1 /*
2  * Copyright (C) 2013, 2014 ARM Limited, All Rights Reserved.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #include <linux/acpi.h>
19 #include <linux/bitmap.h>
20 #include <linux/cpu.h>
21 #include <linux/delay.h>
22 #include <linux/dma-iommu.h>
23 #include <linux/interrupt.h>
24 #include <linux/irqdomain.h>
25 #include <linux/acpi_iort.h>
26 #include <linux/log2.h>
27 #include <linux/mm.h>
28 #include <linux/msi.h>
29 #include <linux/of.h>
30 #include <linux/of_address.h>
31 #include <linux/of_irq.h>
32 #include <linux/of_pci.h>
33 #include <linux/of_platform.h>
34 #include <linux/percpu.h>
35 #include <linux/slab.h>
36 
37 #include <linux/irqchip.h>
38 #include <linux/irqchip/arm-gic-v3.h>
39 
40 #include <asm/cputype.h>
41 #include <asm/exception.h>
42 
43 #include "irq-gic-common.h"
44 
45 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
46 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
47 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
48 
49 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
50 
51 /*
52  * Collection structure - just an ID, and a redistributor address to
53  * ping. We use one per CPU as a bag of interrupts assigned to this
54  * CPU.
55  */
56 struct its_collection {
57 	u64			target_address;
58 	u16			col_id;
59 };
60 
61 /*
62  * The ITS_BASER structure - contains memory information, cached
63  * value of BASER register configuration and ITS page size.
64  */
65 struct its_baser {
66 	void		*base;
67 	u64		val;
68 	u32		order;
69 	u32		psz;
70 };
71 
72 /*
73  * The ITS structure - contains most of the infrastructure, with the
74  * top-level MSI domain, the command queue, the collections, and the
75  * list of devices writing to it.
76  */
77 struct its_node {
78 	raw_spinlock_t		lock;
79 	struct list_head	entry;
80 	void __iomem		*base;
81 	phys_addr_t		phys_base;
82 	struct its_cmd_block	*cmd_base;
83 	struct its_cmd_block	*cmd_write;
84 	struct its_baser	tables[GITS_BASER_NR_REGS];
85 	struct its_collection	*collections;
86 	struct list_head	its_device_list;
87 	u64			flags;
88 	u32			ite_size;
89 	u32			device_ids;
90 	int			numa_node;
91 };
92 
93 #define ITS_ITT_ALIGN		SZ_256
94 
95 /* Convert page order to size in bytes */
96 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
97 
98 struct event_lpi_map {
99 	unsigned long		*lpi_map;
100 	u16			*col_map;
101 	irq_hw_number_t		lpi_base;
102 	int			nr_lpis;
103 };
104 
105 /*
106  * The ITS view of a device - belongs to an ITS, a collection, owns an
107  * interrupt translation table, and a list of interrupts.
108  */
109 struct its_device {
110 	struct list_head	entry;
111 	struct its_node		*its;
112 	struct event_lpi_map	event_map;
113 	void			*itt;
114 	u32			nr_ites;
115 	u32			device_id;
116 };
117 
118 static LIST_HEAD(its_nodes);
119 static DEFINE_SPINLOCK(its_lock);
120 static struct rdists *gic_rdists;
121 static struct irq_domain *its_parent;
122 
123 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
124 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
125 
126 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
127 					       u32 event)
128 {
129 	struct its_node *its = its_dev->its;
130 
131 	return its->collections + its_dev->event_map.col_map[event];
132 }
133 
134 /*
135  * ITS command descriptors - parameters to be encoded in a command
136  * block.
137  */
138 struct its_cmd_desc {
139 	union {
140 		struct {
141 			struct its_device *dev;
142 			u32 event_id;
143 		} its_inv_cmd;
144 
145 		struct {
146 			struct its_device *dev;
147 			u32 event_id;
148 		} its_int_cmd;
149 
150 		struct {
151 			struct its_device *dev;
152 			int valid;
153 		} its_mapd_cmd;
154 
155 		struct {
156 			struct its_collection *col;
157 			int valid;
158 		} its_mapc_cmd;
159 
160 		struct {
161 			struct its_device *dev;
162 			u32 phys_id;
163 			u32 event_id;
164 		} its_mapti_cmd;
165 
166 		struct {
167 			struct its_device *dev;
168 			struct its_collection *col;
169 			u32 event_id;
170 		} its_movi_cmd;
171 
172 		struct {
173 			struct its_device *dev;
174 			u32 event_id;
175 		} its_discard_cmd;
176 
177 		struct {
178 			struct its_collection *col;
179 		} its_invall_cmd;
180 	};
181 };
182 
183 /*
184  * The ITS command block, which is what the ITS actually parses.
185  */
186 struct its_cmd_block {
187 	u64	raw_cmd[4];
188 };
189 
190 #define ITS_CMD_QUEUE_SZ		SZ_64K
191 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
192 
193 typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *,
194 						    struct its_cmd_desc *);
195 
196 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
197 {
198 	u64 mask = GENMASK_ULL(h, l);
199 	*raw_cmd &= ~mask;
200 	*raw_cmd |= (val << l) & mask;
201 }
202 
203 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
204 {
205 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
206 }
207 
208 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
209 {
210 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
211 }
212 
213 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
214 {
215 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
216 }
217 
218 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
219 {
220 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
221 }
222 
223 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
224 {
225 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
226 }
227 
228 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
229 {
230 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 50, 8);
231 }
232 
233 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
234 {
235 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
236 }
237 
238 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
239 {
240 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 50, 16);
241 }
242 
243 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
244 {
245 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
246 }
247 
248 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
249 {
250 	/* Let's fixup BE commands */
251 	cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
252 	cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
253 	cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
254 	cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
255 }
256 
257 static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd,
258 						 struct its_cmd_desc *desc)
259 {
260 	unsigned long itt_addr;
261 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
262 
263 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
264 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
265 
266 	its_encode_cmd(cmd, GITS_CMD_MAPD);
267 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
268 	its_encode_size(cmd, size - 1);
269 	its_encode_itt(cmd, itt_addr);
270 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
271 
272 	its_fixup_cmd(cmd);
273 
274 	return NULL;
275 }
276 
277 static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd,
278 						 struct its_cmd_desc *desc)
279 {
280 	its_encode_cmd(cmd, GITS_CMD_MAPC);
281 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
282 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
283 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
284 
285 	its_fixup_cmd(cmd);
286 
287 	return desc->its_mapc_cmd.col;
288 }
289 
290 static struct its_collection *its_build_mapti_cmd(struct its_cmd_block *cmd,
291 						  struct its_cmd_desc *desc)
292 {
293 	struct its_collection *col;
294 
295 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
296 			       desc->its_mapti_cmd.event_id);
297 
