1 /*
2  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #include <linux/acpi.h>
19 #include <linux/acpi_iort.h>
20 #include <linux/bitmap.h>
21 #include <linux/cpu.h>
22 #include <linux/crash_dump.h>
23 #include <linux/delay.h>
24 #include <linux/dma-iommu.h>
25 #include <linux/efi.h>
26 #include <linux/interrupt.h>
27 #include <linux/irqdomain.h>
28 #include <linux/list.h>
29 #include <linux/list_sort.h>
30 #include <linux/log2.h>
31 #include <linux/memblock.h>
32 #include <linux/mm.h>
33 #include <linux/msi.h>
34 #include <linux/of.h>
35 #include <linux/of_address.h>
36 #include <linux/of_irq.h>
37 #include <linux/of_pci.h>
38 #include <linux/of_platform.h>
39 #include <linux/percpu.h>
40 #include <linux/slab.h>
41 #include <linux/syscore_ops.h>
42 
43 #include <linux/irqchip.h>
44 #include <linux/irqchip/arm-gic-v3.h>
45 #include <linux/irqchip/arm-gic-v4.h>
46 
47 #include <asm/cputype.h>
48 #include <asm/exception.h>
49 
50 #include "irq-gic-common.h"
51 
52 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
53 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
54 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
55 #define ITS_FLAGS_SAVE_SUSPEND_STATE		(1ULL << 3)
56 
57 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
58 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED	(1 << 1)
59 
60 static u32 lpi_id_bits;
61 
62 /*
63  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
64  * deal with (one configuration byte per interrupt). PENDBASE has to
65  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
66  */
67 #define LPI_NRBITS		lpi_id_bits
68 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
69 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
70 
71 #define LPI_PROP_DEFAULT_PRIO	GICD_INT_DEF_PRI
72 
73 /*
74  * Collection structure - just an ID, and a redistributor address to
75  * ping. We use one per CPU as a bag of interrupts assigned to this
76  * CPU.
77  */
78 struct its_collection {
79 	u64			target_address;
80 	u16			col_id;
81 };
82 
83 /*
84  * The ITS_BASER structure - contains memory information, cached
85  * value of BASER register configuration and ITS page size.
86  */
87 struct its_baser {
88 	void		*base;
89 	u64		val;
90 	u32		order;
91 	u32		psz;
92 };
93 
94 struct its_device;
95 
96 /*
97  * The ITS structure - contains most of the infrastructure, with the
98  * top-level MSI domain, the command queue, the collections, and the
99  * list of devices writing to it.
100  *
101  * dev_alloc_lock has to be taken for device allocations, while the
102  * spinlock must be taken to parse data structures such as the device
103  * list.
104  */
105 struct its_node {
106 	raw_spinlock_t		lock;
107 	struct mutex		dev_alloc_lock;
108 	struct list_head	entry;
109 	void __iomem		*base;
110 	phys_addr_t		phys_base;
111 	struct its_cmd_block	*cmd_base;
112 	struct its_cmd_block	*cmd_write;
113 	struct its_baser	tables[GITS_BASER_NR_REGS];
114 	struct its_collection	*collections;
115 	struct fwnode_handle	*fwnode_handle;
116 	u64			(*get_msi_base)(struct its_device *its_dev);
117 	u64			cbaser_save;
118 	u32			ctlr_save;
119 	struct list_head	its_device_list;
120 	u64			flags;
121 	unsigned long		list_nr;
122 	u32			ite_size;
123 	u32			device_ids;
124 	int			numa_node;
125 	unsigned int		msi_domain_flags;
126 	u32			pre_its_base; /* for Socionext Synquacer */
127 	bool			is_v4;
128 	int			vlpi_redist_offset;
129 };
130 
131 #define ITS_ITT_ALIGN		SZ_256
132 
133 /* The maximum number of VPEID bits supported by VLPI commands */
134 #define ITS_MAX_VPEID_BITS	(16)
135 #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
136 
137 /* Convert page order to size in bytes */
138 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
139 
140 struct event_lpi_map {
141 	unsigned long		*lpi_map;
142 	u16			*col_map;
143 	irq_hw_number_t		lpi_base;
144 	int			nr_lpis;
145 	struct mutex		vlpi_lock;
146 	struct its_vm		*vm;
147 	struct its_vlpi_map	*vlpi_maps;
148 	int			nr_vlpis;
149 };
150 
151 /*
152  * The ITS view of a device - belongs to an ITS, owns an interrupt
153  * translation table, and a list of interrupts.  If it some of its
154  * LPIs are injected into a guest (GICv4), the event_map.vm field
155  * indicates which one.
156  */
157 struct its_device {
158 	struct list_head	entry;
159 	struct its_node		*its;
160 	struct event_lpi_map	event_map;
161 	void			*itt;
162 	u32			nr_ites;
163 	u32			device_id;
164 	bool			shared;
165 };
166 
167 static struct {
168 	raw_spinlock_t		lock;
169 	struct its_device	*dev;
170 	struct its_vpe		**vpes;
171 	int			next_victim;
172 } vpe_proxy;
173 
174 static LIST_HEAD(its_nodes);
175 static DEFINE_RAW_SPINLOCK(its_lock);
176 static struct rdists *gic_rdists;
177 static struct irq_domain *its_parent;
178 
179 static unsigned long its_list_map;
180 static u16 vmovp_seq_num;
181 static DEFINE_RAW_SPINLOCK(vmovp_lock);
182 
183 static DEFINE_IDA(its_vpeid_ida);
184 
185 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
186 #define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
187 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
188 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
189 
190 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
191 					       u32 event)
192 {
193 	struct its_node *its = its_dev->its;
194 
195 	return its->collections + its_dev->event_map.col_map[event];
196 }
197 
198 static struct its_collection *valid_col(struct its_collection *col)
199 {
200 	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(0, 15)))
201 		return NULL;
202 
203 	return col;
204 }
205 
206 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
207 {
208 	if (valid_col(its->collections + vpe->col_idx))
209 		return vpe;
210 
211 	return NULL;
212 }
213 
214 /*
215  * ITS command descriptors - parameters to be encoded in a command
216  * block.
217  */
218 struct its_cmd_desc {
219 	union {
220 		struct {
221 			struct its_device *dev;
222 			u32 event_id;
223 		} its_inv_cmd;
224 
225 		struct {
226 			struct its_device *dev;
227 			u32 event_id;
228 		} its_clear_cmd;
229 
230 		struct {
231 			struct its_device *dev;
232 			u32 event_id;
233 		} its_int_cmd;
234 
235 		struct {
236 			struct its_device *dev;
237 			int valid;
238 		} its_mapd_cmd;
239 
240 		struct {
241 			struct its_collection *col;
242 			int valid;
243 		} its_mapc_cmd;
244 
245 		struct {
246 			struct its_device *dev;
247 			u32 phys_id;
248 			u32 event_id;
249 		} its_mapti_cmd;
250 
251 		struct {
252 			struct its_device *dev;
253 			struct its_collection *col;
254 			u32 event_id;
255 		} its_movi_cmd;
256 
257 		struct {
258 			struct its_device *dev;
259 			u32 event_id;
260 		} its_discard_cmd;
261 
262 		struct {
263 			struct its_collection *col;
264 		} its_invall_cmd;
265 
266 		struct {
267 			struct its_vpe *vpe;
268 		} its_vinvall_cmd;
269 
270 		struct {
271 			struct its_vpe *vpe;
272 			struct its_collection *col;
273 			bool valid;
274 		} its_vmapp_cmd;
275 
276 		struct {
277 			struct its_vpe *vpe;
278 			struct its_device *dev;
279 			u32 virt_id;
280 			u32 event_id;
281 			bool db_enabled;
282 		} its_vmapti_cmd;
283 
284 		struct {
285 			struct its_vpe *vpe;
286 			struct its_device *dev;
287 			u32 event_id;
288 			bool db_enabled;
289 		} its_vmovi_cmd;
290 
291 		struct {
292 			struct its_vpe *vpe;
293 			struct its_collection *col;
294 			u16 seq_num;
295 			u16 its_list;
296 		} its_vmovp_cmd;
297 	};
298 };
299 
300 /*
301  * The ITS command block, which is what the ITS actually parses.
302  */
303 struct its_cmd_block {
304 	u64	raw_cmd[4];
305 };
306 
307 #define ITS_CMD_QUEUE_SZ		SZ_64K
308 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
309 
310 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
311 						    struct its_cmd_block *,
312 						    struct its_cmd_desc *);
313 
314 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
315 					      struct its_cmd_block *,
316 					      struct its_cmd_desc *);
317 
318 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
319 {
320 	u64 mask = GENMASK_ULL(h, l);
321 	*raw_cmd &= ~mask;
322 	*raw_cmd |= (val << l) & mask;
323 }
324 
325 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
326 {
327 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
328 }
329 
330 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
331 {
332 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
333 }
334 
335 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
336 {
337 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
338 }
339 
340 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
341 {
342 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
343 }
344 
345 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
346 {
347 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
348 }
349 
350 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
351 {
352 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
353 }
354 
355 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
356 {
357 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
358 }
359 
360 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
361 {
362 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
363 }
364 
365 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
366 {
367 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
368 }
369 
370 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
371 {
372 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
373 }
374 
375 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
376 {
377 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
378 }
379 
380 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
381 {
382 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
383 }
384 
385 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
386 {
387 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
388 }
389 
390 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
391 {
392 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
393 }
394 
395 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
396 {
397 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
398 }
399 
400 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
401 {
402 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
403 }
404 
405 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
406 {
407 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
408 }
409 
410 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
411 {
412 	/* Let's fixup BE commands */
413 	cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
414 	cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
415 	cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
416 	cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
417 }
418 
419 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
420 						 struct its_cmd_block *cmd,
421 						 struct its_cmd_desc *desc)
422 {
423 	unsigned long itt_addr;
424 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
425 
426 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
427 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
428 
429 	its_encode_cmd(cmd, GITS_CMD_MAPD);
430 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
431 	its_encode_size(cmd, size - 1);
432 	its_encode_itt(cmd, itt_addr);
433 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
434 
435 	its_fixup_cmd(cmd);
436 
437 	return NULL;
438 }
439 
440 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
441 						 struct its_cmd_block *cmd,
442 						 struct its_cmd_desc *desc)
443 {
444 	its_encode_cmd(cmd, GITS_CMD_MAPC);
445 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
446 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
447 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
448 
449 	its_fixup_cmd(cmd);
450 
451 	return desc->its_mapc_cmd.col;
452 }
453 
454 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
455 						  struct its_cmd_block *cmd,
456 						  struct its_cmd_desc *desc)
457 {
458 	struct its_collection *col;
459 
460 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
461 			       desc->its_mapti_cmd.event_id);
462 
463 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
464 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
465 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
466 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
467 	its_encode_collection(cmd, col->col_id);
468 
469 	its_fixup_cmd(cmd);
470 
471 	return valid_col(col);
472 }
473 
474 static struct its_collection *its_build_movi_cmd(struct its_node *its,
475 						 struct its_cmd_block *cmd,
476 						 struct its_cmd_desc *desc)
477 {
478 	struct its_collection *col;
479 
480 	col = dev_event_to_col(desc->its_movi_cmd.dev,
481 			       desc->its_movi_cmd.event_id);
482 
483 	its_encode_cmd(cmd, GITS_CMD_MOVI);
484 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
485 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
486 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
487 
488 	its_fixup_cmd(cmd);
489 
490 	return valid_col(col);
491 }
492 
493 static struct its_collection *its_build_discard_cmd(struct its_node *its,
494 						    struct its_cmd_block *cmd,
495 						    struct its_cmd_desc *desc)
496 {
497 	struct its_collection *col;
498 
499 	col = dev_event_to_col(desc->its_discard_cmd.dev,
500 			       desc->its_discard_cmd.event_id);
501 
502 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
503 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
504 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
505 
506 	its_fixup_cmd(cmd);
507 
508 	return valid_col(col);
509 }
510 
511 static struct its_collection *its_build_inv_cmd(struct its_node *its,
512 						struct its_cmd_block *cmd,
513 						struct its_cmd_desc *desc)
514 {
515 	struct its_collection *col;
516 
517 	col = dev_event_to_col(desc->its_inv_cmd.dev,
518 			       desc->its_inv_cmd.event_id);
519 
520 	its_encode_cmd(cmd, GITS_CMD_INV);
521 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
522 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
523 
524 	its_fixup_cmd(cmd);
525 
526 	return valid_col(col);
527 }
528 
529 static struct its_collection *its_build_int_cmd(struct its_node *its,
530 						struct its_cmd_block *cmd,
531 						struct its_cmd_desc *desc)
532 {
533 	struct its_collection *col;
534 
535 	col = dev_event_to_col(desc->its_int_cmd.dev,
536 			       desc->its_int_cmd.event_id);
537 
538 	its_encode_cmd(cmd, GITS_CMD_INT);
539 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
540 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
541 
542 	its_fixup_cmd(cmd);
543 
544 	return valid_col(col);
545 }
546 
547 static struct its_collection *its_build_clear_cmd(struct its_node *its,
548 						  struct its_cmd_block *cmd,
549 						  struct its_cmd_desc *desc)
550 {
551 	struct its_collection *col;
552 
553 	col = dev_event_to_col(desc->its_clear_cmd.dev,
554 			       desc->its_clear_cmd.event_id);
555 
556 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
557 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
558 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
559 
560 	its_fixup_cmd(cmd);
561 
562 	return valid_col(col);
563 }
564 
565 static struct its_collection *its_build_invall_cmd(struct its_node *its,
566 						   struct its_cmd_block *cmd,
567 						   struct its_cmd_desc *desc)
568 {
569 	its_encode_cmd(cmd, GITS_CMD_INVALL);
570 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
571 
572 	its_fixup_cmd(cmd);
573 
574 	return NULL;
575 }
576 
577 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
578 					     struct its_cmd_block *cmd,
579 					     struct its_cmd_desc *desc)
580 {
581 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
582 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
583 
584 	its_fixup_cmd(cmd);
585 
586 	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
587 }
588 
589 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
590 					   struct its_cmd_block *cmd,
591 					   struct its_cmd_desc *desc)
592 {
593 	unsigned long vpt_addr;
594 	u64 target;
595 
596 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
597 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
598 
599 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
600 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
601 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
602 	its_encode_target(cmd, target);
603 	its_encode_vpt_addr(cmd, vpt_addr);
604 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
605 
606 	its_fixup_cmd(cmd);
607 
608 	return valid_vpe(its, desc->its_vmapp_cmd.vpe);
609 }
610 
611 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
612 					    struct its_cmd_block *cmd,
613 					    struct its_cmd_desc *desc)
614 {
615 	u32 db;
616 
617 	if (desc->its_vmapti_cmd.db_enabled)
618 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
619 	else
620 		db = 1023;
621 
622 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
623 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
624 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
625 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
626 	its_encode_db_phys_id(cmd, db);
627 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
628 
629 	its_fixup_cmd(cmd);
630 
631 	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
632 }
633 
634 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
635 					   struct its_cmd_block *cmd,
636 					   struct its_cmd_desc *desc)
637 {
638 	u32 db;
639 
640 	if (desc->its_vmovi_cmd.db_enabled)
641 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
642 	else
643 		db = 1023;
644 
645 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
646 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
647 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
648 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
649 	its_encode_db_phys_id(cmd, db);
650 	its_encode_db_valid(cmd, true);
651 
652 	its_fixup_cmd(cmd);
653 
654 	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
655 }
656 
657 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
658 					   struct its_cmd_block *cmd,
659 					   struct its_cmd_desc *desc)
660 {
661 	u64 target;
662 
663 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
664 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
665 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
666 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
667 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
668 	its_encode_target(cmd, target);
669 
670 	its_fixup_cmd(cmd);
671 
672 	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
673 }
674 
675 static u64 its_cmd_ptr_to_offset(struct its_node *its,
676 				 struct its_cmd_block *ptr)
677 {
678 	return (ptr - its->cmd_base) * sizeof(*ptr);
679 }
680 
681 static int its_queue_full(struct its_node *its)
682 {
683 	int widx;
684 	int ridx;
685 
686 	widx = its->cmd_write - its->cmd_base;
687 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
688 
689 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
690 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
691 		return 1;
692 
693 	return 0;
694 }
695 
696 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
697 {
698 	struct its_cmd_block *cmd;
699 	u32 count = 1000000;	/* 1s! */
700 
701 	while (its_queue_full(its)) {
702 		count--;
703 		if (!count) {
704 			pr_err_ratelimited("ITS queue not draining\n");
705 			return NULL;
706 		}
707 		cpu_relax();
708 		udelay(1);
709 	}
710 
711 	cmd = its->cmd_write++;
712 
713 	/* Handle queue wrapping */
714 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
715 		its->cmd_write = its->cmd_base;
716 
717 	/* Clear command  */
718 	cmd->raw_cmd[0] = 0;
719 	cmd->raw_cmd[1] = 0;
720 	cmd->raw_cmd[2] = 0;
721 	cmd->raw_cmd[3] = 0;
722 
723 	return cmd;
724 }
725 
726 static struct its_cmd_block *its_post_commands(struct its_node *its)
727 {
728 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
729 
730 	writel_relaxed(wr, its->base + GITS_CWRITER);
731 
732 	return its->cmd_write;
733 }
734 
735 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
736 {
737 	/*
738 	 * Make sure the commands written to memory are observable by
739 	 * the ITS.
