1 /*
2  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #include <linux/acpi.h>
19 #include <linux/acpi_iort.h>
20 #include <linux/bitmap.h>
21 #include <linux/cpu.h>
22 #include <linux/delay.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/interrupt.h>
25 #include <linux/irqdomain.h>
26 #include <linux/log2.h>
27 #include <linux/mm.h>
28 #include <linux/msi.h>
29 #include <linux/of.h>
30 #include <linux/of_address.h>
31 #include <linux/of_irq.h>
32 #include <linux/of_pci.h>
33 #include <linux/of_platform.h>
34 #include <linux/percpu.h>
35 #include <linux/slab.h>
36 
37 #include <linux/irqchip.h>
38 #include <linux/irqchip/arm-gic-v3.h>
39 #include <linux/irqchip/arm-gic-v4.h>
40 
41 #include <asm/cputype.h>
42 #include <asm/exception.h>
43 
44 #include "irq-gic-common.h"
45 
46 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
47 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
48 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
49 
50 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
51 
52 static u32 lpi_id_bits;
53 
54 /*
55  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
56  * deal with (one configuration byte per interrupt). PENDBASE has to
57  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
58  */
59 #define LPI_NRBITS		lpi_id_bits
60 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
61 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
62 
63 #define LPI_PROP_DEFAULT_PRIO	0xa0
64 
65 /*
66  * Collection structure - just an ID, and a redistributor address to
67  * ping. We use one per CPU as a bag of interrupts assigned to this
68  * CPU.
69  */
70 struct its_collection {
71 	u64			target_address;
72 	u16			col_id;
73 };
74 
75 /*
76  * The ITS_BASER structure - contains memory information, cached
77  * value of BASER register configuration and ITS page size.
78  */
79 struct its_baser {
80 	void		*base;
81 	u64		val;
82 	u32		order;
83 	u32		psz;
84 };
85 
86 /*
87  * The ITS structure - contains most of the infrastructure, with the
88  * top-level MSI domain, the command queue, the collections, and the
89  * list of devices writing to it.
90  */
91 struct its_node {
92 	raw_spinlock_t		lock;
93 	struct list_head	entry;
94 	void __iomem		*base;
95 	phys_addr_t		phys_base;
96 	struct its_cmd_block	*cmd_base;
97 	struct its_cmd_block	*cmd_write;
98 	struct its_baser	tables[GITS_BASER_NR_REGS];
99 	struct its_collection	*collections;
100 	struct list_head	its_device_list;
101 	u64			flags;
102 	u32			ite_size;
103 	u32			device_ids;
104 	int			numa_node;
105 	bool			is_v4;
106 };
107 
108 #define ITS_ITT_ALIGN		SZ_256
109 
110 /* Convert page order to size in bytes */
111 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
112 
113 struct event_lpi_map {
114 	unsigned long		*lpi_map;
115 	u16			*col_map;
116 	irq_hw_number_t		lpi_base;
117 	int			nr_lpis;
118 	struct mutex		vlpi_lock;
119 	struct its_vm		*vm;
120 	struct its_vlpi_map	*vlpi_maps;
121 	int			nr_vlpis;
122 };
123 
124 /*
125  * The ITS view of a device - belongs to an ITS, owns an interrupt
126  * translation table, and a list of interrupts.  If it some of its
127  * LPIs are injected into a guest (GICv4), the event_map.vm field
128  * indicates which one.
129  */
130 struct its_device {
131 	struct list_head	entry;
132 	struct its_node		*its;
133 	struct event_lpi_map	event_map;
134 	void			*itt;
135 	u32			nr_ites;
136 	u32			device_id;
137 };
138 
139 static struct {
140 	raw_spinlock_t		lock;
141 	struct its_device	*dev;
142 	struct its_vpe		**vpes;
143 	int			next_victim;
144 } vpe_proxy;
145 
146 static LIST_HEAD(its_nodes);
147 static DEFINE_SPINLOCK(its_lock);
148 static struct rdists *gic_rdists;
149 static struct irq_domain *its_parent;
150 
151 /*
152  * We have a maximum number of 16 ITSs in the whole system if we're
153  * using the ITSList mechanism
154  */
155 #define ITS_LIST_MAX		16
156 
157 static unsigned long its_list_map;
158 static u16 vmovp_seq_num;
159 static DEFINE_RAW_SPINLOCK(vmovp_lock);
160 
161 static DEFINE_IDA(its_vpeid_ida);
162 
163 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
164 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
165 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
166 
167 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
168 					       u32 event)
169 {
170 	struct its_node *its = its_dev->its;
171 
172 	return its->collections + its_dev->event_map.col_map[event];
173 }
174 
175 /*
176  * ITS command descriptors - parameters to be encoded in a command
177  * block.
178  */
179 struct its_cmd_desc {
180 	union {
181 		struct {
182 			struct its_device *dev;
183 			u32 event_id;
184 		} its_inv_cmd;
185 
186 		struct {
187 			struct its_device *dev;
188 			u32 event_id;
189 		} its_clear_cmd;
190 
191 		struct {
192 			struct its_device *dev;
193 			u32 event_id;
194 		} its_int_cmd;
195 
196 		struct {
197 			struct its_device *dev;
198 			int valid;
199 		} its_mapd_cmd;
200 
201 		struct {
202 			struct its_collection *col;
203 			int valid;
204 		} its_mapc_cmd;
205 
206 		struct {
207 			struct its_device *dev;
208 			u32 phys_id;
209 			u32 event_id;
210 		} its_mapti_cmd;
211 
212 		struct {
213 			struct its_device *dev;
214 			struct its_collection *col;
215 			u32 event_id;
216 		} its_movi_cmd;
217 
218 		struct {
219 			struct its_device *dev;
220 			u32 event_id;
221 		} its_discard_cmd;
222 
223 		struct {
224 			struct its_collection *col;
225 		} its_invall_cmd;
226 
227 		struct {
228 			struct its_vpe *vpe;
229 		} its_vinvall_cmd;
230 
231 		struct {
232 			struct its_vpe *vpe;
233 			struct its_collection *col;
234 			bool valid;
235 		} its_vmapp_cmd;
236 
237 		struct {
238 			struct its_vpe *vpe;
239 			struct its_device *dev;
240 			u32 virt_id;
241 			u32 event_id;
242 			bool db_enabled;
243 		} its_vmapti_cmd;
244 
245 		struct {
246 			struct its_vpe *vpe;
247 			struct its_device *dev;
248 			u32 event_id;
249 			bool db_enabled;
250 		} its_vmovi_cmd;
251 
252 		struct {
253 			struct its_vpe *vpe;
254 			struct its_collection *col;
255 			u16 seq_num;
256 			u16 its_list;
257 		} its_vmovp_cmd;
258 	};
259 };
260 
261 /*
262  * The ITS command block, which is what the ITS actually parses.
263  */
264 struct its_cmd_block {
265 	u64	raw_cmd[4];
266 };
267 
268 #define ITS_CMD_QUEUE_SZ		SZ_64K
269 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
270 
271 typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *,
272 						    struct its_cmd_desc *);
273 
274 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_cmd_block *,
275 					      struct its_cmd_desc *);
276 
277 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
278 {
279 	u64 mask = GENMASK_ULL(h, l);
280 	*raw_cmd &= ~mask;
281 	*raw_cmd |= (val << l) & mask;
282 }
283 
284 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
285 {
286 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
287 }
288 
289 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
290 {
291 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
292 }
293 
294 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
295 {
296 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
297 }
298 
299 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
300 {
301 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
302 }
303 
304 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
305 {
306 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
307 }
308 
309 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
310 {
311 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 50, 8);
312 }
313 
314 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
315 {
316 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
317 }
318 
319 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
320 {
321 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 50, 16);
322 }
323 
324 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
325 {
326 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
327 }
328 
329 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
330 {
331 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
332 }
333 
334 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
335 {
336 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
337 }
338 
339 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
340 {
341 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
342 }
343 
344 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
345 {
346 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
347 }
348 
349 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
350 {
351 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
352 }
353 
354 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
355 {
356 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
357 }
358 
359 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
360 {
361 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 50, 16);
362 }
363 
364 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
365 {
366 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
367 }
368 
369 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
370 {
371 	/* Let's fixup BE commands */
372 	cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
373 	cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
374 	cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
375 	cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
376 }
377 
378 static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd,
379 						 struct its_cmd_desc *desc)
380 {
381 	unsigned long itt_addr;
382 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
383 
384 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
385 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
386 
387 	its_encode_cmd(cmd, GITS_CMD_MAPD);
388 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
389 	its_encode_size(cmd, size - 1);
390 	its_encode_itt(cmd, itt_addr);
391 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
392 
393 	its_fixup_cmd(cmd);
394 
395 	return NULL;
396 }
397 
398 static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd,
399 						 struct its_cmd_desc *desc)
400 {
401 	its_encode_cmd(cmd, GITS_CMD_MAPC);
402 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
403 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
404 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
405 
406 	its_fixup_cmd(cmd);
407 
408 	return desc->its_mapc_cmd.col;
409 }
410 
411 static struct its_collection *its_build_mapti_cmd(struct its_cmd_block *cmd,
412 						  struct its_cmd_desc *desc)
413 {
414 	struct its_collection *col;
415 
416 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
417 			       desc->its_mapti_cmd.event_id);
418 
419 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
420 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
421 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
422 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
423 	its_encode_collection(cmd, col->col_id);
424 
425 	its_fixup_cmd(cmd);
426 
427 	return col;
428 }
429 
430 static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd,
431 						 struct its_cmd_desc *desc)
432 {
433 	struct its_collection *col;
434 
435 	col = dev_event_to_col(desc->its_movi_cmd.dev,
436 			       desc->its_movi_cmd.event_id);
437 
438 	its_encode_cmd(cmd, GITS_CMD_MOVI);
439 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
440 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
441 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
442 
443 	its_fixup_cmd(cmd);
444 
445 	return col;
446 }
447 
448 static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd,
449 						    struct its_cmd_desc *desc)
450 {
451 	struct its_collection *col;
452 
453 	col = dev_event_to_col(desc->its_discard_cmd.dev,
454 			       desc->its_discard_cmd.event_id);
455 
456 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
457 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
458 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
459 
460 	its_fixup_cmd(cmd);
461 
462 	return col;
463 }
464 
465 static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd,
466 						struct its_cmd_desc *desc)
467 {
468 	struct its_collection *col;
469 
470 	col = dev_event_to_col(desc->its_inv_cmd.dev,
471 			       desc->its_inv_cmd.event_id);
472 
473 	its_encode_cmd(cmd, GITS_CMD_INV);
474 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
475 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
476 
477 	its_fixup_cmd(cmd);
478 
479 	return col;
480 }
481 
482 static struct its_collection *its_build_int_cmd(struct its_cmd_block *cmd,
483 						struct its_cmd_desc *desc)
484 {
485 	struct its_collection *col;
486 
487 	col = dev_event_to_col(desc->its_int_cmd.dev,
488 			       desc->its_int_cmd.event_id);
489 
490 	its_encode_cmd(cmd, GITS_CMD_INT);