298 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
299 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
300 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
301 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
302 	its_encode_collection(cmd, col->col_id);
303 
304 	its_fixup_cmd(cmd);
305 
306 	return col;
307 }
308 
309 static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd,
310 						 struct its_cmd_desc *desc)
311 {
312 	struct its_collection *col;
313 
314 	col = dev_event_to_col(desc->its_movi_cmd.dev,
315 			       desc->its_movi_cmd.event_id);
316 
317 	its_encode_cmd(cmd, GITS_CMD_MOVI);
318 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
319 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
320 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
321 
322 	its_fixup_cmd(cmd);
323 
324 	return col;
325 }
326 
327 static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd,
328 						    struct its_cmd_desc *desc)
329 {
330 	struct its_collection *col;
331 
332 	col = dev_event_to_col(desc->its_discard_cmd.dev,
333 			       desc->its_discard_cmd.event_id);
334 
335 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
336 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
337 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
338 
339 	its_fixup_cmd(cmd);
340 
341 	return col;
342 }
343 
344 static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd,
345 						struct its_cmd_desc *desc)
346 {
347 	struct its_collection *col;
348 
349 	col = dev_event_to_col(desc->its_inv_cmd.dev,
350 			       desc->its_inv_cmd.event_id);
351 
352 	its_encode_cmd(cmd, GITS_CMD_INV);
353 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
354 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
355 
356 	its_fixup_cmd(cmd);
357 
358 	return col;
359 }
360 
361 static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd,
362 						   struct its_cmd_desc *desc)
363 {
364 	its_encode_cmd(cmd, GITS_CMD_INVALL);
365 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
366 
367 	its_fixup_cmd(cmd);
368 
369 	return NULL;
370 }
371 
372 static u64 its_cmd_ptr_to_offset(struct its_node *its,
373 				 struct its_cmd_block *ptr)
374 {
375 	return (ptr - its->cmd_base) * sizeof(*ptr);
376 }
377 
378 static int its_queue_full(struct its_node *its)
379 {
380 	int widx;
381 	int ridx;
382 
383 	widx = its->cmd_write - its->cmd_base;
384 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
385 
386 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
387 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
388 		return 1;
389 
390 	return 0;
391 }
392 
393 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
394 {
395 	struct its_cmd_block *cmd;
396 	u32 count = 1000000;	/* 1s! */
397 
398 	while (its_queue_full(its)) {
399 		count--;
400 		if (!count) {
401 			pr_err_ratelimited("ITS queue not draining\n");
402 			return NULL;
403 		}
404 		cpu_relax();
405 		udelay(1);
406 	}
407 
408 	cmd = its->cmd_write++;
409 
410 	/* Handle queue wrapping */
411 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
412 		its->cmd_write = its->cmd_base;
413 
414 	/* Clear command  */
415 	cmd->raw_cmd[0] = 0;
416 	cmd->raw_cmd[1] = 0;
417 	cmd->raw_cmd[2] = 0;
418 	cmd->raw_cmd[3] = 0;
419 
420 	return cmd;
421 }
422 
423 static struct its_cmd_block *its_post_commands(struct its_node *its)
424 {
425 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
426 
427 	writel_relaxed(wr, its->base + GITS_CWRITER);
428 
429 	return its->cmd_write;
430 }
431 
432 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
433 {
434 	/*
435 	 * Make sure the commands written to memory are observable by
436 	 * the ITS.
437 	 */
438 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
439 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
440 	else
441 		dsb(ishst);
442 }
443 
444 static void its_wait_for_range_completion(struct its_node *its,
445 					  struct its_cmd_block *from,
446 					  struct its_cmd_block *to)
447 {
448 	u64 rd_idx, from_idx, to_idx;
449 	u32 count = 1000000;	/* 1s! */
450 
451 	from_idx = its_cmd_ptr_to_offset(its, from);
452 	to_idx = its_cmd_ptr_to_offset(its, to);
453 
454 	while (1) {
455 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
456 		if (rd_idx >= to_idx || rd_idx < from_idx)
457 			break;
458 
459 		count--;
460 		if (!count) {
461 			pr_err_ratelimited("ITS queue timeout\n");
462 			return;
463 		}
464 		cpu_relax();
465 		udelay(1);
466 	}
467 }
468 
469 static void its_send_single_command(struct its_node *its,
470 				    its_cmd_builder_t builder,
471 				    struct its_cmd_desc *desc)
472 {
473 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;
474 	struct its_collection *sync_col;
475 	unsigned long flags;
476 
477 	raw_spin_lock_irqsave(&its->lock, flags);
478 
479 	cmd = its_allocate_entry(its);
480 	if (!cmd) {		/* We're soooooo screewed... */
481 		pr_err_ratelimited("ITS can't allocate, dropping command\n");
482 		raw_spin_unlock_irqrestore(&its->lock, flags);
483 		return;
484 	}
485 	sync_col = builder(cmd, desc);
486 	its_flush_cmd(its, cmd);
487 
488 	if (sync_col) {
489 		sync_cmd = its_allocate_entry(its);
490 		if (!sync_cmd) {
491 			pr_err_ratelimited("ITS can't SYNC, skipping\n");
492 			goto post;
493 		}
494 		its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
495 		its_encode_target(sync_cmd, sync_col->target_address);
496 		its_fixup_cmd(sync_cmd);
497 		its_flush_cmd(its, sync_cmd);
498 	}
499 
500 post:
501 	next_cmd = its_post_commands(its);
502 	raw_spin_unlock_irqrestore(&its->lock, flags);
503 
504 	its_wait_for_range_completion(its, cmd, next_cmd);
505 }
506 
507 static void its_send_inv(struct its_device *dev, u32 event_id)
508 {
509 	struct its_cmd_desc desc;
510 
511 	desc.its_inv_cmd.dev = dev;
512 	desc.its_inv_cmd.event_id = event_id;
513 
514 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
515 }
516 
517 static void its_send_mapd(struct its_device *dev, int valid)
518 {
519 	struct its_cmd_desc desc;
520 
521 	desc.its_mapd_cmd.dev = dev;
522 	desc.its_mapd_cmd.valid = !!valid;
523 
524 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
525 }
526 
527 static void its_send_mapc(struct its_node *its, struct its_collection *col,
528 			  int valid)
529 {
530 	struct its_cmd_desc desc;
531 
532 	desc.its_mapc_cmd.col = col;
533 	desc.its_mapc_cmd.valid = !!valid;
534 
535 	its_send_single_command(its, its_build_mapc_cmd, &desc);
536 }
537 
538 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
539 {
540 	struct its_cmd_desc desc;
541 
542 	desc.its_mapti_cmd.dev = dev;
543 	desc.its_mapti_cmd.phys_id = irq_id;
544 	desc.its_mapti_cmd.event_id = id;
545 
546 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
547 }
548 
549 static void its_send_movi(struct its_device *dev,
550 			  struct its_collection *col, u32 id)
551 {
552 	struct its_cmd_desc desc;
553 
554 	desc.its_movi_cmd.dev = dev;
555 	desc.its_movi_cmd.col = col;
556 	desc.its_movi_cmd.event_id = id;
557 
558 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
559 }
560 
561 static void its_send_discard(struct its_device *dev, u32 id)
562 {
563 	struct its_cmd_desc desc;
564 
565 	desc.its_discard_cmd.dev = dev;
566 	desc.its_discard_cmd.event_id = id;
567 
568 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
569 }
570 
571 static void its_send_invall(struct its_node *its, struct its_collection *col)
572 {
573 	struct its_cmd_desc desc;
574 
575 	desc.its_invall_cmd.col = col;
576 
577 	its_send_single_command(its, its_build_invall_cmd, &desc);
578 }
579 
580 /*
581  * irqchip functions - assumes MSI, mostly.
