1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/acpi_iort.h> 9 #include <linux/bitfield.h> 10 #include <linux/bitmap.h> 11 #include <linux/cpu.h> 12 #include <linux/crash_dump.h> 13 #include <linux/delay.h> 14 #include <linux/efi.h> 15 #include <linux/interrupt.h> 16 #include <linux/iommu.h> 17 #include <linux/iopoll.h> 18 #include <linux/irqdomain.h> 19 #include <linux/list.h> 20 #include <linux/log2.h> 21 #include <linux/memblock.h> 22 #include <linux/mm.h> 23 #include <linux/msi.h> 24 #include <linux/of.h> 25 #include <linux/of_address.h> 26 #include <linux/of_irq.h> 27 #include <linux/of_pci.h> 28 #include <linux/of_platform.h> 29 #include <linux/percpu.h> 30 #include <linux/slab.h> 31 #include <linux/syscore_ops.h> 32 33 #include <linux/irqchip.h> 34 #include <linux/irqchip/arm-gic-v3.h> 35 #include <linux/irqchip/arm-gic-v4.h> 36 37 #include <asm/cputype.h> 38 #include <asm/exception.h> 39 40 #include "irq-gic-common.h" 41 42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) 43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) 44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) 45 #define ITS_FLAGS_FORCE_NON_SHAREABLE (1ULL << 3) 46 47 #define RD_LOCAL_LPI_ENABLED BIT(0) 48 #define RD_LOCAL_PENDTABLE_PREALLOCATED BIT(1) 49 #define RD_LOCAL_MEMRESERVE_DONE BIT(2) 50 51 static u32 lpi_id_bits; 52 53 /* 54 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to 55 * deal with (one configuration byte per interrupt). PENDBASE has to 56 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). 57 */ 58 #define LPI_NRBITS lpi_id_bits 59 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K) 60 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) 61 62 #define LPI_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI 63 64 /* 65 * Collection structure - just an ID, and a redistributor address to 66 * ping. We use one per CPU as a bag of interrupts assigned to this 67 * CPU. 68 */ 69 struct its_collection { 70 u64 target_address; 71 u16 col_id; 72 }; 73 74 /* 75 * The ITS_BASER structure - contains memory information, cached 76 * value of BASER register configuration and ITS page size. 77 */ 78 struct its_baser { 79 void *base; 80 u64 val; 81 u32 order; 82 u32 psz; 83 }; 84 85 struct its_device; 86 87 /* 88 * The ITS structure - contains most of the infrastructure, with the 89 * top-level MSI domain, the command queue, the collections, and the 90 * list of devices writing to it. 91 * 92 * dev_alloc_lock has to be taken for device allocations, while the 93 * spinlock must be taken to parse data structures such as the device 94 * list. 95 */ 96 struct its_node { 97 raw_spinlock_t lock; 98 struct mutex dev_alloc_lock; 99 struct list_head entry; 100 void __iomem *base; 101 void __iomem *sgir_base; 102 phys_addr_t phys_base; 103 struct its_cmd_block *cmd_base; 104 struct its_cmd_block *cmd_write; 105 struct its_baser tables[GITS_BASER_NR_REGS]; 106 struct its_collection *collections; 107 struct fwnode_handle *fwnode_handle; 108 u64 (*get_msi_base)(struct its_device *its_dev); 109 u64 typer; 110 u64 cbaser_save; 111 u32 ctlr_save; 112 u32 mpidr; 113 struct list_head its_device_list; 114 u64 flags; 115 unsigned long list_nr; 116 int numa_node; 117 unsigned int msi_domain_flags; 118 u32 pre_its_base; /* for Socionext Synquacer */ 119 int vlpi_redist_offset; 120 }; 121 122 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS)) 123 #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP)) 124 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1) 125 126 #define ITS_ITT_ALIGN SZ_256 127 128 /* The maximum number of VPEID bits supported by VLPI commands */ 129 #define ITS_MAX_VPEID_BITS \ 130 ({ \ 131 int nvpeid = 16; \ 132 if (gic_rdists->has_rvpeid && \ 133 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \ 134 nvpeid = 1 + (gic_rdists->gicd_typer2 & \ 135 GICD_TYPER2_VID); \ 136 \ 137 nvpeid; \ 138 }) 139 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS)) 140 141 /* Convert page order to size in bytes */ 142 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) 143 144 struct event_lpi_map { 145 unsigned long *lpi_map; 146 u16 *col_map; 147 irq_hw_number_t lpi_base; 148 int nr_lpis; 149 raw_spinlock_t vlpi_lock; 150 struct its_vm *vm; 151 struct its_vlpi_map *vlpi_maps; 152 int nr_vlpis; 153 }; 154 155 /* 156 * The ITS view of a device - belongs to an ITS, owns an interrupt 157 * translation table, and a list of interrupts. If it some of its 158 * LPIs are injected into a guest (GICv4), the event_map.vm field 159 * indicates which one. 160 */ 161 struct its_device { 162 struct list_head entry; 163 struct its_node *its; 164 struct event_lpi_map event_map; 165 void *itt; 166 u32 nr_ites; 167 u32 device_id; 168 bool shared; 169 }; 170 171 static struct { 172 raw_spinlock_t lock; 173 struct its_device *dev; 174 struct its_vpe **vpes; 175 int next_victim; 176 } vpe_proxy; 177 178 struct cpu_lpi_count { 179 atomic_t managed; 180 atomic_t unmanaged; 181 }; 182 183 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count); 184 185 static LIST_HEAD(its_nodes); 186 static DEFINE_RAW_SPINLOCK(its_lock); 187 static struct rdists *gic_rdists; 188 static struct irq_domain *its_parent; 189 190 static unsigned long its_list_map; 191 static u16 vmovp_seq_num; 192 static DEFINE_RAW_SPINLOCK(vmovp_lock); 193 194 static DEFINE_IDA(its_vpeid_ida); 195 196 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) 197 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu)) 198 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 199 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K) 200 201 /* 202 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we 203 * always have vSGIs mapped. 204 */ 205 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its) 206 { 207 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]); 208 } 209 210 static bool rdists_support_shareable(void) 211 { 212 return !(gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE); 213 } 214 215 static u16 get_its_list(struct its_vm *vm) 216 { 217 struct its_node *its; 218 unsigned long its_list = 0; 219 220 list_for_each_entry(its, &its_nodes, entry) { 221 if (!is_v4(its)) 222 continue; 223 224 if (require_its_list_vmovp(vm, its)) 225 __set_bit(its->list_nr, &its_list); 226 } 227 228 return (u16)its_list; 229 } 230 231 static inline u32 its_get_event_id(struct irq_data *d) 232 { 233 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 234 return d->hwirq - its_dev->event_map.lpi_base; 235 } 236 237 static struct its_collection *dev_event_to_col(struct its_device *its_dev, 238 u32 event) 239 { 240 struct its_node *its = its_dev->its; 241 242 return its->collections + its_dev->event_map.col_map[event]; 243 } 244 245 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev, 246 u32 event) 247 { 248 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis)) 249 return NULL; 250 251 return &its_dev->event_map.vlpi_maps[event]; 252 } 253 254 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d) 255 { 256 if (irqd_is_forwarded_to_vcpu(d)) { 257 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 258 u32 event = its_get_event_id(d); 259 260 return dev_event_to_vlpi_map(its_dev, event); 261 } 262 263 return NULL; 264 } 265 266 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags) 267 { 268 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags); 269 return vpe->col_idx; 270 } 271 272 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags) 273 { 274 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 275 } 276 277 static struct irq_chip its_vpe_irq_chip; 278 279 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags) 280 { 281 struct its_vpe *vpe = NULL; 282 int cpu; 283 284 if (d->chip == &its_vpe_irq_chip) { 285 vpe = irq_data_get_irq_chip_data(d); 286 } else { 287 struct its_vlpi_map *map = get_vlpi_map(d); 288 if (map) 289 vpe = map->vpe; 290 } 291 292 if (vpe) { 293 cpu = vpe_to_cpuid_lock(vpe, flags); 294 } else { 295 /* Physical LPIs are already locked via the irq_desc lock */ 296 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 297 cpu = its_dev->event_map.col_map[its_get_event_id(d)]; 298 /* Keep GCC quiet... */ 299 *flags = 0; 300 } 301 302 return cpu; 303 } 304 305 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags) 306 { 307 struct its_vpe *vpe = NULL; 308 309 if (d->chip == &its_vpe_irq_chip) { 310 vpe = irq_data_get_irq_chip_data(d); 311 } else { 312 struct its_vlpi_map *map = get_vlpi_map(d); 313 if (map) 314 vpe = map->vpe; 315 } 316 317 if (vpe) 318 vpe_to_cpuid_unlock(vpe, flags); 319 } 320 321 static struct its_collection *valid_col(struct its_collection *col) 322 { 323 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0))) 324 return NULL; 325 326 return col; 327 } 328 329 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe) 330 { 331 if (valid_col(its->collections + vpe->col_idx)) 332 return vpe; 333 334 return NULL; 335 } 336 337 /* 338 * ITS command descriptors - parameters to be encoded in a command 339 * block. 340 */ 341 struct its_cmd_desc { 342 union { 343 struct { 344 struct its_device *dev; 345 u32 event_id; 346 } its_inv_cmd; 347 348 struct { 349 struct its_device *dev; 350 u32 event_id; 351 } its_clear_cmd; 352 353 struct { 354 struct its_device *dev; 355 u32 event_id; 356 } its_int_cmd; 357 358 struct { 359 struct its_device *dev; 360 int valid; 361 } its_mapd_cmd; 362 363 struct { 364 struct its_collection *col; 365 int valid; 366 } its_mapc_cmd; 367 368 struct { 369 struct its_device *dev; 370 u32 phys_id; 371 u32 event_id; 372 } its_mapti_cmd; 373 374 struct { 375 struct its_device *dev; 376 struct its_collection *col; 377 u32 event_id; 378 } its_movi_cmd; 379 380 struct { 381 struct its_device *dev; 382 u32 event_id; 383 } its_discard_cmd; 384 385 struct { 386 struct its_collection *col; 387 } its_invall_cmd; 388 389 struct { 390 struct its_vpe *vpe; 391 } its_vinvall_cmd; 392 393 struct { 394 struct its_vpe *vpe; 395 struct its_collection *col; 396 bool valid; 397 } its_vmapp_cmd; 398 399 struct { 400 struct its_vpe *vpe; 401 struct its_device *dev; 402 u32 virt_id; 403 u32 event_id; 404 bool db_enabled; 405 } its_vmapti_cmd; 406 407 struct { 408 struct its_vpe *vpe; 409 struct its_device *dev; 410 u32 event_id; 411 bool db_enabled; 412 } its_vmovi_cmd; 413 414 struct { 415 struct its_vpe *vpe; 416 struct its_collection *col; 417 u16 seq_num; 418 u16 its_list; 419 } its_vmovp_cmd; 420 421 struct { 422 struct its_vpe *vpe; 423 } its_invdb_cmd; 424 425 struct { 426 struct its_vpe *vpe; 427 u8 sgi; 428 u8 priority; 429 bool enable; 430 bool group; 431 bool clear; 432 } its_vsgi_cmd; 433 }; 434 }; 435 436 /* 437 * The ITS command block, which is what the ITS actually parses. 