740 	 */
741 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
742 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
743 	else
744 		dsb(ishst);
745 }
746 
747 static int its_wait_for_range_completion(struct its_node *its,
748 					 struct its_cmd_block *from,
749 					 struct its_cmd_block *to)
750 {
751 	u64 rd_idx, from_idx, to_idx;
752 	u32 count = 1000000;	/* 1s! */
753 
754 	from_idx = its_cmd_ptr_to_offset(its, from);
755 	to_idx = its_cmd_ptr_to_offset(its, to);
756 
757 	while (1) {
758 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
759 
760 		/* Direct case */
761 		if (from_idx < to_idx && rd_idx >= to_idx)
762 			break;
763 
764 		/* Wrapped case */
765 		if (from_idx >= to_idx && rd_idx >= to_idx && rd_idx < from_idx)
766 			break;
767 
768 		count--;
769 		if (!count) {
770 			pr_err_ratelimited("ITS queue timeout (%llu %llu %llu)\n",
771 					   from_idx, to_idx, rd_idx);
772 			return -1;
773 		}
774 		cpu_relax();
775 		udelay(1);
776 	}
777 
778 	return 0;
779 }
780 
781 /* Warning, macro hell follows */
782 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
783 void name(struct its_node *its,						\
784 	  buildtype builder,						\
785 	  struct its_cmd_desc *desc)					\
786 {									\
787 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
788 	synctype *sync_obj;						\
789 	unsigned long flags;						\
790 									\
791 	raw_spin_lock_irqsave(&its->lock, flags);			\
792 									\
793 	cmd = its_allocate_entry(its);					\
794 	if (!cmd) {		/* We're soooooo screewed... */		\
795 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
796 		return;							\
797 	}								\
798 	sync_obj = builder(its, cmd, desc);				\
799 	its_flush_cmd(its, cmd);					\
800 									\
801 	if (sync_obj) {							\
802 		sync_cmd = its_allocate_entry(its);			\
803 		if (!sync_cmd)						\
804 			goto post;					\
805 									\
806 		buildfn(its, sync_cmd, sync_obj);			\
807 		its_flush_cmd(its, sync_cmd);				\
808 	}								\
809 									\
810 post:									\
811 	next_cmd = its_post_commands(its);				\
812 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
813 									\
814 	if (its_wait_for_range_completion(its, cmd, next_cmd))		\
815 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
816 }
817 
818 static void its_build_sync_cmd(struct its_node *its,
819 			       struct its_cmd_block *sync_cmd,
820 			       struct its_collection *sync_col)
821 {
822 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
823 	its_encode_target(sync_cmd, sync_col->target_address);
824 
825 	its_fixup_cmd(sync_cmd);
826 }
827 
828 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
829 			     struct its_collection, its_build_sync_cmd)
830 
831 static void its_build_vsync_cmd(struct its_node *its,
832 				struct its_cmd_block *sync_cmd,
833 				struct its_vpe *sync_vpe)
834 {
835 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
836 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
837 
838 	its_fixup_cmd(sync_cmd);
839 }
840 
841 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
842 			     struct its_vpe, its_build_vsync_cmd)
843 
844 static void its_send_int(struct its_device *dev, u32 event_id)
845 {
846 	struct its_cmd_desc desc;
847 
848 	desc.its_int_cmd.dev = dev;
849 	desc.its_int_cmd.event_id = event_id;
850 
851 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
852 }
853 
854 static void its_send_clear(struct its_device *dev, u32 event_id)
855 {
856 	struct its_cmd_desc desc;
857 
858 	desc.its_clear_cmd.dev = dev;
859 	desc.its_clear_cmd.event_id = event_id;
860 
861 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
862 }
863 
864 static void its_send_inv(struct its_device *dev, u32 event_id)
865 {
866 	struct its_cmd_desc desc;
867 
868 	desc.its_inv_cmd.dev = dev;
869 	desc.its_inv_cmd.event_id = event_id;
870 
871 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
872 }
873 
874 static void its_send_mapd(struct its_device *dev, int valid)
875 {
876 	struct its_cmd_desc desc;
877 
878 	desc.its_mapd_cmd.dev = dev;
879 	desc.its_mapd_cmd.valid = !!valid;
880 
881 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
882 }
883 
884 static void its_send_mapc(struct its_node *its, struct its_collection *col,
885 			  int valid)
886 {
887 	struct its_cmd_desc desc;
888 
889 	desc.its_mapc_cmd.col = col;
890 	desc.its_mapc_cmd.valid = !!valid;
891 
892 	its_send_single_command(its, its_build_mapc_cmd, &desc);
893 }
894 
895 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
896 {
897 	struct its_cmd_desc desc;
898 
899 	desc.its_mapti_cmd.dev = dev;
900 	desc.its_mapti_cmd.phys_id = irq_id;
901 	desc.its_mapti_cmd.event_id = id;
902 
903 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
904 }
905 
906 static void its_send_movi(struct its_device *dev,
907 			  struct its_collection *col, u32 id)
908 {
909 	struct its_cmd_desc desc;
910 
911 	desc.its_movi_cmd.dev = dev;
912 	desc.its_movi_cmd.col = col;
913 	desc.its_movi_cmd.event_id = id;
914 
915 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
916 }
917 
918 static void its_send_discard(struct its_device *dev, u32 id)
919 {
920 	struct its_cmd_desc desc;
921 
922 	desc.its_discard_cmd.dev = dev;
923 	desc.its_discard_cmd.event_id = id;
924 
925 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
926 }
927 
928 static void its_send_invall(struct its_node *its, struct its_collection *col)
929 {
930 	struct its_cmd_desc desc;
931 
932 	desc.its_invall_cmd.col = col;
933 
934 	its_send_single_command(its, its_build_invall_cmd, &desc);
935 }
936 
937 static void its_send_vmapti(struct its_device *dev, u32 id)
938 {
939 	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
940 	struct its_cmd_desc desc;
941 
942 	desc.its_vmapti_cmd.vpe = map->vpe;
943 	desc.its_vmapti_cmd.dev = dev;
944 	desc.its_vmapti_cmd.virt_id = map->vintid;
945 	desc.its_vmapti_cmd.event_id = id;
946 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
947 
948 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
949 }
950 
951 static void its_send_vmovi(struct its_device *dev, u32 id)
952 {
953 	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
954 	struct its_cmd_desc desc;
955 
956 	desc.its_vmovi_cmd.vpe = map->vpe;
957 	desc.its_vmovi_cmd.dev = dev;
958 	desc.its_vmovi_cmd.event_id = id;
959 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
960 
961 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
962 }
963 
964 static void its_send_vmapp(struct its_node *its,
965 			   struct its_vpe *vpe, bool valid)
966 {
967 	struct its_cmd_desc desc;
968 
969 	desc.its_vmapp_cmd.vpe = vpe;
970 	desc.its_vmapp_cmd.valid = valid;
971 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
972 
973 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
974 }
975 
976 static void its_send_vmovp(struct its_vpe *vpe)
977 {
978 	struct its_cmd_desc desc;
979 	struct its_node *its;
980 	unsigned long flags;
981 	int col_id = vpe->col_idx;
982 
983 	desc.its_vmovp_cmd.vpe = vpe;
984 	desc.its_vmovp_cmd.its_list = (u16)its_list_map;
985 
986 	if (!its_list_map) {
987 		its = list_first_entry(&its_nodes, struct its_node, entry);
988 		desc.its_vmovp_cmd.seq_num = 0;
989 		desc.its_vmovp_cmd.col = &its->collections[col_id];
990 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
991 		return;
992 	}
993 
994 	/*
995 	 * Yet another marvel of the architecture. If using the
996 	 * its_list "feature", we need to make sure that all ITSs
997 	 * receive all VMOVP commands in the same order. The only way
998 	 * to guarantee this is to make vmovp a serialization point.
999 	 *
1000 	 * Wall <-- Head.
1001 	 */
1002 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1003 
1004 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1005 
1006 	/* Emit VMOVPs */
1007 	list_for_each_entry(its, &its_nodes, entry) {
1008 		if (!its->is_v4)
1009 			continue;
1010 
1011 		if (!vpe->its_vm->vlpi_count[its->list_nr])
1012 			continue;
1013 
1014 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1015 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1016 	}
1017 
1018 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1019 }
1020 
1021 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1022 {
1023 	struct its_cmd_desc desc;
1024 
1025 	desc.its_vinvall_cmd.vpe = vpe;
1026 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1027 }
1028 
1029 /*
1030  * irqchip functions - assumes MSI, mostly.
1031  */
1032 
1033 static inline u32 its_get_event_id(struct irq_data *d)
1034 {
1035 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1036 	return d->hwirq - its_dev->event_map.lpi_base;
1037 }
1038 
1039 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1040 {
1041 	irq_hw_number_t hwirq;
1042 	void *va;
1043 	u8 *cfg;
1044 
1045 	if (irqd_is_forwarded_to_vcpu(d)) {
1046 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1047 		u32 event = its_get_event_id(d);
1048 		struct its_vlpi_map *map;
1049 
1050 		va = page_address(its_dev->event_map.vm->vprop_page);
1051 		map = &its_dev->event_map.vlpi_maps[event];
1052 		hwirq = map->vintid;
1053 
1054 		/* Remember the updated property */
1055 		map->properties &= ~clr;
1056 		map->properties |= set | LPI_PROP_GROUP1;
1057 	} else {
1058 		va = gic_rdists->prop_table_va;
1059 		hwirq = d->hwirq;
1060 	}
1061 
1062 	cfg = va + hwirq - 8192;
1063 	*cfg &= ~clr;
1064 	*cfg |= set | LPI_PROP_GROUP1;
1065 
1066 	/*
1067 	 * Make the above write visible to the redistributors.
1068 	 * And yes, we're flushing exactly: One. Single. Byte.
1069 	 * Humpf...
1070 	 */
1071 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1072 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1073 	else
1074 		dsb(ishst);
1075 }
1076 
1077 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1078 {
1079 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1080 
1081 	lpi_write_config(d, clr, set);
1082 	its_send_inv(its_dev, its_get_event_id(d));
1083 }
1084 
1085 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1086 {
1087 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1088 	u32 event = its_get_event_id(d);
1089 
1090 	if (its_dev->event_map.vlpi_maps[event].db_enabled == enable)
1091 		return;
1092 
1093 	its_dev->event_map.vlpi_maps[event].db_enabled = enable;
1094 
1095 	/*
1096 	 * More fun with the architecture:
1097 	 *
1098 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1099 	 * value or to 1023, depending on the enable bit. But that
1100 	 * would be issueing a mapping for an /existing/ DevID+EventID
1101 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1102 	 * to the /same/ vPE, using this opportunity to adjust the
1103 	 * doorbell. Mouahahahaha. We loves it, Precious.
