1 /*
2  * Copyright (C) 2013, 2014 ARM Limited, All Rights Reserved.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #include <linux/bitmap.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/log2.h>
23 #include <linux/mm.h>
24 #include <linux/msi.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_pci.h>
29 #include <linux/of_platform.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 
36 #include <asm/cacheflush.h>
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39 
40 #include "irq-gic-common.h"
41 
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
45 
46 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
47 
48 /*
49  * Collection structure - just an ID, and a redistributor address to
50  * ping. We use one per CPU as a bag of interrupts assigned to this
51  * CPU.
52  */
53 struct its_collection {
54 	u64			target_address;
55 	u16			col_id;
56 };
57 
58 /*
59  * The ITS_BASER structure - contains memory information, cached
60  * value of BASER register configuration and ITS page size.
61  */
62 struct its_baser {
63 	void		*base;
64 	u64		val;
65 	u32		order;
66 	u32		psz;
67 };
68 
69 /*
70  * The ITS structure - contains most of the infrastructure, with the
71  * top-level MSI domain, the command queue, the collections, and the
72  * list of devices writing to it.
73  */
74 struct its_node {
75 	raw_spinlock_t		lock;
76 	struct list_head	entry;
77 	void __iomem		*base;
78 	unsigned long		phys_base;
79 	struct its_cmd_block	*cmd_base;
80 	struct its_cmd_block	*cmd_write;
81 	struct its_baser	tables[GITS_BASER_NR_REGS];
82 	struct its_collection	*collections;
83 	struct list_head	its_device_list;
84 	u64			flags;
85 	u32			ite_size;
86 	u32			device_ids;
87 	int			numa_node;
88 };
89 
90 #define ITS_ITT_ALIGN		SZ_256
91 
92 /* Convert page order to size in bytes */
93 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
94 
95 struct event_lpi_map {
96 	unsigned long		*lpi_map;
97 	u16			*col_map;
98 	irq_hw_number_t		lpi_base;
99 	int			nr_lpis;
100 };
101 
102 /*
103  * The ITS view of a device - belongs to an ITS, a collection, owns an
104  * interrupt translation table, and a list of interrupts.
105  */
106 struct its_device {
107 	struct list_head	entry;
108 	struct its_node		*its;
109 	struct event_lpi_map	event_map;
110 	void			*itt;
111 	u32			nr_ites;
112 	u32			device_id;
113 };
114 
115 static LIST_HEAD(its_nodes);
116 static DEFINE_SPINLOCK(its_lock);
117 static struct rdists *gic_rdists;
118 
119 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
120 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
121 
122 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
123 					       u32 event)
124 {
125 	struct its_node *its = its_dev->its;
126 
127 	return its->collections + its_dev->event_map.col_map[event];
128 }
129 
130 /*
131  * ITS command descriptors - parameters to be encoded in a command
132  * block.
133  */
134 struct its_cmd_desc {
135 	union {
136 		struct {
137 			struct its_device *dev;
138 			u32 event_id;
139 		} its_inv_cmd;
140 
141 		struct {
142 			struct its_device *dev;
143 			u32 event_id;
144 		} its_int_cmd;
145 
146 		struct {
147 			struct its_device *dev;
148 			int valid;
149 		} its_mapd_cmd;
150 
151 		struct {
152 			struct its_collection *col;
153 			int valid;
154 		} its_mapc_cmd;
155 
156 		struct {
157 			struct its_device *dev;
158 			u32 phys_id;
159 			u32 event_id;
160 		} its_mapvi_cmd;
161 
162 		struct {
163 			struct its_device *dev;
164 			struct its_collection *col;
165 			u32 event_id;
166 		} its_movi_cmd;
167 
168 		struct {
169 			struct its_device *dev;
170 			u32 event_id;
171 		} its_discard_cmd;
172 
173 		struct {
174 			struct its_collection *col;
175 		} its_invall_cmd;
176 	};
177 };
178 
179 /*
180  * The ITS command block, which is what the ITS actually parses.
181  */
182 struct its_cmd_block {
183 	u64	raw_cmd[4];
184 };
185 
186 #define ITS_CMD_QUEUE_SZ		SZ_64K
187 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
188 
189 typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *,
190 						    struct its_cmd_desc *);
191 
192 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
193 {
194 	cmd->raw_cmd[0] &= ~0xffUL;
195 	cmd->raw_cmd[0] |= cmd_nr;
196 }
197 
198 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
199 {
200 	cmd->raw_cmd[0] &= BIT_ULL(32) - 1;
201 	cmd->raw_cmd[0] |= ((u64)devid) << 32;
202 }
203 
204 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
205 {
206 	cmd->raw_cmd[1] &= ~0xffffffffUL;
207 	cmd->raw_cmd[1] |= id;
208 }
209 
210 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
211 {
212 	cmd->raw_cmd[1] &= 0xffffffffUL;
213 	cmd->raw_cmd[1] |= ((u64)phys_id) << 32;
214 }
215 
216 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
217 {
218 	cmd->raw_cmd[1] &= ~0x1fUL;
219 	cmd->raw_cmd[1] |= size & 0x1f;
220 }
221 
222 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
223 {
224 	cmd->raw_cmd[2] &= ~0xffffffffffffUL;
225 	cmd->raw_cmd[2] |= itt_addr & 0xffffffffff00UL;
226 }
227 
228 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
229 {
230 	cmd->raw_cmd[2] &= ~(1UL << 63);
231 	cmd->raw_cmd[2] |= ((u64)!!valid) << 63;
232 }
233 
234 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
235 {
236 	cmd->raw_cmd[2] &= ~(0xffffffffUL << 16);
237 	cmd->raw_cmd[2] |= (target_addr & (0xffffffffUL << 16));
238 }
239 
240 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
241 {
242 	cmd->raw_cmd[2] &= ~0xffffUL;
243 	cmd->raw_cmd[2] |= col;
244 }
245 
246 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
247 {
248 	/* Let's fixup BE commands */
249 	cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
250 	cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
251 	cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
252 	cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
253 }
254 
255 static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd,
256 						 struct its_cmd_desc *desc)
257 {
258 	unsigned long itt_addr;
259 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
260 
261 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
262 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
263 
264 	its_encode_cmd(cmd, GITS_CMD_MAPD);
265 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
266 	its_encode_size(cmd, size - 1);
267 	its_encode_itt(cmd, itt_addr);
268 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
269 
270 	its_fixup_cmd(cmd);
271 
272 	return NULL;
273 }
274 
275 static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd,
276 						 struct its_cmd_desc *desc)
277 {
278 	its_encode_cmd(cmd, GITS_CMD_MAPC);
279 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
280 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
281 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
282 
283 	its_fixup_cmd(cmd);
284 
285 	return desc->its_mapc_cmd.col;
286 }
287 
288 static struct its_collection *its_build_mapvi_cmd(struct its_cmd_block *cmd,
289 						  struct its_cmd_desc *desc)
290 {
291 	struct its_collection *col;
292 
293 	col = dev_event_to_col(desc->its_mapvi_cmd.dev,
294 			       desc->its_mapvi_cmd.event_id);
295 
296 	its_encode_cmd(cmd, GITS_CMD_MAPVI);
297 	its_encode_devid(cmd, desc->its_mapvi_cmd.dev->device_id);
298 	its_encode_event_id(cmd, desc->its_mapvi_cmd.event_id);
