1 /* 2 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. 3 * Author: Marc Zyngier <marc.zyngier@arm.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #include <linux/acpi.h> 19 #include <linux/acpi_iort.h> 20 #include <linux/bitmap.h> 21 #include <linux/cpu.h> 22 #include <linux/delay.h> 23 #include <linux/dma-iommu.h> 24 #include <linux/interrupt.h> 25 #include <linux/irqdomain.h> 26 #include <linux/log2.h> 27 #include <linux/mm.h> 28 #include <linux/msi.h> 29 #include <linux/of.h> 30 #include <linux/of_address.h> 31 #include <linux/of_irq.h> 32 #include <linux/of_pci.h> 33 #include <linux/of_platform.h> 34 #include <linux/percpu.h> 35 #include <linux/slab.h> 36 37 #include <linux/irqchip.h> 38 #include <linux/irqchip/arm-gic-v3.h> 39 #include <linux/irqchip/arm-gic-v4.h> 40 41 #include <asm/cputype.h> 42 #include <asm/exception.h> 43 44 #include "irq-gic-common.h" 45 46 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) 47 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) 48 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) 49 50 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0) 51 52 static u32 lpi_id_bits; 53 54 /* 55 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to 56 * deal with (one configuration byte per interrupt). PENDBASE has to 57 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). 58 */ 59 #define LPI_NRBITS lpi_id_bits 60 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K) 61 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) 62 63 #define LPI_PROP_DEFAULT_PRIO 0xa0 64 65 /* 66 * Collection structure - just an ID, and a redistributor address to 67 * ping. We use one per CPU as a bag of interrupts assigned to this 68 * CPU. 69 */ 70 struct its_collection { 71 u64 target_address; 72 u16 col_id; 73 }; 74 75 /* 76 * The ITS_BASER structure - contains memory information, cached 77 * value of BASER register configuration and ITS page size. 78 */ 79 struct its_baser { 80 void *base; 81 u64 val; 82 u32 order; 83 u32 psz; 84 }; 85 86 /* 87 * The ITS structure - contains most of the infrastructure, with the 88 * top-level MSI domain, the command queue, the collections, and the 89 * list of devices writing to it. 90 */ 91 struct its_node { 92 raw_spinlock_t lock; 93 struct list_head entry; 94 void __iomem *base; 95 phys_addr_t phys_base; 96 struct its_cmd_block *cmd_base; 97 struct its_cmd_block *cmd_write; 98 struct its_baser tables[GITS_BASER_NR_REGS]; 99 struct its_collection *collections; 100 struct list_head its_device_list; 101 u64 flags; 102 u32 ite_size; 103 u32 device_ids; 104 int numa_node; 105 bool is_v4; 106 }; 107 108 #define ITS_ITT_ALIGN SZ_256 109 110 /* Convert page order to size in bytes */ 111 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) 112 113 struct event_lpi_map { 114 unsigned long *lpi_map; 115 u16 *col_map; 116 irq_hw_number_t lpi_base; 117 int nr_lpis; 118 struct mutex vlpi_lock; 119 struct its_vm *vm; 120 struct its_vlpi_map *vlpi_maps; 121 int nr_vlpis; 122 }; 123 124 /* 125 * The ITS view of a device - belongs to an ITS, owns an interrupt 126 * translation table, and a list of interrupts. If it some of its 127 * LPIs are injected into a guest (GICv4), the event_map.vm field 128 * indicates which one. 129 */ 130 struct its_device { 131 struct list_head entry; 132 struct its_node *its; 133 struct event_lpi_map event_map; 134 void *itt; 135 u32 nr_ites; 136 u32 device_id; 137 }; 138 139 static struct { 140 raw_spinlock_t lock; 141 struct its_device *dev; 142 struct its_vpe **vpes; 143 int next_victim; 144 } vpe_proxy; 145 146 static LIST_HEAD(its_nodes); 147 static DEFINE_SPINLOCK(its_lock); 148 static struct rdists *gic_rdists; 149 static struct irq_domain *its_parent; 150 151 /* 152 * We have a maximum number of 16 ITSs in the whole system if we're 153 * using the ITSList mechanism 154 */ 155 #define ITS_LIST_MAX 16 156 157 static unsigned long its_list_map; 158 static u16 vmovp_seq_num; 159 static DEFINE_RAW_SPINLOCK(vmovp_lock); 160 161 static DEFINE_IDA(its_vpeid_ida); 162 163 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) 164 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 165 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K) 166 167 static struct its_collection *dev_event_to_col(struct its_device *its_dev, 168 u32 event) 169 { 170 struct its_node *its = its_dev->its; 171 172 return its->collections + its_dev->event_map.col_map[event]; 173 } 174 175 /* 176 * ITS command descriptors - parameters to be encoded in a command 177 * block. 178 */ 179 struct its_cmd_desc { 180 union { 181 struct { 182 struct its_device *dev; 183 u32 event_id; 184 } its_inv_cmd; 185 186 struct { 187 struct its_device *dev; 188 u32 event_id; 189 } its_clear_cmd; 190 191 struct { 192 struct its_device *dev; 193 u32 event_id; 194 } its_int_cmd; 195 196 struct { 197 struct its_device *dev; 198 int valid; 199 } its_mapd_cmd; 200 201 struct { 202 struct its_collection *col; 203 int valid; 204 } its_mapc_cmd; 205 206 struct { 207 struct its_device *dev; 208 u32 phys_id; 209 u32 event_id; 210 } its_mapti_cmd; 211 212 struct { 213 struct its_device *dev; 214 struct its_collection *col; 215 u32 event_id; 216 } its_movi_cmd; 217 218 struct { 219 struct its_device *dev; 220 u32 event_id; 221 } its_discard_cmd; 222 223 struct { 224 struct its_collection *col; 225 } its_invall_cmd; 226 227 struct { 228 struct its_vpe *vpe; 229 } its_vinvall_cmd; 230 231 struct { 232 struct its_vpe *vpe; 233 struct its_collection *col; 234 bool valid; 235 } its_vmapp_cmd; 236 237 struct { 238 struct its_vpe *vpe; 239 struct its_device *dev; 240 u32 virt_id; 241 u32 event_id; 242 bool db_enabled; 243 } its_vmapti_cmd; 244 245 struct { 246 struct its_vpe *vpe; 247 struct its_device *dev; 248 u32 event_id; 249 bool db_enabled; 250 } its_vmovi_cmd; 251 252 struct { 253 struct its_vpe *vpe; 254 struct its_collection *col; 255 u16 seq_num; 256 u16 its_list; 257 } its_vmovp_cmd; 258 }; 259 }; 260 261 /* 262 * The ITS command block, which is what the ITS actually parses. 263 */ 264 struct its_cmd_block { 265 u64 raw_cmd[4]; 266 }; 267 268 #define ITS_CMD_QUEUE_SZ SZ_64K 269 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) 270 271 typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *, 272 struct its_cmd_desc *); 273 274 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_cmd_block *, 275 struct its_cmd_desc *); 276 277 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) 278 { 279 u64 mask = GENMASK_ULL(h, l); 280 *raw_cmd &= ~mask; 281 *raw_cmd |= (val << l) & mask; 282 } 283 284 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) 285 { 286 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); 287 } 288 289 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) 290 { 291 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); 292 } 293 294 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) 295 { 296 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); 297 } 298 299 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) 300 { 301 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); 302 } 303 304 static void its_encode_size(struct its_cmd_block *cmd, u8 size) 305 { 306 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); 307 } 308 309 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) 310 { 311 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 50, 8); 312 } 313 314 static void its_encode_valid(struct its_cmd_block *cmd, int valid) 315 { 316 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); 317 } 318 319 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) 320 { 321 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 50, 16); 322 } 323 324 static void its_encode_collection(struct its_cmd_block *cmd, u16 col) 325 { 326 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); 327 } 328 329 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) 330 { 331 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); 332 } 333 334 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) 335 { 336 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); 337 } 338 339 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) 340 { 341 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); 342 } 343 344 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) 345 { 346 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); 347 } 348 349 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) 350 { 351 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); 352 } 353 354 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) 355 { 356 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); 357 } 358 359 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) 360 { 361 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 50, 16); 362 } 363 364 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) 365 { 366 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); 367 } 368 369 static inline void its_fixup_cmd(struct its_cmd_block *cmd) 370 { 371 /* Let's fixup BE commands */ 372 cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]); 373 cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]); 374 cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]); 375 cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]); 376 } 377 378 static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd, 379 struct its_cmd_desc *desc) 380 { 381 unsigned long itt_addr; 382 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); 383 384 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); 385 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); 386 387 its_encode_cmd(cmd, GITS_CMD_MAPD); 388 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); 389 its_encode_size(cmd, size - 1); 390 its_encode_itt(cmd, itt_addr); 391 its_encode_valid(cmd, desc->its_mapd_cmd.valid); 392 393 its_fixup_cmd(cmd); 394 395 return NULL; 396 } 397 398 static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd, 399 struct its_cmd_desc *desc) 400 { 401 its_encode_cmd(cmd, GITS_CMD_MAPC); 402 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 403 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); 404 its_encode_valid(cmd, desc->its_mapc_cmd.valid); 405 406 its_fixup_cmd(cmd); 407 408 return desc->its_mapc_cmd.col; 409 } 410 411 static struct its_collection *its_build_mapti_cmd(struct its_cmd_block *cmd, 412 struct its_cmd_desc *desc) 413 { 414 struct its_collection *col; 415 416 col = dev_event_to_col(desc->its_mapti_cmd.dev, 417 desc->its_mapti_cmd.event_id); 418 419 its_encode_cmd(cmd, GITS_CMD_MAPTI); 420 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); 421 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); 422 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); 423 its_encode_collection(cmd, col->col_id); 424 425 its_fixup_cmd(cmd); 426 427 return col; 428 } 429 430 static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd, 431 struct its_cmd_desc *desc) 432 { 433 struct its_collection *col; 434 435 col = dev_event_to_col(desc->its_movi_cmd.dev, 436 desc->its_movi_cmd.event_id); 437 438 its_encode_cmd(cmd, GITS_CMD_MOVI); 439 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); 440 its_encode_event_id(cmd, desc->its_movi_cmd.event_id); 441 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); 442 443 its_fixup_cmd(cmd); 444 445 return col; 446 } 447 448 