1104 	 */
1105 	its_send_vmovi(its_dev, event);
1106 }
1107 
1108 static void its_mask_irq(struct irq_data *d)
1109 {
1110 	if (irqd_is_forwarded_to_vcpu(d))
1111 		its_vlpi_set_doorbell(d, false);
1112 
1113 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1114 }
1115 
1116 static void its_unmask_irq(struct irq_data *d)
1117 {
1118 	if (irqd_is_forwarded_to_vcpu(d))
1119 		its_vlpi_set_doorbell(d, true);
1120 
1121 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1122 }
1123 
1124 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1125 			    bool force)
1126 {
1127 	unsigned int cpu;
1128 	const struct cpumask *cpu_mask = cpu_online_mask;
1129 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1130 	struct its_collection *target_col;
1131 	u32 id = its_get_event_id(d);
1132 
1133 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1134 	if (irqd_is_forwarded_to_vcpu(d))
1135 		return -EINVAL;
1136 
1137        /* lpi cannot be routed to a redistributor that is on a foreign node */
1138 	if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1139 		if (its_dev->its->numa_node >= 0) {
1140 			cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1141 			if (!cpumask_intersects(mask_val, cpu_mask))
1142 				return -EINVAL;
1143 		}
1144 	}
1145 
1146 	cpu = cpumask_any_and(mask_val, cpu_mask);
1147 
1148 	if (cpu >= nr_cpu_ids)
1149 		return -EINVAL;
1150 
1151 	/* don't set the affinity when the target cpu is same as current one */
1152 	if (cpu != its_dev->event_map.col_map[id]) {
1153 		target_col = &its_dev->its->collections[cpu];
1154 		its_send_movi(its_dev, target_col, id);
1155 		its_dev->event_map.col_map[id] = cpu;
1156 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1157 	}
1158 
1159 	return IRQ_SET_MASK_OK_DONE;
1160 }
1161 
1162 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1163 {
1164 	struct its_node *its = its_dev->its;
1165 
1166 	return its->phys_base + GITS_TRANSLATER;
1167 }
1168 
1169 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1170 {
1171 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1172 	struct its_node *its;
1173 	u64 addr;
1174 
1175 	its = its_dev->its;
1176 	addr = its->get_msi_base(its_dev);
1177 
1178 	msg->address_lo		= lower_32_bits(addr);
1179 	msg->address_hi		= upper_32_bits(addr);
1180 	msg->data		= its_get_event_id(d);
1181 
1182 	iommu_dma_map_msi_msg(d->irq, msg);
1183 }
1184 
1185 static int its_irq_set_irqchip_state(struct irq_data *d,
1186 				     enum irqchip_irq_state which,
1187 				     bool state)
1188 {
1189 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1190 	u32 event = its_get_event_id(d);
1191 
1192 	if (which != IRQCHIP_STATE_PENDING)
1193 		return -EINVAL;
1194 
1195 	if (state)
1196 		its_send_int(its_dev, event);
1197 	else
1198 		its_send_clear(its_dev, event);
1199 
1200 	return 0;
1201 }
1202 
1203 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1204 {
1205 	unsigned long flags;
1206 
1207 	/* Not using the ITS list? Everything is always mapped. */
1208 	if (!its_list_map)
1209 		return;
1210 
1211 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1212 
1213 	/*
1214 	 * If the VM wasn't mapped yet, iterate over the vpes and get
1215 	 * them mapped now.
1216 	 */
1217 	vm->vlpi_count[its->list_nr]++;
1218 
1219 	if (vm->vlpi_count[its->list_nr] == 1) {
1220 		int i;
1221 
1222 		for (i = 0; i < vm->nr_vpes; i++) {
1223 			struct its_vpe *vpe = vm->vpes[i];
1224 			struct irq_data *d = irq_get_irq_data(vpe->irq);
1225 
1226 			/* Map the VPE to the first possible CPU */
1227 			vpe->col_idx = cpumask_first(cpu_online_mask);
1228 			its_send_vmapp(its, vpe, true);
1229 			its_send_vinvall(its, vpe);
1230 			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1231 		}
1232 	}
1233 
1234 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1235 }
1236 
1237 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1238 {
1239 	unsigned long flags;
1240 
1241 	/* Not using the ITS list? Everything is always mapped. */
1242 	if (!its_list_map)
1243 		return;
1244 
1245 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1246 
1247 	if (!--vm->vlpi_count[its->list_nr]) {
1248 		int i;
1249 
1250 		for (i = 0; i < vm->nr_vpes; i++)
1251 			its_send_vmapp(its, vm->vpes[i], false);
1252 	}
1253 
1254 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1255 }
1256 
1257 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1258 {
1259 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1260 	u32 event = its_get_event_id(d);
1261 	int ret = 0;
1262 
1263 	if (!info->map)
1264 		return -EINVAL;
1265 
1266 	mutex_lock(&its_dev->event_map.vlpi_lock);
1267 
1268 	if (!its_dev->event_map.vm) {
1269 		struct its_vlpi_map *maps;
1270 
1271 		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1272 			       GFP_KERNEL);
1273 		if (!maps) {
1274 			ret = -ENOMEM;
1275 			goto out;
1276 		}
1277 
1278 		its_dev->event_map.vm = info->map->vm;
1279 		its_dev->event_map.vlpi_maps = maps;
1280 	} else if (its_dev->event_map.vm != info->map->vm) {
1281 		ret = -EINVAL;
1282 		goto out;
1283 	}
1284 
1285 	/* Get our private copy of the mapping information */
1286 	its_dev->event_map.vlpi_maps[event] = *info->map;
1287 
1288 	if (irqd_is_forwarded_to_vcpu(d)) {
1289 		/* Already mapped, move it around */
1290 		its_send_vmovi(its_dev, event);
1291 	} else {
1292 		/* Ensure all the VPEs are mapped on this ITS */
1293 		its_map_vm(its_dev->its, info->map->vm);
1294 
1295 		/*
1296 		 * Flag the interrupt as forwarded so that we can
1297 		 * start poking the virtual property table.
1298 		 */
1299 		irqd_set_forwarded_to_vcpu(d);
1300 
1301 		/* Write out the property to the prop table */
1302 		lpi_write_config(d, 0xff, info->map->properties);
1303 
1304 		/* Drop the physical mapping */
1305 		its_send_discard(its_dev, event);
1306 
1307 		/* and install the virtual one */
1308 		its_send_vmapti(its_dev, event);
1309 
1310 		/* Increment the number of VLPIs */
1311 		its_dev->event_map.nr_vlpis++;
1312 	}
1313 
1314 out:
1315 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1316 	return ret;
1317 }
1318 
1319 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1320 {
1321 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1322 	u32 event = its_get_event_id(d);
1323 	int ret = 0;
1324 
1325 	mutex_lock(&its_dev->event_map.vlpi_lock);
1326 
1327 	if (!its_dev->event_map.vm ||
1328 	    !its_dev->event_map.vlpi_maps[event].vm) {
1329 		ret = -EINVAL;
1330 		goto out;
1331 	}
1332 
1333 	/* Copy our mapping information to the incoming request */
1334 	*info->map = its_dev->event_map.vlpi_maps[event];
1335 
1336 out:
1337 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1338 	return ret;
1339 }
1340 
1341 static int its_vlpi_unmap(struct irq_data *d)
1342 {
1343 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1344 	u32 event = its_get_event_id(d);
1345 	int ret = 0;
1346 
1347 	mutex_lock(&its_dev->event_map.vlpi_lock);
1348 
1349 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1350 		ret = -EINVAL;
1351 		goto out;
1352 	}
1353 
1354 	/* Drop the virtual mapping */
1355 	its_send_discard(its_dev, event);
1356 
1357 	/* and restore the physical one */
1358 	irqd_clr_forwarded_to_vcpu(d);
1359 	its_send_mapti(its_dev, d->hwirq, event);
1360 	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1361 				    LPI_PROP_ENABLED |
1362 				    LPI_PROP_GROUP1));
1363 
1364 	/* Potentially unmap the VM from this ITS */
1365 	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1366 
1367 	/*
1368 	 * Drop the refcount and make the device available again if
1369 	 * this was the last VLPI.
1370 	 */
1371 	if (!--its_dev->event_map.nr_vlpis) {
1372 		its_dev->event_map.vm = NULL;
1373 		kfree(its_dev->event_map.vlpi_maps);
1374 	}
1375 
1376 out:
1377 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1378 	return ret;
1379 }
1380 
1381 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1382 {
1383 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1384 
1385 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1386 		return -EINVAL;
1387 
1388 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1389 		lpi_update_config(d, 0xff, info->config);
1390 	else
1391 		lpi_write_config(d, 0xff, info->config);
1392 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1393 
1394 	return 0;
1395 }
1396 
1397 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1398 {
1399 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1400 	struct its_cmd_info *info = vcpu_info;
1401 
1402 	/* Need a v4 ITS */
1403 	if (!its_dev->its->is_v4)
1404 		return -EINVAL;
1405 
1406 	/* Unmap request? */
1407 	if (!info)
1408 		return its_vlpi_unmap(d);
1409 
1410 	switch (info->cmd_type) {
1411 	case MAP_VLPI:
1412 		return its_vlpi_map(d, info);
1413 
1414 	case GET_VLPI:
1415 		return its_vlpi_get(d, info);
1416 
1417 	case PROP_UPDATE_VLPI:
1418 	case PROP_UPDATE_AND_INV_VLPI:
1419 		return its_vlpi_prop_update(d, info);
1420 
1421 	default:
1422 		return -EINVAL;
1423 	}
1424 }
1425 
1426 static struct irq_chip its_irq_chip = {
1427 	.name			= "ITS",
1428 	.irq_mask		= its_mask_irq,
1429 	.irq_unmask		= its_unmask_irq,
1430 	.irq_eoi		= irq_chip_eoi_parent,
1431 	.irq_set_affinity	= its_set_affinity,
1432 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
1433 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
1434 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
1435 };
1436 
1437 
1438 /*
1439  * How we allocate LPIs:
1440  *
1441  * lpi_range_list contains ranges of LPIs that are to available to
1442  * allocate from. To allocate LPIs, just pick the first range that
1443  * fits the required allocation, and reduce it by the required
1444  * amount. Once empty, remove the range from the list.
1445  *
1446  * To free a range of LPIs, add a free range to the list, sort it and
1447  * merge the result if the new range happens to be adjacent to an
1448  * already free block.
1449  *
1450  * The consequence of the above is that allocation is cost is low, but
1451  * freeing is expensive. We assumes that freeing rarely occurs.
1452  */
1453 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
1454 
1455 static DEFINE_MUTEX(lpi_range_lock);
1456 static LIST_HEAD(lpi_range_list);
1457 
1458 struct lpi_range {
1459 	struct list_head	entry;
1460 	u32			base_id;
1461 	u32			span;
1462 };
1463 
1464 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
1465 {
1466 	struct lpi_range *range;
1467 
1468 	range = kzalloc(sizeof(*range), GFP_KERNEL);
1469 	if (range) {
1470 		INIT_LIST_HEAD(&range->entry);
1471 		range->base_id = base;
1472 		range->span = span;
1473 	}
1474 
1475 	return range;
1476 }
1477 
1478 static int lpi_range_cmp(void *priv, struct list_head *a, struct list_head *b)
1479 {
1480 	struct lpi_range *ra, *rb;
1481 
1482 	ra = container_of(a, struct lpi_range, entry);
1483 	rb = container_of(b, struct lpi_range, entry);
1484 
1485 	return ra->base_id - rb->base_id;
1486 }
1487 
1488 static void merge_lpi_ranges(void)
1489 {
1490 	struct lpi_range *range, *tmp;
1491 
1492 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
1493 		if (!list_is_last(&range->entry, &lpi_range_list) &&
1494 		    (tmp->base_id == (range->base_id + range->span))) {
1495 			tmp->base_id = range->base_id;
1496 			tmp->span += range->span;
1497 			list_del(&range->entry);
1498 			kfree(range);
1499 		}
1500 	}
1501 }
1502 
1503 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
1504 {
1505 	struct lpi_range *range, *tmp;
1506 	int err = -ENOSPC;
1507 
1508 	mutex_lock(&lpi_range_lock);
1509 
1510 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
1511 		if (range->span >= nr_lpis) {
1512 			*base = range->base_id;
1513 			range->base_id += nr_lpis;
1514 			range->span -= nr_lpis;
1515 
1516 			if (range->span == 0) {
1517 				list_del(&range->entry);
1518 				kfree(range);
1519 			}
1520 
1521 			err = 0;
1522 			break;
1523 		}
1524 	}
1525 
1526 	mutex_unlock(&lpi_range_lock);
1527 
1528 	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
1529 	return err;
1530 }
1531 
1532 static int free_lpi_range(u32 base, u32 nr_lpis)
1533 {
1534 	struct lpi_range *new;
1535 	int err = 0;
1536 
1537 	mutex_lock(&lpi_range_lock);
1538 
1539 	new = mk_lpi_range(base, nr_lpis);
1540 	if (!new) {
1541 		err = -ENOMEM;
1542 		goto out;
1543 	}
1544 
1545 	list_add(&new->entry, &lpi_range_list);
1546 	list_sort(NULL, &lpi_range_list, lpi_range_cmp);
1547 	merge_lpi_ranges();
1548 out:
1549 	mutex_unlock(&lpi_range_lock);
1550 	return err;
1551 }
1552 
1553 static int __init its_lpi_init(u32 id_bits)
1554 {
1555 	u32 lpis = (1UL << id_bits) - 8192;
1556 	u32 numlpis;
1557 	int err;
1558 
1559 	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
1560 
1561 	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
1562 		lpis = numlpis;
1563 		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
1564 			lpis);
1565 	}
1566 
1567 	/*
1568 	 * Initializing the allocator is just the same as freeing the
1569 	 * full range of LPIs.
1570 	 */
1571 	err = free_lpi_range(8192, lpis);
1572 	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
1573 	return err;
1574 }
1575 
1576 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
1577 {
1578 	unsigned long *bitmap = NULL;
1579 	int err = 0;
1580 
1581 	do {
1582 		err = alloc_lpi_range(nr_irqs, base);
1583 		if (!err)
1584 			break;
1585 
1586 		nr_irqs /= 2;
1587 	} while (nr_irqs > 0);
1588 
1589 	if (!nr_irqs)
1590 		err = -ENOSPC;
1591 
1592 	if (err)
1593 		goto out;
1594 
1595 	bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC);
1596 	if (!bitmap)
1597 		goto out;
1598 
1599 	*nr_ids = nr_irqs;
1600 
1601 out:
1602 	if (!bitmap)
1603 		*base = *nr_ids = 0;
1604 
1605 	return bitmap;
1606 }
1607 
1608 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
1609 {
1610 	WARN_ON(free_lpi_range(base, nr_ids));
1611 	kfree(bitmap);
1612 }
1613 
1614 static void gic_reset_prop_table(void *va)
1615 {
1616 	/* Priority 0xa0, Group-1, disabled */
1617 	memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
1618 
1619 	/* Make sure the GIC will observe the written configuration */
1620 	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
1621 }
1622 
1623 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
1624 {
1625 	struct page *prop_page;
1626 
1627 	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
1628 	if (!prop_page)
1629 		return NULL;
1630 
1631 	gic_reset_prop_table(page_address(prop_page));
1632 
1633 	return prop_page;
1634 }
1635 
1636 static void its_free_prop_table(struct page *prop_page)
1637 {
1638 	free_pages((unsigned long)page_address(prop_page),
1639 		   get_order(LPI_PROPBASE_SZ));
1640 }
1641 
1642 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
1643 {
1644 	phys_addr_t start, end, addr_end;
1645 	u64 i;
1646 
1647 	/*
1648 	 * We don't bother checking for a kdump kernel as by
1649 	 * construction, the LPI tables are out of this kernel's
1650 	 * memory map.
