1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/acpi_iort.h> 9 #include <linux/bitfield.h> 10 #include <linux/bitmap.h> 11 #include <linux/cpu.h> 12 #include <linux/crash_dump.h> 13 #include <linux/delay.h> 14 #include <linux/efi.h> 15 #include <linux/interrupt.h> 16 #include <linux/iommu.h> 17 #include <linux/iopoll.h> 18 #include <linux/irqdomain.h> 19 #include <linux/list.h> 20 #include <linux/log2.h> 21 #include <linux/memblock.h> 22 #include <linux/mm.h> 23 #include <linux/msi.h> 24 #include <linux/of.h> 25 #include <linux/of_address.h> 26 #include <linux/of_irq.h> 27 #include <linux/of_pci.h> 28 #include <linux/of_platform.h> 29 #include <linux/percpu.h> 30 #include <linux/slab.h> 31 #include <linux/syscore_ops.h> 32 33 #include <linux/irqchip.h> 34 #include <linux/irqchip/arm-gic-v3.h> 35 #include <linux/irqchip/arm-gic-v4.h> 36 37 #include <asm/cputype.h> 38 #include <asm/exception.h> 39 40 #include "irq-gic-common.h" 41 42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) 43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) 44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) 45 #define ITS_FLAGS_FORCE_NON_SHAREABLE (1ULL << 3) 46 47 #define RD_LOCAL_LPI_ENABLED BIT(0) 48 #define RD_LOCAL_PENDTABLE_PREALLOCATED BIT(1) 49 #define RD_LOCAL_MEMRESERVE_DONE BIT(2) 50 51 static u32 lpi_id_bits; 52 53 /* 54 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to 55 * deal with (one configuration byte per interrupt). PENDBASE has to 56 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). 57 */ 58 #define LPI_NRBITS lpi_id_bits 59 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K) 60 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) 61 62 #define LPI_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI 63 64 /* 65 * Collection structure - just an ID, and a redistributor address to 66 * ping. We use one per CPU as a bag of interrupts assigned to this 67 * CPU. 68 */ 69 struct its_collection { 70 u64 target_address; 71 u16 col_id; 72 }; 73 74 /* 75 * The ITS_BASER structure - contains memory information, cached 76 * value of BASER register configuration and ITS page size. 77 */ 78 struct its_baser { 79 void *base; 80 u64 val; 81 u32 order; 82 u32 psz; 83 }; 84 85 struct its_device; 86 87 /* 88 * The ITS structure - contains most of the infrastructure, with the 89 * top-level MSI domain, the command queue, the collections, and the 90 * list of devices writing to it. 91 * 92 * dev_alloc_lock has to be taken for device allocations, while the 93 * spinlock must be taken to parse data structures such as the device 94 * list. 95 */ 96 struct its_node { 97 raw_spinlock_t lock; 98 struct mutex dev_alloc_lock; 99 struct list_head entry; 100 void __iomem *base; 101 void __iomem *sgir_base; 102 phys_addr_t phys_base; 103 struct its_cmd_block *cmd_base; 104 struct its_cmd_block *cmd_write; 105 struct its_baser tables[GITS_BASER_NR_REGS]; 106 struct its_collection *collections; 107 struct fwnode_handle *fwnode_handle; 108 u64 (*get_msi_base)(struct its_device *its_dev); 109 u64 typer; 110 u64 cbaser_save; 111 u32 ctlr_save; 112 u32 mpidr; 113 struct list_head its_device_list; 114 u64 flags; 115 unsigned long list_nr; 116 int numa_node; 117 unsigned int msi_domain_flags; 118 u32 pre_its_base; /* for Socionext Synquacer */ 119 int vlpi_redist_offset; 120 }; 121 122 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS)) 123 #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP)) 124 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1) 125 126 #define ITS_ITT_ALIGN SZ_256 127 128 /* The maximum number of VPEID bits supported by VLPI commands */ 129 #define ITS_MAX_VPEID_BITS \ 130 ({ \ 131 int nvpeid = 16; \ 132 if (gic_rdists->has_rvpeid && \ 133 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \ 134 nvpeid = 1 + (gic_rdists->gicd_typer2 & \ 135 GICD_TYPER2_VID); \ 136 \ 137 nvpeid; \ 138 }) 139 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS)) 140 141 /* Convert page order to size in bytes */ 142 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) 143 144 struct event_lpi_map { 145 unsigned long *lpi_map; 146 u16 *col_map; 147 irq_hw_number_t lpi_base; 148 int nr_lpis; 149 raw_spinlock_t vlpi_lock; 150 struct its_vm *vm; 151 struct its_vlpi_map *vlpi_maps; 152 int nr_vlpis; 153 }; 154 155 /* 156 * The ITS view of a device - belongs to an ITS, owns an interrupt 157 * translation table, and a list of interrupts. If it some of its 158 * LPIs are injected into a guest (GICv4), the event_map.vm field 159 * indicates which one. 160 */ 161 struct its_device { 162 struct list_head entry; 163 struct its_node *its; 164 struct event_lpi_map event_map; 165 void *itt; 166 u32 nr_ites; 167 u32 device_id; 168 bool shared; 169 }; 170 171 static struct { 172 raw_spinlock_t lock; 173 struct its_device *dev; 174 struct its_vpe **vpes; 175 int next_victim; 176 } vpe_proxy; 177 178 struct cpu_lpi_count { 179 atomic_t managed; 180 atomic_t unmanaged; 181 }; 182 183 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count); 184 185 static LIST_HEAD(its_nodes); 186 static DEFINE_RAW_SPINLOCK(its_lock); 187 static struct rdists *gic_rdists; 188 static struct irq_domain *its_parent; 189 190 static unsigned long its_list_map; 191 static u16 vmovp_seq_num; 192 static DEFINE_RAW_SPINLOCK(vmovp_lock); 193 194 static DEFINE_IDA(its_vpeid_ida); 195 196 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) 197 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu)) 198 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 199 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K) 200 201 /* 202 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we 203 * always have vSGIs mapped. 204 */ 205 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its) 206 { 207 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]); 208 } 209 210 static u16 get_its_list(struct its_vm *vm) 211 { 212 struct its_node *its; 213 unsigned long its_list = 0; 214 215 list_for_each_entry(its, &its_nodes, entry) { 216 if (!is_v4(its)) 217 continue; 218 219 if (require_its_list_vmovp(vm, its)) 220 __set_bit(its->list_nr, &its_list); 221 } 222 223 return (u16)its_list; 224 } 225 226 static inline u32 its_get_event_id(struct irq_data *d) 227 { 228 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 229 return d->hwirq - its_dev->event_map.lpi_base; 230 } 231 232 static struct its_collection *dev_event_to_col(struct its_device *its_dev, 233 u32 event) 234 { 235 struct its_node *its = its_dev->its; 236 237 return its->collections + its_dev->event_map.col_map[event]; 238 } 239 240 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev, 241 u32 event) 242 { 243 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis)) 244 return NULL; 245 246 return &its_dev->event_map.vlpi_maps[event]; 247 } 248 249 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d) 250 { 251 if (irqd_is_forwarded_to_vcpu(d)) { 252 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 253 u32 event = its_get_event_id(d); 254 255 return dev_event_to_vlpi_map(its_dev, event); 256 } 257 258 return NULL; 259 } 260 261 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags) 262 { 263 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags); 264 return vpe->col_idx; 265 } 266 267 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags) 268 { 269 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 270 } 271 272 static struct irq_chip its_vpe_irq_chip; 273 274 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags) 275 { 276 struct its_vpe *vpe = NULL; 277 int cpu; 278 279 if (d->chip == &its_vpe_irq_chip) { 280 vpe = irq_data_get_irq_chip_data(d); 281 } else { 282 struct its_vlpi_map *map = get_vlpi_map(d); 283 if (map) 284 vpe = map->vpe; 285 } 286 287 if (vpe) { 288 cpu = vpe_to_cpuid_lock(vpe, flags); 289 } else { 290 /* Physical LPIs are already locked via the irq_desc lock */ 291 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 292 cpu = its_dev->event_map.col_map[its_get_event_id(d)]; 293 /* Keep GCC quiet... */ 294 *flags = 0; 295 } 296 297 return cpu; 298 } 299 300 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags) 301 { 302 struct its_vpe *vpe = NULL; 303 304 if (d->chip == &its_vpe_irq_chip) { 305 vpe = irq_data_get_irq_chip_data(d); 306 } else { 307 struct its_vlpi_map *map = get_vlpi_map(d); 308 if (map) 309 vpe = map->vpe; 310 } 311 312 if (vpe) 313 vpe_to_cpuid_unlock(vpe, flags); 314 } 315 316 static struct its_collection *valid_col(struct its_collection *col) 317 { 318 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0))) 319 return NULL; 320 321 return col; 322 } 323 324 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe) 325 { 326 if (valid_col(its->collections + vpe->col_idx)) 327 return vpe; 328 329 return NULL; 330 } 331 332 /* 333 * ITS command descriptors - parameters to be encoded in a command 334 * block. 335 */ 336 struct its_cmd_desc { 337 union { 338 struct { 339 struct its_device *dev; 340 u32 event_id; 341 } its_inv_cmd; 342 343 struct { 344 struct its_device *dev; 345 u32 event_id; 346 } its_clear_cmd; 347 348 struct { 349 struct its_device *dev; 350 u32 event_id; 351 } its_int_cmd; 352 353 struct { 354 struct its_device *dev; 355 int valid; 356 } its_mapd_cmd; 357 358 struct { 359 struct its_collection *col; 360 int valid; 361 } its_mapc_cmd; 362 363 struct { 364 struct its_device *dev; 365 u32 phys_id; 366 u32 event_id; 367 } its_mapti_cmd; 368 369 struct { 370 struct its_device *dev; 371 struct its_collection *col; 372 u32 event_id; 373 } its_movi_cmd; 374 375 struct { 376 struct its_device *dev; 377 u32 event_id; 378 } its_discard_cmd; 379 380 struct { 381 struct its_collection *col; 382 } its_invall_cmd; 383 384 struct { 385 struct its_vpe *vpe; 386 } its_vinvall_cmd; 387 388 struct { 389 struct its_vpe *vpe; 390 struct its_collection *col; 391 bool valid; 392 } its_vmapp_cmd; 393 394 struct { 395 struct its_vpe *vpe; 396 struct its_device *dev; 397 u32 virt_id; 398 u32 event_id; 399 bool db_enabled; 400 } its_vmapti_cmd; 401 402 struct { 403 struct its_vpe *vpe; 404 struct its_device *dev; 405 u32 event_id; 406 bool db_enabled; 407 } its_vmovi_cmd; 408 409 struct { 410 struct its_vpe *vpe; 411 struct its_collection *col; 412 u16 seq_num; 413 u16 its_list; 414 } its_vmovp_cmd; 415 416 struct { 417 struct its_vpe *vpe; 418 } its_invdb_cmd; 419 420 struct { 421 struct its_vpe *vpe; 422 u8 sgi; 423 u8 priority; 424 bool enable; 425 bool group; 426 bool clear; 427 } its_vsgi_cmd; 428 }; 429 }; 430 431 /* 432 * The ITS command block, which is what the ITS actually parses. 433 */ 434 struct its_cmd_block { 435 union { 436 u64 raw_cmd[4]; 437 __le64 raw_cmd_le[4]; 438 }; 439 }; 440 441 #define ITS_CMD_QUEUE_SZ SZ_64K 442 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) 443 444 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *, 445 struct its_cmd_block *, 446 struct its_cmd_desc *); 447 448 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *, 449 struct its_cmd_block *, 450 struct its_cmd_desc *); 451 452 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) 453 { 454 u64 mask = GENMASK_ULL(h, l); 455 *raw_cmd &= ~mask; 456 *raw_cmd |= (val << l) & mask; 457 } 458 459 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) 460 { 461 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); 462 } 463 464 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) 465 { 466 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); 467 } 468 469 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) 470 { 471 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); 472 } 473 474 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) 475 { 476 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); 477 } 478 479 static void its_encode_size(struct its_cmd_block *cmd, u8 size) 480 { 481 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); 482 } 483 484 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) 485 { 486 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); 487 } 488 489 static void its_encode_valid(struct its_cmd_block *cmd, int valid) 490 { 491 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); 492 } 493 494 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) 495 { 496 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); 497 } 498 499 static void its_encode_collection(struct its_cmd_block *cmd, u16 col) 500 { 501 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); 502 } 503 504 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) 505 { 506 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); 507 } 508 509 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) 510 { 511 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); 512 } 513 514 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) 515 { 516 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); 517 } 518 519 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) 520 { 521 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); 522 } 523 524 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) 525 { 526 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); 527 } 528 529 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) 530 { 531 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); 532 } 533 534 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) 535 { 536 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); 537 } 538 539 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) 540 { 541 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); 542 } 543 544 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa) 545 { 546 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16); 547 } 548 549 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc) 550 { 551 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8); 552 } 553 554 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz) 555 { 556 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9); 557 } 558 559 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd, 560 u32 vpe_db_lpi) 561 { 562 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0); 563 } 564 565 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd, 566 u32 vpe_db_lpi) 567 { 568 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0); 569 } 570 571 static void its_encode_db(struct its_cmd_block *cmd, bool db) 572 { 573 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63); 574 } 575 576 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi) 577 { 578 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32); 579 } 580 581 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio) 582 { 583 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20); 584 } 585 586 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp) 587 { 588 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10); 589 } 590 591 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr) 592 { 593 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9); 594 } 595 596 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en) 597 { 598 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8); 599 } 600 601 static inline void its_fixup_cmd(struct its_cmd_block *cmd) 602 { 603 /* Let's fixup BE commands */ 604 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]); 605 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]); 606 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]); 607 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]); 608 } 609 610 static struct its_collection *its_build_mapd_cmd(struct its_node *its, 611 struct its_cmd_block *cmd, 612 struct its_cmd_desc *desc) 613 { 614 unsigned long itt_addr; 615 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); 616 617 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); 618 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); 619 620 its_encode_cmd(cmd, GITS_CMD_MAPD); 621 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); 622 its_encode_size(cmd, size - 1); 623 its_encode_itt(cmd, itt_addr); 624 its_encode_valid(cmd, desc->its_mapd_cmd.valid); 625 626 its_fixup_cmd(cmd); 627 628 return NULL; 629 } 630 631 static struct its_collection *its_build_mapc_cmd(struct its_node *its, 632 struct its_cmd_block *cmd, 633 struct its_cmd_desc *desc) 634 { 635 its_encode_cmd(cmd, GITS_CMD_MAPC); 636 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 637 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); 638 its_encode_valid(cmd, desc->its_mapc_cmd.valid); 639 640 its_fixup_cmd(cmd); 641 642 return desc->its_mapc_cmd.col; 643 } 644 645 static struct its_collection *its_build_mapti_cmd(struct its_node *its, 646 struct its_cmd_block *cmd, 647 struct its_cmd_desc *desc) 648 { 649 struct its_collection *col; 650 651 col = dev_event_to_col(desc->its_mapti_cmd.dev, 652 desc->its_mapti_cmd.event_id); 653 654 its_encode_cmd(cmd, GITS_CMD_MAPTI); 655 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); 656 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); 657 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); 658 its_encode_collection(cmd, col->col_id); 659 660 its_fixup_cmd(cmd); 661 662 return valid_col(col); 663 } 664 665 static struct its_collection *its_build_movi_cmd(struct its_node *its, 666 struct its_cmd_block *cmd, 667 struct its_cmd_desc *desc) 668 { 669 struct its_collection *col; 670 671 col = dev_event_to_col(desc->its_movi_cmd.dev, 672 desc->its_movi_cmd.event_id); 673 674 its_encode_cmd(cmd, GITS_CMD_MOVI); 675 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); 676 its_encode_event_id(cmd, desc->its_movi_cmd.event_id); 677 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); 678 679 its_fixup_cmd(cmd); 680 681 return valid_col(col); 682 } 683 684 static struct its_collection *its_build_discard_cmd(struct its_node *its, 685 struct its_cmd_block *cmd, 686 struct its_cmd_desc *desc) 687 { 688 struct its_collection *col; 689 690 col = dev_event_to_col(desc->its_discard_cmd.dev, 691 desc->its_discard_cmd.event_id); 692 693 its_encode_cmd(cmd, GITS_CMD_DISCARD); 694 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); 695 its_encode_event_id(cmd, desc->its_discard_cmd.event_id); 696 697 its_fixup_cmd(cmd); 698 699 return valid_col(col); 700 } 701 702 static struct its_collection *its_build_inv_cmd(struct its_node *its, 703 struct its_cmd_block *cmd, 704 struct its_cmd_desc *desc) 705 { 706 struct its_collection *col; 707 708 col = dev_event_to_col(desc->its_inv_cmd.dev, 709 desc->its_inv_cmd.event_id); 710 711 its_encode_cmd(cmd, GITS_CMD_INV); 712 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 713 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 714 715 its_fixup_cmd(cmd); 716 717 return valid_col(col); 718 } 719 720 static struct its_collection *its_build_int_cmd(struct its_node *its, 721 struct its_cmd_block *cmd, 722 struct its_cmd_desc *desc) 723 { 724 struct its_collection *col; 725 726 col = dev_event_to_col(desc->its_int_cmd.dev, 727 desc->its_int_cmd.event_id); 728 729 its_encode_cmd(cmd, GITS_CMD_INT); 730 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 731 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 732 733 its_fixup_cmd(cmd); 734 735 return valid_col(col); 736 } 737 738 static struct its_collection *its_build_clear_cmd(struct its_node *its, 739 struct its_cmd_block *cmd, 740 struct its_cmd_desc *desc) 741 { 742 struct its_collection *col; 743 744 col = dev_event_to_col(desc->its_clear_cmd.dev, 745 desc->its_clear_cmd.event_id); 746 747 its_encode_cmd(cmd, GITS_CMD_CLEAR); 748 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 749 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 750 751 its_fixup_cmd(cmd); 752 753 return valid_col(col); 754 } 755 756 static struct its_collection *its_build_invall_cmd(struct its_node *its, 757 struct its_cmd_block *cmd, 758 struct its_cmd_desc *desc) 759 { 760 its_encode_cmd(cmd, GITS_CMD_INVALL); 761 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id); 762 763 its_fixup_cmd(cmd); 764 765 return desc->its_invall_cmd.col; 766 } 767 768 