491 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
492 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
493 
494 	its_fixup_cmd(cmd);
495 
496 	return col;
497 }
498 
499 static struct its_collection *its_build_clear_cmd(struct its_cmd_block *cmd,
500 						  struct its_cmd_desc *desc)
501 {
502 	struct its_collection *col;
503 
504 	col = dev_event_to_col(desc->its_clear_cmd.dev,
505 			       desc->its_clear_cmd.event_id);
506 
507 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
508 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
509 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
510 
511 	its_fixup_cmd(cmd);
512 
513 	return col;
514 }
515 
516 static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd,
517 						   struct its_cmd_desc *desc)
518 {
519 	its_encode_cmd(cmd, GITS_CMD_INVALL);
520 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
521 
522 	its_fixup_cmd(cmd);
523 
524 	return NULL;
525 }
526 
527 static struct its_vpe *its_build_vinvall_cmd(struct its_cmd_block *cmd,
528 					     struct its_cmd_desc *desc)
529 {
530 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
531 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
532 
533 	its_fixup_cmd(cmd);
534 
535 	return desc->its_vinvall_cmd.vpe;
536 }
537 
538 static struct its_vpe *its_build_vmapp_cmd(struct its_cmd_block *cmd,
539 					   struct its_cmd_desc *desc)
540 {
541 	unsigned long vpt_addr;
542 
543 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
544 
545 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
546 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
547 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
548 	its_encode_target(cmd, desc->its_vmapp_cmd.col->target_address);
549 	its_encode_vpt_addr(cmd, vpt_addr);
550 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
551 
552 	its_fixup_cmd(cmd);
553 
554 	return desc->its_vmapp_cmd.vpe;
555 }
556 
557 static struct its_vpe *its_build_vmapti_cmd(struct its_cmd_block *cmd,
558 					    struct its_cmd_desc *desc)
559 {
560 	u32 db;
561 
562 	if (desc->its_vmapti_cmd.db_enabled)
563 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
564 	else
565 		db = 1023;
566 
567 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
568 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
569 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
570 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
571 	its_encode_db_phys_id(cmd, db);
572 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
573 
574 	its_fixup_cmd(cmd);
575 
576 	return desc->its_vmapti_cmd.vpe;
577 }
578 
579 static struct its_vpe *its_build_vmovi_cmd(struct its_cmd_block *cmd,
580 					   struct its_cmd_desc *desc)
581 {
582 	u32 db;
583 
584 	if (desc->its_vmovi_cmd.db_enabled)
585 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
586 	else
587 		db = 1023;
588 
589 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
590 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
591 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
592 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
593 	its_encode_db_phys_id(cmd, db);
594 	its_encode_db_valid(cmd, true);
595 
596 	its_fixup_cmd(cmd);
597 
598 	return desc->its_vmovi_cmd.vpe;
599 }
600 
601 static struct its_vpe *its_build_vmovp_cmd(struct its_cmd_block *cmd,
602 					   struct its_cmd_desc *desc)
603 {
604 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
605 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
606 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
607 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
608 	its_encode_target(cmd, desc->its_vmovp_cmd.col->target_address);
609 
610 	its_fixup_cmd(cmd);
611 
612 	return desc->its_vmovp_cmd.vpe;
613 }
614 
615 static u64 its_cmd_ptr_to_offset(struct its_node *its,
616 				 struct its_cmd_block *ptr)
617 {
618 	return (ptr - its->cmd_base) * sizeof(*ptr);
619 }
620 
621 static int its_queue_full(struct its_node *its)
622 {
623 	int widx;
624 	int ridx;
625 
626 	widx = its->cmd_write - its->cmd_base;
627 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
628 
629 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
630 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
631 		return 1;
632 
633 	return 0;
634 }
635 
636 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
637 {
638 	struct its_cmd_block *cmd;
639 	u32 count = 1000000;	/* 1s! */
640 
641 	while (its_queue_full(its)) {
642 		count--;
643 		if (!count) {
644 			pr_err_ratelimited("ITS queue not draining\n");
645 			return NULL;
646 		}
647 		cpu_relax();
648 		udelay(1);
649 	}
650 
651 	cmd = its->cmd_write++;
652 
653 	/* Handle queue wrapping */
654 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
655 		its->cmd_write = its->cmd_base;
656 
657 	/* Clear command  */
658 	cmd->raw_cmd[0] = 0;
659 	cmd->raw_cmd[1] = 0;
660 	cmd->raw_cmd[2] = 0;
661 	cmd->raw_cmd[3] = 0;
662 
663 	return cmd;
664 }
665 
666 static struct its_cmd_block *its_post_commands(struct its_node *its)
667 {
668 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
669 
670 	writel_relaxed(wr, its->base + GITS_CWRITER);
671 
672 	return its->cmd_write;
673 }
674 
675 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
676 {
677 	/*
678 	 * Make sure the commands written to memory are observable by
679 	 * the ITS.
680 	 */
681 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
682 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
683 	else
684 		dsb(ishst);
685 }
686 
687 static void its_wait_for_range_completion(struct its_node *its,
688 					  struct its_cmd_block *from,
689 					  struct its_cmd_block *to)
690 {
691 	u64 rd_idx, from_idx, to_idx;
692 	u32 count = 1000000;	/* 1s! */
693 
694 	from_idx = its_cmd_ptr_to_offset(its, from);
695 	to_idx = its_cmd_ptr_to_offset(its, to);
696 
697 	while (1) {
698 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
699 
700 		/* Direct case */
701 		if (from_idx < to_idx && rd_idx >= to_idx)
702 			break;
703 
704 		/* Wrapped case */
705 		if (from_idx >= to_idx && rd_idx >= to_idx && rd_idx < from_idx)
706 			break;
707 
708 		count--;
709 		if (!count) {
710 			pr_err_ratelimited("ITS queue timeout\n");
711 			return;
712 		}
713 		cpu_relax();
714 		udelay(1);
715 	}
716 }
717 
718 /* Warning, macro hell follows */
719 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
720 void name(struct its_node *its,						\
721 	  buildtype builder,						\
722 	  struct its_cmd_desc *desc)					\
723 {									\
724 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
725 	synctype *sync_obj;						\
726 	unsigned long flags;						\
727 									\
728 	raw_spin_lock_irqsave(&its->lock, flags);			\
729 									\
730 	cmd = its_allocate_entry(its);					\
731 	if (!cmd) {		/* We're soooooo screewed... */		\
732 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
733 		return;							\
734 	}								\
735 	sync_obj = builder(cmd, desc);					\
736 	its_flush_cmd(its, cmd);					\
737 									\
738 	if (sync_obj) {							\
739 		sync_cmd = its_allocate_entry(its);			\
740 		if (!sync_cmd)						\
741 			goto post;					\
742 									\
743 		buildfn(sync_cmd, sync_obj);				\
744 		its_flush_cmd(its, sync_cmd);				\
745 	}								\
746 									\
747 post:									\
748 	next_cmd = its_post_commands(its);				\
749 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
750 									\
751 	its_wait_for_range_completion(its, cmd, next_cmd);		\
752 }
753 
754 static void its_build_sync_cmd(struct its_cmd_block *sync_cmd,
755 			       struct its_collection *sync_col)
756 {
757 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
758 	its_encode_target(sync_cmd, sync_col->target_address);
759 
760 	its_fixup_cmd(sync_cmd);
761 }
762 
763 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
764 			     struct its_collection, its_build_sync_cmd)
765 
766 static void its_build_vsync_cmd(struct its_cmd_block *sync_cmd,
767 				struct its_vpe *sync_vpe)
768 {
769 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
770 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
771 
772 	its_fixup_cmd(sync_cmd);
773 }
774 
775 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
776 			     struct its_vpe, its_build_vsync_cmd)
777 
778 static void its_send_int(struct its_device *dev, u32 event_id)
779 {
780 	struct its_cmd_desc desc;
781 
782 	desc.its_int_cmd.dev = dev;
783 	desc.its_int_cmd.event_id = event_id;
784 
785 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
786 }
787 
788 static void its_send_clear(struct its_device *dev, u32 event_id)
789 {
790 	struct its_cmd_desc desc;
791 
792 	desc.its_clear_cmd.dev = dev;
793 	desc.its_clear_cmd.event_id = event_id;
794 
795 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
796 }
797 
798 static void its_send_inv(struct its_device *dev, u32 event_id)
799 {
800 	struct its_cmd_desc desc;
801 
802 	desc.its_inv_cmd.dev = dev;
803 	desc.its_inv_cmd.event_id = event_id;
804 
805 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
806 }
807 
808 static void its_send_mapd(struct its_device *dev, int valid)
809 {
810 	struct its_cmd_desc desc;
811 
812 	desc.its_mapd_cmd.dev = dev;
813 	desc.its_mapd_cmd.valid = !!valid;
814 
815 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
816 }
817 
818 static void its_send_mapc(struct its_node *its, struct its_collection *col,
819 			  int valid)
820 {
821 	struct its_cmd_desc desc;
822 
823 	desc.its_mapc_cmd.col = col;
824 	desc.its_mapc_cmd.valid = !!valid;
825 
826 	its_send_single_command(its, its_build_mapc_cmd, &desc);
827 }
828 
829 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
830 {
831 	struct its_cmd_desc desc;
832 
833 	desc.its_mapti_cmd.dev = dev;
834 	desc.its_mapti_cmd.phys_id = irq_id;
835 	desc.its_mapti_cmd.event_id = id;
836 
837 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
838 }
839 
840 static void its_send_movi(struct its_device *dev,
841 			  struct its_collection *col, u32 id)
842 {
843 	struct its_cmd_desc desc;
844 
845 	desc.its_movi_cmd.dev = dev;
846 	desc.its_movi_cmd.col = col;
847 	desc.its_movi_cmd.event_id = id;
848 
849 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
850 }
851 
852 static void its_send_discard(struct its_device *dev, u32 id)
853 {
854 	struct its_cmd_desc desc;
855 
856 	desc.its_discard_cmd.dev = dev;
857 	desc.its_discard_cmd.event_id = id;
858 
859 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
860 }
861 
862 static void its_send_invall(struct its_node *its, struct its_collection *col)
863 {
864 	struct its_cmd_desc desc;
865 
866 	desc.its_invall_cmd.col = col;
867 
868 	its_send_single_command(its, its_build_invall_cmd, &desc);
869 }
870 
871 static void its_send_vmapti(struct its_device *dev, u32 id)
872 {
873 	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
874 	struct its_cmd_desc desc;
875 
876 	desc.its_vmapti_cmd.vpe = map->vpe;
877 	desc.its_vmapti_cmd.dev = dev;
878 	desc.its_vmapti_cmd.virt_id = map->vintid;
879 	desc.its_vmapti_cmd.event_id = id;
880 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
881 
882 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
883 }
884 
885 static void its_send_vmovi(struct its_device *dev, u32 id)
886 {
887 	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
888 	struct its_cmd_desc desc;
889 
890 	desc.its_vmovi_cmd.vpe = map->vpe;
891 	desc.its_vmovi_cmd.dev = dev;
892 	desc.its_vmovi_cmd.event_id = id;
893 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
894 
895 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
896 }
897 
898 static void its_send_vmapp(struct its_vpe *vpe, bool valid)
899 {
900 	struct its_cmd_desc desc;
901 	struct its_node *its;
902 
903 	desc.its_vmapp_cmd.vpe = vpe;
904 	desc.its_vmapp_cmd.valid = valid;
905 
906 	list_for_each_entry(its, &its_nodes, entry) {
907 		if (!its->is_v4)
908 			continue;
909 
910 		desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
911 		its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
912 	}
913 }
914 
915 static void its_send_vmovp(struct its_vpe *vpe)
916 {
917 	struct its_cmd_desc desc;
918 	struct its_node *its;
919 	unsigned long flags;
920 	int col_id = vpe->col_idx;
921 
922 	desc.its_vmovp_cmd.vpe = vpe;
923 	desc.its_vmovp_cmd.its_list = (u16)its_list_map;
924 
925 	if (!its_list_map) {
926 		its = list_first_entry(&its_nodes, struct its_node, entry);
927 		desc.its_vmovp_cmd.seq_num = 0;
928 		desc.its_vmovp_cmd.col = &its->collections[col_id];
929 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
930 		return;
931 	}
932 
933 	/*
934 	 * Yet another marvel of the architecture. If using the
935 	 * its_list "feature", we need to make sure that all ITSs
936 	 * receive all VMOVP commands in the same order. The only way
937 	 * to guarantee this is to make vmovp a serialization point.
938 	 *
939 	 * Wall <-- Head.