static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd, 449 struct its_cmd_desc *desc) 450 { 451 struct its_collection *col; 452 453 col = dev_event_to_col(desc->its_discard_cmd.dev, 454 desc->its_discard_cmd.event_id); 455 456 its_encode_cmd(cmd, GITS_CMD_DISCARD); 457 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); 458 its_encode_event_id(cmd, desc->its_discard_cmd.event_id); 459 460 its_fixup_cmd(cmd); 461 462 return col; 463 } 464 465 static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd, 466 struct its_cmd_desc *desc) 467 { 468 struct its_collection *col; 469 470 col = dev_event_to_col(desc->its_inv_cmd.dev, 471 desc->its_inv_cmd.event_id); 472 473 its_encode_cmd(cmd, GITS_CMD_INV); 474 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 475 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 476 477 its_fixup_cmd(cmd); 478 479 return col; 480 } 481 482 static struct its_collection *its_build_int_cmd(struct its_cmd_block *cmd, 483 struct its_cmd_desc *desc) 484 { 485 struct its_collection *col; 486 487 col = dev_event_to_col(desc->its_int_cmd.dev, 488 desc->its_int_cmd.event_id); 489 490 its_encode_cmd(cmd, GITS_CMD_INT); 491 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 492 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 493 494 its_fixup_cmd(cmd); 495 496 return col; 497 } 498 499 static struct its_collection *its_build_clear_cmd(struct its_cmd_block *cmd, 500 struct its_cmd_desc *desc) 501 { 502 struct its_collection *col; 503 504 col = dev_event_to_col(desc->its_clear_cmd.dev, 505 desc->its_clear_cmd.event_id); 506 507 its_encode_cmd(cmd, GITS_CMD_CLEAR); 508 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 509 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 510 511 its_fixup_cmd(cmd); 512 513 return col; 514 } 515 516 static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd, 517 struct its_cmd_desc *desc) 518 { 519 its_encode_cmd(cmd, GITS_CMD_INVALL); 520 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 521 522 its_fixup_cmd(cmd); 523 524 return NULL; 525 } 526 527 static struct its_vpe *its_build_vinvall_cmd(struct its_cmd_block *cmd, 528 struct its_cmd_desc *desc) 529 { 530 its_encode_cmd(cmd, GITS_CMD_VINVALL); 531 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); 532 533 its_fixup_cmd(cmd); 534 535 return desc->its_vinvall_cmd.vpe; 536 } 537 538 static struct its_vpe *its_build_vmapp_cmd(struct its_cmd_block *cmd, 539 struct its_cmd_desc *desc) 540 { 541 unsigned long vpt_addr; 542 543 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); 544 545 its_encode_cmd(cmd, GITS_CMD_VMAPP); 546 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); 547 its_encode_valid(cmd, desc->its_vmapp_cmd.valid); 548 its_encode_target(cmd, desc->its_vmapp_cmd.col->target_address); 549 its_encode_vpt_addr(cmd, vpt_addr); 550 its_encode_vpt_size(cmd, LPI_NRBITS - 1); 551 552 its_fixup_cmd(cmd); 553 554 return desc->its_vmapp_cmd.vpe; 555 } 556 557 static struct its_vpe *its_build_vmapti_cmd(struct its_cmd_block *cmd, 558 struct its_cmd_desc *desc) 559 { 560 u32 db; 561 562 if (desc->its_vmapti_cmd.db_enabled) 563 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; 564 else 565 db = 1023; 566 567 its_encode_cmd(cmd, GITS_CMD_VMAPTI); 568 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); 569 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); 570 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); 571 its_encode_db_phys_id(cmd, db); 572 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); 573 574 its_fixup_cmd(cmd); 575 576 return desc->its_vmapti_cmd.vpe; 577 } 578 579 static struct its_vpe *its_build_vmovi_cmd(struct its_cmd_block *cmd, 580 struct its_cmd_desc *desc) 581 { 582 u32 db; 583 584 if (desc->its_vmovi_cmd.db_enabled) 585 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; 586 else 587 db = 1023; 588 589 its_encode_cmd(cmd, GITS_CMD_VMOVI); 590 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); 591 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); 592 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); 593 its_encode_db_phys_id(cmd, db); 594 its_encode_db_valid(cmd, true); 595 596 its_fixup_cmd(cmd); 597 598 return desc->its_vmovi_cmd.vpe; 599 } 600 601 static struct its_vpe *its_build_vmovp_cmd(struct its_cmd_block *cmd, 602 struct its_cmd_desc *desc) 603 { 604 its_encode_cmd(cmd, GITS_CMD_VMOVP); 605 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); 606 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); 607 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); 608 its_encode_target(cmd, desc->its_vmovp_cmd.col->target_address); 609 610 its_fixup_cmd(cmd); 611 612 return desc->its_vmovp_cmd.vpe; 613 } 614 615 static u64 its_cmd_ptr_to_offset(struct its_node *its, 616 struct its_cmd_block *ptr) 617 { 618 return (ptr - its->cmd_base) * sizeof(*ptr); 619 } 620 621 static int its_queue_full(struct its_node *its) 622 { 623 int widx; 624 int ridx; 625 626 widx = its->cmd_write - its->cmd_base; 627 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); 628 629 /* This is incredibly unlikely to happen, unless the ITS locks up. */ 630 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) 631 return 1; 632 633 return 0; 634 } 635 636 static struct its_cmd_block *its_allocate_entry(struct its_node *its) 637 { 638 struct its_cmd_block *cmd; 639 u32 count = 1000000; /* 1s! */ 640 641 while (its_queue_full(its)) { 642 count--; 643 if (!count) { 644 pr_err_ratelimited("ITS queue not draining\n"); 645 return NULL; 646 } 647 cpu_relax(); 648 udelay(1); 649 } 650 651 cmd = its->cmd_write++; 652 653 /* Handle queue wrapping */ 654 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) 655 its->cmd_write = its->cmd_base; 656 657 /* Clear command */ 658 cmd->raw_cmd[0] = 0; 659 cmd->raw_cmd[1] = 0; 660 cmd->raw_cmd[2] = 0; 661 cmd->raw_cmd[3] = 0; 662 663 return cmd; 664 } 665 666 static struct its_cmd_block *its_post_commands(struct its_node *its) 667 { 668 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); 669 670 writel_relaxed(wr, its->base + GITS_CWRITER); 671 672 return its->cmd_write; 673 } 674 675 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) 676 { 677 /* 678 * Make sure the commands written to memory are observable by 679 * the ITS. 680 */ 681 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) 682 gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); 683 else 684 dsb(ishst); 685 } 686 687 static void its_wait_for_range_completion(struct its_node *its, 688 struct its_cmd_block *from, 689 struct its_cmd_block *to) 690 { 691 u64 rd_idx, from_idx, to_idx; 692 u32 count = 1000000; /* 1s! */ 693 694 from_idx = its_cmd_ptr_to_offset(its, from); 695 to_idx = its_cmd_ptr_to_offset(its, to); 696 697 while (1) { 698 rd_idx = readl_relaxed(its->base + GITS_CREADR); 699 700 /* Direct case */ 701 if (from_idx < to_idx && rd_idx >= to_idx) 702 break; 703 704 /* Wrapped case */ 705 if (from_idx >= to_idx && rd_idx >= to_idx && rd_idx < from_idx) 706 break; 707 708 count--; 709 if (!count) { 710 pr_err_ratelimited("ITS queue timeout\n"); 711 return; 712 } 713 cpu_relax(); 714 udelay(1); 715 } 716 } 717 718 /* Warning, macro hell follows */ 719 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \ 720 void name(struct its_node *its, \ 721 buildtype builder, \ 722 struct its_cmd_desc *desc) \ 723 { \ 724 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \ 725 synctype *sync_obj; \ 726 unsigned long flags; \ 727 \ 728 raw_spin_lock_irqsave(&its->lock, flags); \ 729 \ 730 cmd = its_allocate_entry(its); \ 731 if (!cmd) { /* We're soooooo screewed... */ \ 732 raw_spin_unlock_irqrestore(&its->lock, flags); \ 733 return; \ 734 } \ 735 sync_obj = builder(cmd, desc); \ 736 its_flush_cmd(its, cmd); \ 737 \ 738 if (sync_obj) { \ 739 sync_cmd = its_allocate_entry(its); \ 740 if (!sync_cmd) \ 741 goto post; \ 742 \ 743 buildfn(sync_cmd, sync_obj); \ 744 its_flush_cmd(its, sync_cmd); \ 745 } \ 746 \ 747 post: \ 748 next_cmd = its_post_commands(its); \ 749 raw_spin_unlock_irqrestore(&its->lock, flags); \ 750 \ 751 its_wait_for_range_completion(its, cmd, next_cmd); \ 752 } 753 754 static void its_build_sync_cmd(struct its_cmd_block *sync_cmd, 755 struct its_collection *sync_col) 756 { 757 its_encode_cmd(sync_cmd, GITS_CMD_SYNC); 758 its_encode_target(sync_cmd, sync_col->target_address); 759 760 its_fixup_cmd(sync_cmd); 761 } 762 763 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, 764 struct its_collection, its_build_sync_cmd) 765 766 static void its_build_vsync_cmd(struct its_cmd_block *sync_cmd, 767 struct its_vpe *sync_vpe) 768 { 769 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); 770 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); 771 772 its_fixup_cmd(sync_cmd); 773 } 774 775 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, 776 struct its_vpe, its_build_vsync_cmd) 777 778 static void its_send_int(struct its_device *dev, u32 event_id) 779 { 780 struct its_cmd_desc desc; 781 782 desc.its_int_cmd.dev = dev; 783 desc.its_int_cmd.event_id = event_id; 784 785 its_send_single_command(dev->its, its_build_int_cmd, &desc); 786 } 787 788 static void its_send_clear(struct its_device *dev, u32 event_id) 789 { 790 struct its_cmd_desc desc; 791 792 desc.its_clear_cmd.dev = dev; 793 desc.its_clear_cmd.event_id = event_id; 794 795 its_send_single_command(dev->its, its_build_clear_cmd, &desc); 796 } 797 798 static void its_send_inv(struct its_device *dev, u32 event_id) 799 { 800 struct its_cmd_desc desc; 801 802 desc.its_inv_cmd.dev = dev; 803 desc.its_inv_cmd.event_id = event_id; 804 805 its_send_single_command(dev->its, its_build_inv_cmd, &desc); 806 } 807 808 static void its_send_mapd(struct its_device *dev, int valid) 809 { 810 struct its_cmd_desc desc; 811 812 desc.its_mapd_cmd.dev = dev; 813 desc.its_mapd_cmd.valid = !!valid; 814 815 its_send_single_command(dev->its, its_build_mapd_cmd, &desc); 816 } 817 818 static void its_send_mapc(struct its_node *its, struct its_collection *col, 819 int valid) 820 { 821 struct its_cmd_desc desc; 822 823 desc.its_mapc_cmd.col = col; 824 desc.its_mapc_cmd.valid = !!valid; 825 826 its_send_single_command(its, its_build_mapc_cmd, &desc); 827 } 828 829 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) 830 { 831 struct its_cmd_desc desc; 832 833 desc.its_mapti_cmd.dev = dev; 834 desc.its_mapti_cmd.phys_id = irq_id; 835 desc.its_mapti_cmd.event_id = id; 836 837 its_send_single_command(dev->its, its_build_mapti_cmd, &desc); 838 } 839 840 static void its_send_movi(struct its_device *dev, 841 struct its_collection *col, u32 id) 842 { 843 struct its_cmd_desc desc; 844 845 desc.its_movi_cmd.dev = dev; 846 desc.its_movi_cmd.col = col; 847 desc.its_movi_cmd.event_id = id; 848 849 its_send_single_command(dev->its, its_build_movi_cmd, &desc); 850 } 851 852 static void its_send_discard(struct its_device *dev, u32 id) 853 { 854 struct its_cmd_desc desc; 855 856 desc.its_discard_cmd.dev = dev; 857 desc.its_discard_cmd.event_id = id; 858 859 its_send_single_command(dev->its, its_build_discard_cmd, &desc); 860 } 861 862 static void its_send_invall(struct its_node *its, struct its_collection *col) 863 { 864 struct its_cmd_desc desc; 865 866 desc.its_invall_cmd.col = col; 867 868 its_send_single_command(its, its_build_invall_cmd, &desc); 869 } 870 871 static void its_send_vmapti(struct its_device *dev, u32 id) 872 { 873 struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id]; 874 struct its_cmd_desc desc; 875 876 desc.its_vmapti_cmd.vpe = map->vpe; 877 desc.its_vmapti_cmd.dev = dev; 878 desc.its_vmapti_cmd.virt_id = map->vintid; 879 desc.its_vmapti_cmd.event_id = id; 880 desc.its_vmapti_cmd.db_enabled = map->db_enabled; 881 882 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); 883 } 884 885 static void its_send_vmovi(struct its_device *dev, u32 id) 886 { 887 struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id]; 888 struct its_cmd_desc desc; 889 890 desc.its_vmovi_cmd.vpe = map->vpe; 891 desc.its_vmovi_cmd.dev = dev; 892 desc.its_vmovi_cmd.event_id = id; 893 desc.its_vmovi_cmd.db_enabled = map->db_enabled; 894 895 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); 896 } 897 898 static void its_send_vmapp(struct its_vpe *vpe, bool valid) 899 { 900 struct its_cmd_desc desc; 901 struct its_node *its; 902 903 desc.its_vmapp_cmd.vpe = vpe; 904 desc.its_vmapp_cmd.valid = valid; 905 906 list_for_each_entry(its, &its_nodes, entry) { 907 if (!its->is_v4) 908 continue; 909 910 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; 911 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); 912 } 913 } 914 915 static void its_send_vmovp(struct its_vpe *vpe) 916 { 917 struct its_cmd_desc desc; 918 struct its_node *its; 919 unsigned long flags; 920 int col_id = vpe->col_idx; 921 922 desc.its_vmovp_cmd.vpe = vpe; 923 desc.its_vmovp_cmd.its_list = (u16)its_list_map; 924 925 if (!its_list_map) { 926 its = list_first_entry(&its_nodes, struct its_node, entry); 927 desc.its_vmovp_cmd.seq_num = 0; 928 desc.its_vmovp_cmd.col = &its->collections[col_id]; 929 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 930 return; 931 } 932 933 /* 934 * Yet another marvel of the architecture. If using the 935 * its_list "feature", we need to make sure that all ITSs 936 * receive all VMOVP commands in the same order. The only way 937 * to guarantee this is to make vmovp a serialization point. 938 * 939 * Wall <-- Head. 940 */ 941 raw_spin_lock_irqsave(&vmovp_lock, flags); 942 943 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; 944 945 /* Emit VMOVPs */ 946 list_for_each_entry(its, &its_nodes, entry) { 947 if (!its->is_v4) 948 continue; 949 950 desc.its_vmovp_cmd.col = &its->collections[col_id]; 951 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 952 } 953 954 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 955 } 956 957 static void its_send_vinvall(struct its_vpe *vpe) 958 { 959 struct its_cmd_desc desc; 960 struct its_node *its; 961 962 desc.its_vinvall_cmd.vpe = vpe; 963 964 list_for_each_entry(its, &its_nodes, entry) { 965 if (!its->is_v4) 966 continue; 967 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); 968 } 969 } 970 971 /* 972 * irqchip functions - assumes MSI, mostly. 973 */ 974 975 static inline u32 its_get_event_id(struct irq_data *d) 976 { 977 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 978 return d->hwirq - its_dev->event_map.lpi_base; 979 } 980 981 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) 982 { 983 irq_hw_number_t hwirq; 984 struct page *prop_page; 985 u8 *cfg; 986 987 if (irqd_is_forwarded_to_vcpu(d)) { 988 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 989 u32 event = its_get_event_id(d); 990 991 prop_page = its_dev->event_map.vm->vprop_page; 992 hwirq = its_dev->event_map.vlpi_maps[event].vintid; 993 } else { 994 prop_page = gic_rdists->prop_page; 995 hwirq = d->hwirq; 996 } 997 998 cfg = page_address(prop_page) + hwirq - 8192; 999 *cfg &= ~clr; 1000 *cfg |= set | LPI_PROP_GROUP1; 1001 1002 /* 1003 * Make the above write visible to the redistributors. 1004 * And yes, we're flushing exactly: One. Single. Byte. 1005 * Humpf... 1006 */ 1007 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) 1008 gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); 1009 else 1010 dsb(ishst); 1011 } 1012 1013 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) 1014 { 1015 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1016 1017 lpi_write_config(d, clr, set); 1018 its_send_inv(its_dev, its_get_event_id(d)); 1019 } 1020 1021 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) 1022 { 1023 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1024 u32 event = its_get_event_id(d); 1025 1026 if (its_dev->event_map.vlpi_maps[event].db_enabled == enable) 1027 return; 1028 1029 its_dev->event_map.vlpi_maps[event].db_enabled = enable; 1030 1031 /* 1032 * More fun with the architecture: 1033 * 1034 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI 1035 * value or to 1023, depending on the enable bit. But that 1036 * would be issueing a mapping for an /existing/ DevID+EventID 1037 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI 1038 * to the /same/ vPE, using this opportunity to adjust the 1039 * doorbell. Mouahahahaha. We loves it, Precious. 1040 */ 1041 its_send_vmovi(its_dev, event); 1042 } 1043 1044 static void its_mask_irq(struct irq_data *d) 1045 { 1046 if (irqd_is_forwarded_to_vcpu(d)) 1047 its_vlpi_set_doorbell(d, false); 1048 1049 lpi_update_config(d, LPI_PROP_ENABLED, 0); 1050 } 1051 1052 static void its_unmask_irq(struct irq_data *d) 1053 { 1054 if (irqd_is_forwarded_to_vcpu(d)) 1055 its_vlpi_set_doorbell(d, true); 1056 1057 lpi_update_config(d, 0, LPI_PROP_ENABLED); 1058 } 1059 1060 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 1061 bool force) 1062 { 1063 unsigned int cpu; 1064 const struct cpumask *cpu_mask = cpu_online_mask; 1065 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1066 struct its_collection *target_col; 1067 u32 id = its_get_event_id(d); 1068 1069 /* A forwarded interrupt should use irq_set_vcpu_affinity */ 1070 if (irqd_is_forwarded_to_vcpu(d)) 1071 return -EINVAL; 1072 1073 /* lpi cannot be routed to a redistributor that is on a foreign node */ 1074 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 1075 if (its_dev->its->numa_node >= 0) { 1076 cpu_mask = cpumask_of_node(its_dev->its->numa_node); 1077 if (!cpumask_intersects(mask_val, cpu_mask)) 1078 return -EINVAL; 1079 } 1080 } 1081 1082 cpu = cpumask_any_and(mask_val, cpu_mask); 1083 1084 if (cpu >= nr_cpu_ids) 1085 return -EINVAL; 1086 1087 /* don't set the affinity when the target cpu is same as current one */ 1088 if (cpu != its_dev->event_map.col_map[id]) { 1089 target_col = &its_dev->its->collections[cpu]; 1090 its_send_movi(its_dev, target_col, id); 1091 its_dev->event_map.col_map[id] = cpu; 1092 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 1093 } 1094 1095 return IRQ_SET_MASK_OK_DONE; 1096 } 1097 1098 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) 1099 { 1100 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1101 struct its_node *its; 1102 u64 addr; 1103 1104 its = its_dev->its; 1105 addr = its->phys_base + GITS_TRANSLATER; 1106 1107 msg->address_lo = lower_32_bits(addr); 1108 msg->address_hi = upper_32_bits(addr); 1109 msg->data = its_get_event_id(d); 1110 1111 iommu_dma_map_msi_msg(d->irq, msg); 1112 } 1113 1114 static int its_irq_set_irqchip_state(struct irq_data *d, 1115 enum irqchip_irq_state which, 1116 bool state) 1117 { 1118 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1119 u32 event = its_get_event_id(d); 1120 1121 if (which != IRQCHIP_STATE_PENDING) 1122 return -EINVAL; 1123 1124 if (state) 1125 its_send_int(its_dev, event); 1126 else 1127 its_send_clear(its_dev, event); 1128 1129 return 0; 1130 } 1131 1132 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) 1133 { 1134 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1135 u32 event = its_get_event_id(d); 1136 int ret = 0; 1137 1138 if (!info->map) 1139 return -EINVAL; 1140 1141 mutex_lock(&its_dev->event_map.vlpi_lock); 1142 1143 if (!its_dev->event_map.vm) { 1144 struct its_vlpi_map *maps; 1145 1146 maps = kzalloc(sizeof(*maps) * its_dev->event_map.nr_lpis, 1147 GFP_KERNEL); 1148 if (!maps) { 1149 ret = -ENOMEM; 1150 goto out; 1151 } 1152 1153 its_dev->event_map.vm = info->map->vm; 1154 its_dev->event_map.vlpi_maps = maps; 1155 } else if (its_dev->event_map.vm != info->map->vm) { 1156 ret = -EINVAL; 1157 goto out; 1158 } 1159 1160 /* Get our private copy of the mapping information */ 1161 its_dev->event_map.vlpi_maps[event] = *info->map; 1162 1163 if (irqd_is_forwarded_to_vcpu(d)) { 1164 /* Already mapped, move it around */ 1165 its_send_vmovi(its_dev, event); 1166 } else { 1167 /* Drop the physical mapping */ 1168 its_send_discard(its_dev, event); 1169 1170 /* and install the virtual one */ 1171 its_send_vmapti(its_dev, event); 1172 irqd_set_forwarded_to_vcpu(d); 1173 1174 /* Increment the number of VLPIs */ 1175 its_dev->event_map.nr_vlpis++; 1176 } 1177 1178 out: 1179 mutex_unlock(&its_dev->event_map.vlpi_lock); 1180 return ret; 1181 } 1182 1183 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) 1184 { 1185 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1186 u32 event = its_get_event_id(d); 1187 int ret = 0; 1188 1189 mutex_lock(&its_dev->event_map.vlpi_lock); 1190 1191 if (!its_dev->event_map.vm || 1192 !its_dev->event_map.vlpi_maps[event].vm) { 1193 ret = -EINVAL; 1194 goto out; 1195 } 1196 1197 /* Copy our mapping information to the incoming request */ 1198 *info->map = its_dev->event_map.vlpi_maps[event]; 1199 1200 out: 1201 mutex_unlock(&its_dev->event_map.vlpi_lock); 1202 return ret; 1203 } 1204 1205 static int its_vlpi_unmap(struct irq_data *d) 1206 { 1207 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1208 u32 event = its_get_event_id(d); 1209 int ret = 0; 1210 1211 mutex_lock(&its_dev->event_map.vlpi_lock); 1212 1213 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) { 1214 ret = -EINVAL; 1215 goto out; 1216 } 1217 1218 /* Drop the virtual mapping */ 1219 its_send_discard(its_dev, event); 1220 1221 /* and restore the physical one */ 1222 irqd_clr_forwarded_to_vcpu(d); 1223 its_send_mapti(its_dev, d->hwirq, event); 1224 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO | 1225 LPI_PROP_ENABLED | 1226 LPI_PROP_GROUP1)); 1227 1228 /* 1229 * Drop the refcount and make the device available again if 1230 * this was the last VLPI. 1231 */ 1232 if (!--its_dev->event_map.nr_vlpis) { 1233 its_dev->event_map.vm = NULL; 1234 kfree(its_dev->event_map.vlpi_maps); 1235 } 1236 1237 out: 1238 mutex_unlock(&its_dev->event_map.vlpi_lock); 1239 return ret; 1240 } 1241 1242 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) 1243 { 1244 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1245 1246 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 1247 return -EINVAL; 1248 1249 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) 1250 lpi_update_config(d, 0xff, info->config); 1251 else 1252 lpi_write_config(d, 0xff, info->config); 1253 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); 1254 1255 return 0; 1256 } 1257 1258 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 1259 { 1260 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1261 struct its_cmd_info *info = vcpu_info; 1262 1263 /* Need a v4 ITS */ 1264 if (!its_dev->its->is_v4) 1265 return -EINVAL; 1266 1267 /* Unmap request? */ 1268 if (!info) 1269 return its_vlpi_unmap(d); 1270 1271 switch (info->cmd_type) { 1272 case MAP_VLPI: 1273 return its_vlpi_map(d, info); 1274 1275 case GET_VLPI: 1276 return its_vlpi_get(d, info); 1277 1278 case PROP_UPDATE_VLPI: 1279 case PROP_UPDATE_AND_INV_VLPI: 1280 return its_vlpi_prop_update(d, info); 1281 1282 default: 1283 return -EINVAL; 1284 } 1285 } 1286 1287 static struct irq_chip its_irq_chip = { 1288 .name = "ITS", 1289 .irq_mask = its_mask_irq, 1290 .irq_unmask = its_unmask_irq, 1291 .irq_eoi = irq_chip_eoi_parent, 1292 .irq_set_affinity = its_set_affinity, 1293 .irq_compose_msi_msg = its_irq_compose_msi_msg, 1294 .irq_set_irqchip_state = its_irq_set_irqchip_state, 1295 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity, 1296 }; 1297 1298 /* 1299 * How we allocate LPIs: 1300 * 1301 * The GIC has id_bits bits for interrupt identifiers. From there, we 1302 * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as 1303 * we allocate LPIs by chunks of 32, we can shift the whole thing by 5 1304 * bits to the right. 