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its, 769 struct its_cmd_block *cmd, 770 struct its_cmd_desc *desc) 771 { 772 its_encode_cmd(cmd, GITS_CMD_VINVALL); 773 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); 774 775 its_fixup_cmd(cmd); 776 777 return valid_vpe(its, desc->its_vinvall_cmd.vpe); 778 } 779 780 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its, 781 struct its_cmd_block *cmd, 782 struct its_cmd_desc *desc) 783 { 784 unsigned long vpt_addr, vconf_addr; 785 u64 target; 786 bool alloc; 787 788 its_encode_cmd(cmd, GITS_CMD_VMAPP); 789 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); 790 its_encode_valid(cmd, desc->its_vmapp_cmd.valid); 791 792 if (!desc->its_vmapp_cmd.valid) { 793 if (is_v4_1(its)) { 794 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count); 795 its_encode_alloc(cmd, alloc); 796 } 797 798 goto out; 799 } 800 801 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); 802 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset; 803 804 its_encode_target(cmd, target); 805 its_encode_vpt_addr(cmd, vpt_addr); 806 its_encode_vpt_size(cmd, LPI_NRBITS - 1); 807 808 if (!is_v4_1(its)) 809 goto out; 810 811 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page)); 812 813 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count); 814 815 its_encode_alloc(cmd, alloc); 816 817 /* 818 * GICv4.1 provides a way to get the VLPI state, which needs the vPE 819 * to be unmapped first, and in this case, we may remap the vPE 820 * back while the VPT is not empty. So we can't assume that the 821 * VPT is empty on map. This is why we never advertise PTZ. 822 */ 823 its_encode_ptz(cmd, false); 824 its_encode_vconf_addr(cmd, vconf_addr); 825 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi); 826 827 out: 828 its_fixup_cmd(cmd); 829 830 return valid_vpe(its, desc->its_vmapp_cmd.vpe); 831 } 832 833 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its, 834 struct its_cmd_block *cmd, 835 struct its_cmd_desc *desc) 836 { 837 u32 db; 838 839 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled) 840 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; 841 else 842 db = 1023; 843 844 its_encode_cmd(cmd, GITS_CMD_VMAPTI); 845 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); 846 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); 847 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); 848 its_encode_db_phys_id(cmd, db); 849 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); 850 851 its_fixup_cmd(cmd); 852 853 return valid_vpe(its, desc->its_vmapti_cmd.vpe); 854 } 855 856 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its, 857 struct its_cmd_block *cmd, 858 struct its_cmd_desc *desc) 859 { 860 u32 db; 861 862 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled) 863 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; 864 else 865 db = 1023; 866 867 its_encode_cmd(cmd, GITS_CMD_VMOVI); 868 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); 869 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); 870 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); 871 its_encode_db_phys_id(cmd, db); 872 its_encode_db_valid(cmd, true); 873 874 its_fixup_cmd(cmd); 875 876 return valid_vpe(its, desc->its_vmovi_cmd.vpe); 877 } 878 879 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its, 880 struct its_cmd_block *cmd, 881 struct its_cmd_desc *desc) 882 { 883 u64 target; 884 885 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset; 886 its_encode_cmd(cmd, GITS_CMD_VMOVP); 887 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); 888 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); 889 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); 890 its_encode_target(cmd, target); 891 892 if (is_v4_1(its)) { 893 its_encode_db(cmd, true); 894 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi); 895 } 896 897 its_fixup_cmd(cmd); 898 899 return valid_vpe(its, desc->its_vmovp_cmd.vpe); 900 } 901 902 static struct its_vpe *its_build_vinv_cmd(struct its_node *its, 903 struct its_cmd_block *cmd, 904 struct its_cmd_desc *desc) 905 { 906 struct its_vlpi_map *map; 907 908 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev, 909 desc->its_inv_cmd.event_id); 910 911 its_encode_cmd(cmd, GITS_CMD_INV); 912 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 913 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 914 915 its_fixup_cmd(cmd); 916 917 return valid_vpe(its, map->vpe); 918 } 919 920 static struct its_vpe *its_build_vint_cmd(struct its_node *its, 921 struct its_cmd_block *cmd, 922 struct its_cmd_desc *desc) 923 { 924 struct its_vlpi_map *map; 925 926 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev, 927 desc->its_int_cmd.event_id); 928 929 its_encode_cmd(cmd, GITS_CMD_INT); 930 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 931 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 932 933 its_fixup_cmd(cmd); 934 935 return valid_vpe(its, map->vpe); 936 } 937 938 static struct its_vpe *its_build_vclear_cmd(struct its_node *its, 939 struct its_cmd_block *cmd, 940 struct its_cmd_desc *desc) 941 { 942 struct its_vlpi_map *map; 943 944 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev, 945 desc->its_clear_cmd.event_id); 946 947 its_encode_cmd(cmd, GITS_CMD_CLEAR); 948 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 949 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 950 951 its_fixup_cmd(cmd); 952 953 return valid_vpe(its, map->vpe); 954 } 955 956 static struct its_vpe *its_build_invdb_cmd(struct its_node *its, 957 struct its_cmd_block *cmd, 958 struct its_cmd_desc *desc) 959 { 960 if (WARN_ON(!is_v4_1(its))) 961 return NULL; 962 963 its_encode_cmd(cmd, GITS_CMD_INVDB); 964 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id); 965 966 its_fixup_cmd(cmd); 967 968 return valid_vpe(its, desc->its_invdb_cmd.vpe); 969 } 970 971 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its, 972 struct its_cmd_block *cmd, 973 struct its_cmd_desc *desc) 974 { 975 if (WARN_ON(!is_v4_1(its))) 976 return NULL; 977 978 its_encode_cmd(cmd, GITS_CMD_VSGI); 979 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id); 980 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi); 981 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority); 982 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group); 983 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear); 984 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable); 985 986 its_fixup_cmd(cmd); 987 988 return valid_vpe(its, desc->its_vsgi_cmd.vpe); 989 } 990 991 static u64 its_cmd_ptr_to_offset(struct its_node *its, 992 struct its_cmd_block *ptr) 993 { 994 return (ptr - its->cmd_base) * sizeof(*ptr); 995 } 996 997 static int its_queue_full(struct its_node *its) 998 { 999 int widx; 1000 int ridx; 1001 1002 widx = its->cmd_write - its->cmd_base; 1003 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); 1004 1005 /* This is incredibly unlikely to happen, unless the ITS locks up. */ 1006 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) 1007 return 1; 1008 1009 return 0; 1010 } 1011 1012 static struct its_cmd_block *its_allocate_entry(struct its_node *its) 1013 { 1014 struct its_cmd_block *cmd; 1015 u32 count = 1000000; /* 1s! */ 1016 1017 while (its_queue_full(its)) { 1018 count--; 1019 if (!count) { 1020 pr_err_ratelimited("ITS queue not draining\n"); 1021 return NULL; 1022 } 1023 cpu_relax(); 1024 udelay(1); 1025 } 1026 1027 cmd = its->cmd_write++; 1028 1029 /* Handle queue wrapping */ 1030 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) 1031 its->cmd_write = its->cmd_base; 1032 1033 /* Clear command */ 1034 cmd->raw_cmd[0] = 0; 1035 cmd->raw_cmd[1] = 0; 1036 cmd->raw_cmd[2] = 0; 1037 cmd->raw_cmd[3] = 0; 1038 1039 return cmd; 1040 } 1041 1042 static struct its_cmd_block *its_post_commands(struct its_node *its) 1043 { 1044 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); 1045 1046 writel_relaxed(wr, its->base + GITS_CWRITER); 1047 1048 return its->cmd_write; 1049 } 1050 1051 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) 1052 { 1053 /* 1054 * Make sure the commands written to memory are observable by 1055 * the ITS. 1056 */ 1057 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) 1058 gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); 1059 else 1060 dsb(ishst); 1061 } 1062 1063 static int its_wait_for_range_completion(struct its_node *its, 1064 u64 prev_idx, 1065 struct its_cmd_block *to) 1066 { 1067 u64 rd_idx, to_idx, linear_idx; 1068 u32 count = 1000000; /* 1s! */ 1069 1070 /* Linearize to_idx if the command set has wrapped around */ 1071 to_idx = its_cmd_ptr_to_offset(its, to); 1072 if (to_idx < prev_idx) 1073 to_idx += ITS_CMD_QUEUE_SZ; 1074 1075 linear_idx = prev_idx; 1076 1077 while (1) { 1078 s64 delta; 1079 1080 rd_idx = readl_relaxed(its->base + GITS_CREADR); 1081 1082 /* 1083 * Compute the read pointer progress, taking the 1084 * potential wrap-around into account. 1085 */ 1086 delta = rd_idx - prev_idx; 1087 if (rd_idx < prev_idx) 1088 delta += ITS_CMD_QUEUE_SZ; 1089 1090 linear_idx += delta; 1091 if (linear_idx >= to_idx) 1092 break; 1093 1094 count--; 1095 if (!count) { 1096 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n", 1097 to_idx, linear_idx); 1098 return -1; 1099 } 1100 prev_idx = rd_idx; 1101 cpu_relax(); 1102 udelay(1); 1103 } 1104 1105 return 0; 1106 } 1107 1108 /* Warning, macro hell follows */ 1109 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \ 1110 void name(struct its_node *its, \ 1111 buildtype builder, \ 1112 struct its_cmd_desc *desc) \ 1113 { \ 1114 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \ 1115 synctype *sync_obj; \ 1116 unsigned long flags; \ 1117 u64 rd_idx; \ 1118 \ 1119 raw_spin_lock_irqsave(&its->lock, flags); \ 1120 \ 1121 cmd = its_allocate_entry(its); \ 1122 if (!cmd) { /* We're soooooo screewed... */ \ 1123 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1124 return; \ 1125 } \ 1126 sync_obj = builder(its, cmd, desc); \ 1127 its_flush_cmd(its, cmd); \ 1128 \ 1129 if (sync_obj) { \ 1130 sync_cmd = its_allocate_entry(its); \ 1131 if (!sync_cmd) \ 1132 goto post; \ 1133 \ 1134 buildfn(its, sync_cmd, sync_obj); \ 1135 its_flush_cmd(its, sync_cmd); \ 1136 } \ 1137 \ 1138 post: \ 1139 rd_idx = readl_relaxed(its->base + GITS_CREADR); \ 1140 next_cmd = its_post_commands(its); \ 1141 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1142 \ 1143 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \ 1144 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \ 1145 } 1146 1147 static void its_build_sync_cmd(struct its_node *its, 1148 struct its_cmd_block *sync_cmd, 1149 struct its_collection *sync_col) 1150 { 1151 its_encode_cmd(sync_cmd, GITS_CMD_SYNC); 1152 its_encode_target(sync_cmd, sync_col->target_address); 1153 1154 its_fixup_cmd(sync_cmd); 1155 } 1156 1157 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, 1158 struct its_collection, its_build_sync_cmd) 1159 1160 static void its_build_vsync_cmd(struct its_node *its, 1161 struct its_cmd_block *sync_cmd, 1162 struct its_vpe *sync_vpe) 1163 { 1164 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); 1165 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); 1166 1167 its_fixup_cmd(sync_cmd); 1168 } 1169 1170 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, 1171 struct its_vpe, its_build_vsync_cmd) 1172 1173 static void its_send_int(struct its_device *dev, u32 event_id) 1174 { 1175 struct its_cmd_desc desc; 1176 1177 desc.its_int_cmd.dev = dev; 1178 desc.its_int_cmd.event_id = event_id; 1179 1180 its_send_single_command(dev->its, its_build_int_cmd, &desc); 1181 } 1182 1183 static void its_send_clear(struct its_device *dev, u32 event_id) 1184 { 1185 struct its_cmd_desc desc; 1186 1187 desc.its_clear_cmd.dev = dev; 1188 desc.its_clear_cmd.event_id = event_id; 1189 1190 its_send_single_command(dev->its, its_build_clear_cmd, &desc); 1191 } 1192 1193 static void its_send_inv(struct its_device *dev, u32 event_id) 1194 { 1195 struct its_cmd_desc desc; 1196 1197 desc.its_inv_cmd.dev = dev; 1198 desc.its_inv_cmd.event_id = event_id; 1199 1200 its_send_single_command(dev->its, its_build_inv_cmd, &desc); 1201 } 1202 1203 static void its_send_mapd(struct its_device *dev, int valid) 1204 { 1205 struct its_cmd_desc desc; 1206 1207 desc.its_mapd_cmd.dev = dev; 1208 desc.its_mapd_cmd.valid = !!valid; 1209 1210 its_send_single_command(dev->its, its_build_mapd_cmd, &desc); 1211 } 1212 1213 static void its_send_mapc(struct its_node *its, struct its_collection *col, 1214 int valid) 1215 { 1216 struct its_cmd_desc desc; 1217 1218 desc.its_mapc_cmd.col = col; 1219 desc.its_mapc_cmd.valid = !!valid; 1220 1221 its_send_single_command(its, its_build_mapc_cmd, &desc); 1222 } 1223 1224 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) 1225 { 1226 struct its_cmd_desc desc; 1227 1228 desc.its_mapti_cmd.dev = dev; 1229 desc.its_mapti_cmd.phys_id = irq_id; 1230 desc.its_mapti_cmd.event_id = id; 1231 1232 its_send_single_command(dev->its, its_build_mapti_cmd, &desc); 1233 } 1234 1235 static void its_send_movi(struct its_device *dev, 1236 struct its_collection *col, u32 id) 1237 { 1238 struct its_cmd_desc desc; 1239 1240 desc.its_movi_cmd.dev = dev; 1241 desc.its_movi_cmd.col = col; 1242 desc.its_movi_cmd.event_id = id; 1243 1244 its_send_single_command(dev->its, its_build_movi_cmd, &desc); 1245 } 1246 1247 static void its_send_discard(struct its_device *dev, u32 id) 1248 { 1249 struct its_cmd_desc desc; 1250 1251 desc.its_discard_cmd.dev = dev; 1252 desc.its_discard_cmd.event_id = id; 1253 1254 its_send_single_command(dev->its, its_build_discard_cmd, &desc); 1255 } 1256 1257 static void its_send_invall(struct its_node *its, struct its_collection *col) 1258 { 1259 struct its_cmd_desc desc; 1260 1261 desc.its_invall_cmd.col = col; 1262 1263 its_send_single_command(its, its_build_invall_cmd, &desc); 1264 } 1265 1266 static void its_send_vmapti(struct its_device *dev, u32 id) 1267 { 1268 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1269 struct its_cmd_desc desc; 1270 1271 desc.its_vmapti_cmd.vpe = map->vpe; 1272 desc.its_vmapti_cmd.dev = dev; 1273 desc.its_vmapti_cmd.virt_id = map->vintid; 1274 desc.its_vmapti_cmd.event_id = id; 1275 desc.its_vmapti_cmd.db_enabled = map->db_enabled; 1276 1277 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); 1278 } 1279 1280 static void its_send_vmovi(struct its_device *dev, u32 id) 1281 { 1282 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1283 struct its_cmd_desc desc; 1284 1285 desc.its_vmovi_cmd.vpe = map->vpe; 1286 desc.its_vmovi_cmd.dev = dev; 1287 desc.its_vmovi_cmd.event_id = id; 1288 desc.its_vmovi_cmd.db_enabled = map->db_enabled; 1289 1290 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); 1291 } 1292 1293 static void its_send_vmapp(struct its_node *its, 1294 struct its_vpe *vpe, bool valid) 1295 { 1296 struct its_cmd_desc desc; 1297 1298 desc.its_vmapp_cmd.vpe = vpe; 1299 desc.its_vmapp_cmd.valid = valid; 1300 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; 1301 1302 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); 1303 } 1304 1305 static void its_send_vmovp(struct its_vpe *vpe) 1306 { 1307 struct its_cmd_desc desc = {}; 1308 struct its_node *its; 1309 unsigned long flags; 1310 int col_id = vpe->col_idx; 1311 1312 desc.its_vmovp_cmd.vpe = vpe; 1313 1314 if (!its_list_map) { 1315 its = list_first_entry(&its_nodes, struct its_node, entry); 1316 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1317 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1318 return; 1319 } 1320 1321 /* 1322 * Yet another marvel of the architecture. If using the 1323 * its_list "feature", we need to make sure that all ITSs 1324 * receive all VMOVP commands in the same order. The only way 1325 * to guarantee this is to make vmovp a serialization point. 1326 * 1327 * Wall <-- Head. 1328 */ 1329 raw_spin_lock_irqsave(&vmovp_lock, flags); 1330 1331 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; 1332 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm); 1333 1334 /* Emit VMOVPs */ 1335 list_for_each_entry(its, &its_nodes, entry) { 1336 if (!is_v4(its)) 1337 continue; 1338 1339 if (!require_its_list_vmovp(vpe->its_vm, its)) 1340 continue; 1341 1342 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1343 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1344 } 1345 1346 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1347 } 1348 1349 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe) 1350 { 1351 struct its_cmd_desc desc; 1352 1353 desc.its_vinvall_cmd.vpe = vpe; 1354 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); 1355 } 1356 1357 static void its_send_vinv(struct its_device *dev, u32 event_id) 1358 { 1359 struct its_cmd_desc desc; 1360 1361 /* 1362 * There is no real VINV command. This is just a normal INV, 1363 * with a VSYNC instead of a SYNC. 1364 */ 1365 desc.its_inv_cmd.dev = dev; 1366 desc.its_inv_cmd.event_id = event_id; 1367 1368 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc); 1369 } 1370 1371 static void its_send_vint(struct its_device *dev, u32 event_id) 1372 { 1373 struct its_cmd_desc desc; 1374 1375 /* 1376 * There is no real VINT command. This is just a normal INT, 1377 * with a VSYNC instead of a SYNC. 1378 */ 1379 desc.its_int_cmd.dev = dev; 1380 desc.its_int_cmd.event_id = event_id; 1381 1382 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc); 1383 } 1384 1385 static void its_send_vclear(struct its_device *dev, u32 event_id) 1386 { 1387 struct its_cmd_desc desc; 1388 1389 /* 1390 * There is no real VCLEAR command. This is just a normal CLEAR, 1391 * with a VSYNC instead of a SYNC. 1392 */ 1393 desc.its_clear_cmd.dev = dev; 1394 desc.its_clear_cmd.event_id = event_id; 1395 1396 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc); 1397 } 1398 1399 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe) 1400 { 1401 struct its_cmd_desc desc; 1402 1403 desc.its_invdb_cmd.vpe = vpe; 1404 its_send_single_vcommand(its, its_build_invdb_cmd, &desc); 1405 } 1406 1407 /* 1408 * irqchip functions - assumes MSI, mostly. 1409 */ 1410 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) 1411 { 1412 struct its_vlpi_map *map = get_vlpi_map(d); 1413 irq_hw_number_t hwirq; 1414 void *va; 1415 u8 *cfg; 1416 1417 if (map) { 1418 va = page_address(map->vm->vprop_page); 1419 hwirq = map->vintid; 1420 1421 /* Remember the updated property */ 1422 map->properties &= ~clr; 1423 map->properties |= set | LPI_PROP_GROUP1; 1424 } else { 1425 va = gic_rdists->prop_table_va; 1426 hwirq = d->hwirq; 1427 } 1428 1429 cfg = va + hwirq - 8192; 1430 *cfg &= ~clr; 1431 *cfg |= set | LPI_PROP_GROUP1; 1432 1433 /* 1434 * Make the above write visible to the redistributors. 1435 * And yes, we're flushing exactly: One. Single. Byte. 1436 * Humpf... 