u32 event)
242 {
243 	if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
244 		return NULL;
245 
246 	return &its_dev->event_map.vlpi_maps[event];
247 }
248 
249 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
250 {
251 	if (irqd_is_forwarded_to_vcpu(d)) {
252 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
253 		u32 event = its_get_event_id(d);
254 
255 		return dev_event_to_vlpi_map(its_dev, event);
256 	}
257 
258 	return NULL;
259 }
260 
261 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
262 {
263 	raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
264 	return vpe->col_idx;
265 }
266 
267 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
268 {
269 	raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
270 }
271 
272 static struct irq_chip its_vpe_irq_chip;
273 
274 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
275 {
276 	struct its_vpe *vpe = NULL;
277 	int cpu;
278 
279 	if (d->chip == &its_vpe_irq_chip) {
280 		vpe = irq_data_get_irq_chip_data(d);
281 	} else {
282 		struct its_vlpi_map *map = get_vlpi_map(d);
283 		if (map)
284 			vpe = map->vpe;
285 	}
286 
287 	if (vpe) {
288 		cpu = vpe_to_cpuid_lock(vpe, flags);
289 	} else {
290 		/* Physical LPIs are already locked via the irq_desc lock */
291 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
292 		cpu = its_dev->event_map.col_map[its_get_event_id(d)];
293 		/* Keep GCC quiet... */
294 		*flags = 0;
295 	}
296 
297 	return cpu;
298 }
299 
300 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
301 {
302 	struct its_vpe *vpe = NULL;
303 
304 	if (d->chip == &its_vpe_irq_chip) {
305 		vpe = irq_data_get_irq_chip_data(d);
306 	} else {
307 		struct its_vlpi_map *map = get_vlpi_map(d);
308 		if (map)
309 			vpe = map->vpe;
310 	}
311 
312 	if (vpe)
313 		vpe_to_cpuid_unlock(vpe, flags);
314 }
315 
316 static struct its_collection *valid_col(struct its_collection *col)
317 {
318 	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
319 		return NULL;
320 
321 	return col;
322 }
323 
324 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
325 {
326 	if (valid_col(its->collections + vpe->col_idx))
327 		return vpe;
328 
329 	return NULL;
330 }
331 
332 /*
333  * ITS command descriptors - parameters to be encoded in a command
334  * block.
335  */
336 struct its_cmd_desc {
337 	union {
338 		struct {
339 			struct its_device *dev;
340 			u32 event_id;
341 		} its_inv_cmd;
342 
343 		struct {
344 			struct its_device *dev;
345 			u32 event_id;
346 		} its_clear_cmd;
347 
348 		struct {
349 			struct its_device *dev;
350 			u32 event_id;
351 		} its_int_cmd;
352 
353 		struct {
354 			struct its_device *dev;
355 			int valid;
356 		} its_mapd_cmd;
357 
358 		struct {
359 			struct its_collection *col;
360 			int valid;
361 		} its_mapc_cmd;
362 
363 		struct {
364 			struct its_device *dev;
365 			u32 phys_id;
366 			u32 event_id;
367 		} its_mapti_cmd;
368 
369 		struct {
370 			struct its_device *dev;
371 			struct its_collection *col;
372 			u32 event_id;
373 		} its_movi_cmd;
374 
375 		struct {
376 			struct its_device *dev;
377 			u32 event_id;
378 		} its_discard_cmd;
379 
380 		struct {
381 			struct its_collection *col;
382 		} its_invall_cmd;
383 
384 		struct {
385 			struct its_vpe *vpe;
386 		} its_vinvall_cmd;
387 
388 		struct {
389 			struct its_vpe *vpe;
390 			struct its_collection *col;
391 			bool valid;
392 		} its_vmapp_cmd;
393 
394 		struct {
395 			struct its_vpe *vpe;
396 			struct its_device *dev;
397 			u32 virt_id;
398 			u32 event_id;
399 			bool db_enabled;
400 		} its_vmapti_cmd;
401 
402 		struct {
403 			struct its_vpe *vpe;
404 			struct its_device *dev;
405 			u32 event_id;
406 			bool db_enabled;
407 		} its_vmovi_cmd;
408 
409 		struct {
410 			struct its_vpe *vpe;
411 			struct its_collection *col;
412 			u16 seq_num;
413 			u16 its_list;
414 		} its_vmovp_cmd;
415 
416 		struct {
417 			struct its_vpe *vpe;
418 		} its_invdb_cmd;
419 
420 		struct {
421 			struct its_vpe *vpe;
422 			u8 sgi;
423 			u8 priority;
424 			bool enable;
425 			bool group;
426 			bool clear;
427 		} its_vsgi_cmd;
428 	};
429 };
430 
431 /*
432  * The ITS command block, which is what the ITS actually parses.
433  */
434 struct its_cmd_block {
435 	union {
436 		u64	raw_cmd[4];
437 		__le64	raw_cmd_le[4];
438 	};
439 };
440 
441 #define ITS_CMD_QUEUE_SZ		SZ_64K
442 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
443 
444 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
445 						    struct its_cmd_block *,
446 						    struct its_cmd_desc *);
447 
448 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
449 					      struct its_cmd_block *,
450 					      struct its_cmd_desc *);
451 
452 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
453 {
454 	u64 mask = GENMASK_ULL(h, l);
455 	*raw_cmd &= ~mask;
456 	*raw_cmd |= (val << l) & mask;
457 }
458 
459 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
460 {
461 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
462 }
463 
464 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
465 {
466 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
467 }
468 
469 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
470 {
471 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
472 }
473 
474 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
475 {
476 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
477 }
478 
479 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
480 {
481 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
482 }
483 
484 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
485 {
486 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
487 }
488 
489 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
490 {
491 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
492 }
493 
494 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
495 {
496 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
497 }
498 
499 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
500 {
501 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
502 }
503 
504 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
505 {
506 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
507 }
508 
509 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
510 {
511 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
512 }
513 
514 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
515 {
516 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
517 }
518 
519 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
520 {
521 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
522 }
523 
524 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
525 {
526 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
527 }
528 
529 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
530 {
531 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
532 }
533 
534 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
535 {
536 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
537 }
538 
539 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
540 {
541 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
542 }
543 
544 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
545 {
546 	its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
547 }
548 
549 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
550 {
551 	its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
552 }
553 
554 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
555 {
556 	its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
557 }
558 
559 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
560 					u32 vpe_db_lpi)
561 {
562 	its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
563 }
564 
565 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
566 					u32 vpe_db_lpi)
567 {
568 	its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
569 }
570 
571 static void its_encode_db(struct its_cmd_block *cmd, bool db)
572 {
573 	its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
574 }
575 
576 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
577 {
578 	its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
579 }
580 
581 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
582 {
583 	its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
584 }
585 
586 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
587 {
588 	its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
589 }
590 
591 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
592 {
593 	its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
594 }
595 
596 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
597 {
598 	its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
599 }
600 
601 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
602 {
603 	/* Let's fixup BE commands */
604 	cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
605 	cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
606 	cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
607 	cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
608 }
609 
610 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
611 						 struct its_cmd_block *cmd,
612 						 struct its_cmd_desc *desc)
613 {
614 	unsigned long itt_addr;
615 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
616 
617 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
618 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
619 
620 	its_encode_cmd(cmd, GITS_CMD_MAPD);
621 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
622 	its_encode_size(cmd, size - 1);
623 	its_encode_itt(cmd, itt_addr);
624 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
625 
626 	its_fixup_cmd(cmd);
627 
628 	return NULL;
629 }
630 
631 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
632 						 struct its_cmd_block *cmd,
633 						 struct its_cmd_desc *desc)
634 {
635 	its_encode_cmd(cmd, GITS_CMD_MAPC);
636 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
637 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
638 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
639 
640 	its_fixup_cmd(cmd);
641 
642 	return desc->its_mapc_cmd.col;
643 }
644 
645 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
646 						  struct its_cmd_block *cmd,
647 						  struct its_cmd_desc *desc)
648 {
649 	struct its_collection *col;
650 
651 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
652 			       desc->its_mapti_cmd.event_id);
653 
654 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
655 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
656 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
657 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
658 	its_encode_collection(cmd, col->col_id);
659 
660 	its_fixup_cmd(cmd);
661 
662 	return valid_col(col);
663 }
664 
665 static struct its_collection *its_build_movi_cmd(struct its_node *its,
666 						 struct its_cmd_block *cmd,
667 						 struct its_cmd_desc *desc)
668 {
669 	struct its_collection *col;
670 
671 	col = dev_event_to_col(desc->its_movi_cmd.dev,
672 			       desc->its_movi_cmd.event_id);
673 
674 	its_encode_cmd(cmd, GITS_CMD_MOVI);
675 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
676 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
677 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
678 
679 	its_fixup_cmd(cmd);
680 
681 	return valid_col(col);
682 }
683 
684 static struct its_collection *its_build_discard_cmd(struct its_node *its,
685 						    struct its_cmd_block *cmd,
686 						    struct its_cmd_desc *desc)
687 {
688 	struct its_collection *col;
689 
690 	col = dev_event_to_col(desc->its_discard_cmd.dev,
691 			       desc->its_discard_cmd.event_id);
692 
693 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
694 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
695 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
696 
697 	its_fixup_cmd(cmd);
698 
699 	return valid_col(col);
700 }
701 
702 static struct its_collection *its_build_inv_cmd(struct its_node *its,
703 						struct its_cmd_block *cmd,
704 						struct its_cmd_desc *desc)
705 {
706 	struct its_collection *col;
707 
708 	col = dev_event_to_col(desc->its_inv_cmd.dev,
709 			       desc->its_inv_cmd.event_id);
710 
711 	its_encode_cmd(cmd, GITS_CMD_INV);
712 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
713 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
714 
715 	its_fixup_cmd(cmd);
716 
717 	return valid_col(col);
718 }
719 
720 static struct its_collection *its_build_int_cmd(struct its_node *its,
721 						struct its_cmd_block *cmd,
722 						struct its_cmd_desc *desc)
723 {
724 	struct its_collection *col;
725 
726 	col = dev_event_to_col(desc->its_int_cmd.dev,
727 			       desc->its_int_cmd.event_id);
728 
729 	its_encode_cmd(cmd, GITS_CMD_INT);
730 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
731 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
732 
733 	its_fixup_cmd(cmd);
734 
735 	return valid_col(col);
736 }
737 
738 static struct its_collection *its_build_clear_cmd(struct its_node *its,
739 						  struct its_cmd_block *cmd,
740 						  struct its_cmd_desc *desc)
741 {
742 	struct its_collection *col;
743 
744 	col = dev_event_to_col(desc->its_clear_cmd.dev,
745 			       desc->its_clear_cmd.event_id);
746 
747 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
748 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
749 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
750 
751 	its_fixup_cmd(cmd);
752 
753 	return valid_col(col);
754 }
755 
756 static struct its_collection *its_build_invall_cmd(struct its_node *its,
757 						   struct its_cmd_block *cmd,
758 						   struct its_cmd_desc *desc)
759 {
760 	its_encode_cmd(cmd, GITS_CMD_INVALL);
761 	its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
762 
763 	its_fixup_cmd(cmd);
764 
765 	return desc->its_invall_cmd.col;
766 }
767 
768 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
769 					     struct its_cmd_block *cmd,
770 					     struct its_cmd_desc *desc)
771 {
772 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
773 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
774 
775 	its_fixup_cmd(cmd);
776 
777 	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
778 }
779 
780 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
781 					   struct its_cmd_block *cmd,
782 					   struct its_cmd_desc *desc)
783 {
784 	unsigned long vpt_addr, vconf_addr;
785 	u64 target;
786 	bool alloc;
787 
788 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
789 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
790 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
791 
792 	if (!desc->its_vmapp_cmd.valid) {
793 		if (is_v4_1(its)) {
794 			alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
795 			its_encode_alloc(cmd, alloc);
796 		}
797 
798 		goto out;
799 	}
800 
801 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
802 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
803 
804 	its_encode_target(cmd, target);
805 	its_encode_vpt_addr(cmd, vpt_addr);
806 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
807 
808 	if (!is_v4_1(its))
809 		goto out;
810 
811 	vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
812 
813 	alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
814 
815 	its_encode_alloc(cmd, alloc);
816 
817 	/*
818 	 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
819 	 * to be unmapped first, and in this case, we may remap the vPE
820 	 * back while the VPT is not empty. So we can't assume that the
821 	 * VPT is empty on map. This is why we never advertise PTZ.
822 	 */
823 	its_encode_ptz(cmd, false);
824 	its_encode_vconf_addr(cmd, vconf_addr);
825 	its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
826 
827 out:
828 	its_fixup_cmd(cmd);
829 
830 	return valid_vpe(its, desc->its_vmapp_cmd.vpe);
831 }
832 
833 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
834 					    struct its_cmd_block *cmd,
835 					    struct its_cmd_desc *desc)
836 {
837 	u32 db;
838 
839 	if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
840 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
841 	else
842 		db = 1023;
843 
844 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
845 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
846 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
847 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
848 	its_encode_db_phys_id(cmd, db);
849 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
850 
851 	its_fixup_cmd(cmd);
852 
853 	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
854 }
855 
856 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
857 					   struct its_cmd_block *cmd,
858 					   struct its_cmd_desc *desc)
859 {
860 	u32 db;
861 
862 	if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
863 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
864 	else
865 		db = 1023;
866 
867 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
868 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
869 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
870 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
871 	its_encode_db_phys_id(cmd, db);
872 	its_encode_db_valid(cmd, true);
873 
874 	its_fixup_cmd(cmd);
875 
876 	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
877 }
878 
879 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
880 					   struct its_cmd_block *cmd,
881 					   struct its_cmd_desc *desc)
882 {
883 	u64 target;
884 
885 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
886 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
887 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
888 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
889 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
890 	its_encode_target(cmd, target);
891 
892 	if (is_v4_1(its)) {
893 		its_encode_db(cmd, true);
894 		its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
895 	}
896 
897 	its_fixup_cmd(cmd);
898 
899 	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
900 }
901 
902 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
903 					  struct its_cmd_block *cmd,
904 					  struct its_cmd_desc *desc)
905 {
906 	struct its_vlpi_map *map;
907 
908 	map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
909 				    desc->its_inv_cmd.event_id);
910 
911 	its_encode_cmd(cmd, GITS_CMD_INV);
912 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
913 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
914 
915 	its_fixup_cmd(cmd);
916 
917 	return valid_vpe(its, map->vpe);
918 }
919 
920 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
921 					  struct its_cmd_block *cmd,
922 					  struct its_cmd_desc *desc)
923 {
924 	struct its_vlpi_map *map;
925 
926 	map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
927 				    desc->its_int_cmd.event_id);
928 
929 	its_encode_cmd(cmd, GITS_CMD_INT);
930 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
931 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
932 
933 	its_fixup_cmd(cmd);
934 
935 	return valid_vpe(its, map->vpe);
936 }
937 
938 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
939 					    struct its_cmd_block *cmd,
940 					    struct its_cmd_desc *desc)
941 {
942 	struct its_vlpi_map *map;
943 
944 	map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
945 				    desc->its_clear_cmd.event_id);
946 
947 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
948 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
949 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
950 
951 	its_fixup_cmd(cmd);
952 
953 	return valid_vpe(its, map->vpe);
954 }
955 
956 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
957 					   struct its_cmd_block *cmd,
958 					   struct its_cmd_desc *desc)
959 {
960 	if (WARN_ON(!is_v4_1(its)))
961 		return NULL;
962 
963 	its_encode_cmd(cmd, GITS_CMD_INVDB);
964 	its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
965 
966 	its_fixup_cmd(cmd);
967 
968 	return valid_vpe(its, desc->its_invdb_cmd.vpe);
969 }
970 
971 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
972 					  struct its_cmd_block *cmd,
973 					  struct its_cmd_desc *desc)
974 {
975 	if (WARN_ON(!is_v4_1(its)))
976 		return NULL;
977 
978 	its_encode_cmd(cmd, GITS_CMD_VSGI);
979 	its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
980 	its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
981 	its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
982 	its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
983 	its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
984 	its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
985 
986 	its_fixup_cmd(cmd);
987 
988 	return valid_vpe(its, desc->its_vsgi_cmd.vpe);
989 }
990 
991 static u64 its_cmd_ptr_to_offset(struct its_node *its,
992 				 struct its_cmd_block *ptr)
993 {
994 	return (ptr - its->cmd_base) * sizeof(*ptr);
995 }
996 
997 static int its_queue_full(struct its_node *its)
998 {
999 	int widx;
1000 	int ridx;
1001 
1002 	widx = its->cmd_write - its->cmd_base;
1003 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
1004 
1005 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
1006 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
1007 		return 1;
1008 
1009 	return 0;
1010 }
1011 
1012 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
1013 {
1014 	struct its_cmd_block *cmd;
1015 	u32 count = 1000000;	/* 1s! */
1016 
1017 	while (its_queue_full(its)) {
1018 		count--;
1019 		if (!count) {
1020 			pr_err_ratelimited("ITS queue not draining\n");
1021 			return NULL;
1022 		}
1023 		cpu_relax();
1024 		udelay(1);
1025 	}
1026 
1027 	cmd = its->cmd_write++;
1028 
1029 	/* Handle queue wrapping */
1030 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1031 		its->cmd_write = its->cmd_base;
1032 
1033 	/* Clear command  */
1034 	cmd->raw_cmd[0] = 0;
1035 	cmd->raw_cmd[1] = 0;
1036 	cmd->raw_cmd[2] = 0;
1037 	cmd->raw_cmd[3] = 0;
1038 
1039 	return cmd;
1040 }
1041 
1042 static struct its_cmd_block *its_post_commands(struct its_node *its)
1043 {
1044 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1045 
1046 	writel_relaxed(wr, its->base + GITS_CWRITER);
1047 
1048 	return its->cmd_write;
1049 }
1050 
1051 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1052 {
1053 	/*
1054 	 * Make sure the commands written to memory are observable by
1055 	 * the ITS.
1056 	 */
1057 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1058 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1059 	else
1060 		dsb(ishst);
1061 }
1062 
1063 static int its_wait_for_range_completion(struct its_node *its,
1064 					 u64	prev_idx,
1065 					 struct its_cmd_block *to)
1066 {
1067 	u64 rd_idx, to_idx, linear_idx;
1068 	u32 count = 1000000;	/* 1s! */
1069 
1070 	/* Linearize to_idx if the command set has wrapped around */
1071 	to_idx = its_cmd_ptr_to_offset(its, to);
1072 	if (to_idx < prev_idx)
1073 		to_idx += ITS_CMD_QUEUE_SZ;
1074 
1075 	linear_idx = prev_idx;
1076 
1077 	while (1) {
1078 		s64 delta;
1079 
1080 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
1081 
1082 		/*
1083 		 * Compute the read pointer progress, taking the
1084 		 * potential wrap-around into account.