1305 * 1306 * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations. 1307 */ 1308 #define IRQS_PER_CHUNK_SHIFT 5 1309 #define IRQS_PER_CHUNK (1 << IRQS_PER_CHUNK_SHIFT) 1310 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */ 1311 1312 static unsigned long *lpi_bitmap; 1313 static u32 lpi_chunks; 1314 static DEFINE_SPINLOCK(lpi_lock); 1315 1316 static int its_lpi_to_chunk(int lpi) 1317 { 1318 return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT; 1319 } 1320 1321 static int its_chunk_to_lpi(int chunk) 1322 { 1323 return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192; 1324 } 1325 1326 static int __init its_lpi_init(u32 id_bits) 1327 { 1328 lpi_chunks = its_lpi_to_chunk(1UL << id_bits); 1329 1330 lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long), 1331 GFP_KERNEL); 1332 if (!lpi_bitmap) { 1333 lpi_chunks = 0; 1334 return -ENOMEM; 1335 } 1336 1337 pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks); 1338 return 0; 1339 } 1340 1341 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids) 1342 { 1343 unsigned long *bitmap = NULL; 1344 int chunk_id; 1345 int nr_chunks; 1346 int i; 1347 1348 nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK); 1349 1350 spin_lock(&lpi_lock); 1351 1352 do { 1353 chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks, 1354 0, nr_chunks, 0); 1355 if (chunk_id < lpi_chunks) 1356 break; 1357 1358 nr_chunks--; 1359 } while (nr_chunks > 0); 1360 1361 if (!nr_chunks) 1362 goto out; 1363 1364 bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long), 1365 GFP_ATOMIC); 1366 if (!bitmap) 1367 goto out; 1368 1369 for (i = 0; i < nr_chunks; i++) 1370 set_bit(chunk_id + i, lpi_bitmap); 1371 1372 *base = its_chunk_to_lpi(chunk_id); 1373 *nr_ids = nr_chunks * IRQS_PER_CHUNK; 1374 1375 out: 1376 spin_unlock(&lpi_lock); 1377 1378 if (!bitmap) 1379 *base = *nr_ids = 0; 1380 1381 return bitmap; 1382 } 1383 1384 static void its_lpi_free_chunks(unsigned long *bitmap, int base, int nr_ids) 1385 { 1386 int lpi; 1387 1388 spin_lock(&lpi_lock); 1389 1390 for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) { 1391 int chunk = its_lpi_to_chunk(lpi); 1392 1393 BUG_ON(chunk > lpi_chunks); 1394 if (test_bit(chunk, lpi_bitmap)) { 1395 clear_bit(chunk, lpi_bitmap); 1396 } else { 1397 pr_err("Bad LPI chunk %d\n", chunk); 1398 } 1399 } 1400 1401 spin_unlock(&lpi_lock); 1402 1403 kfree(bitmap); 1404 } 1405 1406 static struct page *its_allocate_prop_table(gfp_t gfp_flags) 1407 { 1408 struct page *prop_page; 1409 1410 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ)); 1411 if (!prop_page) 1412 return NULL; 1413 1414 /* Priority 0xa0, Group-1, disabled */ 1415 memset(page_address(prop_page), 1416 LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, 1417 LPI_PROPBASE_SZ); 1418 1419 /* Make sure the GIC will observe the written configuration */ 1420 gic_flush_dcache_to_poc(page_address(prop_page), LPI_PROPBASE_SZ); 1421 1422 return prop_page; 1423 } 1424 1425 static void its_free_prop_table(struct page *prop_page) 1426 { 1427 free_pages((unsigned long)page_address(prop_page), 1428 get_order(LPI_PROPBASE_SZ)); 1429 } 1430 1431 static int __init its_alloc_lpi_tables(void) 1432 { 1433 phys_addr_t paddr; 1434 1435 lpi_id_bits = min_t(u32, gic_rdists->id_bits, ITS_MAX_LPI_NRBITS); 1436 gic_rdists->prop_page = its_allocate_prop_table(GFP_NOWAIT); 1437 if (!gic_rdists->prop_page) { 1438 pr_err("Failed to allocate PROPBASE\n"); 1439 return -ENOMEM; 1440 } 1441 1442 paddr = page_to_phys(gic_rdists->prop_page); 1443 pr_info("GIC: using LPI property table @%pa\n", &paddr); 1444 1445 return its_lpi_init(lpi_id_bits); 1446 } 1447 1448 static const char *its_base_type_string[] = { 1449 [GITS_BASER_TYPE_DEVICE] = "Devices", 1450 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", 1451 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)", 1452 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", 1453 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", 1454 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", 1455 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", 1456 }; 1457 1458 static u64 its_read_baser(struct its_node *its, struct its_baser *baser) 1459 { 1460 u32 idx = baser - its->tables; 1461 1462 return gits_read_baser(its->base + GITS_BASER + (idx << 3)); 1463 } 1464 1465 static void its_write_baser(struct its_node *its, struct its_baser *baser, 1466 u64 val) 1467 { 1468 u32 idx = baser - its->tables; 1469 1470 gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); 1471 baser->val = its_read_baser(its, baser); 1472 } 1473 1474 static int its_setup_baser(struct its_node *its, struct its_baser *baser, 1475 u64 cache, u64 shr, u32 psz, u32 order, 1476 bool indirect) 1477 { 1478 u64 val = its_read_baser(its, baser); 1479 u64 esz = GITS_BASER_ENTRY_SIZE(val); 1480 u64 type = GITS_BASER_TYPE(val); 1481 u32 alloc_pages; 1482 void *base; 1483 u64 tmp; 1484 1485 retry_alloc_baser: 1486 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); 1487 if (alloc_pages > GITS_BASER_PAGES_MAX) { 1488 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", 1489 &its->phys_base, its_base_type_string[type], 1490 alloc_pages, GITS_BASER_PAGES_MAX); 1491 alloc_pages = GITS_BASER_PAGES_MAX; 1492 order = get_order(GITS_BASER_PAGES_MAX * psz); 1493 } 1494 1495 base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 1496 if (!base) 1497 return -ENOMEM; 1498 1499 retry_baser: 1500 val = (virt_to_phys(base) | 1501 (type << GITS_BASER_TYPE_SHIFT) | 1502 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | 1503 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | 1504 cache | 1505 shr | 1506 GITS_BASER_VALID); 1507 1508 val |= indirect ? GITS_BASER_INDIRECT : 0x0; 1509 1510 switch (psz) { 1511 case SZ_4K: 1512 val |= GITS_BASER_PAGE_SIZE_4K; 1513 break; 1514 case SZ_16K: 1515 val |= GITS_BASER_PAGE_SIZE_16K; 1516 break; 1517 case SZ_64K: 1518 val |= GITS_BASER_PAGE_SIZE_64K; 1519 break; 1520 } 1521 1522 its_write_baser(its, baser, val); 1523 tmp = baser->val; 1524 1525 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { 1526 /* 1527 * Shareability didn't stick. Just use 1528 * whatever the read reported, which is likely 1529 * to be the only thing this redistributor 1530 * supports. If that's zero, make it 1531 * non-cacheable as well. 1532 */ 1533 shr = tmp & GITS_BASER_SHAREABILITY_MASK; 1534 if (!shr) { 1535 cache = GITS_BASER_nC; 1536 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); 1537 } 1538 goto retry_baser; 1539 } 1540 1541 if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) { 1542 /* 1543 * Page size didn't stick. Let's try a smaller 1544 * size and retry. If we reach 4K, then 1545 * something is horribly wrong... 1546 */ 1547 free_pages((unsigned long)base, order); 1548 baser->base = NULL; 1549 1550 switch (psz) { 1551 case SZ_16K: 1552 psz = SZ_4K; 1553 goto retry_alloc_baser; 1554 case SZ_64K: 1555 psz = SZ_16K; 1556 goto retry_alloc_baser; 1557 } 1558 } 1559 1560 if (val != tmp) { 1561 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", 1562 &its->phys_base, its_base_type_string[type], 1563 val, tmp); 1564 free_pages((unsigned long)base, order); 1565 return -ENXIO; 1566 } 1567 1568 baser->order = order; 1569 baser->base = base; 1570 baser->psz = psz; 1571 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; 1572 1573 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", 1574 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), 1575 its_base_type_string[type], 1576 (unsigned long)virt_to_phys(base), 1577 indirect ? "indirect" : "flat", (int)esz, 1578 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); 1579 1580 return 0; 1581 } 1582 1583 static bool its_parse_indirect_baser(struct its_node *its, 1584 struct its_baser *baser, 1585 u32 psz, u32 *order) 1586 { 1587 u64 tmp = its_read_baser(its, baser); 1588 u64 type = GITS_BASER_TYPE(tmp); 1589 u64 esz = GITS_BASER_ENTRY_SIZE(tmp); 1590 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; 1591 u32 ids = its->device_ids; 1592 u32 new_order = *order; 1593 bool indirect = false; 1594 1595 /* No need to enable Indirection if memory requirement < (psz*2)bytes */ 1596 if ((esz << ids) > (psz * 2)) { 1597 /* 1598 * Find out whether hw supports a single or two-level table by 1599 * table by reading bit at offset '62' after writing '1' to it. 1600 */ 1601 its_write_baser(its, baser, val | GITS_BASER_INDIRECT); 1602 indirect = !!(baser->val & GITS_BASER_INDIRECT); 1603 1604 if (indirect) { 1605 /* 1606 * The size of the lvl2 table is equal to ITS page size 1607 * which is 'psz'. For computing lvl1 table size, 1608 * subtract ID bits that sparse lvl2 table from 'ids' 1609 * which is reported by ITS hardware times lvl1 table 1610 * entry size. 1611 */ 1612 ids -= ilog2(psz / (int)esz); 1613 esz = GITS_LVL1_ENTRY_SIZE; 1614 } 1615 } 1616 1617 /* 1618 * Allocate as many entries as required to fit the 1619 * range of device IDs that the ITS can grok... The ID 1620 * space being incredibly sparse, this results in a 1621 * massive waste of memory if two-level device table 1622 * feature is not supported by hardware. 1623 */ 1624 new_order = max_t(u32, get_order(esz << ids), new_order); 1625 if (new_order >= MAX_ORDER) { 1626 new_order = MAX_ORDER - 1; 1627 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); 1628 pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n", 1629 &its->phys_base, its_base_type_string[type], 1630 its->device_ids, ids); 1631 } 1632 1633 *order = new_order; 1634 1635 return indirect; 1636 } 1637 1638 static void its_free_tables(struct its_node *its) 1639 { 1640 int i; 1641 1642 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 1643 if (its->tables[i].base) { 1644 free_pages((unsigned long)its->tables[i].base, 1645 its->tables[i].order); 1646 its->tables[i].base = NULL; 1647 } 1648 } 1649 } 1650 1651 static int its_alloc_tables(struct its_node *its) 1652 { 1653 u64 typer = gic_read_typer(its->base + GITS_TYPER); 1654 u32 ids = GITS_TYPER_DEVBITS(typer); 1655 u64 shr = GITS_BASER_InnerShareable; 1656 u64 cache = GITS_BASER_RaWaWb; 1657 u32 psz = SZ_64K; 1658 int err, i; 1659 1660 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) { 1661 /* 1662 * erratum 22375: only alloc 8MB table size 1663 * erratum 24313: ignore memory access type 1664 */ 1665 cache = GITS_BASER_nCnB; 1666 ids = 0x14; /* 20 bits, 8MB */ 1667 } 1668 1669 its->device_ids = ids; 1670 1671 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 1672 struct its_baser *baser = its->tables + i; 1673 u64 val = its_read_baser(its, baser); 1674 u64 type = GITS_BASER_TYPE(val); 1675 u32 order = get_order(psz); 1676 bool indirect = false; 1677 1678 switch (type) { 1679 case GITS_BASER_TYPE_NONE: 1680 continue; 1681 1682 case GITS_BASER_TYPE_DEVICE: 1683 case GITS_BASER_TYPE_VCPU: 1684 indirect = its_parse_indirect_baser(its, baser, 1685 psz, &order); 1686 break; 1687 } 1688 1689 err = its_setup_baser(its, baser, cache, shr, psz, order, indirect); 1690 if (err < 0) { 1691 its_free_tables(its); 1692 return err; 1693 } 1694 1695 /* Update settings which will be used for next BASERn */ 1696 psz = baser->psz; 1697 cache = baser->val & GITS_BASER_CACHEABILITY_MASK; 1698 shr = baser->val & GITS_BASER_SHAREABILITY_MASK; 1699 } 1700 1701 return 0; 1702 } 1703 1704 static int its_alloc_collections(struct its_node *its) 1705 { 1706 its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections), 1707 GFP_KERNEL); 1708 if (!its->collections) 1709 return -ENOMEM; 1710 1711 return 0; 1712 } 1713 1714 static struct page *its_allocate_pending_table(gfp_t gfp_flags) 1715 { 1716 struct page *pend_page; 1717 /* 1718 * The pending pages have to be at least 64kB aligned, 1719 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below. 