1651 	 */
1652 	if (is_kdump_kernel())
1653 		return true;
1654 
1655 	addr_end = addr + size - 1;
1656 
1657 	for_each_reserved_mem_region(i, &start, &end) {
1658 		if (addr >= start && addr_end <= end)
1659 			return true;
1660 	}
1661 
1662 	/* Not found, not a good sign... */
1663 	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
1664 		&addr, &addr_end);
1665 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
1666 	return false;
1667 }
1668 
1669 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
1670 {
1671 	if (efi_enabled(EFI_CONFIG_TABLES))
1672 		return efi_mem_reserve_persistent(addr, size);
1673 
1674 	return 0;
1675 }
1676 
1677 static int __init its_setup_lpi_prop_table(void)
1678 {
1679 	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
1680 		u64 val;
1681 
1682 		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
1683 		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
1684 
1685 		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
1686 		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
1687 						     LPI_PROPBASE_SZ,
1688 						     MEMREMAP_WB);
1689 		gic_reset_prop_table(gic_rdists->prop_table_va);
1690 	} else {
1691 		struct page *page;
1692 
1693 		lpi_id_bits = min_t(u32,
1694 				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
1695 				    ITS_MAX_LPI_NRBITS);
1696 		page = its_allocate_prop_table(GFP_NOWAIT);
1697 		if (!page) {
1698 			pr_err("Failed to allocate PROPBASE\n");
1699 			return -ENOMEM;
1700 		}
1701 
1702 		gic_rdists->prop_table_pa = page_to_phys(page);
1703 		gic_rdists->prop_table_va = page_address(page);
1704 		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
1705 					  LPI_PROPBASE_SZ));
1706 	}
1707 
1708 	pr_info("GICv3: using LPI property table @%pa\n",
1709 		&gic_rdists->prop_table_pa);
1710 
1711 	return its_lpi_init(lpi_id_bits);
1712 }
1713 
1714 static const char *its_base_type_string[] = {
1715 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
1716 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
1717 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
1718 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
1719 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
1720 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
1721 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
1722 };
1723 
1724 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
1725 {
1726 	u32 idx = baser - its->tables;
1727 
1728 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
1729 }
1730 
1731 static void its_write_baser(struct its_node *its, struct its_baser *baser,
1732 			    u64 val)
1733 {
1734 	u32 idx = baser - its->tables;
1735 
1736 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
1737 	baser->val = its_read_baser(its, baser);
1738 }
1739 
1740 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
1741 			   u64 cache, u64 shr, u32 psz, u32 order,
1742 			   bool indirect)
1743 {
1744 	u64 val = its_read_baser(its, baser);
1745 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
1746 	u64 type = GITS_BASER_TYPE(val);
1747 	u64 baser_phys, tmp;
1748 	u32 alloc_pages;
1749 	struct page *page;
1750 	void *base;
1751 
1752 retry_alloc_baser:
1753 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
1754 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
1755 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
1756 			&its->phys_base, its_base_type_string[type],
1757 			alloc_pages, GITS_BASER_PAGES_MAX);
1758 		alloc_pages = GITS_BASER_PAGES_MAX;
1759 		order = get_order(GITS_BASER_PAGES_MAX * psz);
1760 	}
1761 
1762 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
1763 	if (!page)
1764 		return -ENOMEM;
1765 
1766 	base = (void *)page_address(page);
1767 	baser_phys = virt_to_phys(base);
1768 
1769 	/* Check if the physical address of the memory is above 48bits */
1770 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
1771 
1772 		/* 52bit PA is supported only when PageSize=64K */
1773 		if (psz != SZ_64K) {
1774 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
1775 			free_pages((unsigned long)base, order);
1776 			return -ENXIO;
1777 		}
1778 
1779 		/* Convert 52bit PA to 48bit field */
1780 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
1781 	}
1782 
1783 retry_baser:
1784 	val = (baser_phys					 |
1785 		(type << GITS_BASER_TYPE_SHIFT)			 |
1786 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
1787 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
1788 		cache						 |
1789 		shr						 |
1790 		GITS_BASER_VALID);
1791 
1792 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
1793 
1794 	switch (psz) {
1795 	case SZ_4K:
1796 		val |= GITS_BASER_PAGE_SIZE_4K;
1797 		break;
1798 	case SZ_16K:
1799 		val |= GITS_BASER_PAGE_SIZE_16K;
1800 		break;
1801 	case SZ_64K:
1802 		val |= GITS_BASER_PAGE_SIZE_64K;
1803 		break;
1804 	}
1805 
1806 	its_write_baser(its, baser, val);
1807 	tmp = baser->val;
1808 
1809 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
1810 		/*
1811 		 * Shareability didn't stick. Just use
1812 		 * whatever the read reported, which is likely
1813 		 * to be the only thing this redistributor
1814 		 * supports. If that's zero, make it
1815 		 * non-cacheable as well.
1816 		 */
1817 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
1818 		if (!shr) {
1819 			cache = GITS_BASER_nC;
1820 			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
1821 		}
1822 		goto retry_baser;
1823 	}
1824 
1825 	if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
1826 		/*
1827 		 * Page size didn't stick. Let's try a smaller
1828 		 * size and retry. If we reach 4K, then
1829 		 * something is horribly wrong...
1830 		 */
1831 		free_pages((unsigned long)base, order);
1832 		baser->base = NULL;
1833 
1834 		switch (psz) {
1835 		case SZ_16K:
1836 			psz = SZ_4K;
1837 			goto retry_alloc_baser;
1838 		case SZ_64K:
1839 			psz = SZ_16K;
1840 			goto retry_alloc_baser;
1841 		}
1842 	}
1843 
1844 	if (val != tmp) {
1845 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
1846 		       &its->phys_base, its_base_type_string[type],
1847 		       val, tmp);
1848 		free_pages((unsigned long)base, order);
1849 		return -ENXIO;
1850 	}
1851 
1852 	baser->order = order;
1853 	baser->base = base;
1854 	baser->psz = psz;
1855 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
1856 
1857 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
1858 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
1859 		its_base_type_string[type],
1860 		(unsigned long)virt_to_phys(base),
1861 		indirect ? "indirect" : "flat", (int)esz,
1862 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
1863 
1864 	return 0;
1865 }
1866 
1867 static bool its_parse_indirect_baser(struct its_node *its,
1868 				     struct its_baser *baser,
1869 				     u32 psz, u32 *order, u32 ids)
1870 {
1871 	u64 tmp = its_read_baser(its, baser);
1872 	u64 type = GITS_BASER_TYPE(tmp);
1873 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
1874 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
1875 	u32 new_order = *order;
1876 	bool indirect = false;
1877 
1878 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
1879 	if ((esz << ids) > (psz * 2)) {
1880 		/*
1881 		 * Find out whether hw supports a single or two-level table by
1882 		 * table by reading bit at offset '62' after writing '1' to it.
1883 		 */
1884 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
1885 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
1886 
1887 		if (indirect) {
1888 			/*
1889 			 * The size of the lvl2 table is equal to ITS page size
1890 			 * which is 'psz'. For computing lvl1 table size,
1891 			 * subtract ID bits that sparse lvl2 table from 'ids'
1892 			 * which is reported by ITS hardware times lvl1 table
1893 			 * entry size.
1894 			 */
1895 			ids -= ilog2(psz / (int)esz);
1896 			esz = GITS_LVL1_ENTRY_SIZE;
1897 		}
1898 	}
1899 
1900 	/*
1901 	 * Allocate as many entries as required to fit the
1902 	 * range of device IDs that the ITS can grok... The ID
1903 	 * space being incredibly sparse, this results in a
1904 	 * massive waste of memory if two-level device table
1905 	 * feature is not supported by hardware.
1906 	 */
1907 	new_order = max_t(u32, get_order(esz << ids), new_order);
1908 	if (new_order >= MAX_ORDER) {
1909 		new_order = MAX_ORDER - 1;
1910 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
1911 		pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n",
1912 			&its->phys_base, its_base_type_string[type],
1913 			its->device_ids, ids);
1914 	}
1915 
1916 	*order = new_order;
1917 
1918 	return indirect;
1919 }
1920 
1921 static void its_free_tables(struct its_node *its)
1922 {
1923 	int i;
1924 
1925 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1926 		if (its->tables[i].base) {
1927 			free_pages((unsigned long)its->tables[i].base,
1928 				   its->tables[i].order);
1929 			its->tables[i].base = NULL;
1930 		}
1931 	}
1932 }
1933 
1934 static int its_alloc_tables(struct its_node *its)
1935 {
1936 	u64 shr = GITS_BASER_InnerShareable;
1937 	u64 cache = GITS_BASER_RaWaWb;
1938 	u32 psz = SZ_64K;
1939 	int err, i;
1940 
1941 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
1942 		/* erratum 24313: ignore memory access type */
1943 		cache = GITS_BASER_nCnB;
1944 
1945 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1946 		struct its_baser *baser = its->tables + i;
1947 		u64 val = its_read_baser(its, baser);
1948 		u64 type = GITS_BASER_TYPE(val);
1949 		u32 order = get_order(psz);
1950 		bool indirect = false;
1951 
1952 		switch (type) {
1953 		case GITS_BASER_TYPE_NONE:
1954 			continue;
1955 
1956 		case GITS_BASER_TYPE_DEVICE:
1957 			indirect = its_parse_indirect_baser(its, baser,
1958 							    psz, &order,
1959 							    its->device_ids);
1960 			break;
1961 
1962 		case GITS_BASER_TYPE_VCPU:
1963 			indirect = its_parse_indirect_baser(its, baser,
1964 							    psz, &order,
1965 							    ITS_MAX_VPEID_BITS);
1966 			break;
1967 		}
1968 
1969 		err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1970 		if (err < 0) {
1971 			its_free_tables(its);
1972 			return err;
1973 		}
1974 
1975 		/* Update settings which will be used for next BASERn */
1976 		psz = baser->psz;
1977 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1978 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1979 	}
1980 
1981 	return 0;
1982 }
1983 
1984 static int its_alloc_collections(struct its_node *its)
1985 {
1986 	int i;
1987 
1988 	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
1989 				   GFP_KERNEL);
1990 	if (!its->collections)
1991 		return -ENOMEM;
1992 
1993 	for (i = 0; i < nr_cpu_ids; i++)
1994 		its->collections[i].target_address = ~0ULL;
1995 
1996 	return 0;
1997 }
1998 
1999 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2000 {
2001 	struct page *pend_page;
2002 
2003 	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2004 				get_order(LPI_PENDBASE_SZ));
2005 	if (!pend_page)
2006 		return NULL;
2007 
2008 	/* Make sure the GIC will observe the zero-ed page */
2009 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2010 
2011 	return pend_page;
2012 }
2013 
2014 static void its_free_pending_table(struct page *pt)
2015 {
2016 	free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2017 }
2018 
2019 /*
2020  * Booting with kdump and LPIs enabled is generally fine. Any other
2021  * case is wrong in the absence of firmware/EFI support.
2022  */
2023 static bool enabled_lpis_allowed(void)
2024 {
2025 	phys_addr_t addr;
2026 	u64 val;
2027 
2028 	/* Check whether the property table is in a reserved region */
2029 	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2030 	addr = val & GENMASK_ULL(51, 12);
2031 
2032 	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2033 }
2034 
2035 static int __init allocate_lpi_tables(void)
2036 {
2037 	u64 val;
2038 	int err, cpu;
2039 
2040 	/*
2041 	 * If LPIs are enabled while we run this from the boot CPU,
2042 	 * flag the RD tables as pre-allocated if the stars do align.
2043 	 */
2044 	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2045 	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2046 		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2047 				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2048 		pr_info("GICv3: Using preallocated redistributor tables\n");
2049 	}
2050 
2051 	err = its_setup_lpi_prop_table();
2052 	if (err)
2053 		return err;
2054 
2055 	/*
2056 	 * We allocate all the pending tables anyway, as we may have a
2057 	 * mix of RDs that have had LPIs enabled, and some that
2058 	 * don't. We'll free the unused ones as each CPU comes online.
2059 	 */
2060 	for_each_possible_cpu(cpu) {
2061 		struct page *pend_page;
2062 
2063 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
2064 		if (!pend_page) {
2065 			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
2066 			return -ENOMEM;
2067 		}
2068 
2069 		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
2070 	}
2071 
2072 	return 0;
2073 }
2074 
2075 static u64 its_clear_vpend_valid(void __iomem *vlpi_base)
2076 {
2077 	u32 count = 1000000;	/* 1s! */
2078 	bool clean;
2079 	u64 val;
2080 
2081 	val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2082 	val &= ~GICR_VPENDBASER_Valid;
2083 	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2084 
2085 	do {
2086 		val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2087 		clean = !(val & GICR_VPENDBASER_Dirty);
2088 		if (!clean) {
2089 			count--;
2090 			cpu_relax();
2091 			udelay(1);
2092 		}
2093 	} while (!clean && count);
2094 
2095 	return val;
2096 }
2097 
2098 static void its_cpu_init_lpis(void)
2099 {
2100 	void __iomem *rbase = gic_data_rdist_rd_base();
2101 	struct page *pend_page;
2102 	phys_addr_t paddr;
2103 	u64 val, tmp;
2104 
2105 	if (gic_data_rdist()->lpi_enabled)
2106 		return;
2107 
2108 	val = readl_relaxed(rbase + GICR_CTLR);
2109 	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
2110 	    (val & GICR_CTLR_ENABLE_LPIS)) {
2111 		/*
2112 		 * Check that we get the same property table on all
2113 		 * RDs. If we don't, this is hopeless.