299 	its_encode_phys_id(cmd, desc->its_mapvi_cmd.phys_id);
300 	its_encode_collection(cmd, col->col_id);
301 
302 	its_fixup_cmd(cmd);
303 
304 	return col;
305 }
306 
307 static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd,
308 						 struct its_cmd_desc *desc)
309 {
310 	struct its_collection *col;
311 
312 	col = dev_event_to_col(desc->its_movi_cmd.dev,
313 			       desc->its_movi_cmd.event_id);
314 
315 	its_encode_cmd(cmd, GITS_CMD_MOVI);
316 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
317 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
318 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
319 
320 	its_fixup_cmd(cmd);
321 
322 	return col;
323 }
324 
325 static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd,
326 						    struct its_cmd_desc *desc)
327 {
328 	struct its_collection *col;
329 
330 	col = dev_event_to_col(desc->its_discard_cmd.dev,
331 			       desc->its_discard_cmd.event_id);
332 
333 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
334 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
335 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
336 
337 	its_fixup_cmd(cmd);
338 
339 	return col;
340 }
341 
342 static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd,
343 						struct its_cmd_desc *desc)
344 {
345 	struct its_collection *col;
346 
347 	col = dev_event_to_col(desc->its_inv_cmd.dev,
348 			       desc->its_inv_cmd.event_id);
349 
350 	its_encode_cmd(cmd, GITS_CMD_INV);
351 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
352 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
353 
354 	its_fixup_cmd(cmd);
355 
356 	return col;
357 }
358 
359 static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd,
360 						   struct its_cmd_desc *desc)
361 {
362 	its_encode_cmd(cmd, GITS_CMD_INVALL);
363 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
364 
365 	its_fixup_cmd(cmd);
366 
367 	return NULL;
368 }
369 
370 static u64 its_cmd_ptr_to_offset(struct its_node *its,
371 				 struct its_cmd_block *ptr)
372 {
373 	return (ptr - its->cmd_base) * sizeof(*ptr);
374 }
375 
376 static int its_queue_full(struct its_node *its)
377 {
378 	int widx;
379 	int ridx;
380 
381 	widx = its->cmd_write - its->cmd_base;
382 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
383 
384 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
385 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
386 		return 1;
387 
388 	return 0;
389 }
390 
391 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
392 {
393 	struct its_cmd_block *cmd;
394 	u32 count = 1000000;	/* 1s! */
395 
396 	while (its_queue_full(its)) {
397 		count--;
398 		if (!count) {
399 			pr_err_ratelimited("ITS queue not draining\n");
400 			return NULL;
401 		}
402 		cpu_relax();
403 		udelay(1);
404 	}
405 
406 	cmd = its->cmd_write++;
407 
408 	/* Handle queue wrapping */
409 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
410 		its->cmd_write = its->cmd_base;
411 
412 	return cmd;
413 }
414 
415 static struct its_cmd_block *its_post_commands(struct its_node *its)
416 {
417 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
418 
419 	writel_relaxed(wr, its->base + GITS_CWRITER);
420 
421 	return its->cmd_write;
422 }
423 
424 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
425 {
426 	/*
427 	 * Make sure the commands written to memory are observable by
428 	 * the ITS.
429 	 */
430 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
431 		__flush_dcache_area(cmd, sizeof(*cmd));
432 	else
433 		dsb(ishst);
434 }
435 
436 static void its_wait_for_range_completion(struct its_node *its,
437 					  struct its_cmd_block *from,
438 					  struct its_cmd_block *to)
439 {
440 	u64 rd_idx, from_idx, to_idx;
441 	u32 count = 1000000;	/* 1s! */
442 
443 	from_idx = its_cmd_ptr_to_offset(its, from);
444 	to_idx = its_cmd_ptr_to_offset(its, to);
445 
446 	while (1) {
447 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
448 		if (rd_idx >= to_idx || rd_idx < from_idx)
449 			break;
450 
451 		count--;
452 		if (!count) {
453 			pr_err_ratelimited("ITS queue timeout\n");
454 			return;
455 		}
456 		cpu_relax();
457 		udelay(1);
458 	}
459 }
460 
461 static void its_send_single_command(struct its_node *its,
462 				    its_cmd_builder_t builder,
463 				    struct its_cmd_desc *desc)
464 {
465 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;
466 	struct its_collection *sync_col;
467 	unsigned long flags;
468 
469 	raw_spin_lock_irqsave(&its->lock, flags);
470 
471 	cmd = its_allocate_entry(its);
472 	if (!cmd) {		/* We're soooooo screewed... */
473 		pr_err_ratelimited("ITS can't allocate, dropping command\n");
474 		raw_spin_unlock_irqrestore(&its->lock, flags);
475 		return;
476 	}
477 	sync_col = builder(cmd, desc);
478 	its_flush_cmd(its, cmd);
479 
480 	if (sync_col) {
481 		sync_cmd = its_allocate_entry(its);
482 		if (!sync_cmd) {
483 			pr_err_ratelimited("ITS can't SYNC, skipping\n");
484 			goto post;
485 		}
486 		its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
487 		its_encode_target(sync_cmd, sync_col->target_address);
488 		its_fixup_cmd(sync_cmd);
489 		its_flush_cmd(its, sync_cmd);
490 	}
491 
492 post:
493 	next_cmd = its_post_commands(its);
494 	raw_spin_unlock_irqrestore(&its->lock, flags);
495 
496 	its_wait_for_range_completion(its, cmd, next_cmd);
497 }
498 
499 static void its_send_inv(struct its_device *dev, u32 event_id)
500 {
501 	struct its_cmd_desc desc;
502 
503 	desc.its_inv_cmd.dev = dev;
504 	desc.its_inv_cmd.event_id = event_id;
505 
506 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
507 }
508 
509 static void its_send_mapd(struct its_device *dev, int valid)
510 {
511 	struct its_cmd_desc desc;
512 
513 	desc.its_mapd_cmd.dev = dev;
514 	desc.its_mapd_cmd.valid = !!valid;
515 
516 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
517 }
518 
519 static void its_send_mapc(struct its_node *its, struct its_collection *col,
520 			  int valid)
521 {
522 	struct its_cmd_desc desc;
523 
524 	desc.its_mapc_cmd.col = col;
525 	desc.its_mapc_cmd.valid = !!valid;
526 
527 	its_send_single_command(its, its_build_mapc_cmd, &desc);
528 }
529 
530 static void its_send_mapvi(struct its_device *dev, u32 irq_id, u32 id)
531 {
532 	struct its_cmd_desc desc;
533 
534 	desc.its_mapvi_cmd.dev = dev;
535 	desc.its_mapvi_cmd.phys_id = irq_id;
536 	desc.its_mapvi_cmd.event_id = id;
537 
538 	its_send_single_command(dev->its, its_build_mapvi_cmd, &desc);
539 }
540 
541 static void its_send_movi(struct its_device *dev,
542 			  struct its_collection *col, u32 id)
543 {
544 	struct its_cmd_desc desc;
545 
546 	desc.its_movi_cmd.dev = dev;
547 	desc.its_movi_cmd.col = col;
548 	desc.its_movi_cmd.event_id = id;
549 
550 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
551 }
552 
553 static void its_send_discard(struct its_device *dev, u32 id)
554 {
555 	struct its_cmd_desc desc;
556 
557 	desc.its_discard_cmd.dev = dev;
558 	desc.its_discard_cmd.event_id = id;
559 
560 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
561 }
562 
563 static void its_send_invall(struct its_node *its, struct its_collection *col)
564 {
565 	struct its_cmd_desc desc;
566 
567 	desc.its_invall_cmd.col = col;
568 
569 	its_send_single_command(its, its_build_invall_cmd, &desc);
570 }
571 
572 /*
573  * irqchip functions - assumes MSI, mostly.