1720 */ 1721 pend_page = alloc_pages(gfp_flags | __GFP_ZERO, 1722 get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K))); 1723 if (!pend_page) 1724 return NULL; 1725 1726 /* Make sure the GIC will observe the zero-ed page */ 1727 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); 1728 1729 return pend_page; 1730 } 1731 1732 static void its_free_pending_table(struct page *pt) 1733 { 1734 free_pages((unsigned long)page_address(pt), 1735 get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K))); 1736 } 1737 1738 static void its_cpu_init_lpis(void) 1739 { 1740 void __iomem *rbase = gic_data_rdist_rd_base(); 1741 struct page *pend_page; 1742 u64 val, tmp; 1743 1744 /* If we didn't allocate the pending table yet, do it now */ 1745 pend_page = gic_data_rdist()->pend_page; 1746 if (!pend_page) { 1747 phys_addr_t paddr; 1748 1749 pend_page = its_allocate_pending_table(GFP_NOWAIT); 1750 if (!pend_page) { 1751 pr_err("Failed to allocate PENDBASE for CPU%d\n", 1752 smp_processor_id()); 1753 return; 1754 } 1755 1756 paddr = page_to_phys(pend_page); 1757 pr_info("CPU%d: using LPI pending table @%pa\n", 1758 smp_processor_id(), &paddr); 1759 gic_data_rdist()->pend_page = pend_page; 1760 } 1761 1762 /* Disable LPIs */ 1763 val = readl_relaxed(rbase + GICR_CTLR); 1764 val &= ~GICR_CTLR_ENABLE_LPIS; 1765 writel_relaxed(val, rbase + GICR_CTLR); 1766 1767 /* 1768 * Make sure any change to the table is observable by the GIC. 1769 */ 1770 dsb(sy); 1771 1772 /* set PROPBASE */ 1773 val = (page_to_phys(gic_rdists->prop_page) | 1774 GICR_PROPBASER_InnerShareable | 1775 GICR_PROPBASER_RaWaWb | 1776 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); 1777 1778 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 1779 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); 1780 1781 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { 1782 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { 1783 /* 1784 * The HW reports non-shareable, we must 1785 * remove the cacheability attributes as 1786 * well. 1787 */ 1788 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | 1789 GICR_PROPBASER_CACHEABILITY_MASK); 1790 val |= GICR_PROPBASER_nC; 1791 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 1792 } 1793 pr_info_once("GIC: using cache flushing for LPI property table\n"); 1794 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; 1795 } 1796 1797 /* set PENDBASE */ 1798 val = (page_to_phys(pend_page) | 1799 GICR_PENDBASER_InnerShareable | 1800 GICR_PENDBASER_RaWaWb); 1801 1802 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 1803 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); 1804 1805 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { 1806 /* 1807 * The HW reports non-shareable, we must remove the 1808 * cacheability attributes as well. 1809 */ 1810 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | 1811 GICR_PENDBASER_CACHEABILITY_MASK); 1812 val |= GICR_PENDBASER_nC; 1813 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 1814 } 1815 1816 /* Enable LPIs */ 1817 val = readl_relaxed(rbase + GICR_CTLR); 1818 val |= GICR_CTLR_ENABLE_LPIS; 1819 writel_relaxed(val, rbase + GICR_CTLR); 1820 1821 /* Make sure the GIC has seen the above */ 1822 dsb(sy); 1823 } 1824 1825 static void its_cpu_init_collection(void) 1826 { 1827 struct its_node *its; 1828 int cpu; 1829 1830 spin_lock(&its_lock); 1831 cpu = smp_processor_id(); 1832 1833 list_for_each_entry(its, &its_nodes, entry) { 1834 u64 target; 1835 1836 /* avoid cross node collections and its mapping */ 1837 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 1838 struct device_node *cpu_node; 1839 1840 cpu_node = of_get_cpu_node(cpu, NULL); 1841 if (its->numa_node != NUMA_NO_NODE && 1842 its->numa_node != of_node_to_nid(cpu_node)) 1843 continue; 1844 } 1845 1846 /* 1847 * We now have to bind each collection to its target 1848 * redistributor. 1849 */ 1850 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { 1851 /* 1852 * This ITS wants the physical address of the 1853 * redistributor. 1854 */ 1855 target = gic_data_rdist()->phys_base; 1856 } else { 1857 /* 1858 * This ITS wants a linear CPU number. 1859 */ 1860 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 1861 target = GICR_TYPER_CPU_NUMBER(target) << 16; 1862 } 1863 1864 /* Perform collection mapping */ 1865 its->collections[cpu].target_address = target; 1866 its->collections[cpu].col_id = cpu; 1867 1868 its_send_mapc(its, &its->collections[cpu], 1); 1869 its_send_invall(its, &its->collections[cpu]); 1870 } 1871 1872 spin_unlock(&its_lock); 1873 } 1874 1875 static struct its_device *its_find_device(struct its_node *its, u32 dev_id) 1876 { 1877 struct its_device *its_dev = NULL, *tmp; 1878 unsigned long flags; 1879 1880 raw_spin_lock_irqsave(&its->lock, flags); 1881 1882 list_for_each_entry(tmp, &its->its_device_list, entry) { 1883 if (tmp->device_id == dev_id) { 1884 its_dev = tmp; 1885 break; 1886 } 1887 } 1888 1889 raw_spin_unlock_irqrestore(&its->lock, flags); 1890 1891 return its_dev; 1892 } 1893 1894 static struct its_baser *its_get_baser(struct its_node *its, u32 type) 1895 { 1896 int i; 1897 1898 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 1899 if (GITS_BASER_TYPE(its->tables[i].val) == type) 1900 return &its->tables[i]; 1901 } 1902 1903 return NULL; 1904 } 1905 1906 static bool its_alloc_table_entry(struct its_baser *baser, u32 id) 1907 { 1908 struct page *page; 1909 u32 esz, idx; 1910 __le64 *table; 1911 1912 /* Don't allow device id that exceeds single, flat table limit */ 1913 esz = GITS_BASER_ENTRY_SIZE(baser->val); 1914 if (!(baser->val & GITS_BASER_INDIRECT)) 1915 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); 1916 1917 /* Compute 1st level table index & check if that exceeds table limit */ 1918 idx = id >> ilog2(baser->psz / esz); 1919 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) 1920 return false; 1921 1922 table = baser->base; 1923 1924 /* Allocate memory for 2nd level table */ 1925 if (!table[idx]) { 1926 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz)); 1927 if (!page) 1928 return false; 1929 1930 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 1931 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 1932 gic_flush_dcache_to_poc(page_address(page), baser->psz); 1933 1934 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 1935 1936 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 1937 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 1938 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 1939 1940 /* Ensure updated table contents are visible to ITS hardware */ 1941 dsb(sy); 1942 } 1943 1944 return true; 1945 } 1946 1947 static bool its_alloc_device_table(struct its_node *its, u32 dev_id) 1948 { 1949 struct its_baser *baser; 1950 1951 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); 1952 1953 /* Don't allow device id that exceeds ITS hardware limit */ 1954 if (!baser) 1955 return (ilog2(dev_id) < its->device_ids); 1956 1957 return its_alloc_table_entry(baser, dev_id); 1958 } 1959 1960 static bool its_alloc_vpe_table(u32 vpe_id) 1961 { 1962 struct its_node *its; 1963 1964 /* 1965 * Make sure the L2 tables are allocated on *all* v4 ITSs. We 1966 * could try and only do it on ITSs corresponding to devices 1967 * that have interrupts targeted at this VPE, but the 1968 * complexity becomes crazy (and you have tons of memory 1969 * anyway, right?). 1970 */ 1971 list_for_each_entry(its, &its_nodes, entry) { 1972 struct its_baser *baser; 1973 1974 if (!its->is_v4) 1975 continue; 1976 1977 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); 1978 if (!baser) 1979 return false; 1980 1981 if (!its_alloc_table_entry(baser, vpe_id)) 1982 return false; 1983 } 1984 1985 return true; 1986 } 1987 1988 static struct its_device *its_create_device(struct its_node *its, u32 dev_id, 1989 int nvecs, bool alloc_lpis) 1990 { 1991 struct its_device *dev; 1992 unsigned long *lpi_map = NULL; 1993 unsigned long flags; 1994 u16 *col_map = NULL; 1995 void *itt; 1996 int lpi_base; 1997 int nr_lpis; 1998 int nr_ites; 1999 int sz; 2000 2001 if (!its_alloc_device_table(its, dev_id)) 2002 return NULL; 2003 2004 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2005 /* 2006 * At least one bit of EventID is being used, hence a minimum 2007 * of two entries. No, the architecture doesn't let you 2008 * express an ITT with a single entry. 2009 */ 2010 nr_ites = max(2UL, roundup_pow_of_two(nvecs)); 2011 sz = nr_ites * its->ite_size; 2012 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; 2013 itt = kzalloc(sz, GFP_KERNEL); 2014 if (alloc_lpis) { 2015 lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis); 2016 if (lpi_map) 2017 col_map = kzalloc(sizeof(*col_map) * nr_lpis, 2018 GFP_KERNEL); 2019 } else { 2020 col_map = kzalloc(sizeof(*col_map) * nr_ites, GFP_KERNEL); 2021 nr_lpis = 0; 2022 lpi_base = 0; 2023 } 2024 2025 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) { 2026 kfree(dev); 2027 kfree(itt); 2028 kfree(lpi_map); 2029 kfree(col_map); 2030 return NULL; 2031 } 2032 2033 gic_flush_dcache_to_poc(itt, sz); 2034 2035 dev->its = its; 2036 dev->itt = itt; 2037 dev->nr_ites = nr_ites; 2038 dev->event_map.lpi_map = lpi_map; 2039 dev->event_map.col_map = col_map; 2040 dev->event_map.lpi_base = lpi_base; 2041 dev->event_map.nr_lpis = nr_lpis; 2042 mutex_init(&dev->event_map.vlpi_lock); 2043 dev->device_id = dev_id; 2044 INIT_LIST_HEAD(&dev->entry); 2045 2046 raw_spin_lock_irqsave(&its->lock, flags); 2047 list_add(&dev->entry, &its->its_device_list); 2048 raw_spin_unlock_irqrestore(&its->lock, flags); 2049 2050 /* Map device to its ITT */ 2051 its_send_mapd(dev, 1); 2052 2053 return dev; 2054 } 2055 2056 static void its_free_device(struct its_device *its_dev) 2057 { 2058 unsigned long flags; 2059 2060 raw_spin_lock_irqsave(&its_dev->its->lock, flags); 2061 list_del(&its_dev->entry); 2062 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); 2063 kfree(its_dev->itt); 2064 kfree(its_dev); 2065 } 2066 2067 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq) 2068 { 2069 int idx; 2070 2071 idx = find_first_zero_bit(dev->event_map.lpi_map, 2072 dev->event_map.nr_lpis); 2073 if (idx == dev->event_map.nr_lpis) 2074 return -ENOSPC; 2075 2076 *hwirq = dev->event_map.lpi_base + idx; 2077 set_bit(idx, dev->event_map.lpi_map); 2078 2079 return 0; 2080 } 2081 2082 static int its_msi_prepare(struct irq_domain *domain, struct device *dev, 2083 int nvec, msi_alloc_info_t *info) 2084 { 2085 struct its_node *its; 2086 struct its_device *its_dev; 2087 struct msi_domain_info *msi_info; 2088 u32 dev_id; 2089 2090 /* 2091 * We ignore "dev" entierely, and rely on the dev_id that has 2092 * been passed via the scratchpad. This limits this domain's 2093 * usefulness to upper layers that definitely know that they 2094 * are built on top of the ITS. 2095 */ 2096 dev_id = info->scratchpad[0].ul; 2097 2098 msi_info = msi_get_domain_info(domain); 2099 its = msi_info->data; 2100 2101 if (!gic_rdists->has_direct_lpi && 2102 vpe_proxy.dev && 2103 vpe_proxy.dev->its == its && 2104 dev_id == vpe_proxy.dev->device_id) { 2105 /* Bad luck. Get yourself a better implementation */ 2106 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", 2107 dev_id); 2108 return -EINVAL; 2109 } 2110 2111 its_dev = its_find_device(its, dev_id); 2112 if (its_dev) { 2113 /* 2114 * We already have seen this ID, probably through 2115 * another alias (PCI bridge of some sort). No need to 2116 * create the device. 