438 */ 439 struct its_cmd_block { 440 union { 441 u64 raw_cmd[4]; 442 __le64 raw_cmd_le[4]; 443 }; 444 }; 445 446 #define ITS_CMD_QUEUE_SZ SZ_64K 447 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) 448 449 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *, 450 struct its_cmd_block *, 451 struct its_cmd_desc *); 452 453 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *, 454 struct its_cmd_block *, 455 struct its_cmd_desc *); 456 457 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) 458 { 459 u64 mask = GENMASK_ULL(h, l); 460 *raw_cmd &= ~mask; 461 *raw_cmd |= (val << l) & mask; 462 } 463 464 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) 465 { 466 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); 467 } 468 469 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) 470 { 471 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); 472 } 473 474 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) 475 { 476 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); 477 } 478 479 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) 480 { 481 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); 482 } 483 484 static void its_encode_size(struct its_cmd_block *cmd, u8 size) 485 { 486 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); 487 } 488 489 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) 490 { 491 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); 492 } 493 494 static void its_encode_valid(struct its_cmd_block *cmd, int valid) 495 { 496 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); 497 } 498 499 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) 500 { 501 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); 502 } 503 504 static void its_encode_collection(struct its_cmd_block *cmd, u16 col) 505 { 506 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); 507 } 508 509 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) 510 { 511 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); 512 } 513 514 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) 515 { 516 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); 517 } 518 519 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) 520 { 521 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); 522 } 523 524 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) 525 { 526 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); 527 } 528 529 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) 530 { 531 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); 532 } 533 534 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) 535 { 536 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); 537 } 538 539 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) 540 { 541 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); 542 } 543 544 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) 545 { 546 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); 547 } 548 549 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa) 550 { 551 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16); 552 } 553 554 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc) 555 { 556 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8); 557 } 558 559 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz) 560 { 561 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9); 562 } 563 564 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd, 565 u32 vpe_db_lpi) 566 { 567 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0); 568 } 569 570 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd, 571 u32 vpe_db_lpi) 572 { 573 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0); 574 } 575 576 static void its_encode_db(struct its_cmd_block *cmd, bool db) 577 { 578 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63); 579 } 580 581 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi) 582 { 583 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32); 584 } 585 586 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio) 587 { 588 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20); 589 } 590 591 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp) 592 { 593 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10); 594 } 595 596 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr) 597 { 598 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9); 599 } 600 601 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en) 602 { 603 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8); 604 } 605 606 static inline void its_fixup_cmd(struct its_cmd_block *cmd) 607 { 608 /* Let's fixup BE commands */ 609 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]); 610 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]); 611 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]); 612 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]); 613 } 614 615 static struct its_collection *its_build_mapd_cmd(struct its_node *its, 616 struct its_cmd_block *cmd, 617 struct its_cmd_desc *desc) 618 { 619 unsigned long itt_addr; 620 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); 621 622 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); 623 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); 624 625 its_encode_cmd(cmd, GITS_CMD_MAPD); 626 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); 627 its_encode_size(cmd, size - 1); 628 its_encode_itt(cmd, itt_addr); 629 its_encode_valid(cmd, desc->its_mapd_cmd.valid); 630 631 its_fixup_cmd(cmd); 632 633 return NULL; 634 } 635 636 static struct its_collection *its_build_mapc_cmd(struct its_node *its, 637 struct its_cmd_block *cmd, 638 struct its_cmd_desc *desc) 639 { 640 its_encode_cmd(cmd, GITS_CMD_MAPC); 641 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 642 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); 643 its_encode_valid(cmd, desc->its_mapc_cmd.valid); 644 645 its_fixup_cmd(cmd); 646 647 return desc->its_mapc_cmd.col; 648 } 649 650 static struct its_collection *its_build_mapti_cmd(struct its_node *its, 651 struct its_cmd_block *cmd, 652 struct its_cmd_desc *desc) 653 { 654 struct its_collection *col; 655 656 col = dev_event_to_col(desc->its_mapti_cmd.dev, 657 desc->its_mapti_cmd.event_id); 658 659 its_encode_cmd(cmd, GITS_CMD_MAPTI); 660 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); 661 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); 662 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); 663 its_encode_collection(cmd, col->col_id); 664 665 its_fixup_cmd(cmd); 666 667 return valid_col(col); 668 } 669 670 static struct its_collection *its_build_movi_cmd(struct its_node *its, 671 struct its_cmd_block *cmd, 672 struct its_cmd_desc *desc) 673 { 674 struct its_collection *col; 675 676 col = dev_event_to_col(desc->its_movi_cmd.dev, 677 desc->its_movi_cmd.event_id); 678 679 its_encode_cmd(cmd, GITS_CMD_MOVI); 680 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); 681 its_encode_event_id(cmd, desc->its_movi_cmd.event_id); 682 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); 683 684 its_fixup_cmd(cmd); 685 686 return valid_col(col); 687 } 688 689 static struct its_collection *its_build_discard_cmd(struct its_node *its, 690 struct its_cmd_block *cmd, 691 struct its_cmd_desc *desc) 692 { 693 struct its_collection *col; 694 695 col = dev_event_to_col(desc->its_discard_cmd.dev, 696 desc->its_discard_cmd.event_id); 697 698 its_encode_cmd(cmd, GITS_CMD_DISCARD); 699 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); 700 its_encode_event_id(cmd, desc->its_discard_cmd.event_id); 701 702 its_fixup_cmd(cmd); 703 704 return valid_col(col); 705 } 706 707 static struct its_collection *its_build_inv_cmd(struct its_node *its, 708 struct its_cmd_block *cmd, 709 struct its_cmd_desc *desc) 710 { 711 struct its_collection *col; 712 713 col = dev_event_to_col(desc->its_inv_cmd.dev, 714 desc->its_inv_cmd.event_id); 715 716 its_encode_cmd(cmd, GITS_CMD_INV); 717 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 718 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 719 720 its_fixup_cmd(cmd); 721 722 return valid_col(col); 723 } 724 725 static struct its_collection *its_build_int_cmd(struct its_node *its, 726 struct its_cmd_block *cmd, 727 struct its_cmd_desc *desc) 728 { 729 struct its_collection *col; 730 731 col = dev_event_to_col(desc->its_int_cmd.dev, 732 desc->its_int_cmd.event_id); 733 734 its_encode_cmd(cmd, GITS_CMD_INT); 735 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 736 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 737 738 its_fixup_cmd(cmd); 739 740 return valid_col(col); 741 } 742 743 static struct its_collection *its_build_clear_cmd(struct its_node *its, 744 struct its_cmd_block *cmd, 745 struct its_cmd_desc *desc) 746 { 747 struct its_collection *col; 748 749 col = dev_event_to_col(desc->its_clear_cmd.dev, 750 desc->its_clear_cmd.event_id); 751 752 its_encode_cmd(cmd, GITS_CMD_CLEAR); 753 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 754 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 755 756 its_fixup_cmd(cmd); 757 758 return valid_col(col); 759 } 760 761 static struct its_collection *its_build_invall_cmd(struct its_node *its, 762 struct its_cmd_block *cmd, 763 struct its_cmd_desc *desc) 764 { 765 its_encode_cmd(cmd, GITS_CMD_INVALL); 766 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id); 767 768 its_fixup_cmd(cmd); 769 770 return desc->its_invall_cmd.col; 771 } 772 773 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its, 774 struct its_cmd_block *cmd, 775 struct its_cmd_desc *desc) 776 { 777 its_encode_cmd(cmd, GITS_CMD_VINVALL); 778 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); 779 780 its_fixup_cmd(cmd); 781 782 return valid_vpe(its, desc->its_vinvall_cmd.vpe); 783 } 784 785 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its, 786 struct its_cmd_block *cmd, 787 struct its_cmd_desc *desc) 788 { 789 struct its_vpe *vpe = valid_vpe(its, desc->its_vmapp_cmd.vpe); 790 unsigned long vpt_addr, vconf_addr; 791 u64 target; 792 bool alloc; 793 794 its_encode_cmd(cmd, GITS_CMD_VMAPP); 795 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); 796 its_encode_valid(cmd, desc->its_vmapp_cmd.valid); 797 798 if (!desc->its_vmapp_cmd.valid) { 799 if (is_v4_1(its)) { 800 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count); 801 its_encode_alloc(cmd, alloc); 802 /* 803 * Unmapping a VPE is self-synchronizing on GICv4.1, 804 * no need to issue a VSYNC. 