1085 		 */
1086 		delta = rd_idx - prev_idx;
1087 		if (rd_idx < prev_idx)
1088 			delta += ITS_CMD_QUEUE_SZ;
1089 
1090 		linear_idx += delta;
1091 		if (linear_idx >= to_idx)
1092 			break;
1093 
1094 		count--;
1095 		if (!count) {
1096 			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1097 					   to_idx, linear_idx);
1098 			return -1;
1099 		}
1100 		prev_idx = rd_idx;
1101 		cpu_relax();
1102 		udelay(1);
1103 	}
1104 
1105 	return 0;
1106 }
1107 
1108 /* Warning, macro hell follows */
1109 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
1110 void name(struct its_node *its,						\
1111 	  buildtype builder,						\
1112 	  struct its_cmd_desc *desc)					\
1113 {									\
1114 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
1115 	synctype *sync_obj;						\
1116 	unsigned long flags;						\
1117 	u64 rd_idx;							\
1118 									\
1119 	raw_spin_lock_irqsave(&its->lock, flags);			\
1120 									\
1121 	cmd = its_allocate_entry(its);					\
1122 	if (!cmd) {		/* We're soooooo screewed... */		\
1123 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
1124 		return;							\
1125 	}								\
1126 	sync_obj = builder(its, cmd, desc);				\
1127 	its_flush_cmd(its, cmd);					\
1128 									\
1129 	if (sync_obj) {							\
1130 		sync_cmd = its_allocate_entry(its);			\
1131 		if (!sync_cmd)						\
1132 			goto post;					\
1133 									\
1134 		buildfn(its, sync_cmd, sync_obj);			\
1135 		its_flush_cmd(its, sync_cmd);				\
1136 	}								\
1137 									\
1138 post:									\
1139 	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\
1140 	next_cmd = its_post_commands(its);				\
1141 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
1142 									\
1143 	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\
1144 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
1145 }
1146 
1147 static void its_build_sync_cmd(struct its_node *its,
1148 			       struct its_cmd_block *sync_cmd,
1149 			       struct its_collection *sync_col)
1150 {
1151 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1152 	its_encode_target(sync_cmd, sync_col->target_address);
1153 
1154 	its_fixup_cmd(sync_cmd);
1155 }
1156 
1157 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1158 			     struct its_collection, its_build_sync_cmd)
1159 
1160 static void its_build_vsync_cmd(struct its_node *its,
1161 				struct its_cmd_block *sync_cmd,
1162 				struct its_vpe *sync_vpe)
1163 {
1164 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1165 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1166 
1167 	its_fixup_cmd(sync_cmd);
1168 }
1169 
1170 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1171 			     struct its_vpe, its_build_vsync_cmd)
1172 
1173 static void its_send_int(struct its_device *dev, u32 event_id)
1174 {
1175 	struct its_cmd_desc desc;
1176 
1177 	desc.its_int_cmd.dev = dev;
1178 	desc.its_int_cmd.event_id = event_id;
1179 
1180 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
1181 }
1182 
1183 static void its_send_clear(struct its_device *dev, u32 event_id)
1184 {
1185 	struct its_cmd_desc desc;
1186 
1187 	desc.its_clear_cmd.dev = dev;
1188 	desc.its_clear_cmd.event_id = event_id;
1189 
1190 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1191 }
1192 
1193 static void its_send_inv(struct its_device *dev, u32 event_id)
1194 {
1195 	struct its_cmd_desc desc;
1196 
1197 	desc.its_inv_cmd.dev = dev;
1198 	desc.its_inv_cmd.event_id = event_id;
1199 
1200 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1201 }
1202 
1203 static void its_send_mapd(struct its_device *dev, int valid)
1204 {
1205 	struct its_cmd_desc desc;
1206 
1207 	desc.its_mapd_cmd.dev = dev;
1208 	desc.its_mapd_cmd.valid = !!valid;
1209 
1210 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1211 }
1212 
1213 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1214 			  int valid)
1215 {
1216 	struct its_cmd_desc desc;
1217 
1218 	desc.its_mapc_cmd.col = col;
1219 	desc.its_mapc_cmd.valid = !!valid;
1220 
1221 	its_send_single_command(its, its_build_mapc_cmd, &desc);
1222 }
1223 
1224 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1225 {
1226 	struct its_cmd_desc desc;
1227 
1228 	desc.its_mapti_cmd.dev = dev;
1229 	desc.its_mapti_cmd.phys_id = irq_id;
1230 	desc.its_mapti_cmd.event_id = id;
1231 
1232 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1233 }
1234 
1235 static void its_send_movi(struct its_device *dev,
1236 			  struct its_collection *col, u32 id)
1237 {
1238 	struct its_cmd_desc desc;
1239 
1240 	desc.its_movi_cmd.dev = dev;
1241 	desc.its_movi_cmd.col = col;
1242 	desc.its_movi_cmd.event_id = id;
1243 
1244 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1245 }
1246 
1247 static void its_send_discard(struct its_device *dev, u32 id)
1248 {
1249 	struct its_cmd_desc desc;
1250 
1251 	desc.its_discard_cmd.dev = dev;
1252 	desc.its_discard_cmd.event_id = id;
1253 
1254 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1255 }
1256 
1257 static void its_send_invall(struct its_node *its, struct its_collection *col)
1258 {
1259 	struct its_cmd_desc desc;
1260 
1261 	desc.its_invall_cmd.col = col;
1262 
1263 	its_send_single_command(its, its_build_invall_cmd, &desc);
1264 }
1265 
1266 static void its_send_vmapti(struct its_device *dev, u32 id)
1267 {
1268 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1269 	struct its_cmd_desc desc;
1270 
1271 	desc.its_vmapti_cmd.vpe = map->vpe;
1272 	desc.its_vmapti_cmd.dev = dev;
1273 	desc.its_vmapti_cmd.virt_id = map->vintid;
1274 	desc.its_vmapti_cmd.event_id = id;
1275 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1276 
1277 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1278 }
1279 
1280 static void its_send_vmovi(struct its_device *dev, u32 id)
1281 {
1282 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1283 	struct its_cmd_desc desc;
1284 
1285 	desc.its_vmovi_cmd.vpe = map->vpe;
1286 	desc.its_vmovi_cmd.dev = dev;
1287 	desc.its_vmovi_cmd.event_id = id;
1288 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1289 
1290 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1291 }
1292 
1293 static void its_send_vmapp(struct its_node *its,
1294 			   struct its_vpe *vpe, bool valid)
1295 {
1296 	struct its_cmd_desc desc;
1297 
1298 	desc.its_vmapp_cmd.vpe = vpe;
1299 	desc.its_vmapp_cmd.valid = valid;
1300 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1301 
1302 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1303 }
1304 
1305 static void its_send_vmovp(struct its_vpe *vpe)
1306 {
1307 	struct its_cmd_desc desc = {};
1308 	struct its_node *its;
1309 	unsigned long flags;
1310 	int col_id = vpe->col_idx;
1311 
1312 	desc.its_vmovp_cmd.vpe = vpe;
1313 
1314 	if (!its_list_map) {
1315 		its = list_first_entry(&its_nodes, struct its_node, entry);
1316 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1317 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1318 		return;
1319 	}
1320 
1321 	/*
1322 	 * Yet another marvel of the architecture. If using the
1323 	 * its_list "feature", we need to make sure that all ITSs
1324 	 * receive all VMOVP commands in the same order. The only way
1325 	 * to guarantee this is to make vmovp a serialization point.
1326 	 *
1327 	 * Wall <-- Head.
1328 	 */
1329 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1330 
1331 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1332 	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1333 
1334 	/* Emit VMOVPs */
1335 	list_for_each_entry(its, &its_nodes, entry) {
1336 		if (!is_v4(its))
1337 			continue;
1338 
1339 		if (!require_its_list_vmovp(vpe->its_vm, its))
1340 			continue;
1341 
1342 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1343 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1344 	}
1345 
1346 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1347 }
1348 
1349 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1350 {
1351 	struct its_cmd_desc desc;
1352 
1353 	desc.its_vinvall_cmd.vpe = vpe;
1354 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1355 }
1356 
1357 static void its_send_vinv(struct its_device *dev, u32 event_id)
1358 {
1359 	struct its_cmd_desc desc;
1360 
1361 	/*
1362 	 * There is no real VINV command. This is just a normal INV,
1363 	 * with a VSYNC instead of a SYNC.
1364 	 */
1365 	desc.its_inv_cmd.dev = dev;
1366 	desc.its_inv_cmd.event_id = event_id;
1367 
1368 	its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1369 }
1370 
1371 static void its_send_vint(struct its_device *dev, u32 event_id)
1372 {
1373 	struct its_cmd_desc desc;
1374 
1375 	/*
1376 	 * There is no real VINT command. This is just a normal INT,
1377 	 * with a VSYNC instead of a SYNC.
1378 	 */
1379 	desc.its_int_cmd.dev = dev;
1380 	desc.its_int_cmd.event_id = event_id;
1381 
1382 	its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1383 }
1384 
1385 static void its_send_vclear(struct its_device *dev, u32 event_id)
1386 {
1387 	struct its_cmd_desc desc;
1388 
1389 	/*
1390 	 * There is no real VCLEAR command. This is just a normal CLEAR,
1391 	 * with a VSYNC instead of a SYNC.
1392 	 */
1393 	desc.its_clear_cmd.dev = dev;
1394 	desc.its_clear_cmd.event_id = event_id;
1395 
1396 	its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1397 }
1398 
1399 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1400 {
1401 	struct its_cmd_desc desc;
1402 
1403 	desc.its_invdb_cmd.vpe = vpe;
1404 	its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1405 }
1406 
1407 /*
1408  * irqchip functions - assumes MSI, mostly.
1409  */
1410 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1411 {
1412 	struct its_vlpi_map *map = get_vlpi_map(d);
1413 	irq_hw_number_t hwirq;
1414 	void *va;
1415 	u8 *cfg;
1416 
1417 	if (map) {
1418 		va = page_address(map->vm->vprop_page);
1419 		hwirq = map->vintid;
1420 
1421 		/* Remember the updated property */
1422 		map->properties &= ~clr;
1423 		map->properties |= set | LPI_PROP_GROUP1;
1424 	} else {
1425 		va = gic_rdists->prop_table_va;
1426 		hwirq = d->hwirq;
1427 	}
1428 
1429 	cfg = va + hwirq - 8192;
1430 	*cfg &= ~clr;
1431 	*cfg |= set | LPI_PROP_GROUP1;
1432 
1433 	/*
1434 	 * Make the above write visible to the redistributors.
1435 	 * And yes, we're flushing exactly: One. Single. Byte.
1436 	 * Humpf...
1437 	 */
1438 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1439 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1440 	else
1441 		dsb(ishst);
1442 }
1443 
1444 static void wait_for_syncr(void __iomem *rdbase)
1445 {
1446 	while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1447 		cpu_relax();
1448 }
1449 
1450 static void __direct_lpi_inv(struct irq_data *d, u64 val)
1451 {
1452 	void __iomem *rdbase;
1453 	unsigned long flags;
1454 	int cpu;
1455 
1456 	/* Target the redistributor this LPI is currently routed to */
1457 	cpu = irq_to_cpuid_lock(d, &flags);
1458 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1459 
1460 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1461 	gic_write_lpir(val, rdbase + GICR_INVLPIR);
1462 	wait_for_syncr(rdbase);
1463 
1464 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1465 	irq_to_cpuid_unlock(d, flags);
1466 }
1467 
1468 static void direct_lpi_inv(struct irq_data *d)
1469 {
1470 	struct its_vlpi_map *map = get_vlpi_map(d);
1471 	u64 val;
1472 
1473 	if (map) {
1474 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1475 
1476 		WARN_ON(!is_v4_1(its_dev->its));
1477 
1478 		val  = GICR_INVLPIR_V;
1479 		val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1480 		val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1481 	} else {
1482 		val = d->hwirq;
1483 	}
1484 
1485 	__direct_lpi_inv(d, val);
1486 }
1487 
1488 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1489 {
1490 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1491 
1492 	lpi_write_config(d, clr, set);
1493 	if (gic_rdists->has_direct_lpi &&
1494 	    (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1495 		direct_lpi_inv(d);
1496 	else if (!irqd_is_forwarded_to_vcpu(d))
1497 		its_send_inv(its_dev, its_get_event_id(d));
1498 	else
1499 		its_send_vinv(its_dev, its_get_event_id(d));
1500 }
1501 
1502 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1503 {
1504 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1505 	u32 event = its_get_event_id(d);
1506 	struct its_vlpi_map *map;
1507 
1508 	/*
1509 	 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1510 	 * here.
1511 	 */
1512 	if (is_v4_1(its_dev->its))
1513 		return;
1514 
1515 	map = dev_event_to_vlpi_map(its_dev, event);
1516 
1517 	if (map->db_enabled == enable)
1518 		return;
1519 
1520 	map->db_enabled = enable;
1521 
1522 	/*
1523 	 * More fun with the architecture:
1524 	 *
1525 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1526 	 * value or to 1023, depending on the enable bit. But that
1527 	 * would be issuing a mapping for an /existing/ DevID+EventID
1528 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1529 	 * to the /same/ vPE, using this opportunity to adjust the
1530 	 * doorbell. Mouahahahaha. We loves it, Precious.
1531 	 */
1532 	its_send_vmovi(its_dev, event);
1533 }
1534 
1535 static void its_mask_irq(struct irq_data *d)
1536 {
1537 	if (irqd_is_forwarded_to_vcpu(d))
1538 		its_vlpi_set_doorbell(d, false);
1539 
1540 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1541 }
1542 
1543 static void its_unmask_irq(struct irq_data *d)
1544 {
1545 	if (irqd_is_forwarded_to_vcpu(d))
1546 		its_vlpi_set_doorbell(d, true);
1547 
1548 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1549 }
1550 
1551 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1552 {
1553 	if (irqd_affinity_is_managed(d))
1554 		return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1555 
1556 	return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1557 }
1558 
1559 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1560 {
1561 	if (irqd_affinity_is_managed(d))
1562 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1563 	else
1564 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1565 }
1566 
1567 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1568 {
1569 	if (irqd_affinity_is_managed(d))
1570 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1571 	else
1572 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1573 }
1574 
1575 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1576 					      const struct cpumask *cpu_mask)
1577 {
1578 	unsigned int cpu = nr_cpu_ids, tmp;
1579 	int count = S32_MAX;
1580 
1581 	for_each_cpu(tmp, cpu_mask) {
1582 		int this_count = its_read_lpi_count(d, tmp);
1583 		if (this_count < count) {
1584 			cpu = tmp;
1585 		        count = this_count;
1586 		}
1587 	}
1588 
1589 	return cpu;
1590 }
1591 
1592 /*
1593  * As suggested by Thomas Gleixner in:
1594  * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1595  */
1596 static int its_select_cpu(struct irq_data *d,
1597 			  const struct cpumask *aff_mask)
1598 {
1599 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1600 	static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1601 	static struct cpumask __tmpmask;
1602 	struct cpumask *tmpmask;
1603 	unsigned long flags;
1604 	int cpu, node;
1605 	node = its_dev->its->numa_node;
1606 	tmpmask = &__tmpmask;
1607 
1608 	raw_spin_lock_irqsave(&tmpmask_lock, flags);
1609 
1610 	if (!irqd_affinity_is_managed(d)) {
1611 		/* First try the NUMA node */
1612 		if (node != NUMA_NO_NODE) {
1613 			/*
1614 			 * Try the intersection of the affinity mask and the
1615 			 * node mask (and the online mask, just to be safe).
1616 			 */
1617 			cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1618 			cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1619 
1620 			/*
1621 			 * Ideally, we would check if the mask is empty, and
1622 			 * try again on the full node here.
1623 			 *
1624 			 * But it turns out that the way ACPI describes the
1625 			 * affinity for ITSs only deals about memory, and
1626 			 * not target CPUs, so it cannot describe a single
1627 			 * ITS placed next to two NUMA nodes.
1628 			 *
1629 			 * Instead, just fallback on the online mask. This
1630 			 * diverges from Thomas' suggestion above.
1631 			 */
1632 			cpu = cpumask_pick_least_loaded(d, tmpmask);
1633 			if (cpu < nr_cpu_ids)
1634 				goto out;
1635 
1636 			/* If we can't cross sockets, give up */
1637 			if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1638 				goto out;
1639 
1640 			/* If the above failed, expand the search */
1641 		}
1642 
1643 		/* Try the intersection of the affinity and online masks */
1644 		cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1645 
1646 		/* If that doesn't fly, the online mask is the last resort */
1647 		if (cpumask_empty(tmpmask))
1648 			cpumask_copy(tmpmask, cpu_online_mask);
1649 
1650 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1651 	} else {
1652 		cpumask_copy(tmpmask, aff_mask);
1653 
1654 		/* If we cannot cross sockets, limit the search to that node */
1655 		if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1656 		    node != NUMA_NO_NODE)
1657 			cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1658 
1659 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1660 	}
1661 out:
1662 	raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
1663 
1664 	pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1665 	return cpu;
1666 }
1667 
1668 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1669 			    bool force)
1670 {
1671 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1672 	struct its_collection *target_col;
1673 	u32 id = its_get_event_id(d);
1674 	int cpu, prev_cpu;
1675 
1676 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1677 	if (irqd_is_forwarded_to_vcpu(d))
1678 		return -EINVAL;
1679 
1680 	prev_cpu = its_dev->event_map.col_map[id];
1681 	its_dec_lpi_count(d, prev_cpu);
1682 
1683 	if (!force)
1684 		cpu = its_select_cpu(d, mask_val);
1685 	else
1686 		cpu = cpumask_pick_least_loaded(d, mask_val);
1687 
1688 	if (cpu < 0 || cpu >= nr_cpu_ids)
1689 		goto err;
1690 
1691 	/* don't set the affinity when the target cpu is same as current one */
1692 	if (cpu != prev_cpu) {
1693 		target_col = &its_dev->its->collections[cpu];
1694 		its_send_movi(its_dev, target_col, id);
1695 		its_dev->event_map.col_map[id] = cpu;
1696 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1697 	}
1698 
1699 	its_inc_lpi_count(d, cpu);
1700 
1701 	return IRQ_SET_MASK_OK_DONE;
1702 
1703 err:
1704 	its_inc_lpi_count(d, prev_cpu);
1705 	return -EINVAL;
1706 }
1707 
1708 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1709 {
1710 	struct its_node *its = its_dev->its;
1711 
1712 	return its->phys_base + GITS_TRANSLATER;
1713 }
1714 
1715 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1716 {
1717 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1718 	struct its_node *its;
1719 	u64 addr;
1720 
1721 	its = its_dev->its;
1722 	addr = its->get_msi_base(its_dev);
1723 
1724 	msg->address_lo		= lower_32_bits(addr);
1725 	msg->address_hi		= upper_32_bits(addr);
1726 	msg->data		= its_get_event_id(d);
1727 
1728 	iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1729 }
1730 
1731 static int its_irq_set_irqchip_state(struct irq_data *d,
1732 				     enum irqchip_irq_state which,
1733 				     bool state)
1734 {
1735 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1736 	u32 event = its_get_event_id(d);
1737 
1738 	if (which != IRQCHIP_STATE_PENDING)
1739 		return -EINVAL;
1740 
1741 	if (irqd_is_forwarded_to_vcpu(d)) {
1742 		if (state)
1743 			its_send_vint(its_dev, event);
1744 		else
1745 			its_send_vclear(its_dev, event);
1746 	} else {
1747 		if (state)
1748 			its_send_int(its_dev, event);
1749 		else
1750 			its_send_clear(its_dev, event);
1751 	}
1752 
1753 	return 0;
1754 }
1755 
1756 static int its_irq_retrigger(struct irq_data *d)
1757 {
1758 	return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1759 }
1760 
1761 /*
1762  * Two favourable cases:
1763  *
1764  * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1765  *     for vSGI delivery
1766  *
1767  * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1768  *     and we're better off mapping all VPEs always
1769  *
1770  * If neither (a) nor (b) is true, then we map vPEs on demand.