2117 */ 2118 pr_debug("Reusing ITT for devID %x\n", dev_id); 2119 goto out; 2120 } 2121 2122 its_dev = its_create_device(its, dev_id, nvec, true); 2123 if (!its_dev) 2124 return -ENOMEM; 2125 2126 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); 2127 out: 2128 info->scratchpad[0].ptr = its_dev; 2129 return 0; 2130 } 2131 2132 static struct msi_domain_ops its_msi_domain_ops = { 2133 .msi_prepare = its_msi_prepare, 2134 }; 2135 2136 static int its_irq_gic_domain_alloc(struct irq_domain *domain, 2137 unsigned int virq, 2138 irq_hw_number_t hwirq) 2139 { 2140 struct irq_fwspec fwspec; 2141 2142 if (irq_domain_get_of_node(domain->parent)) { 2143 fwspec.fwnode = domain->parent->fwnode; 2144 fwspec.param_count = 3; 2145 fwspec.param[0] = GIC_IRQ_TYPE_LPI; 2146 fwspec.param[1] = hwirq; 2147 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 2148 } else if (is_fwnode_irqchip(domain->parent->fwnode)) { 2149 fwspec.fwnode = domain->parent->fwnode; 2150 fwspec.param_count = 2; 2151 fwspec.param[0] = hwirq; 2152 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 2153 } else { 2154 return -EINVAL; 2155 } 2156 2157 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 2158 } 2159 2160 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 2161 unsigned int nr_irqs, void *args) 2162 { 2163 msi_alloc_info_t *info = args; 2164 struct its_device *its_dev = info->scratchpad[0].ptr; 2165 irq_hw_number_t hwirq; 2166 int err; 2167 int i; 2168 2169 for (i = 0; i < nr_irqs; i++) { 2170 err = its_alloc_device_irq(its_dev, &hwirq); 2171 if (err) 2172 return err; 2173 2174 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq); 2175 if (err) 2176 return err; 2177 2178 irq_domain_set_hwirq_and_chip(domain, virq + i, 2179 hwirq, &its_irq_chip, its_dev); 2180 irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i))); 2181 pr_debug("ID:%d pID:%d vID:%d\n", 2182 (int)(hwirq - its_dev->event_map.lpi_base), 2183 (int) hwirq, virq + i); 2184 } 2185 2186 return 0; 2187 } 2188 2189 static void its_irq_domain_activate(struct irq_domain *domain, 2190 struct irq_data *d) 2191 { 2192 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2193 u32 event = its_get_event_id(d); 2194 const struct cpumask *cpu_mask = cpu_online_mask; 2195 int cpu; 2196 2197 /* get the cpu_mask of local node */ 2198 if (its_dev->its->numa_node >= 0) 2199 cpu_mask = cpumask_of_node(its_dev->its->numa_node); 2200 2201 /* Bind the LPI to the first possible CPU */ 2202 cpu = cpumask_first(cpu_mask); 2203 its_dev->event_map.col_map[event] = cpu; 2204 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 2205 2206 /* Map the GIC IRQ and event to the device */ 2207 its_send_mapti(its_dev, d->hwirq, event); 2208 } 2209 2210 static void its_irq_domain_deactivate(struct irq_domain *domain, 2211 struct irq_data *d) 2212 { 2213 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2214 u32 event = its_get_event_id(d); 2215 2216 /* Stop the delivery of interrupts */ 2217 its_send_discard(its_dev, event); 2218 } 2219 2220 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, 2221 unsigned int nr_irqs) 2222 { 2223 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 2224 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2225 int i; 2226 2227 for (i = 0; i < nr_irqs; i++) { 2228 struct irq_data *data = irq_domain_get_irq_data(domain, 2229 virq + i); 2230 u32 event = its_get_event_id(data); 2231 2232 /* Mark interrupt index as unused */ 2233 clear_bit(event, its_dev->event_map.lpi_map); 2234 2235 /* Nuke the entry in the domain */ 2236 irq_domain_reset_irq_data(data); 2237 } 2238 2239 /* If all interrupts have been freed, start mopping the floor */ 2240 if (bitmap_empty(its_dev->event_map.lpi_map, 2241 its_dev->event_map.nr_lpis)) { 2242 its_lpi_free_chunks(its_dev->event_map.lpi_map, 2243 its_dev->event_map.lpi_base, 2244 its_dev->event_map.nr_lpis); 2245 kfree(its_dev->event_map.col_map); 2246 2247 /* Unmap device/itt */ 2248 its_send_mapd(its_dev, 0); 2249 its_free_device(its_dev); 2250 } 2251 2252 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 2253 } 2254 2255 static const struct irq_domain_ops its_domain_ops = { 2256 .alloc = its_irq_domain_alloc, 2257 .free = its_irq_domain_free, 2258 .activate = its_irq_domain_activate, 2259 .deactivate = its_irq_domain_deactivate, 2260 }; 2261 2262 /* 2263 * This is insane. 2264 * 2265 * If a GICv4 doesn't implement Direct LPIs (which is extremely 2266 * likely), the only way to perform an invalidate is to use a fake 2267 * device to issue an INV command, implying that the LPI has first 2268 * been mapped to some event on that device. Since this is not exactly 2269 * cheap, we try to keep that mapping around as long as possible, and 2270 * only issue an UNMAP if we're short on available slots. 2271 * 2272 * Broken by design(tm). 2273 */ 2274 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) 2275 { 2276 /* Already unmapped? */ 2277 if (vpe->vpe_proxy_event == -1) 2278 return; 2279 2280 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); 2281 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; 2282 2283 /* 2284 * We don't track empty slots at all, so let's move the 2285 * next_victim pointer if we can quickly reuse that slot 2286 * instead of nuking an existing entry. Not clear that this is 2287 * always a win though, and this might just generate a ripple 2288 * effect... Let's just hope VPEs don't migrate too often. 2289 */ 2290 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 2291 vpe_proxy.next_victim = vpe->vpe_proxy_event; 2292 2293 vpe->vpe_proxy_event = -1; 2294 } 2295 2296 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) 2297 { 2298 if (!gic_rdists->has_direct_lpi) { 2299 unsigned long flags; 2300 2301 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 2302 its_vpe_db_proxy_unmap_locked(vpe); 2303 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 2304 } 2305 } 2306 2307 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) 2308 { 2309 /* Already mapped? */ 2310 if (vpe->vpe_proxy_event != -1) 2311 return; 2312 2313 /* This slot was already allocated. Kick the other VPE out. */ 2314 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 2315 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); 2316 2317 /* Map the new VPE instead */ 2318 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; 2319 vpe->vpe_proxy_event = vpe_proxy.next_victim; 2320 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; 2321 2322 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; 2323 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); 2324 } 2325 2326 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) 2327 { 2328 unsigned long flags; 2329 struct its_collection *target_col; 2330 2331 if (gic_rdists->has_direct_lpi) { 2332 void __iomem *rdbase; 2333 2334 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; 2335 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 2336 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1) 2337 cpu_relax(); 2338 2339 return; 2340 } 2341 2342 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 2343 2344 its_vpe_db_proxy_map_locked(vpe); 2345 2346 target_col = &vpe_proxy.dev->its->collections[to]; 2347 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); 2348 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; 2349 2350 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 2351 } 2352 2353 static int its_vpe_set_affinity(struct irq_data *d, 2354 const struct cpumask *mask_val, 2355 bool force) 2356 { 2357 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2358 int cpu = cpumask_first(mask_val); 2359 2360 /* 2361 * Changing affinity is mega expensive, so let's be as lazy as 2362 * we can and only do it if we really have to. Also, if mapped 2363 * into the proxy device, we need to move the doorbell 2364 * interrupt to its new location. 2365 */ 2366 if (vpe->col_idx != cpu) { 2367 int from = vpe->col_idx; 2368 2369 vpe->col_idx = cpu; 2370 its_send_vmovp(vpe); 2371 its_vpe_db_proxy_move(vpe, from, cpu); 2372 } 2373 2374 return IRQ_SET_MASK_OK_DONE; 2375 } 2376 2377 static void its_vpe_schedule(struct its_vpe *vpe) 2378 { 2379 void * __iomem vlpi_base = gic_data_rdist_vlpi_base(); 2380 u64 val; 2381 2382 /* Schedule the VPE */ 2383 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & 2384 GENMASK_ULL(51, 12); 2385 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 2386 val |= GICR_VPROPBASER_RaWb; 2387 val |= GICR_VPROPBASER_InnerShareable; 2388 gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2389 2390 val = virt_to_phys(page_address(vpe->vpt_page)) & 2391 GENMASK_ULL(51, 16); 2392 val |= GICR_VPENDBASER_RaWaWb; 2393 val |= GICR_VPENDBASER_NonShareable; 2394 /* 2395 * There is no good way of finding out if the pending table is 2396 * empty as we can race against the doorbell interrupt very 2397 * easily. So in the end, vpe->pending_last is only an 2398 * indication that the vcpu has something pending, not one 2399 * that the pending table is empty. A good implementation 2400 * would be able to read its coarse map pretty quickly anyway, 2401 * making this a tolerable issue. 2402 */ 2403 val |= GICR_VPENDBASER_PendingLast; 2404 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; 2405 val |= GICR_VPENDBASER_Valid; 2406 gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 2407 } 2408 2409 static void its_vpe_deschedule(struct its_vpe *vpe) 2410 { 2411 void * __iomem vlpi_base = gic_data_rdist_vlpi_base(); 2412 u32 count = 1000000; /* 1s! */ 2413 bool clean; 2414 u64 val; 2415 2416 /* We're being scheduled out */ 2417 val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 2418 val &= ~GICR_VPENDBASER_Valid; 2419 gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 2420 2421 do { 2422 val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 2423 clean = !(val & GICR_VPENDBASER_Dirty); 2424 if (!clean) { 2425 count--; 2426 cpu_relax(); 2427 udelay(1); 2428 } 2429 } while (!clean && count); 2430 2431 if (unlikely(!clean && !count)) { 2432 pr_err_ratelimited("ITS virtual pending table not cleaning\n"); 2433 vpe->idai = false; 2434 vpe->pending_last = true; 2435 } else { 2436 vpe->idai = !!