2114 		 */
2115 		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
2116 		paddr &= GENMASK_ULL(51, 12);
2117 		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
2118 			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2119 
2120 		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2121 		paddr &= GENMASK_ULL(51, 16);
2122 
2123 		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
2124 		its_free_pending_table(gic_data_rdist()->pend_page);
2125 		gic_data_rdist()->pend_page = NULL;
2126 
2127 		goto out;
2128 	}
2129 
2130 	pend_page = gic_data_rdist()->pend_page;
2131 	paddr = page_to_phys(pend_page);
2132 	WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
2133 
2134 	/* set PROPBASE */
2135 	val = (gic_rdists->prop_table_pa |
2136 	       GICR_PROPBASER_InnerShareable |
2137 	       GICR_PROPBASER_RaWaWb |
2138 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
2139 
2140 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2141 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
2142 
2143 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
2144 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
2145 			/*
2146 			 * The HW reports non-shareable, we must
2147 			 * remove the cacheability attributes as
2148 			 * well.
2149 			 */
2150 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
2151 				 GICR_PROPBASER_CACHEABILITY_MASK);
2152 			val |= GICR_PROPBASER_nC;
2153 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2154 		}
2155 		pr_info_once("GIC: using cache flushing for LPI property table\n");
2156 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
2157 	}
2158 
2159 	/* set PENDBASE */
2160 	val = (page_to_phys(pend_page) |
2161 	       GICR_PENDBASER_InnerShareable |
2162 	       GICR_PENDBASER_RaWaWb);
2163 
2164 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2165 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2166 
2167 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
2168 		/*
2169 		 * The HW reports non-shareable, we must remove the
2170 		 * cacheability attributes as well.
2171 		 */
2172 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
2173 			 GICR_PENDBASER_CACHEABILITY_MASK);
2174 		val |= GICR_PENDBASER_nC;
2175 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2176 	}
2177 
2178 	/* Enable LPIs */
2179 	val = readl_relaxed(rbase + GICR_CTLR);
2180 	val |= GICR_CTLR_ENABLE_LPIS;
2181 	writel_relaxed(val, rbase + GICR_CTLR);
2182 
2183 	if (gic_rdists->has_vlpis) {
2184 		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2185 
2186 		/*
2187 		 * It's possible for CPU to receive VLPIs before it is
2188 		 * sheduled as a vPE, especially for the first CPU, and the
2189 		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
2190 		 * as out of range and dropped by GIC.
2191 		 * So we initialize IDbits to known value to avoid VLPI drop.
2192 		 */
2193 		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2194 		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
2195 			smp_processor_id(), val);
2196 		gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2197 
2198 		/*
2199 		 * Also clear Valid bit of GICR_VPENDBASER, in case some
2200 		 * ancient programming gets left in and has possibility of
2201 		 * corrupting memory.
2202 		 */
2203 		val = its_clear_vpend_valid(vlpi_base);
2204 		WARN_ON(val & GICR_VPENDBASER_Dirty);
2205 	}
2206 
2207 	/* Make sure the GIC has seen the above */
2208 	dsb(sy);
2209 out:
2210 	gic_data_rdist()->lpi_enabled = true;
2211 	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
2212 		smp_processor_id(),
2213 		gic_data_rdist()->pend_page ? "allocated" : "reserved",
2214 		&paddr);
2215 }
2216 
2217 static void its_cpu_init_collection(struct its_node *its)
2218 {
2219 	int cpu = smp_processor_id();
2220 	u64 target;
2221 
2222 	/* avoid cross node collections and its mapping */
2223 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
2224 		struct device_node *cpu_node;
2225 
2226 		cpu_node = of_get_cpu_node(cpu, NULL);
2227 		if (its->numa_node != NUMA_NO_NODE &&
2228 			its->numa_node != of_node_to_nid(cpu_node))
2229 			return;
2230 	}
2231 
2232 	/*
2233 	 * We now have to bind each collection to its target
2234 	 * redistributor.
2235 	 */
2236 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
2237 		/*
2238 		 * This ITS wants the physical address of the
2239 		 * redistributor.
2240 		 */
2241 		target = gic_data_rdist()->phys_base;
2242 	} else {
2243 		/* This ITS wants a linear CPU number. */
2244 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2245 		target = GICR_TYPER_CPU_NUMBER(target) << 16;
2246 	}
2247 
2248 	/* Perform collection mapping */
2249 	its->collections[cpu].target_address = target;
2250 	its->collections[cpu].col_id = cpu;
2251 
2252 	its_send_mapc(its, &its->collections[cpu], 1);
2253 	its_send_invall(its, &its->collections[cpu]);
2254 }
2255 
2256 static void its_cpu_init_collections(void)
2257 {
2258 	struct its_node *its;
2259 
2260 	raw_spin_lock(&its_lock);
2261 
2262 	list_for_each_entry(its, &its_nodes, entry)
2263 		its_cpu_init_collection(its);
2264 
2265 	raw_spin_unlock(&its_lock);
2266 }
2267 
2268 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
2269 {
2270 	struct its_device *its_dev = NULL, *tmp;
2271 	unsigned long flags;
2272 
2273 	raw_spin_lock_irqsave(&its->lock, flags);
2274 
2275 	list_for_each_entry(tmp, &its->its_device_list, entry) {
2276 		if (tmp->device_id == dev_id) {
2277 			its_dev = tmp;
2278 			break;
2279 		}
2280 	}
2281 
2282 	raw_spin_unlock_irqrestore(&its->lock, flags);
2283 
2284 	return its_dev;
2285 }
2286 
2287 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
2288 {
2289 	int i;
2290 
2291 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2292 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
2293 			return &its->tables[i];
2294 	}
2295 
2296 	return NULL;
2297 }
2298 
2299 static bool its_alloc_table_entry(struct its_node *its,
2300 				  struct its_baser *baser, u32 id)
2301 {
2302 	struct page *page;
2303 	u32 esz, idx;
2304 	__le64 *table;
2305 
2306 	/* Don't allow device id that exceeds single, flat table limit */
2307 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
2308 	if (!(baser->val & GITS_BASER_INDIRECT))
2309 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
2310 
2311 	/* Compute 1st level table index & check if that exceeds table limit */
2312 	idx = id >> ilog2(baser->psz / esz);
2313 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
2314 		return false;
2315 
2316 	table = baser->base;
2317 
2318 	/* Allocate memory for 2nd level table */
2319 	if (!table[idx]) {
2320 		page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
2321 					get_order(baser->psz));
2322 		if (!page)
2323 			return false;
2324 
2325 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2326 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2327 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
2328 
2329 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2330 
2331 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2332 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2333 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2334 
2335 		/* Ensure updated table contents are visible to ITS hardware */
2336 		dsb(sy);
2337 	}
2338 
2339 	return true;
2340 }
2341 
2342 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
2343 {
2344 	struct its_baser *baser;
2345 
2346 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
2347 
2348 	/* Don't allow device id that exceeds ITS hardware limit */
2349 	if (!baser)
2350 		return (ilog2(dev_id) < its->device_ids);
2351 
2352 	return its_alloc_table_entry(its, baser, dev_id);
2353 }
2354 
2355 static bool its_alloc_vpe_table(u32 vpe_id)
2356 {
2357 	struct its_node *its;
2358 
2359 	/*
2360 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
2361 	 * could try and only do it on ITSs corresponding to devices
2362 	 * that have interrupts targeted at this VPE, but the
2363 	 * complexity becomes crazy (and you have tons of memory
2364 	 * anyway, right?).
2365 	 */
2366 	list_for_each_entry(its, &its_nodes, entry) {
2367 		struct its_baser *baser;
2368 
2369 		if (!its->is_v4)
2370 			continue;
2371 
2372 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
2373 		if (!baser)
2374 			return false;
2375 
2376 		if (!its_alloc_table_entry(its, baser, vpe_id))
2377 			return false;
2378 	}
2379 
2380 	return true;
2381 }
2382 
2383 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
2384 					    int nvecs, bool alloc_lpis)
2385 {
2386 	struct its_device *dev;
2387 	unsigned long *lpi_map = NULL;
2388 	unsigned long flags;
2389 	u16 *col_map = NULL;
2390 	void *itt;
2391 	int lpi_base;
2392 	int nr_lpis;
2393 	int nr_ites;
2394 	int sz;
2395 
2396 	if (!its_alloc_device_table(its, dev_id))
2397 		return NULL;
2398 
2399 	if (WARN_ON(!is_power_of_2(nvecs)))
2400 		nvecs = roundup_pow_of_two(nvecs);
2401 
2402 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2403 	/*
2404 	 * Even if the device wants a single LPI, the ITT must be
2405 	 * sized as a power of two (and you need at least one bit...).
2406 	 */
2407 	nr_ites = max(2, nvecs);
2408 	sz = nr_ites * its->ite_size;
2409 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
2410 	itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
2411 	if (alloc_lpis) {
2412 		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
2413 		if (lpi_map)
2414 			col_map = kcalloc(nr_lpis, sizeof(*col_map),
2415 					  GFP_KERNEL);
2416 	} else {
2417 		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
2418 		nr_lpis = 0;
2419 		lpi_base = 0;
2420 	}
2421 
2422 	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
2423 		kfree(dev);
2424 		kfree(itt);
2425 		kfree(lpi_map);
2426 		kfree(col_map);
2427 		return NULL;
2428 	}
2429 
2430 	gic_flush_dcache_to_poc(itt, sz);
2431 
2432 	dev->its = its;
2433 	dev->itt = itt;
2434 	dev->nr_ites = nr_ites;
2435 	dev->event_map.lpi_map = lpi_map;
2436 	dev->event_map.col_map = col_map;
2437 	dev->event_map.lpi_base = lpi_base;
2438 	dev->event_map.nr_lpis = nr_lpis;
2439 	mutex_init(&dev->event_map.vlpi_lock);
2440 	dev->device_id = dev_id;
2441 	INIT_LIST_HEAD(&dev->entry);
2442 
2443 	raw_spin_lock_irqsave(&its->lock, flags);
2444 	list_add(&dev->entry, &its->its_device_list);
2445 	raw_spin_unlock_irqrestore(&its->lock, flags);
2446 
2447 	/* Map device to its ITT */
2448 	its_send_mapd(dev, 1);
2449 
2450 	return dev;
2451 }
2452 
2453 static void its_free_device(struct its_device *its_dev)
2454 {
2455 	unsigned long flags;
2456 
2457 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
2458 	list_del(&its_dev->entry);
2459 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
2460 	kfree(its_dev->itt);
2461 	kfree(its_dev);
2462 }
2463 
2464 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
2465 {
2466 	int idx;
2467 
2468 	idx = bitmap_find_free_region(dev->event_map.lpi_map,
2469 				      dev->event_map.nr_lpis,
2470 				      get_count_order(nvecs));
2471 	if (idx < 0)
2472 		return -ENOSPC;
2473 
2474 	*hwirq = dev->event_map.lpi_base + idx;
2475 	set_bit(idx, dev->event_map.lpi_map);
2476 
2477 	return 0;
2478 }
2479 
2480 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
2481 			   int nvec, msi_alloc_info_t *info)
2482 {
2483 	struct its_node *its;
2484 	struct its_device *its_dev;
2485 	struct msi_domain_info *msi_info;
2486 	u32 dev_id;
2487 	int err = 0;
2488 
2489 	/*
2490 	 * We ignore "dev" entierely, and rely on the dev_id that has
2491 	 * been passed via the scratchpad. This limits this domain's
2492 	 * usefulness to upper layers that definitely know that they
2493 	 * are built on top of the ITS.
2494 	 */
2495 	dev_id = info->scratchpad[0].ul;
2496 
2497 	msi_info = msi_get_domain_info(domain);
2498 	its = msi_info->data;
2499 
2500 	if (!gic_rdists->has_direct_lpi &&
2501 	    vpe_proxy.dev &&
2502 	    vpe_proxy.dev->its == its &&
2503 	    dev_id == vpe_proxy.dev->device_id) {
2504 		/* Bad luck. Get yourself a better implementation */
2505 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
2506 			  dev_id);
2507 		return -EINVAL;
2508 	}
2509 
2510 	mutex_lock(&its->dev_alloc_lock);
2511 	its_dev = its_find_device(its, dev_id);
2512 	if (its_dev) {
2513 		/*
2514 		 * We already have seen this ID, probably through
2515 		 * another alias (PCI bridge of some sort). No need to
2516 		 * create the device.