1771  *
1772  */
1773 static bool gic_requires_eager_mapping(void)
1774 {
1775 	if (!its_list_map || gic_rdists->has_rvpeid)
1776 		return true;
1777 
1778 	return false;
1779 }
1780 
1781 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1782 {
1783 	unsigned long flags;
1784 
1785 	if (gic_requires_eager_mapping())
1786 		return;
1787 
1788 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1789 
1790 	/*
1791 	 * If the VM wasn't mapped yet, iterate over the vpes and get
1792 	 * them mapped now.
1793 	 */
1794 	vm->vlpi_count[its->list_nr]++;
1795 
1796 	if (vm->vlpi_count[its->list_nr] == 1) {
1797 		int i;
1798 
1799 		for (i = 0; i < vm->nr_vpes; i++) {
1800 			struct its_vpe *vpe = vm->vpes[i];
1801 			struct irq_data *d = irq_get_irq_data(vpe->irq);
1802 
1803 			/* Map the VPE to the first possible CPU */
1804 			vpe->col_idx = cpumask_first(cpu_online_mask);
1805 			its_send_vmapp(its, vpe, true);
1806 			its_send_vinvall(its, vpe);
1807 			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1808 		}
1809 	}
1810 
1811 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1812 }
1813 
1814 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1815 {
1816 	unsigned long flags;
1817 
1818 	/* Not using the ITS list? Everything is always mapped. */
1819 	if (gic_requires_eager_mapping())
1820 		return;
1821 
1822 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1823 
1824 	if (!--vm->vlpi_count[its->list_nr]) {
1825 		int i;
1826 
1827 		for (i = 0; i < vm->nr_vpes; i++)
1828 			its_send_vmapp(its, vm->vpes[i], false);
1829 	}
1830 
1831 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1832 }
1833 
1834 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1835 {
1836 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1837 	u32 event = its_get_event_id(d);
1838 	int ret = 0;
1839 
1840 	if (!info->map)
1841 		return -EINVAL;
1842 
1843 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1844 
1845 	if (!its_dev->event_map.vm) {
1846 		struct its_vlpi_map *maps;
1847 
1848 		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1849 			       GFP_ATOMIC);
1850 		if (!maps) {
1851 			ret = -ENOMEM;
1852 			goto out;
1853 		}
1854 
1855 		its_dev->event_map.vm = info->map->vm;
1856 		its_dev->event_map.vlpi_maps = maps;
1857 	} else if (its_dev->event_map.vm != info->map->vm) {
1858 		ret = -EINVAL;
1859 		goto out;
1860 	}
1861 
1862 	/* Get our private copy of the mapping information */
1863 	its_dev->event_map.vlpi_maps[event] = *info->map;
1864 
1865 	if (irqd_is_forwarded_to_vcpu(d)) {
1866 		/* Already mapped, move it around */
1867 		its_send_vmovi(its_dev, event);
1868 	} else {
1869 		/* Ensure all the VPEs are mapped on this ITS */
1870 		its_map_vm(its_dev->its, info->map->vm);
1871 
1872 		/*
1873 		 * Flag the interrupt as forwarded so that we can
1874 		 * start poking the virtual property table.
1875 		 */
1876 		irqd_set_forwarded_to_vcpu(d);
1877 
1878 		/* Write out the property to the prop table */
1879 		lpi_write_config(d, 0xff, info->map->properties);
1880 
1881 		/* Drop the physical mapping */
1882 		its_send_discard(its_dev, event);
1883 
1884 		/* and install the virtual one */
1885 		its_send_vmapti(its_dev, event);
1886 
1887 		/* Increment the number of VLPIs */
1888 		its_dev->event_map.nr_vlpis++;
1889 	}
1890 
1891 out:
1892 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1893 	return ret;
1894 }
1895 
1896 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1897 {
1898 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1899 	struct its_vlpi_map *map;
1900 	int ret = 0;
1901 
1902 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1903 
1904 	map = get_vlpi_map(d);
1905 
1906 	if (!its_dev->event_map.vm || !map) {
1907 		ret = -EINVAL;
1908 		goto out;
1909 	}
1910 
1911 	/* Copy our mapping information to the incoming request */
1912 	*info->map = *map;
1913 
1914 out:
1915 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1916 	return ret;
1917 }
1918 
1919 static int its_vlpi_unmap(struct irq_data *d)
1920 {
1921 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1922 	u32 event = its_get_event_id(d);
1923 	int ret = 0;
1924 
1925 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1926 
1927 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1928 		ret = -EINVAL;
1929 		goto out;
1930 	}
1931 
1932 	/* Drop the virtual mapping */
1933 	its_send_discard(its_dev, event);
1934 
1935 	/* and restore the physical one */
1936 	irqd_clr_forwarded_to_vcpu(d);
1937 	its_send_mapti(its_dev, d->hwirq, event);
1938 	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1939 				    LPI_PROP_ENABLED |
1940 				    LPI_PROP_GROUP1));
1941 
1942 	/* Potentially unmap the VM from this ITS */
1943 	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1944 
1945 	/*
1946 	 * Drop the refcount and make the device available again if
1947 	 * this was the last VLPI.
1948 	 */
1949 	if (!--its_dev->event_map.nr_vlpis) {
1950 		its_dev->event_map.vm = NULL;
1951 		kfree(its_dev->event_map.vlpi_maps);
1952 	}
1953 
1954 out:
1955 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1956 	return ret;
1957 }
1958 
1959 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1960 {
1961 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1962 
1963 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1964 		return -EINVAL;
1965 
1966 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1967 		lpi_update_config(d, 0xff, info->config);
1968 	else
1969 		lpi_write_config(d, 0xff, info->config);
1970 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1971 
1972 	return 0;
1973 }
1974 
1975 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1976 {
1977 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1978 	struct its_cmd_info *info = vcpu_info;
1979 
1980 	/* Need a v4 ITS */
1981 	if (!is_v4(its_dev->its))
1982 		return -EINVAL;
1983 
1984 	/* Unmap request? */
1985 	if (!info)
1986 		return its_vlpi_unmap(d);
1987 
1988 	switch (info->cmd_type) {
1989 	case MAP_VLPI:
1990 		return its_vlpi_map(d, info);
1991 
1992 	case GET_VLPI:
1993 		return its_vlpi_get(d, info);
1994 
1995 	case PROP_UPDATE_VLPI:
1996 	case PROP_UPDATE_AND_INV_VLPI:
1997 		return its_vlpi_prop_update(d, info);
1998 
1999 	default:
2000 		return -EINVAL;
2001 	}
2002 }
2003 
2004 static struct irq_chip its_irq_chip = {
2005 	.name			= "ITS",
2006 	.irq_mask		= its_mask_irq,
2007 	.irq_unmask		= its_unmask_irq,
2008 	.irq_eoi		= irq_chip_eoi_parent,
2009 	.irq_set_affinity	= its_set_affinity,
2010 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
2011 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
2012 	.irq_retrigger		= its_irq_retrigger,
2013 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
2014 };
2015 
2016 
2017 /*
2018  * How we allocate LPIs:
2019  *
2020  * lpi_range_list contains ranges of LPIs that are to available to
2021  * allocate from. To allocate LPIs, just pick the first range that
2022  * fits the required allocation, and reduce it by the required
2023  * amount. Once empty, remove the range from the list.
2024  *
2025  * To free a range of LPIs, add a free range to the list, sort it and
2026  * merge the result if the new range happens to be adjacent to an
2027  * already free block.
2028  *
2029  * The consequence of the above is that allocation is cost is low, but
2030  * freeing is expensive. We assumes that freeing rarely occurs.
2031  */
2032 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
2033 
2034 static DEFINE_MUTEX(lpi_range_lock);
2035 static LIST_HEAD(lpi_range_list);
2036 
2037 struct lpi_range {
2038 	struct list_head	entry;
2039 	u32			base_id;
2040 	u32			span;
2041 };
2042 
2043 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2044 {
2045 	struct lpi_range *range;
2046 
2047 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2048 	if (range) {
2049 		range->base_id = base;
2050 		range->span = span;
2051 	}
2052 
2053 	return range;
2054 }
2055 
2056 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2057 {
2058 	struct lpi_range *range, *tmp;
2059 	int err = -ENOSPC;
2060 
2061 	mutex_lock(&lpi_range_lock);
2062 
2063 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2064 		if (range->span >= nr_lpis) {
2065 			*base = range->base_id;
2066 			range->base_id += nr_lpis;
2067 			range->span -= nr_lpis;
2068 
2069 			if (range->span == 0) {
2070 				list_del(&range->entry);
2071 				kfree(range);
2072 			}
2073 
2074 			err = 0;
2075 			break;
2076 		}
2077 	}
2078 
2079 	mutex_unlock(&lpi_range_lock);
2080 
2081 	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2082 	return err;
2083 }
2084 
2085 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2086 {
2087 	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2088 		return;
2089 	if (a->base_id + a->span != b->base_id)
2090 		return;
2091 	b->base_id = a->base_id;
2092 	b->span += a->span;
2093 	list_del(&a->entry);
2094 	kfree(a);
2095 }
2096 
2097 static int free_lpi_range(u32 base, u32 nr_lpis)
2098 {
2099 	struct lpi_range *new, *old;
2100 
2101 	new = mk_lpi_range(base, nr_lpis);
2102 	if (!new)
2103 		return -ENOMEM;
2104 
2105 	mutex_lock(&lpi_range_lock);
2106 
2107 	list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2108 		if (old->base_id < base)
2109 			break;
2110 	}
2111 	/*
2112 	 * old is the last element with ->base_id smaller than base,
2113 	 * so new goes right after it. If there are no elements with
2114 	 * ->base_id smaller than base, &old->entry ends up pointing
2115 	 * at the head of the list, and inserting new it the start of
2116 	 * the list is the right thing to do in that case as well.
2117 	 */
2118 	list_add(&new->entry, &old->entry);
2119 	/*
2120 	 * Now check if we can merge with the preceding and/or
2121 	 * following ranges.
2122 	 */
2123 	merge_lpi_ranges(old, new);
2124 	merge_lpi_ranges(new, list_next_entry(new, entry));
2125 
2126 	mutex_unlock(&lpi_range_lock);
2127 	return 0;
2128 }
2129 
2130 static int __init its_lpi_init(u32 id_bits)
2131 {
2132 	u32 lpis = (1UL << id_bits) - 8192;
2133 	u32 numlpis;
2134 	int err;
2135 
2136 	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2137 
2138 	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2139 		lpis = numlpis;
2140 		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2141 			lpis);
2142 	}
2143 
2144 	/*
2145 	 * Initializing the allocator is just the same as freeing the
2146 	 * full range of LPIs.
2147 	 */
2148 	err = free_lpi_range(8192, lpis);
2149 	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2150 	return err;
2151 }
2152 
2153 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2154 {
2155 	unsigned long *bitmap = NULL;
2156 	int err = 0;
2157 
2158 	do {
2159 		err = alloc_lpi_range(nr_irqs, base);
2160 		if (!err)
2161 			break;
2162 
2163 		nr_irqs /= 2;
2164 	} while (nr_irqs > 0);
2165 
2166 	if (!nr_irqs)
2167 		err = -ENOSPC;
2168 
2169 	if (err)
2170 		goto out;
2171 
2172 	bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2173 	if (!bitmap)
2174 		goto out;
2175 
2176 	*nr_ids = nr_irqs;
2177 
2178 out:
2179 	if (!bitmap)
2180 		*base = *nr_ids = 0;
2181 
2182 	return bitmap;
2183 }
2184 
2185 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2186 {
2187 	WARN_ON(free_lpi_range(base, nr_ids));
2188 	bitmap_free(bitmap);
2189 }
2190 
2191 static void gic_reset_prop_table(void *va)
2192 {
2193 	/* Priority 0xa0, Group-1, disabled */
2194 	memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2195 
2196 	/* Make sure the GIC will observe the written configuration */
2197 	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2198 }
2199 
2200 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2201 {
2202 	struct page *prop_page;
2203 
2204 	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2205 	if (!prop_page)
2206 		return NULL;
2207 
2208 	gic_reset_prop_table(page_address(prop_page));
2209 
2210 	return prop_page;
2211 }
2212 
2213 static void its_free_prop_table(struct page *prop_page)
2214 {
2215 	free_pages((unsigned long)page_address(prop_page),
2216 		   get_order(LPI_PROPBASE_SZ));
2217 }
2218 
2219 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2220 {
2221 	phys_addr_t start, end, addr_end;
2222 	u64 i;
2223 
2224 	/*
2225 	 * We don't bother checking for a kdump kernel as by
2226 	 * construction, the LPI tables are out of this kernel's
2227 	 * memory map.
2228 	 */
2229 	if (is_kdump_kernel())
2230 		return true;
2231 
2232 	addr_end = addr + size - 1;
2233 
2234 	for_each_reserved_mem_range(i, &start, &end) {
2235 		if (addr >= start && addr_end <= end)
2236 			return true;
2237 	}
2238 
2239 	/* Not found, not a good sign... */
2240 	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2241 		&addr, &addr_end);
2242 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2243 	return false;
2244 }
2245 
2246 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2247 {
2248 	if (efi_enabled(EFI_CONFIG_TABLES))
2249 		return efi_mem_reserve_persistent(addr, size);
2250 
2251 	return 0;
2252 }
2253 
2254 static int __init its_setup_lpi_prop_table(void)
2255 {
2256 	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2257 		u64 val;
2258 
2259 		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2260 		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2261 
2262 		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2263 		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2264 						     LPI_PROPBASE_SZ,
2265 						     MEMREMAP_WB);
2266 		gic_reset_prop_table(gic_rdists->prop_table_va);
2267 	} else {
2268 		struct page *page;
2269 
2270 		lpi_id_bits = min_t(u32,
2271 				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2272 				    ITS_MAX_LPI_NRBITS);
2273 		page = its_allocate_prop_table(GFP_NOWAIT);
2274 		if (!page) {
2275 			pr_err("Failed to allocate PROPBASE\n");
2276 			return -ENOMEM;
2277 		}
2278 
2279 		gic_rdists->prop_table_pa = page_to_phys(page);
2280 		gic_rdists->prop_table_va = page_address(page);
2281 		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2282 					  LPI_PROPBASE_SZ));
2283 	}
2284 
2285 	pr_info("GICv3: using LPI property table @%pa\n",
2286 		&gic_rdists->prop_table_pa);
2287 
2288 	return its_lpi_init(lpi_id_bits);
2289 }
2290 
2291 static const char *its_base_type_string[] = {
2292 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
2293 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
2294 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
2295 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
2296 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
2297 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
2298 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
2299 };
2300 
2301 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2302 {
2303 	u32 idx = baser - its->tables;
2304 
2305 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2306 }
2307 
2308 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2309 			    u64 val)
2310 {
2311 	u32 idx = baser - its->tables;
2312 
2313 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2314 	baser->val = its_read_baser(its, baser);
2315 }
2316 
2317 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2318 			   u64 cache, u64 shr, u32 order, bool indirect)
2319 {
2320 	u64 val = its_read_baser(its, baser);
2321 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
2322 	u64 type = GITS_BASER_TYPE(val);
2323 	u64 baser_phys, tmp;
2324 	u32 alloc_pages, psz;
2325 	struct page *page;
2326 	void *base;
2327 
2328 	psz = baser->psz;
2329 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2330 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
2331 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2332 			&its->phys_base, its_base_type_string[type],
2333 			alloc_pages, GITS_BASER_PAGES_MAX);
2334 		alloc_pages = GITS_BASER_PAGES_MAX;
2335 		order = get_order(GITS_BASER_PAGES_MAX * psz);
2336 	}
2337 
2338 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2339 	if (!page)
2340 		return -ENOMEM;
2341 
2342 	base = (void *)page_address(page);
2343 	baser_phys = virt_to_phys(base);
2344 
2345 	/* Check if the physical address of the memory is above 48bits */
2346 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2347 
2348 		/* 52bit PA is supported only when PageSize=64K */
2349 		if (psz != SZ_64K) {
2350 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2351 			free_pages((unsigned long)base, order);
2352 			return -ENXIO;
2353 		}
2354 
2355 		/* Convert 52bit PA to 48bit field */
2356 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2357 	}
2358 
2359 retry_baser:
2360 	val = (baser_phys					 |
2361 		(type << GITS_BASER_TYPE_SHIFT)			 |
2362 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
2363 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
2364 		cache						 |
2365 		shr						 |
2366 		GITS_BASER_VALID);
2367 
2368 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
2369 
2370 	switch (psz) {
2371 	case SZ_4K:
2372 		val |= GITS_BASER_PAGE_SIZE_4K;
2373 		break;
2374 	case SZ_16K:
2375 		val |= GITS_BASER_PAGE_SIZE_16K;
2376 		break;
2377 	case SZ_64K:
2378 		val |= GITS_BASER_PAGE_SIZE_64K;
2379 		break;
2380 	}
2381 
2382 	its_write_baser(its, baser, val);
2383 	tmp = baser->val;
2384 
2385 	if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
2386 		tmp &= ~GITS_BASER_SHAREABILITY_MASK;
2387 
2388 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2389 		/*
2390 		 * Shareability didn't stick. Just use
2391 		 * whatever the read reported, which is likely
2392 		 * to be the only thing this redistributor
2393 		 * supports. If that's zero, make it
2394 		 * non-cacheable as well.
2395 		 */
2396 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2397 		if (!shr) {
2398 			cache = GITS_BASER_nC;
2399 			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2400 		}
2401 		goto retry_baser;
2402 	}
2403 
2404 	if (val != tmp) {
2405 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2406 		       &its->phys_base, its_base_type_string[type],
2407 		       val, tmp);
2408 		free_pages((unsigned long)base, order);
2409 		return -ENXIO;
2410 	}
2411 
2412 	baser->order = order;
2413 	baser->base = base;
2414 	baser->psz = psz;
2415 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2416 
2417 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2418 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2419 		its_base_type_string[type],
2420 		(unsigned long)virt_to_phys(base),
2421 		indirect ? "indirect" : "flat", (int)esz,
2422 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2423 
2424 	return 0;
2425 }
2426 
2427 static bool its_parse_indirect_baser(struct its_node *its,
2428 				     struct its_baser *baser,
2429 				     u32 *order, u32 ids)
2430 {
2431 	u64 tmp = its_read_baser(its, baser);
2432 	u64 type = GITS_BASER_TYPE(tmp);
2433 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2434 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2435 	u32 new_order = *order;
2436 	u32 psz = baser->psz;
2437 	bool indirect = false;
2438 
2439 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
2440 	if ((esz << ids) > (psz * 2)) {
2441 		/*
2442 		 * Find out whether hw supports a single or two-level table by
2443 		 * table by reading bit at offset '62' after writing '1' to it.
2444 		 */
2445 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2446 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
2447 
2448 		if (indirect) {
2449 			/*
2450 			 * The size of the lvl2 table is equal to ITS page size
2451 			 * which is 'psz'. For computing lvl1 table size,
2452 			 * subtract ID bits that sparse lvl2 table from 'ids'
2453 			 * which is reported by ITS hardware times lvl1 table
2454 			 * entry size.