574  */
575 
576 static inline u32 its_get_event_id(struct irq_data *d)
577 {
578 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
579 	return d->hwirq - its_dev->event_map.lpi_base;
580 }
581 
582 static void lpi_set_config(struct irq_data *d, bool enable)
583 {
584 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
585 	irq_hw_number_t hwirq = d->hwirq;
586 	u32 id = its_get_event_id(d);
587 	u8 *cfg = page_address(gic_rdists->prop_page) + hwirq - 8192;
588 
589 	if (enable)
590 		*cfg |= LPI_PROP_ENABLED;
591 	else
592 		*cfg &= ~LPI_PROP_ENABLED;
593 
594 	/*
595 	 * Make the above write visible to the redistributors.
596 	 * And yes, we're flushing exactly: One. Single. Byte.
597 	 * Humpf...
598 	 */
599 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
600 		__flush_dcache_area(cfg, sizeof(*cfg));
601 	else
602 		dsb(ishst);
603 	its_send_inv(its_dev, id);
604 }
605 
606 static void its_mask_irq(struct irq_data *d)
607 {
608 	lpi_set_config(d, false);
609 }
610 
611 static void its_unmask_irq(struct irq_data *d)
612 {
613 	lpi_set_config(d, true);
614 }
615 
616 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
617 			    bool force)
618 {
619 	unsigned int cpu;
620 	const struct cpumask *cpu_mask = cpu_online_mask;
621 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
622 	struct its_collection *target_col;
623 	u32 id = its_get_event_id(d);
624 
625        /* lpi cannot be routed to a redistributor that is on a foreign node */
626 	if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
627 		if (its_dev->its->numa_node >= 0) {
628 			cpu_mask = cpumask_of_node(its_dev->its->numa_node);
629 			if (!cpumask_intersects(mask_val, cpu_mask))
630 				return -EINVAL;
631 		}
632 	}
633 
634 	cpu = cpumask_any_and(mask_val, cpu_mask);
635 
636 	if (cpu >= nr_cpu_ids)
637 		return -EINVAL;
638 
639 	target_col = &its_dev->its->collections[cpu];
640 	its_send_movi(its_dev, target_col, id);
641 	its_dev->event_map.col_map[id] = cpu;
642 
643 	return IRQ_SET_MASK_OK_DONE;
644 }
645 
646 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
647 {
648 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
649 	struct its_node *its;
650 	u64 addr;
651 
652 	its = its_dev->its;
653 	addr = its->phys_base + GITS_TRANSLATER;
654 
655 	msg->address_lo		= addr & ((1UL << 32) - 1);
656 	msg->address_hi		= addr >> 32;
657 	msg->data		= its_get_event_id(d);
658 }
659 
660 static struct irq_chip its_irq_chip = {
661 	.name			= "ITS",
662 	.irq_mask		= its_mask_irq,
663 	.irq_unmask		= its_unmask_irq,
664 	.irq_eoi		= irq_chip_eoi_parent,
665 	.irq_set_affinity	= its_set_affinity,
666 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
667 };
668 
669 /*
670  * How we allocate LPIs:
671  *
672  * The GIC has id_bits bits for interrupt identifiers. From there, we
673  * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
674  * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
675  * bits to the right.
676  *
677  * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
678  */
679 #define IRQS_PER_CHUNK_SHIFT	5
680 #define IRQS_PER_CHUNK		(1 << IRQS_PER_CHUNK_SHIFT)
681 
682 static unsigned long *lpi_bitmap;
683 static u32 lpi_chunks;
684 static DEFINE_SPINLOCK(lpi_lock);
685 
686 static int its_lpi_to_chunk(int lpi)
687 {
688 	return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
689 }
690 
691 static int its_chunk_to_lpi(int chunk)
692 {
693 	return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
694 }
695 
696 static int __init its_lpi_init(u32 id_bits)
697 {
698 	lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
699 
700 	lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
701 			     GFP_KERNEL);
702 	if (!lpi_bitmap) {
703 		lpi_chunks = 0;
704 		return -ENOMEM;
705 	}
706 
707 	pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
708 	return 0;
709 }
710 
711 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
712 {
713 	unsigned long *bitmap = NULL;
714 	int chunk_id;
715 	int nr_chunks;
716 	int i;
717 
718 	nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
719 
720 	spin_lock(&lpi_lock);
721 
722 	do {
723 		chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
724 						      0, nr_chunks, 0);
725 		if (chunk_id < lpi_chunks)
726 			break;
727 
728 		nr_chunks--;
729 	} while (nr_chunks > 0);
730 
731 	if (!nr_chunks)
732 		goto out;
733 
734 	bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
735 			 GFP_ATOMIC);
736 	if (!bitmap)
737 		goto out;
738 
739 	for (i = 0; i < nr_chunks; i++)
740 		set_bit(chunk_id + i, lpi_bitmap);
741 
742 	*base = its_chunk_to_lpi(chunk_id);
743 	*nr_ids = nr_chunks * IRQS_PER_CHUNK;
744 
745 out:
746 	spin_unlock(&lpi_lock);
747 
748 	if (!bitmap)
749 		*base = *nr_ids = 0;
750 
751 	return bitmap;
752 }
753 
754 static void its_lpi_free(struct event_lpi_map *map)
755 {
756 	int base = map->lpi_base;
757 	int nr_ids = map->nr_lpis;
758 	int lpi;
759 
760 	spin_lock(&lpi_lock);
761 
762 	for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
763 		int chunk = its_lpi_to_chunk(lpi);
764 		BUG_ON(chunk > lpi_chunks);
765 		if (test_bit(chunk, lpi_bitmap)) {
766 			clear_bit(chunk, lpi_bitmap);
767 		} else {
768 			pr_err("Bad LPI chunk %d\n", chunk);
769 		}
770 	}
771 
772 	spin_unlock(&lpi_lock);
773 
774 	kfree(map->lpi_map);
775 	kfree(map->col_map);
776 }
777 
778 /*
779  * We allocate 64kB for PROPBASE. That gives us at most 64K LPIs to
780  * deal with (one configuration byte per interrupt). PENDBASE has to
781  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
782  */
783 #define LPI_PROPBASE_SZ		SZ_64K
784 #define LPI_PENDBASE_SZ		(LPI_PROPBASE_SZ / 8 + SZ_1K)
785 
786 /*
787  * This is how many bits of ID we need, including the useless ones.
