1 /* 2 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. 3 * Author: Marc Zyngier <marc.zyngier@arm.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #include <linux/acpi.h> 19 #include <linux/acpi_iort.h> 20 #include <linux/bitmap.h> 21 #include <linux/cpu.h> 22 #include <linux/crash_dump.h> 23 #include <linux/delay.h> 24 #include <linux/dma-iommu.h> 25 #include <linux/efi.h> 26 #include <linux/interrupt.h> 27 #include <linux/irqdomain.h> 28 #include <linux/list.h> 29 #include <linux/list_sort.h> 30 #include <linux/log2.h> 31 #include <linux/memblock.h> 32 #include <linux/mm.h> 33 #include <linux/msi.h> 34 #include <linux/of.h> 35 #include <linux/of_address.h> 36 #include <linux/of_irq.h> 37 #include <linux/of_pci.h> 38 #include <linux/of_platform.h> 39 #include <linux/percpu.h> 40 #include <linux/slab.h> 41 #include <linux/syscore_ops.h> 42 43 #include <linux/irqchip.h> 44 #include <linux/irqchip/arm-gic-v3.h> 45 #include <linux/irqchip/arm-gic-v4.h> 46 47 #include <asm/cputype.h> 48 #include <asm/exception.h> 49 50 #include "irq-gic-common.h" 51 52 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) 53 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) 54 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) 55 #define ITS_FLAGS_SAVE_SUSPEND_STATE (1ULL << 3) 56 57 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0) 58 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED (1 << 1) 59 60 static u32 lpi_id_bits; 61 62 /* 63 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to 64 * deal with (one configuration byte per interrupt). PENDBASE has to 65 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). 66 */ 67 #define LPI_NRBITS lpi_id_bits 68 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K) 69 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) 70 71 #define LPI_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI 72 73 /* 74 * Collection structure - just an ID, and a redistributor address to 75 * ping. We use one per CPU as a bag of interrupts assigned to this 76 * CPU. 77 */ 78 struct its_collection { 79 u64 target_address; 80 u16 col_id; 81 }; 82 83 /* 84 * The ITS_BASER structure - contains memory information, cached 85 * value of BASER register configuration and ITS page size. 86 */ 87 struct its_baser { 88 void *base; 89 u64 val; 90 u32 order; 91 u32 psz; 92 }; 93 94 struct its_device; 95 96 /* 97 * The ITS structure - contains most of the infrastructure, with the 98 * top-level MSI domain, the command queue, the collections, and the 99 * list of devices writing to it. 100 * 101 * dev_alloc_lock has to be taken for device allocations, while the 102 * spinlock must be taken to parse data structures such as the device 103 * list. 104 */ 105 struct its_node { 106 raw_spinlock_t lock; 107 struct mutex dev_alloc_lock; 108 struct list_head entry; 109 void __iomem *base; 110 phys_addr_t phys_base; 111 struct its_cmd_block *cmd_base; 112 struct its_cmd_block *cmd_write; 113 struct its_baser tables[GITS_BASER_NR_REGS]; 114 struct its_collection *collections; 115 struct fwnode_handle *fwnode_handle; 116 u64 (*get_msi_base)(struct its_device *its_dev); 117 u64 cbaser_save; 118 u32 ctlr_save; 119 struct list_head its_device_list; 120 u64 flags; 121 unsigned long list_nr; 122 u32 ite_size; 123 u32 device_ids; 124 int numa_node; 125 unsigned int msi_domain_flags; 126 u32 pre_its_base; /* for Socionext Synquacer */ 127 bool is_v4; 128 int vlpi_redist_offset; 129 }; 130 131 #define ITS_ITT_ALIGN SZ_256 132 133 /* The maximum number of VPEID bits supported by VLPI commands */ 134 #define ITS_MAX_VPEID_BITS (16) 135 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS)) 136 137 /* Convert page order to size in bytes */ 138 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) 139 140 struct event_lpi_map { 141 unsigned long *lpi_map; 142 u16 *col_map; 143 irq_hw_number_t lpi_base; 144 int nr_lpis; 145 struct mutex vlpi_lock; 146 struct its_vm *vm; 147 struct its_vlpi_map *vlpi_maps; 148 int nr_vlpis; 149 }; 150 151 /* 152 * The ITS view of a device - belongs to an ITS, owns an interrupt 153 * translation table, and a list of interrupts. If it some of its 154 * LPIs are injected into a guest (GICv4), the event_map.vm field 155 * indicates which one. 156 */ 157 struct its_device { 158 struct list_head entry; 159 struct its_node *its; 160 struct event_lpi_map event_map; 161 void *itt; 162 u32 nr_ites; 163 u32 device_id; 164 bool shared; 165 }; 166 167 static struct { 168 raw_spinlock_t lock; 169 struct its_device *dev; 170 struct its_vpe **vpes; 171 int next_victim; 172 } vpe_proxy; 173 174 static LIST_HEAD(its_nodes); 175 static DEFINE_RAW_SPINLOCK(its_lock); 176 static struct rdists *gic_rdists; 177 static struct irq_domain *its_parent; 178 179 static unsigned long its_list_map; 180 static u16 vmovp_seq_num; 181 static DEFINE_RAW_SPINLOCK(vmovp_lock); 182 183 static DEFINE_IDA(its_vpeid_ida); 184 185 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) 186 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu)) 187 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 188 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K) 189 190 static struct its_collection *dev_event_to_col(struct its_device *its_dev, 191 u32 event) 192 { 193 struct its_node *its = its_dev->its; 194 195 return its->collections + its_dev->event_map.col_map[event]; 196 } 197 198 static struct its_collection *valid_col(struct its_collection *col) 199 { 200 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(0, 15))) 201 return NULL; 202 203 return col; 204 } 205 206 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe) 207 { 208 if (valid_col(its->collections + vpe->col_idx)) 209 return vpe; 210 211 return NULL; 212 } 213 214 /* 215 * ITS command descriptors - parameters to be encoded in a command 216 * block. 217 */ 218 struct its_cmd_desc { 219 union { 220 struct { 221 struct its_device *dev; 222 u32 event_id; 223 } its_inv_cmd; 224 225 struct { 226 struct its_device *dev; 227 u32 event_id; 228 } its_clear_cmd; 229 230 struct { 231 struct its_device *dev; 232 u32 event_id; 233 } its_int_cmd; 234 235 struct { 236 struct its_device *dev; 237 int valid; 238 } its_mapd_cmd; 239 240 struct { 241 struct its_collection *col; 242 int valid; 243 } its_mapc_cmd; 244 245 struct { 246 struct its_device *dev; 247 u32 phys_id; 248 u32 event_id; 249 } its_mapti_cmd; 250 251 struct { 252 struct its_device *dev; 253 struct its_collection *col; 254 u32 event_id; 255 } its_movi_cmd; 256 257 struct { 258 struct its_device *dev; 259 u32 event_id; 260 } its_discard_cmd; 261 262 struct { 263 struct its_collection *col; 264 } its_invall_cmd; 265 266 struct { 267 struct its_vpe *vpe; 268 } its_vinvall_cmd; 269 270 struct { 271 struct its_vpe *vpe; 272 struct its_collection *col; 273 bool valid; 274 } its_vmapp_cmd; 275 276 struct { 277 struct its_vpe *vpe; 278 struct its_device *dev; 279 u32 virt_id; 280 u32 event_id; 281 bool db_enabled; 282 } its_vmapti_cmd; 283 284 struct { 285 struct its_vpe *vpe; 286 struct its_device *dev; 287 u32 event_id; 288 bool db_enabled; 289 } its_vmovi_cmd; 290 291 struct { 292 struct its_vpe *vpe; 293 struct its_collection *col; 294 u16 seq_num; 295 u16 its_list; 296 } its_vmovp_cmd; 297 }; 298 }; 299 300 /* 301 * The ITS command block, which is what the ITS actually parses. 302 */ 303 struct its_cmd_block { 304 u64 raw_cmd[4]; 305 }; 306 307 #define ITS_CMD_QUEUE_SZ SZ_64K 308 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) 309 310 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *, 311 struct its_cmd_block *, 312 struct its_cmd_desc *); 313 314 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *, 315 struct its_cmd_block *, 316 struct its_cmd_desc *); 317 318 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) 319 { 320 u64 mask = GENMASK_ULL(h, l); 321 *raw_cmd &= ~mask; 322 *raw_cmd |= (val << l) & mask; 323 } 324 325 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) 326 { 327 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); 328 } 329 330 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) 331 { 332 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); 333 } 334 335 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) 336 { 337 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); 338 } 339 340 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) 341 { 342 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); 343 } 344 345 static void its_encode_size(struct its_cmd_block *cmd, u8 size) 346 { 347 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); 348 } 349 350 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) 351 { 352 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); 353 } 354 355 static void its_encode_valid(struct its_cmd_block *cmd, int valid) 356 { 357 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); 358 } 359 360 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) 361 { 362 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); 363 } 364 365 static void its_encode_collection(struct its_cmd_block *cmd, u16 col) 366 { 367 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); 368 } 369 370 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) 371 { 372 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); 373 } 374 375 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) 376 { 377 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); 378 } 379 380 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) 381 { 382 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); 383 } 384 385 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) 386 { 387 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); 388 } 389 390 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) 391 { 392 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); 393 } 394 395 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) 396 { 397 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); 398 } 399 400 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) 401 { 402 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); 403 } 404 405 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) 406 { 407 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); 408 } 409 410 static inline void its_fixup_cmd(struct its_cmd_block *cmd) 411 { 412 /* Let's fixup BE commands */ 413 cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]); 414 cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]); 415 cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]); 416 cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]); 417 } 418 419 static struct its_collection *its_build_mapd_cmd(struct its_node *its, 420 struct its_cmd_block *cmd, 421 struct its_cmd_desc *desc) 422 { 423 unsigned long itt_addr; 424 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); 425 426 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); 427 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); 428 429 its_encode_cmd(cmd, GITS_CMD_MAPD); 430 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); 431 its_encode_size(cmd, size - 1); 432 its_encode_itt(cmd, itt_addr); 433 its_encode_valid(cmd, desc->its_mapd_cmd.valid); 434 435 its_fixup_cmd(cmd); 436 437 return NULL; 438 } 439 440 static struct its_collection *its_build_mapc_cmd(struct its_node *its, 441 struct its_cmd_block *cmd, 442 struct its_cmd_desc *desc) 443 { 444 its_encode_cmd(cmd, GITS_CMD_MAPC); 445 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 446 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); 447 its_encode_valid(cmd, desc->its_mapc_cmd.valid); 448 449 its_fixup_cmd(cmd); 450 451 return desc->its_mapc_cmd.col; 452 } 453 454 static struct its_collection *its_build_mapti_cmd(struct its_node *its, 455 struct its_cmd_block *cmd, 456 struct its_cmd_desc *desc) 457 { 458 struct its_collection *col; 459 460 col = dev_event_to_col(desc->its_mapti_cmd.dev, 461 desc->its_mapti_cmd.event_id); 462 463 its_encode_cmd(cmd, GITS_CMD_MAPTI); 464 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); 465 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); 466 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); 467 its_encode_collection(cmd, col->col_id); 468 469 its_fixup_cmd(cmd); 470 471 return valid_col(col); 472 } 473 474 static struct its_collection *its_build_movi_cmd(struct its_node *its, 475 struct its_cmd_block *cmd, 476 struct its_cmd_desc *desc) 477 { 478 struct its_collection *col; 479 480 col = dev_event_to_col(desc->its_movi_cmd.dev, 481 desc->its_movi_cmd.event_id); 482 483 its_encode_cmd(cmd, GITS_CMD_MOVI); 484 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); 485 its_encode_event_id(cmd, desc->its_movi_cmd.event_id); 486 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); 487 488 its_fixup_cmd(cmd); 489 490 return valid_col(col); 491 } 492 493 static struct its_collection *its_build_discard_cmd(struct its_node *its, 494 struct its_cmd_block *cmd, 495 struct its_cmd_desc *desc) 496 { 497 struct its_collection *col; 498 499 col = dev_event_to_col(desc->its_discard_cmd.dev, 500 desc->its_discard_cmd.event_id); 501 502 its_encode_cmd(cmd, GITS_CMD_DISCARD); 503 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); 504 its_encode_event_id(cmd, desc->its_discard_cmd.event_id); 505 506 its_fixup_cmd(cmd); 507 508 return valid_col(col); 509 } 510 511 static struct its_collection *its_build_inv_cmd(struct its_node *its, 512 struct its_cmd_block *cmd, 513 struct its_cmd_desc *desc) 514 { 515 struct its_collection *col; 516 517 col = dev_event_to_col(desc->its_inv_cmd.dev, 518 desc->its_inv_cmd.event_id); 519 520 its_encode_cmd(cmd, GITS_CMD_INV); 521 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 522 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 523 524 its_fixup_cmd(cmd); 525 526 return valid_col(col); 527 } 528 529 static struct its_collection *its_build_int_cmd(struct its_node *its, 530 struct its_cmd_block *cmd, 531 struct