2455 			 */
2456 			ids -= ilog2(psz / (int)esz);
2457 			esz = GITS_LVL1_ENTRY_SIZE;
2458 		}
2459 	}
2460 
2461 	/*
2462 	 * Allocate as many entries as required to fit the
2463 	 * range of device IDs that the ITS can grok... The ID
2464 	 * space being incredibly sparse, this results in a
2465 	 * massive waste of memory if two-level device table
2466 	 * feature is not supported by hardware.
2467 	 */
2468 	new_order = max_t(u32, get_order(esz << ids), new_order);
2469 	if (new_order > MAX_ORDER) {
2470 		new_order = MAX_ORDER;
2471 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2472 		pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2473 			&its->phys_base, its_base_type_string[type],
2474 			device_ids(its), ids);
2475 	}
2476 
2477 	*order = new_order;
2478 
2479 	return indirect;
2480 }
2481 
2482 static u32 compute_common_aff(u64 val)
2483 {
2484 	u32 aff, clpiaff;
2485 
2486 	aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2487 	clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2488 
2489 	return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2490 }
2491 
2492 static u32 compute_its_aff(struct its_node *its)
2493 {
2494 	u64 val;
2495 	u32 svpet;
2496 
2497 	/*
2498 	 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2499 	 * the resulting affinity. We then use that to see if this match
2500 	 * our own affinity.
2501 	 */
2502 	svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2503 	val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2504 	val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2505 	return compute_common_aff(val);
2506 }
2507 
2508 static struct its_node *find_sibling_its(struct its_node *cur_its)
2509 {
2510 	struct its_node *its;
2511 	u32 aff;
2512 
2513 	if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2514 		return NULL;
2515 
2516 	aff = compute_its_aff(cur_its);
2517 
2518 	list_for_each_entry(its, &its_nodes, entry) {
2519 		u64 baser;
2520 
2521 		if (!is_v4_1(its) || its == cur_its)
2522 			continue;
2523 
2524 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2525 			continue;
2526 
2527 		if (aff != compute_its_aff(its))
2528 			continue;
2529 
2530 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2531 		baser = its->tables[2].val;
2532 		if (!(baser & GITS_BASER_VALID))
2533 			continue;
2534 
2535 		return its;
2536 	}
2537 
2538 	return NULL;
2539 }
2540 
2541 static void its_free_tables(struct its_node *its)
2542 {
2543 	int i;
2544 
2545 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2546 		if (its->tables[i].base) {
2547 			free_pages((unsigned long)its->tables[i].base,
2548 				   its->tables[i].order);
2549 			its->tables[i].base = NULL;
2550 		}
2551 	}
2552 }
2553 
2554 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2555 {
2556 	u64 psz = SZ_64K;
2557 
2558 	while (psz) {
2559 		u64 val, gpsz;
2560 
2561 		val = its_read_baser(its, baser);
2562 		val &= ~GITS_BASER_PAGE_SIZE_MASK;
2563 
2564 		switch (psz) {
2565 		case SZ_64K:
2566 			gpsz = GITS_BASER_PAGE_SIZE_64K;
2567 			break;
2568 		case SZ_16K:
2569 			gpsz = GITS_BASER_PAGE_SIZE_16K;
2570 			break;
2571 		case SZ_4K:
2572 		default:
2573 			gpsz = GITS_BASER_PAGE_SIZE_4K;
2574 			break;
2575 		}
2576 
2577 		gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2578 
2579 		val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2580 		its_write_baser(its, baser, val);
2581 
2582 		if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2583 			break;
2584 
2585 		switch (psz) {
2586 		case SZ_64K:
2587 			psz = SZ_16K;
2588 			break;
2589 		case SZ_16K:
2590 			psz = SZ_4K;
2591 			break;
2592 		case SZ_4K:
2593 		default:
2594 			return -1;
2595 		}
2596 	}
2597 
2598 	baser->psz = psz;
2599 	return 0;
2600 }
2601 
2602 static int its_alloc_tables(struct its_node *its)
2603 {
2604 	u64 shr = GITS_BASER_InnerShareable;
2605 	u64 cache = GITS_BASER_RaWaWb;
2606 	int err, i;
2607 
2608 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2609 		/* erratum 24313: ignore memory access type */
2610 		cache = GITS_BASER_nCnB;
2611 
2612 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2613 		struct its_baser *baser = its->tables + i;
2614 		u64 val = its_read_baser(its, baser);
2615 		u64 type = GITS_BASER_TYPE(val);
2616 		bool indirect = false;
2617 		u32 order;
2618 
2619 		if (type == GITS_BASER_TYPE_NONE)
2620 			continue;
2621 
2622 		if (its_probe_baser_psz(its, baser)) {
2623 			its_free_tables(its);
2624 			return -ENXIO;
2625 		}
2626 
2627 		order = get_order(baser->psz);
2628 
2629 		switch (type) {
2630 		case GITS_BASER_TYPE_DEVICE:
2631 			indirect = its_parse_indirect_baser(its, baser, &order,
2632 							    device_ids(its));
2633 			break;
2634 
2635 		case GITS_BASER_TYPE_VCPU:
2636 			if (is_v4_1(its)) {
2637 				struct its_node *sibling;
2638 
2639 				WARN_ON(i != 2);
2640 				if ((sibling = find_sibling_its(its))) {
2641 					*baser = sibling->tables[2];
2642 					its_write_baser(its, baser, baser->val);
2643 					continue;
2644 				}
2645 			}
2646 
2647 			indirect = its_parse_indirect_baser(its, baser, &order,
2648 							    ITS_MAX_VPEID_BITS);
2649 			break;
2650 		}
2651 
2652 		err = its_setup_baser(its, baser, cache, shr, order, indirect);
2653 		if (err < 0) {
2654 			its_free_tables(its);
2655 			return err;
2656 		}
2657 
2658 		/* Update settings which will be used for next BASERn */
2659 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2660 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2661 	}
2662 
2663 	return 0;
2664 }
2665 
2666 static u64 inherit_vpe_l1_table_from_its(void)
2667 {
2668 	struct its_node *its;
2669 	u64 val;
2670 	u32 aff;
2671 
2672 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2673 	aff = compute_common_aff(val);
2674 
2675 	list_for_each_entry(its, &its_nodes, entry) {
2676 		u64 baser, addr;
2677 
2678 		if (!is_v4_1(its))
2679 			continue;
2680 
2681 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2682 			continue;
2683 
2684 		if (aff != compute_its_aff(its))
2685 			continue;
2686 
2687 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2688 		baser = its->tables[2].val;
2689 		if (!(baser & GITS_BASER_VALID))
2690 			continue;
2691 
2692 		/* We have a winner! */
2693 		gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2694 
2695 		val  = GICR_VPROPBASER_4_1_VALID;
2696 		if (baser & GITS_BASER_INDIRECT)
2697 			val |= GICR_VPROPBASER_4_1_INDIRECT;
2698 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2699 				  FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2700 		switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2701 		case GIC_PAGE_SIZE_64K:
2702 			addr = GITS_BASER_ADDR_48_to_52(baser);
2703 			break;
2704 		default:
2705 			addr = baser & GENMASK_ULL(47, 12);
2706 			break;
2707 		}
2708 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2709 		val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2710 				  FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2711 		val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2712 				  FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2713 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2714 
2715 		return val;
2716 	}
2717 
2718 	return 0;
2719 }
2720 
2721 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2722 {
2723 	u32 aff;
2724 	u64 val;
2725 	int cpu;
2726 
2727 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2728 	aff = compute_common_aff(val);
2729 
2730 	for_each_possible_cpu(cpu) {
2731 		void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2732 
2733 		if (!base || cpu == smp_processor_id())
2734 			continue;
2735 
2736 		val = gic_read_typer(base + GICR_TYPER);
2737 		if (aff != compute_common_aff(val))
2738 			continue;
2739 
2740 		/*
2741 		 * At this point, we have a victim. This particular CPU
2742 		 * has already booted, and has an affinity that matches
2743 		 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2744 		 * Make sure we don't write the Z bit in that case.
2745 		 */
2746 		val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2747 		val &= ~GICR_VPROPBASER_4_1_Z;
2748 
2749 		gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2750 		*mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2751 
2752 		return val;
2753 	}
2754 
2755 	return 0;
2756 }
2757 
2758 static bool allocate_vpe_l2_table(int cpu, u32 id)
2759 {
2760 	void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2761 	unsigned int psz, esz, idx, npg, gpsz;
2762 	u64 val;
2763 	struct page *page;
2764 	__le64 *table;
2765 
2766 	if (!gic_rdists->has_rvpeid)
2767 		return true;
2768 
2769 	/* Skip non-present CPUs */
2770 	if (!base)
2771 		return true;
2772 
2773 	val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2774 
2775 	esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2776 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2777 	npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2778 
2779 	switch (gpsz) {
2780 	default:
2781 		WARN_ON(1);
2782 		fallthrough;
2783 	case GIC_PAGE_SIZE_4K:
2784 		psz = SZ_4K;
2785 		break;
2786 	case GIC_PAGE_SIZE_16K:
2787 		psz = SZ_16K;
2788 		break;
2789 	case GIC_PAGE_SIZE_64K:
2790 		psz = SZ_64K;
2791 		break;
2792 	}
2793 
2794 	/* Don't allow vpe_id that exceeds single, flat table limit */
2795 	if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2796 		return (id < (npg * psz / (esz * SZ_8)));
2797 
2798 	/* Compute 1st level table index & check if that exceeds table limit */
2799 	idx = id >> ilog2(psz / (esz * SZ_8));
2800 	if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2801 		return false;
2802 
2803 	table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2804 
2805 	/* Allocate memory for 2nd level table */
2806 	if (!table[idx]) {
2807 		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2808 		if (!page)
2809 			return false;
2810 
2811 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2812 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2813 			gic_flush_dcache_to_poc(page_address(page), psz);
2814 
2815 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2816 
2817 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2818 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2819 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2820 
2821 		/* Ensure updated table contents are visible to RD hardware */
2822 		dsb(sy);
2823 	}
2824 
2825 	return true;
2826 }
2827 
2828 static int allocate_vpe_l1_table(void)
2829 {
2830 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2831 	u64 val, gpsz, npg, pa;
2832 	unsigned int psz = SZ_64K;
2833 	unsigned int np, epp, esz;
2834 	struct page *page;
2835 
2836 	if (!gic_rdists->has_rvpeid)
2837 		return 0;
2838 
2839 	/*
2840 	 * if VPENDBASER.Valid is set, disable any previously programmed
2841 	 * VPE by setting PendingLast while clearing Valid. This has the
2842 	 * effect of making sure no doorbell will be generated and we can
2843 	 * then safely clear VPROPBASER.Valid.
2844 	 */
2845 	if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2846 		gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2847 				      vlpi_base + GICR_VPENDBASER);
2848 
2849 	/*
2850 	 * If we can inherit the configuration from another RD, let's do
2851 	 * so. Otherwise, we have to go through the allocation process. We
2852 	 * assume that all RDs have the exact same requirements, as
2853 	 * nothing will work otherwise.
2854 	 */
2855 	val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2856 	if (val & GICR_VPROPBASER_4_1_VALID)
2857 		goto out;
2858 
2859 	gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2860 	if (!gic_data_rdist()->vpe_table_mask)
2861 		return -ENOMEM;
2862 
2863 	val = inherit_vpe_l1_table_from_its();
2864 	if (val & GICR_VPROPBASER_4_1_VALID)
2865 		goto out;
2866 
2867 	/* First probe the page size */
2868 	val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2869 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2870 	val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2871 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2872 	esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2873 
2874 	switch (gpsz) {
2875 	default:
2876 		gpsz = GIC_PAGE_SIZE_4K;
2877 		fallthrough;
2878 	case GIC_PAGE_SIZE_4K:
2879 		psz = SZ_4K;
2880 		break;
2881 	case GIC_PAGE_SIZE_16K:
2882 		psz = SZ_16K;
2883 		break;
2884 	case GIC_PAGE_SIZE_64K:
2885 		psz = SZ_64K;
2886 		break;
2887 	}
2888 
2889 	/*
2890 	 * Start populating the register from scratch, including RO fields
2891 	 * (which we want to print in debug cases...)
2892 	 */
2893 	val = 0;
2894 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2895 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2896 
2897 	/* How many entries per GIC page? */
2898 	esz++;
2899 	epp = psz / (esz * SZ_8);
2900 
2901 	/*
2902 	 * If we need more than just a single L1 page, flag the table
2903 	 * as indirect and compute the number of required L1 pages.
2904 	 */
2905 	if (epp < ITS_MAX_VPEID) {
2906 		int nl2;
2907 
2908 		val |= GICR_VPROPBASER_4_1_INDIRECT;
2909 
2910 		/* Number of L2 pages required to cover the VPEID space */
2911 		nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2912 
2913 		/* Number of L1 pages to point to the L2 pages */
2914 		npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2915 	} else {
2916 		npg = 1;
2917 	}
2918 
2919 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2920 
2921 	/* Right, that's the number of CPU pages we need for L1 */
2922 	np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2923 
2924 	pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2925 		 np, npg, psz, epp, esz);
2926 	page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2927 	if (!page)
2928 		return -ENOMEM;
2929 
2930 	gic_data_rdist()->vpe_l1_base = page_address(page);
2931 	pa = virt_to_phys(page_address(page));
2932 	WARN_ON(!IS_ALIGNED(pa, psz));
2933 
2934 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2935 	val |= GICR_VPROPBASER_RaWb;
2936 	val |= GICR_VPROPBASER_InnerShareable;
2937 	val |= GICR_VPROPBASER_4_1_Z;
2938 	val |= GICR_VPROPBASER_4_1_VALID;
2939 
2940 out:
2941 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2942 	cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2943 
2944 	pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2945 		 smp_processor_id(), val,
2946 		 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2947 
2948 	return 0;
2949 }
2950 
2951 static int its_alloc_collections(struct its_node *its)
2952 {
2953 	int i;
2954 
2955 	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2956 				   GFP_KERNEL);
2957 	if (!its->collections)
2958 		return -ENOMEM;
2959 
2960 	for (i = 0; i < nr_cpu_ids; i++)
2961 		its->collections[i].target_address = ~0ULL;
2962 
2963 	return 0;
2964 }
2965 
2966 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2967 {
2968 	struct page *pend_page;
2969 
2970 	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2971 				get_order(LPI_PENDBASE_SZ));
2972 	if (!pend_page)
2973 		return NULL;
2974 
2975 	/* Make sure the GIC will observe the zero-ed page */
2976 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2977 
2978 	return pend_page;
2979 }
2980 
2981 static void its_free_pending_table(struct page *pt)
2982 {
2983 	free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2984 }
2985 
2986 /*
2987  * Booting with kdump and LPIs enabled is generally fine. Any other
2988  * case is wrong in the absence of firmware/EFI support.
2989  */
2990 static bool enabled_lpis_allowed(void)
2991 {
2992 	phys_addr_t addr;
2993 	u64 val;
2994 
2995 	/* Check whether the property table is in a reserved region */
2996 	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2997 	addr = val & GENMASK_ULL(51, 12);
2998 
2999 	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
3000 }
3001 
3002 static int __init allocate_lpi_tables(void)
3003 {
3004 	u64 val;
3005 	int err, cpu;
3006 
3007 	/*
3008 	 * If LPIs are enabled while we run this from the boot CPU,
3009 	 * flag the RD tables as pre-allocated if the stars do align.
3010 	 */
3011 	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
3012 	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
3013 		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
3014 				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
3015 		pr_info("GICv3: Using preallocated redistributor tables\n");
3016 	}
3017 
3018 	err = its_setup_lpi_prop_table();
3019 	if (err)
3020 		return err;
3021 
3022 	/*
3023 	 * We allocate all the pending tables anyway, as we may have a
3024 	 * mix of RDs that have had LPIs enabled, and some that
3025 	 * don't. We'll free the unused ones as each CPU comes online.
3026 	 */
3027 	for_each_possible_cpu(cpu) {
3028 		struct page *pend_page;
3029 
3030 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
3031 		if (!pend_page) {
3032 			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3033 			return -ENOMEM;
3034 		}
3035 
3036 		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3037 	}
3038 
3039 	return 0;
3040 }
3041 
3042 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3043 {
3044 	u32 count = 1000000;	/* 1s! */
3045 	bool clean;
3046 	u64 val;
3047 
3048 	do {
3049 		val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3050 		clean = !(val & GICR_VPENDBASER_Dirty);
3051 		if (!clean) {
3052 			count--;
3053 			cpu_relax();
3054 			udelay(1);
3055 		}
3056 	} while (!clean && count);
3057 
3058 	if (unlikely(!clean))
3059 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3060 
3061 	return val;
3062 }
3063 
3064 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3065 {
3066 	u64 val;
3067 
3068 	/* Make sure we wait until the RD is done with the initial scan */
3069 	val = read_vpend_dirty_clear(vlpi_base);
3070 	val &= ~GICR_VPENDBASER_Valid;
3071 	val &= ~clr;
3072 	val |= set;
3073 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3074 
3075 	val = read_vpend_dirty_clear(vlpi_base);
3076 	if (unlikely(val & GICR_VPENDBASER_Dirty))
3077 		val |= GICR_VPENDBASER_PendingLast;
3078 
3079 	return val;
3080 }
3081 
3082 static void its_cpu_init_lpis(void)
3083 {
3084 	void __iomem *rbase = gic_data_rdist_rd_base();
3085 	struct page *pend_page;
3086 	phys_addr_t paddr;
3087 	u64 val, tmp;
3088 
3089 	if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3090 		return;
3091 
3092 	val = readl_relaxed(rbase + GICR_CTLR);
3093 	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3094 	    (val & GICR_CTLR_ENABLE_LPIS)) {
3095 		/*
3096 		 * Check that we get the same property table on all
3097 		 * RDs. If we don't, this is hopeless.
3098 		 */
3099 		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3100 		paddr &= GENMASK_ULL(51, 12);
3101 		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3102 			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3103 
3104 		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3105 		paddr &= GENMASK_ULL(51, 16);
3106 
3107 		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3108 		gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
3109 
3110 		goto out;
3111 	}
3112 
3113 	pend_page = gic_data_rdist()->pend_page;
3114 	paddr = page_to_phys(pend_page);
3115 
3116 	/* set PROPBASE */
3117 	val = (gic_rdists->prop_table_pa |
3118 	       GICR_PROPBASER_InnerShareable |
3119 	       GICR_PROPBASER_RaWaWb |
3120 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3121 
3122 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3123 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3124 
3125 	if (gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE)
3126 		tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK;
3127 
3128 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3129 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3130 			/*
3131 			 * The HW reports non-shareable, we must
3132 			 * remove the cacheability attributes as
3133 			 * well.
3134 			 */
3135 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3136 				 GICR_PROPBASER_CACHEABILITY_MASK);
3137 			val |= GICR_PROPBASER_nC;
3138 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3139 		}
3140 		pr_info_once("GIC: using cache flushing for LPI property table\n");
3141 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3142 	}
3143 
3144 	/* set PENDBASE */
3145 	val = (page_to_phys(pend_page) |
3146 	       GICR_PENDBASER_InnerShareable |
3147 	       GICR_PENDBASER_RaWaWb);
3148 
3149 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3150 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3151 
3152 	if (gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE)
3153 		tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK;
3154 
3155 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3156 		/*
3157 		 * The HW reports non-shareable, we must remove the
3158 		 * cacheability attributes as well.