1437 */ 1438 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) 1439 gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); 1440 else 1441 dsb(ishst); 1442 } 1443 1444 static void wait_for_syncr(void __iomem *rdbase) 1445 { 1446 while (readl_relaxed(rdbase + GICR_SYNCR) & 1) 1447 cpu_relax(); 1448 } 1449 1450 static void __direct_lpi_inv(struct irq_data *d, u64 val) 1451 { 1452 void __iomem *rdbase; 1453 unsigned long flags; 1454 int cpu; 1455 1456 /* Target the redistributor this LPI is currently routed to */ 1457 cpu = irq_to_cpuid_lock(d, &flags); 1458 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 1459 1460 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 1461 gic_write_lpir(val, rdbase + GICR_INVLPIR); 1462 wait_for_syncr(rdbase); 1463 1464 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 1465 irq_to_cpuid_unlock(d, flags); 1466 } 1467 1468 static void direct_lpi_inv(struct irq_data *d) 1469 { 1470 struct its_vlpi_map *map = get_vlpi_map(d); 1471 u64 val; 1472 1473 if (map) { 1474 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1475 1476 WARN_ON(!is_v4_1(its_dev->its)); 1477 1478 val = GICR_INVLPIR_V; 1479 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id); 1480 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid); 1481 } else { 1482 val = d->hwirq; 1483 } 1484 1485 __direct_lpi_inv(d, val); 1486 } 1487 1488 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) 1489 { 1490 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1491 1492 lpi_write_config(d, clr, set); 1493 if (gic_rdists->has_direct_lpi && 1494 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d))) 1495 direct_lpi_inv(d); 1496 else if (!irqd_is_forwarded_to_vcpu(d)) 1497 its_send_inv(its_dev, its_get_event_id(d)); 1498 else 1499 its_send_vinv(its_dev, its_get_event_id(d)); 1500 } 1501 1502 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) 1503 { 1504 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1505 u32 event = its_get_event_id(d); 1506 struct its_vlpi_map *map; 1507 1508 /* 1509 * GICv4.1 does away with the per-LPI nonsense, nothing to do 1510 * here. 1511 */ 1512 if (is_v4_1(its_dev->its)) 1513 return; 1514 1515 map = dev_event_to_vlpi_map(its_dev, event); 1516 1517 if (map->db_enabled == enable) 1518 return; 1519 1520 map->db_enabled = enable; 1521 1522 /* 1523 * More fun with the architecture: 1524 * 1525 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI 1526 * value or to 1023, depending on the enable bit. But that 1527 * would be issuing a mapping for an /existing/ DevID+EventID 1528 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI 1529 * to the /same/ vPE, using this opportunity to adjust the 1530 * doorbell. Mouahahahaha. We loves it, Precious. 1531 */ 1532 its_send_vmovi(its_dev, event); 1533 } 1534 1535 static void its_mask_irq(struct irq_data *d) 1536 { 1537 if (irqd_is_forwarded_to_vcpu(d)) 1538 its_vlpi_set_doorbell(d, false); 1539 1540 lpi_update_config(d, LPI_PROP_ENABLED, 0); 1541 } 1542 1543 static void its_unmask_irq(struct irq_data *d) 1544 { 1545 if (irqd_is_forwarded_to_vcpu(d)) 1546 its_vlpi_set_doorbell(d, true); 1547 1548 lpi_update_config(d, 0, LPI_PROP_ENABLED); 1549 } 1550 1551 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu) 1552 { 1553 if (irqd_affinity_is_managed(d)) 1554 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1555 1556 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1557 } 1558 1559 static void its_inc_lpi_count(struct irq_data *d, int cpu) 1560 { 1561 if (irqd_affinity_is_managed(d)) 1562 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1563 else 1564 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1565 } 1566 1567 static void its_dec_lpi_count(struct irq_data *d, int cpu) 1568 { 1569 if (irqd_affinity_is_managed(d)) 1570 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1571 else 1572 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1573 } 1574 1575 static unsigned int cpumask_pick_least_loaded(struct irq_data *d, 1576 const struct cpumask *cpu_mask) 1577 { 1578 unsigned int cpu = nr_cpu_ids, tmp; 1579 int count = S32_MAX; 1580 1581 for_each_cpu(tmp, cpu_mask) { 1582 int this_count = its_read_lpi_count(d, tmp); 1583 if (this_count < count) { 1584 cpu = tmp; 1585 count = this_count; 1586 } 1587 } 1588 1589 return cpu; 1590 } 1591 1592 /* 1593 * As suggested by Thomas Gleixner in: 1594 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de 1595 */ 1596 static int its_select_cpu(struct irq_data *d, 1597 const struct cpumask *aff_mask) 1598 { 1599 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1600 static DEFINE_RAW_SPINLOCK(tmpmask_lock); 1601 static struct cpumask __tmpmask; 1602 struct cpumask *tmpmask; 1603 unsigned long flags; 1604 int cpu, node; 1605 node = its_dev->its->numa_node; 1606 tmpmask = &__tmpmask; 1607 1608 raw_spin_lock_irqsave(&tmpmask_lock, flags); 1609 1610 if (!irqd_affinity_is_managed(d)) { 1611 /* First try the NUMA node */ 1612 if (node != NUMA_NO_NODE) { 1613 /* 1614 * Try the intersection of the affinity mask and the 1615 * node mask (and the online mask, just to be safe). 1616 */ 1617 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask); 1618 cpumask_and(tmpmask, tmpmask, cpu_online_mask); 1619 1620 /* 1621 * Ideally, we would check if the mask is empty, and 1622 * try again on the full node here. 1623 * 1624 * But it turns out that the way ACPI describes the 1625 * affinity for ITSs only deals about memory, and 1626 * not target CPUs, so it cannot describe a single 1627 * ITS placed next to two NUMA nodes. 1628 * 1629 * Instead, just fallback on the online mask. This 1630 * diverges from Thomas' suggestion above. 1631 */ 1632 cpu = cpumask_pick_least_loaded(d, tmpmask); 1633 if (cpu < nr_cpu_ids) 1634 goto out; 1635 1636 /* If we can't cross sockets, give up */ 1637 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)) 1638 goto out; 1639 1640 /* If the above failed, expand the search */ 1641 } 1642 1643 /* Try the intersection of the affinity and online masks */ 1644 cpumask_and(tmpmask, aff_mask, cpu_online_mask); 1645 1646 /* If that doesn't fly, the online mask is the last resort */ 1647 if (cpumask_empty(tmpmask)) 1648 cpumask_copy(tmpmask, cpu_online_mask); 1649 1650 cpu = cpumask_pick_least_loaded(d, tmpmask); 1651 } else { 1652 cpumask_copy(tmpmask, aff_mask); 1653 1654 /* If we cannot cross sockets, limit the search to that node */ 1655 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) && 1656 node != NUMA_NO_NODE) 1657 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node)); 1658 1659 cpu = cpumask_pick_least_loaded(d, tmpmask); 1660 } 1661 out: 1662 raw_spin_unlock_irqrestore(&tmpmask_lock, flags); 1663 1664 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu); 1665 return cpu; 1666 } 1667 1668 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 1669 bool force) 1670 { 1671 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1672 struct its_collection *target_col; 1673 u32 id = its_get_event_id(d); 1674 int cpu, prev_cpu; 1675 1676 /* A forwarded interrupt should use irq_set_vcpu_affinity */ 1677 if (irqd_is_forwarded_to_vcpu(d)) 1678 return -EINVAL; 1679 1680 prev_cpu = its_dev->event_map.col_map[id]; 1681 its_dec_lpi_count(d, prev_cpu); 1682 1683 if (!force) 1684 cpu = its_select_cpu(d, mask_val); 1685 else 1686 cpu = cpumask_pick_least_loaded(d, mask_val); 1687 1688 if (cpu < 0 || cpu >= nr_cpu_ids) 1689 goto err; 1690 1691 /* don't set the affinity when the target cpu is same as current one */ 1692 if (cpu != prev_cpu) { 1693 target_col = &its_dev->its->collections[cpu]; 1694 its_send_movi(its_dev, target_col, id); 1695 its_dev->event_map.col_map[id] = cpu; 1696 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 1697 } 1698 1699 its_inc_lpi_count(d, cpu); 1700 1701 return IRQ_SET_MASK_OK_DONE; 1702 1703 err: 1704 its_inc_lpi_count(d, prev_cpu); 1705 return -EINVAL; 1706 } 1707 1708 static u64 its_irq_get_msi_base(struct its_device *its_dev) 1709 { 1710 struct its_node *its = its_dev->its; 1711 1712 return its->phys_base + GITS_TRANSLATER; 1713 } 1714 1715 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) 1716 { 1717 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1718 struct its_node *its; 1719 u64 addr; 1720 1721 its = its_dev->its; 1722 addr = its->get_msi_base(its_dev); 1723 1724 msg->address_lo = lower_32_bits(addr); 1725 msg->address_hi = upper_32_bits(addr); 1726 msg->data = its_get_event_id(d); 1727 1728 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg); 1729 } 1730 1731 static int its_irq_set_irqchip_state(struct irq_data *d, 1732 enum irqchip_irq_state which, 1733 bool state) 1734 { 1735 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1736 u32 event = its_get_event_id(d); 1737 1738 if (which != IRQCHIP_STATE_PENDING) 1739 return -EINVAL; 1740 1741 if (irqd_is_forwarded_to_vcpu(d)) { 1742 if (state) 1743 its_send_vint(its_dev, event); 1744 else 1745 its_send_vclear(its_dev, event); 1746 } else { 1747 if (state) 1748 its_send_int(its_dev, event); 1749 else 1750 its_send_clear(its_dev, event); 1751 } 1752 1753 return 0; 1754 } 1755 1756 static int its_irq_retrigger(struct irq_data *d) 1757 { 1758 return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 1759 } 1760 1761 /* 1762 * Two favourable cases: 1763 * 1764 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times 1765 * for vSGI delivery 1766 * 1767 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough 1768 * and we're better off mapping all VPEs always 1769 * 1770 * If neither (a) nor (b) is true, then we map vPEs on demand. 1771 * 1772 */ 1773 static bool gic_requires_eager_mapping(void) 1774 { 1775 if (!its_list_map || gic_rdists->has_rvpeid) 1776 return true; 1777 1778 return false; 1779 } 1780 1781 static void its_map_vm(struct its_node *its, struct its_vm *vm) 1782 { 1783 unsigned long flags; 1784 1785 if (gic_requires_eager_mapping()) 1786 return; 1787 1788 raw_spin_lock_irqsave(&vmovp_lock, flags); 1789 1790 /* 1791 * If the VM wasn't mapped yet, iterate over the vpes and get 1792 * them mapped now. 1793 */ 1794 vm->vlpi_count[its->list_nr]++; 1795 1796 if (vm->vlpi_count[its->list_nr] == 1) { 1797 int i; 1798 1799 for (i = 0; i < vm->nr_vpes; i++) { 1800 struct its_vpe *vpe = vm->vpes[i]; 1801 struct irq_data *d = irq_get_irq_data(vpe->irq); 1802 1803 /* Map the VPE to the first possible CPU */ 1804 vpe->col_idx = cpumask_first(cpu_online_mask); 1805 its_send_vmapp(its, vpe, true); 1806 its_send_vinvall(its, vpe); 1807 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 1808 } 1809 } 1810 1811 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1812 } 1813 1814 static void its_unmap_vm(struct its_node *its, struct its_vm *vm) 1815 { 1816 unsigned long flags; 1817 1818 /* Not using the ITS list? Everything is always mapped. */ 1819 if (gic_requires_eager_mapping()) 1820 return; 1821 1822 raw_spin_lock_irqsave(&vmovp_lock, flags); 1823 1824 if (!--vm->vlpi_count[its->list_nr]) { 1825 int i; 1826 1827 for (i = 0; i < vm->nr_vpes; i++) 1828 its_send_vmapp(its, vm->vpes[i], false); 1829 } 1830 1831 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1832 } 1833 1834 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) 1835 { 1836 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1837 u32 event = its_get_event_id(d); 1838 int ret = 0; 1839 1840 if (!info->map) 1841 return -EINVAL; 1842 1843 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1844 1845 if (!its_dev->event_map.vm) { 1846 struct its_vlpi_map *maps; 1847 1848 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps), 1849 GFP_ATOMIC); 1850 if (!maps) { 1851 ret = -ENOMEM; 1852 goto out; 1853 } 1854 1855 its_dev->event_map.vm = info->map->vm; 1856 its_dev->event_map.vlpi_maps = maps; 1857 } else if (its_dev->event_map.vm != info->map->vm) { 1858 ret = -EINVAL; 1859 goto out; 1860 } 1861 1862 /* Get our private copy of the mapping information */ 1863 its_dev->event_map.vlpi_maps[event] = *info->map; 1864 1865 if (irqd_is_forwarded_to_vcpu(d)) { 1866 /* Already mapped, move it around */ 1867 its_send_vmovi(its_dev, event); 1868 } else { 1869 /* Ensure all the VPEs are mapped on this ITS */ 1870 its_map_vm(its_dev->its, info->map->vm); 1871 1872 /* 1873 * Flag the interrupt as forwarded so that we can 1874 * start poking the virtual property table. 1875 */ 1876 irqd_set_forwarded_to_vcpu(d); 1877 1878 /* Write out the property to the prop table */ 1879 lpi_write_config(d, 0xff, info->map->properties); 1880 1881 /* Drop the physical mapping */ 1882 its_send_discard(its_dev, event); 1883 1884 /* and install the virtual one */ 1885 its_send_vmapti(its_dev, event); 1886 1887 /* Increment the number of VLPIs */ 1888 its_dev->event_map.nr_vlpis++; 1889 } 1890 1891 out: 1892 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1893 return ret; 1894 } 1895 1896 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) 1897 { 1898 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1899 struct its_vlpi_map *map; 1900 int ret = 0; 1901 1902 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1903 1904 map = get_vlpi_map(d); 1905 1906 if (!its_dev->event_map.vm || !map) { 1907 ret = -EINVAL; 1908 goto out; 1909 } 1910 1911 /* Copy our mapping information to the incoming request */ 1912 *info->map = *map; 1913 1914 out: 1915 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1916 return ret; 1917 } 1918 1919 static int its_vlpi_unmap(struct irq_data *d) 1920 { 1921 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1922 u32 event = its_get_event_id(d); 1923 int ret = 0; 1924 1925 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1926 1927 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) { 1928 ret = -EINVAL; 1929 goto out; 1930 } 1931 1932 /* Drop the virtual mapping */ 1933 its_send_discard(its_dev, event); 1934 1935 /* and restore the physical one */ 1936 irqd_clr_forwarded_to_vcpu(d); 1937 its_send_mapti(its_dev, d->hwirq, event); 1938 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO | 1939 LPI_PROP_ENABLED | 1940 LPI_PROP_GROUP1)); 1941 1942 /* Potentially unmap the VM from this ITS */ 1943 its_unmap_vm(its_dev->its, its_dev->event_map.vm); 1944 1945 /* 1946 * Drop the refcount and make the device available again if 1947 * this was the last VLPI. 1948 */ 1949 if (!--its_dev->event_map.nr_vlpis) { 1950 its_dev->event_map.vm = NULL; 1951 kfree(its_dev->event_map.vlpi_maps); 1952 } 1953 1954 out: 1955 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1956 return ret; 1957 } 1958 1959 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) 1960 { 1961 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1962 1963 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 1964 return -EINVAL; 1965 1966 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) 1967 lpi_update_config(d, 0xff, info->config); 1968 else 1969 lpi_write_config(d, 0xff, info->config); 1970 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); 1971 1972 return 0; 1973 } 1974 1975 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 1976 { 1977 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1978 struct its_cmd_info *info = vcpu_info; 1979 1980 /* Need a v4 ITS */ 1981 if (!is_v4(its_dev->its)) 1982 return -EINVAL; 1983 1984 /* Unmap request? */ 1985 if (!info) 1986 return its_vlpi_unmap(d); 1987 1988 switch (info->cmd_type) { 1989 case MAP_VLPI: 1990 return its_vlpi_map(d, info); 1991 1992 case GET_VLPI: 1993 return its_vlpi_get(d, info); 1994 1995 case PROP_UPDATE_VLPI: 1996 case PROP_UPDATE_AND_INV_VLPI: 1997 return its_vlpi_prop_update(d, info); 1998 1999 default: 2000 return -EINVAL; 2001 } 2002 } 2003 2004 static struct irq_chip its_irq_chip = { 2005 .name = "ITS", 2006 .irq_mask = its_mask_irq, 2007 .irq_unmask = its_unmask_irq, 2008 .irq_eoi = irq_chip_eoi_parent, 2009 .irq_set_affinity = its_set_affinity, 2010 .irq_compose_msi_msg = its_irq_compose_msi_msg, 2011 .irq_set_irqchip_state = its_irq_set_irqchip_state, 2012 .irq_retrigger = its_irq_retrigger, 2013 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity, 2014 }; 2015 2016 2017 /* 2018 * How we allocate LPIs: 2019 * 2020 * lpi_range_list contains ranges of LPIs that are to available to 2021 * allocate from. To allocate LPIs, just pick the first range that 2022 * fits the required allocation, and reduce it by the required 2023 * amount. Once empty, remove the range from the list. 2024 * 2025 * To free a range of LPIs, add a free range to the list, sort it and 2026 * merge the result if the new range happens to be adjacent to an 2027 * already free block. 2028 * 2029 * The consequence of the above is that allocation is cost is low, but 2030 * freeing is expensive. We assumes that freeing rarely occurs. 2031 */ 2032 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */ 2033 2034 static DEFINE_MUTEX(lpi_range_lock); 2035 static LIST_HEAD(lpi_range_list); 2036 2037 struct lpi_range { 2038 struct list_head entry; 2039 u32 base_id; 2040 u32 span; 2041 }; 2042 2043 static struct lpi_range *mk_lpi_range(u32 base, u32 span) 2044 { 2045 struct lpi_range *range; 2046 2047 range = kmalloc(sizeof(*range), GFP_KERNEL); 2048 if (range) { 2049 range->base_id = base; 2050 range->span = span; 2051 } 2052 2053 return range; 2054 } 2055 2056 static int alloc_lpi_range(u32 nr_lpis, u32 *base) 2057 { 2058 struct lpi_range *range, *tmp; 2059 int err = -ENOSPC; 2060 2061 mutex_lock(&lpi_range_lock); 2062 2063 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { 2064 if (range->span >= nr_lpis) { 2065 *base = range->base_id; 2066 range->base_id += nr_lpis; 2067 range->span -= nr_lpis; 2068 2069 if (range->span == 0) { 2070 list_del(&range->entry); 2071 kfree(range); 2072 } 2073 2074 err = 0; 2075 break; 2076 } 2077 } 2078 2079 mutex_unlock(&lpi_range_lock); 2080 2081 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis); 2082 return err; 2083 } 2084 2085 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b) 2086 { 2087 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list) 2088 return; 2089 if (a->base_id + a->span != b->base_id) 2090 return; 2091 b->base_id = a->base_id; 2092 b->span += a->span; 2093 list_del(&a->entry); 2094 kfree(a); 2095 } 2096 2097 static int free_lpi_range(u32 base, u32 nr_lpis) 2098 { 2099 struct lpi_range *new, *old; 2100 2101 new = mk_lpi_range(base, nr_lpis); 2102 if (!new) 2103 return -ENOMEM; 2104 2105 mutex_lock(&lpi_range_lock); 2106 2107 list_for_each_entry_reverse(old, &lpi_range_list, entry) { 2108 if (old->base_id < base) 2109 break; 2110 } 2111 /* 2112 * old is the last element with ->base_id smaller than base, 2113 * so new goes right after it. If there are no elements with 2114 * ->base_id smaller than base, &old->entry ends up pointing 2115 * at the head of the list, and inserting new it the start of 2116 * the list is the right thing to do in that case as well. 2117 */ 2118 list_add(&new->entry, &old->entry); 2119 /* 2120 * Now check if we can merge with the preceding and/or 2121 * following ranges. 