788  */
789 #define LPI_NRBITS		ilog2(LPI_PROPBASE_SZ + SZ_8K)
790 
791 #define LPI_PROP_DEFAULT_PRIO	0xa0
792 
793 static int __init its_alloc_lpi_tables(void)
794 {
795 	phys_addr_t paddr;
796 
797 	gic_rdists->prop_page = alloc_pages(GFP_NOWAIT,
798 					   get_order(LPI_PROPBASE_SZ));
799 	if (!gic_rdists->prop_page) {
800 		pr_err("Failed to allocate PROPBASE\n");
801 		return -ENOMEM;
802 	}
803 
804 	paddr = page_to_phys(gic_rdists->prop_page);
805 	pr_info("GIC: using LPI property table @%pa\n", &paddr);
806 
807 	/* Priority 0xa0, Group-1, disabled */
808 	memset(page_address(gic_rdists->prop_page),
809 	       LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
810 	       LPI_PROPBASE_SZ);
811 
812 	/* Make sure the GIC will observe the written configuration */
813 	__flush_dcache_area(page_address(gic_rdists->prop_page), LPI_PROPBASE_SZ);
814 
815 	return 0;
816 }
817 
818 static const char *its_base_type_string[] = {
819 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
820 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
821 	[GITS_BASER_TYPE_CPU]		= "Physical CPUs",
822 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
823 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
824 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
825 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
826 };
827 
828 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
829 {
830 	u32 idx = baser - its->tables;
831 
832 	return readq_relaxed(its->base + GITS_BASER + (idx << 3));
833 }
834 
835 static void its_write_baser(struct its_node *its, struct its_baser *baser,
836 			    u64 val)
837 {
838 	u32 idx = baser - its->tables;
839 
840 	writeq_relaxed(val, its->base + GITS_BASER + (idx << 3));
841 	baser->val = its_read_baser(its, baser);
842 }
843 
844 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
845 			   u64 cache, u64 shr, u32 psz, u32 order,
846 			   bool indirect)
847 {
848 	u64 val = its_read_baser(its, baser);
849 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
850 	u64 type = GITS_BASER_TYPE(val);
851 	u32 alloc_pages;
852 	void *base;
853 	u64 tmp;
854 
855 retry_alloc_baser:
856 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
857 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
858 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
859 			&its->phys_base, its_base_type_string[type],
860 			alloc_pages, GITS_BASER_PAGES_MAX);
861 		alloc_pages = GITS_BASER_PAGES_MAX;
862 		order = get_order(GITS_BASER_PAGES_MAX * psz);
863 	}
864 
865 	base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
866 	if (!base)
867 		return -ENOMEM;
868 
869 retry_baser:
870 	val = (virt_to_phys(base)				 |
871 		(type << GITS_BASER_TYPE_SHIFT)			 |
872 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
873 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
874 		cache						 |
875 		shr						 |
876 		GITS_BASER_VALID);
877 
878 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
879 
880 	switch (psz) {
881 	case SZ_4K:
882 		val |= GITS_BASER_PAGE_SIZE_4K;
883 		break;
884 	case SZ_16K:
885 		val |= GITS_BASER_PAGE_SIZE_16K;
886 		break;
887 	case SZ_64K:
888 		val |= GITS_BASER_PAGE_SIZE_64K;
889 		break;
890 	}
891 
892 	its_write_baser(its, baser, val);
893 	tmp = baser->val;
894 
895 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
896 		/*
897 		 * Shareability didn't stick. Just use
898 		 * whatever the read reported, which is likely
899 		 * to be the only thing this redistributor
900 		 * supports. If that's zero, make it
901 		 * non-cacheable as well.
902 		 */
903 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
904 		if (!shr) {
905 			cache = GITS_BASER_nC;
906 			__flush_dcache_area(base, PAGE_ORDER_TO_SIZE(order));
907 		}
908 		goto retry_baser;
909 	}
910 
911 	if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
912 		/*
913 		 * Page size didn't stick. Let's try a smaller
914 		 * size and retry. If we reach 4K, then
915 		 * something is horribly wrong...
916 		 */
917 		free_pages((unsigned long)base, order);
918 		baser->base = NULL;
919 
920 		switch (psz) {
921 		case SZ_16K:
922 			psz = SZ_4K;
923 			goto retry_alloc_baser;
924 		case SZ_64K:
925 			psz = SZ_16K;
926 			goto retry_alloc_baser;
927 		}
928 	}
929 
930 	if (val != tmp) {
931 		pr_err("ITS@%pa: %s doesn't stick: %lx %lx\n",
932 		       &its->phys_base, its_base_type_string[type],
933 		       (unsigned long) val, (unsigned long) tmp);
934 		free_pages((unsigned long)base, order);
935 		return -ENXIO;
936 	}
937 
938 	baser->order = order;
939 	baser->base = base;
940 	baser->psz = psz;
941 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
942 
943 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
944 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / tmp),
945 		its_base_type_string[type],
946 		(unsigned long)virt_to_phys(base),
947 		indirect ? "indirect" : "flat", (int)esz,
948 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
949 
950 	return 0;
951 }
952 
953 static bool its_parse_baser_device(struct its_node *its, struct its_baser *baser,
954 				   u32 psz, u32 *order)
955 {
956 	u64 esz = GITS_BASER_ENTRY_SIZE(its_read_baser(its, baser));
957 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_WaWb;
958 	u32 ids = its->device_ids;
959 	u32 new_order = *order;
960 	bool indirect = false;
961 
962 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
963 	if ((esz << ids) > (psz * 2)) {
964 		/*
965 		 * Find out whether hw supports a single or two-level table by
966 		 * table by reading bit at offset '62' after writing '1' to it.
967 		 */
968 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
969 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
970 
971 		if (indirect) {
972 			/*
973 			 * The size of the lvl2 table is equal to ITS page size
974 			 * which is 'psz'. For computing lvl1 table size,
975 			 * subtract ID bits that sparse lvl2 table from 'ids'
976 			 * which is reported by ITS hardware times lvl1 table
977 			 * entry size.