3159 		 */
3160 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3161 			 GICR_PENDBASER_CACHEABILITY_MASK);
3162 		val |= GICR_PENDBASER_nC;
3163 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3164 	}
3165 
3166 	/* Enable LPIs */
3167 	val = readl_relaxed(rbase + GICR_CTLR);
3168 	val |= GICR_CTLR_ENABLE_LPIS;
3169 	writel_relaxed(val, rbase + GICR_CTLR);
3170 
3171 	if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3172 		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3173 
3174 		/*
3175 		 * It's possible for CPU to receive VLPIs before it is
3176 		 * scheduled as a vPE, especially for the first CPU, and the
3177 		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3178 		 * as out of range and dropped by GIC.
3179 		 * So we initialize IDbits to known value to avoid VLPI drop.
3180 		 */
3181 		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3182 		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3183 			smp_processor_id(), val);
3184 		gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3185 
3186 		/*
3187 		 * Also clear Valid bit of GICR_VPENDBASER, in case some
3188 		 * ancient programming gets left in and has possibility of
3189 		 * corrupting memory.
3190 		 */
3191 		val = its_clear_vpend_valid(vlpi_base, 0, 0);
3192 	}
3193 
3194 	if (allocate_vpe_l1_table()) {
3195 		/*
3196 		 * If the allocation has failed, we're in massive trouble.
3197 		 * Disable direct injection, and pray that no VM was
3198 		 * already running...
3199 		 */
3200 		gic_rdists->has_rvpeid = false;
3201 		gic_rdists->has_vlpis = false;
3202 	}
3203 
3204 	/* Make sure the GIC has seen the above */
3205 	dsb(sy);
3206 out:
3207 	gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3208 	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3209 		smp_processor_id(),
3210 		gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3211 		"reserved" : "allocated",
3212 		&paddr);
3213 }
3214 
3215 static void its_cpu_init_collection(struct its_node *its)
3216 {
3217 	int cpu = smp_processor_id();
3218 	u64 target;
3219 
3220 	/* avoid cross node collections and its mapping */
3221 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3222 		struct device_node *cpu_node;
3223 
3224 		cpu_node = of_get_cpu_node(cpu, NULL);
3225 		if (its->numa_node != NUMA_NO_NODE &&
3226 			its->numa_node != of_node_to_nid(cpu_node))
3227 			return;
3228 	}
3229 
3230 	/*
3231 	 * We now have to bind each collection to its target
3232 	 * redistributor.
3233 	 */
3234 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3235 		/*
3236 		 * This ITS wants the physical address of the
3237 		 * redistributor.
3238 		 */
3239 		target = gic_data_rdist()->phys_base;
3240 	} else {
3241 		/* This ITS wants a linear CPU number. */
3242 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3243 		target = GICR_TYPER_CPU_NUMBER(target) << 16;
3244 	}
3245 
3246 	/* Perform collection mapping */
3247 	its->collections[cpu].target_address = target;
3248 	its->collections[cpu].col_id = cpu;
3249 
3250 	its_send_mapc(its, &its->collections[cpu], 1);
3251 	its_send_invall(its, &its->collections[cpu]);
3252 }
3253 
3254 static void its_cpu_init_collections(void)
3255 {
3256 	struct its_node *its;
3257 
3258 	raw_spin_lock(&its_lock);
3259 
3260 	list_for_each_entry(its, &its_nodes, entry)
3261 		its_cpu_init_collection(its);
3262 
3263 	raw_spin_unlock(&its_lock);
3264 }
3265 
3266 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3267 {
3268 	struct its_device *its_dev = NULL, *tmp;
3269 	unsigned long flags;
3270 
3271 	raw_spin_lock_irqsave(&its->lock, flags);
3272 
3273 	list_for_each_entry(tmp, &its->its_device_list, entry) {
3274 		if (tmp->device_id == dev_id) {
3275 			its_dev = tmp;
3276 			break;
3277 		}
3278 	}
3279 
3280 	raw_spin_unlock_irqrestore(&its->lock, flags);
3281 
3282 	return its_dev;
3283 }
3284 
3285 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3286 {
3287 	int i;
3288 
3289 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3290 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
3291 			return &its->tables[i];
3292 	}
3293 
3294 	return NULL;
3295 }
3296 
3297 static bool its_alloc_table_entry(struct its_node *its,
3298 				  struct its_baser *baser, u32 id)
3299 {
3300 	struct page *page;
3301 	u32 esz, idx;
3302 	__le64 *table;
3303 
3304 	/* Don't allow device id that exceeds single, flat table limit */
3305 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
3306 	if (!(baser->val & GITS_BASER_INDIRECT))
3307 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3308 
3309 	/* Compute 1st level table index & check if that exceeds table limit */
3310 	idx = id >> ilog2(baser->psz / esz);
3311 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3312 		return false;
3313 
3314 	table = baser->base;
3315 
3316 	/* Allocate memory for 2nd level table */
3317 	if (!table[idx]) {
3318 		page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3319 					get_order(baser->psz));
3320 		if (!page)
3321 			return false;
3322 
3323 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
3324 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3325 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
3326 
3327 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3328 
3329 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3330 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3331 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3332 
3333 		/* Ensure updated table contents are visible to ITS hardware */
3334 		dsb(sy);
3335 	}
3336 
3337 	return true;
3338 }
3339 
3340 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3341 {
3342 	struct its_baser *baser;
3343 
3344 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3345 
3346 	/* Don't allow device id that exceeds ITS hardware limit */
3347 	if (!baser)
3348 		return (ilog2(dev_id) < device_ids(its));
3349 
3350 	return its_alloc_table_entry(its, baser, dev_id);
3351 }
3352 
3353 static bool its_alloc_vpe_table(u32 vpe_id)
3354 {
3355 	struct its_node *its;
3356 	int cpu;
3357 
3358 	/*
3359 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3360 	 * could try and only do it on ITSs corresponding to devices
3361 	 * that have interrupts targeted at this VPE, but the
3362 	 * complexity becomes crazy (and you have tons of memory
3363 	 * anyway, right?).
3364 	 */
3365 	list_for_each_entry(its, &its_nodes, entry) {
3366 		struct its_baser *baser;
3367 
3368 		if (!is_v4(its))
3369 			continue;
3370 
3371 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3372 		if (!baser)
3373 			return false;
3374 
3375 		if (!its_alloc_table_entry(its, baser, vpe_id))
3376 			return false;
3377 	}
3378 
3379 	/* Non v4.1? No need to iterate RDs and go back early. */
3380 	if (!gic_rdists->has_rvpeid)
3381 		return true;
3382 
3383 	/*
3384 	 * Make sure the L2 tables are allocated for all copies of
3385 	 * the L1 table on *all* v4.1 RDs.
3386 	 */
3387 	for_each_possible_cpu(cpu) {
3388 		if (!allocate_vpe_l2_table(cpu, vpe_id))
3389 			return false;
3390 	}
3391 
3392 	return true;
3393 }
3394 
3395 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3396 					    int nvecs, bool alloc_lpis)
3397 {
3398 	struct its_device *dev;
3399 	unsigned long *lpi_map = NULL;
3400 	unsigned long flags;
3401 	u16 *col_map = NULL;
3402 	void *itt;
3403 	int lpi_base;
3404 	int nr_lpis;
3405 	int nr_ites;
3406 	int sz;
3407 
3408 	if (!its_alloc_device_table(its, dev_id))
3409 		return NULL;
3410 
3411 	if (WARN_ON(!is_power_of_2(nvecs)))
3412 		nvecs = roundup_pow_of_two(nvecs);
3413 
3414 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3415 	/*
3416 	 * Even if the device wants a single LPI, the ITT must be
3417 	 * sized as a power of two (and you need at least one bit...).
3418 	 */
3419 	nr_ites = max(2, nvecs);
3420 	sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3421 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3422 	itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3423 	if (alloc_lpis) {
3424 		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3425 		if (lpi_map)
3426 			col_map = kcalloc(nr_lpis, sizeof(*col_map),
3427 					  GFP_KERNEL);
3428 	} else {
3429 		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3430 		nr_lpis = 0;
3431 		lpi_base = 0;
3432 	}
3433 
3434 	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
3435 		kfree(dev);
3436 		kfree(itt);
3437 		bitmap_free(lpi_map);
3438 		kfree(col_map);
3439 		return NULL;
3440 	}
3441 
3442 	gic_flush_dcache_to_poc(itt, sz);
3443 
3444 	dev->its = its;
3445 	dev->itt = itt;
3446 	dev->nr_ites = nr_ites;
3447 	dev->event_map.lpi_map = lpi_map;
3448 	dev->event_map.col_map = col_map;
3449 	dev->event_map.lpi_base = lpi_base;
3450 	dev->event_map.nr_lpis = nr_lpis;
3451 	raw_spin_lock_init(&dev->event_map.vlpi_lock);
3452 	dev->device_id = dev_id;
3453 	INIT_LIST_HEAD(&dev->entry);
3454 
3455 	raw_spin_lock_irqsave(&its->lock, flags);
3456 	list_add(&dev->entry, &its->its_device_list);
3457 	raw_spin_unlock_irqrestore(&its->lock, flags);
3458 
3459 	/* Map device to its ITT */
3460 	its_send_mapd(dev, 1);
3461 
3462 	return dev;
3463 }
3464 
3465 static void its_free_device(struct its_device *its_dev)
3466 {
3467 	unsigned long flags;
3468 
3469 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3470 	list_del(&its_dev->entry);
3471 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3472 	kfree(its_dev->event_map.col_map);
3473 	kfree(its_dev->itt);
3474 	kfree(its_dev);
3475 }
3476 
3477 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3478 {
3479 	int idx;
3480 
3481 	/* Find a free LPI region in lpi_map and allocate them. */
3482 	idx = bitmap_find_free_region(dev->event_map.lpi_map,
3483 				      dev->event_map.nr_lpis,
3484 				      get_count_order(nvecs));
3485 	if (idx < 0)
3486 		return -ENOSPC;
3487 
3488 	*hwirq = dev->event_map.lpi_base + idx;
3489 
3490 	return 0;
3491 }
3492 
3493 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3494 			   int nvec, msi_alloc_info_t *info)
3495 {
3496 	struct its_node *its;
3497 	struct its_device *its_dev;
3498 	struct msi_domain_info *msi_info;
3499 	u32 dev_id;
3500 	int err = 0;
3501 
3502 	/*
3503 	 * We ignore "dev" entirely, and rely on the dev_id that has
3504 	 * been passed via the scratchpad. This limits this domain's
3505 	 * usefulness to upper layers that definitely know that they
3506 	 * are built on top of the ITS.
3507 	 */
3508 	dev_id = info->scratchpad[0].ul;
3509 
3510 	msi_info = msi_get_domain_info(domain);
3511 	its = msi_info->data;
3512 
3513 	if (!gic_rdists->has_direct_lpi &&
3514 	    vpe_proxy.dev &&
3515 	    vpe_proxy.dev->its == its &&
3516 	    dev_id == vpe_proxy.dev->device_id) {
3517 		/* Bad luck. Get yourself a better implementation */
3518 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3519 			  dev_id);
3520 		return -EINVAL;
3521 	}
3522 
3523 	mutex_lock(&its->dev_alloc_lock);
3524 	its_dev = its_find_device(its, dev_id);
3525 	if (its_dev) {
3526 		/*
3527 		 * We already have seen this ID, probably through
3528 		 * another alias (PCI bridge of some sort). No need to
3529 		 * create the device.
3530 		 */
3531 		its_dev->shared = true;
3532 		pr_debug("Reusing ITT for devID %x\n", dev_id);
3533 		goto out;
3534 	}
3535 
3536 	its_dev = its_create_device(its, dev_id, nvec, true);
3537 	if (!its_dev) {
3538 		err = -ENOMEM;
3539 		goto out;
3540 	}
3541 
3542 	if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3543 		its_dev->shared = true;
3544 
3545 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3546 out:
3547 	mutex_unlock(&its->dev_alloc_lock);
3548 	info->scratchpad[0].ptr = its_dev;
3549 	return err;
3550 }
3551 
3552 static struct msi_domain_ops its_msi_domain_ops = {
3553 	.msi_prepare	= its_msi_prepare,
3554 };
3555 
3556 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3557 				    unsigned int virq,
3558 				    irq_hw_number_t hwirq)
3559 {
3560 	struct irq_fwspec fwspec;
3561 
3562 	if (irq_domain_get_of_node(domain->parent)) {
3563 		fwspec.fwnode = domain->parent->fwnode;
3564 		fwspec.param_count = 3;
3565 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3566 		fwspec.param[1] = hwirq;
3567 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3568 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3569 		fwspec.fwnode = domain->parent->fwnode;
3570 		fwspec.param_count = 2;
3571 		fwspec.param[0] = hwirq;
3572 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3573 	} else {
3574 		return -EINVAL;
3575 	}
3576 
3577 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3578 }
3579 
3580 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3581 				unsigned int nr_irqs, void *args)
3582 {
3583 	msi_alloc_info_t *info = args;
3584 	struct its_device *its_dev = info->scratchpad[0].ptr;
3585 	struct its_node *its = its_dev->its;
3586 	struct irq_data *irqd;
3587 	irq_hw_number_t hwirq;
3588 	int err;
3589 	int i;
3590 
3591 	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3592 	if (err)
3593 		return err;
3594 
3595 	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3596 	if (err)
3597 		return err;
3598 
3599 	for (i = 0; i < nr_irqs; i++) {
3600 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3601 		if (err)
3602 			return err;
3603 
3604 		irq_domain_set_hwirq_and_chip(domain, virq + i,
3605 					      hwirq + i, &its_irq_chip, its_dev);
3606 		irqd = irq_get_irq_data(virq + i);
3607 		irqd_set_single_target(irqd);
3608 		irqd_set_affinity_on_activate(irqd);
3609 		irqd_set_resend_when_in_progress(irqd);
3610 		pr_debug("ID:%d pID:%d vID:%d\n",
3611 			 (int)(hwirq + i - its_dev->event_map.lpi_base),
3612 			 (int)(hwirq + i), virq + i);
3613 	}
3614 
3615 	return 0;
3616 }
3617 
3618 static int its_irq_domain_activate(struct irq_domain *domain,
3619 				   struct irq_data *d, bool reserve)
3620 {
3621 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3622 	u32 event = its_get_event_id(d);
3623 	int cpu;
3624 
3625 	cpu = its_select_cpu(d, cpu_online_mask);
3626 	if (cpu < 0 || cpu >= nr_cpu_ids)
3627 		return -EINVAL;
3628 
3629 	its_inc_lpi_count(d, cpu);
3630 	its_dev->event_map.col_map[event] = cpu;
3631 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3632 
3633 	/* Map the GIC IRQ and event to the device */
3634 	its_send_mapti(its_dev, d->hwirq, event);
3635 	return 0;
3636 }
3637 
3638 static void its_irq_domain_deactivate(struct irq_domain *domain,
3639 				      struct irq_data *d)
3640 {
3641 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3642 	u32 event = its_get_event_id(d);
3643 
3644 	its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3645 	/* Stop the delivery of interrupts */
3646 	its_send_discard(its_dev, event);
3647 }
3648 
3649 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3650 				unsigned int nr_irqs)
3651 {
3652 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3653 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3654 	struct its_node *its = its_dev->its;
3655 	int i;
3656 
3657 	bitmap_release_region(its_dev->event_map.lpi_map,
3658 			      its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3659 			      get_count_order(nr_irqs));
3660 
3661 	for (i = 0; i < nr_irqs; i++) {
3662 		struct irq_data *data = irq_domain_get_irq_data(domain,
3663 								virq + i);
3664 		/* Nuke the entry in the domain */
3665 		irq_domain_reset_irq_data(data);
3666 	}
3667 
3668 	mutex_lock(&its->dev_alloc_lock);
3669 
3670 	/*
3671 	 * If all interrupts have been freed, start mopping the
3672 	 * floor. This is conditioned on the device not being shared.
3673 	 */
3674 	if (!its_dev->shared &&
3675 	    bitmap_empty(its_dev->event_map.lpi_map,
3676 			 its_dev->event_map.nr_lpis)) {
3677 		its_lpi_free(its_dev->event_map.lpi_map,
3678 			     its_dev->event_map.lpi_base,
3679 			     its_dev->event_map.nr_lpis);
3680 
3681 		/* Unmap device/itt */
3682 		its_send_mapd(its_dev, 0);
3683 		its_free_device(its_dev);
3684 	}
3685 
3686 	mutex_unlock(&its->dev_alloc_lock);
3687 
3688 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3689 }
3690 
3691 static const struct irq_domain_ops its_domain_ops = {
3692 	.alloc			= its_irq_domain_alloc,
3693 	.free			= its_irq_domain_free,
3694 	.activate		= its_irq_domain_activate,
3695 	.deactivate		= its_irq_domain_deactivate,
3696 };
3697 
3698 /*
3699  * This is insane.
3700  *
3701  * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3702  * likely), the only way to perform an invalidate is to use a fake
3703  * device to issue an INV command, implying that the LPI has first
3704  * been mapped to some event on that device. Since this is not exactly
3705  * cheap, we try to keep that mapping around as long as possible, and
3706  * only issue an UNMAP if we're short on available slots.
3707  *
3708  * Broken by design(tm).
3709  *
3710  * GICv4.1, on the other hand, mandates that we're able to invalidate
3711  * by writing to a MMIO register. It doesn't implement the whole of
3712  * DirectLPI, but that's good enough. And most of the time, we don't
3713  * even have to invalidate anything, as the redistributor can be told
3714  * whether to generate a doorbell or not (we thus leave it enabled,
3715  * always).
3716  */
3717 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3718 {
3719 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3720 	if (gic_rdists->has_rvpeid)
3721 		return;
3722 
3723 	/* Already unmapped? */
3724 	if (vpe->vpe_proxy_event == -1)
3725 		return;
3726 
3727 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3728 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3729 
3730 	/*
3731 	 * We don't track empty slots at all, so let's move the
3732 	 * next_victim pointer if we can quickly reuse that slot
3733 	 * instead of nuking an existing entry. Not clear that this is
3734 	 * always a win though, and this might just generate a ripple
3735 	 * effect... Let's just hope VPEs don't migrate too often.