805 */ 806 vpe = NULL; 807 } 808 809 goto out; 810 } 811 812 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); 813 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset; 814 815 its_encode_target(cmd, target); 816 its_encode_vpt_addr(cmd, vpt_addr); 817 its_encode_vpt_size(cmd, LPI_NRBITS - 1); 818 819 if (!is_v4_1(its)) 820 goto out; 821 822 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page)); 823 824 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count); 825 826 its_encode_alloc(cmd, alloc); 827 828 /* 829 * GICv4.1 provides a way to get the VLPI state, which needs the vPE 830 * to be unmapped first, and in this case, we may remap the vPE 831 * back while the VPT is not empty. So we can't assume that the 832 * VPT is empty on map. This is why we never advertise PTZ. 833 */ 834 its_encode_ptz(cmd, false); 835 its_encode_vconf_addr(cmd, vconf_addr); 836 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi); 837 838 out: 839 its_fixup_cmd(cmd); 840 841 return vpe; 842 } 843 844 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its, 845 struct its_cmd_block *cmd, 846 struct its_cmd_desc *desc) 847 { 848 u32 db; 849 850 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled) 851 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; 852 else 853 db = 1023; 854 855 its_encode_cmd(cmd, GITS_CMD_VMAPTI); 856 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); 857 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); 858 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); 859 its_encode_db_phys_id(cmd, db); 860 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); 861 862 its_fixup_cmd(cmd); 863 864 return valid_vpe(its, desc->its_vmapti_cmd.vpe); 865 } 866 867 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its, 868 struct its_cmd_block *cmd, 869 struct its_cmd_desc *desc) 870 { 871 u32 db; 872 873 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled) 874 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; 875 else 876 db = 1023; 877 878 its_encode_cmd(cmd, GITS_CMD_VMOVI); 879 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); 880 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); 881 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); 882 its_encode_db_phys_id(cmd, db); 883 its_encode_db_valid(cmd, true); 884 885 its_fixup_cmd(cmd); 886 887 return valid_vpe(its, desc->its_vmovi_cmd.vpe); 888 } 889 890 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its, 891 struct its_cmd_block *cmd, 892 struct its_cmd_desc *desc) 893 { 894 u64 target; 895 896 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset; 897 its_encode_cmd(cmd, GITS_CMD_VMOVP); 898 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); 899 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); 900 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); 901 its_encode_target(cmd, target); 902 903 if (is_v4_1(its)) { 904 its_encode_db(cmd, true); 905 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi); 906 } 907 908 its_fixup_cmd(cmd); 909 910 return valid_vpe(its, desc->its_vmovp_cmd.vpe); 911 } 912 913 static struct its_vpe *its_build_vinv_cmd(struct its_node *its, 914 struct its_cmd_block *cmd, 915 struct its_cmd_desc *desc) 916 { 917 struct its_vlpi_map *map; 918 919 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev, 920 desc->its_inv_cmd.event_id); 921 922 its_encode_cmd(cmd, GITS_CMD_INV); 923 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 924 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 925 926 its_fixup_cmd(cmd); 927 928 return valid_vpe(its, map->vpe); 929 } 930 931 static struct its_vpe *its_build_vint_cmd(struct its_node *its, 932 struct its_cmd_block *cmd, 933 struct its_cmd_desc *desc) 934 { 935 struct its_vlpi_map *map; 936 937 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev, 938 desc->its_int_cmd.event_id); 939 940 its_encode_cmd(cmd, GITS_CMD_INT); 941 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 942 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 943 944 its_fixup_cmd(cmd); 945 946 return valid_vpe(its, map->vpe); 947 } 948 949 static struct its_vpe *its_build_vclear_cmd(struct its_node *its, 950 struct its_cmd_block *cmd, 951 struct its_cmd_desc *desc) 952 { 953 struct its_vlpi_map *map; 954 955 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev, 956 desc->its_clear_cmd.event_id); 957 958 its_encode_cmd(cmd, GITS_CMD_CLEAR); 959 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 960 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 961 962 its_fixup_cmd(cmd); 963 964 return valid_vpe(its, map->vpe); 965 } 966 967 static struct its_vpe *its_build_invdb_cmd(struct its_node *its, 968 struct its_cmd_block *cmd, 969 struct its_cmd_desc *desc) 970 { 971 if (WARN_ON(!is_v4_1(its))) 972 return NULL; 973 974 its_encode_cmd(cmd, GITS_CMD_INVDB); 975 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id); 976 977 its_fixup_cmd(cmd); 978 979 return valid_vpe(its, desc->its_invdb_cmd.vpe); 980 } 981 982 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its, 983 struct its_cmd_block *cmd, 984 struct its_cmd_desc *desc) 985 { 986 if (WARN_ON(!is_v4_1(its))) 987 return NULL; 988 989 its_encode_cmd(cmd, GITS_CMD_VSGI); 990 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id); 991 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi); 992 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority); 993 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group); 994 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear); 995 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable); 996 997 its_fixup_cmd(cmd); 998 999 return valid_vpe(its, desc->its_vsgi_cmd.vpe); 1000 } 1001 1002 static u64 its_cmd_ptr_to_offset(struct its_node *its, 1003 struct its_cmd_block *ptr) 1004 { 1005 return (ptr - its->cmd_base) * sizeof(*ptr); 1006 } 1007 1008 static int its_queue_full(struct its_node *its) 1009 { 1010 int widx; 1011 int ridx; 1012 1013 widx = its->cmd_write - its->cmd_base; 1014 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); 1015 1016 /* This is incredibly unlikely to happen, unless the ITS locks up. */ 1017 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) 1018 return 1; 1019 1020 return 0; 1021 } 1022 1023 static struct its_cmd_block *its_allocate_entry(struct its_node *its) 1024 { 1025 struct its_cmd_block *cmd; 1026 u32 count = 1000000; /* 1s! */ 1027 1028 while (its_queue_full(its)) { 1029 count--; 1030 if (!count) { 1031 pr_err_ratelimited("ITS queue not draining\n"); 1032 return NULL; 1033 } 1034 cpu_relax(); 1035 udelay(1); 1036 } 1037 1038 cmd = its->cmd_write++; 1039 1040 /* Handle queue wrapping */ 1041 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) 1042 its->cmd_write = its->cmd_base; 1043 1044 /* Clear command */ 1045 cmd->raw_cmd[0] = 0; 1046 cmd->raw_cmd[1] = 0; 1047 cmd->raw_cmd[2] = 0; 1048 cmd->raw_cmd[3] = 0; 1049 1050 return cmd; 1051 } 1052 1053 static struct its_cmd_block *its_post_commands(struct its_node *its) 1054 { 1055 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); 1056 1057 writel_relaxed(wr, its->base + GITS_CWRITER); 1058 1059 return its->cmd_write; 1060 } 1061 1062 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) 1063 { 1064 /* 1065 * Make sure the commands written to memory are observable by 1066 * the ITS. 1067 */ 1068 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) 1069 gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); 1070 else 1071 dsb(ishst); 1072 } 1073 1074 static int its_wait_for_range_completion(struct its_node *its, 1075 u64 prev_idx, 1076 struct its_cmd_block *to) 1077 { 1078 u64 rd_idx, to_idx, linear_idx; 1079 u32 count = 1000000; /* 1s! */ 1080 1081 /* Linearize to_idx if the command set has wrapped around */ 1082 to_idx = its_cmd_ptr_to_offset(its, to); 1083 if (to_idx < prev_idx) 1084 to_idx += ITS_CMD_QUEUE_SZ; 1085 1086 linear_idx = prev_idx; 1087 1088 while (1) { 1089 s64 delta; 1090 1091 rd_idx = readl_relaxed(its->base + GITS_CREADR); 1092 1093 /* 1094 * Compute the read pointer progress, taking the 1095 * potential wrap-around into account. 1096 */ 1097 delta = rd_idx - prev_idx; 1098 if (rd_idx < prev_idx) 1099 delta += ITS_CMD_QUEUE_SZ; 1100 1101 linear_idx += delta; 1102 if (linear_idx >= to_idx) 1103 break; 1104 1105 count--; 1106 if (!count) { 1107 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n", 1108 to_idx, linear_idx); 1109 return -1; 1110 } 1111 prev_idx = rd_idx; 1112 cpu_relax(); 1113 udelay(1); 1114 } 1115 1116 return 0; 1117 } 1118 1119 /* Warning, macro hell follows */ 1120 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \ 1121 void name(struct its_node *its, \ 1122 buildtype builder, \ 1123 struct its_cmd_desc *desc) \ 1124 { \ 1125 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \ 1126 synctype *sync_obj; \ 1127 unsigned long flags; \ 1128 u64 rd_idx; \ 1129 \ 1130 raw_spin_lock_irqsave(&its->lock, flags); \ 1131 \ 1132 cmd = its_allocate_entry(its); \ 1133 if (!cmd) { /* We're soooooo screewed... */ \ 1134 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1135 return; \ 1136 } \ 1137 sync_obj = builder(its, cmd, desc); \ 1138 its_flush_cmd(its, cmd); \ 1139 \ 1140 if (sync_obj) { \ 1141 sync_cmd = its_allocate_entry(its); \ 1142 if (!sync_cmd) \ 1143 goto post; \ 1144 \ 1145 buildfn(its, sync_cmd, sync_obj); \ 1146 its_flush_cmd(its, sync_cmd); \ 1147 } \ 1148 \ 1149 post: \ 1150 rd_idx = readl_relaxed(its->base + GITS_CREADR); \ 1151 next_cmd = its_post_commands(its); \ 1152 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1153 \ 1154 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \ 1155 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \ 1156 } 1157 1158 static void its_build_sync_cmd(struct its_node *its, 1159 struct its_cmd_block *sync_cmd, 1160 struct its_collection *sync_col) 1161 { 1162 its_encode_cmd(sync_cmd, GITS_CMD_SYNC); 1163 its_encode_target(sync_cmd, sync_col->target_address); 1164 1165 its_fixup_cmd(sync_cmd); 1166 } 1167 1168 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, 1169 struct its_collection, its_build_sync_cmd) 1170 1171 static void its_build_vsync_cmd(struct its_node *its, 1172 struct its_cmd_block *sync_cmd, 1173 struct its_vpe *sync_vpe) 1174 { 1175 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); 1176 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); 1177 1178 its_fixup_cmd(sync_cmd); 1179 } 1180 1181 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, 1182 struct its_vpe, its_build_vsync_cmd) 1183 1184 static void its_send_int(struct its_device *dev, u32 event_id) 1185 { 1186 struct its_cmd_desc desc; 1187 1188 desc.its_int_cmd.dev = dev; 1189 desc.its_int_cmd.event_id = event_id; 1190 1191 its_send_single_command(dev->its, its_build_int_cmd, &desc); 1192 } 1193 1194 static void its_send_clear(struct its_device *dev, u32 event_id) 1195 { 1196 struct its_cmd_desc desc; 1197 1198 desc.its_clear_cmd.dev = dev; 1199 desc.its_clear_cmd.event_id = event_id; 1200 1201 its_send_single_command(dev->its, its_build_clear_cmd, &desc); 1202 } 1203 1204 static void its_send_inv(struct its_device *dev, u32 event_id) 1205 { 1206 struct its_cmd_desc desc; 1207 1208 desc.its_inv_cmd.dev = dev; 1209 desc.its_inv_cmd.event_id = event_id; 1210 1211 its_send_single_command(dev->its, its_build_inv_cmd, &desc); 1212 } 1213 1214 static void its_send_mapd(struct its_device *dev, int valid) 1215 { 1216 struct its_cmd_desc desc; 1217 1218 desc.its_mapd_cmd.dev = dev; 1219 desc.its_mapd_cmd.valid = !!valid; 1220 1221 its_send_single_command(dev->its, its_build_mapd_cmd, &desc); 1222 } 1223 1224 static void its_send_mapc(struct its_node *its, struct its_collection *col, 1225 int valid) 1226 { 1227 struct its_cmd_desc desc; 1228 1229 desc.its_mapc_cmd.col = col; 1230 desc.its_mapc_cmd.valid = !!valid; 1231 1232 its_send_single_command(its, its_build_mapc_cmd, &desc); 1233 } 1234 1235 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) 1236 { 1237 struct its_cmd_desc desc; 1238 1239 desc.its_mapti_cmd.dev = dev; 1240 desc.its_mapti_cmd.phys_id = irq_id; 1241 desc.its_mapti_cmd.event_id = id; 1242 1243 its_send_single_command(dev->its, its_build_mapti_cmd, &desc); 1244 } 1245 1246 static void its_send_movi(struct its_device *dev, 1247 struct its_collection *col, u32 id) 1248 { 1249 struct its_cmd_desc desc; 1250 1251 desc.its_movi_cmd.dev = dev; 1252 desc.its_movi_cmd.col = col; 1253 desc.its_movi_cmd.event_id = id; 1254 1255 its_send_single_command(dev->its, its_build_movi_cmd, &desc); 1256 } 1257 1258 static void its_send_discard(struct its_device *dev, u32 id) 1259 { 1260 struct its_cmd_desc desc; 1261 1262 desc.its_discard_cmd.dev = dev; 1263 desc.its_discard_cmd.event_id = id; 1264 1265 its_send_single_command(dev->its, its_build_discard_cmd, &desc); 1266 } 1267 1268 static void its_send_invall(struct its_node *its, struct its_collection *col) 1269 { 1270 struct its_cmd_desc desc; 1271 1272 desc.its_invall_cmd.col = col; 1273 1274 its_send_single_command(its, its_build_invall_cmd, &desc); 1275 } 1276 1277 static void its_send_vmapti(struct its_device *dev, u32 id) 1278 { 1279 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1280 struct its_cmd_desc desc; 1281 1282 desc.its_vmapti_cmd.vpe = map->vpe; 1283 desc.its_vmapti_cmd.dev = dev; 1284 desc.its_vmapti_cmd.virt_id = map->vintid; 1285 desc.its_vmapti_cmd.event_id = id; 1286 desc.its_vmapti_cmd.db_enabled = map->db_enabled; 1287 1288 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); 1289 } 1290 1291 static void its_send_vmovi(struct its_device *dev, u32 id) 1292 { 1293 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1294 struct its_cmd_desc desc; 1295 1296 desc.its_vmovi_cmd.vpe = map->vpe; 1297 desc.its_vmovi_cmd.dev = dev; 1298 desc.its_vmovi_cmd.event_id = id; 1299 desc.its_vmovi_cmd.db_enabled = map->db_enabled; 1300 1301 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); 1302 } 1303 1304 static void its_send_vmapp(struct its_node *its, 1305 struct its_vpe *vpe, bool valid) 1306 { 1307 struct its_cmd_desc desc; 1308 1309 desc.its_vmapp_cmd.vpe = vpe; 1310 desc.its_vmapp_cmd.valid = valid; 1311 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; 1312 1313 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); 1314 } 1315 1316 static void its_send_vmovp(struct its_vpe *vpe) 1317 { 1318 struct its_cmd_desc desc = {}; 1319 struct its_node *its; 1320 unsigned long flags; 1321 int col_id = vpe->col_idx; 1322 1323 desc.its_vmovp_cmd.vpe = vpe; 1324 1325 if (!its_list_map) { 1326 its = list_first_entry(&its_nodes, struct its_node, entry); 1327 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1328 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1329 return; 1330 } 1331 1332 /* 1333 * Yet another marvel of the architecture. If using the 1334 * its_list "feature", we need to make sure that all ITSs 1335 * receive all VMOVP commands in the same order. The only way 1336 * to guarantee this is to make vmovp a serialization point. 1337 * 1338 * Wall <-- Head. 1339 */ 1340 raw_spin_lock_irqsave(&vmovp_lock, flags); 1341 1342 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; 1343 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm); 1344 1345 /* Emit VMOVPs */ 1346 list_for_each_entry(its, &its_nodes, entry) { 1347 if (!is_v4(its)) 1348 continue; 1349 1350 if (!require_its_list_vmovp(vpe->its_vm, its)) 1351 continue; 1352 1353 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1354 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1355 } 1356 1357 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1358 } 1359 1360 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe) 1361 { 1362 struct its_cmd_desc desc; 1363 1364 desc.its_vinvall_cmd.vpe = vpe; 1365 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); 1366 } 1367 1368 static void its_send_vinv(struct its_device *dev, u32 event_id) 1369 { 1370 struct its_cmd_desc desc; 1371 1372 /* 1373 * There is no real VINV command. This is just a normal INV, 1374 * with a VSYNC instead of a SYNC. 1375 */ 1376 desc.its_inv_cmd.dev = dev; 1377 desc.its_inv_cmd.event_id = event_id; 1378 1379 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc); 1380 } 1381 1382 static void its_send_vint(struct its_device *dev, u32 event_id) 1383 { 1384 struct its_cmd_desc desc; 1385 1386 /* 1387 * There is no real VINT command. This is just a normal INT, 1388 * with a VSYNC instead of a SYNC. 1389 */ 1390 desc.its_int_cmd.dev = dev; 1391 desc.its_int_cmd.event_id = event_id; 1392 1393 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc); 1394 } 1395 1396 static void its_send_vclear(struct its_device *dev, u32 event_id) 1397 { 1398 struct its_cmd_desc desc; 1399 1400 /* 1401 * There is no real VCLEAR command. This is just a normal CLEAR, 1402 * with a VSYNC instead of a SYNC. 1403 */ 1404 desc.its_clear_cmd.dev = dev; 1405 desc.its_clear_cmd.event_id = event_id; 1406 1407 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc); 1408 } 1409 1410 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe) 1411 { 1412 struct its_cmd_desc desc; 1413 1414 desc.its_invdb_cmd.vpe = vpe; 1415 its_send_single_vcommand(its, its_build_invdb_cmd, &desc); 1416 } 1417 1418 /* 1419 * irqchip functions - assumes MSI, mostly. 1420 */ 1421 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) 1422 { 1423 struct its_vlpi_map *map = get_vlpi_map(d); 1424 irq_hw_number_t hwirq; 1425 void *va; 1426 u8 *cfg; 1427 1428 if (map) { 1429 va = page_address(map->vm->vprop_page); 1430 hwirq = map->vintid; 1431 1432 /* Remember the updated property */ 1433 map->properties &= ~clr; 1434 map->properties |= set | LPI_PROP_GROUP1; 1435 } else { 1436 va = gic_rdists->prop_table_va; 1437 hwirq = d->hwirq; 1438 } 1439 1440 cfg = va + hwirq - 8192; 1441 *cfg &= ~clr; 1442 *cfg |= set | LPI_PROP_GROUP1; 1443 1444 /* 1445 * Make the above write visible to the redistributors. 1446 * And yes, we're flushing exactly: One. Single. Byte. 1447 * Humpf... 1448 */ 1449 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) 1450 gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); 1451 else 1452 dsb(ishst); 1453 } 1454 1455 static void wait_for_syncr(void __iomem *rdbase) 1456 { 1457 while (readl_relaxed(rdbase + GICR_SYNCR) & 1) 1458 cpu_relax(); 1459 } 1460 1461 static void __direct_lpi_inv(struct irq_data *d, u64 val) 1462 { 1463 void __iomem *rdbase; 1464 unsigned long flags; 1465 int cpu; 1466 1467 /* Target the redistributor this LPI is currently routed to */ 1468 cpu = irq_to_cpuid_lock(d, &flags); 1469 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 1470 1471 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 1472 gic_write_lpir(val, rdbase + GICR_INVLPIR); 1473 wait_for_syncr(rdbase); 1474 1475 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 1476 irq_to_cpuid_unlock(d, flags); 1477 } 1478 1479 static void direct_lpi_inv(struct irq_data *d) 1480 { 1481 struct its_vlpi_map *map = get_vlpi_map(d); 1482 u64 val; 1483 1484 if (map) { 1485 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1486 1487 WARN_ON(!is_v4_1(its_dev->its)); 1488 1489 val = GICR_INVLPIR_V; 1490 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id); 1491 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid); 1492 } else { 1493 val = d->hwirq; 1494 } 1495 1496 __direct_lpi_inv(d, val); 1497 } 1498 1499 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) 1500 { 1501 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1502 1503 lpi_write_config(d, clr, set); 1504 if (gic_rdists->has_direct_lpi && 1505 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d))) 1506 direct_lpi_inv(d); 1507 else if (!irqd_is_forwarded_to_vcpu(d)) 1508 its_send_inv(its_dev, its_get_event_id(d)); 1509 else 1510 its_send_vinv(its_dev, its_get_event_id(d)); 1511 } 1512 1513 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) 1514 { 1515 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1516 u32 event = its_get_event_id(d); 1517 struct its_vlpi_map *map; 1518 1519 /* 1520 * GICv4.1 does away with the per-LPI nonsense, nothing to do 1521 * here. 1522 */ 1523 if (is_v4_1(its_dev->its)) 1524 return; 1525 1526 map = dev_event_to_vlpi_map(its_dev, event); 1527 1528 if (map->db_enabled == enable) 1529 return; 1530 1531 map->db_enabled = enable; 1532 1533 /* 1534 * More fun with the architecture: 1535 * 1536 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI 1537 * value or to 1023, depending on the enable bit. But that 1538 * would be issuing a mapping for an /existing/ DevID+EventID 1539 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI 1540 * to the /same/ vPE, using this opportunity to adjust the 1541 * doorbell. Mouahahahaha. We loves it, Precious. 1542 */ 1543 its_send_vmovi(its_dev, event); 1544 } 1545 1546 static void its_mask_irq(struct irq_data *d) 1547 { 1548 if (irqd_is_forwarded_to_vcpu(d)) 1549 its_vlpi_set_doorbell(d, false); 1550 1551 lpi_update_config(d, LPI_PROP_ENABLED, 0); 1552 } 1553 1554 static void its_unmask_irq(struct irq_data *d) 1555 { 1556 if (irqd_is_forwarded_to_vcpu(d)) 1557 its_vlpi_set_doorbell(d, true); 1558 1559 lpi_update_config(d, 0, LPI_PROP_ENABLED); 1560 } 1561 1562 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu) 1563 { 1564 if (irqd_affinity_is_managed(d)) 1565 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1566 1567 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1568 } 1569 1570 static void its_inc_lpi_count(struct irq_data *d, int cpu) 1571 { 1572 if (irqd_affinity_is_managed(d)) 1573 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1574 else 1575 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1576 } 1577 1578 static void its_dec_lpi_count(struct irq_data *d, int cpu) 1579 { 1580 if (irqd_affinity_is_managed(d)) 1581 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1582 else 1583 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1584 } 1585 1586 static unsigned int cpumask_pick_least_loaded(struct irq_data *d, 1587 const struct cpumask *cpu_mask) 1588 { 1589 unsigned int cpu = nr_cpu_ids, tmp; 1590 int count = S32_MAX; 1591 1592 for_each_cpu(tmp, cpu_mask) { 1593 int this_count = its_read_lpi_count(d, tmp); 1594 if (this_count < count) { 1595 cpu = tmp; 1596 count = this_count; 1597 } 1598 } 1599 1600 return cpu; 1601 } 1602 1603 /* 1604 * As suggested by Thomas Gleixner in: 1605 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de 1606 */ 1607 static int its_select_cpu(struct irq_data *d, 1608 const struct cpumask *aff_mask) 1609 { 1610 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1611 static DEFINE_RAW_SPINLOCK(tmpmask_lock); 1612 static struct cpumask __tmpmask; 1613 struct cpumask *tmpmask; 1614 unsigned long flags; 1615 int cpu, node; 1616 node = its_dev->its->numa_node; 1617 tmpmask = &__tmpmask; 1618 1619 raw_spin_lock_irqsave(&tmpmask_lock, flags); 1620 1621 if (!irqd_affinity_is_managed(d)) { 1622 /* First try the NUMA node */ 1623 if (node != NUMA_NO_NODE) { 1624 /* 1625 * Try the intersection of the affinity mask and the 1626 * node mask (and the online mask, just to be safe). 1627 */ 1628 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask); 1629 cpumask_and(tmpmask, tmpmask, cpu_online_mask); 1630 1631 /* 1632 * Ideally, we would check if the mask is empty, and 1633 * try again on the full node here. 1634 * 1635 * But it turns out that the way ACPI describes the 1636 * affinity for ITSs only deals about memory, and 1637 * not target CPUs, so it cannot describe a single 1638 * ITS placed next to two NUMA nodes. 1639 * 1640 * Instead, just fallback on the online mask. This 1641 * diverges from Thomas' suggestion above. 