940 	 */
941 	raw_spin_lock_irqsave(&vmovp_lock, flags);
942 
943 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
944 
945 	/* Emit VMOVPs */
946 	list_for_each_entry(its, &its_nodes, entry) {
947 		if (!its->is_v4)
948 			continue;
949 
950 		desc.its_vmovp_cmd.col = &its->collections[col_id];
951 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
952 	}
953 
954 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
955 }
956 
957 static void its_send_vinvall(struct its_vpe *vpe)
958 {
959 	struct its_cmd_desc desc;
960 	struct its_node *its;
961 
962 	desc.its_vinvall_cmd.vpe = vpe;
963 
964 	list_for_each_entry(its, &its_nodes, entry) {
965 		if (!its->is_v4)
966 			continue;
967 		its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
968 	}
969 }
970 
971 /*
972  * irqchip functions - assumes MSI, mostly.
973  */
974 
975 static inline u32 its_get_event_id(struct irq_data *d)
976 {
977 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
978 	return d->hwirq - its_dev->event_map.lpi_base;
979 }
980 
981 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
982 {
983 	irq_hw_number_t hwirq;
984 	struct page *prop_page;
985 	u8 *cfg;
986 
987 	if (irqd_is_forwarded_to_vcpu(d)) {
988 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
989 		u32 event = its_get_event_id(d);
990 
991 		prop_page = its_dev->event_map.vm->vprop_page;
992 		hwirq = its_dev->event_map.vlpi_maps[event].vintid;
993 	} else {
994 		prop_page = gic_rdists->prop_page;
995 		hwirq = d->hwirq;
996 	}
997 
998 	cfg = page_address(prop_page) + hwirq - 8192;
999 	*cfg &= ~clr;
1000 	*cfg |= set | LPI_PROP_GROUP1;
1001 
1002 	/*
1003 	 * Make the above write visible to the redistributors.
1004 	 * And yes, we're flushing exactly: One. Single. Byte.
1005 	 * Humpf...
1006 	 */
1007 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1008 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1009 	else
1010 		dsb(ishst);
1011 }
1012 
1013 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1014 {
1015 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1016 
1017 	lpi_write_config(d, clr, set);
1018 	its_send_inv(its_dev, its_get_event_id(d));
1019 }
1020 
1021 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1022 {
1023 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1024 	u32 event = its_get_event_id(d);
1025 
1026 	if (its_dev->event_map.vlpi_maps[event].db_enabled == enable)
1027 		return;
1028 
1029 	its_dev->event_map.vlpi_maps[event].db_enabled = enable;
1030 
1031 	/*
1032 	 * More fun with the architecture:
1033 	 *
1034 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1035 	 * value or to 1023, depending on the enable bit. But that
1036 	 * would be issueing a mapping for an /existing/ DevID+EventID
1037 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1038 	 * to the /same/ vPE, using this opportunity to adjust the
1039 	 * doorbell. Mouahahahaha. We loves it, Precious.
1040 	 */
1041 	its_send_vmovi(its_dev, event);
1042 }
1043 
1044 static void its_mask_irq(struct irq_data *d)
1045 {
1046 	if (irqd_is_forwarded_to_vcpu(d))
1047 		its_vlpi_set_doorbell(d, false);
1048 
1049 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1050 }
1051 
1052 static void its_unmask_irq(struct irq_data *d)
1053 {
1054 	if (irqd_is_forwarded_to_vcpu(d))
1055 		its_vlpi_set_doorbell(d, true);
1056 
1057 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1058 }
1059 
1060 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1061 			    bool force)
1062 {
1063 	unsigned int cpu;
1064 	const struct cpumask *cpu_mask = cpu_online_mask;
1065 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1066 	struct its_collection *target_col;
1067 	u32 id = its_get_event_id(d);
1068 
1069 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1070 	if (irqd_is_forwarded_to_vcpu(d))
1071 		return -EINVAL;
1072 
1073        /* lpi cannot be routed to a redistributor that is on a foreign node */
1074 	if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1075 		if (its_dev->its->numa_node >= 0) {
1076 			cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1077 			if (!cpumask_intersects(mask_val, cpu_mask))
1078 				return -EINVAL;
1079 		}
1080 	}
1081 
1082 	cpu = cpumask_any_and(mask_val, cpu_mask);
1083 
1084 	if (cpu >= nr_cpu_ids)
1085 		return -EINVAL;
1086 
1087 	/* don't set the affinity when the target cpu is same as current one */
1088 	if (cpu != its_dev->event_map.col_map[id]) {
1089 		target_col = &its_dev->its->collections[cpu];
1090 		its_send_movi(its_dev, target_col, id);
1091 		its_dev->event_map.col_map[id] = cpu;
1092 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1093 	}
1094 
1095 	return IRQ_SET_MASK_OK_DONE;
1096 }
1097 
1098 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1099 {
1100 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1101 	struct its_node *its;
1102 	u64 addr;
1103 
1104 	its = its_dev->its;
1105 	addr = its->phys_base + GITS_TRANSLATER;
1106 
1107 	msg->address_lo		= lower_32_bits(addr);
1108 	msg->address_hi		= upper_32_bits(addr);
1109 	msg->data		= its_get_event_id(d);
1110 
1111 	iommu_dma_map_msi_msg(d->irq, msg);
1112 }
1113 
1114 static int its_irq_set_irqchip_state(struct irq_data *d,
1115 				     enum irqchip_irq_state which,
1116 				     bool state)
1117 {
1118 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1119 	u32 event = its_get_event_id(d);
1120 
1121 	if (which != IRQCHIP_STATE_PENDING)
1122 		return -EINVAL;
1123 
1124 	if (state)
1125 		its_send_int(its_dev, event);
1126 	else
1127 		its_send_clear(its_dev, event);
1128 
1129 	return 0;
1130 }
1131 
1132 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1133 {
1134 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1135 	u32 event = its_get_event_id(d);
1136 	int ret = 0;
1137 
1138 	if (!info->map)
1139 		return -EINVAL;
1140 
1141 	mutex_lock(&its_dev->event_map.vlpi_lock);
1142 
1143 	if (!its_dev->event_map.vm) {
1144 		struct its_vlpi_map *maps;
1145 
1146 		maps = kzalloc(sizeof(*maps) * its_dev->event_map.nr_lpis,
1147 			       GFP_KERNEL);
1148 		if (!maps) {
1149 			ret = -ENOMEM;
1150 			goto out;
1151 		}
1152 
1153 		its_dev->event_map.vm = info->map->vm;
1154 		its_dev->event_map.vlpi_maps = maps;
1155 	} else if (its_dev->event_map.vm != info->map->vm) {
1156 		ret = -EINVAL;
1157 		goto out;
1158 	}
1159 
1160 	/* Get our private copy of the mapping information */
1161 	its_dev->event_map.vlpi_maps[event] = *info->map;
1162 
1163 	if (irqd_is_forwarded_to_vcpu(d)) {
1164 		/* Already mapped, move it around */
1165 		its_send_vmovi(its_dev, event);
1166 	} else {
1167 		/* Drop the physical mapping */
1168 		its_send_discard(its_dev, event);
1169 
1170 		/* and install the virtual one */
1171 		its_send_vmapti(its_dev, event);
1172 		irqd_set_forwarded_to_vcpu(d);
1173 
1174 		/* Increment the number of VLPIs */
1175 		its_dev->event_map.nr_vlpis++;
1176 	}
1177 
1178 out:
1179 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1180 	return ret;
1181 }
1182 
1183 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1184 {
1185 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1186 	u32 event = its_get_event_id(d);
1187 	int ret = 0;
1188 
1189 	mutex_lock(&its_dev->event_map.vlpi_lock);
1190 
1191 	if (!its_dev->event_map.vm ||
1192 	    !its_dev->event_map.vlpi_maps[event].vm) {
1193 		ret = -EINVAL;
1194 		goto out;
1195 	}
1196 
1197 	/* Copy our mapping information to the incoming request */
1198 	*info->map = its_dev->event_map.vlpi_maps[event];
1199 
1200 out:
1201 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1202 	return ret;
1203 }
1204 
1205 static int its_vlpi_unmap(struct irq_data *d)
1206 {
1207 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1208 	u32 event = its_get_event_id(d);
1209 	int ret = 0;
1210 
1211 	mutex_lock(&its_dev->event_map.vlpi_lock);
1212 
1213 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1214 		ret = -EINVAL;
1215 		goto out;
1216 	}
1217 
1218 	/* Drop the virtual mapping */
1219 	its_send_discard(its_dev, event);
1220 
1221 	/* and restore the physical one */
1222 	irqd_clr_forwarded_to_vcpu(d);
1223 	its_send_mapti(its_dev, d->hwirq, event);
1224 	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1225 				    LPI_PROP_ENABLED |
1226 				    LPI_PROP_GROUP1));
1227 
1228 	/*
1229 	 * Drop the refcount and make the device available again if
1230 	 * this was the last VLPI.
1231 	 */
1232 	if (!--its_dev->event_map.nr_vlpis) {
1233 		its_dev->event_map.vm = NULL;
1234 		kfree(its_dev->event_map.vlpi_maps);
1235 	}
1236 
1237 out:
1238 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1239 	return ret;
1240 }
1241 
1242 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1243 {
1244 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1245 
1246 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1247 		return -EINVAL;
1248 
1249 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1250 		lpi_update_config(d, 0xff, info->config);
1251 	else
1252 		lpi_write_config(d, 0xff, info->config);
1253 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1254 
1255 	return 0;
1256 }
1257 
1258 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1259 {
1260 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1261 	struct its_cmd_info *info = vcpu_info;
1262 
1263 	/* Need a v4 ITS */
1264 	if (!its_dev->its->is_v4)
1265 		return -EINVAL;
1266 
1267 	/* Unmap request? */
1268 	if (!info)
1269 		return its_vlpi_unmap(d);
1270 
1271 	switch (info->cmd_type) {
1272 	case MAP_VLPI:
1273 		return its_vlpi_map(d, info);
1274 
1275 	case GET_VLPI:
1276 		return its_vlpi_get(d, info);
1277 
1278 	case PROP_UPDATE_VLPI:
1279 	case PROP_UPDATE_AND_INV_VLPI:
1280 		return its_vlpi_prop_update(d, info);
1281 
1282 	default:
1283 		return -EINVAL;
1284 	}
1285 }
1286 
1287 static struct irq_chip its_irq_chip = {
1288 	.name			= "ITS",
1289 	.irq_mask		= its_mask_irq,
1290 	.irq_unmask		= its_unmask_irq,
1291 	.irq_eoi		= irq_chip_eoi_parent,
1292 	.irq_set_affinity	= its_set_affinity,
1293 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
1294 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
1295 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
1296 };
1297 
1298 /*
1299  * How we allocate LPIs:
1300  *
1301  * The GIC has id_bits bits for interrupt identifiers. From there, we
1302  * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
1303  * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
1304  * bits to the right.