its_cmd_desc *desc) 532 { 533 struct its_collection *col; 534 535 col = dev_event_to_col(desc->its_int_cmd.dev, 536 desc->its_int_cmd.event_id); 537 538 its_encode_cmd(cmd, GITS_CMD_INT); 539 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 540 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 541 542 its_fixup_cmd(cmd); 543 544 return valid_col(col); 545 } 546 547 static struct its_collection *its_build_clear_cmd(struct its_node *its, 548 struct its_cmd_block *cmd, 549 struct its_cmd_desc *desc) 550 { 551 struct its_collection *col; 552 553 col = dev_event_to_col(desc->its_clear_cmd.dev, 554 desc->its_clear_cmd.event_id); 555 556 its_encode_cmd(cmd, GITS_CMD_CLEAR); 557 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 558 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 559 560 its_fixup_cmd(cmd); 561 562 return valid_col(col); 563 } 564 565 static struct its_collection *its_build_invall_cmd(struct its_node *its, 566 struct its_cmd_block *cmd, 567 struct its_cmd_desc *desc) 568 { 569 its_encode_cmd(cmd, GITS_CMD_INVALL); 570 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 571 572 its_fixup_cmd(cmd); 573 574 return NULL; 575 } 576 577 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its, 578 struct its_cmd_block *cmd, 579 struct its_cmd_desc *desc) 580 { 581 its_encode_cmd(cmd, GITS_CMD_VINVALL); 582 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); 583 584 its_fixup_cmd(cmd); 585 586 return valid_vpe(its, desc->its_vinvall_cmd.vpe); 587 } 588 589 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its, 590 struct its_cmd_block *cmd, 591 struct its_cmd_desc *desc) 592 { 593 unsigned long vpt_addr; 594 u64 target; 595 596 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); 597 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset; 598 599 its_encode_cmd(cmd, GITS_CMD_VMAPP); 600 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); 601 its_encode_valid(cmd, desc->its_vmapp_cmd.valid); 602 its_encode_target(cmd, target); 603 its_encode_vpt_addr(cmd, vpt_addr); 604 its_encode_vpt_size(cmd, LPI_NRBITS - 1); 605 606 its_fixup_cmd(cmd); 607 608 return valid_vpe(its, desc->its_vmapp_cmd.vpe); 609 } 610 611 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its, 612 struct its_cmd_block *cmd, 613 struct its_cmd_desc *desc) 614 { 615 u32 db; 616 617 if (desc->its_vmapti_cmd.db_enabled) 618 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; 619 else 620 db = 1023; 621 622 its_encode_cmd(cmd, GITS_CMD_VMAPTI); 623 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); 624 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); 625 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); 626 its_encode_db_phys_id(cmd, db); 627 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); 628 629 its_fixup_cmd(cmd); 630 631 return valid_vpe(its, desc->its_vmapti_cmd.vpe); 632 } 633 634 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its, 635 struct its_cmd_block *cmd, 636 struct its_cmd_desc *desc) 637 { 638 u32 db; 639 640 if (desc->its_vmovi_cmd.db_enabled) 641 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; 642 else 643 db = 1023; 644 645 its_encode_cmd(cmd, GITS_CMD_VMOVI); 646 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); 647 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); 648 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); 649 its_encode_db_phys_id(cmd, db); 650 its_encode_db_valid(cmd, true); 651 652 its_fixup_cmd(cmd); 653 654 return valid_vpe(its, desc->its_vmovi_cmd.vpe); 655 } 656 657 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its, 658 struct its_cmd_block *cmd, 659 struct its_cmd_desc *desc) 660 { 661 u64 target; 662 663 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset; 664 its_encode_cmd(cmd, GITS_CMD_VMOVP); 665 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); 666 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); 667 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); 668 its_encode_target(cmd, target); 669 670 its_fixup_cmd(cmd); 671 672 return valid_vpe(its, desc->its_vmovp_cmd.vpe); 673 } 674 675 static u64 its_cmd_ptr_to_offset(struct its_node *its, 676 struct its_cmd_block *ptr) 677 { 678 return (ptr - its->cmd_base) * sizeof(*ptr); 679 } 680 681 static int its_queue_full(struct its_node *its) 682 { 683 int widx; 684 int ridx; 685 686 widx = its->cmd_write - its->cmd_base; 687 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); 688 689 /* This is incredibly unlikely to happen, unless the ITS locks up. */ 690 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) 691 return 1; 692 693 return 0; 694 } 695 696 static struct its_cmd_block *its_allocate_entry(struct its_node *its) 697 { 698 struct its_cmd_block *cmd; 699 u32 count = 1000000; /* 1s! */ 700 701 while (its_queue_full(its)) { 702 count--; 703 if (!count) { 704 pr_err_ratelimited("ITS queue not draining\n"); 705 return NULL; 706 } 707 cpu_relax(); 708 udelay(1); 709 } 710 711 cmd = its->cmd_write++; 712 713 /* Handle queue wrapping */ 714 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) 715 its->cmd_write = its->cmd_base; 716 717 /* Clear command */ 718 cmd->raw_cmd[0] = 0; 719 cmd->raw_cmd[1] = 0; 720 cmd->raw_cmd[2] = 0; 721 cmd->raw_cmd[3] = 0; 722 723 return cmd; 724 } 725 726 static struct its_cmd_block *its_post_commands(struct its_node *its) 727 { 728 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); 729 730 writel_relaxed(wr, its->base + GITS_CWRITER); 731 732 return its->cmd_write; 733 } 734 735 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) 736 { 737 /* 738 * Make sure the commands written to memory are observable by 739 * the ITS. 740 */ 741 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) 742 gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); 743 else 744 dsb(ishst); 745 } 746 747 static int its_wait_for_range_completion(struct its_node *its, 748 struct its_cmd_block *from, 749 struct its_cmd_block *to) 750 { 751 u64 rd_idx, from_idx, to_idx; 752 u32 count = 1000000; /* 1s! */ 753 754 from_idx = its_cmd_ptr_to_offset(its, from); 755 to_idx = its_cmd_ptr_to_offset(its, to); 756 757 while (1) { 758 rd_idx = readl_relaxed(its->base + GITS_CREADR); 759 760 /* Direct case */ 761 if (from_idx < to_idx && rd_idx >= to_idx) 762 break; 763 764 /* Wrapped case */ 765 if (from_idx >= to_idx && rd_idx >= to_idx && rd_idx < from_idx) 766 break; 767 768 count--; 769 if (!count) { 770 pr_err_ratelimited("ITS queue timeout (%llu %llu %llu)\n", 771 from_idx, to_idx, rd_idx); 772 return -1; 773 } 774 cpu_relax(); 775 udelay(1); 776 } 777 778 return 0; 779 } 780 781 /* Warning, macro hell follows */ 782 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \ 783 void name(struct its_node *its, \ 784 buildtype builder, \ 785 struct its_cmd_desc *desc) \ 786 { \ 787 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \ 788 synctype *sync_obj; \ 789 unsigned long flags; \ 790 \ 791 raw_spin_lock_irqsave(&its->lock, flags); \ 792 \ 793 cmd = its_allocate_entry(its); \ 794 if (!cmd) { /* We're soooooo screewed... */ \ 795 raw_spin_unlock_irqrestore(&its->lock, flags); \ 796 return; \ 797 } \ 798 sync_obj = builder(its, cmd, desc); \ 799 its_flush_cmd(its, cmd); \ 800 \ 801 if (sync_obj) { \ 802 sync_cmd = its_allocate_entry(its); \ 803 if (!sync_cmd) \ 804 goto post; \ 805 \ 806 buildfn(its, sync_cmd, sync_obj); \ 807 its_flush_cmd(its, sync_cmd); \ 808 } \ 809 \ 810 post: \ 811 next_cmd = its_post_commands(its); \ 812 raw_spin_unlock_irqrestore(&its->lock, flags); \ 813 \ 814 if (its_wait_for_range_completion(its, cmd, next_cmd)) \ 815 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \ 816 } 817 818 static void its_build_sync_cmd(struct its_node *its, 819 struct its_cmd_block *sync_cmd, 820 struct its_collection *sync_col) 821 { 822 its_encode_cmd(sync_cmd, GITS_CMD_SYNC); 823 its_encode_target(sync_cmd, sync_col->target_address); 824 825 its_fixup_cmd(sync_cmd); 826 } 827 828 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, 829 struct its_collection, its_build_sync_cmd) 830 831 static void its_build_vsync_cmd(struct its_node *its, 832 struct its_cmd_block *sync_cmd, 833 struct its_vpe *sync_vpe) 834 { 835 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); 836 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); 837 838 its_fixup_cmd(sync_cmd); 839 } 840 841 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, 842 struct its_vpe, its_build_vsync_cmd) 843 844 static void its_send_int(struct its_device *dev, u32 event_id) 845 { 846 struct its_cmd_desc desc; 847 848 desc.its_int_cmd.dev = dev; 849 desc.its_int_cmd.event_id = event_id; 850 851 its_send_single_command(dev->its, its_build_int_cmd, &desc); 852 } 853 854 static void its_send_clear(struct its_device *dev, u32 event_id) 855 { 856 struct its_cmd_desc desc; 857 858 desc.its_clear_cmd.dev = dev; 859 desc.its_clear_cmd.event_id = event_id; 860 861 its_send_single_command(dev->its, its_build_clear_cmd, &desc); 862 } 863 864 static void its_send_inv(struct its_device *dev, u32 event_id) 865 { 866 struct its_cmd_desc desc; 867 868 desc.its_inv_cmd.dev = dev; 869 desc.its_inv_cmd.event_id = event_id; 870 871 its_send_single_command(dev->its, its_build_inv_cmd, &desc); 872 } 873 874 static void its_send_mapd(struct its_device *dev, int valid) 875 { 876 struct its_cmd_desc desc; 877 878 desc.its_mapd_cmd.dev = dev; 879 desc.its_mapd_cmd.valid = !!valid; 880 881 its_send_single_command(dev->its, its_build_mapd_cmd, &desc); 882 } 883 884 static void its_send_mapc(struct its_node *its, struct its_collection *col, 885 int valid) 886 { 887 struct its_cmd_desc desc; 888 889 desc.its_mapc_cmd.col = col; 890 desc.its_mapc_cmd.valid = !!valid; 891 892 its_send_single_command(its, its_build_mapc_cmd, &desc); 893 } 894 895 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) 896 { 897 struct its_cmd_desc desc; 898 899 desc.its_mapti_cmd.dev = dev; 900 desc.its_mapti_cmd.phys_id = irq_id; 901 desc.its_mapti_cmd.event_id = id; 902 903 its_send_single_command(dev->its, its_build_mapti_cmd, &desc); 904 } 905 906 static void its_send_movi(struct its_device *dev, 907 struct its_collection *col, u32 id) 908 { 909 struct its_cmd_desc desc; 910 911 desc.its_movi_cmd.dev = dev; 912 desc.its_movi_cmd.col = col; 913 desc.its_movi_cmd.event_id = id; 914 915 its_send_single_command(dev->its, its_build_movi_cmd, &desc); 916 } 917 918 static void its_send_discard(struct its_device *dev, u32 id) 919 { 920 struct its_cmd_desc desc; 921 922 desc.its_discard_cmd.dev = dev; 923 desc.its_discard_cmd.event_id = id; 924 925 its_send_single_command(dev->its, its_build_discard_cmd, &desc); 926 } 927 928 static void its_send_invall(struct its_node *its, struct its_collection *col) 929 { 930 struct its_cmd_desc desc; 931 932 desc.its_invall_cmd.col = col; 933 934 its_send_single_command(its, its_build_invall_cmd, &desc); 935 } 936 937 static void its_send_vmapti(struct its_device *dev, u32 id) 938 { 939 struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id]; 940 struct its_cmd_desc desc; 941 942 desc.its_vmapti_cmd.vpe = map->vpe; 943 desc.its_vmapti_cmd.dev = dev; 944 desc.its_vmapti_cmd.virt_id = map->vintid; 945 desc.its_vmapti_cmd.event_id = id; 946 desc.its_vmapti_cmd.db_enabled = map->db_enabled; 947 948 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); 949 } 950 951 static void its_send_vmovi(struct its_device *dev, u32 id) 952 { 953 struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id]; 954 struct its_cmd_desc desc; 955 956 desc.its_vmovi_cmd.vpe = map->vpe; 957 desc.its_vmovi_cmd.dev = dev; 958 desc.its_vmovi_cmd.event_id = id; 959 desc.its_vmovi_cmd.db_enabled = map->db_enabled; 960 961 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); 962 } 963 964 static void its_send_vmapp(struct its_node *its, 965 struct its_vpe *vpe, bool valid) 966 { 967 struct its_cmd_desc desc; 968 969 desc.its_vmapp_cmd.vpe = vpe; 970 desc.its_vmapp_cmd.valid = valid; 971 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; 972 973 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); 974 } 975 976 static void its_send_vmovp(struct its_vpe *vpe) 977 { 978 struct its_cmd_desc desc; 979 struct its_node *its; 980 unsigned long flags; 981 int col_id = vpe->col_idx; 982 983 desc.its_vmovp_cmd.vpe = vpe; 984 desc.its_vmovp_cmd.its_list = (u16)its_list_map; 985 986 if (!its_list_map) { 987 its = list_first_entry(&its_nodes, struct its_node, entry); 988 desc.its_vmovp_cmd.seq_num = 0; 989 desc.its_vmovp_cmd.col = &its->collections[col_id]; 990 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 991 return; 992 } 993 994 /* 995 * Yet another marvel of the architecture. If using the 996 * its_list "feature", we need to make sure that all ITSs 997 * receive all VMOVP commands in the same order. The only way 998 * to guarantee this is to make vmovp a serialization point. 999 * 1000 * Wall <-- Head. 1001 */ 1002 raw_spin_lock_irqsave(&vmovp_lock, flags); 1003 1004 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; 1005 1006 /* Emit VMOVPs */ 1007 list_for_each_entry(its, &its_nodes, entry) { 1008 if (!its->is_v4) 1009 continue; 1010 1011 if (!vpe->its_vm->vlpi_count[its->list_nr]) 1012 continue; 1013 1014 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1015 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1016 } 1017 1018 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1019 } 1020 1021 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe) 1022 { 1023 struct its_cmd_desc desc; 1024 1025 desc.its_vinvall_cmd.vpe = vpe; 1026 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); 1027 } 1028 1029 /* 1030 * irqchip functions - assumes MSI, mostly. 