1642 */ 1643 cpu = cpumask_pick_least_loaded(d, tmpmask); 1644 if (cpu < nr_cpu_ids) 1645 goto out; 1646 1647 /* If we can't cross sockets, give up */ 1648 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)) 1649 goto out; 1650 1651 /* If the above failed, expand the search */ 1652 } 1653 1654 /* Try the intersection of the affinity and online masks */ 1655 cpumask_and(tmpmask, aff_mask, cpu_online_mask); 1656 1657 /* If that doesn't fly, the online mask is the last resort */ 1658 if (cpumask_empty(tmpmask)) 1659 cpumask_copy(tmpmask, cpu_online_mask); 1660 1661 cpu = cpumask_pick_least_loaded(d, tmpmask); 1662 } else { 1663 cpumask_copy(tmpmask, aff_mask); 1664 1665 /* If we cannot cross sockets, limit the search to that node */ 1666 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) && 1667 node != NUMA_NO_NODE) 1668 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node)); 1669 1670 cpu = cpumask_pick_least_loaded(d, tmpmask); 1671 } 1672 out: 1673 raw_spin_unlock_irqrestore(&tmpmask_lock, flags); 1674 1675 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu); 1676 return cpu; 1677 } 1678 1679 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 1680 bool force) 1681 { 1682 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1683 struct its_collection *target_col; 1684 u32 id = its_get_event_id(d); 1685 int cpu, prev_cpu; 1686 1687 /* A forwarded interrupt should use irq_set_vcpu_affinity */ 1688 if (irqd_is_forwarded_to_vcpu(d)) 1689 return -EINVAL; 1690 1691 prev_cpu = its_dev->event_map.col_map[id]; 1692 its_dec_lpi_count(d, prev_cpu); 1693 1694 if (!force) 1695 cpu = its_select_cpu(d, mask_val); 1696 else 1697 cpu = cpumask_pick_least_loaded(d, mask_val); 1698 1699 if (cpu < 0 || cpu >= nr_cpu_ids) 1700 goto err; 1701 1702 /* don't set the affinity when the target cpu is same as current one */ 1703 if (cpu != prev_cpu) { 1704 target_col = &its_dev->its->collections[cpu]; 1705 its_send_movi(its_dev, target_col, id); 1706 its_dev->event_map.col_map[id] = cpu; 1707 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 1708 } 1709 1710 its_inc_lpi_count(d, cpu); 1711 1712 return IRQ_SET_MASK_OK_DONE; 1713 1714 err: 1715 its_inc_lpi_count(d, prev_cpu); 1716 return -EINVAL; 1717 } 1718 1719 static u64 its_irq_get_msi_base(struct its_device *its_dev) 1720 { 1721 struct its_node *its = its_dev->its; 1722 1723 return its->phys_base + GITS_TRANSLATER; 1724 } 1725 1726 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) 1727 { 1728 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1729 struct its_node *its; 1730 u64 addr; 1731 1732 its = its_dev->its; 1733 addr = its->get_msi_base(its_dev); 1734 1735 msg->address_lo = lower_32_bits(addr); 1736 msg->address_hi = upper_32_bits(addr); 1737 msg->data = its_get_event_id(d); 1738 1739 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg); 1740 } 1741 1742 static int its_irq_set_irqchip_state(struct irq_data *d, 1743 enum irqchip_irq_state which, 1744 bool state) 1745 { 1746 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1747 u32 event = its_get_event_id(d); 1748 1749 if (which != IRQCHIP_STATE_PENDING) 1750 return -EINVAL; 1751 1752 if (irqd_is_forwarded_to_vcpu(d)) { 1753 if (state) 1754 its_send_vint(its_dev, event); 1755 else 1756 its_send_vclear(its_dev, event); 1757 } else { 1758 if (state) 1759 its_send_int(its_dev, event); 1760 else 1761 its_send_clear(its_dev, event); 1762 } 1763 1764 return 0; 1765 } 1766 1767 static int its_irq_retrigger(struct irq_data *d) 1768 { 1769 return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 1770 } 1771 1772 /* 1773 * Two favourable cases: 1774 * 1775 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times 1776 * for vSGI delivery 1777 * 1778 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough 1779 * and we're better off mapping all VPEs always 1780 * 1781 * If neither (a) nor (b) is true, then we map vPEs on demand. 1782 * 1783 */ 1784 static bool gic_requires_eager_mapping(void) 1785 { 1786 if (!its_list_map || gic_rdists->has_rvpeid) 1787 return true; 1788 1789 return false; 1790 } 1791 1792 static void its_map_vm(struct its_node *its, struct its_vm *vm) 1793 { 1794 unsigned long flags; 1795 1796 if (gic_requires_eager_mapping()) 1797 return; 1798 1799 raw_spin_lock_irqsave(&vmovp_lock, flags); 1800 1801 /* 1802 * If the VM wasn't mapped yet, iterate over the vpes and get 1803 * them mapped now. 1804 */ 1805 vm->vlpi_count[its->list_nr]++; 1806 1807 if (vm->vlpi_count[its->list_nr] == 1) { 1808 int i; 1809 1810 for (i = 0; i < vm->nr_vpes; i++) { 1811 struct its_vpe *vpe = vm->vpes[i]; 1812 struct irq_data *d = irq_get_irq_data(vpe->irq); 1813 1814 /* Map the VPE to the first possible CPU */ 1815 vpe->col_idx = cpumask_first(cpu_online_mask); 1816 its_send_vmapp(its, vpe, true); 1817 its_send_vinvall(its, vpe); 1818 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 1819 } 1820 } 1821 1822 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1823 } 1824 1825 static void its_unmap_vm(struct its_node *its, struct its_vm *vm) 1826 { 1827 unsigned long flags; 1828 1829 /* Not using the ITS list? Everything is always mapped. */ 1830 if (gic_requires_eager_mapping()) 1831 return; 1832 1833 raw_spin_lock_irqsave(&vmovp_lock, flags); 1834 1835 if (!--vm->vlpi_count[its->list_nr]) { 1836 int i; 1837 1838 for (i = 0; i < vm->nr_vpes; i++) 1839 its_send_vmapp(its, vm->vpes[i], false); 1840 } 1841 1842 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1843 } 1844 1845 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) 1846 { 1847 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1848 u32 event = its_get_event_id(d); 1849 1850 if (!info->map) 1851 return -EINVAL; 1852 1853 if (!its_dev->event_map.vm) { 1854 struct its_vlpi_map *maps; 1855 1856 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps), 1857 GFP_ATOMIC); 1858 if (!maps) 1859 return -ENOMEM; 1860 1861 its_dev->event_map.vm = info->map->vm; 1862 its_dev->event_map.vlpi_maps = maps; 1863 } else if (its_dev->event_map.vm != info->map->vm) { 1864 return -EINVAL; 1865 } 1866 1867 /* Get our private copy of the mapping information */ 1868 its_dev->event_map.vlpi_maps[event] = *info->map; 1869 1870 if (irqd_is_forwarded_to_vcpu(d)) { 1871 /* Already mapped, move it around */ 1872 its_send_vmovi(its_dev, event); 1873 } else { 1874 /* Ensure all the VPEs are mapped on this ITS */ 1875 its_map_vm(its_dev->its, info->map->vm); 1876 1877 /* 1878 * Flag the interrupt as forwarded so that we can 1879 * start poking the virtual property table. 1880 */ 1881 irqd_set_forwarded_to_vcpu(d); 1882 1883 /* Write out the property to the prop table */ 1884 lpi_write_config(d, 0xff, info->map->properties); 1885 1886 /* Drop the physical mapping */ 1887 its_send_discard(its_dev, event); 1888 1889 /* and install the virtual one */ 1890 its_send_vmapti(its_dev, event); 1891 1892 /* Increment the number of VLPIs */ 1893 its_dev->event_map.nr_vlpis++; 1894 } 1895 1896 return 0; 1897 } 1898 1899 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) 1900 { 1901 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1902 struct its_vlpi_map *map; 1903 1904 map = get_vlpi_map(d); 1905 1906 if (!its_dev->event_map.vm || !map) 1907 return -EINVAL; 1908 1909 /* Copy our mapping information to the incoming request */ 1910 *info->map = *map; 1911 1912 return 0; 1913 } 1914 1915 static int its_vlpi_unmap(struct irq_data *d) 1916 { 1917 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1918 u32 event = its_get_event_id(d); 1919 1920 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 1921 return -EINVAL; 1922 1923 /* Drop the virtual mapping */ 1924 its_send_discard(its_dev, event); 1925 1926 /* and restore the physical one */ 1927 irqd_clr_forwarded_to_vcpu(d); 1928 its_send_mapti(its_dev, d->hwirq, event); 1929 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO | 1930 LPI_PROP_ENABLED | 1931 LPI_PROP_GROUP1)); 1932 1933 /* Potentially unmap the VM from this ITS */ 1934 its_unmap_vm(its_dev->its, its_dev->event_map.vm); 1935 1936 /* 1937 * Drop the refcount and make the device available again if 1938 * this was the last VLPI. 1939 */ 1940 if (!--its_dev->event_map.nr_vlpis) { 1941 its_dev->event_map.vm = NULL; 1942 kfree(its_dev->event_map.vlpi_maps); 1943 } 1944 1945 return 0; 1946 } 1947 1948 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) 1949 { 1950 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1951 1952 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 1953 return -EINVAL; 1954 1955 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) 1956 lpi_update_config(d, 0xff, info->config); 1957 else 1958 lpi_write_config(d, 0xff, info->config); 1959 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); 1960 1961 return 0; 1962 } 1963 1964 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 1965 { 1966 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1967 struct its_cmd_info *info = vcpu_info; 1968 1969 /* Need a v4 ITS */ 1970 if (!is_v4(its_dev->its)) 1971 return -EINVAL; 1972 1973 guard(raw_spinlock_irq)(&its_dev->event_map.vlpi_lock); 1974 1975 /* Unmap request? */ 1976 if (!info) 1977 return its_vlpi_unmap(d); 1978 1979 switch (info->cmd_type) { 1980 case MAP_VLPI: 1981 return its_vlpi_map(d, info); 1982 1983 case GET_VLPI: 1984 return its_vlpi_get(d, info); 1985 1986 case PROP_UPDATE_VLPI: 1987 case PROP_UPDATE_AND_INV_VLPI: 1988 return its_vlpi_prop_update(d, info); 1989 1990 default: 1991 return -EINVAL; 1992 } 1993 } 1994 1995 static struct irq_chip its_irq_chip = { 1996 .name = "ITS", 1997 .irq_mask = its_mask_irq, 1998 .irq_unmask = its_unmask_irq, 1999 .irq_eoi = irq_chip_eoi_parent, 2000 .irq_set_affinity = its_set_affinity, 2001 .irq_compose_msi_msg = its_irq_compose_msi_msg, 2002 .irq_set_irqchip_state = its_irq_set_irqchip_state, 2003 .irq_retrigger = its_irq_retrigger, 2004 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity, 2005 }; 2006 2007 2008 /* 2009 * How we allocate LPIs: 2010 * 2011 * lpi_range_list contains ranges of LPIs that are to available to 2012 * allocate from. To allocate LPIs, just pick the first range that 2013 * fits the required allocation, and reduce it by the required 2014 * amount. Once empty, remove the range from the list. 2015 * 2016 * To free a range of LPIs, add a free range to the list, sort it and 2017 * merge the result if the new range happens to be adjacent to an 2018 * already free block. 2019 * 2020 * The consequence of the above is that allocation is cost is low, but 2021 * freeing is expensive. We assumes that freeing rarely occurs. 2022 */ 2023 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */ 2024 2025 static DEFINE_MUTEX(lpi_range_lock); 2026 static LIST_HEAD(lpi_range_list); 2027 2028 struct lpi_range { 2029 struct list_head entry; 2030 u32 base_id; 2031 u32 span; 2032 }; 2033 2034 static struct lpi_range *mk_lpi_range(u32 base, u32 span) 2035 { 2036 struct lpi_range *range; 2037 2038 range = kmalloc(sizeof(*range), GFP_KERNEL); 2039 if (range) { 2040 range->base_id = base; 2041 range->span = span; 2042 } 2043 2044 return range; 2045 } 2046 2047 static int alloc_lpi_range(u32 nr_lpis, u32 *base) 2048 { 2049 struct lpi_range *range, *tmp; 2050 int err = -ENOSPC; 2051 2052 mutex_lock(&lpi_range_lock); 2053 2054 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { 2055 if (range->span >= nr_lpis) { 2056 *base = range->base_id; 2057 range->base_id += nr_lpis; 2058 range->span -= nr_lpis; 2059 2060 if (range->span == 0) { 2061 list_del(&range->entry); 2062 kfree(range); 2063 } 2064 2065 err = 0; 2066 break; 2067 } 2068 } 2069 2070 mutex_unlock(&lpi_range_lock); 2071 2072 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis); 2073 return err; 2074 } 2075 2076 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b) 2077 { 2078 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list) 2079 return; 2080 if (a->base_id + a->span != b->base_id) 2081 return; 2082 b->base_id = a->base_id; 2083 b->span += a->span; 2084 list_del(&a->entry); 2085 kfree(a); 2086 } 2087 2088 static int free_lpi_range(u32 base, u32 nr_lpis) 2089 { 2090 struct lpi_range *new, *old; 2091 2092 new = mk_lpi_range(base, nr_lpis); 2093 if (!new) 2094 return -ENOMEM; 2095 2096 mutex_lock(&lpi_range_lock); 2097 2098 list_for_each_entry_reverse(old, &lpi_range_list, entry) { 2099 if (old->base_id < base) 2100 break; 2101 } 2102 /* 2103 * old is the last element with ->base_id smaller than base, 2104 * so new goes right after it. If there are no elements with 2105 * ->base_id smaller than base, &old->entry ends up pointing 2106 * at the head of the list, and inserting new it the start of 2107 * the list is the right thing to do in that case as well. 2108 */ 2109 list_add(&new->entry, &old->entry); 2110 /* 2111 * Now check if we can merge with the preceding and/or 2112 * following ranges. 