582  */
583 
584 static inline u32 its_get_event_id(struct irq_data *d)
585 {
586 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
587 	return d->hwirq - its_dev->event_map.lpi_base;
588 }
589 
590 static void lpi_set_config(struct irq_data *d, bool enable)
591 {
592 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
593 	irq_hw_number_t hwirq = d->hwirq;
594 	u32 id = its_get_event_id(d);
595 	u8 *cfg = page_address(gic_rdists->prop_page) + hwirq - 8192;
596 
597 	if (enable)
598 		*cfg |= LPI_PROP_ENABLED;
599 	else
600 		*cfg &= ~LPI_PROP_ENABLED;
601 
602 	/*
603 	 * Make the above write visible to the redistributors.
604 	 * And yes, we're flushing exactly: One. Single. Byte.
605 	 * Humpf...
606 	 */
607 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
608 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
609 	else
610 		dsb(ishst);
611 	its_send_inv(its_dev, id);
612 }
613 
614 static void its_mask_irq(struct irq_data *d)
615 {
616 	lpi_set_config(d, false);
617 }
618 
619 static void its_unmask_irq(struct irq_data *d)
620 {
621 	lpi_set_config(d, true);
622 }
623 
624 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
625 			    bool force)
626 {
627 	unsigned int cpu;
628 	const struct cpumask *cpu_mask = cpu_online_mask;
629 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
630 	struct its_collection *target_col;
631 	u32 id = its_get_event_id(d);
632 
633        /* lpi cannot be routed to a redistributor that is on a foreign node */
634 	if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
635 		if (its_dev->its->numa_node >= 0) {
636 			cpu_mask = cpumask_of_node(its_dev->its->numa_node);
637 			if (!cpumask_intersects(mask_val, cpu_mask))
638 				return -EINVAL;
639 		}
640 	}
641 
642 	cpu = cpumask_any_and(mask_val, cpu_mask);
643 
644 	if (cpu >= nr_cpu_ids)
645 		return -EINVAL;
646 
647 	target_col = &its_dev->its->collections[cpu];
648 	its_send_movi(its_dev, target_col, id);
649 	its_dev->event_map.col_map[id] = cpu;
650 
651 	return IRQ_SET_MASK_OK_DONE;
652 }
653 
654 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
655 {
656 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
657 	struct its_node *its;
658 	u64 addr;
659 
660 	its = its_dev->its;
661 	addr = its->phys_base + GITS_TRANSLATER;
662 
663 	msg->address_lo		= lower_32_bits(addr);
664 	msg->address_hi		= upper_32_bits(addr);
665 	msg->data		= its_get_event_id(d);
666 
667 	iommu_dma_map_msi_msg(d->irq, msg);
668 }
669 
670 static struct irq_chip its_irq_chip = {
671 	.name			= "ITS",
672 	.irq_mask		= its_mask_irq,
673 	.irq_unmask		= its_unmask_irq,
674 	.irq_eoi		= irq_chip_eoi_parent,
675 	.irq_set_affinity	= its_set_affinity,
676 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
677 };
678 
679 /*
680  * How we allocate LPIs:
681  *
682  * The GIC has id_bits bits for interrupt identifiers. From there, we
683  * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
684  * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
685  * bits to the right.
686  *
687  * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
688  */
689 #define IRQS_PER_CHUNK_SHIFT	5
690 #define IRQS_PER_CHUNK		(1 << IRQS_PER_CHUNK_SHIFT)
691 
692 static unsigned long *lpi_bitmap;
693 static u32 lpi_chunks;
694 static DEFINE_SPINLOCK(lpi_lock);
695 
696 static int its_lpi_to_chunk(int lpi)
697 {
698 	return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
699 }
700 
701 static int its_chunk_to_lpi(int chunk)
702 {
703 	return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
704 }
705 
706 static int __init its_lpi_init(u32 id_bits)
707 {
708 	lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
709 
710 	lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
711 			     GFP_KERNEL);
712 	if (!lpi_bitmap) {
713 		lpi_chunks = 0;
714 		return -ENOMEM;
715 	}
716 
717 	pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
718 	return 0;
719 }
720 
721 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
722 {
723 	unsigned long *bitmap = NULL;
724 	int chunk_id;
725 	int nr_chunks;
726 	int i;
727 
728 	nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
729 
730 	spin_lock(&lpi_lock);
731 
732 	do {
733 		chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
734 						      0, nr_chunks, 0);
735 		if (chunk_id < lpi_chunks)
736 			break;
737 
738 		nr_chunks--;
739 	} while (nr_chunks > 0);
740 
741 	if (!nr_chunks)
742 		goto out;
743 
744 	bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
745 			 GFP_ATOMIC);
746 	if (!bitmap)
747 		goto out;
748 
749 	for (i = 0; i < nr_chunks; i++)
750 		set_bit(chunk_id + i, lpi_bitmap);
751 
752 	*base = its_chunk_to_lpi(chunk_id);
753 	*nr_ids = nr_chunks * IRQS_PER_CHUNK;
754 
755 out:
756 	spin_unlock(&lpi_lock);
757 
758 	if (!bitmap)
759 		*base = *nr_ids = 0;
760 
761 	return bitmap;
762 }
763 
764 static void its_lpi_free(struct event_lpi_map *map)
765 {
766 	int base = map->lpi_base;
767 	int nr_ids = map->nr_lpis;
768 	int lpi;
769 
770 	spin_lock(&lpi_lock);
771 
772 	for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
773 		int chunk = its_lpi_to_chunk(lpi);
774 		BUG_ON(chunk > lpi_chunks);
775 		if (test_bit(chunk, lpi_bitmap)) {
776 			clear_bit(chunk, lpi_bitmap);
777 		} else {
778 			pr_err("Bad LPI chunk %d\n", chunk);
779 		}
780 	}
781 
782 	spin_unlock(&lpi_lock);
783 
784 	kfree(map->lpi_map);
785 	kfree(map->col_map);
786 }
787 
788 /*
789  * We allocate 64kB for PROPBASE. That gives us at most 64K LPIs to
790  * deal with (one configuration byte per interrupt). PENDBASE has to
791  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
792  */
793 #define LPI_PROPBASE_SZ		SZ_64K
794 #define LPI_PENDBASE_SZ		(LPI_PROPBASE_SZ / 8 + SZ_1K)
795 
796 /*
797  * This is how many bits of ID we need, including the useless ones.