2517 		 */
2518 		its_dev->shared = true;
2519 		pr_debug("Reusing ITT for devID %x\n", dev_id);
2520 		goto out;
2521 	}
2522 
2523 	its_dev = its_create_device(its, dev_id, nvec, true);
2524 	if (!its_dev) {
2525 		err = -ENOMEM;
2526 		goto out;
2527 	}
2528 
2529 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
2530 out:
2531 	mutex_unlock(&its->dev_alloc_lock);
2532 	info->scratchpad[0].ptr = its_dev;
2533 	return err;
2534 }
2535 
2536 static struct msi_domain_ops its_msi_domain_ops = {
2537 	.msi_prepare	= its_msi_prepare,
2538 };
2539 
2540 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
2541 				    unsigned int virq,
2542 				    irq_hw_number_t hwirq)
2543 {
2544 	struct irq_fwspec fwspec;
2545 
2546 	if (irq_domain_get_of_node(domain->parent)) {
2547 		fwspec.fwnode = domain->parent->fwnode;
2548 		fwspec.param_count = 3;
2549 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
2550 		fwspec.param[1] = hwirq;
2551 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
2552 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
2553 		fwspec.fwnode = domain->parent->fwnode;
2554 		fwspec.param_count = 2;
2555 		fwspec.param[0] = hwirq;
2556 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
2557 	} else {
2558 		return -EINVAL;
2559 	}
2560 
2561 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
2562 }
2563 
2564 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2565 				unsigned int nr_irqs, void *args)
2566 {
2567 	msi_alloc_info_t *info = args;
2568 	struct its_device *its_dev = info->scratchpad[0].ptr;
2569 	irq_hw_number_t hwirq;
2570 	int err;
2571 	int i;
2572 
2573 	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
2574 	if (err)
2575 		return err;
2576 
2577 	for (i = 0; i < nr_irqs; i++) {
2578 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
2579 		if (err)
2580 			return err;
2581 
2582 		irq_domain_set_hwirq_and_chip(domain, virq + i,
2583 					      hwirq + i, &its_irq_chip, its_dev);
2584 		irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i)));
2585 		pr_debug("ID:%d pID:%d vID:%d\n",
2586 			 (int)(hwirq + i - its_dev->event_map.lpi_base),
2587 			 (int)(hwirq + i), virq + i);
2588 	}
2589 
2590 	return 0;
2591 }
2592 
2593 static int its_irq_domain_activate(struct irq_domain *domain,
2594 				   struct irq_data *d, bool reserve)
2595 {
2596 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2597 	u32 event = its_get_event_id(d);
2598 	const struct cpumask *cpu_mask = cpu_online_mask;
2599 	int cpu;
2600 
2601 	/* get the cpu_mask of local node */
2602 	if (its_dev->its->numa_node >= 0)
2603 		cpu_mask = cpumask_of_node(its_dev->its->numa_node);
2604 
2605 	/* Bind the LPI to the first possible CPU */
2606 	cpu = cpumask_first_and(cpu_mask, cpu_online_mask);
2607 	if (cpu >= nr_cpu_ids) {
2608 		if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)
2609 			return -EINVAL;
2610 
2611 		cpu = cpumask_first(cpu_online_mask);
2612 	}
2613 
2614 	its_dev->event_map.col_map[event] = cpu;
2615 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
2616 
2617 	/* Map the GIC IRQ and event to the device */
2618 	its_send_mapti(its_dev, d->hwirq, event);
2619 	return 0;
2620 }
2621 
2622 static void its_irq_domain_deactivate(struct irq_domain *domain,
2623 				      struct irq_data *d)
2624 {
2625 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2626 	u32 event = its_get_event_id(d);
2627 
2628 	/* Stop the delivery of interrupts */
2629 	its_send_discard(its_dev, event);
2630 }
2631 
2632 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
2633 				unsigned int nr_irqs)
2634 {
2635 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
2636 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2637 	struct its_node *its = its_dev->its;
2638 	int i;
2639 
2640 	for (i = 0; i < nr_irqs; i++) {
2641 		struct irq_data *data = irq_domain_get_irq_data(domain,
2642 								virq + i);
2643 		u32 event = its_get_event_id(data);
2644 
2645 		/* Mark interrupt index as unused */
2646 		clear_bit(event, its_dev->event_map.lpi_map);
2647 
2648 		/* Nuke the entry in the domain */
2649 		irq_domain_reset_irq_data(data);
2650 	}
2651 
2652 	mutex_lock(&its->dev_alloc_lock);
2653 
2654 	/*
2655 	 * If all interrupts have been freed, start mopping the
2656 	 * floor. This is conditionned on the device not being shared.
2657 	 */
2658 	if (!its_dev->shared &&
2659 	    bitmap_empty(its_dev->event_map.lpi_map,
2660 			 its_dev->event_map.nr_lpis)) {
2661 		its_lpi_free(its_dev->event_map.lpi_map,
2662 			     its_dev->event_map.lpi_base,
2663 			     its_dev->event_map.nr_lpis);
2664 		kfree(its_dev->event_map.col_map);
2665 
2666 		/* Unmap device/itt */
2667 		its_send_mapd(its_dev, 0);
2668 		its_free_device(its_dev);
2669 	}
2670 
2671 	mutex_unlock(&its->dev_alloc_lock);
2672 
2673 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2674 }
2675 
2676 static const struct irq_domain_ops its_domain_ops = {
2677 	.alloc			= its_irq_domain_alloc,
2678 	.free			= its_irq_domain_free,
2679 	.activate		= its_irq_domain_activate,
2680 	.deactivate		= its_irq_domain_deactivate,
2681 };
2682 
2683 /*
2684  * This is insane.
2685  *
2686  * If a GICv4 doesn't implement Direct LPIs (which is extremely
2687  * likely), the only way to perform an invalidate is to use a fake
2688  * device to issue an INV command, implying that the LPI has first
2689  * been mapped to some event on that device. Since this is not exactly
2690  * cheap, we try to keep that mapping around as long as possible, and
2691  * only issue an UNMAP if we're short on available slots.
2692  *
2693  * Broken by design(tm).
2694  */
2695 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
2696 {
2697 	/* Already unmapped? */
2698 	if (vpe->vpe_proxy_event == -1)
2699 		return;
2700 
2701 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
2702 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
2703 
2704 	/*
2705 	 * We don't track empty slots at all, so let's move the
2706 	 * next_victim pointer if we can quickly reuse that slot
2707 	 * instead of nuking an existing entry. Not clear that this is
2708 	 * always a win though, and this might just generate a ripple
2709 	 * effect... Let's just hope VPEs don't migrate too often.
2710 	 */
2711 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2712 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
2713 
2714 	vpe->vpe_proxy_event = -1;
2715 }
2716 
2717 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
2718 {
2719 	if (!gic_rdists->has_direct_lpi) {
2720 		unsigned long flags;
2721 
2722 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2723 		its_vpe_db_proxy_unmap_locked(vpe);
2724 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2725 	}
2726 }
2727 
2728 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
2729 {
2730 	/* Already mapped? */
2731 	if (vpe->vpe_proxy_event != -1)
2732 		return;
2733 
2734 	/* This slot was already allocated. Kick the other VPE out. */
2735 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2736 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
2737 
2738 	/* Map the new VPE instead */
2739 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
2740 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
2741 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
2742 
2743 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
2744 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
2745 }
2746 
2747 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
2748 {
2749 	unsigned long flags;
2750 	struct its_collection *target_col;
2751 
2752 	if (gic_rdists->has_direct_lpi) {
2753 		void __iomem *rdbase;
2754 
2755 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
2756 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2757 		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2758 			cpu_relax();
2759 
2760 		return;
2761 	}
2762 
2763 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2764 
2765 	its_vpe_db_proxy_map_locked(vpe);
2766 
2767 	target_col = &vpe_proxy.dev->its->collections[to];
2768 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
2769 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
2770 
2771 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2772 }
2773 
2774 static int its_vpe_set_affinity(struct irq_data *d,
2775 				const struct cpumask *mask_val,
2776 				bool force)
2777 {
2778 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2779 	int cpu = cpumask_first(mask_val);
2780 
2781 	/*
2782 	 * Changing affinity is mega expensive, so let's be as lazy as
2783 	 * we can and only do it if we really have to. Also, if mapped
2784 	 * into the proxy device, we need to move the doorbell
2785 	 * interrupt to its new location.
2786 	 */
2787 	if (vpe->col_idx != cpu) {
2788 		int from = vpe->col_idx;
2789 
2790 		vpe->col_idx = cpu;
2791 		its_send_vmovp(vpe);
2792 		its_vpe_db_proxy_move(vpe, from, cpu);
2793 	}
2794 
2795 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
2796 
2797 	return IRQ_SET_MASK_OK_DONE;
2798 }
2799 
2800 static void its_vpe_schedule(struct its_vpe *vpe)
2801 {
2802 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2803 	u64 val;
2804 
2805 	/* Schedule the VPE */
2806 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
2807 		GENMASK_ULL(51, 12);
2808 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2809 	val |= GICR_VPROPBASER_RaWb;
2810 	val |= GICR_VPROPBASER_InnerShareable;
2811 	gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2812 
2813 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
2814 		GENMASK_ULL(51, 16);
2815 	val |= GICR_VPENDBASER_RaWaWb;
2816 	val |= GICR_VPENDBASER_NonShareable;
2817 	/*
2818 	 * There is no good way of finding out if the pending table is
2819 	 * empty as we can race against the doorbell interrupt very
2820 	 * easily. So in the end, vpe->pending_last is only an
2821 	 * indication that the vcpu has something pending, not one
2822 	 * that the pending table is empty. A good implementation
2823 	 * would be able to read its coarse map pretty quickly anyway,
2824 	 * making this a tolerable issue.
2825 	 */
2826 	val |= GICR_VPENDBASER_PendingLast;
2827 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
2828 	val |= GICR_VPENDBASER_Valid;
2829 	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2830 }
2831 
2832 static void its_vpe_deschedule(struct its_vpe *vpe)
2833 {
2834 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2835 	u64 val;
2836 
2837 	val = its_clear_vpend_valid(vlpi_base);
2838 
2839 	if (unlikely(val & GICR_VPENDBASER_Dirty)) {
2840 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
2841 		vpe->idai = false;
2842 		vpe->pending_last = true;
2843 	} else {
2844 		vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
2845 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
2846 	}
2847 }
2848 
2849 static void its_vpe_invall(struct its_vpe *vpe)
2850 {
2851 	struct its_node *its;
2852 
2853 	list_for_each_entry(its, &its_nodes, entry) {
2854 		if (!its->is_v4)
2855 			continue;
2856 
2857 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
2858 			continue;
2859 
2860 		/*
2861 		 * Sending a VINVALL to a single ITS is enough, as all
2862 		 * we need is to reach the redistributors.
2863 		 */
2864 		its_send_vinvall(its, vpe);
2865 		return;
2866 	}
2867 }
2868 
2869 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2870 {
2871 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2872 	struct its_cmd_info *info = vcpu_info;
2873 
2874 	switch (info->cmd_type) {
2875 	case SCHEDULE_VPE:
2876 		its_vpe_schedule(vpe);
2877 		return 0;
2878 
2879 	case DESCHEDULE_VPE:
2880 		its_vpe_deschedule(vpe);
2881 		return 0;
2882 
2883 	case INVALL_VPE:
2884 		its_vpe_invall(vpe);
2885 		return 0;
2886 
2887 	default:
2888 		return -EINVAL;
2889 	}
2890 }
2891 
2892 static void its_vpe_send_cmd(struct its_vpe *vpe,
2893 			     void (*cmd)(struct its_device *, u32))
2894 {
2895 	unsigned long flags;
2896 
2897 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2898 
2899 	its_vpe_db_proxy_map_locked(vpe);
2900 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
2901 
2902 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2903 }
2904 
2905 static void its_vpe_send_inv(struct irq_data *d)
2906 {
2907 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2908 
2909 	if (gic_rdists->has_direct_lpi) {
2910 		void __iomem *rdbase;
2911 
2912 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2913 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR);
2914 		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2915 			cpu_relax();
2916 	} else {
2917 		its_vpe_send_cmd(vpe, its_send_inv);
2918 	}
2919 }
2920 
2921 static void its_vpe_mask_irq(struct irq_data *d)
2922 {
2923 	/*
2924 	 * We need to unmask the LPI, which is described by the parent
2925 	 * irq_data. Instead of calling into the parent (which won't
2926 	 * exactly do the right thing, let's simply use the
2927 	 * parent_data pointer. Yes, I'm naughty.
2928 	 */
2929 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
2930 	its_vpe_send_inv(d);
2931 }
2932 
2933 static void its_vpe_unmask_irq(struct irq_data *d)
2934 {
2935 	/* Same hack as above... */
2936 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
2937 	its_vpe_send_inv(d);
2938 }
2939 
2940 static int its_vpe_set_irqchip_state(struct irq_data *d,
2941 				     enum irqchip_irq_state which,
2942 				     bool state)
2943 {
2944 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2945 
2946 	if (which != IRQCHIP_STATE_PENDING)
2947 		return -EINVAL;
2948 
2949 	if (gic_rdists->has_direct_lpi) {
2950 		void __iomem *rdbase;
2951 
2952 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2953 		if (state) {
2954 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
2955 		} else {
2956 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2957 			while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2958 				cpu_relax();
2959 		}
2960 	} else {
2961 		if (state)
2962 			its_vpe_send_cmd(vpe, its_send_int);
2963 		else
2964 			its_vpe_send_cmd(vpe, its_send_clear);
2965 	}
2966 
2967 	return 0;
2968 }
2969 
2970 static struct irq_chip its_vpe_irq_chip = {
2971 	.name			= "GICv4-vpe",
2972 	.irq_mask		= its_vpe_mask_irq,
2973 	.irq_unmask		= its_vpe_unmask_irq,
2974 	.irq_eoi		= irq_chip_eoi_parent,
2975 	.irq_set_affinity	= its_vpe_set_affinity,
2976 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
2977 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
2978 };
2979 
2980 static int its_vpe_id_alloc(void)
2981 {
2982 	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
2983 }
2984 
2985 static void its_vpe_id_free(u16 id)
2986 {
2987 	ida_simple_remove(&its_vpeid_ida, id);
2988 }
2989 
2990 static int its_vpe_init(struct its_vpe *vpe)
2991 {
2992 	struct page *vpt_page;
2993 	int vpe_id;
2994 
2995 	/* Allocate vpe_id */
2996 	vpe_id = its_vpe_id_alloc();
2997 	if (vpe_id < 0)
2998 		return vpe_id;
2999 
3000 	/* Allocate VPT */
3001 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
3002 	if (!vpt_page) {
3003 		its_vpe_id_free(vpe_id);
3004 		return -ENOMEM;
3005 	}
3006 
3007 	if (!its_alloc_vpe_table(vpe_id)) {
3008 		its_vpe_id_free(vpe_id);
3009 		its_free_pending_table(vpe->vpt_page);
3010 		return -ENOMEM;
3011 	}
3012 
3013 	vpe->vpe_id = vpe_id;
3014 	vpe->vpt_page = vpt_page;
3015 	vpe->vpe_proxy_event = -1;
3016 
3017 	return 0;
3018 }
3019 
3020 static void its_vpe_teardown(struct its_vpe *vpe)
3021 {
3022 	its_vpe_db_proxy_unmap(vpe);
3023 	its_vpe_id_free(vpe->vpe_id);
3024 	its_free_pending_table(vpe->vpt_page);
3025 }
3026 
3027 static void its_vpe_irq_domain_free(struct irq_domain *domain,
3028 				    unsigned int virq,
3029 				    unsigned int nr_irqs)
3030 {
3031 	struct its_vm *vm = domain->host_data;
3032 	int i;
3033 
3034 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3035 
3036 	for (i = 0; i < nr_irqs; i++) {
3037 		struct irq_data *data = irq_domain_get_irq_data(domain,
3038 								virq + i);
3039 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
3040 
3041 		BUG_ON(vm != vpe->its_vm);
3042 
3043 		clear_bit(data->hwirq, vm->db_bitmap);
3044 		its_vpe_teardown(vpe);
3045 		irq_domain_reset_irq_data(data);
3046 	}
3047 
3048 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
3049 		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
3050 		its_free_prop_table(vm->vprop_page);
3051 	}
3052 }
3053 
3054 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3055 				    unsigned int nr_irqs, void *args)
3056 {
3057 	struct its_vm *vm = args;
3058 	unsigned long *bitmap;
3059 	struct page *vprop_page;
3060 	int base, nr_ids, i, err = 0;
3061 
3062 	BUG_ON(!vm);
3063 
3064 	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
3065 	if (!bitmap)
3066 		return -ENOMEM;
3067 
3068 	if (nr_ids < nr_irqs) {
3069 		its_lpi_free(bitmap, base, nr_ids);
3070 		return -ENOMEM;
3071 	}
3072 
3073 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
3074 	if (!vprop_page) {
3075 		its_lpi_free(bitmap, base, nr_ids);
3076 		return -ENOMEM;
3077 	}
3078 
3079 	vm->db_bitmap = bitmap;
3080 	vm->db_lpi_base = base;
3081 	vm->nr_db_lpis = nr_ids;
3082 	vm->vprop_page = vprop_page;
3083 
3084 	for (i = 0; i < nr_irqs; i++) {
3085 		vm->vpes[i]->vpe_db_lpi = base + i;
3086 		err = its_vpe_init(vm->vpes[i]);
3087 		if (err)
3088 			break;
3089 		err = its_irq_gic_domain_alloc(domain, virq + i,
3090 					       vm->vpes[i]->vpe_db_lpi);
3091 		if (err)
3092 			break;
3093 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
3094 					      &its_vpe_irq_chip, vm->vpes[i]);
3095 		set_bit(i, bitmap);
3096 	}
3097 
3098 	if (err) {
3099 		if (i > 0)
3100 			its_vpe_irq_domain_free(domain, virq, i - 1);
3101 
3102 		its_lpi_free(bitmap, base, nr_ids);
3103 		its_free_prop_table(vprop_page);
3104 	}
3105 
3106 	return err;
3107 }
3108 
3109 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
3110 				       struct irq_data *d, bool reserve)
3111 {
3112 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3113 	struct its_node *its;
3114 
3115 	/* If we use the list map, we issue VMAPP on demand... */
3116 	if (its_list_map)
3117 		return 0;
3118 
3119 	/* Map the VPE to the first possible CPU */
3120 	vpe->col_idx = cpumask_first(cpu_online_mask);
3121 
3122 	list_for_each_entry(its, &its_nodes, entry) {
3123 		if (!its->is_v4)
3124 			continue;
3125 
3126 		its_send_vmapp(its, vpe, true);
3127 		its_send_vinvall(its, vpe);
3128 	}
3129 
3130 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
3131 
3132 	return 0;
3133 }
3134 
3135 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
3136 					  struct irq_data *d)
3137 {
3138 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3139 	struct its_node *its;
3140 
3141 	/*
3142 	 * If we use the list map, we unmap the VPE once no VLPIs are
3143 	 * associated with the VM.