3736 	 */
3737 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3738 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
3739 
3740 	vpe->vpe_proxy_event = -1;
3741 }
3742 
3743 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3744 {
3745 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3746 	if (gic_rdists->has_rvpeid)
3747 		return;
3748 
3749 	if (!gic_rdists->has_direct_lpi) {
3750 		unsigned long flags;
3751 
3752 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3753 		its_vpe_db_proxy_unmap_locked(vpe);
3754 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3755 	}
3756 }
3757 
3758 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3759 {
3760 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3761 	if (gic_rdists->has_rvpeid)
3762 		return;
3763 
3764 	/* Already mapped? */
3765 	if (vpe->vpe_proxy_event != -1)
3766 		return;
3767 
3768 	/* This slot was already allocated. Kick the other VPE out. */
3769 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3770 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3771 
3772 	/* Map the new VPE instead */
3773 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3774 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
3775 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3776 
3777 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3778 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3779 }
3780 
3781 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3782 {
3783 	unsigned long flags;
3784 	struct its_collection *target_col;
3785 
3786 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3787 	if (gic_rdists->has_rvpeid)
3788 		return;
3789 
3790 	if (gic_rdists->has_direct_lpi) {
3791 		void __iomem *rdbase;
3792 
3793 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3794 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3795 		wait_for_syncr(rdbase);
3796 
3797 		return;
3798 	}
3799 
3800 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3801 
3802 	its_vpe_db_proxy_map_locked(vpe);
3803 
3804 	target_col = &vpe_proxy.dev->its->collections[to];
3805 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3806 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3807 
3808 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3809 }
3810 
3811 static int its_vpe_set_affinity(struct irq_data *d,
3812 				const struct cpumask *mask_val,
3813 				bool force)
3814 {
3815 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3816 	int from, cpu = cpumask_first(mask_val);
3817 	unsigned long flags;
3818 
3819 	/*
3820 	 * Changing affinity is mega expensive, so let's be as lazy as
3821 	 * we can and only do it if we really have to. Also, if mapped
3822 	 * into the proxy device, we need to move the doorbell
3823 	 * interrupt to its new location.
3824 	 *
3825 	 * Another thing is that changing the affinity of a vPE affects
3826 	 * *other interrupts* such as all the vLPIs that are routed to
3827 	 * this vPE. This means that the irq_desc lock is not enough to
3828 	 * protect us, and that we must ensure nobody samples vpe->col_idx
3829 	 * during the update, hence the lock below which must also be
3830 	 * taken on any vLPI handling path that evaluates vpe->col_idx.
3831 	 */
3832 	from = vpe_to_cpuid_lock(vpe, &flags);
3833 	if (from == cpu)
3834 		goto out;
3835 
3836 	vpe->col_idx = cpu;
3837 
3838 	/*
3839 	 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD
3840 	 * is sharing its VPE table with the current one.
3841 	 */
3842 	if (gic_data_rdist_cpu(cpu)->vpe_table_mask &&
3843 	    cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask))
3844 		goto out;
3845 
3846 	its_send_vmovp(vpe);
3847 	its_vpe_db_proxy_move(vpe, from, cpu);
3848 
3849 out:
3850 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3851 	vpe_to_cpuid_unlock(vpe, flags);
3852 
3853 	return IRQ_SET_MASK_OK_DONE;
3854 }
3855 
3856 static void its_wait_vpt_parse_complete(void)
3857 {
3858 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3859 	u64 val;
3860 
3861 	if (!gic_rdists->has_vpend_valid_dirty)
3862 		return;
3863 
3864 	WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3865 						       val,
3866 						       !(val & GICR_VPENDBASER_Dirty),
3867 						       1, 500));
3868 }
3869 
3870 static void its_vpe_schedule(struct its_vpe *vpe)
3871 {
3872 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3873 	u64 val;
3874 
3875 	/* Schedule the VPE */
3876 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3877 		GENMASK_ULL(51, 12);
3878 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3879 	val |= GICR_VPROPBASER_RaWb;
3880 	val |= GICR_VPROPBASER_InnerShareable;
3881 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3882 
3883 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
3884 		GENMASK_ULL(51, 16);
3885 	val |= GICR_VPENDBASER_RaWaWb;
3886 	val |= GICR_VPENDBASER_InnerShareable;
3887 	/*
3888 	 * There is no good way of finding out if the pending table is
3889 	 * empty as we can race against the doorbell interrupt very
3890 	 * easily. So in the end, vpe->pending_last is only an
3891 	 * indication that the vcpu has something pending, not one
3892 	 * that the pending table is empty. A good implementation
3893 	 * would be able to read its coarse map pretty quickly anyway,
3894 	 * making this a tolerable issue.
3895 	 */
3896 	val |= GICR_VPENDBASER_PendingLast;
3897 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3898 	val |= GICR_VPENDBASER_Valid;
3899 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3900 }
3901 
3902 static void its_vpe_deschedule(struct its_vpe *vpe)
3903 {
3904 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3905 	u64 val;
3906 
3907 	val = its_clear_vpend_valid(vlpi_base, 0, 0);
3908 
3909 	vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3910 	vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3911 }
3912 
3913 static void its_vpe_invall(struct its_vpe *vpe)
3914 {
3915 	struct its_node *its;
3916 
3917 	list_for_each_entry(its, &its_nodes, entry) {
3918 		if (!is_v4(its))
3919 			continue;
3920 
3921 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3922 			continue;
3923 
3924 		/*
3925 		 * Sending a VINVALL to a single ITS is enough, as all
3926 		 * we need is to reach the redistributors.
3927 		 */
3928 		its_send_vinvall(its, vpe);
3929 		return;
3930 	}
3931 }
3932 
3933 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3934 {
3935 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3936 	struct its_cmd_info *info = vcpu_info;
3937 
3938 	switch (info->cmd_type) {
3939 	case SCHEDULE_VPE:
3940 		its_vpe_schedule(vpe);
3941 		return 0;
3942 
3943 	case DESCHEDULE_VPE:
3944 		its_vpe_deschedule(vpe);
3945 		return 0;
3946 
3947 	case COMMIT_VPE:
3948 		its_wait_vpt_parse_complete();
3949 		return 0;
3950 
3951 	case INVALL_VPE:
3952 		its_vpe_invall(vpe);
3953 		return 0;
3954 
3955 	default:
3956 		return -EINVAL;
3957 	}
3958 }
3959 
3960 static void its_vpe_send_cmd(struct its_vpe *vpe,
3961 			     void (*cmd)(struct its_device *, u32))
3962 {
3963 	unsigned long flags;
3964 
3965 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3966 
3967 	its_vpe_db_proxy_map_locked(vpe);
3968 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3969 
3970 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3971 }
3972 
3973 static void its_vpe_send_inv(struct irq_data *d)
3974 {
3975 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3976 
3977 	if (gic_rdists->has_direct_lpi)
3978 		__direct_lpi_inv(d, d->parent_data->hwirq);
3979 	else
3980 		its_vpe_send_cmd(vpe, its_send_inv);
3981 }
3982 
3983 static void its_vpe_mask_irq(struct irq_data *d)
3984 {
3985 	/*
3986 	 * We need to unmask the LPI, which is described by the parent
3987 	 * irq_data. Instead of calling into the parent (which won't
3988 	 * exactly do the right thing, let's simply use the
3989 	 * parent_data pointer. Yes, I'm naughty.
3990 	 */
3991 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3992 	its_vpe_send_inv(d);
3993 }
3994 
3995 static void its_vpe_unmask_irq(struct irq_data *d)
3996 {
3997 	/* Same hack as above... */
3998 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
3999 	its_vpe_send_inv(d);
4000 }
4001 
4002 static int its_vpe_set_irqchip_state(struct irq_data *d,
4003 				     enum irqchip_irq_state which,
4004 				     bool state)
4005 {
4006 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4007 
4008 	if (which != IRQCHIP_STATE_PENDING)
4009 		return -EINVAL;
4010 
4011 	if (gic_rdists->has_direct_lpi) {
4012 		void __iomem *rdbase;
4013 
4014 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4015 		if (state) {
4016 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4017 		} else {
4018 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4019 			wait_for_syncr(rdbase);
4020 		}
4021 	} else {
4022 		if (state)
4023 			its_vpe_send_cmd(vpe, its_send_int);
4024 		else
4025 			its_vpe_send_cmd(vpe, its_send_clear);
4026 	}
4027 
4028 	return 0;
4029 }
4030 
4031 static int its_vpe_retrigger(struct irq_data *d)
4032 {
4033 	return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4034 }
4035 
4036 static struct irq_chip its_vpe_irq_chip = {
4037 	.name			= "GICv4-vpe",
4038 	.irq_mask		= its_vpe_mask_irq,
4039 	.irq_unmask		= its_vpe_unmask_irq,
4040 	.irq_eoi		= irq_chip_eoi_parent,
4041 	.irq_set_affinity	= its_vpe_set_affinity,
4042 	.irq_retrigger		= its_vpe_retrigger,
4043 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
4044 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
4045 };
4046 
4047 static struct its_node *find_4_1_its(void)
4048 {
4049 	static struct its_node *its = NULL;
4050 
4051 	if (!its) {
4052 		list_for_each_entry(its, &its_nodes, entry) {
4053 			if (is_v4_1(its))
4054 				return its;
4055 		}
4056 
4057 		/* Oops? */
4058 		its = NULL;
4059 	}
4060 
4061 	return its;
4062 }
4063 
4064 static void its_vpe_4_1_send_inv(struct irq_data *d)
4065 {
4066 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4067 	struct its_node *its;
4068 
4069 	/*
4070 	 * GICv4.1 wants doorbells to be invalidated using the
4071 	 * INVDB command in order to be broadcast to all RDs. Send
4072 	 * it to the first valid ITS, and let the HW do its magic.
4073 	 */
4074 	its = find_4_1_its();
4075 	if (its)
4076 		its_send_invdb(its, vpe);
4077 }
4078 
4079 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4080 {
4081 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4082 	its_vpe_4_1_send_inv(d);
4083 }
4084 
4085 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4086 {
4087 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4088 	its_vpe_4_1_send_inv(d);
4089 }
4090 
4091 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4092 				 struct its_cmd_info *info)
4093 {
4094 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4095 	u64 val = 0;
4096 
4097 	/* Schedule the VPE */
4098 	val |= GICR_VPENDBASER_Valid;
4099 	val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4100 	val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4101 	val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4102 
4103 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4104 }
4105 
4106 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4107 				   struct its_cmd_info *info)
4108 {
4109 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4110 	u64 val;
4111 
4112 	if (info->req_db) {
4113 		unsigned long flags;
4114 
4115 		/*
4116 		 * vPE is going to block: make the vPE non-resident with
4117 		 * PendingLast clear and DB set. The GIC guarantees that if
4118 		 * we read-back PendingLast clear, then a doorbell will be
4119 		 * delivered when an interrupt comes.
4120 		 *
4121 		 * Note the locking to deal with the concurrent update of
4122 		 * pending_last from the doorbell interrupt handler that can
4123 		 * run concurrently.
4124 		 */
4125 		raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4126 		val = its_clear_vpend_valid(vlpi_base,
4127 					    GICR_VPENDBASER_PendingLast,
4128 					    GICR_VPENDBASER_4_1_DB);
4129 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4130 		raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4131 	} else {
4132 		/*
4133 		 * We're not blocking, so just make the vPE non-resident
4134 		 * with PendingLast set, indicating that we'll be back.
4135 		 */
4136 		val = its_clear_vpend_valid(vlpi_base,
4137 					    0,
4138 					    GICR_VPENDBASER_PendingLast);
4139 		vpe->pending_last = true;
4140 	}
4141 }
4142 
4143 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4144 {
4145 	void __iomem *rdbase;
4146 	unsigned long flags;
4147 	u64 val;
4148 	int cpu;
4149 
4150 	val  = GICR_INVALLR_V;
4151 	val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4152 
4153 	/* Target the redistributor this vPE is currently known on */
4154 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4155 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4156 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4157 	gic_write_lpir(val, rdbase + GICR_INVALLR);
4158 
4159 	wait_for_syncr(rdbase);
4160 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4161 	vpe_to_cpuid_unlock(vpe, flags);
4162 }
4163 
4164 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4165 {
4166 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4167 	struct its_cmd_info *info = vcpu_info;
4168 
4169 	switch (info->cmd_type) {
4170 	case SCHEDULE_VPE:
4171 		its_vpe_4_1_schedule(vpe, info);
4172 		return 0;
4173 
4174 	case DESCHEDULE_VPE:
4175 		its_vpe_4_1_deschedule(vpe, info);
4176 		return 0;
4177 
4178 	case COMMIT_VPE:
4179 		its_wait_vpt_parse_complete();
4180 		return 0;
4181 
4182 	case INVALL_VPE:
4183 		its_vpe_4_1_invall(vpe);
4184 		return 0;
4185 
4186 	default:
4187 		return -EINVAL;
4188 	}
4189 }
4190 
4191 static struct irq_chip its_vpe_4_1_irq_chip = {
4192 	.name			= "GICv4.1-vpe",
4193 	.irq_mask		= its_vpe_4_1_mask_irq,
4194 	.irq_unmask		= its_vpe_4_1_unmask_irq,
4195 	.irq_eoi		= irq_chip_eoi_parent,
4196 	.irq_set_affinity	= its_vpe_set_affinity,
4197 	.irq_set_vcpu_affinity	= its_vpe_4_1_set_vcpu_affinity,
4198 };
4199 
4200 static void its_configure_sgi(struct irq_data *d, bool clear)
4201 {
4202 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4203 	struct its_cmd_desc desc;
4204 
4205 	desc.its_vsgi_cmd.vpe = vpe;
4206 	desc.its_vsgi_cmd.sgi = d->hwirq;
4207 	desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4208 	desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4209 	desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4210 	desc.its_vsgi_cmd.clear = clear;
4211 
4212 	/*
4213 	 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4214 	 * destination VPE is mapped there. Since we map them eagerly at
4215 	 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4216 	 */
4217 	its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4218 }
4219 
4220 static void its_sgi_mask_irq(struct irq_data *d)
4221 {
4222 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4223 
4224 	vpe->sgi_config[d->hwirq].enabled = false;
4225 	its_configure_sgi(d, false);
4226 }
4227 
4228 static void its_sgi_unmask_irq(struct irq_data *d)
4229 {
4230 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4231 
4232 	vpe->sgi_config[d->hwirq].enabled = true;
4233 	its_configure_sgi(d, false);
4234 }
4235 
4236 static int its_sgi_set_affinity(struct irq_data *d,
4237 				const struct cpumask *mask_val,
4238 				bool force)
4239 {
4240 	/*
4241 	 * There is no notion of affinity for virtual SGIs, at least
4242 	 * not on the host (since they can only be targeting a vPE).
4243 	 * Tell the kernel we've done whatever it asked for.
4244 	 */
4245 	irq_data_update_effective_affinity(d, mask_val);
4246 	return IRQ_SET_MASK_OK;
4247 }
4248 
4249 static int its_sgi_set_irqchip_state(struct irq_data *d,
4250 				     enum irqchip_irq_state which,
4251 				     bool state)
4252 {
4253 	if (which != IRQCHIP_STATE_PENDING)
4254 		return -EINVAL;
4255 
4256 	if (state) {
4257 		struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4258 		struct its_node *its = find_4_1_its();
4259 		u64 val;
4260 
4261 		val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4262 		val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4263 		writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4264 	} else {
4265 		its_configure_sgi(d, true);
4266 	}
4267 
4268 	return 0;
4269 }
4270 
4271 static int its_sgi_get_irqchip_state(struct irq_data *d,
4272 				     enum irqchip_irq_state which, bool *val)
4273 {
4274 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4275 	void __iomem *base;
4276 	unsigned long flags;
4277 	u32 count = 1000000;	/* 1s! */
4278 	u32 status;
4279 	int cpu;
4280 
4281 	if (which != IRQCHIP_STATE_PENDING)
4282 		return -EINVAL;
4283 
4284 	/*
4285 	 * Locking galore! We can race against two different events:
4286 	 *
4287 	 * - Concurrent vPE affinity change: we must make sure it cannot
4288 	 *   happen, or we'll talk to the wrong redistributor. This is
4289 	 *   identical to what happens with vLPIs.
4290 	 *
4291 	 * - Concurrent VSGIPENDR access: As it involves accessing two
4292 	 *   MMIO registers, this must be made atomic one way or another.
4293 	 */
4294 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4295 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4296 	base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4297 	writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4298 	do {
4299 		status = readl_relaxed(base + GICR_VSGIPENDR);
4300 		if (!(status & GICR_VSGIPENDR_BUSY))
4301 			goto out;
4302 
4303 		count--;
4304 		if (!count) {
4305 			pr_err_ratelimited("Unable to get SGI status\n");
4306 			goto out;
4307 		}
4308 		cpu_relax();
4309 		udelay(1);
4310 	} while (count);
4311 
4312 out:
4313 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4314 	vpe_to_cpuid_unlock(vpe, flags);
4315 
4316 	if (!count)
4317 		return -ENXIO;
4318 
4319 	*val = !!(status & (1 << d->hwirq));
4320 
4321 	return 0;
4322 }
4323 
4324 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4325 {
4326 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4327 	struct its_cmd_info *info = vcpu_info;
4328 
4329 	switch (info->cmd_type) {
4330 	case PROP_UPDATE_VSGI:
4331 		vpe->sgi_config[d->hwirq].priority = info->priority;
4332 		vpe->sgi_config[d->hwirq].group = info->group;
4333 		its_configure_sgi(d, false);
4334 		return 0;
4335 
4336 	default:
4337 		return -EINVAL;
4338 	}
4339 }
4340 
4341 static struct irq_chip its_sgi_irq_chip = {
4342 	.name			= "GICv4.1-sgi",
4343 	.irq_mask		= its_sgi_mask_irq,
4344 	.irq_unmask		= its_sgi_unmask_irq,
4345 	.irq_set_affinity	= its_sgi_set_affinity,
4346 	.irq_set_irqchip_state	= its_sgi_set_irqchip_state,
4347 	.irq_get_irqchip_state	= its_sgi_get_irqchip_state,
4348 	.irq_set_vcpu_affinity	= its_sgi_set_vcpu_affinity,
4349 };
4350 
4351 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4352 				    unsigned int virq, unsigned int nr_irqs,
4353 				    void *args)
4354 {
4355 	struct its_vpe *vpe = args;
4356 	int i;
4357 
4358 	/* Yes, we do want 16 SGIs */
4359 	WARN_ON(nr_irqs != 16);
4360 
4361 	for (i = 0; i < 16; i++) {
4362 		vpe->sgi_config[i].priority = 0;
4363 		vpe->sgi_config[i].enabled = false;
4364 		vpe->sgi_config[i].group = false;
4365 
4366 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4367 					      &its_sgi_irq_chip, vpe);
4368 		irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4369 	}
4370 
4371 	return 0;
4372 }
4373 
4374 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4375 				    unsigned int virq,
4376 				    unsigned int nr_irqs)
4377 {
4378 	/* Nothing to do */
4379 }
4380 
4381 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4382 				       struct irq_data *d, bool reserve)
4383 {
4384 	/* Write out the initial SGI configuration */
4385 	its_configure_sgi(d, false);
4386 	return 0;
4387 }
4388 
4389 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4390 					  struct irq_data *d)
4391 {
4392 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4393 
4394 	/*
4395 	 * The VSGI command is awkward:
4396 	 *
4397 	 * - To change the configuration, CLEAR must be set to false,
4398 	 *   leaving the pending bit unchanged.
4399 	 * - To clear the pending bit, CLEAR must be set to true, leaving
4400 	 *   the configuration unchanged.
4401 	 *
4402 	 * You just can't do both at once, hence the two commands below.