1305  *
1306  * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
1307  */
1308 #define IRQS_PER_CHUNK_SHIFT	5
1309 #define IRQS_PER_CHUNK		(1 << IRQS_PER_CHUNK_SHIFT)
1310 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
1311 
1312 static unsigned long *lpi_bitmap;
1313 static u32 lpi_chunks;
1314 static DEFINE_SPINLOCK(lpi_lock);
1315 
1316 static int its_lpi_to_chunk(int lpi)
1317 {
1318 	return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
1319 }
1320 
1321 static int its_chunk_to_lpi(int chunk)
1322 {
1323 	return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
1324 }
1325 
1326 static int __init its_lpi_init(u32 id_bits)
1327 {
1328 	lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
1329 
1330 	lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
1331 			     GFP_KERNEL);
1332 	if (!lpi_bitmap) {
1333 		lpi_chunks = 0;
1334 		return -ENOMEM;
1335 	}
1336 
1337 	pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
1338 	return 0;
1339 }
1340 
1341 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
1342 {
1343 	unsigned long *bitmap = NULL;
1344 	int chunk_id;
1345 	int nr_chunks;
1346 	int i;
1347 
1348 	nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
1349 
1350 	spin_lock(&lpi_lock);
1351 
1352 	do {
1353 		chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
1354 						      0, nr_chunks, 0);
1355 		if (chunk_id < lpi_chunks)
1356 			break;
1357 
1358 		nr_chunks--;
1359 	} while (nr_chunks > 0);
1360 
1361 	if (!nr_chunks)
1362 		goto out;
1363 
1364 	bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
1365 			 GFP_ATOMIC);
1366 	if (!bitmap)
1367 		goto out;
1368 
1369 	for (i = 0; i < nr_chunks; i++)
1370 		set_bit(chunk_id + i, lpi_bitmap);
1371 
1372 	*base = its_chunk_to_lpi(chunk_id);
1373 	*nr_ids = nr_chunks * IRQS_PER_CHUNK;
1374 
1375 out:
1376 	spin_unlock(&lpi_lock);
1377 
1378 	if (!bitmap)
1379 		*base = *nr_ids = 0;
1380 
1381 	return bitmap;
1382 }
1383 
1384 static void its_lpi_free_chunks(unsigned long *bitmap, int base, int nr_ids)
1385 {
1386 	int lpi;
1387 
1388 	spin_lock(&lpi_lock);
1389 
1390 	for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
1391 		int chunk = its_lpi_to_chunk(lpi);
1392 
1393 		BUG_ON(chunk > lpi_chunks);
1394 		if (test_bit(chunk, lpi_bitmap)) {
1395 			clear_bit(chunk, lpi_bitmap);
1396 		} else {
1397 			pr_err("Bad LPI chunk %d\n", chunk);
1398 		}
1399 	}
1400 
1401 	spin_unlock(&lpi_lock);
1402 
1403 	kfree(bitmap);
1404 }
1405 
1406 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
1407 {
1408 	struct page *prop_page;
1409 
1410 	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
1411 	if (!prop_page)
1412 		return NULL;
1413 
1414 	/* Priority 0xa0, Group-1, disabled */
1415 	memset(page_address(prop_page),
1416 	       LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
1417 	       LPI_PROPBASE_SZ);
1418 
1419 	/* Make sure the GIC will observe the written configuration */
1420 	gic_flush_dcache_to_poc(page_address(prop_page), LPI_PROPBASE_SZ);
1421 
1422 	return prop_page;
1423 }
1424 
1425 static void its_free_prop_table(struct page *prop_page)
1426 {
1427 	free_pages((unsigned long)page_address(prop_page),
1428 		   get_order(LPI_PROPBASE_SZ));
1429 }
1430 
1431 static int __init its_alloc_lpi_tables(void)
1432 {
1433 	phys_addr_t paddr;
1434 
1435 	lpi_id_bits = min_t(u32, gic_rdists->id_bits, ITS_MAX_LPI_NRBITS);
1436 	gic_rdists->prop_page = its_allocate_prop_table(GFP_NOWAIT);
1437 	if (!gic_rdists->prop_page) {
1438 		pr_err("Failed to allocate PROPBASE\n");
1439 		return -ENOMEM;
1440 	}
1441 
1442 	paddr = page_to_phys(gic_rdists->prop_page);
1443 	pr_info("GIC: using LPI property table @%pa\n", &paddr);
1444 
1445 	return its_lpi_init(lpi_id_bits);
1446 }
1447 
1448 static const char *its_base_type_string[] = {
1449 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
1450 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
1451 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
1452 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
1453 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
1454 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
1455 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
1456 };
1457 
1458 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
1459 {
1460 	u32 idx = baser - its->tables;
1461 
1462 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
1463 }
1464 
1465 static void its_write_baser(struct its_node *its, struct its_baser *baser,
1466 			    u64 val)
1467 {
1468 	u32 idx = baser - its->tables;
1469 
1470 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
1471 	baser->val = its_read_baser(its, baser);
1472 }
1473 
1474 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
1475 			   u64 cache, u64 shr, u32 psz, u32 order,
1476 			   bool indirect)
1477 {
1478 	u64 val = its_read_baser(its, baser);
1479 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
1480 	u64 type = GITS_BASER_TYPE(val);
1481 	u32 alloc_pages;
1482 	void *base;
1483 	u64 tmp;
1484 
1485 retry_alloc_baser:
1486 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
1487 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
1488 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
1489 			&its->phys_base, its_base_type_string[type],
1490 			alloc_pages, GITS_BASER_PAGES_MAX);
1491 		alloc_pages = GITS_BASER_PAGES_MAX;
1492 		order = get_order(GITS_BASER_PAGES_MAX * psz);
1493 	}
1494 
1495 	base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1496 	if (!base)
1497 		return -ENOMEM;
1498 
1499 retry_baser:
1500 	val = (virt_to_phys(base)				 |
1501 		(type << GITS_BASER_TYPE_SHIFT)			 |
1502 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
1503 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
1504 		cache						 |
1505 		shr						 |
1506 		GITS_BASER_VALID);
1507 
1508 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
1509 
1510 	switch (psz) {
1511 	case SZ_4K:
1512 		val |= GITS_BASER_PAGE_SIZE_4K;
1513 		break;
1514 	case SZ_16K:
1515 		val |= GITS_BASER_PAGE_SIZE_16K;
1516 		break;
1517 	case SZ_64K:
1518 		val |= GITS_BASER_PAGE_SIZE_64K;
1519 		break;
1520 	}
1521 
1522 	its_write_baser(its, baser, val);
1523 	tmp = baser->val;
1524 
1525 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
1526 		/*
1527 		 * Shareability didn't stick. Just use
1528 		 * whatever the read reported, which is likely
1529 		 * to be the only thing this redistributor
1530 		 * supports. If that's zero, make it
1531 		 * non-cacheable as well.
1532 		 */
1533 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
1534 		if (!shr) {
1535 			cache = GITS_BASER_nC;
1536 			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
1537 		}
1538 		goto retry_baser;
1539 	}
1540 
1541 	if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
1542 		/*
1543 		 * Page size didn't stick. Let's try a smaller
1544 		 * size and retry. If we reach 4K, then
1545 		 * something is horribly wrong...
1546 		 */
1547 		free_pages((unsigned long)base, order);
1548 		baser->base = NULL;
1549 
1550 		switch (psz) {
1551 		case SZ_16K:
1552 			psz = SZ_4K;
1553 			goto retry_alloc_baser;
1554 		case SZ_64K:
1555 			psz = SZ_16K;
1556 			goto retry_alloc_baser;
1557 		}
1558 	}
1559 
1560 	if (val != tmp) {
1561 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
1562 		       &its->phys_base, its_base_type_string[type],
1563 		       val, tmp);
1564 		free_pages((unsigned long)base, order);
1565 		return -ENXIO;
1566 	}
1567 
1568 	baser->order = order;
1569 	baser->base = base;
1570 	baser->psz = psz;
1571 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
1572 
1573 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
1574 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
1575 		its_base_type_string[type],
1576 		(unsigned long)virt_to_phys(base),
1577 		indirect ? "indirect" : "flat", (int)esz,
1578 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
1579 
1580 	return 0;
1581 }
1582 
1583 static bool its_parse_indirect_baser(struct its_node *its,
1584 				     struct its_baser *baser,
1585 				     u32 psz, u32 *order)
1586 {
1587 	u64 tmp = its_read_baser(its, baser);
1588 	u64 type = GITS_BASER_TYPE(tmp);
1589 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
1590 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
1591 	u32 ids = its->device_ids;
1592 	u32 new_order = *order;
1593 	bool indirect = false;
1594 
1595 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
1596 	if ((esz << ids) > (psz * 2)) {
1597 		/*
1598 		 * Find out whether hw supports a single or two-level table by
1599 		 * table by reading bit at offset '62' after writing '1' to it.
1600 		 */
1601 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
1602 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
1603 
1604 		if (indirect) {
1605 			/*
1606 			 * The size of the lvl2 table is equal to ITS page size
1607 			 * which is 'psz'. For computing lvl1 table size,
1608 			 * subtract ID bits that sparse lvl2 table from 'ids'
1609 			 * which is reported by ITS hardware times lvl1 table
1610 			 * entry size.
1611 			 */
1612 			ids -= ilog2(psz / (int)esz);
1613 			esz = GITS_LVL1_ENTRY_SIZE;
1614 		}
1615 	}
1616 
1617 	/*
1618 	 * Allocate as many entries as required to fit the
1619 	 * range of device IDs that the ITS can grok... The ID
1620 	 * space being incredibly sparse, this results in a
1621 	 * massive waste of memory if two-level device table
1622 	 * feature is not supported by hardware.
1623 	 */
1624 	new_order = max_t(u32, get_order(esz << ids), new_order);
1625 	if (new_order >= MAX_ORDER) {
1626 		new_order = MAX_ORDER - 1;
1627 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
1628 		pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n",
1629 			&its->phys_base, its_base_type_string[type],
1630 			its->device_ids, ids);
1631 	}
1632 
1633 	*order = new_order;
1634 
1635 	return indirect;
1636 }
1637 
1638 static void its_free_tables(struct its_node *its)
1639 {
1640 	int i;
1641 
1642 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1643 		if (its->tables[i].base) {
1644 			free_pages((unsigned long)its->tables[i].base,
1645 				   its->tables[i].order);
1646 			its->tables[i].base = NULL;
1647 		}
1648 	}
1649 }
1650 
1651 static int its_alloc_tables(struct its_node *its)
1652 {
1653 	u64 typer = gic_read_typer(its->base + GITS_TYPER);
1654 	u32 ids = GITS_TYPER_DEVBITS(typer);
1655 	u64 shr = GITS_BASER_InnerShareable;
1656 	u64 cache = GITS_BASER_RaWaWb;
1657 	u32 psz = SZ_64K;
1658 	int err, i;
1659 
1660 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) {
1661 		/*
1662 		* erratum 22375: only alloc 8MB table size
1663 		* erratum 24313: ignore memory access type
1664 		*/
1665 		cache   = GITS_BASER_nCnB;
1666 		ids     = 0x14;                 /* 20 bits, 8MB */
1667 	}
1668 
1669 	its->device_ids = ids;
1670 
1671 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1672 		struct its_baser *baser = its->tables + i;
1673 		u64 val = its_read_baser(its, baser);
1674 		u64 type = GITS_BASER_TYPE(val);
1675 		u32 order = get_order(psz);
1676 		bool indirect = false;
1677 
1678 		switch (type) {
1679 		case GITS_BASER_TYPE_NONE:
1680 			continue;
1681 
1682 		case GITS_BASER_TYPE_DEVICE:
1683 		case GITS_BASER_TYPE_VCPU:
1684 			indirect = its_parse_indirect_baser(its, baser,
1685 							    psz, &order);
1686 			break;
1687 		}
1688 
1689 		err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1690 		if (err < 0) {
1691 			its_free_tables(its);
1692 			return err;
1693 		}
1694 
1695 		/* Update settings which will be used for next BASERn */
1696 		psz = baser->psz;
1697 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1698 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1699 	}
1700 
1701 	return 0;
1702 }
1703 
1704 static int its_alloc_collections(struct its_node *its)
1705 {
1706 	its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
1707 				   GFP_KERNEL);
1708 	if (!its->collections)
1709 		return -ENOMEM;
1710 
1711 	return 0;
1712 }
1713 
1714 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
1715 {
1716 	struct page *pend_page;
1717 	/*
1718 	 * The pending pages have to be at least 64kB aligned,
1719 	 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1720 	 */
1721 	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
1722 				get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K)));
1723 	if (!pend_page)
1724 		return NULL;
1725 
1726 	/* Make sure the GIC will observe the zero-ed page */
1727 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
1728 
1729 	return pend_page;
1730 }
1731 
1732 static void its_free_pending_table(struct page *pt)
1733 {
1734 	free_pages((unsigned long)page_address(pt),
1735 		   get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K)));
1736 }
1737 
1738 static void its_cpu_init_lpis(void)
1739 {
1740 	void __iomem *rbase = gic_data_rdist_rd_base();
1741 	struct page *pend_page;
1742 	u64 val, tmp;
1743 
1744 	/* If we didn't allocate the pending table yet, do it now */
1745 	pend_page = gic_data_rdist()->pend_page;
1746 	if (!pend_page) {
1747 		phys_addr_t paddr;
1748 
1749 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
1750 		if (!pend_page) {
1751 			pr_err("Failed to allocate PENDBASE for CPU%d\n",
1752 			       smp_processor_id());
1753 			return;
1754 		}
1755 
1756 		paddr = page_to_phys(pend_page);
1757 		pr_info("CPU%d: using LPI pending table @%pa\n",
1758 			smp_processor_id(), &paddr);
1759 		gic_data_rdist()->pend_page = pend_page;
1760 	}
1761 
1762 	/* Disable LPIs */
1763 	val = readl_relaxed(rbase + GICR_CTLR);
1764 	val &= ~GICR_CTLR_ENABLE_LPIS;
1765 	writel_relaxed(val, rbase + GICR_CTLR);
1766 
1767 	/*
1768 	 * Make sure any change to the table is observable by the GIC.