2122 */ 2123 merge_lpi_ranges(old, new); 2124 merge_lpi_ranges(new, list_next_entry(new, entry)); 2125 2126 mutex_unlock(&lpi_range_lock); 2127 return 0; 2128 } 2129 2130 static int __init its_lpi_init(u32 id_bits) 2131 { 2132 u32 lpis = (1UL << id_bits) - 8192; 2133 u32 numlpis; 2134 int err; 2135 2136 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer); 2137 2138 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) { 2139 lpis = numlpis; 2140 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n", 2141 lpis); 2142 } 2143 2144 /* 2145 * Initializing the allocator is just the same as freeing the 2146 * full range of LPIs. 2147 */ 2148 err = free_lpi_range(8192, lpis); 2149 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis); 2150 return err; 2151 } 2152 2153 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids) 2154 { 2155 unsigned long *bitmap = NULL; 2156 int err = 0; 2157 2158 do { 2159 err = alloc_lpi_range(nr_irqs, base); 2160 if (!err) 2161 break; 2162 2163 nr_irqs /= 2; 2164 } while (nr_irqs > 0); 2165 2166 if (!nr_irqs) 2167 err = -ENOSPC; 2168 2169 if (err) 2170 goto out; 2171 2172 bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC); 2173 if (!bitmap) 2174 goto out; 2175 2176 *nr_ids = nr_irqs; 2177 2178 out: 2179 if (!bitmap) 2180 *base = *nr_ids = 0; 2181 2182 return bitmap; 2183 } 2184 2185 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids) 2186 { 2187 WARN_ON(free_lpi_range(base, nr_ids)); 2188 bitmap_free(bitmap); 2189 } 2190 2191 static void gic_reset_prop_table(void *va) 2192 { 2193 /* Priority 0xa0, Group-1, disabled */ 2194 memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ); 2195 2196 /* Make sure the GIC will observe the written configuration */ 2197 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ); 2198 } 2199 2200 static struct page *its_allocate_prop_table(gfp_t gfp_flags) 2201 { 2202 struct page *prop_page; 2203 2204 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ)); 2205 if (!prop_page) 2206 return NULL; 2207 2208 gic_reset_prop_table(page_address(prop_page)); 2209 2210 return prop_page; 2211 } 2212 2213 static void its_free_prop_table(struct page *prop_page) 2214 { 2215 free_pages((unsigned long)page_address(prop_page), 2216 get_order(LPI_PROPBASE_SZ)); 2217 } 2218 2219 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size) 2220 { 2221 phys_addr_t start, end, addr_end; 2222 u64 i; 2223 2224 /* 2225 * We don't bother checking for a kdump kernel as by 2226 * construction, the LPI tables are out of this kernel's 2227 * memory map. 2228 */ 2229 if (is_kdump_kernel()) 2230 return true; 2231 2232 addr_end = addr + size - 1; 2233 2234 for_each_reserved_mem_range(i, &start, &end) { 2235 if (addr >= start && addr_end <= end) 2236 return true; 2237 } 2238 2239 /* Not found, not a good sign... */ 2240 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n", 2241 &addr, &addr_end); 2242 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 2243 return false; 2244 } 2245 2246 static int gic_reserve_range(phys_addr_t addr, unsigned long size) 2247 { 2248 if (efi_enabled(EFI_CONFIG_TABLES)) 2249 return efi_mem_reserve_persistent(addr, size); 2250 2251 return 0; 2252 } 2253 2254 static int __init its_setup_lpi_prop_table(void) 2255 { 2256 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) { 2257 u64 val; 2258 2259 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2260 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1; 2261 2262 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12); 2263 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa, 2264 LPI_PROPBASE_SZ, 2265 MEMREMAP_WB); 2266 gic_reset_prop_table(gic_rdists->prop_table_va); 2267 } else { 2268 struct page *page; 2269 2270 lpi_id_bits = min_t(u32, 2271 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer), 2272 ITS_MAX_LPI_NRBITS); 2273 page = its_allocate_prop_table(GFP_NOWAIT); 2274 if (!page) { 2275 pr_err("Failed to allocate PROPBASE\n"); 2276 return -ENOMEM; 2277 } 2278 2279 gic_rdists->prop_table_pa = page_to_phys(page); 2280 gic_rdists->prop_table_va = page_address(page); 2281 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa, 2282 LPI_PROPBASE_SZ)); 2283 } 2284 2285 pr_info("GICv3: using LPI property table @%pa\n", 2286 &gic_rdists->prop_table_pa); 2287 2288 return its_lpi_init(lpi_id_bits); 2289 } 2290 2291 static const char *its_base_type_string[] = { 2292 [GITS_BASER_TYPE_DEVICE] = "Devices", 2293 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", 2294 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)", 2295 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", 2296 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", 2297 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", 2298 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", 2299 }; 2300 2301 static u64 its_read_baser(struct its_node *its, struct its_baser *baser) 2302 { 2303 u32 idx = baser - its->tables; 2304 2305 return gits_read_baser(its->base + GITS_BASER + (idx << 3)); 2306 } 2307 2308 static void its_write_baser(struct its_node *its, struct its_baser *baser, 2309 u64 val) 2310 { 2311 u32 idx = baser - its->tables; 2312 2313 gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); 2314 baser->val = its_read_baser(its, baser); 2315 } 2316 2317 static int its_setup_baser(struct its_node *its, struct its_baser *baser, 2318 u64 cache, u64 shr, u32 order, bool indirect) 2319 { 2320 u64 val = its_read_baser(its, baser); 2321 u64 esz = GITS_BASER_ENTRY_SIZE(val); 2322 u64 type = GITS_BASER_TYPE(val); 2323 u64 baser_phys, tmp; 2324 u32 alloc_pages, psz; 2325 struct page *page; 2326 void *base; 2327 2328 psz = baser->psz; 2329 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); 2330 if (alloc_pages > GITS_BASER_PAGES_MAX) { 2331 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", 2332 &its->phys_base, its_base_type_string[type], 2333 alloc_pages, GITS_BASER_PAGES_MAX); 2334 alloc_pages = GITS_BASER_PAGES_MAX; 2335 order = get_order(GITS_BASER_PAGES_MAX * psz); 2336 } 2337 2338 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order); 2339 if (!page) 2340 return -ENOMEM; 2341 2342 base = (void *)page_address(page); 2343 baser_phys = virt_to_phys(base); 2344 2345 /* Check if the physical address of the memory is above 48bits */ 2346 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { 2347 2348 /* 52bit PA is supported only when PageSize=64K */ 2349 if (psz != SZ_64K) { 2350 pr_err("ITS: no 52bit PA support when psz=%d\n", psz); 2351 free_pages((unsigned long)base, order); 2352 return -ENXIO; 2353 } 2354 2355 /* Convert 52bit PA to 48bit field */ 2356 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); 2357 } 2358 2359 retry_baser: 2360 val = (baser_phys | 2361 (type << GITS_BASER_TYPE_SHIFT) | 2362 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | 2363 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | 2364 cache | 2365 shr | 2366 GITS_BASER_VALID); 2367 2368 val |= indirect ? GITS_BASER_INDIRECT : 0x0; 2369 2370 switch (psz) { 2371 case SZ_4K: 2372 val |= GITS_BASER_PAGE_SIZE_4K; 2373 break; 2374 case SZ_16K: 2375 val |= GITS_BASER_PAGE_SIZE_16K; 2376 break; 2377 case SZ_64K: 2378 val |= GITS_BASER_PAGE_SIZE_64K; 2379 break; 2380 } 2381 2382 if (!shr) 2383 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); 2384 2385 its_write_baser(its, baser, val); 2386 tmp = baser->val; 2387 2388 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { 2389 /* 2390 * Shareability didn't stick. Just use 2391 * whatever the read reported, which is likely 2392 * to be the only thing this redistributor 2393 * supports. If that's zero, make it 2394 * non-cacheable as well. 2395 */ 2396 shr = tmp & GITS_BASER_SHAREABILITY_MASK; 2397 if (!shr) 2398 cache = GITS_BASER_nC; 2399 2400 goto retry_baser; 2401 } 2402 2403 if (val != tmp) { 2404 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", 2405 &its->phys_base, its_base_type_string[type], 2406 val, tmp); 2407 free_pages((unsigned long)base, order); 2408 return -ENXIO; 2409 } 2410 2411 baser->order = order; 2412 baser->base = base; 2413 baser->psz = psz; 2414 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; 2415 2416 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", 2417 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), 2418 its_base_type_string[type], 2419 (unsigned long)virt_to_phys(base), 2420 indirect ? "indirect" : "flat", (int)esz, 2421 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); 2422 2423 return 0; 2424 } 2425 2426 static bool its_parse_indirect_baser(struct its_node *its, 2427 struct its_baser *baser, 2428 u32 *order, u32 ids) 2429 { 2430 u64 tmp = its_read_baser(its, baser); 2431 u64 type = GITS_BASER_TYPE(tmp); 2432 u64 esz = GITS_BASER_ENTRY_SIZE(tmp); 2433 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; 2434 u32 new_order = *order; 2435 u32 psz = baser->psz; 2436 bool indirect = false; 2437 2438 /* No need to enable Indirection if memory requirement < (psz*2)bytes */ 2439 if ((esz << ids) > (psz * 2)) { 2440 /* 2441 * Find out whether hw supports a single or two-level table by 2442 * table by reading bit at offset '62' after writing '1' to it. 2443 */ 2444 its_write_baser(its, baser, val | GITS_BASER_INDIRECT); 2445 indirect = !!(baser->val & GITS_BASER_INDIRECT); 2446 2447 if (indirect) { 2448 /* 2449 * The size of the lvl2 table is equal to ITS page size 2450 * which is 'psz'. For computing lvl1 table size, 2451 * subtract ID bits that sparse lvl2 table from 'ids' 2452 * which is reported by ITS hardware times lvl1 table 2453 * entry size. 2454 */ 2455 ids -= ilog2(psz / (int)esz); 2456 esz = GITS_LVL1_ENTRY_SIZE; 2457 } 2458 } 2459 2460 /* 2461 * Allocate as many entries as required to fit the 2462 * range of device IDs that the ITS can grok... The ID 2463 * space being incredibly sparse, this results in a 2464 * massive waste of memory if two-level device table 2465 * feature is not supported by hardware. 2466 */ 2467 new_order = max_t(u32, get_order(esz << ids), new_order); 2468 if (new_order > MAX_ORDER) { 2469 new_order = MAX_ORDER; 2470 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); 2471 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n", 2472 &its->phys_base, its_base_type_string[type], 2473 device_ids(its), ids); 2474 } 2475 2476 *order = new_order; 2477 2478 return indirect; 2479 } 2480 2481 static u32 compute_common_aff(u64 val) 2482 { 2483 u32 aff, clpiaff; 2484 2485 aff = FIELD_GET(GICR_TYPER_AFFINITY, val); 2486 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val); 2487 2488 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8)); 2489 } 2490 2491 static u32 compute_its_aff(struct its_node *its) 2492 { 2493 u64 val; 2494 u32 svpet; 2495 2496 /* 2497 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute 2498 * the resulting affinity. We then use that to see if this match 2499 * our own affinity. 2500 */ 2501 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); 2502 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet); 2503 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr); 2504 return compute_common_aff(val); 2505 } 2506 2507 static struct its_node *find_sibling_its(struct its_node *cur_its) 2508 { 2509 struct its_node *its; 2510 u32 aff; 2511 2512 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer)) 2513 return NULL; 2514 2515 aff = compute_its_aff(cur_its); 2516 2517 list_for_each_entry(its, &its_nodes, entry) { 2518 u64 baser; 2519 2520 if (!is_v4_1(its) || its == cur_its) 2521 continue; 2522 2523 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2524 continue; 2525 2526 if (aff != compute_its_aff(its)) 2527 continue; 2528 2529 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2530 baser = its->tables[2].val; 2531 if (!(baser & GITS_BASER_VALID)) 2532 continue; 2533 2534 return its; 2535 } 2536 2537 return NULL; 2538 } 2539 2540 static void its_free_tables(struct its_node *its) 2541 { 2542 int i; 2543 2544 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2545 if (its->tables[i].base) { 2546 free_pages((unsigned long)its->tables[i].base, 2547 its->tables[i].order); 2548 its->tables[i].base = NULL; 2549 } 2550 } 2551 } 2552 2553 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser) 2554 { 2555 u64 psz = SZ_64K; 2556 2557 while (psz) { 2558 u64 val, gpsz; 2559 2560 val = its_read_baser(its, baser); 2561 val &= ~GITS_BASER_PAGE_SIZE_MASK; 2562 2563 switch (psz) { 2564 case SZ_64K: 2565 gpsz = GITS_BASER_PAGE_SIZE_64K; 2566 break; 2567 case SZ_16K: 2568 gpsz = GITS_BASER_PAGE_SIZE_16K; 2569 break; 2570 case SZ_4K: 2571 default: 2572 gpsz = GITS_BASER_PAGE_SIZE_4K; 2573 break; 2574 } 2575 2576 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT; 2577 2578 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz); 2579 its_write_baser(its, baser, val); 2580 2581 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz) 2582 break; 2583 2584 switch (psz) { 2585 case SZ_64K: 2586 psz = SZ_16K; 2587 break; 2588 case SZ_16K: 2589 psz = SZ_4K; 2590 break; 2591 case SZ_4K: 2592 default: 2593 return -1; 2594 } 2595 } 2596 2597 baser->psz = psz; 2598 return 0; 2599 } 2600 2601 static int its_alloc_tables(struct its_node *its) 2602 { 2603 u64 shr = GITS_BASER_InnerShareable; 2604 u64 cache = GITS_BASER_RaWaWb; 2605 int err, i; 2606 2607 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) 2608 /* erratum 24313: ignore memory access type */ 2609 cache = GITS_BASER_nCnB; 2610 2611 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) { 2612 cache = GITS_BASER_nC; 2613 shr = 0; 2614 } 2615 2616 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2617 struct its_baser *baser = its->tables + i; 2618 u64 val = its_read_baser(its, baser); 2619 u64 type = GITS_BASER_TYPE(val); 2620 bool indirect = false; 2621 u32 order; 2622 2623 if (type == GITS_BASER_TYPE_NONE) 2624 continue; 2625 2626 if (its_probe_baser_psz(its, baser)) { 2627 its_free_tables(its); 2628 return -ENXIO; 2629 } 2630 2631 order = get_order(baser->psz); 2632 2633 switch (type) { 2634 case GITS_BASER_TYPE_DEVICE: 2635 indirect = its_parse_indirect_baser(its, baser, &order, 2636 device_ids(its)); 2637 break; 2638 2639 case GITS_BASER_TYPE_VCPU: 2640 if (is_v4_1(its)) { 2641 struct its_node *sibling; 2642 2643 WARN_ON(i != 2); 2644 if ((sibling = find_sibling_its(its))) { 2645 *baser = sibling->tables[2]; 2646 its_write_baser(its, baser, baser->val); 2647 continue; 2648 } 2649 } 2650 2651 indirect = its_parse_indirect_baser(its, baser, &order, 2652 ITS_MAX_VPEID_BITS); 2653 break; 2654 } 2655 2656 err = its_setup_baser(its, baser, cache, shr, order, indirect); 2657 if (err < 0) { 2658 its_free_tables(its); 2659 return err; 2660 } 2661 2662 /* Update settings which will be used for next BASERn */ 2663 cache = baser->val & GITS_BASER_CACHEABILITY_MASK; 2664 shr = baser->val & GITS_BASER_SHAREABILITY_MASK; 2665 } 2666 2667 return 0; 2668 } 2669 2670 static u64 inherit_vpe_l1_table_from_its(void) 2671 { 2672 struct its_node *its; 2673 u64 val; 2674 u32 aff; 2675 2676 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2677 aff = compute_common_aff(val); 2678 2679 list_for_each_entry(its, &its_nodes, entry) { 2680 u64 baser, addr; 2681 2682 if (!is_v4_1(its)) 2683 continue; 2684 2685 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2686 continue; 2687 2688 if (aff != compute_its_aff(its)) 2689 continue; 2690 2691 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2692 baser = its->tables[2].val; 2693 if (!(baser & GITS_BASER_VALID)) 2694 continue; 2695 2696 /* We have a winner! */ 2697 gic_data_rdist()->vpe_l1_base = its->tables[2].base; 2698 2699 val = GICR_VPROPBASER_4_1_VALID; 2700 if (baser & GITS_BASER_INDIRECT) 2701 val |= GICR_VPROPBASER_4_1_INDIRECT; 2702 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, 2703 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)); 2704 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) { 2705 case GIC_PAGE_SIZE_64K: 2706 addr = GITS_BASER_ADDR_48_to_52(baser); 2707 break; 2708 default: 2709 addr = baser & GENMASK_ULL(47, 12); 2710 break; 2711 } 2712 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12); 2713 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK, 2714 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser)); 2715 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK, 2716 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser)); 2717 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1); 2718 2719 return val; 2720 } 2721 2722 return 0; 2723 } 2724 2725 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask) 2726 { 2727 u32 aff; 2728 u64 val; 2729 int cpu; 2730 2731 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2732 aff = compute_common_aff(val); 2733 2734 for_each_possible_cpu(cpu) { 2735 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2736 2737 if (!base || cpu == smp_processor_id()) 2738 continue; 2739 2740 val = gic_read_typer(base + GICR_TYPER); 2741 if (aff != compute_common_aff(val)) 2742 continue; 2743 2744 /* 2745 * At this point, we have a victim. This particular CPU 2746 * has already booted, and has an affinity that matches 2747 * ours wrt CommonLPIAff. Let's use its own VPROPBASER. 2748 * Make sure we don't write the Z bit in that case. 2749 */ 2750 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2751 val &= ~GICR_VPROPBASER_4_1_Z; 2752 2753 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2754 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask; 2755 2756 return val; 2757 } 2758 2759 return 0; 2760 } 2761 2762 static bool allocate_vpe_l2_table(int cpu, u32 id) 2763 { 2764 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2765 unsigned int psz, esz, idx, npg, gpsz; 2766 u64 val; 2767 struct page *page; 2768 __le64 *table; 2769 2770 if (!gic_rdists->has_rvpeid) 2771 return true; 2772 2773 /* Skip non-present CPUs */ 2774 if (!base) 2775 return true; 2776 2777 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2778 2779 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1; 2780 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2781 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1; 2782 2783 switch (gpsz) { 2784 default: 2785 WARN_ON(1); 2786 fallthrough; 2787 case GIC_PAGE_SIZE_4K: 2788 psz = SZ_4K; 2789 break; 2790 case GIC_PAGE_SIZE_16K: 2791 psz = SZ_16K; 2792 break; 2793 case GIC_PAGE_SIZE_64K: 2794 psz = SZ_64K; 2795 break; 2796 } 2797 2798 /* Don't allow vpe_id that exceeds single, flat table limit */ 2799 if (!(val & GICR_VPROPBASER_4_1_INDIRECT)) 2800 return (id < (npg * psz / (esz * SZ_8))); 2801 2802 /* Compute 1st level table index & check if that exceeds table limit */ 2803 idx = id >> ilog2(psz / (esz * SZ_8)); 2804 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE)) 2805 return false; 2806 2807 table = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2808 2809 /* Allocate memory for 2nd level table */ 2810 if (!table[idx]) { 2811 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz)); 2812 if (!page) 2813 return false; 2814 2815 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 2816 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2817 gic_flush_dcache_to_poc(page_address(page), psz); 2818 2819 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 2820 2821 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 2822 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2823 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 2824 2825 /* Ensure updated table contents are visible to RD hardware */ 2826 dsb(sy); 2827 } 2828 2829 return true; 2830 } 2831 2832 static int allocate_vpe_l1_table(void) 2833 { 2834 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2835 u64 val, gpsz, npg, pa; 2836 unsigned int psz = SZ_64K; 2837 unsigned int np, epp, esz; 2838 struct page *page; 2839 2840 if (!gic_rdists->has_rvpeid) 2841 return 0; 2842 2843 /* 2844 * if VPENDBASER.Valid is set, disable any previously programmed 2845 * VPE by setting PendingLast while clearing Valid. This has the 2846 * effect of making sure no doorbell will be generated and we can 2847 * then safely clear VPROPBASER.Valid. 2848 */ 2849 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid) 2850 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast, 2851 vlpi_base + GICR_VPENDBASER); 2852 2853 /* 2854 * If we can inherit the configuration from another RD, let's do 2855 * so. Otherwise, we have to go through the allocation process. We 2856 * assume that all RDs have the exact same requirements, as 2857 * nothing will work otherwise. 2858 */ 2859 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask); 2860 if (val & GICR_VPROPBASER_4_1_VALID) 2861 goto out; 2862 2863 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC); 2864 if (!gic_data_rdist()->vpe_table_mask) 2865 return -ENOMEM; 2866 2867 val = inherit_vpe_l1_table_from_its(); 2868 if (val & GICR_VPROPBASER_4_1_VALID) 2869 goto out; 2870 2871 /* First probe the page size */ 2872 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K); 2873 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2874 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER); 2875 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2876 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val); 2877 2878 switch (gpsz) { 2879 default: 2880 gpsz = GIC_PAGE_SIZE_4K; 2881 fallthrough; 2882 case GIC_PAGE_SIZE_4K: 2883 psz = SZ_4K; 2884 break; 2885 case GIC_PAGE_SIZE_16K: 2886 psz = SZ_16K; 2887 break; 2888 case GIC_PAGE_SIZE_64K: 2889 psz = SZ_64K; 2890 break; 2891 } 2892 2893 /* 2894 * Start populating the register from scratch, including RO fields 2895 * (which we want to print in debug cases...) 2896 */ 2897 val = 0; 2898 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz); 2899 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz); 2900 2901 /* How many entries per GIC page? */ 2902 esz++; 2903 epp = psz / (esz * SZ_8); 2904 2905 /* 2906 * If we need more than just a single L1 page, flag the table 2907 * as indirect and compute the number of required L1 pages. 