1031 */ 1032 1033 static inline u32 its_get_event_id(struct irq_data *d) 1034 { 1035 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1036 return d->hwirq - its_dev->event_map.lpi_base; 1037 } 1038 1039 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) 1040 { 1041 irq_hw_number_t hwirq; 1042 void *va; 1043 u8 *cfg; 1044 1045 if (irqd_is_forwarded_to_vcpu(d)) { 1046 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1047 u32 event = its_get_event_id(d); 1048 struct its_vlpi_map *map; 1049 1050 va = page_address(its_dev->event_map.vm->vprop_page); 1051 map = &its_dev->event_map.vlpi_maps[event]; 1052 hwirq = map->vintid; 1053 1054 /* Remember the updated property */ 1055 map->properties &= ~clr; 1056 map->properties |= set | LPI_PROP_GROUP1; 1057 } else { 1058 va = gic_rdists->prop_table_va; 1059 hwirq = d->hwirq; 1060 } 1061 1062 cfg = va + hwirq - 8192; 1063 *cfg &= ~clr; 1064 *cfg |= set | LPI_PROP_GROUP1; 1065 1066 /* 1067 * Make the above write visible to the redistributors. 1068 * And yes, we're flushing exactly: One. Single. Byte. 1069 * Humpf... 1070 */ 1071 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) 1072 gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); 1073 else 1074 dsb(ishst); 1075 } 1076 1077 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) 1078 { 1079 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1080 1081 lpi_write_config(d, clr, set); 1082 its_send_inv(its_dev, its_get_event_id(d)); 1083 } 1084 1085 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) 1086 { 1087 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1088 u32 event = its_get_event_id(d); 1089 1090 if (its_dev->event_map.vlpi_maps[event].db_enabled == enable) 1091 return; 1092 1093 its_dev->event_map.vlpi_maps[event].db_enabled = enable; 1094 1095 /* 1096 * More fun with the architecture: 1097 * 1098 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI 1099 * value or to 1023, depending on the enable bit. But that 1100 * would be issueing a mapping for an /existing/ DevID+EventID 1101 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI 1102 * to the /same/ vPE, using this opportunity to adjust the 1103 * doorbell. Mouahahahaha. We loves it, Precious. 1104 */ 1105 its_send_vmovi(its_dev, event); 1106 } 1107 1108 static void its_mask_irq(struct irq_data *d) 1109 { 1110 if (irqd_is_forwarded_to_vcpu(d)) 1111 its_vlpi_set_doorbell(d, false); 1112 1113 lpi_update_config(d, LPI_PROP_ENABLED, 0); 1114 } 1115 1116 static void its_unmask_irq(struct irq_data *d) 1117 { 1118 if (irqd_is_forwarded_to_vcpu(d)) 1119 its_vlpi_set_doorbell(d, true); 1120 1121 lpi_update_config(d, 0, LPI_PROP_ENABLED); 1122 } 1123 1124 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 1125 bool force) 1126 { 1127 unsigned int cpu; 1128 const struct cpumask *cpu_mask = cpu_online_mask; 1129 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1130 struct its_collection *target_col; 1131 u32 id = its_get_event_id(d); 1132 1133 /* A forwarded interrupt should use irq_set_vcpu_affinity */ 1134 if (irqd_is_forwarded_to_vcpu(d)) 1135 return -EINVAL; 1136 1137 /* lpi cannot be routed to a redistributor that is on a foreign node */ 1138 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 1139 if (its_dev->its->numa_node >= 0) { 1140 cpu_mask = cpumask_of_node(its_dev->its->numa_node); 1141 if (!cpumask_intersects(mask_val, cpu_mask)) 1142 return -EINVAL; 1143 } 1144 } 1145 1146 cpu = cpumask_any_and(mask_val, cpu_mask); 1147 1148 if (cpu >= nr_cpu_ids) 1149 return -EINVAL; 1150 1151 /* don't set the affinity when the target cpu is same as current one */ 1152 if (cpu != its_dev->event_map.col_map[id]) { 1153 target_col = &its_dev->its->collections[cpu]; 1154 its_send_movi(its_dev, target_col, id); 1155 its_dev->event_map.col_map[id] = cpu; 1156 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 1157 } 1158 1159 return IRQ_SET_MASK_OK_DONE; 1160 } 1161 1162 static u64 its_irq_get_msi_base(struct its_device *its_dev) 1163 { 1164 struct its_node *its = its_dev->its; 1165 1166 return its->phys_base + GITS_TRANSLATER; 1167 } 1168 1169 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) 1170 { 1171 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1172 struct its_node *its; 1173 u64 addr; 1174 1175 its = its_dev->its; 1176 addr = its->get_msi_base(its_dev); 1177 1178 msg->address_lo = lower_32_bits(addr); 1179 msg->address_hi = upper_32_bits(addr); 1180 msg->data = its_get_event_id(d); 1181 1182 iommu_dma_map_msi_msg(d->irq, msg); 1183 } 1184 1185 static int its_irq_set_irqchip_state(struct irq_data *d, 1186 enum irqchip_irq_state which, 1187 bool state) 1188 { 1189 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1190 u32 event = its_get_event_id(d); 1191 1192 if (which != IRQCHIP_STATE_PENDING) 1193 return -EINVAL; 1194 1195 if (state) 1196 its_send_int(its_dev, event); 1197 else 1198 its_send_clear(its_dev, event); 1199 1200 return 0; 1201 } 1202 1203 static void its_map_vm(struct its_node *its, struct its_vm *vm) 1204 { 1205 unsigned long flags; 1206 1207 /* Not using the ITS list? Everything is always mapped. */ 1208 if (!its_list_map) 1209 return; 1210 1211 raw_spin_lock_irqsave(&vmovp_lock, flags); 1212 1213 /* 1214 * If the VM wasn't mapped yet, iterate over the vpes and get 1215 * them mapped now. 1216 */ 1217 vm->vlpi_count[its->list_nr]++; 1218 1219 if (vm->vlpi_count[its->list_nr] == 1) { 1220 int i; 1221 1222 for (i = 0; i < vm->nr_vpes; i++) { 1223 struct its_vpe *vpe = vm->vpes[i]; 1224 struct irq_data *d = irq_get_irq_data(vpe->irq); 1225 1226 /* Map the VPE to the first possible CPU */ 1227 vpe->col_idx = cpumask_first(cpu_online_mask); 1228 its_send_vmapp(its, vpe, true); 1229 its_send_vinvall(its, vpe); 1230 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 1231 } 1232 } 1233 1234 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1235 } 1236 1237 static void its_unmap_vm(struct its_node *its, struct its_vm *vm) 1238 { 1239 unsigned long flags; 1240 1241 /* Not using the ITS list? Everything is always mapped. */ 1242 if (!its_list_map) 1243 return; 1244 1245 raw_spin_lock_irqsave(&vmovp_lock, flags); 1246 1247 if (!--vm->vlpi_count[its->list_nr]) { 1248 int i; 1249 1250 for (i = 0; i < vm->nr_vpes; i++) 1251 its_send_vmapp(its, vm->vpes[i], false); 1252 } 1253 1254 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1255 } 1256 1257 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) 1258 { 1259 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1260 u32 event = its_get_event_id(d); 1261 int ret = 0; 1262 1263 if (!info->map) 1264 return -EINVAL; 1265 1266 mutex_lock(&its_dev->event_map.vlpi_lock); 1267 1268 if (!its_dev->event_map.vm) { 1269 struct its_vlpi_map *maps; 1270 1271 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps), 1272 GFP_KERNEL); 1273 if (!maps) { 1274 ret = -ENOMEM; 1275 goto out; 1276 } 1277 1278 its_dev->event_map.vm = info->map->vm; 1279 its_dev->event_map.vlpi_maps = maps; 1280 } else if (its_dev->event_map.vm != info->map->vm) { 1281 ret = -EINVAL; 1282 goto out; 1283 } 1284 1285 /* Get our private copy of the mapping information */ 1286 its_dev->event_map.vlpi_maps[event] = *info->map; 1287 1288 if (irqd_is_forwarded_to_vcpu(d)) { 1289 /* Already mapped, move it around */ 1290 its_send_vmovi(its_dev, event); 1291 } else { 1292 /* Ensure all the VPEs are mapped on this ITS */ 1293 its_map_vm(its_dev->its, info->map->vm); 1294 1295 /* 1296 * Flag the interrupt as forwarded so that we can 1297 * start poking the virtual property table. 1298 */ 1299 irqd_set_forwarded_to_vcpu(d); 1300 1301 /* Write out the property to the prop table */ 1302 lpi_write_config(d, 0xff, info->map->properties); 1303 1304 /* Drop the physical mapping */ 1305 its_send_discard(its_dev, event); 1306 1307 /* and install the virtual one */ 1308 its_send_vmapti(its_dev, event); 1309 1310 /* Increment the number of VLPIs */ 1311 its_dev->event_map.nr_vlpis++; 1312 } 1313 1314 out: 1315 mutex_unlock(&its_dev->event_map.vlpi_lock); 1316 return ret; 1317 } 1318 1319 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) 1320 { 1321 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1322 u32 event = its_get_event_id(d); 1323 int ret = 0; 1324 1325 mutex_lock(&its_dev->event_map.vlpi_lock); 1326 1327 if (!its_dev->event_map.vm || 1328 !its_dev->event_map.vlpi_maps[event].vm) { 1329 ret = -EINVAL; 1330 goto out; 1331 } 1332 1333 /* Copy our mapping information to the incoming request */ 1334 *info->map = its_dev->event_map.vlpi_maps[event]; 1335 1336 out: 1337 mutex_unlock(&its_dev->event_map.vlpi_lock); 1338 return ret; 1339 } 1340 1341 static int its_vlpi_unmap(struct irq_data *d) 1342 { 1343 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1344 u32 event = its_get_event_id(d); 1345 int ret = 0; 1346 1347 mutex_lock(&its_dev->event_map.vlpi_lock); 1348 1349 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) { 1350 ret = -EINVAL; 1351 goto out; 1352 } 1353 1354 /* Drop the virtual mapping */ 1355 its_send_discard(its_dev, event); 1356 1357 /* and restore the physical one */ 1358 irqd_clr_forwarded_to_vcpu(d); 1359 its_send_mapti(its_dev, d->hwirq, event); 1360 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO | 1361 LPI_PROP_ENABLED | 1362 LPI_PROP_GROUP1)); 1363 1364 /* Potentially unmap the VM from this ITS */ 1365 its_unmap_vm(its_dev->its, its_dev->event_map.vm); 1366 1367 /* 1368 * Drop the refcount and make the device available again if 1369 * this was the last VLPI. 1370 */ 1371 if (!--its_dev->event_map.nr_vlpis) { 1372 its_dev->event_map.vm = NULL; 1373 kfree(its_dev->event_map.vlpi_maps); 1374 } 1375 1376 out: 1377 mutex_unlock(&its_dev->event_map.vlpi_lock); 1378 return ret; 1379 } 1380 1381 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) 1382 { 1383 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1384 1385 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 1386 return -EINVAL; 1387 1388 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) 1389 lpi_update_config(d, 0xff, info->config); 1390 else 1391 lpi_write_config(d, 0xff, info->config); 1392 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); 1393 1394 return 0; 1395 } 1396 1397 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 1398 { 1399 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1400 struct its_cmd_info *info = vcpu_info; 1401 1402 /* Need a v4 ITS */ 1403 if (!its_dev->its->is_v4) 1404 return -EINVAL; 1405 1406 /* Unmap request? */ 1407 if (!info) 1408 return its_vlpi_unmap(d); 1409 1410 switch (info->cmd_type) { 1411 case MAP_VLPI: 1412 return its_vlpi_map(d, info); 1413 1414 case GET_VLPI: 1415 return its_vlpi_get(d, info); 1416 1417 case PROP_UPDATE_VLPI: 1418 case PROP_UPDATE_AND_INV_VLPI: 1419 return its_vlpi_prop_update(d, info); 1420 1421 default: 1422 return -EINVAL; 1423 } 1424 } 1425 1426 static struct irq_chip its_irq_chip = { 1427 .name = "ITS", 1428 .irq_mask = its_mask_irq, 1429 .irq_unmask = its_unmask_irq, 1430 .irq_eoi = irq_chip_eoi_parent, 1431 .irq_set_affinity = its_set_affinity, 1432 .irq_compose_msi_msg = its_irq_compose_msi_msg, 1433 .irq_set_irqchip_state = its_irq_set_irqchip_state, 1434 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity, 1435 }; 1436 1437 1438 /* 1439 * How we allocate LPIs: 1440 * 1441 * lpi_range_list contains ranges of LPIs that are to available to 1442 * allocate from. To allocate LPIs, just pick the first range that 1443 * fits the required allocation, and reduce it by the required 1444 * amount. Once empty, remove the range from the list. 1445 * 1446 * To free a range of LPIs, add a free range to the list, sort it and 1447 * merge the result if the new range happens to be adjacent to an 1448 * already free block. 1449 * 1450 * The consequence of the above is that allocation is cost is low, but 1451 * freeing is expensive. We assumes that freeing rarely occurs. 1452 */ 1453 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */ 1454 1455 static DEFINE_MUTEX(lpi_range_lock); 1456 static LIST_HEAD(lpi_range_list); 1457 1458 struct lpi_range { 1459 struct list_head entry; 1460 u32 base_id; 1461 u32 span; 1462 }; 1463 1464 static struct lpi_range *mk_lpi_range(u32 base, u32 span) 1465 { 1466 struct lpi_range *range; 1467 1468 range = kzalloc(sizeof(*range), GFP_KERNEL); 1469 if (range) { 1470 INIT_LIST_HEAD(&range->entry); 1471 range->base_id = base; 1472 range->span = span; 1473 } 1474 1475 return range; 1476 } 1477 1478 static int lpi_range_cmp(void *priv, struct list_head *a, struct list_head *b) 1479 { 1480 struct lpi_range *ra, *rb; 1481 1482 ra = container_of(a, struct lpi_range, entry); 1483 rb = container_of(b, struct lpi_range, entry); 1484 1485 return ra->base_id - rb->base_id; 1486 } 1487 1488 static void merge_lpi_ranges(void) 1489 { 1490 struct lpi_range *range, *tmp; 1491 1492 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { 1493 if (!list_is_last(&range->entry, &lpi_range_list) && 1494 (tmp->base_id == (range->base_id + range->span))) { 1495 tmp->base_id = range->base_id; 1496 tmp->span += range->span; 1497 list_del(&range->entry); 1498 kfree(range); 1499 } 1500 } 1501 } 1502 1503 static int alloc_lpi_range(u32 nr_lpis, u32 *base) 1504 { 1505 struct lpi_range *range, *tmp; 1506 int err = -ENOSPC; 1507 1508 mutex_lock(&lpi_range_lock); 1509 1510 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { 1511 if (range->span >= nr_lpis) { 1512 *base = range->base_id; 1513 range->base_id += nr_lpis; 1514 range->span -= nr_lpis; 1515 1516 if (range->span == 0) { 1517 list_del(&range->entry); 1518 kfree(range); 1519 } 1520 1521 err = 0; 1522 break; 1523 } 1524 } 1525 1526 mutex_unlock(&lpi_range_lock); 1527 1528 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis); 1529 return err; 1530 } 1531 1532 static int free_lpi_range(u32 base, u32 nr_lpis) 1533 { 1534 struct lpi_range *new; 1535 int err = 0; 1536 1537 mutex_lock(&lpi_range_lock); 1538 1539 new = mk_lpi_range(base, nr_lpis); 1540 if (!new) { 1541 err = -ENOMEM; 1542 goto out; 1543 } 1544 1545 list_add(&new->entry, &lpi_range_list); 1546 list_sort(NULL, &lpi_range_list, lpi_range_cmp); 1547 merge_lpi_ranges(); 1548 out: 1549 mutex_unlock(&lpi_range_lock); 1550 return err; 1551 } 1552 1553 static