798  */
799 #define LPI_NRBITS		ilog2(LPI_PROPBASE_SZ + SZ_8K)
800 
801 #define LPI_PROP_DEFAULT_PRIO	0xa0
802 
803 static int __init its_alloc_lpi_tables(void)
804 {
805 	phys_addr_t paddr;
806 
807 	gic_rdists->prop_page = alloc_pages(GFP_NOWAIT,
808 					   get_order(LPI_PROPBASE_SZ));
809 	if (!gic_rdists->prop_page) {
810 		pr_err("Failed to allocate PROPBASE\n");
811 		return -ENOMEM;
812 	}
813 
814 	paddr = page_to_phys(gic_rdists->prop_page);
815 	pr_info("GIC: using LPI property table @%pa\n", &paddr);
816 
817 	/* Priority 0xa0, Group-1, disabled */
818 	memset(page_address(gic_rdists->prop_page),
819 	       LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
820 	       LPI_PROPBASE_SZ);
821 
822 	/* Make sure the GIC will observe the written configuration */
823 	gic_flush_dcache_to_poc(page_address(gic_rdists->prop_page), LPI_PROPBASE_SZ);
824 
825 	return 0;
826 }
827 
828 static const char *its_base_type_string[] = {
829 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
830 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
831 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
832 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
833 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
834 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
835 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
836 };
837 
838 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
839 {
840 	u32 idx = baser - its->tables;
841 
842 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
843 }
844 
845 static void its_write_baser(struct its_node *its, struct its_baser *baser,
846 			    u64 val)
847 {
848 	u32 idx = baser - its->tables;
849 
850 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
851 	baser->val = its_read_baser(its, baser);
852 }
853 
854 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
855 			   u64 cache, u64 shr, u32 psz, u32 order,
856 			   bool indirect)
857 {
858 	u64 val = its_read_baser(its, baser);
859 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
860 	u64 type = GITS_BASER_TYPE(val);
861 	u32 alloc_pages;
862 	void *base;
863 	u64 tmp;
864 
865 retry_alloc_baser:
866 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
867 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
868 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
869 			&its->phys_base, its_base_type_string[type],
870 			alloc_pages, GITS_BASER_PAGES_MAX);
871 		alloc_pages = GITS_BASER_PAGES_MAX;
872 		order = get_order(GITS_BASER_PAGES_MAX * psz);
873 	}
874 
875 	base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
876 	if (!base)
877 		return -ENOMEM;
878 
879 retry_baser:
880 	val = (virt_to_phys(base)				 |
881 		(type << GITS_BASER_TYPE_SHIFT)			 |
882 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
883 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
884 		cache						 |
885 		shr						 |
886 		GITS_BASER_VALID);
887 
888 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
889 
890 	switch (psz) {
891 	case SZ_4K:
892 		val |= GITS_BASER_PAGE_SIZE_4K;
893 		break;
894 	case SZ_16K:
895 		val |= GITS_BASER_PAGE_SIZE_16K;
896 		break;
897 	case SZ_64K:
898 		val |= GITS_BASER_PAGE_SIZE_64K;
899 		break;
900 	}
901 
902 	its_write_baser(its, baser, val);
903 	tmp = baser->val;
904 
905 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
906 		/*
907 		 * Shareability didn't stick. Just use
908 		 * whatever the read reported, which is likely
909 		 * to be the only thing this redistributor
910 		 * supports. If that's zero, make it
911 		 * non-cacheable as well.
912 		 */
913 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
914 		if (!shr) {
915 			cache = GITS_BASER_nC;
916 			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
917 		}
918 		goto retry_baser;
919 	}
920 
921 	if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
922 		/*
923 		 * Page size didn't stick. Let's try a smaller
924 		 * size and retry. If we reach 4K, then
925 		 * something is horribly wrong...
926 		 */
927 		free_pages((unsigned long)base, order);
928 		baser->base = NULL;
929 
930 		switch (psz) {
931 		case SZ_16K:
932 			psz = SZ_4K;
933 			goto retry_alloc_baser;
934 		case SZ_64K:
935 			psz = SZ_16K;
936 			goto retry_alloc_baser;
937 		}
938 	}
939 
940 	if (val != tmp) {
941 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
942 		       &its->phys_base, its_base_type_string[type],
943 		       val, tmp);
944 		free_pages((unsigned long)base, order);
945 		return -ENXIO;
946 	}
947 
948 	baser->order = order;
949 	baser->base = base;
950 	baser->psz = psz;
951 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
952 
953 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
954 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
955 		its_base_type_string[type],
956 		(unsigned long)virt_to_phys(base),
957 		indirect ? "indirect" : "flat", (int)esz,
958 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
959 
960 	return 0;
961 }
962 
963 static bool its_parse_baser_device(struct its_node *its, struct its_baser *baser,
964 				   u32 psz, u32 *order)
965 {
966 	u64 esz = GITS_BASER_ENTRY_SIZE(its_read_baser(its, baser));
967 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
968 	u32 ids = its->device_ids;
969 	u32 new_order = *order;
970 	bool indirect = false;
971 
972 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
973 	if ((esz << ids) > (psz * 2)) {
974 		/*
975 		 * Find out whether hw supports a single or two-level table by
976 		 * table by reading bit at offset '62' after writing '1' to it.
977 		 */
978 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
979 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
980 
981 		if (indirect) {
982 			/*
983 			 * The size of the lvl2 table is equal to ITS page size
984 			 * which is 'psz'. For computing lvl1 table size,
985 			 * subtract ID bits that sparse lvl2 table from 'ids'
986 			 * which is reported by ITS hardware times lvl1 table
987 			 * entry size.
988 			 */
989 			ids -= ilog2(psz / (int)esz);
990 			esz = GITS_LVL1_ENTRY_SIZE;
991 		}
992 	}
993 
994 	/*
995 	 * Allocate as many entries as required to fit the
996 	 * range of device IDs that the ITS can grok... The ID
997 	 * space being incredibly sparse, this results in a
998 	 * massive waste of memory if two-level device table
999 	 * feature is not supported by hardware.