2908 */ 2909 if (epp < ITS_MAX_VPEID) { 2910 int nl2; 2911 2912 val |= GICR_VPROPBASER_4_1_INDIRECT; 2913 2914 /* Number of L2 pages required to cover the VPEID space */ 2915 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp); 2916 2917 /* Number of L1 pages to point to the L2 pages */ 2918 npg = DIV_ROUND_UP(nl2 * SZ_8, psz); 2919 } else { 2920 npg = 1; 2921 } 2922 2923 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1); 2924 2925 /* Right, that's the number of CPU pages we need for L1 */ 2926 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE); 2927 2928 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n", 2929 np, npg, psz, epp, esz); 2930 page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE)); 2931 if (!page) 2932 return -ENOMEM; 2933 2934 gic_data_rdist()->vpe_l1_base = page_address(page); 2935 pa = virt_to_phys(page_address(page)); 2936 WARN_ON(!IS_ALIGNED(pa, psz)); 2937 2938 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12); 2939 val |= GICR_VPROPBASER_RaWb; 2940 val |= GICR_VPROPBASER_InnerShareable; 2941 val |= GICR_VPROPBASER_4_1_Z; 2942 val |= GICR_VPROPBASER_4_1_VALID; 2943 2944 out: 2945 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2946 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask); 2947 2948 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n", 2949 smp_processor_id(), val, 2950 cpumask_pr_args(gic_data_rdist()->vpe_table_mask)); 2951 2952 return 0; 2953 } 2954 2955 static int its_alloc_collections(struct its_node *its) 2956 { 2957 int i; 2958 2959 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections), 2960 GFP_KERNEL); 2961 if (!its->collections) 2962 return -ENOMEM; 2963 2964 for (i = 0; i < nr_cpu_ids; i++) 2965 its->collections[i].target_address = ~0ULL; 2966 2967 return 0; 2968 } 2969 2970 static struct page *its_allocate_pending_table(gfp_t gfp_flags) 2971 { 2972 struct page *pend_page; 2973 2974 pend_page = alloc_pages(gfp_flags | __GFP_ZERO, 2975 get_order(LPI_PENDBASE_SZ)); 2976 if (!pend_page) 2977 return NULL; 2978 2979 /* Make sure the GIC will observe the zero-ed page */ 2980 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); 2981 2982 return pend_page; 2983 } 2984 2985 static void its_free_pending_table(struct page *pt) 2986 { 2987 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ)); 2988 } 2989 2990 /* 2991 * Booting with kdump and LPIs enabled is generally fine. Any other 2992 * case is wrong in the absence of firmware/EFI support. 2993 */ 2994 static bool enabled_lpis_allowed(void) 2995 { 2996 phys_addr_t addr; 2997 u64 val; 2998 2999 /* Check whether the property table is in a reserved region */ 3000 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 3001 addr = val & GENMASK_ULL(51, 12); 3002 3003 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ); 3004 } 3005 3006 static int __init allocate_lpi_tables(void) 3007 { 3008 u64 val; 3009 int err, cpu; 3010 3011 /* 3012 * If LPIs are enabled while we run this from the boot CPU, 3013 * flag the RD tables as pre-allocated if the stars do align. 3014 */ 3015 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR); 3016 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) { 3017 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED | 3018 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING); 3019 pr_info("GICv3: Using preallocated redistributor tables\n"); 3020 } 3021 3022 err = its_setup_lpi_prop_table(); 3023 if (err) 3024 return err; 3025 3026 /* 3027 * We allocate all the pending tables anyway, as we may have a 3028 * mix of RDs that have had LPIs enabled, and some that 3029 * don't. We'll free the unused ones as each CPU comes online. 3030 */ 3031 for_each_possible_cpu(cpu) { 3032 struct page *pend_page; 3033 3034 pend_page = its_allocate_pending_table(GFP_NOWAIT); 3035 if (!pend_page) { 3036 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu); 3037 return -ENOMEM; 3038 } 3039 3040 gic_data_rdist_cpu(cpu)->pend_page = pend_page; 3041 } 3042 3043 return 0; 3044 } 3045 3046 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base) 3047 { 3048 u32 count = 1000000; /* 1s! */ 3049 bool clean; 3050 u64 val; 3051 3052 do { 3053 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 3054 clean = !(val & GICR_VPENDBASER_Dirty); 3055 if (!clean) { 3056 count--; 3057 cpu_relax(); 3058 udelay(1); 3059 } 3060 } while (!clean && count); 3061 3062 if (unlikely(!clean)) 3063 pr_err_ratelimited("ITS virtual pending table not cleaning\n"); 3064 3065 return val; 3066 } 3067 3068 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set) 3069 { 3070 u64 val; 3071 3072 /* Make sure we wait until the RD is done with the initial scan */ 3073 val = read_vpend_dirty_clear(vlpi_base); 3074 val &= ~GICR_VPENDBASER_Valid; 3075 val &= ~clr; 3076 val |= set; 3077 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3078 3079 val = read_vpend_dirty_clear(vlpi_base); 3080 if (unlikely(val & GICR_VPENDBASER_Dirty)) 3081 val |= GICR_VPENDBASER_PendingLast; 3082 3083 return val; 3084 } 3085 3086 static void its_cpu_init_lpis(void) 3087 { 3088 void __iomem *rbase = gic_data_rdist_rd_base(); 3089 struct page *pend_page; 3090 phys_addr_t paddr; 3091 u64 val, tmp; 3092 3093 if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) 3094 return; 3095 3096 val = readl_relaxed(rbase + GICR_CTLR); 3097 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) && 3098 (val & GICR_CTLR_ENABLE_LPIS)) { 3099 /* 3100 * Check that we get the same property table on all 3101 * RDs. If we don't, this is hopeless. 3102 */ 3103 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER); 3104 paddr &= GENMASK_ULL(51, 12); 3105 if (WARN_ON(gic_rdists->prop_table_pa != paddr)) 3106 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 3107 3108 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3109 paddr &= GENMASK_ULL(51, 16); 3110 3111 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ)); 3112 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED; 3113 3114 goto out; 3115 } 3116 3117 pend_page = gic_data_rdist()->pend_page; 3118 paddr = page_to_phys(pend_page); 3119 3120 /* set PROPBASE */ 3121 val = (gic_rdists->prop_table_pa | 3122 GICR_PROPBASER_InnerShareable | 3123 GICR_PROPBASER_RaWaWb | 3124 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); 3125 3126 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3127 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); 3128 3129 if (gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE) 3130 tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK; 3131 3132 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { 3133 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { 3134 /* 3135 * The HW reports non-shareable, we must 3136 * remove the cacheability attributes as 3137 * well. 3138 */ 3139 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | 3140 GICR_PROPBASER_CACHEABILITY_MASK); 3141 val |= GICR_PROPBASER_nC; 3142 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3143 } 3144 pr_info_once("GIC: using cache flushing for LPI property table\n"); 3145 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; 3146 } 3147 3148 /* set PENDBASE */ 3149 val = (page_to_phys(pend_page) | 3150 GICR_PENDBASER_InnerShareable | 3151 GICR_PENDBASER_RaWaWb); 3152 3153 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3154 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3155 3156 if (gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE) 3157 tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK; 3158 3159 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { 3160 /* 3161 * The HW reports non-shareable, we must remove the 3162 * cacheability attributes as well. 3163 */ 3164 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | 3165 GICR_PENDBASER_CACHEABILITY_MASK); 3166 val |= GICR_PENDBASER_nC; 3167 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3168 } 3169 3170 /* Enable LPIs */ 3171 val = readl_relaxed(rbase + GICR_CTLR); 3172 val |= GICR_CTLR_ENABLE_LPIS; 3173 writel_relaxed(val, rbase + GICR_CTLR); 3174 3175 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) { 3176 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3177 3178 /* 3179 * It's possible for CPU to receive VLPIs before it is 3180 * scheduled as a vPE, especially for the first CPU, and the 3181 * VLPI with INTID larger than 2^(IDbits+1) will be considered 3182 * as out of range and dropped by GIC. 3183 * So we initialize IDbits to known value to avoid VLPI drop. 3184 */ 3185 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3186 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n", 3187 smp_processor_id(), val); 3188 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3189 3190 /* 3191 * Also clear Valid bit of GICR_VPENDBASER, in case some 3192 * ancient programming gets left in and has possibility of 3193 * corrupting memory. 3194 */ 3195 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3196 } 3197 3198 if (allocate_vpe_l1_table()) { 3199 /* 3200 * If the allocation has failed, we're in massive trouble. 3201 * Disable direct injection, and pray that no VM was 3202 * already running... 3203 */ 3204 gic_rdists->has_rvpeid = false; 3205 gic_rdists->has_vlpis = false; 3206 } 3207 3208 /* Make sure the GIC has seen the above */ 3209 dsb(sy); 3210 out: 3211 gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED; 3212 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n", 3213 smp_processor_id(), 3214 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ? 3215 "reserved" : "allocated", 3216 &paddr); 3217 } 3218 3219 static void its_cpu_init_collection(struct its_node *its) 3220 { 3221 int cpu = smp_processor_id(); 3222 u64 target; 3223 3224 /* avoid cross node collections and its mapping */ 3225 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 3226 struct device_node *cpu_node; 3227 3228 cpu_node = of_get_cpu_node(cpu, NULL); 3229 if (its->numa_node != NUMA_NO_NODE && 3230 its->numa_node != of_node_to_nid(cpu_node)) 3231 return; 3232 } 3233 3234 /* 3235 * We now have to bind each collection to its target 3236 * redistributor. 3237 */ 3238 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { 3239 /* 3240 * This ITS wants the physical address of the 3241 * redistributor. 3242 */ 3243 target = gic_data_rdist()->phys_base; 3244 } else { 3245 /* This ITS wants a linear CPU number. */ 3246 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 3247 target = GICR_TYPER_CPU_NUMBER(target) << 16; 3248 } 3249 3250 /* Perform collection mapping */ 3251 its->collections[cpu].target_address = target; 3252 its->collections[cpu].col_id = cpu; 3253 3254 its_send_mapc(its, &its->collections[cpu], 1); 3255 its_send_invall(its, &its->collections[cpu]); 3256 } 3257 3258 static void its_cpu_init_collections(void) 3259 { 3260 struct its_node *its; 3261 3262 raw_spin_lock(&its_lock); 3263 3264 list_for_each_entry(its, &its_nodes, entry) 3265 its_cpu_init_collection(its); 3266 3267 raw_spin_unlock(&its_lock); 3268 } 3269 3270 static struct its_device *its_find_device(struct its_node *its, u32 dev_id) 3271 { 3272 struct its_device *its_dev = NULL, *tmp; 3273 unsigned long flags; 3274 3275 raw_spin_lock_irqsave(&its->lock, flags); 3276 3277 list_for_each_entry(tmp, &its->its_device_list, entry) { 3278 if (tmp->device_id == dev_id) { 3279 its_dev = tmp; 3280 break; 3281 } 3282 } 3283 3284 raw_spin_unlock_irqrestore(&its->lock, flags); 3285 3286 return its_dev; 3287 } 3288 3289 static struct its_baser *its_get_baser(struct its_node *its, u32 type) 3290 { 3291 int i; 3292 3293 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 3294 if (GITS_BASER_TYPE(its->tables[i].val) == type) 3295 return &its->tables[i]; 3296 } 3297 3298 return NULL; 3299 } 3300 3301 static bool its_alloc_table_entry(struct its_node *its, 3302 struct its_baser *baser, u32 id) 3303 { 3304 struct page *page; 3305 u32 esz, idx; 3306 __le64 *table; 3307 3308 /* Don't allow device id that exceeds single, flat table limit */ 3309 esz = GITS_BASER_ENTRY_SIZE(baser->val); 3310 if (!(baser->val & GITS_BASER_INDIRECT)) 3311 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); 3312 3313 /* Compute 1st level table index & check if that exceeds table limit */ 3314 idx = id >> ilog2(baser->psz / esz); 3315 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) 3316 return false; 3317 3318 table = baser->base; 3319 3320 /* Allocate memory for 2nd level table */ 3321 if (!table[idx]) { 3322 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 3323 get_order(baser->psz)); 3324 if (!page) 3325 return false; 3326 3327 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 3328 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3329 gic_flush_dcache_to_poc(page_address(page), baser->psz); 3330 3331 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 3332 3333 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 3334 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3335 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 3336 3337 /* Ensure updated table contents are visible to ITS hardware */ 3338 dsb(sy); 3339 } 3340 3341 return true; 3342 } 3343 3344 static bool its_alloc_device_table(struct its_node *its, u32 dev_id) 3345 { 3346 struct its_baser *baser; 3347 3348 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); 3349 3350 /* Don't allow device id that exceeds ITS hardware limit */ 3351 if (!baser) 3352 return (ilog2(dev_id) < device_ids(its)); 3353 3354 return its_alloc_table_entry(its, baser, dev_id); 3355 } 3356 3357 static bool its_alloc_vpe_table(u32 vpe_id) 3358 { 3359 struct its_node *its; 3360 int cpu; 3361 3362 /* 3363 * Make sure the L2 tables are allocated on *all* v4 ITSs. We 3364 * could try and only do it on ITSs corresponding to devices 3365 * that have interrupts targeted at this VPE, but the 3366 * complexity becomes crazy (and you have tons of memory 3367 * anyway, right?). 3368 */ 3369 list_for_each_entry(its, &its_nodes, entry) { 3370 struct its_baser *baser; 3371 3372 if (!is_v4(its)) 3373 continue; 3374 3375 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); 3376 if (!baser) 3377 return false; 3378 3379 if (!its_alloc_table_entry(its, baser, vpe_id)) 3380 return false; 3381 } 3382 3383 /* Non v4.1? No need to iterate RDs and go back early. */ 3384 if (!gic_rdists->has_rvpeid) 3385 return true; 3386 3387 /* 3388 * Make sure the L2 tables are allocated for all copies of 3389 * the L1 table on *all* v4.1 RDs. 3390 */ 3391 for_each_possible_cpu(cpu) { 3392 if (!allocate_vpe_l2_table(cpu, vpe_id)) 3393 return false; 3394 } 3395 3396 return true; 3397 } 3398 3399 static struct its_device *its_create_device(struct its_node *its, u32 dev_id, 3400 int nvecs, bool alloc_lpis) 3401 { 3402 struct its_device *dev; 3403 unsigned long *lpi_map = NULL; 3404 unsigned long flags; 3405 u16 *col_map = NULL; 3406 void *itt; 3407 int lpi_base; 3408 int nr_lpis; 3409 int nr_ites; 3410 int sz; 3411 3412 if (!its_alloc_device_table(its, dev_id)) 3413 return NULL; 3414 3415 if (WARN_ON(!is_power_of_2(nvecs))) 3416 nvecs = roundup_pow_of_two(nvecs); 3417 3418 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3419 /* 3420 * Even if the device wants a single LPI, the ITT must be 3421 * sized as a power of two (and you need at least one bit...). 3422 */ 3423 nr_ites = max(2, nvecs); 3424 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1); 3425 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; 3426 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node); 3427 if (alloc_lpis) { 3428 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis); 3429 if (lpi_map) 3430 col_map = kcalloc(nr_lpis, sizeof(*col_map), 3431 GFP_KERNEL); 3432 } else { 3433 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL); 3434 nr_lpis = 0; 3435 lpi_base = 0; 3436 } 3437 3438 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) { 3439 kfree(dev); 3440 kfree(itt); 3441 bitmap_free(lpi_map); 3442 kfree(col_map); 3443 return NULL; 3444 } 3445 3446 gic_flush_dcache_to_poc(itt, sz); 3447 3448 dev->its = its; 3449 dev->itt = itt; 3450 dev->nr_ites = nr_ites; 3451 dev->event_map.lpi_map = lpi_map; 3452 dev->event_map.col_map = col_map; 3453 dev->event_map.lpi_base = lpi_base; 3454 dev->event_map.nr_lpis = nr_lpis; 3455 raw_spin_lock_init(&dev->event_map.vlpi_lock); 3456 dev->device_id = dev_id; 3457 INIT_LIST_HEAD(&dev->entry); 3458 3459 raw_spin_lock_irqsave(&its->lock, flags); 3460 list_add(&dev->entry, &its->its_device_list); 3461 raw_spin_unlock_irqrestore(&its->lock, flags); 3462 3463 /* Map device to its ITT */ 3464 its_send_mapd(dev, 1); 3465 3466 return dev; 3467 } 3468 3469 static void its_free_device(struct its_device *its_dev) 3470 { 3471 unsigned long flags; 3472 3473 raw_spin_lock_irqsave(&its_dev->its->lock, flags); 3474 list_del(&its_dev->entry); 3475 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); 3476 kfree(its_dev->event_map.col_map); 3477 kfree(its_dev->itt); 3478 kfree(its_dev); 3479 } 3480 3481 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq) 3482 { 3483 int idx; 3484 3485 /* Find a free LPI region in lpi_map and allocate them. */ 3486 idx = bitmap_find_free_region(dev->event_map.lpi_map, 3487 dev->event_map.nr_lpis, 3488 get_count_order(nvecs)); 3489 if (idx < 0) 3490 return -ENOSPC; 3491 3492 *hwirq = dev->event_map.lpi_base + idx; 3493 3494 return 0; 3495 } 3496 3497 static int its_msi_prepare(struct irq_domain *domain, struct device *dev, 3498 int nvec, msi_alloc_info_t *info) 3499 { 3500 struct its_node *its; 3501 struct its_device *its_dev; 3502 struct msi_domain_info *msi_info; 3503 u32 dev_id; 3504 int err = 0; 3505 3506 /* 3507 * We ignore "dev" entirely, and rely on the dev_id that has 3508 * been passed via the scratchpad. This limits this domain's 3509 * usefulness to upper layers that definitely know that they 3510 * are built on top of the ITS. 3511 */ 3512 dev_id = info->scratchpad[0].ul; 3513 3514 msi_info = msi_get_domain_info(domain); 3515 its = msi_info->data; 3516 3517 if (!gic_rdists->has_direct_lpi && 3518 vpe_proxy.dev && 3519 vpe_proxy.dev->its == its && 3520 dev_id == vpe_proxy.dev->device_id) { 3521 /* Bad luck. Get yourself a better implementation */ 3522 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", 3523 dev_id); 3524 return -EINVAL; 3525 } 3526 3527 mutex_lock(&its->dev_alloc_lock); 3528 its_dev = its_find_device(its, dev_id); 3529 if (its_dev) { 3530 /* 3531 * We already have seen this ID, probably through 3532 * another alias (PCI bridge of some sort). No need to 3533 * create the device. 