int __init its_lpi_init(u32 id_bits) 1554 { 1555 u32 lpis = (1UL << id_bits) - 8192; 1556 u32 numlpis; 1557 int err; 1558 1559 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer); 1560 1561 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) { 1562 lpis = numlpis; 1563 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n", 1564 lpis); 1565 } 1566 1567 /* 1568 * Initializing the allocator is just the same as freeing the 1569 * full range of LPIs. 1570 */ 1571 err = free_lpi_range(8192, lpis); 1572 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis); 1573 return err; 1574 } 1575 1576 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids) 1577 { 1578 unsigned long *bitmap = NULL; 1579 int err = 0; 1580 1581 do { 1582 err = alloc_lpi_range(nr_irqs, base); 1583 if (!err) 1584 break; 1585 1586 nr_irqs /= 2; 1587 } while (nr_irqs > 0); 1588 1589 if (!nr_irqs) 1590 err = -ENOSPC; 1591 1592 if (err) 1593 goto out; 1594 1595 bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC); 1596 if (!bitmap) 1597 goto out; 1598 1599 *nr_ids = nr_irqs; 1600 1601 out: 1602 if (!bitmap) 1603 *base = *nr_ids = 0; 1604 1605 return bitmap; 1606 } 1607 1608 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids) 1609 { 1610 WARN_ON(free_lpi_range(base, nr_ids)); 1611 kfree(bitmap); 1612 } 1613 1614 static void gic_reset_prop_table(void *va) 1615 { 1616 /* Priority 0xa0, Group-1, disabled */ 1617 memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ); 1618 1619 /* Make sure the GIC will observe the written configuration */ 1620 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ); 1621 } 1622 1623 static struct page *its_allocate_prop_table(gfp_t gfp_flags) 1624 { 1625 struct page *prop_page; 1626 1627 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ)); 1628 if (!prop_page) 1629 return NULL; 1630 1631 gic_reset_prop_table(page_address(prop_page)); 1632 1633 return prop_page; 1634 } 1635 1636 static void its_free_prop_table(struct page *prop_page) 1637 { 1638 free_pages((unsigned long)page_address(prop_page), 1639 get_order(LPI_PROPBASE_SZ)); 1640 } 1641 1642 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size) 1643 { 1644 phys_addr_t start, end, addr_end; 1645 u64 i; 1646 1647 /* 1648 * We don't bother checking for a kdump kernel as by 1649 * construction, the LPI tables are out of this kernel's 1650 * memory map. 1651 */ 1652 if (is_kdump_kernel()) 1653 return true; 1654 1655 addr_end = addr + size - 1; 1656 1657 for_each_reserved_mem_region(i, &start, &end) { 1658 if (addr >= start && addr_end <= end) 1659 return true; 1660 } 1661 1662 /* Not found, not a good sign... */ 1663 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n", 1664 &addr, &addr_end); 1665 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 1666 return false; 1667 } 1668 1669 static int gic_reserve_range(phys_addr_t addr, unsigned long size) 1670 { 1671 if (efi_enabled(EFI_CONFIG_TABLES)) 1672 return efi_mem_reserve_persistent(addr, size); 1673 1674 return 0; 1675 } 1676 1677 static int __init its_setup_lpi_prop_table(void) 1678 { 1679 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) { 1680 u64 val; 1681 1682 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 1683 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1; 1684 1685 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12); 1686 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa, 1687 LPI_PROPBASE_SZ, 1688 MEMREMAP_WB); 1689 gic_reset_prop_table(gic_rdists->prop_table_va); 1690 } else { 1691 struct page *page; 1692 1693 lpi_id_bits = min_t(u32, 1694 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer), 1695 ITS_MAX_LPI_NRBITS); 1696 page = its_allocate_prop_table(GFP_NOWAIT); 1697 if (!page) { 1698 pr_err("Failed to allocate PROPBASE\n"); 1699 return -ENOMEM; 1700 } 1701 1702 gic_rdists->prop_table_pa = page_to_phys(page); 1703 gic_rdists->prop_table_va = page_address(page); 1704 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa, 1705 LPI_PROPBASE_SZ)); 1706 } 1707 1708 pr_info("GICv3: using LPI property table @%pa\n", 1709 &gic_rdists->prop_table_pa); 1710 1711 return its_lpi_init(lpi_id_bits); 1712 } 1713 1714 static const char *its_base_type_string[] = { 1715 [GITS_BASER_TYPE_DEVICE] = "Devices", 1716 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", 1717 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)", 1718 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", 1719 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", 1720 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", 1721 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", 1722 }; 1723 1724 static u64 its_read_baser(struct its_node *its, struct its_baser *baser) 1725 { 1726 u32 idx = baser - its->tables; 1727 1728 return gits_read_baser(its->base + GITS_BASER + (idx << 3)); 1729 } 1730 1731 static void its_write_baser(struct its_node *its, struct its_baser *baser, 1732 u64 val) 1733 { 1734 u32 idx = baser - its->tables; 1735 1736 gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); 1737 baser->val = its_read_baser(its, baser); 1738 } 1739 1740 static int its_setup_baser(struct its_node *its, struct its_baser *baser, 1741 u64 cache, u64 shr, u32 psz, u32 order, 1742 bool indirect) 1743 { 1744 u64 val = its_read_baser(its, baser); 1745 u64 esz = GITS_BASER_ENTRY_SIZE(val); 1746 u64 type = GITS_BASER_TYPE(val); 1747 u64 baser_phys, tmp; 1748 u32 alloc_pages; 1749 struct page *page; 1750 void *base; 1751 1752 retry_alloc_baser: 1753 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); 1754 if (alloc_pages > GITS_BASER_PAGES_MAX) { 1755 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", 1756 &its->phys_base, its_base_type_string[type], 1757 alloc_pages, GITS_BASER_PAGES_MAX); 1758 alloc_pages = GITS_BASER_PAGES_MAX; 1759 order = get_order(GITS_BASER_PAGES_MAX * psz); 1760 } 1761 1762 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order); 1763 if (!page) 1764 return -ENOMEM; 1765 1766 base = (void *)page_address(page); 1767 baser_phys = virt_to_phys(base); 1768 1769 /* Check if the physical address of the memory is above 48bits */ 1770 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { 1771 1772 /* 52bit PA is supported only when PageSize=64K */ 1773 if (psz != SZ_64K) { 1774 pr_err("ITS: no 52bit PA support when psz=%d\n", psz); 1775 free_pages((unsigned long)base, order); 1776 return -ENXIO; 1777 } 1778 1779 /* Convert 52bit PA to 48bit field */ 1780 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); 1781 } 1782 1783 retry_baser: 1784 val = (baser_phys | 1785 (type << GITS_BASER_TYPE_SHIFT) | 1786 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | 1787 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | 1788 cache | 1789 shr | 1790 GITS_BASER_VALID); 1791 1792 val |= indirect ? GITS_BASER_INDIRECT : 0x0; 1793 1794 switch (psz) { 1795 case SZ_4K: 1796 val |= GITS_BASER_PAGE_SIZE_4K; 1797 break; 1798 case SZ_16K: 1799 val |= GITS_BASER_PAGE_SIZE_16K; 1800 break; 1801 case SZ_64K: 1802 val |= GITS_BASER_PAGE_SIZE_64K; 1803 break; 1804 } 1805 1806 its_write_baser(its, baser, val); 1807 tmp = baser->val; 1808 1809 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { 1810 /* 1811 * Shareability didn't stick. Just use 1812 * whatever the read reported, which is likely 1813 * to be the only thing this redistributor 1814 * supports. If that's zero, make it 1815 * non-cacheable as well. 1816 */ 1817 shr = tmp & GITS_BASER_SHAREABILITY_MASK; 1818 if (!shr) { 1819 cache = GITS_BASER_nC; 1820 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); 1821 } 1822 goto retry_baser; 1823 } 1824 1825 if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) { 1826 /* 1827 * Page size didn't stick. Let's try a smaller 1828 * size and retry. If we reach 4K, then 1829 * something is horribly wrong... 1830 */ 1831 free_pages((unsigned long)base, order); 1832 baser->base = NULL; 1833 1834 switch (psz) { 1835 case SZ_16K: 1836 psz = SZ_4K; 1837 goto retry_alloc_baser; 1838 case SZ_64K: 1839 psz = SZ_16K; 1840 goto retry_alloc_baser; 1841 } 1842 } 1843 1844 if (val != tmp) { 1845 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", 1846 &its->phys_base, its_base_type_string[type], 1847 val, tmp); 1848 free_pages((unsigned long)base, order); 1849 return -ENXIO; 1850 } 1851 1852 baser->order = order; 1853 baser->base = base; 1854 baser->psz = psz; 1855 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; 1856 1857 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", 1858 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), 1859 its_base_type_string[type], 1860 (unsigned long)virt_to_phys(base), 1861 indirect ? "indirect" : "flat", (int)esz, 1862 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); 1863 1864 return 0; 1865 } 1866 1867 static bool its_parse_indirect_baser(struct its_node *its, 1868 struct its_baser *baser, 1869 u32 psz, u32 *order, u32 ids) 1870 { 1871 u64 tmp = its_read_baser(its, baser); 1872 u64 type = GITS_BASER_TYPE(tmp); 1873 u64 esz = GITS_BASER_ENTRY_SIZE(tmp); 1874 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; 1875 u32 new_order = *order; 1876 bool indirect = false; 1877 1878 /* No need to enable Indirection if memory requirement < (psz*2)bytes */ 1879 if ((esz << ids) > (psz * 2)) { 1880 /* 1881 * Find out whether hw supports a single or two-level table by 1882 * table by reading bit at offset '62' after writing '1' to it. 1883 */ 1884 its_write_baser(its, baser, val | GITS_BASER_INDIRECT); 1885 indirect = !!(baser->val & GITS_BASER_INDIRECT); 1886 1887 if (indirect) { 1888 /* 1889 * The size of the lvl2 table is equal to ITS page size 1890 * which is 'psz'. For computing lvl1 table size, 1891 * subtract ID bits that sparse lvl2 table from 'ids' 1892 * which is reported by ITS hardware times lvl1 table 1893 * entry size. 1894 */ 1895 ids -= ilog2(psz / (int)esz); 1896 esz = GITS_LVL1_ENTRY_SIZE; 1897 } 1898 } 1899 1900 /* 1901 * Allocate as many entries as required to fit the 1902 * range of device IDs that the ITS can grok... The ID 1903 * space being incredibly sparse, this results in a 1904 * massive waste of memory if two-level device table 1905 * feature is not supported by hardware. 1906 */ 1907 new_order = max_t(u32, get_order(esz << ids), new_order); 1908 if (new_order >= MAX_ORDER) { 1909 new_order = MAX_ORDER - 1; 1910 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); 1911 pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n", 1912 &its->phys_base, its_base_type_string[type], 1913 its->device_ids, ids); 1914 } 1915 1916 *order = new_order; 1917 1918 return indirect; 1919 } 1920 1921 static void its_free_tables(struct its_node *its) 1922 { 1923 int i; 1924 1925 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 1926 if (its->tables[i].base) { 1927 free_pages((unsigned long)its->tables[i].base, 1928 its->tables[i].order); 1929 its->tables[i].base = NULL; 1930 } 1931 } 1932 } 1933 1934 static int its_alloc_tables(struct its_node *its) 1935 { 1936 u64 shr = GITS_BASER_InnerShareable; 1937 u64 cache = GITS_BASER_RaWaWb; 1938 u32 psz = SZ_64K; 1939 int err, i; 1940 1941 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) 1942 /* erratum 24313: ignore memory access type */ 1943 cache = GITS_BASER_nCnB; 1944 1945 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 1946 struct its_baser *baser = its->tables + i; 1947 u64 val = its_read_baser(its, baser); 1948 u64 type = GITS_BASER_TYPE(val); 1949 u32 order = get_order(psz); 1950 bool indirect = false; 1951 1952 switch (type) { 1953 case GITS_BASER_TYPE_NONE: 1954 continue; 1955 1956 case GITS_BASER_TYPE_DEVICE: 1957 indirect = its_parse_indirect_baser(its, baser, 1958 psz, &order, 1959 its->device_ids); 1960 break; 1961 1962 case GITS_BASER_TYPE_VCPU: 1963 indirect = its_parse_indirect_baser(its, baser, 1964 psz, &order, 1965 ITS_MAX_VPEID_BITS); 1966 break; 1967 } 1968 1969 err = its_setup_baser(its, baser, cache, shr, psz, order, indirect); 1970 if (err < 0) { 1971 its_free_tables(its); 1972 return err; 1973 } 1974 1975 /* Update settings which will be used for next BASERn */ 1976 psz = baser->psz; 1977 cache = baser->val & GITS_BASER_CACHEABILITY_MASK; 1978 shr = baser->val & GITS_BASER_SHAREABILITY_MASK; 1979 } 1980 1981 return 0; 1982 } 1983 1984 static int its_alloc_collections(struct its_node *its) 1985 { 1986 int i; 1987 1988 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections), 1989 GFP_KERNEL); 1990 if (!its->collections) 1991 return -ENOMEM; 1992 1993 for (i = 0; i < nr_cpu_ids; i++) 1994 its->collections[i].target_address = ~0ULL; 1995 1996 return 0; 1997 } 1998 1999 static struct page *its_allocate_pending_table(gfp_t gfp_flags) 2000 { 2001 struct page *pend_page; 2002 2003 pend_page = alloc_pages(gfp_flags | __GFP_ZERO, 2004 get_order(LPI_PENDBASE_SZ)); 2005 if (!pend_page) 2006 return NULL; 2007 2008 /* Make sure the GIC will observe the zero-ed page */ 2009 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); 2010 2011 return pend_page; 2012 } 2013 2014 static void its_free_pending_table(struct page *pt) 2015 { 2016 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ)); 2017 } 2018 2019 /* 2020 * Booting with kdump and LPIs enabled is generally fine. Any other 2021 * case is wrong in the absence of firmware/EFI support. 2022 */ 2023 static bool enabled_lpis_allowed(void) 2024 { 2025 phys_addr_t addr; 2026 u64 val; 2027 2028 /* Check whether the property table is in a reserved region */ 2029 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2030 addr = val & GENMASK_ULL(51, 12); 2031 2032 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ); 2033 } 2034 2035 static int __init allocate_lpi_tables(void) 2036 { 2037 u64 val; 2038 int err, cpu; 2039 2040 /* 2041 * If LPIs are enabled while we run this from the boot CPU, 2042 * flag the RD tables as pre-allocated if the stars do align. 