1769 	 */
1770 	dsb(sy);
1771 
1772 	/* set PROPBASE */
1773 	val = (page_to_phys(gic_rdists->prop_page) |
1774 	       GICR_PROPBASER_InnerShareable |
1775 	       GICR_PROPBASER_RaWaWb |
1776 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1777 
1778 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1779 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
1780 
1781 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1782 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1783 			/*
1784 			 * The HW reports non-shareable, we must
1785 			 * remove the cacheability attributes as
1786 			 * well.
1787 			 */
1788 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1789 				 GICR_PROPBASER_CACHEABILITY_MASK);
1790 			val |= GICR_PROPBASER_nC;
1791 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1792 		}
1793 		pr_info_once("GIC: using cache flushing for LPI property table\n");
1794 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1795 	}
1796 
1797 	/* set PENDBASE */
1798 	val = (page_to_phys(pend_page) |
1799 	       GICR_PENDBASER_InnerShareable |
1800 	       GICR_PENDBASER_RaWaWb);
1801 
1802 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1803 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
1804 
1805 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1806 		/*
1807 		 * The HW reports non-shareable, we must remove the
1808 		 * cacheability attributes as well.
1809 		 */
1810 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1811 			 GICR_PENDBASER_CACHEABILITY_MASK);
1812 		val |= GICR_PENDBASER_nC;
1813 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1814 	}
1815 
1816 	/* Enable LPIs */
1817 	val = readl_relaxed(rbase + GICR_CTLR);
1818 	val |= GICR_CTLR_ENABLE_LPIS;
1819 	writel_relaxed(val, rbase + GICR_CTLR);
1820 
1821 	/* Make sure the GIC has seen the above */
1822 	dsb(sy);
1823 }
1824 
1825 static void its_cpu_init_collection(void)
1826 {
1827 	struct its_node *its;
1828 	int cpu;
1829 
1830 	spin_lock(&its_lock);
1831 	cpu = smp_processor_id();
1832 
1833 	list_for_each_entry(its, &its_nodes, entry) {
1834 		u64 target;
1835 
1836 		/* avoid cross node collections and its mapping */
1837 		if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1838 			struct device_node *cpu_node;
1839 
1840 			cpu_node = of_get_cpu_node(cpu, NULL);
1841 			if (its->numa_node != NUMA_NO_NODE &&
1842 				its->numa_node != of_node_to_nid(cpu_node))
1843 				continue;
1844 		}
1845 
1846 		/*
1847 		 * We now have to bind each collection to its target
1848 		 * redistributor.
1849 		 */
1850 		if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1851 			/*
1852 			 * This ITS wants the physical address of the
1853 			 * redistributor.
1854 			 */
1855 			target = gic_data_rdist()->phys_base;
1856 		} else {
1857 			/*
1858 			 * This ITS wants a linear CPU number.
1859 			 */
1860 			target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
1861 			target = GICR_TYPER_CPU_NUMBER(target) << 16;
1862 		}
1863 
1864 		/* Perform collection mapping */
1865 		its->collections[cpu].target_address = target;
1866 		its->collections[cpu].col_id = cpu;
1867 
1868 		its_send_mapc(its, &its->collections[cpu], 1);
1869 		its_send_invall(its, &its->collections[cpu]);
1870 	}
1871 
1872 	spin_unlock(&its_lock);
1873 }
1874 
1875 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1876 {
1877 	struct its_device *its_dev = NULL, *tmp;
1878 	unsigned long flags;
1879 
1880 	raw_spin_lock_irqsave(&its->lock, flags);
1881 
1882 	list_for_each_entry(tmp, &its->its_device_list, entry) {
1883 		if (tmp->device_id == dev_id) {
1884 			its_dev = tmp;
1885 			break;
1886 		}
1887 	}
1888 
1889 	raw_spin_unlock_irqrestore(&its->lock, flags);
1890 
1891 	return its_dev;
1892 }
1893 
1894 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
1895 {
1896 	int i;
1897 
1898 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1899 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
1900 			return &its->tables[i];
1901 	}
1902 
1903 	return NULL;
1904 }
1905 
1906 static bool its_alloc_table_entry(struct its_baser *baser, u32 id)
1907 {
1908 	struct page *page;
1909 	u32 esz, idx;
1910 	__le64 *table;
1911 
1912 	/* Don't allow device id that exceeds single, flat table limit */
1913 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
1914 	if (!(baser->val & GITS_BASER_INDIRECT))
1915 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
1916 
1917 	/* Compute 1st level table index & check if that exceeds table limit */
1918 	idx = id >> ilog2(baser->psz / esz);
1919 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
1920 		return false;
1921 
1922 	table = baser->base;
1923 
1924 	/* Allocate memory for 2nd level table */
1925 	if (!table[idx]) {
1926 		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz));
1927 		if (!page)
1928 			return false;
1929 
1930 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
1931 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
1932 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
1933 
1934 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
1935 
1936 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
1937 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
1938 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
1939 
1940 		/* Ensure updated table contents are visible to ITS hardware */
1941 		dsb(sy);
1942 	}
1943 
1944 	return true;
1945 }
1946 
1947 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
1948 {
1949 	struct its_baser *baser;
1950 
1951 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
1952 
1953 	/* Don't allow device id that exceeds ITS hardware limit */
1954 	if (!baser)
1955 		return (ilog2(dev_id) < its->device_ids);
1956 
1957 	return its_alloc_table_entry(baser, dev_id);
1958 }
1959 
1960 static bool its_alloc_vpe_table(u32 vpe_id)
1961 {
1962 	struct its_node *its;
1963 
1964 	/*
1965 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
1966 	 * could try and only do it on ITSs corresponding to devices
1967 	 * that have interrupts targeted at this VPE, but the
1968 	 * complexity becomes crazy (and you have tons of memory
1969 	 * anyway, right?).
1970 	 */
1971 	list_for_each_entry(its, &its_nodes, entry) {
1972 		struct its_baser *baser;
1973 
1974 		if (!its->is_v4)
1975 			continue;
1976 
1977 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
1978 		if (!baser)
1979 			return false;
1980 
1981 		if (!its_alloc_table_entry(baser, vpe_id))
1982 			return false;
1983 	}
1984 
1985 	return true;
1986 }
1987 
1988 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
1989 					    int nvecs, bool alloc_lpis)
1990 {
1991 	struct its_device *dev;
1992 	unsigned long *lpi_map = NULL;
1993 	unsigned long flags;
1994 	u16 *col_map = NULL;
1995 	void *itt;
1996 	int lpi_base;
1997 	int nr_lpis;
1998 	int nr_ites;
1999 	int sz;
2000 
2001 	if (!its_alloc_device_table(its, dev_id))
2002 		return NULL;
2003 
2004 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2005 	/*
2006 	 * At least one bit of EventID is being used, hence a minimum
2007 	 * of two entries. No, the architecture doesn't let you
2008 	 * express an ITT with a single entry.
2009 	 */
2010 	nr_ites = max(2UL, roundup_pow_of_two(nvecs));
2011 	sz = nr_ites * its->ite_size;
2012 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
2013 	itt = kzalloc(sz, GFP_KERNEL);
2014 	if (alloc_lpis) {
2015 		lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
2016 		if (lpi_map)
2017 			col_map = kzalloc(sizeof(*col_map) * nr_lpis,
2018 					  GFP_KERNEL);
2019 	} else {
2020 		col_map = kzalloc(sizeof(*col_map) * nr_ites, GFP_KERNEL);
2021 		nr_lpis = 0;
2022 		lpi_base = 0;
2023 	}
2024 
2025 	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
2026 		kfree(dev);
2027 		kfree(itt);
2028 		kfree(lpi_map);
2029 		kfree(col_map);
2030 		return NULL;
2031 	}
2032 
2033 	gic_flush_dcache_to_poc(itt, sz);
2034 
2035 	dev->its = its;
2036 	dev->itt = itt;
2037 	dev->nr_ites = nr_ites;
2038 	dev->event_map.lpi_map = lpi_map;
2039 	dev->event_map.col_map = col_map;
2040 	dev->event_map.lpi_base = lpi_base;
2041 	dev->event_map.nr_lpis = nr_lpis;
2042 	mutex_init(&dev->event_map.vlpi_lock);
2043 	dev->device_id = dev_id;
2044 	INIT_LIST_HEAD(&dev->entry);
2045 
2046 	raw_spin_lock_irqsave(&its->lock, flags);
2047 	list_add(&dev->entry, &its->its_device_list);
2048 	raw_spin_unlock_irqrestore(&its->lock, flags);
2049 
2050 	/* Map device to its ITT */
2051 	its_send_mapd(dev, 1);
2052 
2053 	return dev;
2054 }
2055 
2056 static void its_free_device(struct its_device *its_dev)
2057 {
2058 	unsigned long flags;
2059 
2060 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
2061 	list_del(&its_dev->entry);
2062 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
2063 	kfree(its_dev->itt);
2064 	kfree(its_dev);
2065 }
2066 
2067 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
2068 {
2069 	int idx;
2070 
2071 	idx = find_first_zero_bit(dev->event_map.lpi_map,
2072 				  dev->event_map.nr_lpis);
2073 	if (idx == dev->event_map.nr_lpis)
2074 		return -ENOSPC;
2075 
2076 	*hwirq = dev->event_map.lpi_base + idx;
2077 	set_bit(idx, dev->event_map.lpi_map);
2078 
2079 	return 0;
2080 }
2081 
2082 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
2083 			   int nvec, msi_alloc_info_t *info)
2084 {
2085 	struct its_node *its;
2086 	struct its_device *its_dev;
2087 	struct msi_domain_info *msi_info;
2088 	u32 dev_id;
2089 
2090 	/*
2091 	 * We ignore "dev" entierely, and rely on the dev_id that has
2092 	 * been passed via the scratchpad. This limits this domain's
2093 	 * usefulness to upper layers that definitely know that they
2094 	 * are built on top of the ITS.
2095 	 */
2096 	dev_id = info->scratchpad[0].ul;
2097 
2098 	msi_info = msi_get_domain_info(domain);
2099 	its = msi_info->data;
2100 
2101 	if (!gic_rdists->has_direct_lpi &&
2102 	    vpe_proxy.dev &&
2103 	    vpe_proxy.dev->its == its &&
2104 	    dev_id == vpe_proxy.dev->device_id) {
2105 		/* Bad luck. Get yourself a better implementation */
2106 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
2107 			  dev_id);
2108 		return -EINVAL;
2109 	}
2110 
2111 	its_dev = its_find_device(its, dev_id);
2112 	if (its_dev) {
2113 		/*
2114 		 * We already have seen this ID, probably through
2115 		 * another alias (PCI bridge of some sort). No need to
2116 		 * create the device.