3534 */ 3535 its_dev->shared = true; 3536 pr_debug("Reusing ITT for devID %x\n", dev_id); 3537 goto out; 3538 } 3539 3540 its_dev = its_create_device(its, dev_id, nvec, true); 3541 if (!its_dev) { 3542 err = -ENOMEM; 3543 goto out; 3544 } 3545 3546 if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE) 3547 its_dev->shared = true; 3548 3549 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); 3550 out: 3551 mutex_unlock(&its->dev_alloc_lock); 3552 info->scratchpad[0].ptr = its_dev; 3553 return err; 3554 } 3555 3556 static struct msi_domain_ops its_msi_domain_ops = { 3557 .msi_prepare = its_msi_prepare, 3558 }; 3559 3560 static int its_irq_gic_domain_alloc(struct irq_domain *domain, 3561 unsigned int virq, 3562 irq_hw_number_t hwirq) 3563 { 3564 struct irq_fwspec fwspec; 3565 3566 if (irq_domain_get_of_node(domain->parent)) { 3567 fwspec.fwnode = domain->parent->fwnode; 3568 fwspec.param_count = 3; 3569 fwspec.param[0] = GIC_IRQ_TYPE_LPI; 3570 fwspec.param[1] = hwirq; 3571 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 3572 } else if (is_fwnode_irqchip(domain->parent->fwnode)) { 3573 fwspec.fwnode = domain->parent->fwnode; 3574 fwspec.param_count = 2; 3575 fwspec.param[0] = hwirq; 3576 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 3577 } else { 3578 return -EINVAL; 3579 } 3580 3581 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 3582 } 3583 3584 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 3585 unsigned int nr_irqs, void *args) 3586 { 3587 msi_alloc_info_t *info = args; 3588 struct its_device *its_dev = info->scratchpad[0].ptr; 3589 struct its_node *its = its_dev->its; 3590 struct irq_data *irqd; 3591 irq_hw_number_t hwirq; 3592 int err; 3593 int i; 3594 3595 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq); 3596 if (err) 3597 return err; 3598 3599 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev)); 3600 if (err) 3601 return err; 3602 3603 for (i = 0; i < nr_irqs; i++) { 3604 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i); 3605 if (err) 3606 return err; 3607 3608 irq_domain_set_hwirq_and_chip(domain, virq + i, 3609 hwirq + i, &its_irq_chip, its_dev); 3610 irqd = irq_get_irq_data(virq + i); 3611 irqd_set_single_target(irqd); 3612 irqd_set_affinity_on_activate(irqd); 3613 irqd_set_resend_when_in_progress(irqd); 3614 pr_debug("ID:%d pID:%d vID:%d\n", 3615 (int)(hwirq + i - its_dev->event_map.lpi_base), 3616 (int)(hwirq + i), virq + i); 3617 } 3618 3619 return 0; 3620 } 3621 3622 static int its_irq_domain_activate(struct irq_domain *domain, 3623 struct irq_data *d, bool reserve) 3624 { 3625 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3626 u32 event = its_get_event_id(d); 3627 int cpu; 3628 3629 cpu = its_select_cpu(d, cpu_online_mask); 3630 if (cpu < 0 || cpu >= nr_cpu_ids) 3631 return -EINVAL; 3632 3633 its_inc_lpi_count(d, cpu); 3634 its_dev->event_map.col_map[event] = cpu; 3635 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3636 3637 /* Map the GIC IRQ and event to the device */ 3638 its_send_mapti(its_dev, d->hwirq, event); 3639 return 0; 3640 } 3641 3642 static void its_irq_domain_deactivate(struct irq_domain *domain, 3643 struct irq_data *d) 3644 { 3645 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3646 u32 event = its_get_event_id(d); 3647 3648 its_dec_lpi_count(d, its_dev->event_map.col_map[event]); 3649 /* Stop the delivery of interrupts */ 3650 its_send_discard(its_dev, event); 3651 } 3652 3653 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, 3654 unsigned int nr_irqs) 3655 { 3656 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 3657 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3658 struct its_node *its = its_dev->its; 3659 int i; 3660 3661 bitmap_release_region(its_dev->event_map.lpi_map, 3662 its_get_event_id(irq_domain_get_irq_data(domain, virq)), 3663 get_count_order(nr_irqs)); 3664 3665 for (i = 0; i < nr_irqs; i++) { 3666 struct irq_data *data = irq_domain_get_irq_data(domain, 3667 virq + i); 3668 /* Nuke the entry in the domain */ 3669 irq_domain_reset_irq_data(data); 3670 } 3671 3672 mutex_lock(&its->dev_alloc_lock); 3673 3674 /* 3675 * If all interrupts have been freed, start mopping the 3676 * floor. This is conditioned on the device not being shared. 3677 */ 3678 if (!its_dev->shared && 3679 bitmap_empty(its_dev->event_map.lpi_map, 3680 its_dev->event_map.nr_lpis)) { 3681 its_lpi_free(its_dev->event_map.lpi_map, 3682 its_dev->event_map.lpi_base, 3683 its_dev->event_map.nr_lpis); 3684 3685 /* Unmap device/itt */ 3686 its_send_mapd(its_dev, 0); 3687 its_free_device(its_dev); 3688 } 3689 3690 mutex_unlock(&its->dev_alloc_lock); 3691 3692 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 3693 } 3694 3695 static const struct irq_domain_ops its_domain_ops = { 3696 .alloc = its_irq_domain_alloc, 3697 .free = its_irq_domain_free, 3698 .activate = its_irq_domain_activate, 3699 .deactivate = its_irq_domain_deactivate, 3700 }; 3701 3702 /* 3703 * This is insane. 3704 * 3705 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely 3706 * likely), the only way to perform an invalidate is to use a fake 3707 * device to issue an INV command, implying that the LPI has first 3708 * been mapped to some event on that device. Since this is not exactly 3709 * cheap, we try to keep that mapping around as long as possible, and 3710 * only issue an UNMAP if we're short on available slots. 3711 * 3712 * Broken by design(tm). 3713 * 3714 * GICv4.1, on the other hand, mandates that we're able to invalidate 3715 * by writing to a MMIO register. It doesn't implement the whole of 3716 * DirectLPI, but that's good enough. And most of the time, we don't 3717 * even have to invalidate anything, as the redistributor can be told 3718 * whether to generate a doorbell or not (we thus leave it enabled, 3719 * always). 3720 */ 3721 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) 3722 { 3723 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3724 if (gic_rdists->has_rvpeid) 3725 return; 3726 3727 /* Already unmapped? */ 3728 if (vpe->vpe_proxy_event == -1) 3729 return; 3730 3731 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); 3732 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; 3733 3734 /* 3735 * We don't track empty slots at all, so let's move the 3736 * next_victim pointer if we can quickly reuse that slot 3737 * instead of nuking an existing entry. Not clear that this is 3738 * always a win though, and this might just generate a ripple 3739 * effect... Let's just hope VPEs don't migrate too often. 3740 */ 3741 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3742 vpe_proxy.next_victim = vpe->vpe_proxy_event; 3743 3744 vpe->vpe_proxy_event = -1; 3745 } 3746 3747 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) 3748 { 3749 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3750 if (gic_rdists->has_rvpeid) 3751 return; 3752 3753 if (!gic_rdists->has_direct_lpi) { 3754 unsigned long flags; 3755 3756 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3757 its_vpe_db_proxy_unmap_locked(vpe); 3758 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3759 } 3760 } 3761 3762 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) 3763 { 3764 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3765 if (gic_rdists->has_rvpeid) 3766 return; 3767 3768 /* Already mapped? */ 3769 if (vpe->vpe_proxy_event != -1) 3770 return; 3771 3772 /* This slot was already allocated. Kick the other VPE out. */ 3773 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3774 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); 3775 3776 /* Map the new VPE instead */ 3777 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; 3778 vpe->vpe_proxy_event = vpe_proxy.next_victim; 3779 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; 3780 3781 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; 3782 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); 3783 } 3784 3785 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) 3786 { 3787 unsigned long flags; 3788 struct its_collection *target_col; 3789 3790 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3791 if (gic_rdists->has_rvpeid) 3792 return; 3793 3794 if (gic_rdists->has_direct_lpi) { 3795 void __iomem *rdbase; 3796 3797 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; 3798 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 3799 wait_for_syncr(rdbase); 3800 3801 return; 3802 } 3803 3804 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3805 3806 its_vpe_db_proxy_map_locked(vpe); 3807 3808 target_col = &vpe_proxy.dev->its->collections[to]; 3809 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); 3810 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; 3811 3812 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3813 } 3814 3815 static int its_vpe_set_affinity(struct irq_data *d, 3816 const struct cpumask *mask_val, 3817 bool force) 3818 { 3819 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3820 int from, cpu = cpumask_first(mask_val); 3821 unsigned long flags; 3822 3823 /* 3824 * Changing affinity is mega expensive, so let's be as lazy as 3825 * we can and only do it if we really have to. Also, if mapped 3826 * into the proxy device, we need to move the doorbell 3827 * interrupt to its new location. 3828 * 3829 * Another thing is that changing the affinity of a vPE affects 3830 * *other interrupts* such as all the vLPIs that are routed to 3831 * this vPE. This means that the irq_desc lock is not enough to 3832 * protect us, and that we must ensure nobody samples vpe->col_idx 3833 * during the update, hence the lock below which must also be 3834 * taken on any vLPI handling path that evaluates vpe->col_idx. 3835 */ 3836 from = vpe_to_cpuid_lock(vpe, &flags); 3837 if (from == cpu) 3838 goto out; 3839 3840 vpe->col_idx = cpu; 3841 3842 /* 3843 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD 3844 * is sharing its VPE table with the current one. 3845 */ 3846 if (gic_data_rdist_cpu(cpu)->vpe_table_mask && 3847 cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask)) 3848 goto out; 3849 3850 its_send_vmovp(vpe); 3851 its_vpe_db_proxy_move(vpe, from, cpu); 3852 3853 out: 3854 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3855 vpe_to_cpuid_unlock(vpe, flags); 3856 3857 return IRQ_SET_MASK_OK_DONE; 3858 } 3859 3860 static void its_wait_vpt_parse_complete(void) 3861 { 3862 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3863 u64 val; 3864 3865 if (!gic_rdists->has_vpend_valid_dirty) 3866 return; 3867 3868 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER, 3869 val, 3870 !(val & GICR_VPENDBASER_Dirty), 3871 1, 500)); 3872 } 3873 3874 static void its_vpe_schedule(struct its_vpe *vpe) 3875 { 3876 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3877 u64 val; 3878 3879 /* Schedule the VPE */ 3880 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & 3881 GENMASK_ULL(51, 12); 3882 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3883 val |= GICR_VPROPBASER_RaWb; 3884 val |= GICR_VPROPBASER_InnerShareable; 3885 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3886 3887 val = virt_to_phys(page_address(vpe->vpt_page)) & 3888 GENMASK_ULL(51, 16); 3889 val |= GICR_VPENDBASER_RaWaWb; 3890 val |= GICR_VPENDBASER_InnerShareable; 3891 /* 3892 * There is no good way of finding out if the pending table is 3893 * empty as we can race against the doorbell interrupt very 3894 * easily. So in the end, vpe->pending_last is only an 3895 * indication that the vcpu has something pending, not one 3896 * that the pending table is empty. A good implementation 3897 * would be able to read its coarse map pretty quickly anyway, 3898 * making this a tolerable issue. 3899 */ 3900 val |= GICR_VPENDBASER_PendingLast; 3901 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; 3902 val |= GICR_VPENDBASER_Valid; 3903 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3904 } 3905 3906 static void its_vpe_deschedule(struct its_vpe *vpe) 3907 { 3908 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3909 u64 val; 3910 3911 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3912 3913 vpe->idai = !!(val & GICR_VPENDBASER_IDAI); 3914 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 3915 } 3916 3917 static void its_vpe_invall(struct its_vpe *vpe) 3918 { 3919 struct its_node *its; 3920 3921 list_for_each_entry(its, &its_nodes, entry) { 3922 if (!is_v4(its)) 3923 continue; 3924 3925 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr]) 3926 continue; 3927 3928 /* 3929 * Sending a VINVALL to a single ITS is enough, as all 3930 * we need is to reach the redistributors. 3931 */ 3932 its_send_vinvall(its, vpe); 3933 return; 3934 } 3935 } 3936 3937 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 3938 { 3939 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3940 struct its_cmd_info *info = vcpu_info; 3941 3942 switch (info->cmd_type) { 3943 case SCHEDULE_VPE: 3944 its_vpe_schedule(vpe); 3945 return 0; 3946 3947 case DESCHEDULE_VPE: 3948 its_vpe_deschedule(vpe); 3949 return 0; 3950 3951 case COMMIT_VPE: 3952 its_wait_vpt_parse_complete(); 3953 return 0; 3954 3955 case INVALL_VPE: 3956 its_vpe_invall(vpe); 3957 return 0; 3958 3959 default: 3960 return -EINVAL; 3961 } 3962 } 3963 3964 static void its_vpe_send_cmd(struct its_vpe *vpe, 3965 void (*cmd)(struct its_device *, u32)) 3966 { 3967 unsigned long flags; 3968 3969 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3970 3971 its_vpe_db_proxy_map_locked(vpe); 3972 cmd(vpe_proxy.dev, vpe->vpe_proxy_event); 3973 3974 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3975 } 3976 3977 static void its_vpe_send_inv(struct irq_data *d) 3978 { 3979 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3980 3981 if (gic_rdists->has_direct_lpi) 3982 __direct_lpi_inv(d, d->parent_data->hwirq); 3983 else 3984 its_vpe_send_cmd(vpe, its_send_inv); 3985 } 3986 3987 static void its_vpe_mask_irq(struct irq_data *d) 3988 { 3989 /* 3990 * We need to unmask the LPI, which is described by the parent 3991 * irq_data. Instead of calling into the parent (which won't 3992 * exactly do the right thing, let's simply use the 3993 * parent_data pointer. Yes, I'm naughty. 3994 */ 3995 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 3996 its_vpe_send_inv(d); 3997 } 3998 3999 static void its_vpe_unmask_irq(struct irq_data *d) 4000 { 4001 /* Same hack as above... */ 4002 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 4003 its_vpe_send_inv(d); 4004 } 4005 4006 static int its_vpe_set_irqchip_state(struct irq_data *d, 4007 enum irqchip_irq_state which, 4008 bool state) 4009 { 4010 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4011 4012 if (which != IRQCHIP_STATE_PENDING) 4013 return -EINVAL; 4014 4015 if (gic_rdists->has_direct_lpi) { 4016 void __iomem *rdbase; 4017 4018 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 4019 if (state) { 4020 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); 4021 } else { 4022 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 4023 wait_for_syncr(rdbase); 4024 } 4025 } else { 4026 if (state) 4027 its_vpe_send_cmd(vpe, its_send_int); 4028 else 4029 its_vpe_send_cmd(vpe, its_send_clear); 4030 } 4031 4032 return 0; 4033 } 4034 4035 static int its_vpe_retrigger(struct irq_data *d) 4036 { 4037 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 4038 } 4039 4040 static struct irq_chip its_vpe_irq_chip = { 4041 .name = "GICv4-vpe", 4042 .irq_mask = its_vpe_mask_irq, 4043 .irq_unmask = its_vpe_unmask_irq, 4044 .irq_eoi = irq_chip_eoi_parent, 4045 .irq_set_affinity = its_vpe_set_affinity, 4046 .irq_retrigger = its_vpe_retrigger, 4047 .irq_set_irqchip_state = its_vpe_set_irqchip_state, 4048 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity, 4049 }; 4050 4051 static struct its_node *find_4_1_its(void) 4052 { 4053 static struct its_node *its = NULL; 4054 4055 if (!its) { 4056 list_for_each_entry(its, &its_nodes, entry) { 4057 if (is_v4_1(its)) 4058 return its; 4059 } 4060 4061 /* Oops? */ 4062 its = NULL; 4063 } 4064 4065 return its; 4066 } 4067 4068 static void its_vpe_4_1_send_inv(struct irq_data *d) 4069 { 4070 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4071 struct its_node *its; 4072 4073 /* 4074 * GICv4.1 wants doorbells to be invalidated using the 4075 * INVDB command in order to be broadcast to all RDs. Send 4076 * it to the first valid ITS, and let the HW do its magic. 4077 */ 4078 its = find_4_1_its(); 4079 if (its) 4080 its_send_invdb(its, vpe); 4081 } 4082 4083 static void its_vpe_4_1_mask_irq(struct irq_data *d) 4084 { 4085 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 4086 its_vpe_4_1_send_inv(d); 4087 } 4088 4089 static void its_vpe_4_1_unmask_irq(struct irq_data *d) 4090 { 4091 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 4092 its_vpe_4_1_send_inv(d); 4093 } 4094 4095 static void its_vpe_4_1_schedule(struct its_vpe *vpe, 4096 struct its_cmd_info *info) 4097 { 4098 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4099 u64 val = 0; 4100 4101 /* Schedule the VPE */ 4102 val |= GICR_VPENDBASER_Valid; 4103 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0; 4104 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0; 4105 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id); 4106 4107 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 4108 } 4109 4110 static void its_vpe_4_1_deschedule(struct its_vpe *vpe, 4111 struct its_cmd_info *info) 4112 { 4113 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4114 u64 val; 4115 4116 if (info->req_db) { 4117 unsigned long flags; 4118 4119 /* 4120 * vPE is going to block: make the vPE non-resident with 4121 * PendingLast clear and DB set. The GIC guarantees that if 4122 * we read-back PendingLast clear, then a doorbell will be 4123 * delivered when an interrupt comes. 4124 * 4125 * Note the locking to deal with the concurrent update of 4126 * pending_last from the doorbell interrupt handler that can 4127 * run concurrently. 4128 */ 4129 raw_spin_lock_irqsave(&vpe->vpe_lock, flags); 4130 val = its_clear_vpend_valid(vlpi_base, 4131 GICR_VPENDBASER_PendingLast, 4132 GICR_VPENDBASER_4_1_DB); 4133 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 4134 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 4135 } else { 4136 /* 4137 * We're not blocking, so just make the vPE non-resident 4138 * with PendingLast set, indicating that we'll be back. 4139 */ 4140 val = its_clear_vpend_valid(vlpi_base, 4141 0, 4142 GICR_VPENDBASER_PendingLast); 4143 vpe->pending_last = true; 4144 } 4145 } 4146 4147 static void its_vpe_4_1_invall(struct its_vpe *vpe) 4148 { 4149 void __iomem *rdbase; 4150 unsigned long flags; 4151 u64 val; 4152 int cpu; 4153 4154 val = GICR_INVALLR_V; 4155 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id); 4156 4157 /* Target the redistributor this vPE is currently known on */ 4158 cpu = vpe_to_cpuid_lock(vpe, &flags); 4159 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4160 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 4161 gic_write_lpir(val, rdbase + GICR_INVALLR); 4162 4163 wait_for_syncr(rdbase); 4164 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4165 vpe_to_cpuid_unlock(vpe, flags); 4166 } 4167 4168 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4169 { 4170 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4171 struct its_cmd_info *info = vcpu_info; 4172 4173 switch (info->cmd_type) { 4174 case SCHEDULE_VPE: 4175 its_vpe_4_1_schedule(vpe, info); 4176 return 0; 4177 4178 case DESCHEDULE_VPE: 4179 its_vpe_4_1_deschedule(vpe, info); 4180 return 0; 4181 4182 case COMMIT_VPE: 4183 its_wait_vpt_parse_complete(); 4184 return 0; 4185 4186 case INVALL_VPE: 4187 its_vpe_4_1_invall(vpe); 4188 return 0; 4189 4190 default: 4191 return -EINVAL; 4192 } 4193 } 4194 4195 static struct irq_chip its_vpe_4_1_irq_chip = { 4196 .name = "GICv4.1-vpe", 4197 .irq_mask = its_vpe_4_1_mask_irq, 4198 .irq_unmask = its_vpe_4_1_unmask_irq, 4199 .irq_eoi = irq_chip_eoi_parent, 4200 .irq_set_affinity = its_vpe_set_affinity, 4201 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity, 4202 }; 4203 4204 static void its_configure_sgi(struct irq_data *d, bool clear) 4205 { 4206 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4207 struct its_cmd_desc desc; 4208 4209 desc.its_vsgi_cmd.vpe = vpe; 4210 desc.its_vsgi_cmd.sgi = d->hwirq; 4211 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority; 4212 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled; 4213 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group; 4214 desc.its_vsgi_cmd.clear = clear; 4215 4216 /* 4217 * GICv4.1 allows us to send VSGI commands to any ITS as long as the 4218 * destination VPE is mapped there. Since we map them eagerly at 4219 * activation time, we're pretty sure the first GICv4.1 ITS will do. 4220 */ 4221 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc); 4222 } 4223 4224 static void its_sgi_mask_irq(struct irq_data *d) 4225 { 4226 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4227 4228 vpe->sgi_config[d->hwirq].enabled = false; 4229 its_configure_sgi(d, false); 4230 } 4231 4232 static void its_sgi_unmask_irq(struct irq_data *d) 4233 { 4234 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4235 4236 vpe->sgi_config[d->hwirq].enabled = true; 4237 its_configure_sgi(d, false); 4238 } 4239 4240 static int its_sgi_set_affinity(struct irq_data *d, 4241 const struct cpumask *mask_val, 4242 bool force) 4243 { 4244 /* 4245 * There is no notion of affinity for virtual SGIs, at least 4246 * not on the host (since they can only be targeting a vPE). 