1000 	 */
1001 	new_order = max_t(u32, get_order(esz << ids), new_order);
1002 	if (new_order >= MAX_ORDER) {
1003 		new_order = MAX_ORDER - 1;
1004 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
1005 		pr_warn("ITS@%pa: Device Table too large, reduce ids %u->%u\n",
1006 			&its->phys_base, its->device_ids, ids);
1007 	}
1008 
1009 	*order = new_order;
1010 
1011 	return indirect;
1012 }
1013 
1014 static void its_free_tables(struct its_node *its)
1015 {
1016 	int i;
1017 
1018 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1019 		if (its->tables[i].base) {
1020 			free_pages((unsigned long)its->tables[i].base,
1021 				   its->tables[i].order);
1022 			its->tables[i].base = NULL;
1023 		}
1024 	}
1025 }
1026 
1027 static int its_alloc_tables(struct its_node *its)
1028 {
1029 	u64 typer = gic_read_typer(its->base + GITS_TYPER);
1030 	u32 ids = GITS_TYPER_DEVBITS(typer);
1031 	u64 shr = GITS_BASER_InnerShareable;
1032 	u64 cache = GITS_BASER_RaWaWb;
1033 	u32 psz = SZ_64K;
1034 	int err, i;
1035 
1036 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) {
1037 		/*
1038 		* erratum 22375: only alloc 8MB table size
1039 		* erratum 24313: ignore memory access type
1040 		*/
1041 		cache   = GITS_BASER_nCnB;
1042 		ids     = 0x14;                 /* 20 bits, 8MB */
1043 	}
1044 
1045 	its->device_ids = ids;
1046 
1047 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1048 		struct its_baser *baser = its->tables + i;
1049 		u64 val = its_read_baser(its, baser);
1050 		u64 type = GITS_BASER_TYPE(val);
1051 		u32 order = get_order(psz);
1052 		bool indirect = false;
1053 
1054 		if (type == GITS_BASER_TYPE_NONE)
1055 			continue;
1056 
1057 		if (type == GITS_BASER_TYPE_DEVICE)
1058 			indirect = its_parse_baser_device(its, baser, psz, &order);
1059 
1060 		err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1061 		if (err < 0) {
1062 			its_free_tables(its);
1063 			return err;
1064 		}
1065 
1066 		/* Update settings which will be used for next BASERn */
1067 		psz = baser->psz;
1068 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1069 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1070 	}
1071 
1072 	return 0;
1073 }
1074 
1075 static int its_alloc_collections(struct its_node *its)
1076 {
1077 	its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
1078 				   GFP_KERNEL);
1079 	if (!its->collections)
1080 		return -ENOMEM;
1081 
1082 	return 0;
1083 }
1084 
1085 static void its_cpu_init_lpis(void)
1086 {
1087 	void __iomem *rbase = gic_data_rdist_rd_base();
1088 	struct page *pend_page;
1089 	u64 val, tmp;
1090 
1091 	/* If we didn't allocate the pending table yet, do it now */
1092 	pend_page = gic_data_rdist()->pend_page;
1093 	if (!pend_page) {
1094 		phys_addr_t paddr;
1095 		/*
1096 		 * The pending pages have to be at least 64kB aligned,
1097 		 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1098 		 */
1099 		pend_page = alloc_pages(GFP_NOWAIT | __GFP_ZERO,
1100 					get_order(max(LPI_PENDBASE_SZ, SZ_64K)));
1101 		if (!pend_page) {
1102 			pr_err("Failed to allocate PENDBASE for CPU%d\n",
1103 			       smp_processor_id());
1104 			return;
1105 		}
1106 
1107 		/* Make sure the GIC will observe the zero-ed page */
1108 		gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
1109 
1110 		paddr = page_to_phys(pend_page);
1111 		pr_info("CPU%d: using LPI pending table @%pa\n",
1112 			smp_processor_id(), &paddr);
1113 		gic_data_rdist()->pend_page = pend_page;
1114 	}
1115 
1116 	/* Disable LPIs */
1117 	val = readl_relaxed(rbase + GICR_CTLR);
1118 	val &= ~GICR_CTLR_ENABLE_LPIS;
1119 	writel_relaxed(val, rbase + GICR_CTLR);
1120 
1121 	/*
1122 	 * Make sure any change to the table is observable by the GIC.
1123 	 */
1124 	dsb(sy);
1125 
1126 	/* set PROPBASE */
1127 	val = (page_to_phys(gic_rdists->prop_page) |
1128 	       GICR_PROPBASER_InnerShareable |
1129 	       GICR_PROPBASER_RaWaWb |
1130 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1131 
1132 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1133 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
1134 
1135 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1136 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1137 			/*
1138 			 * The HW reports non-shareable, we must
1139 			 * remove the cacheability attributes as
1140 			 * well.
1141 			 */
1142 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1143 				 GICR_PROPBASER_CACHEABILITY_MASK);
1144 			val |= GICR_PROPBASER_nC;
1145 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1146 		}
1147 		pr_info_once("GIC: using cache flushing for LPI property table\n");
1148 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1149 	}
1150 
1151 	/* set PENDBASE */
1152 	val = (page_to_phys(pend_page) |
1153 	       GICR_PENDBASER_InnerShareable |
1154 	       GICR_PENDBASER_RaWaWb);
1155 
1156 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1157 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
1158 
1159 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1160 		/*
1161 		 * The HW reports non-shareable, we must remove the
1162 		 * cacheability attributes as well.
1163 		 */
1164 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1165 			 GICR_PENDBASER_CACHEABILITY_MASK);
1166 		val |= GICR_PENDBASER_nC;
1167 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1168 	}
1169 
1170 	/* Enable LPIs */
1171 	val = readl_relaxed(rbase + GICR_CTLR);
1172 	val |= GICR_CTLR_ENABLE_LPIS;
1173 	writel_relaxed(val, rbase + GICR_CTLR);
1174 
1175 	/* Make sure the GIC has seen the above */
1176 	dsb(sy);
1177 }
1178 
1179 static void its_cpu_init_collection(void)
1180 {
1181 	struct its_node *its;
1182 	int cpu;
1183 
1184 	spin_lock(&its_lock);
1185 	cpu = smp_processor_id();
1186 
1187 	list_for_each_entry(its, &its_nodes, entry) {
1188 		u64 target;
1189 
1190 		/* avoid cross node collections and its mapping */
1191 		if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1192 			struct device_node *cpu_node;
1193 
1194 			cpu_node = of_get_cpu_node(cpu, NULL);
1195 			if (its->numa_node != NUMA_NO_NODE &&
1196 				its->numa_node != of_node_to_nid(cpu_node))
1197 				continue;
1198 		}
1199 
1200 		/*
1201 		 * We now have to bind each collection to its target
1202 		 * redistributor.
1203 		 */
1204 		if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1205 			/*
1206 			 * This ITS wants the physical address of the
1207 			 * redistributor.
1208 			 */
1209 			target = gic_data_rdist()->phys_base;
1210 		} else {
1211 			/*
1212 			 * This ITS wants a linear CPU number.