2043 */ 2044 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR); 2045 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) { 2046 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED | 2047 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING); 2048 pr_info("GICv3: Using preallocated redistributor tables\n"); 2049 } 2050 2051 err = its_setup_lpi_prop_table(); 2052 if (err) 2053 return err; 2054 2055 /* 2056 * We allocate all the pending tables anyway, as we may have a 2057 * mix of RDs that have had LPIs enabled, and some that 2058 * don't. We'll free the unused ones as each CPU comes online. 2059 */ 2060 for_each_possible_cpu(cpu) { 2061 struct page *pend_page; 2062 2063 pend_page = its_allocate_pending_table(GFP_NOWAIT); 2064 if (!pend_page) { 2065 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu); 2066 return -ENOMEM; 2067 } 2068 2069 gic_data_rdist_cpu(cpu)->pend_page = pend_page; 2070 } 2071 2072 return 0; 2073 } 2074 2075 static u64 its_clear_vpend_valid(void __iomem *vlpi_base) 2076 { 2077 u32 count = 1000000; /* 1s! */ 2078 bool clean; 2079 u64 val; 2080 2081 val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 2082 val &= ~GICR_VPENDBASER_Valid; 2083 gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 2084 2085 do { 2086 val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 2087 clean = !(val & GICR_VPENDBASER_Dirty); 2088 if (!clean) { 2089 count--; 2090 cpu_relax(); 2091 udelay(1); 2092 } 2093 } while (!clean && count); 2094 2095 return val; 2096 } 2097 2098 static void its_cpu_init_lpis(void) 2099 { 2100 void __iomem *rbase = gic_data_rdist_rd_base(); 2101 struct page *pend_page; 2102 phys_addr_t paddr; 2103 u64 val, tmp; 2104 2105 if (gic_data_rdist()->lpi_enabled) 2106 return; 2107 2108 val = readl_relaxed(rbase + GICR_CTLR); 2109 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) && 2110 (val & GICR_CTLR_ENABLE_LPIS)) { 2111 /* 2112 * Check that we get the same property table on all 2113 * RDs. If we don't, this is hopeless. 2114 */ 2115 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER); 2116 paddr &= GENMASK_ULL(51, 12); 2117 if (WARN_ON(gic_rdists->prop_table_pa != paddr)) 2118 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 2119 2120 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER); 2121 paddr &= GENMASK_ULL(51, 16); 2122 2123 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ)); 2124 its_free_pending_table(gic_data_rdist()->pend_page); 2125 gic_data_rdist()->pend_page = NULL; 2126 2127 goto out; 2128 } 2129 2130 pend_page = gic_data_rdist()->pend_page; 2131 paddr = page_to_phys(pend_page); 2132 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ)); 2133 2134 /* set PROPBASE */ 2135 val = (gic_rdists->prop_table_pa | 2136 GICR_PROPBASER_InnerShareable | 2137 GICR_PROPBASER_RaWaWb | 2138 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); 2139 2140 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 2141 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); 2142 2143 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { 2144 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { 2145 /* 2146 * The HW reports non-shareable, we must 2147 * remove the cacheability attributes as 2148 * well. 2149 */ 2150 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | 2151 GICR_PROPBASER_CACHEABILITY_MASK); 2152 val |= GICR_PROPBASER_nC; 2153 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 2154 } 2155 pr_info_once("GIC: using cache flushing for LPI property table\n"); 2156 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; 2157 } 2158 2159 /* set PENDBASE */ 2160 val = (page_to_phys(pend_page) | 2161 GICR_PENDBASER_InnerShareable | 2162 GICR_PENDBASER_RaWaWb); 2163 2164 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 2165 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); 2166 2167 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { 2168 /* 2169 * The HW reports non-shareable, we must remove the 2170 * cacheability attributes as well. 2171 */ 2172 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | 2173 GICR_PENDBASER_CACHEABILITY_MASK); 2174 val |= GICR_PENDBASER_nC; 2175 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 2176 } 2177 2178 /* Enable LPIs */ 2179 val = readl_relaxed(rbase + GICR_CTLR); 2180 val |= GICR_CTLR_ENABLE_LPIS; 2181 writel_relaxed(val, rbase + GICR_CTLR); 2182 2183 if (gic_rdists->has_vlpis) { 2184 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2185 2186 /* 2187 * It's possible for CPU to receive VLPIs before it is 2188 * sheduled as a vPE, especially for the first CPU, and the 2189 * VLPI with INTID larger than 2^(IDbits+1) will be considered 2190 * as out of range and dropped by GIC. 2191 * So we initialize IDbits to known value to avoid VLPI drop. 2192 */ 2193 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 2194 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n", 2195 smp_processor_id(), val); 2196 gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2197 2198 /* 2199 * Also clear Valid bit of GICR_VPENDBASER, in case some 2200 * ancient programming gets left in and has possibility of 2201 * corrupting memory. 2202 */ 2203 val = its_clear_vpend_valid(vlpi_base); 2204 WARN_ON(val & GICR_VPENDBASER_Dirty); 2205 } 2206 2207 /* Make sure the GIC has seen the above */ 2208 dsb(sy); 2209 out: 2210 gic_data_rdist()->lpi_enabled = true; 2211 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n", 2212 smp_processor_id(), 2213 gic_data_rdist()->pend_page ? "allocated" : "reserved", 2214 &paddr); 2215 } 2216 2217 static void its_cpu_init_collection(struct its_node *its) 2218 { 2219 int cpu = smp_processor_id(); 2220 u64 target; 2221 2222 /* avoid cross node collections and its mapping */ 2223 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 2224 struct device_node *cpu_node; 2225 2226 cpu_node = of_get_cpu_node(cpu, NULL); 2227 if (its->numa_node != NUMA_NO_NODE && 2228 its->numa_node != of_node_to_nid(cpu_node)) 2229 return; 2230 } 2231 2232 /* 2233 * We now have to bind each collection to its target 2234 * redistributor. 2235 */ 2236 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { 2237 /* 2238 * This ITS wants the physical address of the 2239 * redistributor. 2240 */ 2241 target = gic_data_rdist()->phys_base; 2242 } else { 2243 /* This ITS wants a linear CPU number. */ 2244 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2245 target = GICR_TYPER_CPU_NUMBER(target) << 16; 2246 } 2247 2248 /* Perform collection mapping */ 2249 its->collections[cpu].target_address = target; 2250 its->collections[cpu].col_id = cpu; 2251 2252 its_send_mapc(its, &its->collections[cpu], 1); 2253 its_send_invall(its, &its->collections[cpu]); 2254 } 2255 2256 static void its_cpu_init_collections(void) 2257 { 2258 struct its_node *its; 2259 2260 raw_spin_lock(&its_lock); 2261 2262 list_for_each_entry(its, &its_nodes, entry) 2263 its_cpu_init_collection(its); 2264 2265 raw_spin_unlock(&its_lock); 2266 } 2267 2268 static struct its_device *its_find_device(struct its_node *its, u32 dev_id) 2269 { 2270 struct its_device *its_dev = NULL, *tmp; 2271 unsigned long flags; 2272 2273 raw_spin_lock_irqsave(&its->lock, flags); 2274 2275 list_for_each_entry(tmp, &its->its_device_list, entry) { 2276 if (tmp->device_id == dev_id) { 2277 its_dev = tmp; 2278 break; 2279 } 2280 } 2281 2282 raw_spin_unlock_irqrestore(&its->lock, flags); 2283 2284 return its_dev; 2285 } 2286 2287 static struct its_baser *its_get_baser(struct its_node *its, u32 type) 2288 { 2289 int i; 2290 2291 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2292 if (GITS_BASER_TYPE(its->tables[i].val) == type) 2293 return &its->tables[i]; 2294 } 2295 2296 return NULL; 2297 } 2298 2299 static bool its_alloc_table_entry(struct its_node *its, 2300 struct its_baser *baser, u32 id) 2301 { 2302 struct page *page; 2303 u32 esz, idx; 2304 __le64 *table; 2305 2306 /* Don't allow device id that exceeds single, flat table limit */ 2307 esz = GITS_BASER_ENTRY_SIZE(baser->val); 2308 if (!(baser->val & GITS_BASER_INDIRECT)) 2309 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); 2310 2311 /* Compute 1st level table index & check if that exceeds table limit */ 2312 idx = id >> ilog2(baser->psz / esz); 2313 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) 2314 return false; 2315 2316 table = baser->base; 2317 2318 /* Allocate memory for 2nd level table */ 2319 if (!table[idx]) { 2320 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 2321 get_order(baser->psz)); 2322 if (!page) 2323 return false; 2324 2325 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 2326 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 2327 gic_flush_dcache_to_poc(page_address(page), baser->psz); 2328 2329 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 2330 2331 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 2332 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 2333 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 2334 2335 /* Ensure updated table contents are visible to ITS hardware */ 2336 dsb(sy); 2337 } 2338 2339 return true; 2340 } 2341 2342 static bool its_alloc_device_table(struct its_node *its, u32 dev_id) 2343 { 2344 struct its_baser *baser; 2345 2346 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); 2347 2348 /* Don't allow device id that exceeds ITS hardware limit */ 2349 if (!baser) 2350 return (ilog2(dev_id) < its->device_ids); 2351 2352 return its_alloc_table_entry(its, baser, dev_id); 2353 } 2354 2355 static bool its_alloc_vpe_table(u32 vpe_id) 2356 { 2357 struct its_node *its; 2358 2359 /* 2360 * Make sure the L2 tables are allocated on *all* v4 ITSs. We 2361 * could try and only do it on ITSs corresponding to devices 2362 * that have interrupts targeted at this VPE, but the 2363 * complexity becomes crazy (and you have tons of memory 2364 * anyway, right?). 2365 */ 2366 list_for_each_entry(its, &its_nodes, entry) { 2367 struct its_baser *baser; 2368 2369 if (!its->is_v4) 2370 continue; 2371 2372 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); 2373 if (!baser) 2374 return false; 2375 2376 if (!its_alloc_table_entry(its, baser, vpe_id)) 2377 return false; 2378 } 2379 2380 return true; 2381 } 2382 2383 static struct its_device *its_create_device(struct its_node *its, u32 dev_id, 2384 int nvecs, bool alloc_lpis) 2385 { 2386 struct its_device *dev; 2387 unsigned long *lpi_map = NULL; 2388 unsigned long flags; 2389 u16 *col_map = NULL; 2390 void *itt; 2391 int lpi_base; 2392 int nr_lpis; 2393 int nr_ites; 2394 int sz; 2395 2396 if (!its_alloc_device_table(its, dev_id)) 2397 return NULL; 2398 2399 if (WARN_ON(!is_power_of_2(nvecs))) 2400 nvecs = roundup_pow_of_two(nvecs); 2401 2402 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2403 /* 2404 * Even if the device wants a single LPI, the ITT must be 2405 * sized as a power of two (and you need at least one bit...). 2406 */ 2407 nr_ites = max(2, nvecs); 2408 sz = nr_ites * its->ite_size; 2409 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; 2410 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node); 2411 if (alloc_lpis) { 2412 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis); 2413 if (lpi_map) 2414 col_map = kcalloc(nr_lpis, sizeof(*col_map), 2415 GFP_KERNEL); 2416 } else { 2417 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL); 2418 nr_lpis = 0; 2419 lpi_base = 0; 2420 } 2421 2422 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) { 2423 kfree(dev); 2424 kfree(itt); 2425 kfree(lpi_map); 2426 kfree(col_map); 2427 return NULL; 2428 } 2429 2430 gic_flush_dcache_to_poc(itt, sz); 2431 2432 dev->its = its; 2433 dev->itt = itt; 2434 dev->nr_ites = nr_ites; 2435 dev->event_map.lpi_map = lpi_map; 2436 dev->event_map.col_map = col_map; 2437 dev->event_map.lpi_base = lpi_base; 2438 dev->event_map.nr_lpis = nr_lpis; 2439 mutex_init(&dev->event_map.vlpi_lock); 2440 dev->device_id = dev_id; 2441 INIT_LIST_HEAD(&dev->entry); 2442 2443 raw_spin_lock_irqsave(&its->lock, flags); 2444 list_add(&dev->entry, &its->its_device_list); 2445 raw_spin_unlock_irqrestore(&its->lock, flags); 2446 2447 /* Map device to its ITT */ 2448 its_send_mapd(dev, 1); 2449 2450 return dev; 2451 } 2452 2453 static void its_free_device(struct its_device *its_dev) 2454 { 2455 unsigned long flags; 2456 2457 raw_spin_lock_irqsave(&its_dev->its->lock, flags); 2458 list_del(&its_dev->entry); 2459 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); 2460 kfree(its_dev->itt); 2461 kfree(its_dev); 2462 } 2463 2464 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq) 2465 { 2466 int idx; 2467 2468 idx = bitmap_find_free_region(dev->event_map.lpi_map, 2469 dev->event_map.nr_lpis, 2470 get_count_order(nvecs)); 2471 if (idx < 0) 2472 return -ENOSPC; 2473 2474 *hwirq = dev->event_map.lpi_base + idx; 2475 set_bit(idx, dev->event_map.lpi_map); 2476 2477 return 0; 2478 } 2479 2480 static int its_msi_prepare(struct irq_domain *domain, struct device *dev, 2481 int nvec, msi_alloc_info_t *info) 2482 { 2483 struct its_node *its; 2484 struct its_device *its_dev; 2485 struct msi_domain_info *msi_info; 2486 u32 dev_id; 2487 int err = 0; 2488 2489 /* 2490 * We ignore "dev" entierely, and rely on the dev_id that has 2491 * been passed via the scratchpad. This limits this domain's 2492 * usefulness to upper layers that definitely know that they 2493 * are built on top of the ITS. 2494 */ 2495 dev_id = info->scratchpad[0].ul; 2496 2497 msi_info = msi_get_domain_info(domain); 2498 its = msi_info->data; 2499 2500 if (!gic_rdists->has_direct_lpi && 2501 vpe_proxy.dev && 2502 vpe_proxy.dev->its == its && 2503 dev_id == vpe_proxy.dev->device_id) { 2504 /* Bad luck. Get yourself a better implementation */ 2505 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", 2506 dev_id); 2507 return -EINVAL; 2508 } 2509 2510 mutex_lock(&its->dev_alloc_lock); 2511 its_dev = its_find_device(its, dev_id); 2512 if (its_dev) { 2513 /* 2514 * We already have seen this ID, probably through 2515 * another alias (PCI bridge of some sort). No need to 2516 * create the device. 