4247 * Tell the kernel we've done whatever it asked for. 4248 */ 4249 irq_data_update_effective_affinity(d, mask_val); 4250 return IRQ_SET_MASK_OK; 4251 } 4252 4253 static int its_sgi_set_irqchip_state(struct irq_data *d, 4254 enum irqchip_irq_state which, 4255 bool state) 4256 { 4257 if (which != IRQCHIP_STATE_PENDING) 4258 return -EINVAL; 4259 4260 if (state) { 4261 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4262 struct its_node *its = find_4_1_its(); 4263 u64 val; 4264 4265 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id); 4266 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq); 4267 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K); 4268 } else { 4269 its_configure_sgi(d, true); 4270 } 4271 4272 return 0; 4273 } 4274 4275 static int its_sgi_get_irqchip_state(struct irq_data *d, 4276 enum irqchip_irq_state which, bool *val) 4277 { 4278 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4279 void __iomem *base; 4280 unsigned long flags; 4281 u32 count = 1000000; /* 1s! */ 4282 u32 status; 4283 int cpu; 4284 4285 if (which != IRQCHIP_STATE_PENDING) 4286 return -EINVAL; 4287 4288 /* 4289 * Locking galore! We can race against two different events: 4290 * 4291 * - Concurrent vPE affinity change: we must make sure it cannot 4292 * happen, or we'll talk to the wrong redistributor. This is 4293 * identical to what happens with vLPIs. 4294 * 4295 * - Concurrent VSGIPENDR access: As it involves accessing two 4296 * MMIO registers, this must be made atomic one way or another. 4297 */ 4298 cpu = vpe_to_cpuid_lock(vpe, &flags); 4299 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4300 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K; 4301 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR); 4302 do { 4303 status = readl_relaxed(base + GICR_VSGIPENDR); 4304 if (!(status & GICR_VSGIPENDR_BUSY)) 4305 goto out; 4306 4307 count--; 4308 if (!count) { 4309 pr_err_ratelimited("Unable to get SGI status\n"); 4310 goto out; 4311 } 4312 cpu_relax(); 4313 udelay(1); 4314 } while (count); 4315 4316 out: 4317 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4318 vpe_to_cpuid_unlock(vpe, flags); 4319 4320 if (!count) 4321 return -ENXIO; 4322 4323 *val = !!(status & (1 << d->hwirq)); 4324 4325 return 0; 4326 } 4327 4328 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4329 { 4330 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4331 struct its_cmd_info *info = vcpu_info; 4332 4333 switch (info->cmd_type) { 4334 case PROP_UPDATE_VSGI: 4335 vpe->sgi_config[d->hwirq].priority = info->priority; 4336 vpe->sgi_config[d->hwirq].group = info->group; 4337 its_configure_sgi(d, false); 4338 return 0; 4339 4340 default: 4341 return -EINVAL; 4342 } 4343 } 4344 4345 static struct irq_chip its_sgi_irq_chip = { 4346 .name = "GICv4.1-sgi", 4347 .irq_mask = its_sgi_mask_irq, 4348 .irq_unmask = its_sgi_unmask_irq, 4349 .irq_set_affinity = its_sgi_set_affinity, 4350 .irq_set_irqchip_state = its_sgi_set_irqchip_state, 4351 .irq_get_irqchip_state = its_sgi_get_irqchip_state, 4352 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity, 4353 }; 4354 4355 static int its_sgi_irq_domain_alloc(struct irq_domain *domain, 4356 unsigned int virq, unsigned int nr_irqs, 4357 void *args) 4358 { 4359 struct its_vpe *vpe = args; 4360 int i; 4361 4362 /* Yes, we do want 16 SGIs */ 4363 WARN_ON(nr_irqs != 16); 4364 4365 for (i = 0; i < 16; i++) { 4366 vpe->sgi_config[i].priority = 0; 4367 vpe->sgi_config[i].enabled = false; 4368 vpe->sgi_config[i].group = false; 4369 4370 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4371 &its_sgi_irq_chip, vpe); 4372 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY); 4373 } 4374 4375 return 0; 4376 } 4377 4378 static void its_sgi_irq_domain_free(struct irq_domain *domain, 4379 unsigned int virq, 4380 unsigned int nr_irqs) 4381 { 4382 /* Nothing to do */ 4383 } 4384 4385 static int its_sgi_irq_domain_activate(struct irq_domain *domain, 4386 struct irq_data *d, bool reserve) 4387 { 4388 /* Write out the initial SGI configuration */ 4389 its_configure_sgi(d, false); 4390 return 0; 4391 } 4392 4393 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain, 4394 struct irq_data *d) 4395 { 4396 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4397 4398 /* 4399 * The VSGI command is awkward: 4400 * 4401 * - To change the configuration, CLEAR must be set to false, 4402 * leaving the pending bit unchanged. 4403 * - To clear the pending bit, CLEAR must be set to true, leaving 4404 * the configuration unchanged. 4405 * 4406 * You just can't do both at once, hence the two commands below. 4407 */ 4408 vpe->sgi_config[d->hwirq].enabled = false; 4409 its_configure_sgi(d, false); 4410 its_configure_sgi(d, true); 4411 } 4412 4413 static const struct irq_domain_ops its_sgi_domain_ops = { 4414 .alloc = its_sgi_irq_domain_alloc, 4415 .free = its_sgi_irq_domain_free, 4416 .activate = its_sgi_irq_domain_activate, 4417 .deactivate = its_sgi_irq_domain_deactivate, 4418 }; 4419 4420 static int its_vpe_id_alloc(void) 4421 { 4422 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL); 4423 } 4424 4425 static void its_vpe_id_free(u16 id) 4426 { 4427 ida_simple_remove(&its_vpeid_ida, id); 4428 } 4429 4430 static int its_vpe_init(struct its_vpe *vpe) 4431 { 4432 struct page *vpt_page; 4433 int vpe_id; 4434 4435 /* Allocate vpe_id */ 4436 vpe_id = its_vpe_id_alloc(); 4437 if (vpe_id < 0) 4438 return vpe_id; 4439 4440 /* Allocate VPT */ 4441 vpt_page = its_allocate_pending_table(GFP_KERNEL); 4442 if (!vpt_page) { 4443 its_vpe_id_free(vpe_id); 4444 return -ENOMEM; 4445 } 4446 4447 if (!its_alloc_vpe_table(vpe_id)) { 4448 its_vpe_id_free(vpe_id); 4449 its_free_pending_table(vpt_page); 4450 return -ENOMEM; 4451 } 4452 4453 raw_spin_lock_init(&vpe->vpe_lock); 4454 vpe->vpe_id = vpe_id; 4455 vpe->vpt_page = vpt_page; 4456 if (gic_rdists->has_rvpeid) 4457 atomic_set(&vpe->vmapp_count, 0); 4458 else 4459 vpe->vpe_proxy_event = -1; 4460 4461 return 0; 4462 } 4463 4464 static void its_vpe_teardown(struct its_vpe *vpe) 4465 { 4466 its_vpe_db_proxy_unmap(vpe); 4467 its_vpe_id_free(vpe->vpe_id); 4468 its_free_pending_table(vpe->vpt_page); 4469 } 4470 4471 static void its_vpe_irq_domain_free(struct irq_domain *domain, 4472 unsigned int virq, 4473 unsigned int nr_irqs) 4474 { 4475 struct its_vm *vm = domain->host_data; 4476 int i; 4477 4478 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 4479 4480 for (i = 0; i < nr_irqs; i++) { 4481 struct irq_data *data = irq_domain_get_irq_data(domain, 4482 virq + i); 4483 struct its_vpe *vpe = irq_data_get_irq_chip_data(data); 4484 4485 BUG_ON(vm != vpe->its_vm); 4486 4487 clear_bit(data->hwirq, vm->db_bitmap); 4488 its_vpe_teardown(vpe); 4489 irq_domain_reset_irq_data(data); 4490 } 4491 4492 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { 4493 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); 4494 its_free_prop_table(vm->vprop_page); 4495 } 4496 } 4497 4498 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 4499 unsigned int nr_irqs, void *args) 4500 { 4501 struct irq_chip *irqchip = &its_vpe_irq_chip; 4502 struct its_vm *vm = args; 4503 unsigned long *bitmap; 4504 struct page *vprop_page; 4505 int base, nr_ids, i, err = 0; 4506 4507 BUG_ON(!vm); 4508 4509 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids); 4510 if (!bitmap) 4511 return -ENOMEM; 4512 4513 if (nr_ids < nr_irqs) { 4514 its_lpi_free(bitmap, base, nr_ids); 4515 return -ENOMEM; 4516 } 4517 4518 vprop_page = its_allocate_prop_table(GFP_KERNEL); 4519 if (!vprop_page) { 4520 its_lpi_free(bitmap, base, nr_ids); 4521 return -ENOMEM; 4522 } 4523 4524 vm->db_bitmap = bitmap; 4525 vm->db_lpi_base = base; 4526 vm->nr_db_lpis = nr_ids; 4527 vm->vprop_page = vprop_page; 4528 4529 if (gic_rdists->has_rvpeid) 4530 irqchip = &its_vpe_4_1_irq_chip; 4531 4532 for (i = 0; i < nr_irqs; i++) { 4533 vm->vpes[i]->vpe_db_lpi = base + i; 4534 err = its_vpe_init(vm->vpes[i]); 4535 if (err) 4536 break; 4537 err = its_irq_gic_domain_alloc(domain, virq + i, 4538 vm->vpes[i]->vpe_db_lpi); 4539 if (err) 4540 break; 4541 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4542 irqchip, vm->vpes[i]); 4543 set_bit(i, bitmap); 4544 irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i)); 4545 } 4546 4547 if (err) { 4548 if (i > 0) 4549 its_vpe_irq_domain_free(domain, virq, i); 4550 4551 its_lpi_free(bitmap, base, nr_ids); 4552 its_free_prop_table(vprop_page); 4553 } 4554 4555 return err; 4556 } 4557 4558 static int its_vpe_irq_domain_activate(struct irq_domain *domain, 4559 struct irq_data *d, bool reserve) 4560 { 4561 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4562 struct its_node *its; 4563 4564 /* 4565 * If we use the list map, we issue VMAPP on demand... Unless 4566 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs 4567 * so that VSGIs can work. 4568 */ 4569 if (!gic_requires_eager_mapping()) 4570 return 0; 4571 4572 /* Map the VPE to the first possible CPU */ 4573 vpe->col_idx = cpumask_first(cpu_online_mask); 4574 4575 list_for_each_entry(its, &its_nodes, entry) { 4576 if (!is_v4(its)) 4577 continue; 4578 4579 its_send_vmapp(its, vpe, true); 4580 its_send_vinvall(its, vpe); 4581 } 4582 4583 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 4584 4585 return 0; 4586 } 4587 4588 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, 4589 struct irq_data *d) 4590 { 4591 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4592 struct its_node *its; 4593 4594 /* 4595 * If we use the list map on GICv4.0, we unmap the VPE once no 4596 * VLPIs are associated with the VM. 4597 */ 4598 if (!gic_requires_eager_mapping()) 4599 return; 4600 4601 list_for_each_entry(its, &its_nodes, entry) { 4602 if (!is_v4(its)) 4603 continue; 4604 4605 its_send_vmapp(its, vpe, false); 4606 } 4607 4608 /* 4609 * There may be a direct read to the VPT after unmapping the 4610 * vPE, to guarantee the validity of this, we make the VPT 4611 * memory coherent with the CPU caches here. 4612 */ 4613 if (find_4_1_its() && !atomic_read(&vpe->vmapp_count)) 4614 gic_flush_dcache_to_poc(page_address(vpe->vpt_page), 4615 LPI_PENDBASE_SZ); 4616 } 4617 4618 static const struct irq_domain_ops its_vpe_domain_ops = { 4619 .alloc = its_vpe_irq_domain_alloc, 4620 .free = its_vpe_irq_domain_free, 4621 .activate = its_vpe_irq_domain_activate, 4622 .deactivate = its_vpe_irq_domain_deactivate, 4623 }; 4624 4625 static int its_force_quiescent(void __iomem *base) 4626 { 4627 u32 count = 1000000; /* 1s */ 4628 u32 val; 4629 4630 val = readl_relaxed(base + GITS_CTLR); 4631 /* 4632 * GIC architecture specification requires the ITS to be both 4633 * disabled and quiescent for writes to GITS_BASER<n> or 4634 * GITS_CBASER to not have UNPREDICTABLE results. 4635 */ 4636 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) 4637 return 0; 4638 4639 /* Disable the generation of all interrupts to this ITS */ 4640 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); 4641 writel_relaxed(val, base + GITS_CTLR); 4642 4643 /* Poll GITS_CTLR and wait until ITS becomes quiescent */ 4644 while (1) { 4645 val = readl_relaxed(base + GITS_CTLR); 4646 if (val & GITS_CTLR_QUIESCENT) 4647 return 0; 4648 4649 count--; 4650 if (!count) 4651 return -EBUSY; 4652 4653 cpu_relax(); 4654 udelay(1); 4655 } 4656 } 4657 4658 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data) 4659 { 4660 struct its_node *its = data; 4661 4662 /* erratum 22375: only alloc 8MB table size (20 bits) */ 4663 its->typer &= ~GITS_TYPER_DEVBITS; 4664 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1); 4665 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; 4666 4667 return true; 4668 } 4669 4670 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data) 4671 { 4672 struct its_node *its = data; 4673 4674 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; 4675 4676 return true; 4677 } 4678 4679 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) 4680 { 4681 struct its_node *its = data; 4682 4683 /* On QDF2400, the size of the ITE is 16Bytes */ 4684 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE; 4685 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1); 4686 4687 return true; 4688 } 4689 4690 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev) 4691 { 4692 struct its_node *its = its_dev->its; 4693 4694 /* 4695 * The Socionext Synquacer SoC has a so-called 'pre-ITS', 4696 * which maps 32-bit writes targeted at a separate window of 4697 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER 4698 * with device ID taken from bits [device_id_bits + 1:2] of 4699 * the window offset. 4700 */ 4701 return its->pre_its_base + (its_dev->device_id << 2); 4702 } 4703 4704 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data) 4705 { 4706 struct its_node *its = data; 4707 u32 pre_its_window[2]; 4708 u32 ids; 4709 4710 if (!fwnode_property_read_u32_array(its->fwnode_handle, 4711 "socionext,synquacer-pre-its", 4712 pre_its_window, 4713 ARRAY_SIZE(pre_its_window))) { 4714 4715 its->pre_its_base = pre_its_window[0]; 4716 its->get_msi_base = its_irq_get_msi_base_pre_its; 4717 4718 ids = ilog2(pre_its_window[1]) - 2; 4719 if (device_ids(its) > ids) { 4720 its->typer &= ~GITS_TYPER_DEVBITS; 4721 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1); 4722 } 4723 4724 /* the pre-ITS breaks isolation, so disable MSI remapping */ 4725 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI; 4726 return true; 4727 } 4728 return false; 4729 } 4730 4731 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data) 4732 { 4733 struct its_node *its = data; 4734 4735 /* 4736 * Hip07 insists on using the wrong address for the VLPI 4737 * page. Trick it into doing the right thing... 4738 */ 4739 its->vlpi_redist_offset = SZ_128K; 4740 return true; 4741 } 4742 4743 static bool __maybe_unused its_enable_rk3588001(void *data) 4744 { 4745 struct its_node *its = data; 4746 4747 if (!of_machine_is_compatible("rockchip,rk3588") && 4748 !of_machine_is_compatible("rockchip,rk3588s")) 4749 return false; 4750 4751 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 4752 gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE; 4753 4754 return true; 4755 } 4756 4757 static bool its_set_non_coherent(void *data) 4758 { 4759 struct its_node *its = data; 4760 4761 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 4762 return true; 4763 } 4764 4765 static const struct gic_quirk its_quirks[] = { 4766 #ifdef CONFIG_CAVIUM_ERRATUM_22375 4767 { 4768 .desc = "ITS: Cavium errata 22375, 24313", 4769 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4770 .mask = 0xffff0fff, 4771 .init = its_enable_quirk_cavium_22375, 4772 }, 4773 #endif 4774 #ifdef CONFIG_CAVIUM_ERRATUM_23144 4775 { 4776 .desc = "ITS: Cavium erratum 23144", 4777 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4778 .mask = 0xffff0fff, 4779 .init = its_enable_quirk_cavium_23144, 4780 }, 4781 #endif 4782 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 4783 { 4784 .desc = "ITS: QDF2400 erratum 0065", 4785 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */ 4786 .mask = 0xffffffff, 4787 .init = its_enable_quirk_qdf2400_e0065, 4788 }, 4789 #endif 4790 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS 4791 { 4792 /* 4793 * The Socionext Synquacer SoC incorporates ARM's own GIC-500 4794 * implementation, but with a 'pre-ITS' added that requires 4795 * special handling in software. 4796 */ 4797 .desc = "ITS: Socionext Synquacer pre-ITS", 4798 .iidr = 0x0001143b, 4799 .mask = 0xffffffff, 4800 .init = its_enable_quirk_socionext_synquacer, 4801 }, 4802 #endif 4803 #ifdef CONFIG_HISILICON_ERRATUM_161600802 4804 { 4805 .desc = "ITS: Hip07 erratum 161600802", 4806 .iidr = 0x00000004, 4807 .mask = 0xffffffff, 4808 .init = its_enable_quirk_hip07_161600802, 4809 }, 4810 #endif 4811 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001 4812 { 4813 .desc = "ITS: Rockchip erratum RK3588001", 4814 .iidr = 0x0201743b, 4815 .mask = 0xffffffff, 4816 .init = its_enable_rk3588001, 4817 }, 4818 #endif 4819 { 4820 .desc = "ITS: non-coherent attribute", 4821 .property = "dma-noncoherent", 4822 .init = its_set_non_coherent, 4823 }, 4824 { 4825 } 4826 }; 4827 4828 static void its_enable_quirks(struct its_node *its) 4829 { 4830 u32 iidr = readl_relaxed(its->base + GITS_IIDR); 4831 4832 gic_enable_quirks(iidr, its_quirks, its); 4833 4834 if (is_of_node(its->fwnode_handle)) 4835 gic_enable_of_quirks(to_of_node(its->fwnode_handle), 4836 its_quirks, its); 4837 } 4838 4839 static int its_save_disable(void) 4840 { 4841 struct its_node *its; 4842 int err = 0; 4843 4844 raw_spin_lock(&its_lock); 4845 list_for_each_entry(its, &its_nodes, entry) { 4846 void __iomem *base; 4847 4848 base = its->base; 4849 its->ctlr_save = readl_relaxed(base + GITS_CTLR); 4850 err = its_force_quiescent(base); 4851 if (err) { 4852 pr_err("ITS@%pa: failed to quiesce: %d\n", 4853 &its->phys_base, err); 4854 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4855 goto err; 4856 } 4857 4858 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER); 4859 } 4860 4861 err: 4862 if (err) { 4863 list_for_each_entry_continue_reverse(its, &its_nodes, entry) { 4864 void __iomem *base; 4865 4866 base = its->base; 4867 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4868 } 4869 } 4870 raw_spin_unlock(&its_lock); 4871 4872 return err; 4873 } 4874 4875 static void its_restore_enable(void) 4876 { 4877 struct its_node *its; 4878 int ret; 4879 4880 raw_spin_lock(&its_lock); 4881 list_for_each_entry(its, &its_nodes, entry) { 4882 void __iomem *base; 4883 int i; 4884 4885 base = its->base; 4886 4887 /* 4888 * Make sure that the ITS is disabled. If it fails to quiesce, 4889 * don't restore it since writing to CBASER or BASER<n> 4890 * registers is undefined according to the GIC v3 ITS 4891 * Specification. 4892 * 4893 * Firmware resuming with the ITS enabled is terminally broken. 4894 */ 4895 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE); 4896 ret = its_force_quiescent(base); 4897 if (ret) { 4898 pr_err("ITS@%pa: failed to quiesce on resume: %d\n", 4899 &its->phys_base, ret); 4900 continue; 4901 } 4902 4903 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER); 4904 4905 /* 4906 * Writing CBASER resets CREADR to 0, so make CWRITER and 4907 * cmd_write line up with it. 4908 */ 4909 its->cmd_write = its->cmd_base; 4910 gits_write_cwriter(0, base + GITS_CWRITER); 4911 4912 /* Restore GITS_BASER from the value cache. */ 4913 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 4914 struct its_baser *baser = &its->tables[i]; 4915 4916 if (!(baser->val & GITS_BASER_VALID)) 4917 continue; 4918 4919 its_write_baser(its, baser, baser->val); 4920 } 4921 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4922 4923 /* 4924 * Reinit the collection if it's stored in the ITS. This is 4925 * indicated by the col_id being less than the HCC field. 4926 * CID < HCC as specified in the GIC v3 Documentation. 