2117 		 */
2118 		pr_debug("Reusing ITT for devID %x\n", dev_id);
2119 		goto out;
2120 	}
2121 
2122 	its_dev = its_create_device(its, dev_id, nvec, true);
2123 	if (!its_dev)
2124 		return -ENOMEM;
2125 
2126 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
2127 out:
2128 	info->scratchpad[0].ptr = its_dev;
2129 	return 0;
2130 }
2131 
2132 static struct msi_domain_ops its_msi_domain_ops = {
2133 	.msi_prepare	= its_msi_prepare,
2134 };
2135 
2136 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
2137 				    unsigned int virq,
2138 				    irq_hw_number_t hwirq)
2139 {
2140 	struct irq_fwspec fwspec;
2141 
2142 	if (irq_domain_get_of_node(domain->parent)) {
2143 		fwspec.fwnode = domain->parent->fwnode;
2144 		fwspec.param_count = 3;
2145 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
2146 		fwspec.param[1] = hwirq;
2147 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
2148 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
2149 		fwspec.fwnode = domain->parent->fwnode;
2150 		fwspec.param_count = 2;
2151 		fwspec.param[0] = hwirq;
2152 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
2153 	} else {
2154 		return -EINVAL;
2155 	}
2156 
2157 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
2158 }
2159 
2160 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2161 				unsigned int nr_irqs, void *args)
2162 {
2163 	msi_alloc_info_t *info = args;
2164 	struct its_device *its_dev = info->scratchpad[0].ptr;
2165 	irq_hw_number_t hwirq;
2166 	int err;
2167 	int i;
2168 
2169 	for (i = 0; i < nr_irqs; i++) {
2170 		err = its_alloc_device_irq(its_dev, &hwirq);
2171 		if (err)
2172 			return err;
2173 
2174 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
2175 		if (err)
2176 			return err;
2177 
2178 		irq_domain_set_hwirq_and_chip(domain, virq + i,
2179 					      hwirq, &its_irq_chip, its_dev);
2180 		irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i)));
2181 		pr_debug("ID:%d pID:%d vID:%d\n",
2182 			 (int)(hwirq - its_dev->event_map.lpi_base),
2183 			 (int) hwirq, virq + i);
2184 	}
2185 
2186 	return 0;
2187 }
2188 
2189 static void its_irq_domain_activate(struct irq_domain *domain,
2190 				    struct irq_data *d)
2191 {
2192 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2193 	u32 event = its_get_event_id(d);
2194 	const struct cpumask *cpu_mask = cpu_online_mask;
2195 	int cpu;
2196 
2197 	/* get the cpu_mask of local node */
2198 	if (its_dev->its->numa_node >= 0)
2199 		cpu_mask = cpumask_of_node(its_dev->its->numa_node);
2200 
2201 	/* Bind the LPI to the first possible CPU */
2202 	cpu = cpumask_first(cpu_mask);
2203 	its_dev->event_map.col_map[event] = cpu;
2204 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
2205 
2206 	/* Map the GIC IRQ and event to the device */
2207 	its_send_mapti(its_dev, d->hwirq, event);
2208 }
2209 
2210 static void its_irq_domain_deactivate(struct irq_domain *domain,
2211 				      struct irq_data *d)
2212 {
2213 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2214 	u32 event = its_get_event_id(d);
2215 
2216 	/* Stop the delivery of interrupts */
2217 	its_send_discard(its_dev, event);
2218 }
2219 
2220 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
2221 				unsigned int nr_irqs)
2222 {
2223 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
2224 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2225 	int i;
2226 
2227 	for (i = 0; i < nr_irqs; i++) {
2228 		struct irq_data *data = irq_domain_get_irq_data(domain,
2229 								virq + i);
2230 		u32 event = its_get_event_id(data);
2231 
2232 		/* Mark interrupt index as unused */
2233 		clear_bit(event, its_dev->event_map.lpi_map);
2234 
2235 		/* Nuke the entry in the domain */
2236 		irq_domain_reset_irq_data(data);
2237 	}
2238 
2239 	/* If all interrupts have been freed, start mopping the floor */
2240 	if (bitmap_empty(its_dev->event_map.lpi_map,
2241 			 its_dev->event_map.nr_lpis)) {
2242 		its_lpi_free_chunks(its_dev->event_map.lpi_map,
2243 				    its_dev->event_map.lpi_base,
2244 				    its_dev->event_map.nr_lpis);
2245 		kfree(its_dev->event_map.col_map);
2246 
2247 		/* Unmap device/itt */
2248 		its_send_mapd(its_dev, 0);
2249 		its_free_device(its_dev);
2250 	}
2251 
2252 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2253 }
2254 
2255 static const struct irq_domain_ops its_domain_ops = {
2256 	.alloc			= its_irq_domain_alloc,
2257 	.free			= its_irq_domain_free,
2258 	.activate		= its_irq_domain_activate,
2259 	.deactivate		= its_irq_domain_deactivate,
2260 };
2261 
2262 /*
2263  * This is insane.
2264  *
2265  * If a GICv4 doesn't implement Direct LPIs (which is extremely
2266  * likely), the only way to perform an invalidate is to use a fake
2267  * device to issue an INV command, implying that the LPI has first
2268  * been mapped to some event on that device. Since this is not exactly
2269  * cheap, we try to keep that mapping around as long as possible, and
2270  * only issue an UNMAP if we're short on available slots.
2271  *
2272  * Broken by design(tm).
2273  */
2274 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
2275 {
2276 	/* Already unmapped? */
2277 	if (vpe->vpe_proxy_event == -1)
2278 		return;
2279 
2280 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
2281 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
2282 
2283 	/*
2284 	 * We don't track empty slots at all, so let's move the
2285 	 * next_victim pointer if we can quickly reuse that slot
2286 	 * instead of nuking an existing entry. Not clear that this is
2287 	 * always a win though, and this might just generate a ripple
2288 	 * effect... Let's just hope VPEs don't migrate too often.
2289 	 */
2290 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2291 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
2292 
2293 	vpe->vpe_proxy_event = -1;
2294 }
2295 
2296 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
2297 {
2298 	if (!gic_rdists->has_direct_lpi) {
2299 		unsigned long flags;
2300 
2301 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2302 		its_vpe_db_proxy_unmap_locked(vpe);
2303 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2304 	}
2305 }
2306 
2307 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
2308 {
2309 	/* Already mapped? */
2310 	if (vpe->vpe_proxy_event != -1)
2311 		return;
2312 
2313 	/* This slot was already allocated. Kick the other VPE out. */
2314 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2315 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
2316 
2317 	/* Map the new VPE instead */
2318 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
2319 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
2320 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
2321 
2322 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
2323 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
2324 }
2325 
2326 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
2327 {
2328 	unsigned long flags;
2329 	struct its_collection *target_col;
2330 
2331 	if (gic_rdists->has_direct_lpi) {
2332 		void __iomem *rdbase;
2333 
2334 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
2335 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2336 		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2337 			cpu_relax();
2338 
2339 		return;
2340 	}
2341 
2342 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2343 
2344 	its_vpe_db_proxy_map_locked(vpe);
2345 
2346 	target_col = &vpe_proxy.dev->its->collections[to];
2347 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
2348 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
2349 
2350 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2351 }
2352 
2353 static int its_vpe_set_affinity(struct irq_data *d,
2354 				const struct cpumask *mask_val,
2355 				bool force)
2356 {
2357 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2358 	int cpu = cpumask_first(mask_val);
2359 
2360 	/*
2361 	 * Changing affinity is mega expensive, so let's be as lazy as
2362 	 * we can and only do it if we really have to. Also, if mapped
2363 	 * into the proxy device, we need to move the doorbell
2364 	 * interrupt to its new location.
2365 	 */
2366 	if (vpe->col_idx != cpu) {
2367 		int from = vpe->col_idx;
2368 
2369 		vpe->col_idx = cpu;
2370 		its_send_vmovp(vpe);
2371 		its_vpe_db_proxy_move(vpe, from, cpu);
2372 	}
2373 
2374 	return IRQ_SET_MASK_OK_DONE;
2375 }
2376 
2377 static void its_vpe_schedule(struct its_vpe *vpe)
2378 {
2379 	void * __iomem vlpi_base = gic_data_rdist_vlpi_base();
2380 	u64 val;
2381 
2382 	/* Schedule the VPE */
2383 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
2384 		GENMASK_ULL(51, 12);
2385 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2386 	val |= GICR_VPROPBASER_RaWb;
2387 	val |= GICR_VPROPBASER_InnerShareable;
2388 	gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2389 
2390 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
2391 		GENMASK_ULL(51, 16);
2392 	val |= GICR_VPENDBASER_RaWaWb;
2393 	val |= GICR_VPENDBASER_NonShareable;
2394 	/*
2395 	 * There is no good way of finding out if the pending table is
2396 	 * empty as we can race against the doorbell interrupt very
2397 	 * easily. So in the end, vpe->pending_last is only an
2398 	 * indication that the vcpu has something pending, not one
2399 	 * that the pending table is empty. A good implementation
2400 	 * would be able to read its coarse map pretty quickly anyway,
2401 	 * making this a tolerable issue.
2402 	 */
2403 	val |= GICR_VPENDBASER_PendingLast;
2404 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
2405 	val |= GICR_VPENDBASER_Valid;
2406 	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2407 }
2408 
2409 static void its_vpe_deschedule(struct its_vpe *vpe)
2410 {
2411 	void * __iomem vlpi_base = gic_data_rdist_vlpi_base();
2412 	u32 count = 1000000;	/* 1s! */
2413 	bool clean;
2414 	u64 val;
2415 
2416 	/* We're being scheduled out */
2417 	val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2418 	val &= ~GICR_VPENDBASER_Valid;
2419 	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2420 
2421 	do {
2422 		val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2423 		clean = !(val & GICR_VPENDBASER_Dirty);
2424 		if (!clean) {
2425 			count--;
2426 			cpu_relax();
2427 			udelay(1);
2428 		}
2429 	} while (!clean && count);
2430 
2431 	if (unlikely(!clean && !count)) {
2432 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
2433 		vpe->idai = false;
2434 		vpe->pending_last = true;
2435 	} else {
2436 		vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
2437 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
2438 	}
2439 }
2440 
2441 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2442 {
2443 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2444 	struct its_cmd_info *info = vcpu_info;
2445 
2446 	switch (info->cmd_type) {
2447 	case SCHEDULE_VPE:
2448 		its_vpe_schedule(vpe);
2449 		return 0;
2450 
2451 	case DESCHEDULE_VPE:
2452 		its_vpe_deschedule(vpe);
2453 		return 0;
2454 
2455 	case INVALL_VPE:
2456 		its_send_vinvall(vpe);
2457 		return 0;
2458 
2459 	default:
2460 		return -EINVAL;
2461 	}
2462 }
2463 
2464 static void its_vpe_send_cmd(struct its_vpe *vpe,
2465 			     void (*cmd)(struct its_device *, u32))
2466 {
2467 	unsigned long flags;
2468 
2469 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2470 
2471 	its_vpe_db_proxy_map_locked(vpe);
2472 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
2473 
2474 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2475 }
2476 
2477 static void its_vpe_send_inv(struct irq_data *d)
2478 {
2479 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2480 
2481 	if (gic_rdists->has_direct_lpi) {
2482 		void __iomem *rdbase;
2483 
2484 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2485 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR);
2486 		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2487 			cpu_relax();
2488 	} else {
2489 		its_vpe_send_cmd(vpe, its_send_inv);
2490 	}
2491 }
2492 
2493 static void its_vpe_mask_irq(struct irq_data *d)
2494 {
2495 	/*
2496 	 * We need to unmask the LPI, which is described by the parent
2497 	 * irq_data. Instead of calling into the parent (which won't
2498 	 * exactly do the right thing, let's simply use the
2499 	 * parent_data pointer. Yes, I'm naughty.