2113 */ 2114 merge_lpi_ranges(old, new); 2115 merge_lpi_ranges(new, list_next_entry(new, entry)); 2116 2117 mutex_unlock(&lpi_range_lock); 2118 return 0; 2119 } 2120 2121 static int __init its_lpi_init(u32 id_bits) 2122 { 2123 u32 lpis = (1UL << id_bits) - 8192; 2124 u32 numlpis; 2125 int err; 2126 2127 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer); 2128 2129 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) { 2130 lpis = numlpis; 2131 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n", 2132 lpis); 2133 } 2134 2135 /* 2136 * Initializing the allocator is just the same as freeing the 2137 * full range of LPIs. 2138 */ 2139 err = free_lpi_range(8192, lpis); 2140 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis); 2141 return err; 2142 } 2143 2144 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids) 2145 { 2146 unsigned long *bitmap = NULL; 2147 int err = 0; 2148 2149 do { 2150 err = alloc_lpi_range(nr_irqs, base); 2151 if (!err) 2152 break; 2153 2154 nr_irqs /= 2; 2155 } while (nr_irqs > 0); 2156 2157 if (!nr_irqs) 2158 err = -ENOSPC; 2159 2160 if (err) 2161 goto out; 2162 2163 bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC); 2164 if (!bitmap) 2165 goto out; 2166 2167 *nr_ids = nr_irqs; 2168 2169 out: 2170 if (!bitmap) 2171 *base = *nr_ids = 0; 2172 2173 return bitmap; 2174 } 2175 2176 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids) 2177 { 2178 WARN_ON(free_lpi_range(base, nr_ids)); 2179 bitmap_free(bitmap); 2180 } 2181 2182 static void gic_reset_prop_table(void *va) 2183 { 2184 /* Priority 0xa0, Group-1, disabled */ 2185 memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ); 2186 2187 /* Make sure the GIC will observe the written configuration */ 2188 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ); 2189 } 2190 2191 static struct page *its_allocate_prop_table(gfp_t gfp_flags) 2192 { 2193 struct page *prop_page; 2194 2195 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ)); 2196 if (!prop_page) 2197 return NULL; 2198 2199 gic_reset_prop_table(page_address(prop_page)); 2200 2201 return prop_page; 2202 } 2203 2204 static void its_free_prop_table(struct page *prop_page) 2205 { 2206 free_pages((unsigned long)page_address(prop_page), 2207 get_order(LPI_PROPBASE_SZ)); 2208 } 2209 2210 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size) 2211 { 2212 phys_addr_t start, end, addr_end; 2213 u64 i; 2214 2215 /* 2216 * We don't bother checking for a kdump kernel as by 2217 * construction, the LPI tables are out of this kernel's 2218 * memory map. 2219 */ 2220 if (is_kdump_kernel()) 2221 return true; 2222 2223 addr_end = addr + size - 1; 2224 2225 for_each_reserved_mem_range(i, &start, &end) { 2226 if (addr >= start && addr_end <= end) 2227 return true; 2228 } 2229 2230 /* Not found, not a good sign... */ 2231 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n", 2232 &addr, &addr_end); 2233 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 2234 return false; 2235 } 2236 2237 static int gic_reserve_range(phys_addr_t addr, unsigned long size) 2238 { 2239 if (efi_enabled(EFI_CONFIG_TABLES)) 2240 return efi_mem_reserve_persistent(addr, size); 2241 2242 return 0; 2243 } 2244 2245 static int __init its_setup_lpi_prop_table(void) 2246 { 2247 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) { 2248 u64 val; 2249 2250 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2251 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1; 2252 2253 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12); 2254 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa, 2255 LPI_PROPBASE_SZ, 2256 MEMREMAP_WB); 2257 gic_reset_prop_table(gic_rdists->prop_table_va); 2258 } else { 2259 struct page *page; 2260 2261 lpi_id_bits = min_t(u32, 2262 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer), 2263 ITS_MAX_LPI_NRBITS); 2264 page = its_allocate_prop_table(GFP_NOWAIT); 2265 if (!page) { 2266 pr_err("Failed to allocate PROPBASE\n"); 2267 return -ENOMEM; 2268 } 2269 2270 gic_rdists->prop_table_pa = page_to_phys(page); 2271 gic_rdists->prop_table_va = page_address(page); 2272 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa, 2273 LPI_PROPBASE_SZ)); 2274 } 2275 2276 pr_info("GICv3: using LPI property table @%pa\n", 2277 &gic_rdists->prop_table_pa); 2278 2279 return its_lpi_init(lpi_id_bits); 2280 } 2281 2282 static const char *its_base_type_string[] = { 2283 [GITS_BASER_TYPE_DEVICE] = "Devices", 2284 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", 2285 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)", 2286 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", 2287 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", 2288 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", 2289 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", 2290 }; 2291 2292 static u64 its_read_baser(struct its_node *its, struct its_baser *baser) 2293 { 2294 u32 idx = baser - its->tables; 2295 2296 return gits_read_baser(its->base + GITS_BASER + (idx << 3)); 2297 } 2298 2299 static void its_write_baser(struct its_node *its, struct its_baser *baser, 2300 u64 val) 2301 { 2302 u32 idx = baser - its->tables; 2303 2304 gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); 2305 baser->val = its_read_baser(its, baser); 2306 } 2307 2308 static int its_setup_baser(struct its_node *its, struct its_baser *baser, 2309 u64 cache, u64 shr, u32 order, bool indirect) 2310 { 2311 u64 val = its_read_baser(its, baser); 2312 u64 esz = GITS_BASER_ENTRY_SIZE(val); 2313 u64 type = GITS_BASER_TYPE(val); 2314 u64 baser_phys, tmp; 2315 u32 alloc_pages, psz; 2316 struct page *page; 2317 void *base; 2318 2319 psz = baser->psz; 2320 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); 2321 if (alloc_pages > GITS_BASER_PAGES_MAX) { 2322 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", 2323 &its->phys_base, its_base_type_string[type], 2324 alloc_pages, GITS_BASER_PAGES_MAX); 2325 alloc_pages = GITS_BASER_PAGES_MAX; 2326 order = get_order(GITS_BASER_PAGES_MAX * psz); 2327 } 2328 2329 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order); 2330 if (!page) 2331 return -ENOMEM; 2332 2333 base = (void *)page_address(page); 2334 baser_phys = virt_to_phys(base); 2335 2336 /* Check if the physical address of the memory is above 48bits */ 2337 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { 2338 2339 /* 52bit PA is supported only when PageSize=64K */ 2340 if (psz != SZ_64K) { 2341 pr_err("ITS: no 52bit PA support when psz=%d\n", psz); 2342 free_pages((unsigned long)base, order); 2343 return -ENXIO; 2344 } 2345 2346 /* Convert 52bit PA to 48bit field */ 2347 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); 2348 } 2349 2350 retry_baser: 2351 val = (baser_phys | 2352 (type << GITS_BASER_TYPE_SHIFT) | 2353 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | 2354 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | 2355 cache | 2356 shr | 2357 GITS_BASER_VALID); 2358 2359 val |= indirect ? GITS_BASER_INDIRECT : 0x0; 2360 2361 switch (psz) { 2362 case SZ_4K: 2363 val |= GITS_BASER_PAGE_SIZE_4K; 2364 break; 2365 case SZ_16K: 2366 val |= GITS_BASER_PAGE_SIZE_16K; 2367 break; 2368 case SZ_64K: 2369 val |= GITS_BASER_PAGE_SIZE_64K; 2370 break; 2371 } 2372 2373 if (!shr) 2374 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); 2375 2376 its_write_baser(its, baser, val); 2377 tmp = baser->val; 2378 2379 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { 2380 /* 2381 * Shareability didn't stick. Just use 2382 * whatever the read reported, which is likely 2383 * to be the only thing this redistributor 2384 * supports. If that's zero, make it 2385 * non-cacheable as well. 2386 */ 2387 shr = tmp & GITS_BASER_SHAREABILITY_MASK; 2388 if (!shr) 2389 cache = GITS_BASER_nC; 2390 2391 goto retry_baser; 2392 } 2393 2394 if (val != tmp) { 2395 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", 2396 &its->phys_base, its_base_type_string[type], 2397 val, tmp); 2398 free_pages((unsigned long)base, order); 2399 return -ENXIO; 2400 } 2401 2402 baser->order = order; 2403 baser->base = base; 2404 baser->psz = psz; 2405 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; 2406 2407 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", 2408 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), 2409 its_base_type_string[type], 2410 (unsigned long)virt_to_phys(base), 2411 indirect ? "indirect" : "flat", (int)esz, 2412 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); 2413 2414 return 0; 2415 } 2416 2417 static bool its_parse_indirect_baser(struct its_node *its, 2418 struct its_baser *baser, 2419 u32 *order, u32 ids) 2420 { 2421 u64 tmp = its_read_baser(its, baser); 2422 u64 type = GITS_BASER_TYPE(tmp); 2423 u64 esz = GITS_BASER_ENTRY_SIZE(tmp); 2424 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; 2425 u32 new_order = *order; 2426 u32 psz = baser->psz; 2427 bool indirect = false; 2428 2429 /* No need to enable Indirection if memory requirement < (psz*2)bytes */ 2430 if ((esz << ids) > (psz * 2)) { 2431 /* 2432 * Find out whether hw supports a single or two-level table by 2433 * table by reading bit at offset '62' after writing '1' to it. 2434 */ 2435 its_write_baser(its, baser, val | GITS_BASER_INDIRECT); 2436 indirect = !!(baser->val & GITS_BASER_INDIRECT); 2437 2438 if (indirect) { 2439 /* 2440 * The size of the lvl2 table is equal to ITS page size 2441 * which is 'psz'. For computing lvl1 table size, 2442 * subtract ID bits that sparse lvl2 table from 'ids' 2443 * which is reported by ITS hardware times lvl1 table 2444 * entry size. 2445 */ 2446 ids -= ilog2(psz / (int)esz); 2447 esz = GITS_LVL1_ENTRY_SIZE; 2448 } 2449 } 2450 2451 /* 2452 * Allocate as many entries as required to fit the 2453 * range of device IDs that the ITS can grok... The ID 2454 * space being incredibly sparse, this results in a 2455 * massive waste of memory if two-level device table 2456 * feature is not supported by hardware. 