1213 			 */
1214 			target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
1215 			target = GICR_TYPER_CPU_NUMBER(target) << 16;
1216 		}
1217 
1218 		/* Perform collection mapping */
1219 		its->collections[cpu].target_address = target;
1220 		its->collections[cpu].col_id = cpu;
1221 
1222 		its_send_mapc(its, &its->collections[cpu], 1);
1223 		its_send_invall(its, &its->collections[cpu]);
1224 	}
1225 
1226 	spin_unlock(&its_lock);
1227 }
1228 
1229 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1230 {
1231 	struct its_device *its_dev = NULL, *tmp;
1232 	unsigned long flags;
1233 
1234 	raw_spin_lock_irqsave(&its->lock, flags);
1235 
1236 	list_for_each_entry(tmp, &its->its_device_list, entry) {
1237 		if (tmp->device_id == dev_id) {
1238 			its_dev = tmp;
1239 			break;
1240 		}
1241 	}
1242 
1243 	raw_spin_unlock_irqrestore(&its->lock, flags);
1244 
1245 	return its_dev;
1246 }
1247 
1248 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
1249 {
1250 	int i;
1251 
1252 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1253 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
1254 			return &its->tables[i];
1255 	}
1256 
1257 	return NULL;
1258 }
1259 
1260 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
1261 {
1262 	struct its_baser *baser;
1263 	struct page *page;
1264 	u32 esz, idx;
1265 	__le64 *table;
1266 
1267 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
1268 
1269 	/* Don't allow device id that exceeds ITS hardware limit */
1270 	if (!baser)
1271 		return (ilog2(dev_id) < its->device_ids);
1272 
1273 	/* Don't allow device id that exceeds single, flat table limit */
1274 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
1275 	if (!(baser->val & GITS_BASER_INDIRECT))
1276 		return (dev_id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
1277 
1278 	/* Compute 1st level table index & check if that exceeds table limit */
1279 	idx = dev_id >> ilog2(baser->psz / esz);
1280 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
1281 		return false;
1282 
1283 	table = baser->base;
1284 
1285 	/* Allocate memory for 2nd level table */
1286 	if (!table[idx]) {
1287 		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz));
1288 		if (!page)
1289 			return false;
1290 
1291 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
1292 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
1293 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
1294 
1295 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
1296 
1297 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
1298 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
1299 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
1300 
1301 		/* Ensure updated table contents are visible to ITS hardware */
1302 		dsb(sy);
1303 	}
1304 
1305 	return true;
1306 }
1307 
1308 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
1309 					    int nvecs)
1310 {
1311 	struct its_device *dev;
1312 	unsigned long *lpi_map;
1313 	unsigned long flags;
1314 	u16 *col_map = NULL;
1315 	void *itt;
1316 	int lpi_base;
1317 	int nr_lpis;
1318 	int nr_ites;
1319 	int sz;
1320 
1321 	if (!its_alloc_device_table(its, dev_id))
1322 		return NULL;
1323 
1324 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1325 	/*
1326 	 * At least one bit of EventID is being used, hence a minimum
1327 	 * of two entries. No, the architecture doesn't let you
1328 	 * express an ITT with a single entry.
1329 	 */
1330 	nr_ites = max(2UL, roundup_pow_of_two(nvecs));
1331 	sz = nr_ites * its->ite_size;
1332 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
1333 	itt = kzalloc(sz, GFP_KERNEL);
1334 	lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
1335 	if (lpi_map)
1336 		col_map = kzalloc(sizeof(*col_map) * nr_lpis, GFP_KERNEL);
1337 
1338 	if (!dev || !itt || !lpi_map || !col_map) {
1339 		kfree(dev);
1340 		kfree(itt);
1341 		kfree(lpi_map);
1342 		kfree(col_map);
1343 		return NULL;
1344 	}
1345 
1346 	gic_flush_dcache_to_poc(itt, sz);
1347 
1348 	dev->its = its;
1349 	dev->itt = itt;
1350 	dev->nr_ites = nr_ites;
1351 	dev->event_map.lpi_map = lpi_map;
1352 	dev->event_map.col_map = col_map;
1353 	dev->event_map.lpi_base = lpi_base;
1354 	dev->event_map.nr_lpis = nr_lpis;
1355 	dev->device_id = dev_id;
1356 	INIT_LIST_HEAD(&dev->entry);
1357 
1358 	raw_spin_lock_irqsave(&its->lock, flags);
1359 	list_add(&dev->entry, &its->its_device_list);
1360 	raw_spin_unlock_irqrestore(&its->lock, flags);
1361 
1362 	/* Map device to its ITT */
1363 	its_send_mapd(dev, 1);
1364 
1365 	return dev;
1366 }
1367 
1368 static void its_free_device(struct its_device *its_dev)
1369 {
1370 	unsigned long flags;
1371 
1372 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
1373 	list_del(&its_dev->entry);
1374 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
1375 	kfree(its_dev->itt);
1376 	kfree(its_dev);
1377 }
1378 
1379 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
1380 {
1381 	int idx;
1382 
1383 	idx = find_first_zero_bit(dev->event_map.lpi_map,
1384 				  dev->event_map.nr_lpis);
1385 	if (idx == dev->event_map.nr_lpis)
1386 		return -ENOSPC;
1387 
1388 	*hwirq = dev->event_map.lpi_base + idx;
1389 	set_bit(idx, dev->event_map.lpi_map);
1390 
1391 	return 0;
1392 }
1393 
1394 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
1395 			   int nvec, msi_alloc_info_t *info)
1396 {
1397 	struct its_node *its;
1398 	struct its_device *its_dev;
1399 	struct msi_domain_info *msi_info;
1400 	u32 dev_id;
1401 
1402 	/*
1403 	 * We ignore "dev" entierely, and rely on the dev_id that has
1404 	 * been passed via the scratchpad. This limits this domain's
1405 	 * usefulness to upper layers that definitely know that they
1406 	 * are built on top of the ITS.
1407 	 */
1408 	dev_id = info->scratchpad[0].ul;
1409 
1410 	msi_info = msi_get_domain_info(domain);
1411 	its = msi_info->data;
1412 
1413 	its_dev = its_find_device(its, dev_id);
1414 	if (its_dev) {
1415 		/*
1416 		 * We already have seen this ID, probably through
1417 		 * another alias (PCI bridge of some sort). No need to
1418 		 * create the device.