3144 	 */
3145 	if (its_list_map)
3146 		return;
3147 
3148 	list_for_each_entry(its, &its_nodes, entry) {
3149 		if (!its->is_v4)
3150 			continue;
3151 
3152 		its_send_vmapp(its, vpe, false);
3153 	}
3154 }
3155 
3156 static const struct irq_domain_ops its_vpe_domain_ops = {
3157 	.alloc			= its_vpe_irq_domain_alloc,
3158 	.free			= its_vpe_irq_domain_free,
3159 	.activate		= its_vpe_irq_domain_activate,
3160 	.deactivate		= its_vpe_irq_domain_deactivate,
3161 };
3162 
3163 static int its_force_quiescent(void __iomem *base)
3164 {
3165 	u32 count = 1000000;	/* 1s */
3166 	u32 val;
3167 
3168 	val = readl_relaxed(base + GITS_CTLR);
3169 	/*
3170 	 * GIC architecture specification requires the ITS to be both
3171 	 * disabled and quiescent for writes to GITS_BASER<n> or
3172 	 * GITS_CBASER to not have UNPREDICTABLE results.
3173 	 */
3174 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
3175 		return 0;
3176 
3177 	/* Disable the generation of all interrupts to this ITS */
3178 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
3179 	writel_relaxed(val, base + GITS_CTLR);
3180 
3181 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
3182 	while (1) {
3183 		val = readl_relaxed(base + GITS_CTLR);
3184 		if (val & GITS_CTLR_QUIESCENT)
3185 			return 0;
3186 
3187 		count--;
3188 		if (!count)
3189 			return -EBUSY;
3190 
3191 		cpu_relax();
3192 		udelay(1);
3193 	}
3194 }
3195 
3196 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
3197 {
3198 	struct its_node *its = data;
3199 
3200 	/* erratum 22375: only alloc 8MB table size */
3201 	its->device_ids = 0x14;		/* 20 bits, 8MB */
3202 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
3203 
3204 	return true;
3205 }
3206 
3207 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
3208 {
3209 	struct its_node *its = data;
3210 
3211 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
3212 
3213 	return true;
3214 }
3215 
3216 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
3217 {
3218 	struct its_node *its = data;
3219 
3220 	/* On QDF2400, the size of the ITE is 16Bytes */
3221 	its->ite_size = 16;
3222 
3223 	return true;
3224 }
3225 
3226 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
3227 {
3228 	struct its_node *its = its_dev->its;
3229 
3230 	/*
3231 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
3232 	 * which maps 32-bit writes targeted at a separate window of
3233 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
3234 	 * with device ID taken from bits [device_id_bits + 1:2] of
3235 	 * the window offset.
3236 	 */
3237 	return its->pre_its_base + (its_dev->device_id << 2);
3238 }
3239 
3240 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
3241 {
3242 	struct its_node *its = data;
3243 	u32 pre_its_window[2];
3244 	u32 ids;
3245 
3246 	if (!fwnode_property_read_u32_array(its->fwnode_handle,
3247 					   "socionext,synquacer-pre-its",
3248 					   pre_its_window,
3249 					   ARRAY_SIZE(pre_its_window))) {
3250 
3251 		its->pre_its_base = pre_its_window[0];
3252 		its->get_msi_base = its_irq_get_msi_base_pre_its;
3253 
3254 		ids = ilog2(pre_its_window[1]) - 2;
3255 		if (its->device_ids > ids)
3256 			its->device_ids = ids;
3257 
3258 		/* the pre-ITS breaks isolation, so disable MSI remapping */
3259 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
3260 		return true;
3261 	}
3262 	return false;
3263 }
3264 
3265 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
3266 {
3267 	struct its_node *its = data;
3268 
3269 	/*
3270 	 * Hip07 insists on using the wrong address for the VLPI
3271 	 * page. Trick it into doing the right thing...
3272 	 */
3273 	its->vlpi_redist_offset = SZ_128K;
3274 	return true;
3275 }
3276 
3277 static const struct gic_quirk its_quirks[] = {
3278 #ifdef CONFIG_CAVIUM_ERRATUM_22375
3279 	{
3280 		.desc	= "ITS: Cavium errata 22375, 24313",
3281 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
3282 		.mask	= 0xffff0fff,
3283 		.init	= its_enable_quirk_cavium_22375,
3284 	},
3285 #endif
3286 #ifdef CONFIG_CAVIUM_ERRATUM_23144
3287 	{
3288 		.desc	= "ITS: Cavium erratum 23144",
3289 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
3290 		.mask	= 0xffff0fff,
3291 		.init	= its_enable_quirk_cavium_23144,
3292 	},
3293 #endif
3294 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
3295 	{
3296 		.desc	= "ITS: QDF2400 erratum 0065",
3297 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
3298 		.mask	= 0xffffffff,
3299 		.init	= its_enable_quirk_qdf2400_e0065,
3300 	},
3301 #endif
3302 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
3303 	{
3304 		/*
3305 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
3306 		 * implementation, but with a 'pre-ITS' added that requires
3307 		 * special handling in software.
3308 		 */
3309 		.desc	= "ITS: Socionext Synquacer pre-ITS",
3310 		.iidr	= 0x0001143b,
3311 		.mask	= 0xffffffff,
3312 		.init	= its_enable_quirk_socionext_synquacer,
3313 	},
3314 #endif
3315 #ifdef CONFIG_HISILICON_ERRATUM_161600802
3316 	{
3317 		.desc	= "ITS: Hip07 erratum 161600802",
3318 		.iidr	= 0x00000004,
3319 		.mask	= 0xffffffff,
3320 		.init	= its_enable_quirk_hip07_161600802,
3321 	},
3322 #endif
3323 	{
3324 	}
3325 };
3326 
3327 static void its_enable_quirks(struct its_node *its)
3328 {
3329 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
3330 
3331 	gic_enable_quirks(iidr, its_quirks, its);
3332 }
3333 
3334 static int its_save_disable(void)
3335 {
3336 	struct its_node *its;
3337 	int err = 0;
3338 
3339 	raw_spin_lock(&its_lock);
3340 	list_for_each_entry(its, &its_nodes, entry) {
3341 		void __iomem *base;
3342 
3343 		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3344 			continue;
3345 
3346 		base = its->base;
3347 		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
3348 		err = its_force_quiescent(base);
3349 		if (err) {
3350 			pr_err("ITS@%pa: failed to quiesce: %d\n",
3351 			       &its->phys_base, err);
3352 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3353 			goto err;
3354 		}
3355 
3356 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
3357 	}
3358 
3359 err:
3360 	if (err) {
3361 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
3362 			void __iomem *base;
3363 
3364 			if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3365 				continue;
3366 
3367 			base = its->base;
3368 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3369 		}
3370 	}
3371 	raw_spin_unlock(&its_lock);
3372 
3373 	return err;
3374 }
3375 
3376 static void its_restore_enable(void)
3377 {
3378 	struct its_node *its;
3379 	int ret;
3380 
3381 	raw_spin_lock(&its_lock);
3382 	list_for_each_entry(its, &its_nodes, entry) {
3383 		void __iomem *base;
3384 		int i;
3385 
3386 		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3387 			continue;
3388 
3389 		base = its->base;
3390 
3391 		/*
3392 		 * Make sure that the ITS is disabled. If it fails to quiesce,
3393 		 * don't restore it since writing to CBASER or BASER<n>
3394 		 * registers is undefined according to the GIC v3 ITS
3395 		 * Specification.
3396 		 */
3397 		ret = its_force_quiescent(base);
3398 		if (ret) {
3399 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
3400 			       &its->phys_base, ret);
3401 			continue;
3402 		}
3403 
3404 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
3405 
3406 		/*
3407 		 * Writing CBASER resets CREADR to 0, so make CWRITER and
3408 		 * cmd_write line up with it.
3409 		 */
3410 		its->cmd_write = its->cmd_base;
3411 		gits_write_cwriter(0, base + GITS_CWRITER);
3412 
3413 		/* Restore GITS_BASER from the value cache. */
3414 		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3415 			struct its_baser *baser = &its->tables[i];
3416 
3417 			if (!(baser->val & GITS_BASER_VALID))
3418 				continue;
3419 
3420 			its_write_baser(its, baser, baser->val);
3421 		}
3422 		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3423 
3424 		/*
3425 		 * Reinit the collection if it's stored in the ITS. This is
3426 		 * indicated by the col_id being less than the HCC field.
3427 		 * CID < HCC as specified in the GIC v3 Documentation.
3428 		 */
3429 		if (its->collections[smp_processor_id()].col_id <
3430 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
3431 			its_cpu_init_collection(its);
3432 	}
3433 	raw_spin_unlock(&its_lock);
3434 }
3435 
3436 static struct syscore_ops its_syscore_ops = {
3437 	.suspend = its_save_disable,
3438 	.resume = its_restore_enable,
3439 };
3440 
3441 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
3442 {
3443 	struct irq_domain *inner_domain;
3444 	struct msi_domain_info *info;
3445 
3446 	info = kzalloc(sizeof(*info), GFP_KERNEL);
3447 	if (!info)
3448 		return -ENOMEM;
3449 
3450 	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
3451 	if (!inner_domain) {
3452 		kfree(info);
3453 		return -ENOMEM;
3454 	}
3455 
3456 	inner_domain->parent = its_parent;
3457 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
3458 	inner_domain->flags |= its->msi_domain_flags;
3459 	info->ops = &its_msi_domain_ops;
3460 	info->data = its;
3461 	inner_domain->host_data = info;
3462 
3463 	return 0;
3464 }
3465 
3466 static int its_init_vpe_domain(void)
3467 {
3468 	struct its_node *its;
3469 	u32 devid;
3470 	int entries;
3471 
3472 	if (gic_rdists->has_direct_lpi) {
3473 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
3474 		return 0;
3475 	}
3476 
3477 	/* Any ITS will do, even if not v4 */
3478 	its = list_first_entry(&its_nodes, struct its_node, entry);
3479 
3480 	entries = roundup_pow_of_two(nr_cpu_ids);
3481 	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
3482 				 GFP_KERNEL);
3483 	if (!vpe_proxy.vpes) {
3484 		pr_err("ITS: Can't allocate GICv4 proxy device array\n");
3485 		return -ENOMEM;
3486 	}
3487 
3488 	/* Use the last possible DevID */
3489 	devid = GENMASK(its->device_ids - 1, 0);
3490 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
3491 	if (!vpe_proxy.dev) {
3492 		kfree(vpe_proxy.vpes);
3493 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
3494 		return -ENOMEM;
3495 	}
3496 
3497 	BUG_ON(entries > vpe_proxy.dev->nr_ites);
3498 
3499 	raw_spin_lock_init(&vpe_proxy.lock);
3500 	vpe_proxy.next_victim = 0;
3501 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
3502 		devid, vpe_proxy.dev->nr_ites);
3503 
3504 	return 0;
3505 }
3506 
3507 static int __init its_compute_its_list_map(struct resource *res,
3508 					   void __iomem *its_base)
3509 {
3510 	int its_number;
3511 	u32 ctlr;
3512 
3513 	/*
3514 	 * This is assumed to be done early enough that we're
3515 	 * guaranteed to be single-threaded, hence no
3516 	 * locking. Should this change, we should address
3517 	 * this.