978 			 */
979 			ids -= ilog2(psz / esz);
980 			esz = GITS_LVL1_ENTRY_SIZE;
981 		}
982 	}
983 
984 	/*
985 	 * Allocate as many entries as required to fit the
986 	 * range of device IDs that the ITS can grok... The ID
987 	 * space being incredibly sparse, this results in a
988 	 * massive waste of memory if two-level device table
989 	 * feature is not supported by hardware.
990 	 */
991 	new_order = max_t(u32, get_order(esz << ids), new_order);
992 	if (new_order >= MAX_ORDER) {
993 		new_order = MAX_ORDER - 1;
994 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / esz);
995 		pr_warn("ITS@%pa: Device Table too large, reduce ids %u->%u\n",
996 			&its->phys_base, its->device_ids, ids);
997 	}
998 
999 	*order = new_order;
1000 
1001 	return indirect;
1002 }
1003 
1004 static void its_free_tables(struct its_node *its)
1005 {
1006 	int i;
1007 
1008 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1009 		if (its->tables[i].base) {
1010 			free_pages((unsigned long)its->tables[i].base,
1011 				   its->tables[i].order);
1012 			its->tables[i].base = NULL;
1013 		}
1014 	}
1015 }
1016 
1017 static int its_alloc_tables(struct its_node *its)
1018 {
1019 	u64 typer = readq_relaxed(its->base + GITS_TYPER);
1020 	u32 ids = GITS_TYPER_DEVBITS(typer);
1021 	u64 shr = GITS_BASER_InnerShareable;
1022 	u64 cache = GITS_BASER_WaWb;
1023 	u32 psz = SZ_64K;
1024 	int err, i;
1025 
1026 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) {
1027 		/*
1028 		* erratum 22375: only alloc 8MB table size
1029 		* erratum 24313: ignore memory access type
1030 		*/
1031 		cache   = GITS_BASER_nCnB;
1032 		ids     = 0x14;                 /* 20 bits, 8MB */
1033 	}
1034 
1035 	its->device_ids = ids;
1036 
1037 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1038 		struct its_baser *baser = its->tables + i;
1039 		u64 val = its_read_baser(its, baser);
1040 		u64 type = GITS_BASER_TYPE(val);
1041 		u32 order = get_order(psz);
1042 		bool indirect = false;
1043 
1044 		if (type == GITS_BASER_TYPE_NONE)
1045 			continue;
1046 
1047 		if (type == GITS_BASER_TYPE_DEVICE)
1048 			indirect = its_parse_baser_device(its, baser, psz, &order);
1049 
1050 		err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1051 		if (err < 0) {
1052 			its_free_tables(its);
1053 			return err;
1054 		}
1055 
1056 		/* Update settings which will be used for next BASERn */
1057 		psz = baser->psz;
1058 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1059 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1060 	}
1061 
1062 	return 0;
1063 }
1064 
1065 static int its_alloc_collections(struct its_node *its)
1066 {
1067 	its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
1068 				   GFP_KERNEL);
1069 	if (!its->collections)
1070 		return -ENOMEM;
1071 
1072 	return 0;
1073 }
1074 
1075 static void its_cpu_init_lpis(void)
1076 {
1077 	void __iomem *rbase = gic_data_rdist_rd_base();
1078 	struct page *pend_page;
1079 	u64 val, tmp;
1080 
1081 	/* If we didn't allocate the pending table yet, do it now */
1082 	pend_page = gic_data_rdist()->pend_page;
1083 	if (!pend_page) {
1084 		phys_addr_t paddr;
1085 		/*
1086 		 * The pending pages have to be at least 64kB aligned,
1087 		 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1088 		 */
1089 		pend_page = alloc_pages(GFP_NOWAIT | __GFP_ZERO,
1090 					get_order(max(LPI_PENDBASE_SZ, SZ_64K)));
1091 		if (!pend_page) {
1092 			pr_err("Failed to allocate PENDBASE for CPU%d\n",
1093 			       smp_processor_id());
1094 			return;
1095 		}
1096 
1097 		/* Make sure the GIC will observe the zero-ed page */
1098 		__flush_dcache_area(page_address(pend_page), LPI_PENDBASE_SZ);
1099 
1100 		paddr = page_to_phys(pend_page);
1101 		pr_info("CPU%d: using LPI pending table @%pa\n",
1102 			smp_processor_id(), &paddr);
1103 		gic_data_rdist()->pend_page = pend_page;
1104 	}
1105 
1106 	/* Disable LPIs */
1107 	val = readl_relaxed(rbase + GICR_CTLR);
1108 	val &= ~GICR_CTLR_ENABLE_LPIS;
1109 	writel_relaxed(val, rbase + GICR_CTLR);
1110 
1111 	/*
1112 	 * Make sure any change to the table is observable by the GIC.
1113 	 */
1114 	dsb(sy);
1115 
1116 	/* set PROPBASE */
1117 	val = (page_to_phys(gic_rdists->prop_page) |
1118 	       GICR_PROPBASER_InnerShareable |
1119 	       GICR_PROPBASER_WaWb |
1120 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1121 
1122 	writeq_relaxed(val, rbase + GICR_PROPBASER);
1123 	tmp = readq_relaxed(rbase + GICR_PROPBASER);
1124 
1125 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1126 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1127 			/*
1128 			 * The HW reports non-shareable, we must
1129 			 * remove the cacheability attributes as
1130 			 * well.
1131 			 */
1132 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1133 				 GICR_PROPBASER_CACHEABILITY_MASK);
1134 			val |= GICR_PROPBASER_nC;
1135 			writeq_relaxed(val, rbase + GICR_PROPBASER);
1136 		}
1137 		pr_info_once("GIC: using cache flushing for LPI property table\n");
1138 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1139 	}
1140 
1141 	/* set PENDBASE */
1142 	val = (page_to_phys(pend_page) |
1143 	       GICR_PENDBASER_InnerShareable |
1144 	       GICR_PENDBASER_WaWb);
1145 
1146 	writeq_relaxed(val, rbase + GICR_PENDBASER);
1147 	tmp = readq_relaxed(rbase + GICR_PENDBASER);
1148 
1149 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1150 		/*
1151 		 * The HW reports non-shareable, we must remove the
1152 		 * cacheability attributes as well.