2457 */ 2458 new_order = max_t(u32, get_order(esz << ids), new_order); 2459 if (new_order > MAX_ORDER) { 2460 new_order = MAX_ORDER; 2461 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); 2462 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n", 2463 &its->phys_base, its_base_type_string[type], 2464 device_ids(its), ids); 2465 } 2466 2467 *order = new_order; 2468 2469 return indirect; 2470 } 2471 2472 static u32 compute_common_aff(u64 val) 2473 { 2474 u32 aff, clpiaff; 2475 2476 aff = FIELD_GET(GICR_TYPER_AFFINITY, val); 2477 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val); 2478 2479 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8)); 2480 } 2481 2482 static u32 compute_its_aff(struct its_node *its) 2483 { 2484 u64 val; 2485 u32 svpet; 2486 2487 /* 2488 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute 2489 * the resulting affinity. We then use that to see if this match 2490 * our own affinity. 2491 */ 2492 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); 2493 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet); 2494 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr); 2495 return compute_common_aff(val); 2496 } 2497 2498 static struct its_node *find_sibling_its(struct its_node *cur_its) 2499 { 2500 struct its_node *its; 2501 u32 aff; 2502 2503 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer)) 2504 return NULL; 2505 2506 aff = compute_its_aff(cur_its); 2507 2508 list_for_each_entry(its, &its_nodes, entry) { 2509 u64 baser; 2510 2511 if (!is_v4_1(its) || its == cur_its) 2512 continue; 2513 2514 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2515 continue; 2516 2517 if (aff != compute_its_aff(its)) 2518 continue; 2519 2520 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2521 baser = its->tables[2].val; 2522 if (!(baser & GITS_BASER_VALID)) 2523 continue; 2524 2525 return its; 2526 } 2527 2528 return NULL; 2529 } 2530 2531 static void its_free_tables(struct its_node *its) 2532 { 2533 int i; 2534 2535 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2536 if (its->tables[i].base) { 2537 free_pages((unsigned long)its->tables[i].base, 2538 its->tables[i].order); 2539 its->tables[i].base = NULL; 2540 } 2541 } 2542 } 2543 2544 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser) 2545 { 2546 u64 psz = SZ_64K; 2547 2548 while (psz) { 2549 u64 val, gpsz; 2550 2551 val = its_read_baser(its, baser); 2552 val &= ~GITS_BASER_PAGE_SIZE_MASK; 2553 2554 switch (psz) { 2555 case SZ_64K: 2556 gpsz = GITS_BASER_PAGE_SIZE_64K; 2557 break; 2558 case SZ_16K: 2559 gpsz = GITS_BASER_PAGE_SIZE_16K; 2560 break; 2561 case SZ_4K: 2562 default: 2563 gpsz = GITS_BASER_PAGE_SIZE_4K; 2564 break; 2565 } 2566 2567 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT; 2568 2569 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz); 2570 its_write_baser(its, baser, val); 2571 2572 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz) 2573 break; 2574 2575 switch (psz) { 2576 case SZ_64K: 2577 psz = SZ_16K; 2578 break; 2579 case SZ_16K: 2580 psz = SZ_4K; 2581 break; 2582 case SZ_4K: 2583 default: 2584 return -1; 2585 } 2586 } 2587 2588 baser->psz = psz; 2589 return 0; 2590 } 2591 2592 static int its_alloc_tables(struct its_node *its) 2593 { 2594 u64 shr = GITS_BASER_InnerShareable; 2595 u64 cache = GITS_BASER_RaWaWb; 2596 int err, i; 2597 2598 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) 2599 /* erratum 24313: ignore memory access type */ 2600 cache = GITS_BASER_nCnB; 2601 2602 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) { 2603 cache = GITS_BASER_nC; 2604 shr = 0; 2605 } 2606 2607 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2608 struct its_baser *baser = its->tables + i; 2609 u64 val = its_read_baser(its, baser); 2610 u64 type = GITS_BASER_TYPE(val); 2611 bool indirect = false; 2612 u32 order; 2613 2614 if (type == GITS_BASER_TYPE_NONE) 2615 continue; 2616 2617 if (its_probe_baser_psz(its, baser)) { 2618 its_free_tables(its); 2619 return -ENXIO; 2620 } 2621 2622 order = get_order(baser->psz); 2623 2624 switch (type) { 2625 case GITS_BASER_TYPE_DEVICE: 2626 indirect = its_parse_indirect_baser(its, baser, &order, 2627 device_ids(its)); 2628 break; 2629 2630 case GITS_BASER_TYPE_VCPU: 2631 if (is_v4_1(its)) { 2632 struct its_node *sibling; 2633 2634 WARN_ON(i != 2); 2635 if ((sibling = find_sibling_its(its))) { 2636 *baser = sibling->tables[2]; 2637 its_write_baser(its, baser, baser->val); 2638 continue; 2639 } 2640 } 2641 2642 indirect = its_parse_indirect_baser(its, baser, &order, 2643 ITS_MAX_VPEID_BITS); 2644 break; 2645 } 2646 2647 err = its_setup_baser(its, baser, cache, shr, order, indirect); 2648 if (err < 0) { 2649 its_free_tables(its); 2650 return err; 2651 } 2652 2653 /* Update settings which will be used for next BASERn */ 2654 cache = baser->val & GITS_BASER_CACHEABILITY_MASK; 2655 shr = baser->val & GITS_BASER_SHAREABILITY_MASK; 2656 } 2657 2658 return 0; 2659 } 2660 2661 static u64 inherit_vpe_l1_table_from_its(void) 2662 { 2663 struct its_node *its; 2664 u64 val; 2665 u32 aff; 2666 2667 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2668 aff = compute_common_aff(val); 2669 2670 list_for_each_entry(its, &its_nodes, entry) { 2671 u64 baser, addr; 2672 2673 if (!is_v4_1(its)) 2674 continue; 2675 2676 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2677 continue; 2678 2679 if (aff != compute_its_aff(its)) 2680 continue; 2681 2682 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2683 baser = its->tables[2].val; 2684 if (!(baser & GITS_BASER_VALID)) 2685 continue; 2686 2687 /* We have a winner! */ 2688 gic_data_rdist()->vpe_l1_base = its->tables[2].base; 2689 2690 val = GICR_VPROPBASER_4_1_VALID; 2691 if (baser & GITS_BASER_INDIRECT) 2692 val |= GICR_VPROPBASER_4_1_INDIRECT; 2693 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, 2694 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)); 2695 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) { 2696 case GIC_PAGE_SIZE_64K: 2697 addr = GITS_BASER_ADDR_48_to_52(baser); 2698 break; 2699 default: 2700 addr = baser & GENMASK_ULL(47, 12); 2701 break; 2702 } 2703 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12); 2704 if (rdists_support_shareable()) { 2705 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK, 2706 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser)); 2707 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK, 2708 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser)); 2709 } 2710 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1); 2711 2712 return val; 2713 } 2714 2715 return 0; 2716 } 2717 2718 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask) 2719 { 2720 u32 aff; 2721 u64 val; 2722 int cpu; 2723 2724 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2725 aff = compute_common_aff(val); 2726 2727 for_each_possible_cpu(cpu) { 2728 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2729 2730 if (!base || cpu == smp_processor_id()) 2731 continue; 2732 2733 val = gic_read_typer(base + GICR_TYPER); 2734 if (aff != compute_common_aff(val)) 2735 continue; 2736 2737 /* 2738 * At this point, we have a victim. This particular CPU 2739 * has already booted, and has an affinity that matches 2740 * ours wrt CommonLPIAff. Let's use its own VPROPBASER. 2741 * Make sure we don't write the Z bit in that case. 2742 */ 2743 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2744 val &= ~GICR_VPROPBASER_4_1_Z; 2745 2746 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2747 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask; 2748 2749 return val; 2750 } 2751 2752 return 0; 2753 } 2754 2755 static bool allocate_vpe_l2_table(int cpu, u32 id) 2756 { 2757 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2758 unsigned int psz, esz, idx, npg, gpsz; 2759 u64 val; 2760 struct page *page; 2761 __le64 *table; 2762 2763 if (!gic_rdists->has_rvpeid) 2764 return true; 2765 2766 /* Skip non-present CPUs */ 2767 if (!base) 2768 return true; 2769 2770 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2771 2772 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1; 2773 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2774 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1; 2775 2776 switch (gpsz) { 2777 default: 2778 WARN_ON(1); 2779 fallthrough; 2780 case GIC_PAGE_SIZE_4K: 2781 psz = SZ_4K; 2782 break; 2783 case GIC_PAGE_SIZE_16K: 2784 psz = SZ_16K; 2785 break; 2786 case GIC_PAGE_SIZE_64K: 2787 psz = SZ_64K; 2788 break; 2789 } 2790 2791 /* Don't allow vpe_id that exceeds single, flat table limit */ 2792 if (!(val & GICR_VPROPBASER_4_1_INDIRECT)) 2793 return (id < (npg * psz / (esz * SZ_8))); 2794 2795 /* Compute 1st level table index & check if that exceeds table limit */ 2796 idx = id >> ilog2(psz / (esz * SZ_8)); 2797 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE)) 2798 return false; 2799 2800 table = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2801 2802 /* Allocate memory for 2nd level table */ 2803 if (!table[idx]) { 2804 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz)); 2805 if (!page) 2806 return false; 2807 2808 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 2809 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2810 gic_flush_dcache_to_poc(page_address(page), psz); 2811 2812 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 2813 2814 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 2815 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2816 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 2817 2818 /* Ensure updated table contents are visible to RD hardware */ 2819 dsb(sy); 2820 } 2821 2822 return true; 2823 } 2824 2825 static int allocate_vpe_l1_table(void) 2826 { 2827 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2828 u64 val, gpsz, npg, pa; 2829 unsigned int psz = SZ_64K; 2830 unsigned int np, epp, esz; 2831 struct page *page; 2832 2833 if (!gic_rdists->has_rvpeid) 2834 return 0; 2835 2836 /* 2837 * if VPENDBASER.Valid is set, disable any previously programmed 2838 * VPE by setting PendingLast while clearing Valid. This has the 2839 * effect of making sure no doorbell will be generated and we can 2840 * then safely clear VPROPBASER.Valid. 2841 */ 2842 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid) 2843 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast, 2844 vlpi_base + GICR_VPENDBASER); 2845 2846 /* 2847 * If we can inherit the configuration from another RD, let's do 2848 * so. Otherwise, we have to go through the allocation process. We 2849 * assume that all RDs have the exact same requirements, as 2850 * nothing will work otherwise. 2851 */ 2852 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask); 2853 if (val & GICR_VPROPBASER_4_1_VALID) 2854 goto out; 2855 2856 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC); 2857 if (!gic_data_rdist()->vpe_table_mask) 2858 return -ENOMEM; 2859 2860 val = inherit_vpe_l1_table_from_its(); 2861 if (val & GICR_VPROPBASER_4_1_VALID) 2862 goto out; 2863 2864 /* First probe the page size */ 2865 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K); 2866 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2867 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER); 2868 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2869 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val); 2870 2871 switch (gpsz) { 2872 default: 2873 gpsz = GIC_PAGE_SIZE_4K; 2874 fallthrough; 2875 case GIC_PAGE_SIZE_4K: 2876 psz = SZ_4K; 2877 break; 2878 case GIC_PAGE_SIZE_16K: 2879 psz = SZ_16K; 2880 break; 2881 case GIC_PAGE_SIZE_64K: 2882 psz = SZ_64K; 2883 break; 2884 } 2885 2886 /* 2887 * Start populating the register from scratch, including RO fields 2888 * (which we want to print in debug cases...) 