1419 		 */
1420 		pr_debug("Reusing ITT for devID %x\n", dev_id);
1421 		goto out;
1422 	}
1423 
1424 	its_dev = its_create_device(its, dev_id, nvec);
1425 	if (!its_dev)
1426 		return -ENOMEM;
1427 
1428 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
1429 out:
1430 	info->scratchpad[0].ptr = its_dev;
1431 	return 0;
1432 }
1433 
1434 static struct msi_domain_ops its_msi_domain_ops = {
1435 	.msi_prepare	= its_msi_prepare,
1436 };
1437 
1438 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
1439 				    unsigned int virq,
1440 				    irq_hw_number_t hwirq)
1441 {
1442 	struct irq_fwspec fwspec;
1443 
1444 	if (irq_domain_get_of_node(domain->parent)) {
1445 		fwspec.fwnode = domain->parent->fwnode;
1446 		fwspec.param_count = 3;
1447 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
1448 		fwspec.param[1] = hwirq;
1449 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
1450 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
1451 		fwspec.fwnode = domain->parent->fwnode;
1452 		fwspec.param_count = 2;
1453 		fwspec.param[0] = hwirq;
1454 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
1455 	} else {
1456 		return -EINVAL;
1457 	}
1458 
1459 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
1460 }
1461 
1462 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1463 				unsigned int nr_irqs, void *args)
1464 {
1465 	msi_alloc_info_t *info = args;
1466 	struct its_device *its_dev = info->scratchpad[0].ptr;
1467 	irq_hw_number_t hwirq;
1468 	int err;
1469 	int i;
1470 
1471 	for (i = 0; i < nr_irqs; i++) {
1472 		err = its_alloc_device_irq(its_dev, &hwirq);
1473 		if (err)
1474 			return err;
1475 
1476 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
1477 		if (err)
1478 			return err;
1479 
1480 		irq_domain_set_hwirq_and_chip(domain, virq + i,
1481 					      hwirq, &its_irq_chip, its_dev);
1482 		pr_debug("ID:%d pID:%d vID:%d\n",
1483 			 (int)(hwirq - its_dev->event_map.lpi_base),
1484 			 (int) hwirq, virq + i);
1485 	}
1486 
1487 	return 0;
1488 }
1489 
1490 static void its_irq_domain_activate(struct irq_domain *domain,
1491 				    struct irq_data *d)
1492 {
1493 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1494 	u32 event = its_get_event_id(d);
1495 	const struct cpumask *cpu_mask = cpu_online_mask;
1496 
1497 	/* get the cpu_mask of local node */
1498 	if (its_dev->its->numa_node >= 0)
1499 		cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1500 
1501 	/* Bind the LPI to the first possible CPU */
1502 	its_dev->event_map.col_map[event] = cpumask_first(cpu_mask);
1503 
1504 	/* Map the GIC IRQ and event to the device */
1505 	its_send_mapti(its_dev, d->hwirq, event);
1506 }
1507 
1508 static void its_irq_domain_deactivate(struct irq_domain *domain,
1509 				      struct irq_data *d)
1510 {
1511 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1512 	u32 event = its_get_event_id(d);
1513 
1514 	/* Stop the delivery of interrupts */
1515 	its_send_discard(its_dev, event);
1516 }
1517 
1518 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1519 				unsigned int nr_irqs)
1520 {
1521 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
1522 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1523 	int i;
1524 
1525 	for (i = 0; i < nr_irqs; i++) {
1526 		struct irq_data *data = irq_domain_get_irq_data(domain,
1527 								virq + i);
1528 		u32 event = its_get_event_id(data);
1529 
1530 		/* Mark interrupt index as unused */
1531 		clear_bit(event, its_dev->event_map.lpi_map);
1532 
1533 		/* Nuke the entry in the domain */
1534 		irq_domain_reset_irq_data(data);
1535 	}
1536 
1537 	/* If all interrupts have been freed, start mopping the floor */
1538 	if (bitmap_empty(its_dev->event_map.lpi_map,
1539 			 its_dev->event_map.nr_lpis)) {
1540 		its_lpi_free(&its_dev->event_map);
1541 
1542 		/* Unmap device/itt */
1543 		its_send_mapd(its_dev, 0);
1544 		its_free_device(its_dev);
1545 	}
1546 
1547 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
1548 }
1549 
1550 static const struct irq_domain_ops its_domain_ops = {
1551 	.alloc			= its_irq_domain_alloc,
1552 	.free			= its_irq_domain_free,
1553 	.activate		= its_irq_domain_activate,
1554 	.deactivate		= its_irq_domain_deactivate,
1555 };
1556 
1557 static int its_force_quiescent(void __iomem *base)
1558 {
1559 	u32 count = 1000000;	/* 1s */
1560 	u32 val;
1561 
1562 	val = readl_relaxed(base + GITS_CTLR);
1563 	/*
1564 	 * GIC architecture specification requires the ITS to be both
1565 	 * disabled and quiescent for writes to GITS_BASER<n> or
1566 	 * GITS_CBASER to not have UNPREDICTABLE results.
1567 	 */
1568 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
1569 		return 0;
1570 
1571 	/* Disable the generation of all interrupts to this ITS */
1572 	val &= ~GITS_CTLR_ENABLE;
1573 	writel_relaxed(val, base + GITS_CTLR);
1574 
1575 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
1576 	while (1) {
1577 		val = readl_relaxed(base + GITS_CTLR);
1578 		if (val & GITS_CTLR_QUIESCENT)
1579 			return 0;
1580 
1581 		count--;
1582 		if (!count)
1583 			return -EBUSY;
1584 
1585 		cpu_relax();
1586 		udelay(1);
1587 	}
1588 }
1589 
1590 static void __maybe_unused its_enable_quirk_cavium_22375(void *data)
1591 {
1592 	struct its_node *its = data;
1593 
1594 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
1595 }
1596 
1597 static void __maybe_unused its_enable_quirk_cavium_23144(void *data)
1598 {
1599 	struct its_node *its = data;
1600 
1601 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
1602 }
1603 
1604 static void __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
1605 {
1606 	struct its_node *its = data;
1607 
1608 	/* On QDF2400, the size of the ITE is 16Bytes */
1609 	its->ite_size = 16;
1610 }
1611 
1612 static const struct gic_quirk its_quirks[] = {
1613 #ifdef CONFIG_CAVIUM_ERRATUM_22375
1614 	{
1615 		.desc	= "ITS: Cavium errata 22375, 24313",
1616 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
1617 		.mask	= 0xffff0fff,
1618 		.init	= its_enable_quirk_cavium_22375,
1619 	},
1620 #endif
1621 #ifdef CONFIG_CAVIUM_ERRATUM_23144
1622 	{
1623 		.desc	= "ITS: Cavium erratum 23144",
1624 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
1625 		.mask	= 0xffff0fff,
1626 		.init	= its_enable_quirk_cavium_23144,
1627 	},
1628 #endif
1629 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
1630 	{
1631 		.desc	= "ITS: QDF2400 erratum 0065",
1632 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
1633 		.mask	= 0xffffffff,
1634 		.init	= its_enable_quirk_qdf2400_e0065,
1635 	},
1636 #endif
1637 	{
1638 	}
1639 };
1640 
1641 static void its_enable_quirks(struct its_node *its)
1642 {
1643 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
1644 
1645 	gic_enable_quirks(iidr, its_quirks, its);
1646 }
1647 
1648 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
1649 {
1650 	struct irq_domain *inner_domain;
1651 	struct msi_domain_info *info;
1652 
1653 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1654 	if (!info)
1655 		return -ENOMEM;
1656 