3518 	 */
3519 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
3520 	if (its_number >= GICv4_ITS_LIST_MAX) {
3521 		pr_err("ITS@%pa: No ITSList entry available!\n",
3522 		       &res->start);
3523 		return -EINVAL;
3524 	}
3525 
3526 	ctlr = readl_relaxed(its_base + GITS_CTLR);
3527 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
3528 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
3529 	writel_relaxed(ctlr, its_base + GITS_CTLR);
3530 	ctlr = readl_relaxed(its_base + GITS_CTLR);
3531 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
3532 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
3533 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
3534 	}
3535 
3536 	if (test_and_set_bit(its_number, &its_list_map)) {
3537 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
3538 		       &res->start, its_number);
3539 		return -EINVAL;
3540 	}
3541 
3542 	return its_number;
3543 }
3544 
3545 static int __init its_probe_one(struct resource *res,
3546 				struct fwnode_handle *handle, int numa_node)
3547 {
3548 	struct its_node *its;
3549 	void __iomem *its_base;
3550 	u32 val, ctlr;
3551 	u64 baser, tmp, typer;
3552 	struct page *page;
3553 	int err;
3554 
3555 	its_base = ioremap(res->start, resource_size(res));
3556 	if (!its_base) {
3557 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
3558 		return -ENOMEM;
3559 	}
3560 
3561 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
3562 	if (val != 0x30 && val != 0x40) {
3563 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
3564 		err = -ENODEV;
3565 		goto out_unmap;
3566 	}
3567 
3568 	err = its_force_quiescent(its_base);
3569 	if (err) {
3570 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
3571 		goto out_unmap;
3572 	}
3573 
3574 	pr_info("ITS %pR\n", res);
3575 
3576 	its = kzalloc(sizeof(*its), GFP_KERNEL);
3577 	if (!its) {
3578 		err = -ENOMEM;
3579 		goto out_unmap;
3580 	}
3581 
3582 	raw_spin_lock_init(&its->lock);
3583 	mutex_init(&its->dev_alloc_lock);
3584 	INIT_LIST_HEAD(&its->entry);
3585 	INIT_LIST_HEAD(&its->its_device_list);
3586 	typer = gic_read_typer(its_base + GITS_TYPER);
3587 	its->base = its_base;
3588 	its->phys_base = res->start;
3589 	its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer);
3590 	its->device_ids = GITS_TYPER_DEVBITS(typer);
3591 	its->is_v4 = !!(typer & GITS_TYPER_VLPIS);
3592 	if (its->is_v4) {
3593 		if (!(typer & GITS_TYPER_VMOVP)) {
3594 			err = its_compute_its_list_map(res, its_base);
3595 			if (err < 0)
3596 				goto out_free_its;
3597 
3598 			its->list_nr = err;
3599 
3600 			pr_info("ITS@%pa: Using ITS number %d\n",
3601 				&res->start, err);
3602 		} else {
3603 			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
3604 		}
3605 	}
3606 
3607 	its->numa_node = numa_node;
3608 
3609 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3610 				get_order(ITS_CMD_QUEUE_SZ));
3611 	if (!page) {
3612 		err = -ENOMEM;
3613 		goto out_free_its;
3614 	}
3615 	its->cmd_base = (void *)page_address(page);
3616 	its->cmd_write = its->cmd_base;
3617 	its->fwnode_handle = handle;
3618 	its->get_msi_base = its_irq_get_msi_base;
3619 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
3620 
3621 	its_enable_quirks(its);
3622 
3623 	err = its_alloc_tables(its);
3624 	if (err)
3625 		goto out_free_cmd;
3626 
3627 	err = its_alloc_collections(its);
3628 	if (err)
3629 		goto out_free_tables;
3630 
3631 	baser = (virt_to_phys(its->cmd_base)	|
3632 		 GITS_CBASER_RaWaWb		|
3633 		 GITS_CBASER_InnerShareable	|
3634 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
3635 		 GITS_CBASER_VALID);
3636 
3637 	gits_write_cbaser(baser, its->base + GITS_CBASER);
3638 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
3639 
3640 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
3641 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
3642 			/*
3643 			 * The HW reports non-shareable, we must
3644 			 * remove the cacheability attributes as
3645 			 * well.
3646 			 */
3647 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
3648 				   GITS_CBASER_CACHEABILITY_MASK);
3649 			baser |= GITS_CBASER_nC;
3650 			gits_write_cbaser(baser, its->base + GITS_CBASER);
3651 		}
3652 		pr_info("ITS: using cache flushing for cmd queue\n");
3653 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
3654 	}
3655 
3656 	gits_write_cwriter(0, its->base + GITS_CWRITER);
3657 	ctlr = readl_relaxed(its->base + GITS_CTLR);
3658 	ctlr |= GITS_CTLR_ENABLE;
3659 	if (its->is_v4)
3660 		ctlr |= GITS_CTLR_ImDe;
3661 	writel_relaxed(ctlr, its->base + GITS_CTLR);
3662 
3663 	if (GITS_TYPER_HCC(typer))
3664 		its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE;
3665 
3666 	err = its_init_domain(handle, its);
3667 	if (err)
3668 		goto out_free_tables;
3669 
3670 	raw_spin_lock(&its_lock);
3671 	list_add(&its->entry, &its_nodes);
3672 	raw_spin_unlock(&its_lock);
3673 
3674 	return 0;
3675 
3676 out_free_tables:
3677 	its_free_tables(its);
3678 out_free_cmd:
3679 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
3680 out_free_its:
3681 	kfree(its);
3682 out_unmap:
3683 	iounmap(its_base);
3684 	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
3685 	return err;
3686 }
3687 
3688 static bool gic_rdists_supports_plpis(void)
3689 {
3690 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
3691 }
3692 
3693 static int redist_disable_lpis(void)
3694 {
3695 	void __iomem *rbase = gic_data_rdist_rd_base();
3696 	u64 timeout = USEC_PER_SEC;
3697 	u64 val;
3698 
3699 	if (!gic_rdists_supports_plpis()) {
3700 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
3701 		return -ENXIO;
3702 	}
3703 
3704 	val = readl_relaxed(rbase + GICR_CTLR);
3705 	if (!(val & GICR_CTLR_ENABLE_LPIS))
3706 		return 0;
3707 
3708 	/*
3709 	 * If coming via a CPU hotplug event, we don't need to disable
3710 	 * LPIs before trying to re-enable them. They are already
3711 	 * configured and all is well in the world.
3712 	 *
3713 	 * If running with preallocated tables, there is nothing to do.
3714 	 */
3715 	if (gic_data_rdist()->lpi_enabled ||
3716 	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
3717 		return 0;
3718 
3719 	/*
3720 	 * From that point on, we only try to do some damage control.
3721 	 */
3722 	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
3723 		smp_processor_id());
3724 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3725 
3726 	/* Disable LPIs */
3727 	val &= ~GICR_CTLR_ENABLE_LPIS;
3728 	writel_relaxed(val, rbase + GICR_CTLR);
3729 
3730 	/* Make sure any change to GICR_CTLR is observable by the GIC */
3731 	dsb(sy);
3732 
3733 	/*
3734 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
3735 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
3736 	 * Error out if we time out waiting for RWP to clear.
3737 	 */
3738 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
3739 		if (!timeout) {
3740 			pr_err("CPU%d: Timeout while disabling LPIs\n",
3741 			       smp_processor_id());
3742 			return -ETIMEDOUT;
3743 		}
3744 		udelay(1);
3745 		timeout--;
3746 	}
3747 
3748 	/*
3749 	 * After it has been written to 1, it is IMPLEMENTATION
3750 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
3751 	 * cleared to 0. Error out if clearing the bit failed.
3752 	 */
3753 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
3754 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
3755 		return -EBUSY;
3756 	}
3757 
3758 	return 0;
3759 }
3760 
3761 int its_cpu_init(void)
3762 {
3763 	if (!list_empty(&its_nodes)) {
3764 		int ret;
3765 
3766 		ret = redist_disable_lpis();
3767 		if (ret)
3768 			return ret;
3769 
3770 		its_cpu_init_lpis();
3771 		its_cpu_init_collections();
3772 	}
3773 
3774 	return 0;
3775 }
3776 
3777 static const struct of_device_id its_device_id[] = {
3778 	{	.compatible	= "arm,gic-v3-its",	},
3779 	{},
3780 };
3781 
3782 static int __init its_of_probe(struct device_node *node)
3783 {
3784 	struct device_node *np;
3785 	struct resource res;
3786 
3787 	for (np = of_find_matching_node(node, its_device_id); np;
3788 	     np = of_find_matching_node(np, its_device_id)) {
3789 		if (!of_device_is_available(np))
3790 			continue;
3791 		if (!of_property_read_bool(np, "msi-controller")) {
3792 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
3793 				np);
3794 			continue;
3795 		}
3796 
3797 		if (of_address_to_resource(np, 0, &res)) {
3798 			pr_warn("%pOF: no regs?\n", np);
3799 			continue;
3800 		}
3801 
3802 		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
3803 	}
3804 	return 0;
3805 }
3806 
3807 #ifdef CONFIG_ACPI
3808 
3809 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
3810 
3811 #ifdef CONFIG_ACPI_NUMA
3812 struct its_srat_map {
3813 	/* numa node id */
3814 	u32	numa_node;
3815 	/* GIC ITS ID */
3816 	u32	its_id;
3817 };
3818 
3819 static struct its_srat_map *its_srat_maps __initdata;
3820 static int its_in_srat __initdata;
3821 
3822 static int __init acpi_get_its_numa_node(u32 its_id)
3823 {
3824 	int i;
3825 
3826 	for (i = 0; i < its_in_srat; i++) {
3827 		if (its_id == its_srat_maps[i].its_id)
3828 			return its_srat_maps[i].numa_node;
3829 	}
3830 	return NUMA_NO_NODE;
3831 }
3832 
3833 static int __init gic_acpi_match_srat_its(struct acpi_subtable_header *header,
3834 					  const unsigned long end)
3835 {
3836 	return 0;
3837 }
3838 
3839 static int __init gic_acpi_parse_srat_its(struct acpi_subtable_header *header,
3840 			 const unsigned long end)
3841 {
3842 	int node;
3843 	struct acpi_srat_gic_its_affinity *its_affinity;
3844 
3845 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
3846 	if (!its_affinity)
3847 		return -EINVAL;
3848 
3849 	if (its_affinity->header.length < sizeof(*its_affinity)) {
3850 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
3851 			its_affinity->header.length);
3852 		return -EINVAL;
3853 	}
3854 
3855 	node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
3856 
3857 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
3858 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
3859 		return 0;
3860 	}
3861 
3862 	its_srat_maps[its_in_srat].numa_node = node;
3863 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
3864 	its_in_srat++;
3865 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
3866 		its_affinity->proximity_domain, its_affinity->its_id, node);
3867 
3868 	return 0;
3869 }
3870 
3871 static void __init acpi_table_parse_srat_its(void)
3872 {
3873 	int count;
3874 
3875 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
3876 			sizeof(struct acpi_table_srat),
3877 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3878 			gic_acpi_match_srat_its, 0);
3879 	if (count <= 0)
3880 		return;
3881 
3882 	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
3883 				      GFP_KERNEL);
3884 	if (!its_srat_maps) {
3885 		pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
3886 		return;
3887 	}
3888 
3889 	acpi_table_parse_entries(ACPI_SIG_SRAT,
3890 			sizeof(struct acpi_table_srat),
3891 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3892 			gic_acpi_parse_srat_its, 0);
3893 }
3894 
3895 /* free the its_srat_maps after ITS probing */
3896 static void __init acpi_its_srat_maps_free(void)
3897 {
3898 	kfree(its_srat_maps);
3899 }
3900 #else
3901 static void __init acpi_table_parse_srat_its(void)	{ }
3902 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
3903 static void __init acpi_its_srat_maps_free(void) { }
3904 #endif
3905 
3906 static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header,
3907 					  const unsigned long end)
3908 {
3909 	struct acpi_madt_generic_translator *its_entry;
3910 	struct fwnode_handle *dom_handle;
3911 	struct resource res;
3912 	int err;
3913 
3914 	its_entry = (struct acpi_madt_generic_translator *)header;
3915 	memset(&res, 0, sizeof(res));
3916 	res.start = its_entry->base_address;
3917 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
3918 	res.flags = IORESOURCE_MEM;
3919 
3920 	dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address);
3921 	if (!dom_handle) {
3922 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
3923 		       &res.start);
3924 		return -ENOMEM;
3925 	}
3926 
3927 	err = iort_register_domain_token(its_entry->translation_id, res.start,
3928 					 dom_handle);
3929 	if (err) {
3930 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
3931 		       &res.start, its_entry->translation_id);
3932 		goto dom_err;
3933 	}
3934 
3935 	err = its_probe_one(&res, dom_handle,
3936 			acpi_get_its_numa_node(its_entry->translation_id));
3937 	if (!err)
3938 		return 0;
3939 
3940 	iort_deregister_domain_token(its_entry->translation_id);
3941 dom_err:
3942 	irq_domain_free_fwnode(dom_handle);
3943 	return err;
3944 }
3945 
3946 static void __init its_acpi_probe(void)
3947 {
3948 	acpi_table_parse_srat_its();
3949 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
3950 			      gic_acpi_parse_madt_its, 0);
3951 	acpi_its_srat_maps_free();
3952 }
3953 #else
3954 static void __init its_acpi_probe(void) { }
3955 #endif
3956 
3957 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
3958 		    struct irq_domain *parent_domain)
3959 {
3960 	struct device_node *of_node;
3961 	struct its_node *its;
3962 	bool has_v4 = false;
3963 	int err;
3964 
3965 	its_parent = parent_domain;
3966 	of_node = to_of_node(handle);
3967 	if (of_node)
3968 		its_of_probe(of_node);
3969 	else
3970 		its_acpi_probe();
3971 
3972 	if (list_empty(&its_nodes)) {
3973 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
3974 		return -ENXIO;
3975 	}
3976 
3977 	gic_rdists = rdists;
3978 
3979 	err = allocate_lpi_tables();
3980 	if (err)
3981 		return err;
3982 
3983 	list_for_each_entry(its, &its_nodes, entry)
3984 		has_v4 |= its->is_v4;
3985 
3986 	if (has_v4 & rdists->has_vlpis) {
3987 		if (its_init_vpe_domain() ||
3988 		    its_init_v4(parent_domain, &its_vpe_domain_ops)) {
3989 			rdists->has_vlpis = false;
3990 			pr_err("ITS: Disabling GICv4 support\n");
3991 		}
3992 	}
3993 
3994 	register_syscore_ops(&its_syscore_ops);
3995 
3996 	return 0;
3997 }
3998