1153 		 */
1154 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1155 			 GICR_PENDBASER_CACHEABILITY_MASK);
1156 		val |= GICR_PENDBASER_nC;
1157 		writeq_relaxed(val, rbase + GICR_PENDBASER);
1158 	}
1159 
1160 	/* Enable LPIs */
1161 	val = readl_relaxed(rbase + GICR_CTLR);
1162 	val |= GICR_CTLR_ENABLE_LPIS;
1163 	writel_relaxed(val, rbase + GICR_CTLR);
1164 
1165 	/* Make sure the GIC has seen the above */
1166 	dsb(sy);
1167 }
1168 
1169 static void its_cpu_init_collection(void)
1170 {
1171 	struct its_node *its;
1172 	int cpu;
1173 
1174 	spin_lock(&its_lock);
1175 	cpu = smp_processor_id();
1176 
1177 	list_for_each_entry(its, &its_nodes, entry) {
1178 		u64 target;
1179 
1180 		/* avoid cross node collections and its mapping */
1181 		if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1182 			struct device_node *cpu_node;
1183 
1184 			cpu_node = of_get_cpu_node(cpu, NULL);
1185 			if (its->numa_node != NUMA_NO_NODE &&
1186 				its->numa_node != of_node_to_nid(cpu_node))
1187 				continue;
1188 		}
1189 
1190 		/*
1191 		 * We now have to bind each collection to its target
1192 		 * redistributor.
1193 		 */
1194 		if (readq_relaxed(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1195 			/*
1196 			 * This ITS wants the physical address of the
1197 			 * redistributor.
1198 			 */
1199 			target = gic_data_rdist()->phys_base;
1200 		} else {
1201 			/*
1202 			 * This ITS wants a linear CPU number.
1203 			 */
1204 			target = readq_relaxed(gic_data_rdist_rd_base() + GICR_TYPER);
1205 			target = GICR_TYPER_CPU_NUMBER(target) << 16;
1206 		}
1207 
1208 		/* Perform collection mapping */
1209 		its->collections[cpu].target_address = target;
1210 		its->collections[cpu].col_id = cpu;
1211 
1212 		its_send_mapc(its, &its->collections[cpu], 1);
1213 		its_send_invall(its, &its->collections[cpu]);
1214 	}
1215 
1216 	spin_unlock(&its_lock);
1217 }
1218 
1219 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1220 {
1221 	struct its_device *its_dev = NULL, *tmp;
1222 	unsigned long flags;
1223 
1224 	raw_spin_lock_irqsave(&its->lock, flags);
1225 
1226 	list_for_each_entry(tmp, &its->its_device_list, entry) {
1227 		if (tmp->device_id == dev_id) {
1228 			its_dev = tmp;
1229 			break;
1230 		}
1231 	}
1232 
1233 	raw_spin_unlock_irqrestore(&its->lock, flags);
1234 
1235 	return its_dev;
1236 }
1237 
1238 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
1239 {
1240 	int i;
1241 
1242 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1243 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
1244 			return &its->tables[i];
1245 	}
1246 
1247 	return NULL;
1248 }
1249 
1250 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
1251 {
1252 	struct its_baser *baser;
1253 	struct page *page;
1254 	u32 esz, idx;
1255 	__le64 *table;
1256 
1257 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
1258 
1259 	/* Don't allow device id that exceeds ITS hardware limit */
1260 	if (!baser)
1261 		return (ilog2(dev_id) < its->device_ids);
1262 
1263 	/* Don't allow device id that exceeds single, flat table limit */
1264 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
1265 	if (!(baser->val & GITS_BASER_INDIRECT))
1266 		return (dev_id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
1267 
1268 	/* Compute 1st level table index & check if that exceeds table limit */
1269 	idx = dev_id >> ilog2(baser->psz / esz);
1270 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
1271 		return false;
1272 
1273 	table = baser->base;
1274 
1275 	/* Allocate memory for 2nd level table */
1276 	if (!table[idx]) {
1277 		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz));
1278 		if (!page)
1279 			return false;
1280 
1281 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
1282 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
1283 			__flush_dcache_area(page_address(page), baser->psz);
1284 
1285 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
1286 
1287 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
1288 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
1289 			__flush_dcache_area(table + idx, GITS_LVL1_ENTRY_SIZE);
1290 
1291 		/* Ensure updated table contents are visible to ITS hardware */
1292 		dsb(sy);
1293 	}
1294 
1295 	return true;
1296 }
1297 
1298 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
1299 					    int nvecs)
1300 {
1301 	struct its_device *dev;
1302 	unsigned long *lpi_map;
1303 	unsigned long flags;
1304 	u16 *col_map = NULL;
1305 	void *itt;
1306 	int lpi_base;
1307 	int nr_lpis;
1308 	int nr_ites;
1309 	int sz;
1310 
1311 	if (!its_alloc_device_table(its, dev_id))
1312 		return NULL;
1313 
1314 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1315 	/*
1316 	 * At least one bit of EventID is being used, hence a minimum
1317 	 * of two entries. No, the architecture doesn't let you
1318 	 * express an ITT with a single entry.
1319 	 */
1320 	nr_ites = max(2UL, roundup_pow_of_two(nvecs));
1321 	sz = nr_ites * its->ite_size;
1322 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
1323 	itt = kzalloc(sz, GFP_KERNEL);
1324 	lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
1325 	if (lpi_map)
1326 		col_map = kzalloc(sizeof(*col_map) * nr_lpis, GFP_KERNEL);
1327 
1328 	if (!dev || !itt || !lpi_map || !col_map) {
1329 		kfree(dev);
1330 		kfree(itt);
1331 		kfree(lpi_map);
1332 		kfree(col_map);
1333 		return NULL;
1334 	}
1335 
1336 	__flush_dcache_area(itt, sz);
1337 
1338 	dev->its = its;
1339 	dev->itt = itt;
1340 	dev->nr_ites = nr_ites;
1341 	dev->event_map.lpi_map = lpi_map;
1342 	dev->event_map.col_map = col_map;
1343 	dev->event_map.lpi_base = lpi_base;
1344 	dev->event_map.nr_lpis = nr_lpis;
1345 	dev->device_id = dev_id;
1346 	INIT_LIST_HEAD(&dev->entry);
1347 
1348 	raw_spin_lock_irqsave(&its->lock, flags);
1349 	list_add(&dev->entry, &its->its_device_list);
1350 	raw_spin_unlock_irqrestore(&its->lock, flags);
1351 
1352 	/* Map device to its ITT */
1353 	its_send_mapd(dev, 1);
1354 
1355 	return dev;
1356 }
1357 
1358 static void its_free_device(struct its_device *its_dev)
1359 {
1360 	unsigned long flags;
1361 
1362 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
1363 	list_del(&its_dev->entry);
1364 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
1365 	kfree(its_dev->itt);
1366 	kfree(its_dev);
1367 }
1368 
1369 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
1370 {
1371 	int idx;
1372 
1373 	idx = find_first_zero_bit(dev->event_map.lpi_map,
1374 				  dev->event_map.nr_lpis);
1375 	if (idx == dev->event_map.nr_lpis)
1376 		return -ENOSPC;
1377 
1378 	*hwirq = dev->event_map.lpi_base + idx;
1379 	set_bit(idx, dev->event_map.lpi_map);
1380 
1381 	return 0;
1382 }
1383 
1384 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
1385 			   int nvec, msi_alloc_info_t *info)
1386 {
1387 	struct its_node *its;
1388 	struct its_device *its_dev;
1389 	struct msi_domain_info *msi_info;
1390 	u32 dev_id;
1391 
1392 	/*
1393 	 * We ignore "dev" entierely, and rely on the dev_id that has
1394 	 * been passed via the scratchpad. This limits this domain's
1395 	 * usefulness to upper layers that definitely know that they
1396 	 * are built on top of the ITS.