2500 	 */
2501 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
2502 	its_vpe_send_inv(d);
2503 }
2504 
2505 static void its_vpe_unmask_irq(struct irq_data *d)
2506 {
2507 	/* Same hack as above... */
2508 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
2509 	its_vpe_send_inv(d);
2510 }
2511 
2512 static int its_vpe_set_irqchip_state(struct irq_data *d,
2513 				     enum irqchip_irq_state which,
2514 				     bool state)
2515 {
2516 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2517 
2518 	if (which != IRQCHIP_STATE_PENDING)
2519 		return -EINVAL;
2520 
2521 	if (gic_rdists->has_direct_lpi) {
2522 		void __iomem *rdbase;
2523 
2524 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2525 		if (state) {
2526 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
2527 		} else {
2528 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2529 			while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2530 				cpu_relax();
2531 		}
2532 	} else {
2533 		if (state)
2534 			its_vpe_send_cmd(vpe, its_send_int);
2535 		else
2536 			its_vpe_send_cmd(vpe, its_send_clear);
2537 	}
2538 
2539 	return 0;
2540 }
2541 
2542 static struct irq_chip its_vpe_irq_chip = {
2543 	.name			= "GICv4-vpe",
2544 	.irq_mask		= its_vpe_mask_irq,
2545 	.irq_unmask		= its_vpe_unmask_irq,
2546 	.irq_eoi		= irq_chip_eoi_parent,
2547 	.irq_set_affinity	= its_vpe_set_affinity,
2548 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
2549 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
2550 };
2551 
2552 static int its_vpe_id_alloc(void)
2553 {
2554 	return ida_simple_get(&its_vpeid_ida, 0, 1 << 16, GFP_KERNEL);
2555 }
2556 
2557 static void its_vpe_id_free(u16 id)
2558 {
2559 	ida_simple_remove(&its_vpeid_ida, id);
2560 }
2561 
2562 static int its_vpe_init(struct its_vpe *vpe)
2563 {
2564 	struct page *vpt_page;
2565 	int vpe_id;
2566 
2567 	/* Allocate vpe_id */
2568 	vpe_id = its_vpe_id_alloc();
2569 	if (vpe_id < 0)
2570 		return vpe_id;
2571 
2572 	/* Allocate VPT */
2573 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
2574 	if (!vpt_page) {
2575 		its_vpe_id_free(vpe_id);
2576 		return -ENOMEM;
2577 	}
2578 
2579 	if (!its_alloc_vpe_table(vpe_id)) {
2580 		its_vpe_id_free(vpe_id);
2581 		its_free_pending_table(vpe->vpt_page);
2582 		return -ENOMEM;
2583 	}
2584 
2585 	vpe->vpe_id = vpe_id;
2586 	vpe->vpt_page = vpt_page;
2587 	vpe->vpe_proxy_event = -1;
2588 
2589 	return 0;
2590 }
2591 
2592 static void its_vpe_teardown(struct its_vpe *vpe)
2593 {
2594 	its_vpe_db_proxy_unmap(vpe);
2595 	its_vpe_id_free(vpe->vpe_id);
2596 	its_free_pending_table(vpe->vpt_page);
2597 }
2598 
2599 static void its_vpe_irq_domain_free(struct irq_domain *domain,
2600 				    unsigned int virq,
2601 				    unsigned int nr_irqs)
2602 {
2603 	struct its_vm *vm = domain->host_data;
2604 	int i;
2605 
2606 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2607 
2608 	for (i = 0; i < nr_irqs; i++) {
2609 		struct irq_data *data = irq_domain_get_irq_data(domain,
2610 								virq + i);
2611 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
2612 
2613 		BUG_ON(vm != vpe->its_vm);
2614 
2615 		clear_bit(data->hwirq, vm->db_bitmap);
2616 		its_vpe_teardown(vpe);
2617 		irq_domain_reset_irq_data(data);
2618 	}
2619 
2620 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
2621 		its_lpi_free_chunks(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
2622 		its_free_prop_table(vm->vprop_page);
2623 	}
2624 }
2625 
2626 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2627 				    unsigned int nr_irqs, void *args)
2628 {
2629 	struct its_vm *vm = args;
2630 	unsigned long *bitmap;
2631 	struct page *vprop_page;
2632 	int base, nr_ids, i, err = 0;
2633 
2634 	BUG_ON(!vm);
2635 
2636 	bitmap = its_lpi_alloc_chunks(nr_irqs, &base, &nr_ids);
2637 	if (!bitmap)
2638 		return -ENOMEM;
2639 
2640 	if (nr_ids < nr_irqs) {
2641 		its_lpi_free_chunks(bitmap, base, nr_ids);
2642 		return -ENOMEM;
2643 	}
2644 
2645 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
2646 	if (!vprop_page) {
2647 		its_lpi_free_chunks(bitmap, base, nr_ids);
2648 		return -ENOMEM;
2649 	}
2650 
2651 	vm->db_bitmap = bitmap;
2652 	vm->db_lpi_base = base;
2653 	vm->nr_db_lpis = nr_ids;
2654 	vm->vprop_page = vprop_page;
2655 
2656 	for (i = 0; i < nr_irqs; i++) {
2657 		vm->vpes[i]->vpe_db_lpi = base + i;
2658 		err = its_vpe_init(vm->vpes[i]);
2659 		if (err)
2660 			break;
2661 		err = its_irq_gic_domain_alloc(domain, virq + i,
2662 					       vm->vpes[i]->vpe_db_lpi);
2663 		if (err)
2664 			break;
2665 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
2666 					      &its_vpe_irq_chip, vm->vpes[i]);
2667 		set_bit(i, bitmap);
2668 	}
2669 
2670 	if (err) {
2671 		if (i > 0)
2672 			its_vpe_irq_domain_free(domain, virq, i - 1);
2673 
2674 		its_lpi_free_chunks(bitmap, base, nr_ids);
2675 		its_free_prop_table(vprop_page);
2676 	}
2677 
2678 	return err;
2679 }
2680 
2681 static void its_vpe_irq_domain_activate(struct irq_domain *domain,
2682 					struct irq_data *d)
2683 {
2684 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2685 
2686 	/* Map the VPE to the first possible CPU */
2687 	vpe->col_idx = cpumask_first(cpu_online_mask);
2688 	its_send_vmapp(vpe, true);
2689 	its_send_vinvall(vpe);
2690 }
2691 
2692 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
2693 					  struct irq_data *d)
2694 {
2695 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2696 
2697 	its_send_vmapp(vpe, false);
2698 }
2699 
2700 static const struct irq_domain_ops its_vpe_domain_ops = {
2701 	.alloc			= its_vpe_irq_domain_alloc,
2702 	.free			= its_vpe_irq_domain_free,
2703 	.activate		= its_vpe_irq_domain_activate,
2704 	.deactivate		= its_vpe_irq_domain_deactivate,
2705 };
2706 
2707 static int its_force_quiescent(void __iomem *base)
2708 {
2709 	u32 count = 1000000;	/* 1s */
2710 	u32 val;
2711 
2712 	val = readl_relaxed(base + GITS_CTLR);
2713 	/*
2714 	 * GIC architecture specification requires the ITS to be both
2715 	 * disabled and quiescent for writes to GITS_BASER<n> or
2716 	 * GITS_CBASER to not have UNPREDICTABLE results.
2717 	 */
2718 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
2719 		return 0;
2720 
2721 	/* Disable the generation of all interrupts to this ITS */
2722 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
2723 	writel_relaxed(val, base + GITS_CTLR);
2724 
2725 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
2726 	while (1) {
2727 		val = readl_relaxed(base + GITS_CTLR);
2728 		if (val & GITS_CTLR_QUIESCENT)
2729 			return 0;
2730 
2731 		count--;
2732 		if (!count)
2733 			return -EBUSY;
2734 
2735 		cpu_relax();
2736 		udelay(1);
2737 	}
2738 }
2739 
2740 static void __maybe_unused its_enable_quirk_cavium_22375(void *data)
2741 {
2742 	struct its_node *its = data;
2743 
2744 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
2745 }
2746 
2747 static void __maybe_unused its_enable_quirk_cavium_23144(void *data)
2748 {
2749 	struct its_node *its = data;
2750 
2751 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
2752 }
2753 
2754 static void __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
2755 {
2756 	struct its_node *its = data;
2757 
2758 	/* On QDF2400, the size of the ITE is 16Bytes */
2759 	its->ite_size = 16;
2760 }
2761 
2762 static const struct gic_quirk its_quirks[] = {
2763 #ifdef CONFIG_CAVIUM_ERRATUM_22375
2764 	{
2765 		.desc	= "ITS: Cavium errata 22375, 24313",
2766 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
2767 		.mask	= 0xffff0fff,
2768 		.init	= its_enable_quirk_cavium_22375,
2769 	},
2770 #endif
2771 #ifdef CONFIG_CAVIUM_ERRATUM_23144
2772 	{
2773 		.desc	= "ITS: Cavium erratum 23144",
2774 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
2775 		.mask	= 0xffff0fff,
2776 		.init	= its_enable_quirk_cavium_23144,
2777 	},
2778 #endif
2779 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
2780 	{
2781 		.desc	= "ITS: QDF2400 erratum 0065",
2782 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
2783 		.mask	= 0xffffffff,
2784 		.init	= its_enable_quirk_qdf2400_e0065,
2785 	},
2786 #endif
2787 	{
2788 	}
2789 };
2790 
2791 static void its_enable_quirks(struct its_node *its)
2792 {
2793 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
2794 
2795 	gic_enable_quirks(iidr, its_quirks, its);
2796 }
2797 
2798 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
2799 {
2800 	struct irq_domain *inner_domain;
2801 	struct msi_domain_info *info;
2802 
2803 	info = kzalloc(sizeof(*info), GFP_KERNEL);
2804 	if (!info)
2805 		return -ENOMEM;
2806 
2807 	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
2808 	if (!inner_domain) {
2809 		kfree(info);
2810 		return -ENOMEM;
2811 	}
2812 
2813 	inner_domain->parent = its_parent;
2814 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
2815 	inner_domain->flags |= IRQ_DOMAIN_FLAG_MSI_REMAP;
2816 	info->ops = &its_msi_domain_ops;
2817 	info->data = its;
2818 	inner_domain->host_data = info;
2819 
2820 	return 0;
2821 }
2822 
2823 static int its_init_vpe_domain(void)
2824 {
2825 	struct its_node *its;
2826 	u32 devid;
2827 	int entries;
2828 
2829 	if (gic_rdists->has_direct_lpi) {
2830 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
2831 		return 0;
2832 	}
2833 
2834 	/* Any ITS will do, even if not v4 */
2835 	its = list_first_entry(&its_nodes, struct its_node, entry);
2836 
2837 	entries = roundup_pow_of_two(nr_cpu_ids);
2838 	vpe_proxy.vpes = kzalloc(sizeof(*vpe_proxy.vpes) * entries,
2839 				 GFP_KERNEL);
2840 	if (!vpe_proxy.vpes) {
2841 		pr_err("ITS: Can't allocate GICv4 proxy device array\n");
2842 		return -ENOMEM;
2843 	}
2844 
2845 	/* Use the last possible DevID */
2846 	devid = GENMASK(its->device_ids - 1, 0);
2847 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
2848 	if (!vpe_proxy.dev) {
2849 		kfree(vpe_proxy.vpes);
2850 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
2851 		return -ENOMEM;
2852 	}
2853 
2854 	BUG_ON(entries != vpe_proxy.dev->nr_ites);
2855 
2856 	raw_spin_lock_init(&vpe_proxy.lock);
2857 	vpe_proxy.next_victim = 0;
2858 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
2859 		devid, vpe_proxy.dev->nr_ites);
2860 
2861 	return 0;
2862 }
2863 
2864 static int __init its_compute_its_list_map(struct resource *res,
2865 					   void __iomem *its_base)
2866 {
2867 	int its_number;
2868 	u32 ctlr;
2869 
2870 	/*
2871 	 * This is assumed to be done early enough that we're
2872 	 * guaranteed to be single-threaded, hence no
2873 	 * locking. Should this change, we should address
2874 	 * this.