4403 	 */
4404 	vpe->sgi_config[d->hwirq].enabled = false;
4405 	its_configure_sgi(d, false);
4406 	its_configure_sgi(d, true);
4407 }
4408 
4409 static const struct irq_domain_ops its_sgi_domain_ops = {
4410 	.alloc		= its_sgi_irq_domain_alloc,
4411 	.free		= its_sgi_irq_domain_free,
4412 	.activate	= its_sgi_irq_domain_activate,
4413 	.deactivate	= its_sgi_irq_domain_deactivate,
4414 };
4415 
4416 static int its_vpe_id_alloc(void)
4417 {
4418 	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4419 }
4420 
4421 static void its_vpe_id_free(u16 id)
4422 {
4423 	ida_simple_remove(&its_vpeid_ida, id);
4424 }
4425 
4426 static int its_vpe_init(struct its_vpe *vpe)
4427 {
4428 	struct page *vpt_page;
4429 	int vpe_id;
4430 
4431 	/* Allocate vpe_id */
4432 	vpe_id = its_vpe_id_alloc();
4433 	if (vpe_id < 0)
4434 		return vpe_id;
4435 
4436 	/* Allocate VPT */
4437 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
4438 	if (!vpt_page) {
4439 		its_vpe_id_free(vpe_id);
4440 		return -ENOMEM;
4441 	}
4442 
4443 	if (!its_alloc_vpe_table(vpe_id)) {
4444 		its_vpe_id_free(vpe_id);
4445 		its_free_pending_table(vpt_page);
4446 		return -ENOMEM;
4447 	}
4448 
4449 	raw_spin_lock_init(&vpe->vpe_lock);
4450 	vpe->vpe_id = vpe_id;
4451 	vpe->vpt_page = vpt_page;
4452 	if (gic_rdists->has_rvpeid)
4453 		atomic_set(&vpe->vmapp_count, 0);
4454 	else
4455 		vpe->vpe_proxy_event = -1;
4456 
4457 	return 0;
4458 }
4459 
4460 static void its_vpe_teardown(struct its_vpe *vpe)
4461 {
4462 	its_vpe_db_proxy_unmap(vpe);
4463 	its_vpe_id_free(vpe->vpe_id);
4464 	its_free_pending_table(vpe->vpt_page);
4465 }
4466 
4467 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4468 				    unsigned int virq,
4469 				    unsigned int nr_irqs)
4470 {
4471 	struct its_vm *vm = domain->host_data;
4472 	int i;
4473 
4474 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4475 
4476 	for (i = 0; i < nr_irqs; i++) {
4477 		struct irq_data *data = irq_domain_get_irq_data(domain,
4478 								virq + i);
4479 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4480 
4481 		BUG_ON(vm != vpe->its_vm);
4482 
4483 		clear_bit(data->hwirq, vm->db_bitmap);
4484 		its_vpe_teardown(vpe);
4485 		irq_domain_reset_irq_data(data);
4486 	}
4487 
4488 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4489 		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4490 		its_free_prop_table(vm->vprop_page);
4491 	}
4492 }
4493 
4494 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4495 				    unsigned int nr_irqs, void *args)
4496 {
4497 	struct irq_chip *irqchip = &its_vpe_irq_chip;
4498 	struct its_vm *vm = args;
4499 	unsigned long *bitmap;
4500 	struct page *vprop_page;
4501 	int base, nr_ids, i, err = 0;
4502 
4503 	BUG_ON(!vm);
4504 
4505 	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4506 	if (!bitmap)
4507 		return -ENOMEM;
4508 
4509 	if (nr_ids < nr_irqs) {
4510 		its_lpi_free(bitmap, base, nr_ids);
4511 		return -ENOMEM;
4512 	}
4513 
4514 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
4515 	if (!vprop_page) {
4516 		its_lpi_free(bitmap, base, nr_ids);
4517 		return -ENOMEM;
4518 	}
4519 
4520 	vm->db_bitmap = bitmap;
4521 	vm->db_lpi_base = base;
4522 	vm->nr_db_lpis = nr_ids;
4523 	vm->vprop_page = vprop_page;
4524 
4525 	if (gic_rdists->has_rvpeid)
4526 		irqchip = &its_vpe_4_1_irq_chip;
4527 
4528 	for (i = 0; i < nr_irqs; i++) {
4529 		vm->vpes[i]->vpe_db_lpi = base + i;
4530 		err = its_vpe_init(vm->vpes[i]);
4531 		if (err)
4532 			break;
4533 		err = its_irq_gic_domain_alloc(domain, virq + i,
4534 					       vm->vpes[i]->vpe_db_lpi);
4535 		if (err)
4536 			break;
4537 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4538 					      irqchip, vm->vpes[i]);
4539 		set_bit(i, bitmap);
4540 		irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i));
4541 	}
4542 
4543 	if (err) {
4544 		if (i > 0)
4545 			its_vpe_irq_domain_free(domain, virq, i);
4546 
4547 		its_lpi_free(bitmap, base, nr_ids);
4548 		its_free_prop_table(vprop_page);
4549 	}
4550 
4551 	return err;
4552 }
4553 
4554 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4555 				       struct irq_data *d, bool reserve)
4556 {
4557 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4558 	struct its_node *its;
4559 
4560 	/*
4561 	 * If we use the list map, we issue VMAPP on demand... Unless
4562 	 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4563 	 * so that VSGIs can work.
4564 	 */
4565 	if (!gic_requires_eager_mapping())
4566 		return 0;
4567 
4568 	/* Map the VPE to the first possible CPU */
4569 	vpe->col_idx = cpumask_first(cpu_online_mask);
4570 
4571 	list_for_each_entry(its, &its_nodes, entry) {
4572 		if (!is_v4(its))
4573 			continue;
4574 
4575 		its_send_vmapp(its, vpe, true);
4576 		its_send_vinvall(its, vpe);
4577 	}
4578 
4579 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4580 
4581 	return 0;
4582 }
4583 
4584 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4585 					  struct irq_data *d)
4586 {
4587 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4588 	struct its_node *its;
4589 
4590 	/*
4591 	 * If we use the list map on GICv4.0, we unmap the VPE once no
4592 	 * VLPIs are associated with the VM.
4593 	 */
4594 	if (!gic_requires_eager_mapping())
4595 		return;
4596 
4597 	list_for_each_entry(its, &its_nodes, entry) {
4598 		if (!is_v4(its))
4599 			continue;
4600 
4601 		its_send_vmapp(its, vpe, false);
4602 	}
4603 
4604 	/*
4605 	 * There may be a direct read to the VPT after unmapping the
4606 	 * vPE, to guarantee the validity of this, we make the VPT
4607 	 * memory coherent with the CPU caches here.
4608 	 */
4609 	if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4610 		gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4611 					LPI_PENDBASE_SZ);
4612 }
4613 
4614 static const struct irq_domain_ops its_vpe_domain_ops = {
4615 	.alloc			= its_vpe_irq_domain_alloc,
4616 	.free			= its_vpe_irq_domain_free,
4617 	.activate		= its_vpe_irq_domain_activate,
4618 	.deactivate		= its_vpe_irq_domain_deactivate,
4619 };
4620 
4621 static int its_force_quiescent(void __iomem *base)
4622 {
4623 	u32 count = 1000000;	/* 1s */
4624 	u32 val;
4625 
4626 	val = readl_relaxed(base + GITS_CTLR);
4627 	/*
4628 	 * GIC architecture specification requires the ITS to be both
4629 	 * disabled and quiescent for writes to GITS_BASER<n> or
4630 	 * GITS_CBASER to not have UNPREDICTABLE results.
4631 	 */
4632 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4633 		return 0;
4634 
4635 	/* Disable the generation of all interrupts to this ITS */
4636 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4637 	writel_relaxed(val, base + GITS_CTLR);
4638 
4639 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
4640 	while (1) {
4641 		val = readl_relaxed(base + GITS_CTLR);
4642 		if (val & GITS_CTLR_QUIESCENT)
4643 			return 0;
4644 
4645 		count--;
4646 		if (!count)
4647 			return -EBUSY;
4648 
4649 		cpu_relax();
4650 		udelay(1);
4651 	}
4652 }
4653 
4654 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4655 {
4656 	struct its_node *its = data;
4657 
4658 	/* erratum 22375: only alloc 8MB table size (20 bits) */
4659 	its->typer &= ~GITS_TYPER_DEVBITS;
4660 	its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4661 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4662 
4663 	return true;
4664 }
4665 
4666 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4667 {
4668 	struct its_node *its = data;
4669 
4670 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4671 
4672 	return true;
4673 }
4674 
4675 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4676 {
4677 	struct its_node *its = data;
4678 
4679 	/* On QDF2400, the size of the ITE is 16Bytes */
4680 	its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4681 	its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4682 
4683 	return true;
4684 }
4685 
4686 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4687 {
4688 	struct its_node *its = its_dev->its;
4689 
4690 	/*
4691 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4692 	 * which maps 32-bit writes targeted at a separate window of
4693 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4694 	 * with device ID taken from bits [device_id_bits + 1:2] of
4695 	 * the window offset.
4696 	 */
4697 	return its->pre_its_base + (its_dev->device_id << 2);
4698 }
4699 
4700 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4701 {
4702 	struct its_node *its = data;
4703 	u32 pre_its_window[2];
4704 	u32 ids;
4705 
4706 	if (!fwnode_property_read_u32_array(its->fwnode_handle,
4707 					   "socionext,synquacer-pre-its",
4708 					   pre_its_window,
4709 					   ARRAY_SIZE(pre_its_window))) {
4710 
4711 		its->pre_its_base = pre_its_window[0];
4712 		its->get_msi_base = its_irq_get_msi_base_pre_its;
4713 
4714 		ids = ilog2(pre_its_window[1]) - 2;
4715 		if (device_ids(its) > ids) {
4716 			its->typer &= ~GITS_TYPER_DEVBITS;
4717 			its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4718 		}
4719 
4720 		/* the pre-ITS breaks isolation, so disable MSI remapping */
4721 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI;
4722 		return true;
4723 	}
4724 	return false;
4725 }
4726 
4727 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4728 {
4729 	struct its_node *its = data;
4730 
4731 	/*
4732 	 * Hip07 insists on using the wrong address for the VLPI
4733 	 * page. Trick it into doing the right thing...
4734 	 */
4735 	its->vlpi_redist_offset = SZ_128K;
4736 	return true;
4737 }
4738 
4739 static bool __maybe_unused its_enable_rk3588001(void *data)
4740 {
4741 	struct its_node *its = data;
4742 
4743 	if (!of_machine_is_compatible("rockchip,rk3588") &&
4744 	    !of_machine_is_compatible("rockchip,rk3588s"))
4745 		return false;
4746 
4747 	its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4748 	gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
4749 
4750 	return true;
4751 }
4752 
4753 static bool its_set_non_coherent(void *data)
4754 {
4755 	struct its_node *its = data;
4756 
4757 	its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4758 	return true;
4759 }
4760 
4761 static const struct gic_quirk its_quirks[] = {
4762 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4763 	{
4764 		.desc	= "ITS: Cavium errata 22375, 24313",
4765 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4766 		.mask	= 0xffff0fff,
4767 		.init	= its_enable_quirk_cavium_22375,
4768 	},
4769 #endif
4770 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4771 	{
4772 		.desc	= "ITS: Cavium erratum 23144",
4773 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4774 		.mask	= 0xffff0fff,
4775 		.init	= its_enable_quirk_cavium_23144,
4776 	},
4777 #endif
4778 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4779 	{
4780 		.desc	= "ITS: QDF2400 erratum 0065",
4781 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
4782 		.mask	= 0xffffffff,
4783 		.init	= its_enable_quirk_qdf2400_e0065,
4784 	},
4785 #endif
4786 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4787 	{
4788 		/*
4789 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4790 		 * implementation, but with a 'pre-ITS' added that requires
4791 		 * special handling in software.
4792 		 */
4793 		.desc	= "ITS: Socionext Synquacer pre-ITS",
4794 		.iidr	= 0x0001143b,
4795 		.mask	= 0xffffffff,
4796 		.init	= its_enable_quirk_socionext_synquacer,
4797 	},
4798 #endif
4799 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4800 	{
4801 		.desc	= "ITS: Hip07 erratum 161600802",
4802 		.iidr	= 0x00000004,
4803 		.mask	= 0xffffffff,
4804 		.init	= its_enable_quirk_hip07_161600802,
4805 	},
4806 #endif
4807 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001
4808 	{
4809 		.desc   = "ITS: Rockchip erratum RK3588001",
4810 		.iidr   = 0x0201743b,
4811 		.mask   = 0xffffffff,
4812 		.init   = its_enable_rk3588001,
4813 	},
4814 #endif
4815 	{
4816 		.desc   = "ITS: non-coherent attribute",
4817 		.property = "dma-noncoherent",
4818 		.init   = its_set_non_coherent,
4819 	},
4820 	{
4821 	}
4822 };
4823 
4824 static void its_enable_quirks(struct its_node *its)
4825 {
4826 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4827 
4828 	gic_enable_quirks(iidr, its_quirks, its);
4829 
4830 	if (is_of_node(its->fwnode_handle))
4831 		gic_enable_of_quirks(to_of_node(its->fwnode_handle),
4832 				     its_quirks, its);
4833 }
4834 
4835 static int its_save_disable(void)
4836 {
4837 	struct its_node *its;
4838 	int err = 0;
4839 
4840 	raw_spin_lock(&its_lock);
4841 	list_for_each_entry(its, &its_nodes, entry) {
4842 		void __iomem *base;
4843 
4844 		base = its->base;
4845 		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4846 		err = its_force_quiescent(base);
4847 		if (err) {
4848 			pr_err("ITS@%pa: failed to quiesce: %d\n",
4849 			       &its->phys_base, err);
4850 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4851 			goto err;
4852 		}
4853 
4854 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4855 	}
4856 
4857 err:
4858 	if (err) {
4859 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4860 			void __iomem *base;
4861 
4862 			base = its->base;
4863 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4864 		}
4865 	}
4866 	raw_spin_unlock(&its_lock);
4867 
4868 	return err;
4869 }
4870 
4871 static void its_restore_enable(void)
4872 {
4873 	struct its_node *its;
4874 	int ret;
4875 
4876 	raw_spin_lock(&its_lock);
4877 	list_for_each_entry(its, &its_nodes, entry) {
4878 		void __iomem *base;
4879 		int i;
4880 
4881 		base = its->base;
4882 
4883 		/*
4884 		 * Make sure that the ITS is disabled. If it fails to quiesce,
4885 		 * don't restore it since writing to CBASER or BASER<n>
4886 		 * registers is undefined according to the GIC v3 ITS
4887 		 * Specification.
4888 		 *
4889 		 * Firmware resuming with the ITS enabled is terminally broken.
4890 		 */
4891 		WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4892 		ret = its_force_quiescent(base);
4893 		if (ret) {
4894 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4895 			       &its->phys_base, ret);
4896 			continue;
4897 		}
4898 
4899 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4900 
4901 		/*
4902 		 * Writing CBASER resets CREADR to 0, so make CWRITER and
4903 		 * cmd_write line up with it.
4904 		 */
4905 		its->cmd_write = its->cmd_base;
4906 		gits_write_cwriter(0, base + GITS_CWRITER);
4907 
4908 		/* Restore GITS_BASER from the value cache. */
4909 		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4910 			struct its_baser *baser = &its->tables[i];
4911 
4912 			if (!(baser->val & GITS_BASER_VALID))
4913 				continue;
4914 
4915 			its_write_baser(its, baser, baser->val);
4916 		}
4917 		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4918 
4919 		/*
4920 		 * Reinit the collection if it's stored in the ITS. This is
4921 		 * indicated by the col_id being less than the HCC field.
4922 		 * CID < HCC as specified in the GIC v3 Documentation.
4923 		 */
4924 		if (its->collections[smp_processor_id()].col_id <
4925 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4926 			its_cpu_init_collection(its);
4927 	}
4928 	raw_spin_unlock(&its_lock);
4929 }
4930 
4931 static struct syscore_ops its_syscore_ops = {
4932 	.suspend = its_save_disable,
4933 	.resume = its_restore_enable,
4934 };
4935 
4936 static void __init __iomem *its_map_one(struct resource *res, int *err)
4937 {
4938 	void __iomem *its_base;
4939 	u32 val;
4940 
4941 	its_base = ioremap(res->start, SZ_64K);
4942 	if (!its_base) {
4943 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4944 		*err = -ENOMEM;
4945 		return NULL;
4946 	}
4947 
4948 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4949 	if (val != 0x30 && val != 0x40) {
4950 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4951 		*err = -ENODEV;
4952 		goto out_unmap;
4953 	}
4954 
4955 	*err = its_force_quiescent(its_base);
4956 	if (*err) {
4957 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4958 		goto out_unmap;
4959 	}
4960 
4961 	return its_base;
4962 
4963 out_unmap:
4964 	iounmap(its_base);
4965 	return NULL;
4966 }
4967 
4968 static int its_init_domain(struct its_node *its)
4969 {
4970 	struct irq_domain *inner_domain;
4971 	struct msi_domain_info *info;
4972 
4973 	info = kzalloc(sizeof(*info), GFP_KERNEL);
4974 	if (!info)
4975 		return -ENOMEM;
4976 
4977 	info->ops = &its_msi_domain_ops;
4978 	info->data = its;
4979 
4980 	inner_domain = irq_domain_create_hierarchy(its_parent,
4981 						   its->msi_domain_flags, 0,
4982 						   its->fwnode_handle, &its_domain_ops,
4983 						   info);
4984 	if (!inner_domain) {
4985 		kfree(info);
4986 		return -ENOMEM;
4987 	}
4988 
4989 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4990 
4991 	return 0;
4992 }
4993 
4994 static int its_init_vpe_domain(void)
4995 {
4996 	struct its_node *its;
4997 	u32 devid;
4998 	int entries;
4999 
5000 	if (gic_rdists->has_direct_lpi) {
5001 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
5002 		return 0;
5003 	}
5004 
5005 	/* Any ITS will do, even if not v4 */
5006 	its = list_first_entry(&its_nodes, struct its_node, entry);
5007 
5008 	entries = roundup_pow_of_two(nr_cpu_ids);
5009 	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
5010 				 GFP_KERNEL);
5011 	if (!vpe_proxy.vpes)
5012 		return -ENOMEM;
5013 
5014 	/* Use the last possible DevID */
5015 	devid = GENMASK(device_ids(its) - 1, 0);
5016 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
5017 	if (!vpe_proxy.dev) {
5018 		kfree(vpe_proxy.vpes);
5019 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
5020 		return -ENOMEM;
5021 	}
5022 
5023 	BUG_ON(entries > vpe_proxy.dev->nr_ites);
5024 
5025 	raw_spin_lock_init(&vpe_proxy.lock);
5026 	vpe_proxy.next_victim = 0;
5027 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
5028 		devid, vpe_proxy.dev->nr_ites);
5029 
5030 	return 0;
5031 }
5032 
5033 static int __init its_compute_its_list_map(struct its_node *its)
5034 {
5035 	int its_number;
5036 	u32 ctlr;
5037 
5038 	/*
5039 	 * This is assumed to be done early enough that we're
5040 	 * guaranteed to be single-threaded, hence no
5041 	 * locking. Should this change, we should address
5042 	 * this.