2517 */ 2518 its_dev->shared = true; 2519 pr_debug("Reusing ITT for devID %x\n", dev_id); 2520 goto out; 2521 } 2522 2523 its_dev = its_create_device(its, dev_id, nvec, true); 2524 if (!its_dev) { 2525 err = -ENOMEM; 2526 goto out; 2527 } 2528 2529 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); 2530 out: 2531 mutex_unlock(&its->dev_alloc_lock); 2532 info->scratchpad[0].ptr = its_dev; 2533 return err; 2534 } 2535 2536 static struct msi_domain_ops its_msi_domain_ops = { 2537 .msi_prepare = its_msi_prepare, 2538 }; 2539 2540 static int its_irq_gic_domain_alloc(struct irq_domain *domain, 2541 unsigned int virq, 2542 irq_hw_number_t hwirq) 2543 { 2544 struct irq_fwspec fwspec; 2545 2546 if (irq_domain_get_of_node(domain->parent)) { 2547 fwspec.fwnode = domain->parent->fwnode; 2548 fwspec.param_count = 3; 2549 fwspec.param[0] = GIC_IRQ_TYPE_LPI; 2550 fwspec.param[1] = hwirq; 2551 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 2552 } else if (is_fwnode_irqchip(domain->parent->fwnode)) { 2553 fwspec.fwnode = domain->parent->fwnode; 2554 fwspec.param_count = 2; 2555 fwspec.param[0] = hwirq; 2556 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 2557 } else { 2558 return -EINVAL; 2559 } 2560 2561 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 2562 } 2563 2564 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 2565 unsigned int nr_irqs, void *args) 2566 { 2567 msi_alloc_info_t *info = args; 2568 struct its_device *its_dev = info->scratchpad[0].ptr; 2569 irq_hw_number_t hwirq; 2570 int err; 2571 int i; 2572 2573 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq); 2574 if (err) 2575 return err; 2576 2577 for (i = 0; i < nr_irqs; i++) { 2578 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i); 2579 if (err) 2580 return err; 2581 2582 irq_domain_set_hwirq_and_chip(domain, virq + i, 2583 hwirq + i, &its_irq_chip, its_dev); 2584 irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i))); 2585 pr_debug("ID:%d pID:%d vID:%d\n", 2586 (int)(hwirq + i - its_dev->event_map.lpi_base), 2587 (int)(hwirq + i), virq + i); 2588 } 2589 2590 return 0; 2591 } 2592 2593 static int its_irq_domain_activate(struct irq_domain *domain, 2594 struct irq_data *d, bool reserve) 2595 { 2596 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2597 u32 event = its_get_event_id(d); 2598 const struct cpumask *cpu_mask = cpu_online_mask; 2599 int cpu; 2600 2601 /* get the cpu_mask of local node */ 2602 if (its_dev->its->numa_node >= 0) 2603 cpu_mask = cpumask_of_node(its_dev->its->numa_node); 2604 2605 /* Bind the LPI to the first possible CPU */ 2606 cpu = cpumask_first_and(cpu_mask, cpu_online_mask); 2607 if (cpu >= nr_cpu_ids) { 2608 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) 2609 return -EINVAL; 2610 2611 cpu = cpumask_first(cpu_online_mask); 2612 } 2613 2614 its_dev->event_map.col_map[event] = cpu; 2615 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 2616 2617 /* Map the GIC IRQ and event to the device */ 2618 its_send_mapti(its_dev, d->hwirq, event); 2619 return 0; 2620 } 2621 2622 static void its_irq_domain_deactivate(struct irq_domain *domain, 2623 struct irq_data *d) 2624 { 2625 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2626 u32 event = its_get_event_id(d); 2627 2628 /* Stop the delivery of interrupts */ 2629 its_send_discard(its_dev, event); 2630 } 2631 2632 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, 2633 unsigned int nr_irqs) 2634 { 2635 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 2636 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2637 struct its_node *its = its_dev->its; 2638 int i; 2639 2640 for (i = 0; i < nr_irqs; i++) { 2641 struct irq_data *data = irq_domain_get_irq_data(domain, 2642 virq + i); 2643 u32 event = its_get_event_id(data); 2644 2645 /* Mark interrupt index as unused */ 2646 clear_bit(event, its_dev->event_map.lpi_map); 2647 2648 /* Nuke the entry in the domain */ 2649 irq_domain_reset_irq_data(data); 2650 } 2651 2652 mutex_lock(&its->dev_alloc_lock); 2653 2654 /* 2655 * If all interrupts have been freed, start mopping the 2656 * floor. This is conditionned on the device not being shared. 2657 */ 2658 if (!its_dev->shared && 2659 bitmap_empty(its_dev->event_map.lpi_map, 2660 its_dev->event_map.nr_lpis)) { 2661 its_lpi_free(its_dev->event_map.lpi_map, 2662 its_dev->event_map.lpi_base, 2663 its_dev->event_map.nr_lpis); 2664 kfree(its_dev->event_map.col_map); 2665 2666 /* Unmap device/itt */ 2667 its_send_mapd(its_dev, 0); 2668 its_free_device(its_dev); 2669 } 2670 2671 mutex_unlock(&its->dev_alloc_lock); 2672 2673 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 2674 } 2675 2676 static const struct irq_domain_ops its_domain_ops = { 2677 .alloc = its_irq_domain_alloc, 2678 .free = its_irq_domain_free, 2679 .activate = its_irq_domain_activate, 2680 .deactivate = its_irq_domain_deactivate, 2681 }; 2682 2683 /* 2684 * This is insane. 2685 * 2686 * If a GICv4 doesn't implement Direct LPIs (which is extremely 2687 * likely), the only way to perform an invalidate is to use a fake 2688 * device to issue an INV command, implying that the LPI has first 2689 * been mapped to some event on that device. Since this is not exactly 2690 * cheap, we try to keep that mapping around as long as possible, and 2691 * only issue an UNMAP if we're short on available slots. 2692 * 2693 * Broken by design(tm). 2694 */ 2695 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) 2696 { 2697 /* Already unmapped? */ 2698 if (vpe->vpe_proxy_event == -1) 2699 return; 2700 2701 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); 2702 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; 2703 2704 /* 2705 * We don't track empty slots at all, so let's move the 2706 * next_victim pointer if we can quickly reuse that slot 2707 * instead of nuking an existing entry. Not clear that this is 2708 * always a win though, and this might just generate a ripple 2709 * effect... Let's just hope VPEs don't migrate too often. 2710 */ 2711 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 2712 vpe_proxy.next_victim = vpe->vpe_proxy_event; 2713 2714 vpe->vpe_proxy_event = -1; 2715 } 2716 2717 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) 2718 { 2719 if (!gic_rdists->has_direct_lpi) { 2720 unsigned long flags; 2721 2722 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 2723 its_vpe_db_proxy_unmap_locked(vpe); 2724 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 2725 } 2726 } 2727 2728 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) 2729 { 2730 /* Already mapped? */ 2731 if (vpe->vpe_proxy_event != -1) 2732 return; 2733 2734 /* This slot was already allocated. Kick the other VPE out. */ 2735 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 2736 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); 2737 2738 /* Map the new VPE instead */ 2739 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; 2740 vpe->vpe_proxy_event = vpe_proxy.next_victim; 2741 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; 2742 2743 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; 2744 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); 2745 } 2746 2747 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) 2748 { 2749 unsigned long flags; 2750 struct its_collection *target_col; 2751 2752 if (gic_rdists->has_direct_lpi) { 2753 void __iomem *rdbase; 2754 2755 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; 2756 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 2757 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1) 2758 cpu_relax(); 2759 2760 return; 2761 } 2762 2763 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 2764 2765 its_vpe_db_proxy_map_locked(vpe); 2766 2767 target_col = &vpe_proxy.dev->its->collections[to]; 2768 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); 2769 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; 2770 2771 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 2772 } 2773 2774 static int its_vpe_set_affinity(struct irq_data *d, 2775 const struct cpumask *mask_val, 2776 bool force) 2777 { 2778 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2779 int cpu = cpumask_first(mask_val); 2780 2781 /* 2782 * Changing affinity is mega expensive, so let's be as lazy as 2783 * we can and only do it if we really have to. Also, if mapped 2784 * into the proxy device, we need to move the doorbell 2785 * interrupt to its new location. 2786 */ 2787 if (vpe->col_idx != cpu) { 2788 int from = vpe->col_idx; 2789 2790 vpe->col_idx = cpu; 2791 its_send_vmovp(vpe); 2792 its_vpe_db_proxy_move(vpe, from, cpu); 2793 } 2794 2795 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 2796 2797 return IRQ_SET_MASK_OK_DONE; 2798 } 2799 2800 static void its_vpe_schedule(struct its_vpe *vpe) 2801 { 2802 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2803 u64 val; 2804 2805 /* Schedule the VPE */ 2806 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & 2807 GENMASK_ULL(51, 12); 2808 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 2809 val |= GICR_VPROPBASER_RaWb; 2810 val |= GICR_VPROPBASER_InnerShareable; 2811 gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2812 2813 val = virt_to_phys(page_address(vpe->vpt_page)) & 2814 GENMASK_ULL(51, 16); 2815 val |= GICR_VPENDBASER_RaWaWb; 2816 val |= GICR_VPENDBASER_NonShareable; 2817 /* 2818 * There is no good way of finding out if the pending table is 2819 * empty as we can race against the doorbell interrupt very 2820 * easily. So in the end, vpe->pending_last is only an 2821 * indication that the vcpu has something pending, not one 2822 * that the pending table is empty. A good implementation 2823 * would be able to read its coarse map pretty quickly anyway, 2824 * making this a tolerable issue. 2825 */ 2826 val |= GICR_VPENDBASER_PendingLast; 2827 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; 2828 val |= GICR_VPENDBASER_Valid; 2829 gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 2830 } 2831 2832 static void its_vpe_deschedule(struct its_vpe *vpe) 2833 { 2834 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2835 u64 val; 2836 2837 val = its_clear_vpend_valid(vlpi_base); 2838 2839 if (unlikely(val & GICR_VPENDBASER_Dirty)) { 2840 pr_err_ratelimited("ITS virtual pending table not cleaning\n"); 2841 vpe->idai = false; 2842 vpe->pending_last = true; 2843 } else { 2844 vpe->idai = !!(val & GICR_VPENDBASER_IDAI); 2845 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 2846 } 2847 } 2848 2849 static void its_vpe_invall(struct its_vpe *vpe) 2850 { 2851 struct its_node *its; 2852 2853 list_for_each_entry(its, &its_nodes, entry) { 2854 if (!its->is_v4) 2855 continue; 2856 2857 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr]) 2858 continue; 2859 2860 /* 2861 * Sending a VINVALL to a single ITS is enough, as all 2862 * we need is to reach the redistributors. 2863 */ 2864 its_send_vinvall(its, vpe); 2865 return; 2866 } 2867 } 2868 2869 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 2870 { 2871 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2872 struct its_cmd_info *info = vcpu_info; 2873 2874 switch (info->cmd_type) { 2875 case SCHEDULE_VPE: 2876 its_vpe_schedule(vpe); 2877 return 0; 2878 2879 case DESCHEDULE_VPE: 2880 its_vpe_deschedule(vpe); 2881 return 0; 2882 2883 case INVALL_VPE: 2884 its_vpe_invall(vpe); 2885 return 0; 2886 2887 default: 2888 return -EINVAL; 2889 } 2890 } 2891 2892 static void its_vpe_send_cmd(struct its_vpe *vpe, 2893 void (*cmd)(struct its_device *, u32)) 2894 { 2895 unsigned long flags; 2896 2897 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 2898 2899 its_vpe_db_proxy_map_locked(vpe); 2900 cmd(vpe_proxy.dev, vpe->vpe_proxy_event); 2901 2902 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 2903 } 2904 2905 static void its_vpe_send_inv(struct irq_data *d) 2906 { 2907 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2908 2909 if (gic_rdists->has_direct_lpi) { 2910 void __iomem *rdbase; 2911 2912 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 2913 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR); 2914 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1) 2915 cpu_relax(); 2916 } else { 2917 its_vpe_send_cmd(vpe, its_send_inv); 2918 } 2919 } 2920 2921 static void its_vpe_mask_irq(struct irq_data *d) 2922 { 2923 /* 2924 * We need to unmask the LPI, which is described by the parent 2925 * irq_data. Instead of calling into the parent (which won't 2926 * exactly do the right thing, let's simply use the 2927 * parent_data pointer. Yes, I'm naughty. 