(val & GICR_VPENDBASER_IDAI); 2437 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 2438 } 2439 } 2440 2441 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 2442 { 2443 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2444 struct its_cmd_info *info = vcpu_info; 2445 2446 switch (info->cmd_type) { 2447 case SCHEDULE_VPE: 2448 its_vpe_schedule(vpe); 2449 return 0; 2450 2451 case DESCHEDULE_VPE: 2452 its_vpe_deschedule(vpe); 2453 return 0; 2454 2455 case INVALL_VPE: 2456 its_send_vinvall(vpe); 2457 return 0; 2458 2459 default: 2460 return -EINVAL; 2461 } 2462 } 2463 2464 static void its_vpe_send_cmd(struct its_vpe *vpe, 2465 void (*cmd)(struct its_device *, u32)) 2466 { 2467 unsigned long flags; 2468 2469 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 2470 2471 its_vpe_db_proxy_map_locked(vpe); 2472 cmd(vpe_proxy.dev, vpe->vpe_proxy_event); 2473 2474 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 2475 } 2476 2477 static void its_vpe_send_inv(struct irq_data *d) 2478 { 2479 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2480 2481 if (gic_rdists->has_direct_lpi) { 2482 void __iomem *rdbase; 2483 2484 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 2485 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR); 2486 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1) 2487 cpu_relax(); 2488 } else { 2489 its_vpe_send_cmd(vpe, its_send_inv); 2490 } 2491 } 2492 2493 static void its_vpe_mask_irq(struct irq_data *d) 2494 { 2495 /* 2496 * We need to unmask the LPI, which is described by the parent 2497 * irq_data. Instead of calling into the parent (which won't 2498 * exactly do the right thing, let's simply use the 2499 * parent_data pointer. Yes, I'm naughty. 2500 */ 2501 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 2502 its_vpe_send_inv(d); 2503 } 2504 2505 static void its_vpe_unmask_irq(struct irq_data *d) 2506 { 2507 /* Same hack as above... */ 2508 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 2509 its_vpe_send_inv(d); 2510 } 2511 2512 static int its_vpe_set_irqchip_state(struct irq_data *d, 2513 enum irqchip_irq_state which, 2514 bool state) 2515 { 2516 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2517 2518 if (which != IRQCHIP_STATE_PENDING) 2519 return -EINVAL; 2520 2521 if (gic_rdists->has_direct_lpi) { 2522 void __iomem *rdbase; 2523 2524 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 2525 if (state) { 2526 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); 2527 } else { 2528 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 2529 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1) 2530 cpu_relax(); 2531 } 2532 } else { 2533 if (state) 2534 its_vpe_send_cmd(vpe, its_send_int); 2535 else 2536 its_vpe_send_cmd(vpe, its_send_clear); 2537 } 2538 2539 return 0; 2540 } 2541 2542 static struct irq_chip its_vpe_irq_chip = { 2543 .name = "GICv4-vpe", 2544 .irq_mask = its_vpe_mask_irq, 2545 .irq_unmask = its_vpe_unmask_irq, 2546 .irq_eoi = irq_chip_eoi_parent, 2547 .irq_set_affinity = its_vpe_set_affinity, 2548 .irq_set_irqchip_state = its_vpe_set_irqchip_state, 2549 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity, 2550 }; 2551 2552 static int its_vpe_id_alloc(void) 2553 { 2554 return ida_simple_get(&its_vpeid_ida, 0, 1 << 16, GFP_KERNEL); 2555 } 2556 2557 static void its_vpe_id_free(u16 id) 2558 { 2559 ida_simple_remove(&its_vpeid_ida, id); 2560 } 2561 2562 static int its_vpe_init(struct its_vpe *vpe) 2563 { 2564 struct page *vpt_page; 2565 int vpe_id; 2566 2567 /* Allocate vpe_id */ 2568 vpe_id = its_vpe_id_alloc(); 2569 if (vpe_id < 0) 2570 return vpe_id; 2571 2572 /* Allocate VPT */ 2573 vpt_page = its_allocate_pending_table(GFP_KERNEL); 2574 if (!vpt_page) { 2575 its_vpe_id_free(vpe_id); 2576 return -ENOMEM; 2577 } 2578 2579 if (!its_alloc_vpe_table(vpe_id)) { 2580 its_vpe_id_free(vpe_id); 2581 its_free_pending_table(vpe->vpt_page); 2582 return -ENOMEM; 2583 } 2584 2585 vpe->vpe_id = vpe_id; 2586 vpe->vpt_page = vpt_page; 2587 vpe->vpe_proxy_event = -1; 2588 2589 return 0; 2590 } 2591 2592 static void its_vpe_teardown(struct its_vpe *vpe) 2593 { 2594 its_vpe_db_proxy_unmap(vpe); 2595 its_vpe_id_free(vpe->vpe_id); 2596 its_free_pending_table(vpe->vpt_page); 2597 } 2598 2599 static void its_vpe_irq_domain_free(struct irq_domain *domain, 2600 unsigned int virq, 2601 unsigned int nr_irqs) 2602 { 2603 struct its_vm *vm = domain->host_data; 2604 int i; 2605 2606 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 2607 2608 for (i = 0; i < nr_irqs; i++) { 2609 struct irq_data *data = irq_domain_get_irq_data(domain, 2610 virq + i); 2611 struct its_vpe *vpe = irq_data_get_irq_chip_data(data); 2612 2613 BUG_ON(vm != vpe->its_vm); 2614 2615 clear_bit(data->hwirq, vm->db_bitmap); 2616 its_vpe_teardown(vpe); 2617 irq_domain_reset_irq_data(data); 2618 } 2619 2620 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { 2621 its_lpi_free_chunks(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); 2622 its_free_prop_table(vm->vprop_page); 2623 } 2624 } 2625 2626 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 2627 unsigned int nr_irqs, void *args) 2628 { 2629 struct its_vm *vm = args; 2630 unsigned long *bitmap; 2631 struct page *vprop_page; 2632 int base, nr_ids, i, err = 0; 2633 2634 BUG_ON(!vm); 2635 2636 bitmap = its_lpi_alloc_chunks(nr_irqs, &base, &nr_ids); 2637 if (!bitmap) 2638 return -ENOMEM; 2639 2640 if (nr_ids < nr_irqs) { 2641 its_lpi_free_chunks(bitmap, base, nr_ids); 2642 return -ENOMEM; 2643 } 2644 2645 vprop_page = its_allocate_prop_table(GFP_KERNEL); 2646 if (!vprop_page) { 2647 its_lpi_free_chunks(bitmap, base, nr_ids); 2648 return -ENOMEM; 2649 } 2650 2651 vm->db_bitmap = bitmap; 2652 vm->db_lpi_base = base; 2653 vm->nr_db_lpis = nr_ids; 2654 vm->vprop_page = vprop_page; 2655 2656 for (i = 0; i < nr_irqs; i++) { 2657 vm->vpes[i]->vpe_db_lpi = base + i; 2658 err = its_vpe_init(vm->vpes[i]); 2659 if (err) 2660 break; 2661 err = its_irq_gic_domain_alloc(domain, virq + i, 2662 vm->vpes[i]->vpe_db_lpi); 2663 if (err) 2664 break; 2665 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 2666 &its_vpe_irq_chip, vm->vpes[i]); 2667 set_bit(i, bitmap); 2668 } 2669 2670 if (err) { 2671 if (i > 0) 2672 its_vpe_irq_domain_free(domain, virq, i - 1); 2673 2674 its_lpi_free_chunks(bitmap, base, nr_ids); 2675 its_free_prop_table(vprop_page); 2676 } 2677 2678 return err; 2679 } 2680 2681 static void its_vpe_irq_domain_activate(struct irq_domain *domain, 2682 struct irq_data *d) 2683 { 2684 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2685 2686 /* Map the VPE to the first possible CPU */ 2687 vpe->col_idx = cpumask_first(cpu_online_mask); 2688 its_send_vmapp(vpe, true); 2689 its_send_vinvall(vpe); 2690 } 2691 2692 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, 2693 struct irq_data *d) 2694 { 2695 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2696 2697 its_send_vmapp(vpe, false); 2698 } 2699 2700 static const struct irq_domain_ops its_vpe_domain_ops = { 2701 .alloc = its_vpe_irq_domain_alloc, 2702 .free = its_vpe_irq_domain_free, 2703 .activate = its_vpe_irq_domain_activate, 2704 .deactivate = its_vpe_irq_domain_deactivate, 2705 }; 2706 2707 static int its_force_quiescent(void __iomem *base) 2708 { 2709 u32 count = 1000000; /* 1s */ 2710 u32 val; 2711 2712 val = readl_relaxed(base + GITS_CTLR); 2713 /* 2714 * GIC architecture specification requires the ITS to be both 2715 * disabled and quiescent for writes to GITS_BASER<n> or 2716 * GITS_CBASER to not have UNPREDICTABLE results. 2717 */ 2718 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) 2719 return 0; 2720 2721 /* Disable the generation of all interrupts to this ITS */ 2722 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); 2723 writel_relaxed(val, base + GITS_CTLR); 2724 2725 /* Poll GITS_CTLR and wait until ITS becomes quiescent */ 2726 while (1) { 2727 val = readl_relaxed(base + GITS_CTLR); 2728 if (val & GITS_CTLR_QUIESCENT) 2729 return 0; 2730 2731 count--; 2732 if (!count) 2733 return -EBUSY; 2734 2735 cpu_relax(); 2736 udelay(1); 2737 } 2738 } 2739 2740 static void __maybe_unused its_enable_quirk_cavium_22375(void *data) 2741 { 2742 struct its_node *its = data; 2743 2744 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; 2745 } 2746 2747 static void __maybe_unused its_enable_quirk_cavium_23144(void *data) 2748 { 2749 struct its_node *its = data; 2750 2751 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; 2752 } 2753 2754 static void __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) 2755 { 2756 struct its_node *its = data; 2757 2758 /* On QDF2400, the size of the ITE is 16Bytes */ 2759 its->ite_size = 16; 2760 } 2761 2762 static const struct gic_quirk its_quirks[] = { 2763 #ifdef CONFIG_CAVIUM_ERRATUM_22375 2764 { 2765 .desc = "ITS: Cavium errata 22375, 24313", 2766 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 2767 .mask = 0xffff0fff, 2768 .init = its_enable_quirk_cavium_22375, 2769 }, 2770 #endif 2771 #ifdef CONFIG_CAVIUM_ERRATUM_23144 2772 { 2773 .desc = "ITS: Cavium erratum 23144", 2774 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 2775 .mask = 0xffff0fff, 2776 .init = its_enable_quirk_cavium_23144, 2777 }, 2778 #endif 2779 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 2780 { 2781 .desc = "ITS: QDF2400 erratum 0065", 2782 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */ 2783 .mask = 0xffffffff, 2784 .init = its_enable_quirk_qdf2400_e0065, 2785 }, 2786 #endif 2787 { 2788 } 2789 }; 2790 2791 static void its_enable_quirks(struct its_node *its) 2792 { 2793 u32 iidr = readl_relaxed(its->base + GITS_IIDR); 2794 2795 gic_enable_quirks(iidr, its_quirks, its); 2796 } 2797 2798 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its) 2799 { 2800 struct irq_domain *inner_domain; 2801 struct msi_domain_info *info; 2802 2803 info = kzalloc(sizeof(*info), GFP_KERNEL); 2804 if (!info) 2805 return -ENOMEM; 2806 2807 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its); 2808 if (!inner_domain) { 2809 kfree(info); 2810 return -ENOMEM; 2811 } 2812 2813 inner_domain->parent = its_parent; 2814 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS); 2815 inner_domain->flags |= IRQ_DOMAIN_FLAG_MSI_REMAP; 2816 info->ops = &its_msi_domain_ops; 2817 info->data = its; 2818 inner_domain->host_data = info; 2819 2820 return 0; 2821 } 2822 2823 static int its_init_vpe_domain(void) 2824 { 2825 struct its_node *its; 2826 u32 devid; 2827 int entries; 2828 2829 if (gic_rdists->has_direct_lpi) { 2830 pr_info("ITS: Using DirectLPI for VPE invalidation\n"); 2831 return 0; 2832 } 2833 2834 /* Any ITS will do, even if not v4 */ 2835 its = list_first_entry(&its_nodes, struct its_node, entry); 2836 2837 entries = roundup_pow_of_two(nr_cpu_ids); 2838 vpe_proxy.vpes = kzalloc(sizeof(*vpe_proxy.vpes) * entries, 2839 GFP_KERNEL); 2840 if (!vpe_proxy.vpes) { 2841 pr_err("ITS: Can't allocate GICv4 proxy device array\n"); 2842 return -ENOMEM; 2843 } 2844 2845 /* Use the last possible DevID */ 2846 devid = GENMASK(its->device_ids - 1, 0); 2847 vpe_proxy.dev = its_create_device(its, devid, entries, false); 2848 if (!vpe_proxy.dev) { 2849 kfree(vpe_proxy.vpes); 2850 pr_err("ITS: Can't allocate GICv4 proxy device\n"); 2851 return -ENOMEM; 2852 } 2853 2854 BUG_ON(entries != vpe_proxy.dev->nr_ites); 2855 2856 raw_spin_lock_init(&vpe_proxy.lock); 2857 vpe_proxy.next_victim = 0; 2858 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", 2859 devid, vpe_proxy.dev->nr_ites); 2860 2861 return 0; 2862 } 2863 2864 static int __init its_compute_its_list_map(struct resource *res, 2865 void __iomem *its_base) 2866 { 2867 int its_number; 2868 u32 ctlr; 2869 2870 /* 2871 * This is assumed to be done early enough that we're 2872 * guaranteed to be single-threaded, hence no 2873 * locking. Should this change, we should address 2874 * this. 2875 */ 2876 its_number = find_first_zero_bit(&its_list_map, ITS_LIST_MAX); 2877 if (its_number >= ITS_LIST_MAX) { 2878 pr_err("ITS@%pa: No ITSList entry available!