2875 	 */
2876 	its_number = find_first_zero_bit(&its_list_map, ITS_LIST_MAX);
2877 	if (its_number >= ITS_LIST_MAX) {
2878 		pr_err("ITS@%pa: No ITSList entry available!\n",
2879 		       &res->start);
2880 		return -EINVAL;
2881 	}
2882 
2883 	ctlr = readl_relaxed(its_base + GITS_CTLR);
2884 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
2885 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
2886 	writel_relaxed(ctlr, its_base + GITS_CTLR);
2887 	ctlr = readl_relaxed(its_base + GITS_CTLR);
2888 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
2889 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
2890 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
2891 	}
2892 
2893 	if (test_and_set_bit(its_number, &its_list_map)) {
2894 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
2895 		       &res->start, its_number);
2896 		return -EINVAL;
2897 	}
2898 
2899 	return its_number;
2900 }
2901 
2902 static int __init its_probe_one(struct resource *res,
2903 				struct fwnode_handle *handle, int numa_node)
2904 {
2905 	struct its_node *its;
2906 	void __iomem *its_base;
2907 	u32 val, ctlr;
2908 	u64 baser, tmp, typer;
2909 	int err;
2910 
2911 	its_base = ioremap(res->start, resource_size(res));
2912 	if (!its_base) {
2913 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
2914 		return -ENOMEM;
2915 	}
2916 
2917 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
2918 	if (val != 0x30 && val != 0x40) {
2919 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
2920 		err = -ENODEV;
2921 		goto out_unmap;
2922 	}
2923 
2924 	err = its_force_quiescent(its_base);
2925 	if (err) {
2926 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
2927 		goto out_unmap;
2928 	}
2929 
2930 	pr_info("ITS %pR\n", res);
2931 
2932 	its = kzalloc(sizeof(*its), GFP_KERNEL);
2933 	if (!its) {
2934 		err = -ENOMEM;
2935 		goto out_unmap;
2936 	}
2937 
2938 	raw_spin_lock_init(&its->lock);
2939 	INIT_LIST_HEAD(&its->entry);
2940 	INIT_LIST_HEAD(&its->its_device_list);
2941 	typer = gic_read_typer(its_base + GITS_TYPER);
2942 	its->base = its_base;
2943 	its->phys_base = res->start;
2944 	its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer);
2945 	its->is_v4 = !!(typer & GITS_TYPER_VLPIS);
2946 	if (its->is_v4) {
2947 		if (!(typer & GITS_TYPER_VMOVP)) {
2948 			err = its_compute_its_list_map(res, its_base);
2949 			if (err < 0)
2950 				goto out_free_its;
2951 
2952 			pr_info("ITS@%pa: Using ITS number %d\n",
2953 				&res->start, err);
2954 		} else {
2955 			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
2956 		}
2957 	}
2958 
2959 	its->numa_node = numa_node;
2960 
2961 	its->cmd_base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2962 						get_order(ITS_CMD_QUEUE_SZ));
2963 	if (!its->cmd_base) {
2964 		err = -ENOMEM;
2965 		goto out_free_its;
2966 	}
2967 	its->cmd_write = its->cmd_base;
2968 
2969 	its_enable_quirks(its);
2970 
2971 	err = its_alloc_tables(its);
2972 	if (err)
2973 		goto out_free_cmd;
2974 
2975 	err = its_alloc_collections(its);
2976 	if (err)
2977 		goto out_free_tables;
2978 
2979 	baser = (virt_to_phys(its->cmd_base)	|
2980 		 GITS_CBASER_RaWaWb		|
2981 		 GITS_CBASER_InnerShareable	|
2982 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
2983 		 GITS_CBASER_VALID);
2984 
2985 	gits_write_cbaser(baser, its->base + GITS_CBASER);
2986 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
2987 
2988 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
2989 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
2990 			/*
2991 			 * The HW reports non-shareable, we must
2992 			 * remove the cacheability attributes as
2993 			 * well.
2994 			 */
2995 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
2996 				   GITS_CBASER_CACHEABILITY_MASK);
2997 			baser |= GITS_CBASER_nC;
2998 			gits_write_cbaser(baser, its->base + GITS_CBASER);
2999 		}
3000 		pr_info("ITS: using cache flushing for cmd queue\n");
3001 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
3002 	}
3003 
3004 	gits_write_cwriter(0, its->base + GITS_CWRITER);
3005 	ctlr = readl_relaxed(its->base + GITS_CTLR);
3006 	ctlr |= GITS_CTLR_ENABLE;
3007 	if (its->is_v4)
3008 		ctlr |= GITS_CTLR_ImDe;
3009 	writel_relaxed(ctlr, its->base + GITS_CTLR);
3010 
3011 	err = its_init_domain(handle, its);
3012 	if (err)
3013 		goto out_free_tables;
3014 
3015 	spin_lock(&its_lock);
3016 	list_add(&its->entry, &its_nodes);
3017 	spin_unlock(&its_lock);
3018 
3019 	return 0;
3020 
3021 out_free_tables:
3022 	its_free_tables(its);
3023 out_free_cmd:
3024 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
3025 out_free_its:
3026 	kfree(its);
3027 out_unmap:
3028 	iounmap(its_base);
3029 	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
3030 	return err;
3031 }
3032 
3033 static bool gic_rdists_supports_plpis(void)
3034 {
3035 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
3036 }
3037 
3038 int its_cpu_init(void)
3039 {
3040 	if (!list_empty(&its_nodes)) {
3041 		if (!gic_rdists_supports_plpis()) {
3042 			pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
3043 			return -ENXIO;
3044 		}
3045 		its_cpu_init_lpis();
3046 		its_cpu_init_collection();
3047 	}
3048 
3049 	return 0;
3050 }
3051 
3052 static const struct of_device_id its_device_id[] = {
3053 	{	.compatible	= "arm,gic-v3-its",	},
3054 	{},
3055 };
3056 
3057 static int __init its_of_probe(struct device_node *node)
3058 {
3059 	struct device_node *np;
3060 	struct resource res;
3061 
3062 	for (np = of_find_matching_node(node, its_device_id); np;
3063 	     np = of_find_matching_node(np, its_device_id)) {
3064 		if (!of_property_read_bool(np, "msi-controller")) {
3065 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
3066 				np);
3067 			continue;
3068 		}
3069 
3070 		if (of_address_to_resource(np, 0, &res)) {
3071 			pr_warn("%pOF: no regs?\n", np);
3072 			continue;
3073 		}
3074 
3075 		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
3076 	}
3077 	return 0;
3078 }
3079 
3080 #ifdef CONFIG_ACPI
3081 
3082 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
3083 
3084 #ifdef CONFIG_ACPI_NUMA
3085 struct its_srat_map {
3086 	/* numa node id */
3087 	u32	numa_node;
3088 	/* GIC ITS ID */
3089 	u32	its_id;
3090 };
3091 
3092 static struct its_srat_map *its_srat_maps __initdata;
3093 static int its_in_srat __initdata;
3094 
3095 static int __init acpi_get_its_numa_node(u32 its_id)
3096 {
3097 	int i;
3098 
3099 	for (i = 0; i < its_in_srat; i++) {
3100 		if (its_id == its_srat_maps[i].its_id)
3101 			return its_srat_maps[i].numa_node;
3102 	}
3103 	return NUMA_NO_NODE;
3104 }
3105 
3106 static int __init gic_acpi_match_srat_its(struct acpi_subtable_header *header,
3107 					  const unsigned long end)
3108 {
3109 	return 0;
3110 }
3111 
3112 static int __init gic_acpi_parse_srat_its(struct acpi_subtable_header *header,
3113 			 const unsigned long end)
3114 {
3115 	int node;
3116 	struct acpi_srat_gic_its_affinity *its_affinity;
3117 
3118 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
3119 	if (!its_affinity)
3120 		return -EINVAL;
3121 
3122 	if (its_affinity->header.length < sizeof(*its_affinity)) {
3123 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
3124 			its_affinity->header.length);
3125 		return -EINVAL;
3126 	}
3127 
3128 	node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
3129 
3130 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
3131 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
3132 		return 0;
3133 	}
3134 
3135 	its_srat_maps[its_in_srat].numa_node = node;
3136 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
3137 	its_in_srat++;
3138 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
3139 		its_affinity->proximity_domain, its_affinity->its_id, node);
3140 
3141 	return 0;
3142 }
3143 
3144 static void __init acpi_table_parse_srat_its(void)
3145 {
3146 	int count;
3147 
3148 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
3149 			sizeof(struct acpi_table_srat),
3150 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3151 			gic_acpi_match_srat_its, 0);
3152 	if (count <= 0)
3153 		return;
3154 
3155 	its_srat_maps = kmalloc(count * sizeof(struct its_srat_map),
3156 				GFP_KERNEL);
3157 	if (!its_srat_maps) {
3158 		pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
3159 		return;
3160 	}
3161 
3162 	acpi_table_parse_entries(ACPI_SIG_SRAT,
3163 			sizeof(struct acpi_table_srat),
3164 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3165 			gic_acpi_parse_srat_its, 0);
3166 }
3167 
3168 /* free the its_srat_maps after ITS probing */
3169 static void __init acpi_its_srat_maps_free(void)
3170 {
3171 	kfree(its_srat_maps);
3172 }
3173 #else
3174 static void __init acpi_table_parse_srat_its(void)	{ }
3175 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
3176 static void __init acpi_its_srat_maps_free(void) { }
3177 #endif
3178 
3179 static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header,
3180 					  const unsigned long end)
3181 {
3182 	struct acpi_madt_generic_translator *its_entry;
3183 	struct fwnode_handle *dom_handle;
3184 	struct resource res;
3185 	int err;
3186 
3187 	its_entry = (struct acpi_madt_generic_translator *)header;
3188 	memset(&res, 0, sizeof(res));
3189 	res.start = its_entry->base_address;
3190 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
3191 	res.flags = IORESOURCE_MEM;
3192 
3193 	dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address);
3194 	if (!dom_handle) {
3195 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
3196 		       &res.start);
3197 		return -ENOMEM;
3198 	}
3199 
3200 	err = iort_register_domain_token(its_entry->translation_id, dom_handle);
3201 	if (err) {
3202 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
3203 		       &res.start, its_entry->translation_id);
3204 		goto dom_err;
3205 	}
3206 
3207 	err = its_probe_one(&res, dom_handle,
3208 			acpi_get_its_numa_node(its_entry->translation_id));
3209 	if (!err)
3210 		return 0;
3211 
3212 	iort_deregister_domain_token(its_entry->translation_id);
3213 dom_err:
3214 	irq_domain_free_fwnode(dom_handle);
3215 	return err;
3216 }
3217 
3218 static void __init its_acpi_probe(void)
3219 {
3220 	acpi_table_parse_srat_its();
3221 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
3222 			      gic_acpi_parse_madt_its, 0);
3223 	acpi_its_srat_maps_free();
3224 }
3225 #else
3226 static void __init its_acpi_probe(void) { }
3227 #endif
3228 
3229 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
3230 		    struct irq_domain *parent_domain)
3231 {
3232 	struct device_node *of_node;
3233 	struct its_node *its;
3234 	bool has_v4 = false;
3235 	int err;
3236 
3237 	its_parent = parent_domain;
3238 	of_node = to_of_node(handle);
3239 	if (of_node)
3240 		its_of_probe(of_node);
3241 	else
3242 		its_acpi_probe();
3243 
3244 	if (list_empty(&its_nodes)) {
3245 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
3246 		return -ENXIO;
3247 	}
3248 
3249 	gic_rdists = rdists;
3250 	err = its_alloc_lpi_tables();
3251 	if (err)
3252 		return err;
3253 
3254 	list_for_each_entry(its, &its_nodes, entry)
3255 		has_v4 |= its->is_v4;
3256 
3257 	if (has_v4 & rdists->has_vlpis) {
3258 		if (its_init_vpe_domain() ||
3259 		    its_init_v4(parent_domain, &its_vpe_domain_ops)) {
3260 			rdists->has_vlpis = false;
3261 			pr_err("ITS: Disabling GICv4 support\n");
3262 		}
3263 	}
3264 
3265 	return 0;
3266 }
3267