2928 */ 2929 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 2930 its_vpe_send_inv(d); 2931 } 2932 2933 static void its_vpe_unmask_irq(struct irq_data *d) 2934 { 2935 /* Same hack as above... */ 2936 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 2937 its_vpe_send_inv(d); 2938 } 2939 2940 static int its_vpe_set_irqchip_state(struct irq_data *d, 2941 enum irqchip_irq_state which, 2942 bool state) 2943 { 2944 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 2945 2946 if (which != IRQCHIP_STATE_PENDING) 2947 return -EINVAL; 2948 2949 if (gic_rdists->has_direct_lpi) { 2950 void __iomem *rdbase; 2951 2952 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 2953 if (state) { 2954 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); 2955 } else { 2956 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 2957 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1) 2958 cpu_relax(); 2959 } 2960 } else { 2961 if (state) 2962 its_vpe_send_cmd(vpe, its_send_int); 2963 else 2964 its_vpe_send_cmd(vpe, its_send_clear); 2965 } 2966 2967 return 0; 2968 } 2969 2970 static struct irq_chip its_vpe_irq_chip = { 2971 .name = "GICv4-vpe", 2972 .irq_mask = its_vpe_mask_irq, 2973 .irq_unmask = its_vpe_unmask_irq, 2974 .irq_eoi = irq_chip_eoi_parent, 2975 .irq_set_affinity = its_vpe_set_affinity, 2976 .irq_set_irqchip_state = its_vpe_set_irqchip_state, 2977 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity, 2978 }; 2979 2980 static int its_vpe_id_alloc(void) 2981 { 2982 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL); 2983 } 2984 2985 static void its_vpe_id_free(u16 id) 2986 { 2987 ida_simple_remove(&its_vpeid_ida, id); 2988 } 2989 2990 static int its_vpe_init(struct its_vpe *vpe) 2991 { 2992 struct page *vpt_page; 2993 int vpe_id; 2994 2995 /* Allocate vpe_id */ 2996 vpe_id = its_vpe_id_alloc(); 2997 if (vpe_id < 0) 2998 return vpe_id; 2999 3000 /* Allocate VPT */ 3001 vpt_page = its_allocate_pending_table(GFP_KERNEL); 3002 if (!vpt_page) { 3003 its_vpe_id_free(vpe_id); 3004 return -ENOMEM; 3005 } 3006 3007 if (!its_alloc_vpe_table(vpe_id)) { 3008 its_vpe_id_free(vpe_id); 3009 its_free_pending_table(vpe->vpt_page); 3010 return -ENOMEM; 3011 } 3012 3013 vpe->vpe_id = vpe_id; 3014 vpe->vpt_page = vpt_page; 3015 vpe->vpe_proxy_event = -1; 3016 3017 return 0; 3018 } 3019 3020 static void its_vpe_teardown(struct its_vpe *vpe) 3021 { 3022 its_vpe_db_proxy_unmap(vpe); 3023 its_vpe_id_free(vpe->vpe_id); 3024 its_free_pending_table(vpe->vpt_page); 3025 } 3026 3027 static void its_vpe_irq_domain_free(struct irq_domain *domain, 3028 unsigned int virq, 3029 unsigned int nr_irqs) 3030 { 3031 struct its_vm *vm = domain->host_data; 3032 int i; 3033 3034 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 3035 3036 for (i = 0; i < nr_irqs; i++) { 3037 struct irq_data *data = irq_domain_get_irq_data(domain, 3038 virq + i); 3039 struct its_vpe *vpe = irq_data_get_irq_chip_data(data); 3040 3041 BUG_ON(vm != vpe->its_vm); 3042 3043 clear_bit(data->hwirq, vm->db_bitmap); 3044 its_vpe_teardown(vpe); 3045 irq_domain_reset_irq_data(data); 3046 } 3047 3048 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { 3049 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); 3050 its_free_prop_table(vm->vprop_page); 3051 } 3052 } 3053 3054 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 3055 unsigned int nr_irqs, void *args) 3056 { 3057 struct its_vm *vm = args; 3058 unsigned long *bitmap; 3059 struct page *vprop_page; 3060 int base, nr_ids, i, err = 0; 3061 3062 BUG_ON(!vm); 3063 3064 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids); 3065 if (!bitmap) 3066 return -ENOMEM; 3067 3068 if (nr_ids < nr_irqs) { 3069 its_lpi_free(bitmap, base, nr_ids); 3070 return -ENOMEM; 3071 } 3072 3073 vprop_page = its_allocate_prop_table(GFP_KERNEL); 3074 if (!vprop_page) { 3075 its_lpi_free(bitmap, base, nr_ids); 3076 return -ENOMEM; 3077 } 3078 3079 vm->db_bitmap = bitmap; 3080 vm->db_lpi_base = base; 3081 vm->nr_db_lpis = nr_ids; 3082 vm->vprop_page = vprop_page; 3083 3084 for (i = 0; i < nr_irqs; i++) { 3085 vm->vpes[i]->vpe_db_lpi = base + i; 3086 err = its_vpe_init(vm->vpes[i]); 3087 if (err) 3088 break; 3089 err = its_irq_gic_domain_alloc(domain, virq + i, 3090 vm->vpes[i]->vpe_db_lpi); 3091 if (err) 3092 break; 3093 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 3094 &its_vpe_irq_chip, vm->vpes[i]); 3095 set_bit(i, bitmap); 3096 } 3097 3098 if (err) { 3099 if (i > 0) 3100 its_vpe_irq_domain_free(domain, virq, i - 1); 3101 3102 its_lpi_free(bitmap, base, nr_ids); 3103 its_free_prop_table(vprop_page); 3104 } 3105 3106 return err; 3107 } 3108 3109 static int its_vpe_irq_domain_activate(struct irq_domain *domain, 3110 struct irq_data *d, bool reserve) 3111 { 3112 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3113 struct its_node *its; 3114 3115 /* If we use the list map, we issue VMAPP on demand... */ 3116 if (its_list_map) 3117 return 0; 3118 3119 /* Map the VPE to the first possible CPU */ 3120 vpe->col_idx = cpumask_first(cpu_online_mask); 3121 3122 list_for_each_entry(its, &its_nodes, entry) { 3123 if (!its->is_v4) 3124 continue; 3125 3126 its_send_vmapp(its, vpe, true); 3127 its_send_vinvall(its, vpe); 3128 } 3129 3130 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 3131 3132 return 0; 3133 } 3134 3135 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, 3136 struct irq_data *d) 3137 { 3138 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3139 struct its_node *its; 3140 3141 /* 3142 * If we use the list map, we unmap the VPE once no VLPIs are 3143 * associated with the VM. 3144 */ 3145 if (its_list_map) 3146 return; 3147 3148 list_for_each_entry(its, &its_nodes, entry) { 3149 if (!its->is_v4) 3150 continue; 3151 3152 its_send_vmapp(its, vpe, false); 3153 } 3154 } 3155 3156 static const struct irq_domain_ops its_vpe_domain_ops = { 3157 .alloc = its_vpe_irq_domain_alloc, 3158 .free = its_vpe_irq_domain_free, 3159 .activate = its_vpe_irq_domain_activate, 3160 .deactivate = its_vpe_irq_domain_deactivate, 3161 }; 3162 3163 static int its_force_quiescent(void __iomem *base) 3164 { 3165 u32 count = 1000000; /* 1s */ 3166 u32 val; 3167 3168 val = readl_relaxed(base + GITS_CTLR); 3169 /* 3170 * GIC architecture specification requires the ITS to be both 3171 * disabled and quiescent for writes to GITS_BASER<n> or 3172 * GITS_CBASER to not have UNPREDICTABLE results. 3173 */ 3174 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) 3175 return 0; 3176 3177 /* Disable the generation of all interrupts to this ITS */ 3178 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); 3179 writel_relaxed(val, base + GITS_CTLR); 3180 3181 /* Poll GITS_CTLR and wait until ITS becomes quiescent */ 3182 while (1) { 3183 val = readl_relaxed(base + GITS_CTLR); 3184 if (val & GITS_CTLR_QUIESCENT) 3185 return 0; 3186 3187 count--; 3188 if (!count) 3189 return -EBUSY; 3190 3191 cpu_relax(); 3192 udelay(1); 3193 } 3194 } 3195 3196 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data) 3197 { 3198 struct its_node *its = data; 3199 3200 /* erratum 22375: only alloc 8MB table size */ 3201 its->device_ids = 0x14; /* 20 bits, 8MB */ 3202 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; 3203 3204 return true; 3205 } 3206 3207 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data) 3208 { 3209 struct its_node *its = data; 3210 3211 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; 3212 3213 return true; 3214 } 3215 3216 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) 3217 { 3218 struct its_node *its = data; 3219 3220 /* On QDF2400, the size of the ITE is 16Bytes */ 3221 its->ite_size = 16; 3222 3223 return true; 3224 } 3225 3226 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev) 3227 { 3228 struct its_node *its = its_dev->its; 3229 3230 /* 3231 * The Socionext Synquacer SoC has a so-called 'pre-ITS', 3232 * which maps 32-bit writes targeted at a separate window of 3233 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER 3234 * with device ID taken from bits [device_id_bits + 1:2] of 3235 * the window offset. 3236 */ 3237 return its->pre_its_base + (its_dev->device_id << 2); 3238 } 3239 3240 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data) 3241 { 3242 struct its_node *its = data; 3243 u32 pre_its_window[2]; 3244 u32 ids; 3245 3246 if (!fwnode_property_read_u32_array(its->fwnode_handle, 3247 "socionext,synquacer-pre-its", 3248 pre_its_window, 3249 ARRAY_SIZE(pre_its_window))) { 3250 3251 its->pre_its_base = pre_its_window[0]; 3252 its->get_msi_base = its_irq_get_msi_base_pre_its; 3253 3254 ids = ilog2(pre_its_window[1]) - 2; 3255 if (its->device_ids > ids) 3256 its->device_ids = ids; 3257 3258 /* the pre-ITS breaks isolation, so disable MSI remapping */ 3259 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP; 3260 return true; 3261 } 3262 return false; 3263 } 3264 3265 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data) 3266 { 3267 struct its_node *its = data; 3268 3269 /* 3270 * Hip07 insists on using the wrong address for the VLPI 3271 * page. Trick it into doing the right thing... 3272 */ 3273 its->vlpi_redist_offset = SZ_128K; 3274 return true; 3275 } 3276 3277 static const struct gic_quirk its_quirks[] = { 3278 #ifdef CONFIG_CAVIUM_ERRATUM_22375 3279 { 3280 .desc = "ITS: Cavium errata 22375, 24313", 3281 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 3282 .mask = 0xffff0fff, 3283 .init = its_enable_quirk_cavium_22375, 3284 }, 3285 #endif 3286 #ifdef CONFIG_CAVIUM_ERRATUM_23144 3287 { 3288 .desc = "ITS: Cavium erratum 23144", 3289 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 3290 .mask = 0xffff0fff, 3291 .init = its_enable_quirk_cavium_23144, 3292 }, 3293 #endif 3294 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 3295 { 3296 .desc = "ITS: QDF2400 erratum 0065", 3297 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */ 3298 .mask = 0xffffffff, 3299 .init = its_enable_quirk_qdf2400_e0065, 3300 }, 3301 #endif 3302 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS 3303 { 3304 /* 3305 * The Socionext Synquacer SoC incorporates ARM's own GIC-500 3306 * implementation, but with a 'pre-ITS' added that requires 3307 * special handling in software. 3308 */ 3309 .desc = "ITS: Socionext Synquacer pre-ITS", 3310 .iidr = 0x0001143b, 3311 .mask = 0xffffffff, 3312 .init = its_enable_quirk_socionext_synquacer, 3313 }, 3314 #endif 3315 #ifdef CONFIG_HISILICON_ERRATUM_161600802 3316 { 3317 .desc = "ITS: Hip07 erratum 161600802", 3318 .iidr = 0x00000004, 3319 .mask = 0xffffffff, 3320 .init = its_enable_quirk_hip07_161600802, 3321 }, 3322 #endif 3323 { 3324 } 3325 }; 3326 3327 static void its_enable_quirks(struct its_node *its) 3328 { 3329 u32 iidr = readl_relaxed(its->base + GITS_IIDR); 3330 3331 gic_enable_quirks(iidr, its_quirks, its); 3332 } 3333 3334 static int its_save_disable(void) 3335 { 3336 struct its_node *its; 3337 int err = 0; 3338 3339 raw_spin_lock(&its_lock); 3340 list_for_each_entry(its, &its_nodes, entry) { 3341 void __iomem *base; 3342 3343 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE)) 3344 continue; 3345 3346 base = its->base; 3347 its->ctlr_save = readl_relaxed(base + GITS_CTLR); 3348 err = its_force_quiescent(base); 3349 if (err) { 3350 pr_err("ITS@%pa: failed to quiesce: %d\n", 3351 &its->phys_base, err); 3352 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 3353 goto err; 3354 } 3355 3356 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER); 3357 } 3358 3359 err: 3360 if (err) { 3361 list_for_each_entry_continue_reverse(its, &its_nodes, entry) { 3362 void __iomem *base; 3363 3364 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE)) 3365 continue; 3366 3367 base = its->base; 3368 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 3369 } 3370 } 3371 raw_spin_unlock(&its_lock); 3372 3373 return err; 3374 } 3375 3376 static void its_restore_enable(void) 3377 { 3378 struct its_node *its; 3379 int ret; 3380 3381 raw_spin_lock(&its_lock); 3382 list_for_each_entry(its, &its_nodes, entry) { 3383 void __iomem *base; 3384 int i; 3385 3386 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE)) 3387 continue; 3388 3389 base = its->base; 3390 3391 /* 3392 * Make sure that the ITS is disabled. If it fails to quiesce, 3393 * don't restore it since writing to CBASER or BASER<n> 3394 * registers is undefined according to the GIC v3 ITS 3395 * Specification. 3396 */ 3397 ret = its_force_quiescent(base); 3398 if (ret) { 3399 pr_err("ITS@%pa: failed to quiesce on resume: %d\n", 3400 &its->phys_base, ret); 3401 continue; 3402 } 3403 3404 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER); 3405 3406 /* 3407 * Writing CBASER resets CREADR to 0, so make CWRITER and 3408 * cmd_write line up with it. 3409 */ 3410 its->cmd_write = its->cmd_base; 3411 gits_write_cwriter(0, base + GITS_CWRITER); 3412 3413 /* Restore GITS_BASER from the value cache. */ 3414 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 3415 struct its_baser *baser = &its->tables[i]; 3416 3417 if (!(baser->val & GITS_BASER_VALID)) 3418 continue; 3419 3420 its_write_baser(its, baser, baser->val); 3421 } 3422 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 3423 3424 /* 3425 * Reinit the collection if it's stored in the ITS. This is 3426 * indicated by the col_id being less than the HCC field. 3427 * CID < HCC as specified in the GIC v3 Documentation. 3428 */ 3429 if (its->collections[smp_processor_id()].col_id < 3430 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER))) 3431 its_cpu_init_collection(its); 3432 } 3433 raw_spin_unlock(&its_lock); 3434 } 3435 3436 static struct syscore_ops its_syscore_ops = { 3437 .suspend = its_save_disable, 3438 .resume = its_restore_enable, 3439 }; 3440 3441 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its) 3442 { 3443 struct irq_domain *inner_domain; 3444 struct msi_domain_info *info; 3445 3446 info = kzalloc(sizeof(*info), GFP_KERNEL); 3447 if (!info) 3448 return -ENOMEM; 3449 3450 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its); 3451 if (!inner_domain) { 3452 kfree(info); 3453 return -ENOMEM; 3454 } 3455 3456 inner_domain->parent = its_parent; 3457 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS); 3458 inner_domain->flags |= its->msi_domain_flags; 3459 info->ops = &its_msi_domain_ops; 3460 info->data = its; 3461 inner_domain->host_data = info; 3462 3463 return 0; 3464 } 3465 3466 static int its_init_vpe_domain(void) 3467 { 3468 struct its_node *its; 3469 u32 devid; 3470 int entries; 3471 3472 if (gic_rdists->has_direct_lpi) { 3473 pr_info("ITS: Using DirectLPI for VPE invalidation\n"); 3474 return 0; 3475 } 3476 3477 /* Any ITS will do, even if not v4 */ 3478 its = list_first_entry(&its_nodes, struct its_node, entry); 3479 3480 entries = roundup_pow_of_two(nr_cpu_ids); 3481 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes), 3482 GFP_KERNEL); 3483 if (!vpe_proxy.vpes) { 3484 pr_err("ITS: Can't allocate GICv4 proxy device array\n"); 3485 return -ENOMEM; 3486 } 3487 3488 /* Use the last possible DevID */ 3489 devid = GENMASK(its->device_ids - 1, 0); 3490 vpe_proxy.dev = its_create_device(its, devid, entries, false); 3491 if (!vpe_proxy.dev) { 3492 kfree(vpe_proxy.vpes); 3493 pr_err("ITS: Can't allocate GICv4 proxy device\n"); 3494 return -ENOMEM; 3495 } 3496 3497 BUG_ON(entries > vpe_proxy.dev->nr_ites); 3498 3499 raw_spin_lock_init(&vpe_proxy.lock); 3500 vpe_proxy.next_victim = 0; 3501 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", 3502 devid, vpe_proxy.dev->nr_ites); 3503 3504 return 0; 3505 } 3506 3507 static int __init its_compute_its_list_map(struct resource *res, 3508 void __iomem *its_base) 3509 { 3510 int its_number; 3511 u32 ctlr; 3512 3513 /* 3514 * This is assumed to be done early enough that we're 3515 * guaranteed to be single-threaded, hence no 3516 * locking. Should this change, we should address 3517 * this. 3518 */ 3519 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX); 3520 if (its_number >= GICv4_ITS_LIST_MAX) { 3521 pr_err("ITS@%pa: No ITSList entry available!