\n", 2879 &res->start); 2880 return -EINVAL; 2881 } 2882 2883 ctlr = readl_relaxed(its_base + GITS_CTLR); 2884 ctlr &= ~GITS_CTLR_ITS_NUMBER; 2885 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; 2886 writel_relaxed(ctlr, its_base + GITS_CTLR); 2887 ctlr = readl_relaxed(its_base + GITS_CTLR); 2888 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { 2889 its_number = ctlr & GITS_CTLR_ITS_NUMBER; 2890 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; 2891 } 2892 2893 if (test_and_set_bit(its_number, &its_list_map)) { 2894 pr_err("ITS@%pa: Duplicate ITSList entry %d\n", 2895 &res->start, its_number); 2896 return -EINVAL; 2897 } 2898 2899 return its_number; 2900 } 2901 2902 static int __init its_probe_one(struct resource *res, 2903 struct fwnode_handle *handle, int numa_node) 2904 { 2905 struct its_node *its; 2906 void __iomem *its_base; 2907 u32 val, ctlr; 2908 u64 baser, tmp, typer; 2909 int err; 2910 2911 its_base = ioremap(res->start, resource_size(res)); 2912 if (!its_base) { 2913 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); 2914 return -ENOMEM; 2915 } 2916 2917 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; 2918 if (val != 0x30 && val != 0x40) { 2919 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); 2920 err = -ENODEV; 2921 goto out_unmap; 2922 } 2923 2924 err = its_force_quiescent(its_base); 2925 if (err) { 2926 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); 2927 goto out_unmap; 2928 } 2929 2930 pr_info("ITS %pR\n", res); 2931 2932 its = kzalloc(sizeof(*its), GFP_KERNEL); 2933 if (!its) { 2934 err = -ENOMEM; 2935 goto out_unmap; 2936 } 2937 2938 raw_spin_lock_init(&its->lock); 2939 INIT_LIST_HEAD(&its->entry); 2940 INIT_LIST_HEAD(&its->its_device_list); 2941 typer = gic_read_typer(its_base + GITS_TYPER); 2942 its->base = its_base; 2943 its->phys_base = res->start; 2944 its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer); 2945 its->is_v4 = !!(typer & GITS_TYPER_VLPIS); 2946 if (its->is_v4) { 2947 if (!(typer & GITS_TYPER_VMOVP)) { 2948 err = its_compute_its_list_map(res, its_base); 2949 if (err < 0) 2950 goto out_free_its; 2951 2952 pr_info("ITS@%pa: Using ITS number %d\n", 2953 &res->start, err); 2954 } else { 2955 pr_info("ITS@%pa: Single VMOVP capable\n", &res->start); 2956 } 2957 } 2958 2959 its->numa_node = numa_node; 2960 2961 its->cmd_base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 2962 get_order(ITS_CMD_QUEUE_SZ)); 2963 if (!its->cmd_base) { 2964 err = -ENOMEM; 2965 goto out_free_its; 2966 } 2967 its->cmd_write = its->cmd_base; 2968 2969 its_enable_quirks(its); 2970 2971 err = its_alloc_tables(its); 2972 if (err) 2973 goto out_free_cmd; 2974 2975 err = its_alloc_collections(its); 2976 if (err) 2977 goto out_free_tables; 2978 2979 baser = (virt_to_phys(its->cmd_base) | 2980 GITS_CBASER_RaWaWb | 2981 GITS_CBASER_InnerShareable | 2982 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | 2983 GITS_CBASER_VALID); 2984 2985 gits_write_cbaser(baser, its->base + GITS_CBASER); 2986 tmp = gits_read_cbaser(its->base + GITS_CBASER); 2987 2988 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { 2989 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { 2990 /* 2991 * The HW reports non-shareable, we must 2992 * remove the cacheability attributes as 2993 * well. 2994 */ 2995 baser &= ~(GITS_CBASER_SHAREABILITY_MASK | 2996 GITS_CBASER_CACHEABILITY_MASK); 2997 baser |= GITS_CBASER_nC; 2998 gits_write_cbaser(baser, its->base + GITS_CBASER); 2999 } 3000 pr_info("ITS: using cache flushing for cmd queue\n"); 3001 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; 3002 } 3003 3004 gits_write_cwriter(0, its->base + GITS_CWRITER); 3005 ctlr = readl_relaxed(its->base + GITS_CTLR); 3006 ctlr |= GITS_CTLR_ENABLE; 3007 if (its->is_v4) 3008 ctlr |= GITS_CTLR_ImDe; 3009 writel_relaxed(ctlr, its->base + GITS_CTLR); 3010 3011 err = its_init_domain(handle, its); 3012 if (err) 3013 goto out_free_tables; 3014 3015 spin_lock(&its_lock); 3016 list_add(&its->entry, &its_nodes); 3017 spin_unlock(&its_lock); 3018 3019 return 0; 3020 3021 out_free_tables: 3022 its_free_tables(its); 3023 out_free_cmd: 3024 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); 3025 out_free_its: 3026 kfree(its); 3027 out_unmap: 3028 iounmap(its_base); 3029 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err); 3030 return err; 3031 } 3032 3033 static bool gic_rdists_supports_plpis(void) 3034 { 3035 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); 3036 } 3037 3038 int its_cpu_init(void) 3039 { 3040 if (!list_empty(&its_nodes)) { 3041 if (!gic_rdists_supports_plpis()) { 3042 pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); 3043 return -ENXIO; 3044 } 3045 its_cpu_init_lpis(); 3046 its_cpu_init_collection(); 3047 } 3048 3049 return 0; 3050 } 3051 3052 static const struct of_device_id its_device_id[] = { 3053 { .compatible = "arm,gic-v3-its", }, 3054 {}, 3055 }; 3056 3057 static int __init its_of_probe(struct device_node *node) 3058 { 3059 struct device_node *np; 3060 struct resource res; 3061 3062 for (np = of_find_matching_node(node, its_device_id); np; 3063 np = of_find_matching_node(np, its_device_id)) { 3064 if (!of_property_read_bool(np, "msi-controller")) { 3065 pr_warn("%pOF: no msi-controller property, ITS ignored\n", 3066 np); 3067 continue; 3068 } 3069 3070 if (of_address_to_resource(np, 0, &res)) { 3071 pr_warn("%pOF: no regs?\n", np); 3072 continue; 3073 } 3074 3075 its_probe_one(&res, &np->fwnode, of_node_to_nid(np)); 3076 } 3077 return 0; 3078 } 3079 3080 #ifdef CONFIG_ACPI 3081 3082 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) 3083 3084 #ifdef CONFIG_ACPI_NUMA 3085 struct its_srat_map { 3086 /* numa node id */ 3087 u32 numa_node; 3088 /* GIC ITS ID */ 3089 u32 its_id; 3090 }; 3091 3092 static struct its_srat_map *its_srat_maps __initdata; 3093 static int its_in_srat __initdata; 3094 3095 static int __init acpi_get_its_numa_node(u32 its_id) 3096 { 3097 int i; 3098 3099 for (i = 0; i < its_in_srat; i++) { 3100 if (its_id == its_srat_maps[i].its_id) 3101 return its_srat_maps[i].numa_node; 3102 } 3103 return NUMA_NO_NODE; 3104 } 3105 3106 static int __init gic_acpi_match_srat_its(struct acpi_subtable_header *header, 3107 const unsigned long end) 3108 { 3109 return 0; 3110 } 3111 3112 static int __init gic_acpi_parse_srat_its(struct acpi_subtable_header *header, 3113 const unsigned long end) 3114 { 3115 int node; 3116 struct acpi_srat_gic_its_affinity *its_affinity; 3117 3118 its_affinity = (struct acpi_srat_gic_its_affinity *)header; 3119 if (!its_affinity) 3120 return -EINVAL; 3121 3122 if (its_affinity->header.length < sizeof(*its_affinity)) { 3123 pr_err("SRAT: Invalid header length %d in ITS affinity\n", 3124 its_affinity->header.length); 3125 return -EINVAL; 3126 } 3127 3128 node = acpi_map_pxm_to_node(its_affinity->proximity_domain); 3129 3130 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { 3131 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); 3132 return 0; 3133 } 3134 3135 its_srat_maps[its_in_srat].numa_node = node; 3136 its_srat_maps[its_in_srat].its_id = its_affinity->its_id; 3137 its_in_srat++; 3138 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", 3139 its_affinity->proximity_domain, its_affinity->its_id, node); 3140 3141 return 0; 3142 } 3143 3144 static void __init acpi_table_parse_srat_its(void) 3145 { 3146 int count; 3147 3148 count = acpi_table_parse_entries(ACPI_SIG_SRAT, 3149 sizeof(struct acpi_table_srat), 3150 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 3151 gic_acpi_match_srat_its, 0); 3152 if (count <= 0) 3153 return; 3154 3155 its_srat_maps = kmalloc(count * sizeof(struct its_srat_map), 3156 GFP_KERNEL); 3157 if (!its_srat_maps) { 3158 pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n"); 3159 return; 3160 } 3161 3162 acpi_table_parse_entries(ACPI_SIG_SRAT, 3163 sizeof(struct acpi_table_srat), 3164 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 3165 gic_acpi_parse_srat_its, 0); 3166 } 3167 3168 /* free the its_srat_maps after ITS probing */ 3169 static void __init acpi_its_srat_maps_free(void) 3170 { 3171 kfree(its_srat_maps); 3172 } 3173 #else 3174 static void __init acpi_table_parse_srat_its(void) { } 3175 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } 3176 static void __init acpi_its_srat_maps_free(void) { } 3177 #endif 3178 3179 static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header, 3180 const unsigned long end) 3181 { 3182 struct acpi_madt_generic_translator *its_entry; 3183 struct fwnode_handle *dom_handle; 3184 struct resource res; 3185 int err; 3186 3187 its_entry = (struct acpi_madt_generic_translator *)header; 3188 memset(&res, 0, sizeof(res)); 3189 res.start = its_entry->base_address; 3190 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; 3191 res.flags = IORESOURCE_MEM; 3192 3193 dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address); 3194 if (!dom_handle) { 3195 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", 3196 &res.start); 3197 return -ENOMEM; 3198 } 3199 3200 err = iort_register_domain_token(its_entry->translation_id, dom_handle); 3201 if (err) { 3202 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", 3203 &res.start, its_entry->translation_id); 3204 goto dom_err; 3205 } 3206 3207 err = its_probe_one(&res, dom_handle, 3208 acpi_get_its_numa_node(its_entry->translation_id)); 3209 if (!err) 3210 return 0; 3211 3212 iort_deregister_domain_token(its_entry->translation_id); 3213 dom_err: 3214 irq_domain_free_fwnode(dom_handle); 3215 return err; 3216 } 3217 3218 static void __init its_acpi_probe(void) 3219 { 3220 acpi_table_parse_srat_its(); 3221 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 3222 gic_acpi_parse_madt_its, 0); 3223 acpi_its_srat_maps_free(); 3224 } 3225 #else 3226 static void __init its_acpi_probe(void) { } 3227 #endif 3228 3229 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, 3230 struct irq_domain *parent_domain) 3231 { 3232 struct device_node *of_node; 3233 struct its_node *its; 3234 bool has_v4 = false; 3235 int err; 3236 3237 its_parent = parent_domain; 3238 of_node = to_of_node(handle); 3239 if (of_node) 3240 its_of_probe(of_node); 3241 else 3242 its_acpi_probe(); 3243 3244 if (list_empty(&its_nodes)) { 3245 pr_warn("ITS: No ITS available, not enabling LPIs\n"); 3246 return -ENXIO; 3247 } 3248 3249 gic_rdists = rdists; 3250 err = its_alloc_lpi_tables(); 3251 if (err) 3252 return err; 3253 3254 list_for_each_entry(its, &its_nodes, entry) 3255 has_v4 |= its->is_v4; 3256 3257 if (has_v4 & rdists->has_vlpis) { 3258 if (its_init_vpe_domain() || 3259 its_init_v4(parent_domain, &its_vpe_domain_ops)) { 3260 rdists->has_vlpis = false; 3261 pr_err("ITS: Disabling GICv4 support\n"); 3262 } 3263 } 3264 3265 return 0; 3266 } 3267