5043 	 */
5044 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
5045 	if (its_number >= GICv4_ITS_LIST_MAX) {
5046 		pr_err("ITS@%pa: No ITSList entry available!\n",
5047 		       &its->phys_base);
5048 		return -EINVAL;
5049 	}
5050 
5051 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5052 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
5053 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
5054 	writel_relaxed(ctlr, its->base + GITS_CTLR);
5055 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5056 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
5057 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
5058 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
5059 	}
5060 
5061 	if (test_and_set_bit(its_number, &its_list_map)) {
5062 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
5063 		       &its->phys_base, its_number);
5064 		return -EINVAL;
5065 	}
5066 
5067 	return its_number;
5068 }
5069 
5070 static int __init its_probe_one(struct its_node *its)
5071 {
5072 	u64 baser, tmp;
5073 	struct page *page;
5074 	u32 ctlr;
5075 	int err;
5076 
5077 	if (is_v4(its)) {
5078 		if (!(its->typer & GITS_TYPER_VMOVP)) {
5079 			err = its_compute_its_list_map(its);
5080 			if (err < 0)
5081 				goto out;
5082 
5083 			its->list_nr = err;
5084 
5085 			pr_info("ITS@%pa: Using ITS number %d\n",
5086 				&its->phys_base, err);
5087 		} else {
5088 			pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base);
5089 		}
5090 
5091 		if (is_v4_1(its)) {
5092 			u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
5093 
5094 			its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K);
5095 			if (!its->sgir_base) {
5096 				err = -ENOMEM;
5097 				goto out;
5098 			}
5099 
5100 			its->mpidr = readl_relaxed(its->base + GITS_MPIDR);
5101 
5102 			pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5103 				&its->phys_base, its->mpidr, svpet);
5104 		}
5105 	}
5106 
5107 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5108 				get_order(ITS_CMD_QUEUE_SZ));
5109 	if (!page) {
5110 		err = -ENOMEM;
5111 		goto out_unmap_sgir;
5112 	}
5113 	its->cmd_base = (void *)page_address(page);
5114 	its->cmd_write = its->cmd_base;
5115 	its->get_msi_base = its_irq_get_msi_base;
5116 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI;
5117 
5118 	err = its_alloc_tables(its);
5119 	if (err)
5120 		goto out_free_cmd;
5121 
5122 	err = its_alloc_collections(its);
5123 	if (err)
5124 		goto out_free_tables;
5125 
5126 	baser = (virt_to_phys(its->cmd_base)	|
5127 		 GITS_CBASER_RaWaWb		|
5128 		 GITS_CBASER_InnerShareable	|
5129 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
5130 		 GITS_CBASER_VALID);
5131 
5132 	gits_write_cbaser(baser, its->base + GITS_CBASER);
5133 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
5134 
5135 	if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
5136 		tmp &= ~GITS_CBASER_SHAREABILITY_MASK;
5137 
5138 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5139 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5140 			/*
5141 			 * The HW reports non-shareable, we must
5142 			 * remove the cacheability attributes as
5143 			 * well.
5144 			 */
5145 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5146 				   GITS_CBASER_CACHEABILITY_MASK);
5147 			baser |= GITS_CBASER_nC;
5148 			gits_write_cbaser(baser, its->base + GITS_CBASER);
5149 		}
5150 		pr_info("ITS: using cache flushing for cmd queue\n");
5151 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5152 	}
5153 
5154 	gits_write_cwriter(0, its->base + GITS_CWRITER);
5155 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5156 	ctlr |= GITS_CTLR_ENABLE;
5157 	if (is_v4(its))
5158 		ctlr |= GITS_CTLR_ImDe;
5159 	writel_relaxed(ctlr, its->base + GITS_CTLR);
5160 
5161 	err = its_init_domain(its);
5162 	if (err)
5163 		goto out_free_tables;
5164 
5165 	raw_spin_lock(&its_lock);
5166 	list_add(&its->entry, &its_nodes);
5167 	raw_spin_unlock(&its_lock);
5168 
5169 	return 0;
5170 
5171 out_free_tables:
5172 	its_free_tables(its);
5173 out_free_cmd:
5174 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5175 out_unmap_sgir:
5176 	if (its->sgir_base)
5177 		iounmap(its->sgir_base);
5178 out:
5179 	pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err);
5180 	return err;
5181 }
5182 
5183 static bool gic_rdists_supports_plpis(void)
5184 {
5185 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5186 }
5187 
5188 static int redist_disable_lpis(void)
5189 {
5190 	void __iomem *rbase = gic_data_rdist_rd_base();
5191 	u64 timeout = USEC_PER_SEC;
5192 	u64 val;
5193 
5194 	if (!gic_rdists_supports_plpis()) {
5195 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5196 		return -ENXIO;
5197 	}
5198 
5199 	val = readl_relaxed(rbase + GICR_CTLR);
5200 	if (!(val & GICR_CTLR_ENABLE_LPIS))
5201 		return 0;
5202 
5203 	/*
5204 	 * If coming via a CPU hotplug event, we don't need to disable
5205 	 * LPIs before trying to re-enable them. They are already
5206 	 * configured and all is well in the world.
5207 	 *
5208 	 * If running with preallocated tables, there is nothing to do.
5209 	 */
5210 	if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5211 	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5212 		return 0;
5213 
5214 	/*
5215 	 * From that point on, we only try to do some damage control.
5216 	 */
5217 	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5218 		smp_processor_id());
5219 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5220 
5221 	/* Disable LPIs */
5222 	val &= ~GICR_CTLR_ENABLE_LPIS;
5223 	writel_relaxed(val, rbase + GICR_CTLR);
5224 
5225 	/* Make sure any change to GICR_CTLR is observable by the GIC */
5226 	dsb(sy);
5227 
5228 	/*
5229 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5230 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5231 	 * Error out if we time out waiting for RWP to clear.
5232 	 */
5233 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5234 		if (!timeout) {
5235 			pr_err("CPU%d: Timeout while disabling LPIs\n",
5236 			       smp_processor_id());
5237 			return -ETIMEDOUT;
5238 		}
5239 		udelay(1);
5240 		timeout--;
5241 	}
5242 
5243 	/*
5244 	 * After it has been written to 1, it is IMPLEMENTATION
5245 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5246 	 * cleared to 0. Error out if clearing the bit failed.
5247 	 */
5248 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5249 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5250 		return -EBUSY;
5251 	}
5252 
5253 	return 0;
5254 }
5255 
5256 int its_cpu_init(void)
5257 {
5258 	if (!list_empty(&its_nodes)) {
5259 		int ret;
5260 
5261 		ret = redist_disable_lpis();
5262 		if (ret)
5263 			return ret;
5264 
5265 		its_cpu_init_lpis();
5266 		its_cpu_init_collections();
5267 	}
5268 
5269 	return 0;
5270 }
5271 
5272 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5273 {
5274 	cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5275 	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5276 }
5277 
5278 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5279 		    rdist_memreserve_cpuhp_cleanup_workfn);
5280 
5281 static int its_cpu_memreserve_lpi(unsigned int cpu)
5282 {
5283 	struct page *pend_page;
5284 	int ret = 0;
5285 
5286 	/* This gets to run exactly once per CPU */
5287 	if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5288 		return 0;
5289 
5290 	pend_page = gic_data_rdist()->pend_page;
5291 	if (WARN_ON(!pend_page)) {
5292 		ret = -ENOMEM;
5293 		goto out;
5294 	}
5295 	/*
5296 	 * If the pending table was pre-programmed, free the memory we
5297 	 * preemptively allocated. Otherwise, reserve that memory for
5298 	 * later kexecs.
5299 	 */
5300 	if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5301 		its_free_pending_table(pend_page);
5302 		gic_data_rdist()->pend_page = NULL;
5303 	} else {
5304 		phys_addr_t paddr = page_to_phys(pend_page);
5305 		WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5306 	}
5307 
5308 out:
5309 	/* Last CPU being brought up gets to issue the cleanup */
5310 	if (!IS_ENABLED(CONFIG_SMP) ||
5311 	    cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5312 		schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5313 
5314 	gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5315 	return ret;
5316 }
5317 
5318 /* Mark all the BASER registers as invalid before they get reprogrammed */
5319 static int __init its_reset_one(struct resource *res)
5320 {
5321 	void __iomem *its_base;
5322 	int err, i;
5323 
5324 	its_base = its_map_one(res, &err);
5325 	if (!its_base)
5326 		return err;
5327 
5328 	for (i = 0; i < GITS_BASER_NR_REGS; i++)
5329 		gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5330 
5331 	iounmap(its_base);
5332 	return 0;
5333 }
5334 
5335 static const struct of_device_id its_device_id[] = {
5336 	{	.compatible	= "arm,gic-v3-its",	},
5337 	{},
5338 };
5339 
5340 static struct its_node __init *its_node_init(struct resource *res,
5341 					     struct fwnode_handle *handle, int numa_node)
5342 {
5343 	void __iomem *its_base;
5344 	struct its_node *its;
5345 	int err;
5346 
5347 	its_base = its_map_one(res, &err);
5348 	if (!its_base)
5349 		return NULL;
5350 
5351 	pr_info("ITS %pR\n", res);
5352 
5353 	its = kzalloc(sizeof(*its), GFP_KERNEL);
5354 	if (!its)
5355 		goto out_unmap;
5356 
5357 	raw_spin_lock_init(&its->lock);
5358 	mutex_init(&its->dev_alloc_lock);
5359 	INIT_LIST_HEAD(&its->entry);
5360 	INIT_LIST_HEAD(&its->its_device_list);
5361 
5362 	its->typer = gic_read_typer(its_base + GITS_TYPER);
5363 	its->base = its_base;
5364 	its->phys_base = res->start;
5365 
5366 	its->numa_node = numa_node;
5367 	its->fwnode_handle = handle;
5368 
5369 	return its;
5370 
5371 out_unmap:
5372 	iounmap(its_base);
5373 	return NULL;
5374 }
5375 
5376 static void its_node_destroy(struct its_node *its)
5377 {
5378 	iounmap(its->base);
5379 	kfree(its);
5380 }
5381 
5382 static int __init its_of_probe(struct device_node *node)
5383 {
5384 	struct device_node *np;
5385 	struct resource res;
5386 	int err;
5387 
5388 	/*
5389 	 * Make sure *all* the ITS are reset before we probe any, as
5390 	 * they may be sharing memory. If any of the ITS fails to
5391 	 * reset, don't even try to go any further, as this could
5392 	 * result in something even worse.
5393 	 */
5394 	for (np = of_find_matching_node(node, its_device_id); np;
5395 	     np = of_find_matching_node(np, its_device_id)) {
5396 		if (!of_device_is_available(np) ||
5397 		    !of_property_read_bool(np, "msi-controller") ||
5398 		    of_address_to_resource(np, 0, &res))
5399 			continue;
5400 
5401 		err = its_reset_one(&res);
5402 		if (err)
5403 			return err;
5404 	}
5405 
5406 	for (np = of_find_matching_node(node, its_device_id); np;
5407 	     np = of_find_matching_node(np, its_device_id)) {
5408 		struct its_node *its;
5409 
5410 		if (!of_device_is_available(np))
5411 			continue;
5412 		if (!of_property_read_bool(np, "msi-controller")) {
5413 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5414 				np);
5415 			continue;
5416 		}
5417 
5418 		if (of_address_to_resource(np, 0, &res)) {
5419 			pr_warn("%pOF: no regs?\n", np);
5420 			continue;
5421 		}
5422 
5423 
5424 		its = its_node_init(&res, &np->fwnode, of_node_to_nid(np));
5425 		if (!its)
5426 			return -ENOMEM;
5427 
5428 		its_enable_quirks(its);
5429 		err = its_probe_one(its);
5430 		if (err)  {
5431 			its_node_destroy(its);
5432 			return err;
5433 		}
5434 	}
5435 	return 0;
5436 }
5437 
5438 #ifdef CONFIG_ACPI
5439 
5440 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5441 
5442 #ifdef CONFIG_ACPI_NUMA
5443 struct its_srat_map {
5444 	/* numa node id */
5445 	u32	numa_node;
5446 	/* GIC ITS ID */
5447 	u32	its_id;
5448 };
5449 
5450 static struct its_srat_map *its_srat_maps __initdata;
5451 static int its_in_srat __initdata;
5452 
5453 static int __init acpi_get_its_numa_node(u32 its_id)
5454 {
5455 	int i;
5456 
5457 	for (i = 0; i < its_in_srat; i++) {
5458 		if (its_id == its_srat_maps[i].its_id)
5459 			return its_srat_maps[i].numa_node;
5460 	}
5461 	return NUMA_NO_NODE;
5462 }
5463 
5464 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5465 					  const unsigned long end)
5466 {
5467 	return 0;
5468 }
5469 
5470 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5471 			 const unsigned long end)
5472 {
5473 	int node;
5474 	struct acpi_srat_gic_its_affinity *its_affinity;
5475 
5476 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5477 	if (!its_affinity)
5478 		return -EINVAL;
5479 
5480 	if (its_affinity->header.length < sizeof(*its_affinity)) {
5481 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5482 			its_affinity->header.length);
5483 		return -EINVAL;
5484 	}
5485 
5486 	/*
5487 	 * Note that in theory a new proximity node could be created by this
5488 	 * entry as it is an SRAT resource allocation structure.
5489 	 * We do not currently support doing so.
5490 	 */
5491 	node = pxm_to_node(its_affinity->proximity_domain);
5492 
5493 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5494 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5495 		return 0;
5496 	}
5497 
5498 	its_srat_maps[its_in_srat].numa_node = node;
5499 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5500 	its_in_srat++;
5501 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5502 		its_affinity->proximity_domain, its_affinity->its_id, node);
5503 
5504 	return 0;
5505 }
5506 
5507 static void __init acpi_table_parse_srat_its(void)
5508 {
5509 	int count;
5510 
5511 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5512 			sizeof(struct acpi_table_srat),
5513 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5514 			gic_acpi_match_srat_its, 0);
5515 	if (count <= 0)
5516 		return;
5517 
5518 	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5519 				      GFP_KERNEL);
5520 	if (!its_srat_maps)
5521 		return;
5522 
5523 	acpi_table_parse_entries(ACPI_SIG_SRAT,
5524 			sizeof(struct acpi_table_srat),
5525 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5526 			gic_acpi_parse_srat_its, 0);
5527 }
5528 
5529 /* free the its_srat_maps after ITS probing */
5530 static void __init acpi_its_srat_maps_free(void)
5531 {
5532 	kfree(its_srat_maps);
5533 }
5534 #else
5535 static void __init acpi_table_parse_srat_its(void)	{ }
5536 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5537 static void __init acpi_its_srat_maps_free(void) { }
5538 #endif
5539 
5540 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5541 					  const unsigned long end)
5542 {
5543 	struct acpi_madt_generic_translator *its_entry;
5544 	struct fwnode_handle *dom_handle;
5545 	struct its_node *its;
5546 	struct resource res;
5547 	int err;
5548 
5549 	its_entry = (struct acpi_madt_generic_translator *)header;
5550 	memset(&res, 0, sizeof(res));
5551 	res.start = its_entry->base_address;
5552 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5553 	res.flags = IORESOURCE_MEM;
5554 
5555 	dom_handle = irq_domain_alloc_fwnode(&res.start);
5556 	if (!dom_handle) {
5557 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5558 		       &res.start);
5559 		return -ENOMEM;
5560 	}
5561 
5562 	err = iort_register_domain_token(its_entry->translation_id, res.start,
5563 					 dom_handle);
5564 	if (err) {
5565 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5566 		       &res.start, its_entry->translation_id);
5567 		goto dom_err;
5568 	}
5569 
5570 	its = its_node_init(&res, dom_handle,
5571 			    acpi_get_its_numa_node(its_entry->translation_id));
5572 	if (!its) {
5573 		err = -ENOMEM;
5574 		goto node_err;
5575 	}
5576 
5577 	err = its_probe_one(its);
5578 	if (!err)
5579 		return 0;
5580 
5581 node_err:
5582 	iort_deregister_domain_token(its_entry->translation_id);
5583 dom_err:
5584 	irq_domain_free_fwnode(dom_handle);
5585 	return err;
5586 }
5587 
5588 static int __init its_acpi_reset(union acpi_subtable_headers *header,
5589 				 const unsigned long end)
5590 {
5591 	struct acpi_madt_generic_translator *its_entry;
5592 	struct resource res;
5593 
5594 	its_entry = (struct acpi_madt_generic_translator *)header;
5595 	res = (struct resource) {
5596 		.start	= its_entry->base_address,
5597 		.end	= its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5598 		.flags	= IORESOURCE_MEM,
5599 	};
5600 
5601 	return its_reset_one(&res);
5602 }
5603 
5604 static void __init its_acpi_probe(void)
5605 {
5606 	acpi_table_parse_srat_its();
5607 	/*
5608 	 * Make sure *all* the ITS are reset before we probe any, as
5609 	 * they may be sharing memory. If any of the ITS fails to
5610 	 * reset, don't even try to go any further, as this could
5611 	 * result in something even worse.
5612 	 */
5613 	if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5614 				  its_acpi_reset, 0) > 0)
5615 		acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5616 				      gic_acpi_parse_madt_its, 0);
5617 	acpi_its_srat_maps_free();
5618 }
5619 #else
5620 static void __init its_acpi_probe(void) { }
5621 #endif
5622 
5623 int __init its_lpi_memreserve_init(void)
5624 {
5625 	int state;
5626 
5627 	if (!efi_enabled(EFI_CONFIG_TABLES))
5628 		return 0;
5629 
5630 	if (list_empty(&its_nodes))
5631 		return 0;
5632 
5633 	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5634 	state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5635 				  "irqchip/arm/gicv3/memreserve:online",
5636 				  its_cpu_memreserve_lpi,
5637 				  NULL);
5638 	if (state < 0)
5639 		return state;
5640 
5641 	gic_rdists->cpuhp_memreserve_state = state;
5642 
5643 	return 0;
5644 }
5645 
5646 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5647 		    struct irq_domain *parent_domain)
5648 {
5649 	struct device_node *of_node;
5650 	struct its_node *its;
5651 	bool has_v4 = false;
5652 	bool has_v4_1 = false;
5653 	int err;
5654 
5655 	gic_rdists = rdists;
5656 
5657 	its_parent = parent_domain;
5658 	of_node = to_of_node(handle);
5659 	if (of_node)
5660 		its_of_probe(of_node);
5661 	else
5662 		its_acpi_probe();
5663 
5664 	if (list_empty(&its_nodes)) {
5665 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
5666 		return -ENXIO;
5667 	}
5668 
5669 	err = allocate_lpi_tables();
5670 	if (err)
5671 		return err;
5672 
5673 	list_for_each_entry(its, &its_nodes, entry) {
5674 		has_v4 |= is_v4(its);
5675 		has_v4_1 |= is_v4_1(its);
5676 	}
5677 
5678 	/* Don't bother with inconsistent systems */
5679 	if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5680 		rdists->has_rvpeid = false;
5681 
5682 	if (has_v4 & rdists->has_vlpis) {
5683 		const struct irq_domain_ops *sgi_ops;
5684 
5685 		if (has_v4_1)
5686 			sgi_ops = &its_sgi_domain_ops;
5687 		else
5688 			sgi_ops = NULL;
5689 
5690 		if (its_init_vpe_domain() ||
5691 		    its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5692 			rdists->has_vlpis = false;
5693 			pr_err("ITS: Disabling GICv4 support\n");
5694 		}
5695 	}
5696 
5697 	register_syscore_ops(&its_syscore_ops);
5698 
5699 	return 0;
5700 }
5701