\n", 3522 &res->start); 3523 return -EINVAL; 3524 } 3525 3526 ctlr = readl_relaxed(its_base + GITS_CTLR); 3527 ctlr &= ~GITS_CTLR_ITS_NUMBER; 3528 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; 3529 writel_relaxed(ctlr, its_base + GITS_CTLR); 3530 ctlr = readl_relaxed(its_base + GITS_CTLR); 3531 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { 3532 its_number = ctlr & GITS_CTLR_ITS_NUMBER; 3533 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; 3534 } 3535 3536 if (test_and_set_bit(its_number, &its_list_map)) { 3537 pr_err("ITS@%pa: Duplicate ITSList entry %d\n", 3538 &res->start, its_number); 3539 return -EINVAL; 3540 } 3541 3542 return its_number; 3543 } 3544 3545 static int __init its_probe_one(struct resource *res, 3546 struct fwnode_handle *handle, int numa_node) 3547 { 3548 struct its_node *its; 3549 void __iomem *its_base; 3550 u32 val, ctlr; 3551 u64 baser, tmp, typer; 3552 struct page *page; 3553 int err; 3554 3555 its_base = ioremap(res->start, resource_size(res)); 3556 if (!its_base) { 3557 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); 3558 return -ENOMEM; 3559 } 3560 3561 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; 3562 if (val != 0x30 && val != 0x40) { 3563 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); 3564 err = -ENODEV; 3565 goto out_unmap; 3566 } 3567 3568 err = its_force_quiescent(its_base); 3569 if (err) { 3570 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); 3571 goto out_unmap; 3572 } 3573 3574 pr_info("ITS %pR\n", res); 3575 3576 its = kzalloc(sizeof(*its), GFP_KERNEL); 3577 if (!its) { 3578 err = -ENOMEM; 3579 goto out_unmap; 3580 } 3581 3582 raw_spin_lock_init(&its->lock); 3583 mutex_init(&its->dev_alloc_lock); 3584 INIT_LIST_HEAD(&its->entry); 3585 INIT_LIST_HEAD(&its->its_device_list); 3586 typer = gic_read_typer(its_base + GITS_TYPER); 3587 its->base = its_base; 3588 its->phys_base = res->start; 3589 its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer); 3590 its->device_ids = GITS_TYPER_DEVBITS(typer); 3591 its->is_v4 = !!(typer & GITS_TYPER_VLPIS); 3592 if (its->is_v4) { 3593 if (!(typer & GITS_TYPER_VMOVP)) { 3594 err = its_compute_its_list_map(res, its_base); 3595 if (err < 0) 3596 goto out_free_its; 3597 3598 its->list_nr = err; 3599 3600 pr_info("ITS@%pa: Using ITS number %d\n", 3601 &res->start, err); 3602 } else { 3603 pr_info("ITS@%pa: Single VMOVP capable\n", &res->start); 3604 } 3605 } 3606 3607 its->numa_node = numa_node; 3608 3609 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 3610 get_order(ITS_CMD_QUEUE_SZ)); 3611 if (!page) { 3612 err = -ENOMEM; 3613 goto out_free_its; 3614 } 3615 its->cmd_base = (void *)page_address(page); 3616 its->cmd_write = its->cmd_base; 3617 its->fwnode_handle = handle; 3618 its->get_msi_base = its_irq_get_msi_base; 3619 its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP; 3620 3621 its_enable_quirks(its); 3622 3623 err = its_alloc_tables(its); 3624 if (err) 3625 goto out_free_cmd; 3626 3627 err = its_alloc_collections(its); 3628 if (err) 3629 goto out_free_tables; 3630 3631 baser = (virt_to_phys(its->cmd_base) | 3632 GITS_CBASER_RaWaWb | 3633 GITS_CBASER_InnerShareable | 3634 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | 3635 GITS_CBASER_VALID); 3636 3637 gits_write_cbaser(baser, its->base + GITS_CBASER); 3638 tmp = gits_read_cbaser(its->base + GITS_CBASER); 3639 3640 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { 3641 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { 3642 /* 3643 * The HW reports non-shareable, we must 3644 * remove the cacheability attributes as 3645 * well. 3646 */ 3647 baser &= ~(GITS_CBASER_SHAREABILITY_MASK | 3648 GITS_CBASER_CACHEABILITY_MASK); 3649 baser |= GITS_CBASER_nC; 3650 gits_write_cbaser(baser, its->base + GITS_CBASER); 3651 } 3652 pr_info("ITS: using cache flushing for cmd queue\n"); 3653 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; 3654 } 3655 3656 gits_write_cwriter(0, its->base + GITS_CWRITER); 3657 ctlr = readl_relaxed(its->base + GITS_CTLR); 3658 ctlr |= GITS_CTLR_ENABLE; 3659 if (its->is_v4) 3660 ctlr |= GITS_CTLR_ImDe; 3661 writel_relaxed(ctlr, its->base + GITS_CTLR); 3662 3663 if (GITS_TYPER_HCC(typer)) 3664 its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE; 3665 3666 err = its_init_domain(handle, its); 3667 if (err) 3668 goto out_free_tables; 3669 3670 raw_spin_lock(&its_lock); 3671 list_add(&its->entry, &its_nodes); 3672 raw_spin_unlock(&its_lock); 3673 3674 return 0; 3675 3676 out_free_tables: 3677 its_free_tables(its); 3678 out_free_cmd: 3679 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); 3680 out_free_its: 3681 kfree(its); 3682 out_unmap: 3683 iounmap(its_base); 3684 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err); 3685 return err; 3686 } 3687 3688 static bool gic_rdists_supports_plpis(void) 3689 { 3690 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); 3691 } 3692 3693 static int redist_disable_lpis(void) 3694 { 3695 void __iomem *rbase = gic_data_rdist_rd_base(); 3696 u64 timeout = USEC_PER_SEC; 3697 u64 val; 3698 3699 if (!gic_rdists_supports_plpis()) { 3700 pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); 3701 return -ENXIO; 3702 } 3703 3704 val = readl_relaxed(rbase + GICR_CTLR); 3705 if (!(val & GICR_CTLR_ENABLE_LPIS)) 3706 return 0; 3707 3708 /* 3709 * If coming via a CPU hotplug event, we don't need to disable 3710 * LPIs before trying to re-enable them. They are already 3711 * configured and all is well in the world. 3712 * 3713 * If running with preallocated tables, there is nothing to do. 3714 */ 3715 if (gic_data_rdist()->lpi_enabled || 3716 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED)) 3717 return 0; 3718 3719 /* 3720 * From that point on, we only try to do some damage control. 3721 */ 3722 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n", 3723 smp_processor_id()); 3724 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 3725 3726 /* Disable LPIs */ 3727 val &= ~GICR_CTLR_ENABLE_LPIS; 3728 writel_relaxed(val, rbase + GICR_CTLR); 3729 3730 /* Make sure any change to GICR_CTLR is observable by the GIC */ 3731 dsb(sy); 3732 3733 /* 3734 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs 3735 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers. 3736 * Error out if we time out waiting for RWP to clear. 3737 */ 3738 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) { 3739 if (!timeout) { 3740 pr_err("CPU%d: Timeout while disabling LPIs\n", 3741 smp_processor_id()); 3742 return -ETIMEDOUT; 3743 } 3744 udelay(1); 3745 timeout--; 3746 } 3747 3748 /* 3749 * After it has been written to 1, it is IMPLEMENTATION 3750 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be 3751 * cleared to 0. Error out if clearing the bit failed. 3752 */ 3753 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) { 3754 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id()); 3755 return -EBUSY; 3756 } 3757 3758 return 0; 3759 } 3760 3761 int its_cpu_init(void) 3762 { 3763 if (!list_empty(&its_nodes)) { 3764 int ret; 3765 3766 ret = redist_disable_lpis(); 3767 if (ret) 3768 return ret; 3769 3770 its_cpu_init_lpis(); 3771 its_cpu_init_collections(); 3772 } 3773 3774 return 0; 3775 } 3776 3777 static const struct of_device_id its_device_id[] = { 3778 { .compatible = "arm,gic-v3-its", }, 3779 {}, 3780 }; 3781 3782 static int __init its_of_probe(struct device_node *node) 3783 { 3784 struct device_node *np; 3785 struct resource res; 3786 3787 for (np = of_find_matching_node(node, its_device_id); np; 3788 np = of_find_matching_node(np, its_device_id)) { 3789 if (!of_device_is_available(np)) 3790 continue; 3791 if (!of_property_read_bool(np, "msi-controller")) { 3792 pr_warn("%pOF: no msi-controller property, ITS ignored\n", 3793 np); 3794 continue; 3795 } 3796 3797 if (of_address_to_resource(np, 0, &res)) { 3798 pr_warn("%pOF: no regs?\n", np); 3799 continue; 3800 } 3801 3802 its_probe_one(&res, &np->fwnode, of_node_to_nid(np)); 3803 } 3804 return 0; 3805 } 3806 3807 #ifdef CONFIG_ACPI 3808 3809 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) 3810 3811 #ifdef CONFIG_ACPI_NUMA 3812 struct its_srat_map { 3813 /* numa node id */ 3814 u32 numa_node; 3815 /* GIC ITS ID */ 3816 u32 its_id; 3817 }; 3818 3819 static struct its_srat_map *its_srat_maps __initdata; 3820 static int its_in_srat __initdata; 3821 3822 static int __init acpi_get_its_numa_node(u32 its_id) 3823 { 3824 int i; 3825 3826 for (i = 0; i < its_in_srat; i++) { 3827 if (its_id == its_srat_maps[i].its_id) 3828 return its_srat_maps[i].numa_node; 3829 } 3830 return NUMA_NO_NODE; 3831 } 3832 3833 static int __init gic_acpi_match_srat_its(struct acpi_subtable_header *header, 3834 const unsigned long end) 3835 { 3836 return 0; 3837 } 3838 3839 static int __init gic_acpi_parse_srat_its(struct acpi_subtable_header *header, 3840 const unsigned long end) 3841 { 3842 int node; 3843 struct acpi_srat_gic_its_affinity *its_affinity; 3844 3845 its_affinity = (struct acpi_srat_gic_its_affinity *)header; 3846 if (!its_affinity) 3847 return -EINVAL; 3848 3849 if (its_affinity->header.length < sizeof(*its_affinity)) { 3850 pr_err("SRAT: Invalid header length %d in ITS affinity\n", 3851 its_affinity->header.length); 3852 return -EINVAL; 3853 } 3854 3855 node = acpi_map_pxm_to_node(its_affinity->proximity_domain); 3856 3857 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { 3858 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); 3859 return 0; 3860 } 3861 3862 its_srat_maps[its_in_srat].numa_node = node; 3863 its_srat_maps[its_in_srat].its_id = its_affinity->its_id; 3864 its_in_srat++; 3865 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", 3866 its_affinity->proximity_domain, its_affinity->its_id, node); 3867 3868 return 0; 3869 } 3870 3871 static void __init acpi_table_parse_srat_its(void) 3872 { 3873 int count; 3874 3875 count = acpi_table_parse_entries(ACPI_SIG_SRAT, 3876 sizeof(struct acpi_table_srat), 3877 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 3878 gic_acpi_match_srat_its, 0); 3879 if (count <= 0) 3880 return; 3881 3882 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map), 3883 GFP_KERNEL); 3884 if (!its_srat_maps) { 3885 pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n"); 3886 return; 3887 } 3888 3889 acpi_table_parse_entries(ACPI_SIG_SRAT, 3890 sizeof(struct acpi_table_srat), 3891 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 3892 gic_acpi_parse_srat_its, 0); 3893 } 3894 3895 /* free the its_srat_maps after ITS probing */ 3896 static void __init acpi_its_srat_maps_free(void) 3897 { 3898 kfree(its_srat_maps); 3899 } 3900 #else 3901 static void __init acpi_table_parse_srat_its(void) { } 3902 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } 3903 static void __init acpi_its_srat_maps_free(void) { } 3904 #endif 3905 3906 static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header, 3907 const unsigned long end) 3908 { 3909 struct acpi_madt_generic_translator *its_entry; 3910 struct fwnode_handle *dom_handle; 3911 struct resource res; 3912 int err; 3913 3914 its_entry = (struct acpi_madt_generic_translator *)header; 3915 memset(&res, 0, sizeof(res)); 3916 res.start = its_entry->base_address; 3917 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; 3918 res.flags = IORESOURCE_MEM; 3919 3920 dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address); 3921 if (!dom_handle) { 3922 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", 3923 &res.start); 3924 return -ENOMEM; 3925 } 3926 3927 err = iort_register_domain_token(its_entry->translation_id, res.start, 3928 dom_handle); 3929 if (err) { 3930 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", 3931 &res.start, its_entry->translation_id); 3932 goto dom_err; 3933 } 3934 3935 err = its_probe_one(&res, dom_handle, 3936 acpi_get_its_numa_node(its_entry->translation_id)); 3937 if (!err) 3938 return 0; 3939 3940 iort_deregister_domain_token(its_entry->translation_id); 3941 dom_err: 3942 irq_domain_free_fwnode(dom_handle); 3943 return err; 3944 } 3945 3946 static void __init its_acpi_probe(void) 3947 { 3948 acpi_table_parse_srat_its(); 3949 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 3950 gic_acpi_parse_madt_its, 0); 3951 acpi_its_srat_maps_free(); 3952 } 3953 #else 3954 static void __init its_acpi_probe(void) { } 3955 #endif 3956 3957 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, 3958 struct irq_domain *parent_domain) 3959 { 3960 struct device_node *of_node; 3961 struct its_node *its; 3962 bool has_v4 = false; 3963 int err; 3964 3965 its_parent = parent_domain; 3966 of_node = to_of_node(handle); 3967 if (of_node) 3968 its_of_probe(of_node); 3969 else 3970 its_acpi_probe(); 3971 3972 if (list_empty(&its_nodes)) { 3973 pr_warn("ITS: No ITS available, not enabling LPIs\n"); 3974 return -ENXIO; 3975 } 3976 3977 gic_rdists = rdists; 3978 3979 err = allocate_lpi_tables(); 3980 if (err) 3981 return err; 3982 3983 list_for_each_entry(its, &its_nodes, entry) 3984 has_v4 |= its->is_v4; 3985 3986 if (has_v4 & rdists->has_vlpis) { 3987 if (its_init_vpe_domain() || 3988 its_init_v4(parent_domain, &its_vpe_domain_ops)) { 3989 rdists->has_vlpis = false; 3990 pr_err("ITS: Disabling GICv4 support\n"); 3991 } 3992 } 3993 3994 register_syscore_ops(&its_syscore_ops); 3995 3996 return 0; 3997 } 3998