1397 	 */
1398 	dev_id = info->scratchpad[0].ul;
1399 
1400 	msi_info = msi_get_domain_info(domain);
1401 	its = msi_info->data;
1402 
1403 	its_dev = its_find_device(its, dev_id);
1404 	if (its_dev) {
1405 		/*
1406 		 * We already have seen this ID, probably through
1407 		 * another alias (PCI bridge of some sort). No need to
1408 		 * create the device.
1409 		 */
1410 		pr_debug("Reusing ITT for devID %x\n", dev_id);
1411 		goto out;
1412 	}
1413 
1414 	its_dev = its_create_device(its, dev_id, nvec);
1415 	if (!its_dev)
1416 		return -ENOMEM;
1417 
1418 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
1419 out:
1420 	info->scratchpad[0].ptr = its_dev;
1421 	return 0;
1422 }
1423 
1424 static struct msi_domain_ops its_msi_domain_ops = {
1425 	.msi_prepare	= its_msi_prepare,
1426 };
1427 
1428 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
1429 				    unsigned int virq,
1430 				    irq_hw_number_t hwirq)
1431 {
1432 	struct irq_fwspec fwspec;
1433 
1434 	if (irq_domain_get_of_node(domain->parent)) {
1435 		fwspec.fwnode = domain->parent->fwnode;
1436 		fwspec.param_count = 3;
1437 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
1438 		fwspec.param[1] = hwirq;
1439 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
1440 	} else {
1441 		return -EINVAL;
1442 	}
1443 
1444 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
1445 }
1446 
1447 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1448 				unsigned int nr_irqs, void *args)
1449 {
1450 	msi_alloc_info_t *info = args;
1451 	struct its_device *its_dev = info->scratchpad[0].ptr;
1452 	irq_hw_number_t hwirq;
1453 	int err;
1454 	int i;
1455 
1456 	for (i = 0; i < nr_irqs; i++) {
1457 		err = its_alloc_device_irq(its_dev, &hwirq);
1458 		if (err)
1459 			return err;
1460 
1461 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
1462 		if (err)
1463 			return err;
1464 
1465 		irq_domain_set_hwirq_and_chip(domain, virq + i,
1466 					      hwirq, &its_irq_chip, its_dev);
1467 		pr_debug("ID:%d pID:%d vID:%d\n",
1468 			 (int)(hwirq - its_dev->event_map.lpi_base),
1469 			 (int) hwirq, virq + i);
1470 	}
1471 
1472 	return 0;
1473 }
1474 
1475 static void its_irq_domain_activate(struct irq_domain *domain,
1476 				    struct irq_data *d)
1477 {
1478 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1479 	u32 event = its_get_event_id(d);
1480 	const struct cpumask *cpu_mask = cpu_online_mask;
1481 
1482 	/* get the cpu_mask of local node */
1483 	if (its_dev->its->numa_node >= 0)
1484 		cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1485 
1486 	/* Bind the LPI to the first possible CPU */
1487 	its_dev->event_map.col_map[event] = cpumask_first(cpu_mask);
1488 
1489 	/* Map the GIC IRQ and event to the device */
1490 	its_send_mapvi(its_dev, d->hwirq, event);
1491 }
1492 
1493 static void its_irq_domain_deactivate(struct irq_domain *domain,
1494 				      struct irq_data *d)
1495 {
1496 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1497 	u32 event = its_get_event_id(d);
1498 
1499 	/* Stop the delivery of interrupts */
1500 	its_send_discard(its_dev, event);
1501 }
1502 
1503 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1504 				unsigned int nr_irqs)
1505 {
1506 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
1507 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1508 	int i;
1509 
1510 	for (i = 0; i < nr_irqs; i++) {
1511 		struct irq_data *data = irq_domain_get_irq_data(domain,
1512 								virq + i);
1513 		u32 event = its_get_event_id(data);
1514 
1515 		/* Mark interrupt index as unused */
1516 		clear_bit(event, its_dev->event_map.lpi_map);
1517 
1518 		/* Nuke the entry in the domain */
1519 		irq_domain_reset_irq_data(data);
1520 	}
1521 
1522 	/* If all interrupts have been freed, start mopping the floor */
1523 	if (bitmap_empty(its_dev->event_map.lpi_map,
1524 			 its_dev->event_map.nr_lpis)) {
1525 		its_lpi_free(&its_dev->event_map);
1526 
1527 		/* Unmap device/itt */
1528 		its_send_mapd(its_dev, 0);
1529 		its_free_device(its_dev);
1530 	}
1531 
1532 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
1533 }
1534 
1535 static const struct irq_domain_ops its_domain_ops = {
1536 	.alloc			= its_irq_domain_alloc,
1537 	.free			= its_irq_domain_free,
1538 	.activate		= its_irq_domain_activate,
1539 	.deactivate		= its_irq_domain_deactivate,
1540 };
1541 
1542 static int its_force_quiescent(void __iomem *base)
1543 {
1544 	u32 count = 1000000;	/* 1s */
1545 	u32 val;
1546 
1547 	val = readl_relaxed(base + GITS_CTLR);
1548 	if (val & GITS_CTLR_QUIESCENT)
1549 		return 0;
1550 
1551 	/* Disable the generation of all interrupts to this ITS */
1552 	val &= ~GITS_CTLR_ENABLE;
1553 	writel_relaxed(val, base + GITS_CTLR);
1554 
1555 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
1556 	while (1) {
1557 		val = readl_relaxed(base + GITS_CTLR);
1558 		if (val & GITS_CTLR_QUIESCENT)
1559 			return 0;
1560 
1561 		count--;
1562 		if (!count)
1563 			return -EBUSY;
1564 
1565 		cpu_relax();
1566 		udelay(1);
1567 	}
1568 }
1569 
1570 static void __maybe_unused its_enable_quirk_cavium_22375(void *data)
1571 {
1572 	struct its_node *its = data;
1573 
1574 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
1575 }
1576 
1577 static void __maybe_unused its_enable_quirk_cavium_23144(void *data)
1578 {
1579 	struct its_node *its = data;
1580 
1581 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
1582 }
1583 
1584 static const struct gic_quirk its_quirks[] = {
1585 #ifdef CONFIG_CAVIUM_ERRATUM_22375
1586 	{
1587 		.desc	= "ITS: Cavium errata 22375, 24313",
1588 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
1589 		.mask	= 0xffff0fff,