4927 */ 4928 if (its->collections[smp_processor_id()].col_id < 4929 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER))) 4930 its_cpu_init_collection(its); 4931 } 4932 raw_spin_unlock(&its_lock); 4933 } 4934 4935 static struct syscore_ops its_syscore_ops = { 4936 .suspend = its_save_disable, 4937 .resume = its_restore_enable, 4938 }; 4939 4940 static void __init __iomem *its_map_one(struct resource *res, int *err) 4941 { 4942 void __iomem *its_base; 4943 u32 val; 4944 4945 its_base = ioremap(res->start, SZ_64K); 4946 if (!its_base) { 4947 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); 4948 *err = -ENOMEM; 4949 return NULL; 4950 } 4951 4952 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; 4953 if (val != 0x30 && val != 0x40) { 4954 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); 4955 *err = -ENODEV; 4956 goto out_unmap; 4957 } 4958 4959 *err = its_force_quiescent(its_base); 4960 if (*err) { 4961 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); 4962 goto out_unmap; 4963 } 4964 4965 return its_base; 4966 4967 out_unmap: 4968 iounmap(its_base); 4969 return NULL; 4970 } 4971 4972 static int its_init_domain(struct its_node *its) 4973 { 4974 struct irq_domain *inner_domain; 4975 struct msi_domain_info *info; 4976 4977 info = kzalloc(sizeof(*info), GFP_KERNEL); 4978 if (!info) 4979 return -ENOMEM; 4980 4981 info->ops = &its_msi_domain_ops; 4982 info->data = its; 4983 4984 inner_domain = irq_domain_create_hierarchy(its_parent, 4985 its->msi_domain_flags, 0, 4986 its->fwnode_handle, &its_domain_ops, 4987 info); 4988 if (!inner_domain) { 4989 kfree(info); 4990 return -ENOMEM; 4991 } 4992 4993 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS); 4994 4995 return 0; 4996 } 4997 4998 static int its_init_vpe_domain(void) 4999 { 5000 struct its_node *its; 5001 u32 devid; 5002 int entries; 5003 5004 if (gic_rdists->has_direct_lpi) { 5005 pr_info("ITS: Using DirectLPI for VPE invalidation\n"); 5006 return 0; 5007 } 5008 5009 /* Any ITS will do, even if not v4 */ 5010 its = list_first_entry(&its_nodes, struct its_node, entry); 5011 5012 entries = roundup_pow_of_two(nr_cpu_ids); 5013 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes), 5014 GFP_KERNEL); 5015 if (!vpe_proxy.vpes) 5016 return -ENOMEM; 5017 5018 /* Use the last possible DevID */ 5019 devid = GENMASK(device_ids(its) - 1, 0); 5020 vpe_proxy.dev = its_create_device(its, devid, entries, false); 5021 if (!vpe_proxy.dev) { 5022 kfree(vpe_proxy.vpes); 5023 pr_err("ITS: Can't allocate GICv4 proxy device\n"); 5024 return -ENOMEM; 5025 } 5026 5027 BUG_ON(entries > vpe_proxy.dev->nr_ites); 5028 5029 raw_spin_lock_init(&vpe_proxy.lock); 5030 vpe_proxy.next_victim = 0; 5031 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", 5032 devid, vpe_proxy.dev->nr_ites); 5033 5034 return 0; 5035 } 5036 5037 static int __init its_compute_its_list_map(struct its_node *its) 5038 { 5039 int its_number; 5040 u32 ctlr; 5041 5042 /* 5043 * This is assumed to be done early enough that we're 5044 * guaranteed to be single-threaded, hence no 5045 * locking. Should this change, we should address 5046 * this. 5047 */ 5048 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX); 5049 if (its_number >= GICv4_ITS_LIST_MAX) { 5050 pr_err("ITS@%pa: No ITSList entry available!\n", 5051 &its->phys_base); 5052 return -EINVAL; 5053 } 5054 5055 ctlr = readl_relaxed(its->base + GITS_CTLR); 5056 ctlr &= ~GITS_CTLR_ITS_NUMBER; 5057 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; 5058 writel_relaxed(ctlr, its->base + GITS_CTLR); 5059 ctlr = readl_relaxed(its->base + GITS_CTLR); 5060 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { 5061 its_number = ctlr & GITS_CTLR_ITS_NUMBER; 5062 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; 5063 } 5064 5065 if (test_and_set_bit(its_number, &its_list_map)) { 5066 pr_err("ITS@%pa: Duplicate ITSList entry %d\n", 5067 &its->phys_base, its_number); 5068 return -EINVAL; 5069 } 5070 5071 return its_number; 5072 } 5073 5074 static int __init its_probe_one(struct its_node *its) 5075 { 5076 u64 baser, tmp; 5077 struct page *page; 5078 u32 ctlr; 5079 int err; 5080 5081 if (is_v4(its)) { 5082 if (!(its->typer & GITS_TYPER_VMOVP)) { 5083 err = its_compute_its_list_map(its); 5084 if (err < 0) 5085 goto out; 5086 5087 its->list_nr = err; 5088 5089 pr_info("ITS@%pa: Using ITS number %d\n", 5090 &its->phys_base, err); 5091 } else { 5092 pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base); 5093 } 5094 5095 if (is_v4_1(its)) { 5096 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); 5097 5098 its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K); 5099 if (!its->sgir_base) { 5100 err = -ENOMEM; 5101 goto out; 5102 } 5103 5104 its->mpidr = readl_relaxed(its->base + GITS_MPIDR); 5105 5106 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n", 5107 &its->phys_base, its->mpidr, svpet); 5108 } 5109 } 5110 5111 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 5112 get_order(ITS_CMD_QUEUE_SZ)); 5113 if (!page) { 5114 err = -ENOMEM; 5115 goto out_unmap_sgir; 5116 } 5117 its->cmd_base = (void *)page_address(page); 5118 its->cmd_write = its->cmd_base; 5119 5120 err = its_alloc_tables(its); 5121 if (err) 5122 goto out_free_cmd; 5123 5124 err = its_alloc_collections(its); 5125 if (err) 5126 goto out_free_tables; 5127 5128 baser = (virt_to_phys(its->cmd_base) | 5129 GITS_CBASER_RaWaWb | 5130 GITS_CBASER_InnerShareable | 5131 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | 5132 GITS_CBASER_VALID); 5133 5134 gits_write_cbaser(baser, its->base + GITS_CBASER); 5135 tmp = gits_read_cbaser(its->base + GITS_CBASER); 5136 5137 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) 5138 tmp &= ~GITS_CBASER_SHAREABILITY_MASK; 5139 5140 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { 5141 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { 5142 /* 5143 * The HW reports non-shareable, we must 5144 * remove the cacheability attributes as 5145 * well. 5146 */ 5147 baser &= ~(GITS_CBASER_SHAREABILITY_MASK | 5148 GITS_CBASER_CACHEABILITY_MASK); 5149 baser |= GITS_CBASER_nC; 5150 gits_write_cbaser(baser, its->base + GITS_CBASER); 5151 } 5152 pr_info("ITS: using cache flushing for cmd queue\n"); 5153 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; 5154 } 5155 5156 gits_write_cwriter(0, its->base + GITS_CWRITER); 5157 ctlr = readl_relaxed(its->base + GITS_CTLR); 5158 ctlr |= GITS_CTLR_ENABLE; 5159 if (is_v4(its)) 5160 ctlr |= GITS_CTLR_ImDe; 5161 writel_relaxed(ctlr, its->base + GITS_CTLR); 5162 5163 err = its_init_domain(its); 5164 if (err) 5165 goto out_free_tables; 5166 5167 raw_spin_lock(&its_lock); 5168 list_add(&its->entry, &its_nodes); 5169 raw_spin_unlock(&its_lock); 5170 5171 return 0; 5172 5173 out_free_tables: 5174 its_free_tables(its); 5175 out_free_cmd: 5176 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); 5177 out_unmap_sgir: 5178 if (its->sgir_base) 5179 iounmap(its->sgir_base); 5180 out: 5181 pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err); 5182 return err; 5183 } 5184 5185 static bool gic_rdists_supports_plpis(void) 5186 { 5187 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); 5188 } 5189 5190 static int redist_disable_lpis(void) 5191 { 5192 void __iomem *rbase = gic_data_rdist_rd_base(); 5193 u64 timeout = USEC_PER_SEC; 5194 u64 val; 5195 5196 if (!gic_rdists_supports_plpis()) { 5197 pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); 5198 return -ENXIO; 5199 } 5200 5201 val = readl_relaxed(rbase + GICR_CTLR); 5202 if (!(val & GICR_CTLR_ENABLE_LPIS)) 5203 return 0; 5204 5205 /* 5206 * If coming via a CPU hotplug event, we don't need to disable 5207 * LPIs before trying to re-enable them. They are already 5208 * configured and all is well in the world. 5209 * 5210 * If running with preallocated tables, there is nothing to do. 5211 */ 5212 if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) || 5213 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED)) 5214 return 0; 5215 5216 /* 5217 * From that point on, we only try to do some damage control. 5218 */ 5219 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n", 5220 smp_processor_id()); 5221 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 5222 5223 /* Disable LPIs */ 5224 val &= ~GICR_CTLR_ENABLE_LPIS; 5225 writel_relaxed(val, rbase + GICR_CTLR); 5226 5227 /* Make sure any change to GICR_CTLR is observable by the GIC */ 5228 dsb(sy); 5229 5230 /* 5231 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs 5232 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers. 5233 * Error out if we time out waiting for RWP to clear. 5234 */ 5235 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) { 5236 if (!timeout) { 5237 pr_err("CPU%d: Timeout while disabling LPIs\n", 5238 smp_processor_id()); 5239 return -ETIMEDOUT; 5240 } 5241 udelay(1); 5242 timeout--; 5243 } 5244 5245 /* 5246 * After it has been written to 1, it is IMPLEMENTATION 5247 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be 5248 * cleared to 0. Error out if clearing the bit failed. 5249 */ 5250 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) { 5251 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id()); 5252 return -EBUSY; 5253 } 5254 5255 return 0; 5256 } 5257 5258 int its_cpu_init(void) 5259 { 5260 if (!list_empty(&its_nodes)) { 5261 int ret; 5262 5263 ret = redist_disable_lpis(); 5264 if (ret) 5265 return ret; 5266 5267 its_cpu_init_lpis(); 5268 its_cpu_init_collections(); 5269 } 5270 5271 return 0; 5272 } 5273 5274 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work) 5275 { 5276 cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state); 5277 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; 5278 } 5279 5280 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work, 5281 rdist_memreserve_cpuhp_cleanup_workfn); 5282 5283 static int its_cpu_memreserve_lpi(unsigned int cpu) 5284 { 5285 struct page *pend_page; 5286 int ret = 0; 5287 5288 /* This gets to run exactly once per CPU */ 5289 if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE) 5290 return 0; 5291 5292 pend_page = gic_data_rdist()->pend_page; 5293 if (WARN_ON(!pend_page)) { 5294 ret = -ENOMEM; 5295 goto out; 5296 } 5297 /* 5298 * If the pending table was pre-programmed, free the memory we 5299 * preemptively allocated. Otherwise, reserve that memory for 5300 * later kexecs. 5301 */ 5302 if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) { 5303 its_free_pending_table(pend_page); 5304 gic_data_rdist()->pend_page = NULL; 5305 } else { 5306 phys_addr_t paddr = page_to_phys(pend_page); 5307 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ)); 5308 } 5309 5310 out: 5311 /* Last CPU being brought up gets to issue the cleanup */ 5312 if (!IS_ENABLED(CONFIG_SMP) || 5313 cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask)) 5314 schedule_work(&rdist_memreserve_cpuhp_cleanup_work); 5315 5316 gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE; 5317 return ret; 5318 } 5319 5320 /* Mark all the BASER registers as invalid before they get reprogrammed */ 5321 static int __init its_reset_one(struct resource *res) 5322 { 5323 void __iomem *its_base; 5324 int err, i; 5325 5326 its_base = its_map_one(res, &err); 5327 if (!its_base) 5328 return err; 5329 5330 for (i = 0; i < GITS_BASER_NR_REGS; i++) 5331 gits_write_baser(0, its_base + GITS_BASER + (i << 3)); 5332 5333 iounmap(its_base); 5334 return 0; 5335 } 5336 5337 static const struct of_device_id its_device_id[] = { 5338 { .compatible = "arm,gic-v3-its", }, 5339 {}, 5340 }; 5341 5342 static struct its_node __init *its_node_init(struct resource *res, 5343 struct fwnode_handle *handle, int numa_node) 5344 { 5345 void __iomem *its_base; 5346 struct its_node *its; 5347 int err; 5348 5349 its_base = its_map_one(res, &err); 5350 if (!its_base) 5351 return NULL; 5352 5353 pr_info("ITS %pR\n", res); 5354 5355 its = kzalloc(sizeof(*its), GFP_KERNEL); 5356 if (!its) 5357 goto out_unmap; 5358 5359 raw_spin_lock_init(&its->lock); 5360 mutex_init(&its->dev_alloc_lock); 5361 INIT_LIST_HEAD(&its->entry); 5362 INIT_LIST_HEAD(&its->its_device_list); 5363 5364 its->typer = gic_read_typer(its_base + GITS_TYPER); 5365 its->base = its_base; 5366 its->phys_base = res->start; 5367 its->get_msi_base = its_irq_get_msi_base; 5368 its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI; 5369 5370 its->numa_node = numa_node; 5371 its->fwnode_handle = handle; 5372 5373 return its; 5374 5375 out_unmap: 5376 iounmap(its_base); 5377 return NULL; 5378 } 5379 5380 static void its_node_destroy(struct its_node *its) 5381 { 5382 iounmap(its->base); 5383 kfree(its); 5384 } 5385 5386 static int __init its_of_probe(struct device_node *node) 5387 { 5388 struct device_node *np; 5389 struct resource res; 5390 int err; 5391 5392 /* 5393 * Make sure *all* the ITS are reset before we probe any, as 5394 * they may be sharing memory. If any of the ITS fails to 5395 * reset, don't even try to go any further, as this could 5396 * result in something even worse. 5397 */ 5398 for (np = of_find_matching_node(node, its_device_id); np; 5399 np = of_find_matching_node(np, its_device_id)) { 5400 if (!of_device_is_available(np) || 5401 !of_property_read_bool(np, "msi-controller") || 5402 of_address_to_resource(np, 0, &res)) 5403 continue; 5404 5405 err = its_reset_one(&res); 5406 if (err) 5407 return err; 5408 } 5409 5410 for (np = of_find_matching_node(node, its_device_id); np; 5411 np = of_find_matching_node(np, its_device_id)) { 5412 struct its_node *its; 5413 5414 if (!of_device_is_available(np)) 5415 continue; 5416 if (!of_property_read_bool(np, "msi-controller")) { 5417 pr_warn("%pOF: no msi-controller property, ITS ignored\n", 5418 np); 5419 continue; 5420 } 5421 5422 if (of_address_to_resource(np, 0, &res)) { 5423 pr_warn("%pOF: no regs?\n", np); 5424 continue; 5425 } 5426 5427 5428 its = its_node_init(&res, &np->fwnode, of_node_to_nid(np)); 5429 if (!its) 5430 return -ENOMEM; 5431 5432 its_enable_quirks(its); 5433 err = its_probe_one(its); 5434 if (err) { 5435 its_node_destroy(its); 5436 return err; 5437 } 5438 } 5439 return 0; 5440 } 5441 5442 #ifdef CONFIG_ACPI 5443 5444 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) 5445 5446 #ifdef CONFIG_ACPI_NUMA 5447 struct its_srat_map { 5448 /* numa node id */ 5449 u32 numa_node; 5450 /* GIC ITS ID */ 5451 u32 its_id; 5452 }; 5453 5454 static struct its_srat_map *its_srat_maps __initdata; 5455 static int its_in_srat __initdata; 5456 5457 static int __init acpi_get_its_numa_node(u32 its_id) 5458 { 5459 int i; 5460 5461 for (i = 0; i < its_in_srat; i++) { 5462 if (its_id == its_srat_maps[i].its_id) 5463 return its_srat_maps[i].numa_node; 5464 } 5465 return NUMA_NO_NODE; 5466 } 5467 5468 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header, 5469 const unsigned long end) 5470 { 5471 return 0; 5472 } 5473 5474 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header, 5475 const unsigned long end) 5476 { 5477 int node; 5478 struct acpi_srat_gic_its_affinity *its_affinity; 5479 5480 its_affinity = (struct acpi_srat_gic_its_affinity *)header; 5481 if (!its_affinity) 5482 return -EINVAL; 5483 5484 if (its_affinity->header.length < sizeof(*its_affinity)) { 5485 pr_err("SRAT: Invalid header length %d in ITS affinity\n", 5486 its_affinity->header.length); 5487 return -EINVAL; 5488 } 5489 5490 /* 5491 * Note that in theory a new proximity node could be created by this 5492 * entry as it is an SRAT resource allocation structure. 5493 * We do not currently support doing so. 5494 */ 5495 node = pxm_to_node(its_affinity->proximity_domain); 5496 5497 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { 5498 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); 5499 return 0; 5500 } 5501 5502 its_srat_maps[its_in_srat].numa_node = node; 5503 its_srat_maps[its_in_srat].its_id = its_affinity->its_id; 5504 its_in_srat++; 5505 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", 5506 its_affinity->proximity_domain, its_affinity->its_id, node); 5507 5508 return 0; 5509 } 5510 5511 static void __init acpi_table_parse_srat_its(void) 5512 { 5513 int count; 5514 5515 count = acpi_table_parse_entries(ACPI_SIG_SRAT, 5516 sizeof(struct acpi_table_srat), 5517 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5518 gic_acpi_match_srat_its, 0); 5519 if (count <= 0) 5520 return; 5521 5522 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map), 5523 GFP_KERNEL); 5524 if (!its_srat_maps) 5525 return; 5526 5527 acpi_table_parse_entries(ACPI_SIG_SRAT, 5528 sizeof(struct acpi_table_srat), 5529 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5530 gic_acpi_parse_srat_its, 0); 5531 } 5532 5533 /* free the its_srat_maps after ITS probing */ 5534 static void __init acpi_its_srat_maps_free(void) 5535 { 5536 kfree(its_srat_maps); 5537 } 5538 #else 5539 static void __init acpi_table_parse_srat_its(void) { } 5540 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } 5541 static void __init acpi_its_srat_maps_free(void) { } 5542 #endif 5543 5544 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header, 5545 const unsigned long end) 5546 { 5547 struct acpi_madt_generic_translator *its_entry; 5548 struct fwnode_handle *dom_handle; 5549 struct its_node *its; 5550 struct resource res; 5551 int err; 5552 5553 its_entry = (struct acpi_madt_generic_translator *)header; 5554 memset(&res, 0, sizeof(res)); 5555 res.start = its_entry->base_address; 5556 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; 5557 res.flags = IORESOURCE_MEM; 5558 5559 dom_handle = irq_domain_alloc_fwnode(&res.start); 5560 if (!dom_handle) { 5561 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", 5562 &res.start); 5563 return -ENOMEM; 5564 } 5565 5566 err = iort_register_domain_token(its_entry->translation_id, res.start, 5567 dom_handle); 5568 if (err) { 5569 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", 5570 &res.start, its_entry->translation_id); 5571 goto dom_err; 5572 } 5573 5574 its = its_node_init(&res, dom_handle, 5575 acpi_get_its_numa_node(its_entry->translation_id)); 5576 if (!its) { 5577 err = -ENOMEM; 5578 goto node_err; 5579 } 5580 5581 err = its_probe_one(its); 5582 if (!err) 5583 return 0; 5584 5585 node_err: 5586 iort_deregister_domain_token(its_entry->translation_id); 5587 dom_err: 5588 irq_domain_free_fwnode(dom_handle); 5589 return err; 5590 } 5591 5592 static int __init its_acpi_reset(union acpi_subtable_headers *header, 5593 const unsigned long end) 5594 { 5595 struct acpi_madt_generic_translator *its_entry; 5596 struct resource res; 5597 5598 its_entry = (struct acpi_madt_generic_translator *)header; 5599 res = (struct resource) { 5600 .start = its_entry->base_address, 5601 .end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1, 5602 .flags = IORESOURCE_MEM, 5603 }; 5604 5605 return its_reset_one(&res); 5606 } 5607 5608 static void __init its_acpi_probe(void) 5609 { 5610 acpi_table_parse_srat_its(); 5611 /* 5612 * Make sure *all* the ITS are reset before we probe any, as 5613 * they may be sharing memory. If any of the ITS fails to 5614 * reset, don't even try to go any further, as this could 5615 * result in something even worse. 5616 */ 5617 if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5618 its_acpi_reset, 0) > 0) 5619 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5620 gic_acpi_parse_madt_its, 0); 5621 acpi_its_srat_maps_free(); 5622 } 5623 #else 5624 static void __init its_acpi_probe(void) { } 5625 #endif 5626 5627 int __init its_lpi_memreserve_init(void) 5628 { 5629 int state; 5630 5631 if (!efi_enabled(EFI_CONFIG_TABLES)) 5632 return 0; 5633 5634 if (list_empty(&its_nodes)) 5635 return 0; 5636 5637 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; 5638 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, 5639 "irqchip/arm/gicv3/memreserve:online", 5640 its_cpu_memreserve_lpi, 5641 NULL); 5642 if (state < 0) 5643 return state; 5644 5645 gic_rdists->cpuhp_memreserve_state = state; 5646 5647 return 0; 5648 } 5649 5650 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, 5651 struct irq_domain *parent_domain) 5652 { 5653 struct device_node *of_node; 5654 struct its_node *its; 5655 bool has_v4 = false; 5656 bool has_v4_1 = false; 5657 int err; 5658 5659 gic_rdists = rdists; 5660 5661 its_parent = parent_domain; 5662 of_node = to_of_node(handle); 5663 if (of_node) 5664 its_of_probe(of_node); 5665 else 5666 its_acpi_probe(); 5667 5668 if (list_empty(&its_nodes)) { 5669 pr_warn("ITS: No ITS available, not enabling LPIs\n"); 5670 return -ENXIO; 5671 } 5672 5673 err = allocate_lpi_tables(); 5674 if (err) 5675 return err; 5676 5677 list_for_each_entry(its, &its_nodes, entry) { 5678 has_v4 |= is_v4(its); 5679 has_v4_1 |= is_v4_1(its); 5680 } 5681 5682 /* Don't bother with inconsistent systems */ 5683 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid)) 5684 rdists->has_rvpeid = false; 5685 5686 if (has_v4 & rdists->has_vlpis) { 5687 const struct irq_domain_ops *sgi_ops; 5688 5689 if (has_v4_1) 5690 sgi_ops = &its_sgi_domain_ops; 5691 else 5692 sgi_ops = NULL; 5693 5694 if (its_init_vpe_domain() || 5695 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) { 5696 rdists->has_vlpis = false; 5697 pr_err("ITS: Disabling GICv4 support\n"); 5698 } 5699 } 5700 5701 register_syscore_ops(&its_syscore_ops); 5702 5703 return 0; 5704 } 5705