1657 	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
1658 	if (!inner_domain) {
1659 		kfree(info);
1660 		return -ENOMEM;
1661 	}
1662 
1663 	inner_domain->parent = its_parent;
1664 	inner_domain->bus_token = DOMAIN_BUS_NEXUS;
1665 	inner_domain->flags |= IRQ_DOMAIN_FLAG_MSI_REMAP;
1666 	info->ops = &its_msi_domain_ops;
1667 	info->data = its;
1668 	inner_domain->host_data = info;
1669 
1670 	return 0;
1671 }
1672 
1673 static int __init its_probe_one(struct resource *res,
1674 				struct fwnode_handle *handle, int numa_node)
1675 {
1676 	struct its_node *its;
1677 	void __iomem *its_base;
1678 	u32 val;
1679 	u64 baser, tmp;
1680 	int err;
1681 
1682 	its_base = ioremap(res->start, resource_size(res));
1683 	if (!its_base) {
1684 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
1685 		return -ENOMEM;
1686 	}
1687 
1688 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
1689 	if (val != 0x30 && val != 0x40) {
1690 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
1691 		err = -ENODEV;
1692 		goto out_unmap;
1693 	}
1694 
1695 	err = its_force_quiescent(its_base);
1696 	if (err) {
1697 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
1698 		goto out_unmap;
1699 	}
1700 
1701 	pr_info("ITS %pR\n", res);
1702 
1703 	its = kzalloc(sizeof(*its), GFP_KERNEL);
1704 	if (!its) {
1705 		err = -ENOMEM;
1706 		goto out_unmap;
1707 	}
1708 
1709 	raw_spin_lock_init(&its->lock);
1710 	INIT_LIST_HEAD(&its->entry);
1711 	INIT_LIST_HEAD(&its->its_device_list);
1712 	its->base = its_base;
1713 	its->phys_base = res->start;
1714 	its->ite_size = ((gic_read_typer(its_base + GITS_TYPER) >> 4) & 0xf) + 1;
1715 	its->numa_node = numa_node;
1716 
1717 	its->cmd_base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1718 						get_order(ITS_CMD_QUEUE_SZ));
1719 	if (!its->cmd_base) {
1720 		err = -ENOMEM;
1721 		goto out_free_its;
1722 	}
1723 	its->cmd_write = its->cmd_base;
1724 
1725 	its_enable_quirks(its);
1726 
1727 	err = its_alloc_tables(its);
1728 	if (err)
1729 		goto out_free_cmd;
1730 
1731 	err = its_alloc_collections(its);
1732 	if (err)
1733 		goto out_free_tables;
1734 
1735 	baser = (virt_to_phys(its->cmd_base)	|
1736 		 GITS_CBASER_RaWaWb		|
1737 		 GITS_CBASER_InnerShareable	|
1738 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
1739 		 GITS_CBASER_VALID);
1740 
1741 	gits_write_cbaser(baser, its->base + GITS_CBASER);
1742 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
1743 
1744 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
1745 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
1746 			/*
1747 			 * The HW reports non-shareable, we must
1748 			 * remove the cacheability attributes as
1749 			 * well.
1750 			 */
1751 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
1752 				   GITS_CBASER_CACHEABILITY_MASK);
1753 			baser |= GITS_CBASER_nC;
1754 			gits_write_cbaser(baser, its->base + GITS_CBASER);
1755 		}
1756 		pr_info("ITS: using cache flushing for cmd queue\n");
1757 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
1758 	}
1759 
1760 	gits_write_cwriter(0, its->base + GITS_CWRITER);
1761 	writel_relaxed(GITS_CTLR_ENABLE, its->base + GITS_CTLR);
1762 
1763 	err = its_init_domain(handle, its);
1764 	if (err)
1765 		goto out_free_tables;
1766 
1767 	spin_lock(&its_lock);
1768 	list_add(&its->entry, &its_nodes);
1769 	spin_unlock(&its_lock);
1770 
1771 	return 0;
1772 
1773 out_free_tables:
1774 	its_free_tables(its);
1775 out_free_cmd:
1776 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
1777 out_free_its:
1778 	kfree(its);
1779 out_unmap:
1780 	iounmap(its_base);
1781 	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
1782 	return err;
1783 }
1784 
1785 static bool gic_rdists_supports_plpis(void)
1786 {
1787 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
1788 }
1789 
1790 int its_cpu_init(void)
1791 {
1792 	if (!list_empty(&its_nodes)) {
1793 		if (!gic_rdists_supports_plpis()) {
1794 			pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
1795 			return -ENXIO;
1796 		}
1797 		its_cpu_init_lpis();
1798 		its_cpu_init_collection();
1799 	}
1800 
1801 	return 0;
1802 }
1803 
1804 static struct of_device_id its_device_id[] = {
1805 	{	.compatible	= "arm,gic-v3-its",	},
1806 	{},
1807 };
1808 
1809 static int __init its_of_probe(struct device_node *node)
1810 {
1811 	struct device_node *np;
1812 	struct resource res;
1813 
1814 	for (np = of_find_matching_node(node, its_device_id); np;
1815 	     np = of_find_matching_node(np, its_device_id)) {
1816 		if (!of_property_read_bool(np, "msi-controller")) {
1817 			pr_warn("%s: no msi-controller property, ITS ignored\n",
1818 				np->full_name);
1819 			continue;
1820 		}
1821 
1822 		if (of_address_to_resource(np, 0, &res)) {
1823 			pr_warn("%s: no regs?\n", np->full_name);
1824 			continue;
1825 		}
1826 
1827 		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
1828 	}
1829 	return 0;
1830 }
1831 
1832 #ifdef CONFIG_ACPI
1833 
1834 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
1835 
1836 static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header,
1837 					  const unsigned long end)
1838 {
1839 	struct acpi_madt_generic_translator *its_entry;
1840 	struct fwnode_handle *dom_handle;
1841 	struct resource res;
1842 	int err;
1843 
1844 	its_entry = (struct acpi_madt_generic_translator *)header;
1845 	memset(&res, 0, sizeof(res));
1846 	res.start = its_entry->base_address;
1847 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
1848 	res.flags = IORESOURCE_MEM;
1849 
1850 	dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address);
1851 	if (!dom_handle) {
1852 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
1853 		       &res.start);
1854 		return -ENOMEM;
1855 	}
1856 
1857 	err = iort_register_domain_token(its_entry->translation_id, dom_handle);
1858 	if (err) {
1859 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
1860 		       &res.start, its_entry->translation_id);
1861 		goto dom_err;
1862 	}
1863 
1864 	err = its_probe_one(&res, dom_handle, NUMA_NO_NODE);
1865 	if (!err)
1866 		return 0;
1867 
1868 	iort_deregister_domain_token(its_entry->translation_id);
1869 dom_err:
1870 	irq_domain_free_fwnode(dom_handle);
1871 	return err;
1872 }
1873 
1874 static void __init its_acpi_probe(void)
1875 {
1876 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
1877 			      gic_acpi_parse_madt_its, 0);
1878 }
1879 #else
1880 static void __init its_acpi_probe(void) { }
1881 #endif
1882 
1883 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
1884 		    struct irq_domain *parent_domain)
1885 {
1886 	struct device_node *of_node;
1887 
1888 	its_parent = parent_domain;
1889 	of_node = to_of_node(handle);
1890 	if (of_node)
1891 		its_of_probe(of_node);
1892 	else
1893 		its_acpi_probe();
1894 
1895 	if (list_empty(&its_nodes)) {
1896 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
1897 		return -ENXIO;
1898 	}
1899 
1900 	gic_rdists = rdists;
1901 	its_alloc_lpi_tables();
1902 	its_lpi_init(rdists->id_bits);
1903 
1904 	return 0;
1905 }
1906