1590 		.init	= its_enable_quirk_cavium_22375,
1591 	},
1592 #endif
1593 #ifdef CONFIG_CAVIUM_ERRATUM_23144
1594 	{
1595 		.desc	= "ITS: Cavium erratum 23144",
1596 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
1597 		.mask	= 0xffff0fff,
1598 		.init	= its_enable_quirk_cavium_23144,
1599 	},
1600 #endif
1601 	{
1602 	}
1603 };
1604 
1605 static void its_enable_quirks(struct its_node *its)
1606 {
1607 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
1608 
1609 	gic_enable_quirks(iidr, its_quirks, its);
1610 }
1611 
1612 static int __init its_probe(struct device_node *node,
1613 			    struct irq_domain *parent)
1614 {
1615 	struct resource res;
1616 	struct its_node *its;
1617 	void __iomem *its_base;
1618 	struct irq_domain *inner_domain;
1619 	u32 val;
1620 	u64 baser, tmp;
1621 	int err;
1622 
1623 	err = of_address_to_resource(node, 0, &res);
1624 	if (err) {
1625 		pr_warn("%s: no regs?\n", node->full_name);
1626 		return -ENXIO;
1627 	}
1628 
1629 	its_base = ioremap(res.start, resource_size(&res));
1630 	if (!its_base) {
1631 		pr_warn("%s: unable to map registers\n", node->full_name);
1632 		return -ENOMEM;
1633 	}
1634 
1635 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
1636 	if (val != 0x30 && val != 0x40) {
1637 		pr_warn("%s: no ITS detected, giving up\n", node->full_name);
1638 		err = -ENODEV;
1639 		goto out_unmap;
1640 	}
1641 
1642 	err = its_force_quiescent(its_base);
1643 	if (err) {
1644 		pr_warn("%s: failed to quiesce, giving up\n",
1645 			node->full_name);
1646 		goto out_unmap;
1647 	}
1648 
1649 	pr_info("ITS: %s\n", node->full_name);
1650 
1651 	its = kzalloc(sizeof(*its), GFP_KERNEL);
1652 	if (!its) {
1653 		err = -ENOMEM;
1654 		goto out_unmap;
1655 	}
1656 
1657 	raw_spin_lock_init(&its->lock);
1658 	INIT_LIST_HEAD(&its->entry);
1659 	INIT_LIST_HEAD(&its->its_device_list);
1660 	its->base = its_base;
1661 	its->phys_base = res.start;
1662 	its->ite_size = ((readl_relaxed(its_base + GITS_TYPER) >> 4) & 0xf) + 1;
1663 	its->numa_node = of_node_to_nid(node);
1664 
1665 	its->cmd_base = kzalloc(ITS_CMD_QUEUE_SZ, GFP_KERNEL);
1666 	if (!its->cmd_base) {
1667 		err = -ENOMEM;
1668 		goto out_free_its;
1669 	}
1670 	its->cmd_write = its->cmd_base;
1671 
1672 	its_enable_quirks(its);
1673 
1674 	err = its_alloc_tables(its);
1675 	if (err)
1676 		goto out_free_cmd;
1677 
1678 	err = its_alloc_collections(its);
1679 	if (err)
1680 		goto out_free_tables;
1681 
1682 	baser = (virt_to_phys(its->cmd_base)	|
1683 		 GITS_CBASER_WaWb		|
1684 		 GITS_CBASER_InnerShareable	|
1685 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
1686 		 GITS_CBASER_VALID);
1687 
1688 	writeq_relaxed(baser, its->base + GITS_CBASER);
1689 	tmp = readq_relaxed(its->base + GITS_CBASER);
1690 
1691 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
1692 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
1693 			/*
1694 			 * The HW reports non-shareable, we must
1695 			 * remove the cacheability attributes as
1696 			 * well.
1697 			 */
1698 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
1699 				   GITS_CBASER_CACHEABILITY_MASK);
1700 			baser |= GITS_CBASER_nC;
1701 			writeq_relaxed(baser, its->base + GITS_CBASER);
1702 		}
1703 		pr_info("ITS: using cache flushing for cmd queue\n");
1704 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
1705 	}
1706 
1707 	writeq_relaxed(0, its->base + GITS_CWRITER);
1708 	writel_relaxed(GITS_CTLR_ENABLE, its->base + GITS_CTLR);
1709 
1710 	if (of_property_read_bool(node, "msi-controller")) {
1711 		struct msi_domain_info *info;
1712 
1713 		info = kzalloc(sizeof(*info), GFP_KERNEL);
1714 		if (!info) {
1715 			err = -ENOMEM;
1716 			goto out_free_tables;
1717 		}
1718 
1719 		inner_domain = irq_domain_add_tree(node, &its_domain_ops, its);
1720 		if (!inner_domain) {
1721 			err = -ENOMEM;
1722 			kfree(info);
1723 			goto out_free_tables;
1724 		}
1725 
1726 		inner_domain->parent = parent;
1727 		inner_domain->bus_token = DOMAIN_BUS_NEXUS;
1728 		info->ops = &its_msi_domain_ops;
1729 		info->data = its;
1730 		inner_domain->host_data = info;
1731 	}
1732 
1733 	spin_lock(&its_lock);
1734 	list_add(&its->entry, &its_nodes);
1735 	spin_unlock(&its_lock);
1736 
1737 	return 0;
1738 
1739 out_free_tables:
1740 	its_free_tables(its);
1741 out_free_cmd:
1742 	kfree(its->cmd_base);
1743 out_free_its:
1744 	kfree(its);
1745 out_unmap:
1746 	iounmap(its_base);
1747 	pr_err("ITS: failed probing %s (%d)\n", node->full_name, err);
1748 	return err;
1749 }
1750 
1751 static bool gic_rdists_supports_plpis(void)
1752 {
1753 	return !!(readl_relaxed(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
1754 }
1755 
1756 int its_cpu_init(void)
1757 {
1758 	if (!list_empty(&its_nodes)) {
1759 		if (!gic_rdists_supports_plpis()) {
1760 			pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
1761 			return -ENXIO;
1762 		}
1763 		its_cpu_init_lpis();
1764 		its_cpu_init_collection();
1765 	}
1766 
1767 	return 0;
1768 }
1769 
1770 static struct of_device_id its_device_id[] = {
1771 	{	.compatible	= "arm,gic-v3-its",	},
1772 	{},
1773 };
1774 
1775 int __init its_init(struct device_node *node, struct rdists *rdists,
1776 	     struct irq_domain *parent_domain)
1777 {
1778 	struct device_node *np;
1779 
1780 	for (np = of_find_matching_node(node, its_device_id); np;
1781 	     np = of_find_matching_node(np, its_device_id)) {
1782 		its_probe(np, parent_domain);
1783 	}
1784 
1785 	if (list_empty(&its_nodes)) {
1786 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
1787 		return -ENXIO;
1788 	}
1789 
1790 	gic_rdists = rdists;
1791 	its_alloc_lpi_tables();
1792 	its_lpi_init(rdists->id_bits);
1793 
1794 	return 0;
1795 }
1796