2889 */ 2890 val = 0; 2891 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz); 2892 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz); 2893 2894 /* How many entries per GIC page? */ 2895 esz++; 2896 epp = psz / (esz * SZ_8); 2897 2898 /* 2899 * If we need more than just a single L1 page, flag the table 2900 * as indirect and compute the number of required L1 pages. 2901 */ 2902 if (epp < ITS_MAX_VPEID) { 2903 int nl2; 2904 2905 val |= GICR_VPROPBASER_4_1_INDIRECT; 2906 2907 /* Number of L2 pages required to cover the VPEID space */ 2908 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp); 2909 2910 /* Number of L1 pages to point to the L2 pages */ 2911 npg = DIV_ROUND_UP(nl2 * SZ_8, psz); 2912 } else { 2913 npg = 1; 2914 } 2915 2916 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1); 2917 2918 /* Right, that's the number of CPU pages we need for L1 */ 2919 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE); 2920 2921 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n", 2922 np, npg, psz, epp, esz); 2923 page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE)); 2924 if (!page) 2925 return -ENOMEM; 2926 2927 gic_data_rdist()->vpe_l1_base = page_address(page); 2928 pa = virt_to_phys(page_address(page)); 2929 WARN_ON(!IS_ALIGNED(pa, psz)); 2930 2931 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12); 2932 if (rdists_support_shareable()) { 2933 val |= GICR_VPROPBASER_RaWb; 2934 val |= GICR_VPROPBASER_InnerShareable; 2935 } 2936 val |= GICR_VPROPBASER_4_1_Z; 2937 val |= GICR_VPROPBASER_4_1_VALID; 2938 2939 out: 2940 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2941 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask); 2942 2943 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n", 2944 smp_processor_id(), val, 2945 cpumask_pr_args(gic_data_rdist()->vpe_table_mask)); 2946 2947 return 0; 2948 } 2949 2950 static int its_alloc_collections(struct its_node *its) 2951 { 2952 int i; 2953 2954 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections), 2955 GFP_KERNEL); 2956 if (!its->collections) 2957 return -ENOMEM; 2958 2959 for (i = 0; i < nr_cpu_ids; i++) 2960 its->collections[i].target_address = ~0ULL; 2961 2962 return 0; 2963 } 2964 2965 static struct page *its_allocate_pending_table(gfp_t gfp_flags) 2966 { 2967 struct page *pend_page; 2968 2969 pend_page = alloc_pages(gfp_flags | __GFP_ZERO, 2970 get_order(LPI_PENDBASE_SZ)); 2971 if (!pend_page) 2972 return NULL; 2973 2974 /* Make sure the GIC will observe the zero-ed page */ 2975 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); 2976 2977 return pend_page; 2978 } 2979 2980 static void its_free_pending_table(struct page *pt) 2981 { 2982 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ)); 2983 } 2984 2985 /* 2986 * Booting with kdump and LPIs enabled is generally fine. Any other 2987 * case is wrong in the absence of firmware/EFI support. 2988 */ 2989 static bool enabled_lpis_allowed(void) 2990 { 2991 phys_addr_t addr; 2992 u64 val; 2993 2994 /* Check whether the property table is in a reserved region */ 2995 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2996 addr = val & GENMASK_ULL(51, 12); 2997 2998 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ); 2999 } 3000 3001 static int __init allocate_lpi_tables(void) 3002 { 3003 u64 val; 3004 int err, cpu; 3005 3006 /* 3007 * If LPIs are enabled while we run this from the boot CPU, 3008 * flag the RD tables as pre-allocated if the stars do align. 3009 */ 3010 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR); 3011 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) { 3012 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED | 3013 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING); 3014 pr_info("GICv3: Using preallocated redistributor tables\n"); 3015 } 3016 3017 err = its_setup_lpi_prop_table(); 3018 if (err) 3019 return err; 3020 3021 /* 3022 * We allocate all the pending tables anyway, as we may have a 3023 * mix of RDs that have had LPIs enabled, and some that 3024 * don't. We'll free the unused ones as each CPU comes online. 3025 */ 3026 for_each_possible_cpu(cpu) { 3027 struct page *pend_page; 3028 3029 pend_page = its_allocate_pending_table(GFP_NOWAIT); 3030 if (!pend_page) { 3031 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu); 3032 return -ENOMEM; 3033 } 3034 3035 gic_data_rdist_cpu(cpu)->pend_page = pend_page; 3036 } 3037 3038 return 0; 3039 } 3040 3041 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base) 3042 { 3043 u32 count = 1000000; /* 1s! */ 3044 bool clean; 3045 u64 val; 3046 3047 do { 3048 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 3049 clean = !(val & GICR_VPENDBASER_Dirty); 3050 if (!clean) { 3051 count--; 3052 cpu_relax(); 3053 udelay(1); 3054 } 3055 } while (!clean && count); 3056 3057 if (unlikely(!clean)) 3058 pr_err_ratelimited("ITS virtual pending table not cleaning\n"); 3059 3060 return val; 3061 } 3062 3063 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set) 3064 { 3065 u64 val; 3066 3067 /* Make sure we wait until the RD is done with the initial scan */ 3068 val = read_vpend_dirty_clear(vlpi_base); 3069 val &= ~GICR_VPENDBASER_Valid; 3070 val &= ~clr; 3071 val |= set; 3072 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3073 3074 val = read_vpend_dirty_clear(vlpi_base); 3075 if (unlikely(val & GICR_VPENDBASER_Dirty)) 3076 val |= GICR_VPENDBASER_PendingLast; 3077 3078 return val; 3079 } 3080 3081 static void its_cpu_init_lpis(void) 3082 { 3083 void __iomem *rbase = gic_data_rdist_rd_base(); 3084 struct page *pend_page; 3085 phys_addr_t paddr; 3086 u64 val, tmp; 3087 3088 if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) 3089 return; 3090 3091 val = readl_relaxed(rbase + GICR_CTLR); 3092 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) && 3093 (val & GICR_CTLR_ENABLE_LPIS)) { 3094 /* 3095 * Check that we get the same property table on all 3096 * RDs. If we don't, this is hopeless. 3097 */ 3098 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER); 3099 paddr &= GENMASK_ULL(51, 12); 3100 if (WARN_ON(gic_rdists->prop_table_pa != paddr)) 3101 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 3102 3103 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3104 paddr &= GENMASK_ULL(51, 16); 3105 3106 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ)); 3107 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED; 3108 3109 goto out; 3110 } 3111 3112 pend_page = gic_data_rdist()->pend_page; 3113 paddr = page_to_phys(pend_page); 3114 3115 /* set PROPBASE */ 3116 val = (gic_rdists->prop_table_pa | 3117 GICR_PROPBASER_InnerShareable | 3118 GICR_PROPBASER_RaWaWb | 3119 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); 3120 3121 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3122 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); 3123 3124 if (!rdists_support_shareable()) 3125 tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK; 3126 3127 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { 3128 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { 3129 /* 3130 * The HW reports non-shareable, we must 3131 * remove the cacheability attributes as 3132 * well. 3133 */ 3134 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | 3135 GICR_PROPBASER_CACHEABILITY_MASK); 3136 val |= GICR_PROPBASER_nC; 3137 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3138 } 3139 pr_info_once("GIC: using cache flushing for LPI property table\n"); 3140 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; 3141 } 3142 3143 /* set PENDBASE */ 3144 val = (page_to_phys(pend_page) | 3145 GICR_PENDBASER_InnerShareable | 3146 GICR_PENDBASER_RaWaWb); 3147 3148 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3149 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3150 3151 if (!rdists_support_shareable()) 3152 tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK; 3153 3154 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { 3155 /* 3156 * The HW reports non-shareable, we must remove the 3157 * cacheability attributes as well. 3158 */ 3159 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | 3160 GICR_PENDBASER_CACHEABILITY_MASK); 3161 val |= GICR_PENDBASER_nC; 3162 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3163 } 3164 3165 /* Enable LPIs */ 3166 val = readl_relaxed(rbase + GICR_CTLR); 3167 val |= GICR_CTLR_ENABLE_LPIS; 3168 writel_relaxed(val, rbase + GICR_CTLR); 3169 3170 out: 3171 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) { 3172 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3173 3174 /* 3175 * It's possible for CPU to receive VLPIs before it is 3176 * scheduled as a vPE, especially for the first CPU, and the 3177 * VLPI with INTID larger than 2^(IDbits+1) will be considered 3178 * as out of range and dropped by GIC. 3179 * So we initialize IDbits to known value to avoid VLPI drop. 3180 */ 3181 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3182 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n", 3183 smp_processor_id(), val); 3184 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3185 3186 /* 3187 * Also clear Valid bit of GICR_VPENDBASER, in case some 3188 * ancient programming gets left in and has possibility of 3189 * corrupting memory. 3190 */ 3191 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3192 } 3193 3194 if (allocate_vpe_l1_table()) { 3195 /* 3196 * If the allocation has failed, we're in massive trouble. 3197 * Disable direct injection, and pray that no VM was 3198 * already running... 3199 */ 3200 gic_rdists->has_rvpeid = false; 3201 gic_rdists->has_vlpis = false; 3202 } 3203 3204 /* Make sure the GIC has seen the above */ 3205 dsb(sy); 3206 gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED; 3207 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n", 3208 smp_processor_id(), 3209 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ? 3210 "reserved" : "allocated", 3211 &paddr); 3212 } 3213 3214 static void its_cpu_init_collection(struct its_node *its) 3215 { 3216 int cpu = smp_processor_id(); 3217 u64 target; 3218 3219 /* avoid cross node collections and its mapping */ 3220 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 3221 struct device_node *cpu_node; 3222 3223 cpu_node = of_get_cpu_node(cpu, NULL); 3224 if (its->numa_node != NUMA_NO_NODE && 3225 its->numa_node != of_node_to_nid(cpu_node)) 3226 return; 3227 } 3228 3229 /* 3230 * We now have to bind each collection to its target 3231 * redistributor. 3232 */ 3233 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { 3234 /* 3235 * This ITS wants the physical address of the 3236 * redistributor. 3237 */ 3238 target = gic_data_rdist()->phys_base; 3239 } else { 3240 /* This ITS wants a linear CPU number. */ 3241 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 3242 target = GICR_TYPER_CPU_NUMBER(target) << 16; 3243 } 3244 3245 /* Perform collection mapping */ 3246 its->collections[cpu].target_address = target; 3247 its->collections[cpu].col_id = cpu; 3248 3249 its_send_mapc(its, &its->collections[cpu], 1); 3250 its_send_invall(its, &its->collections[cpu]); 3251 } 3252 3253 static void its_cpu_init_collections(void) 3254 { 3255 struct its_node *its; 3256 3257 raw_spin_lock(&its_lock); 3258 3259 list_for_each_entry(its, &its_nodes, entry) 3260 its_cpu_init_collection(its); 3261 3262 raw_spin_unlock(&its_lock); 3263 } 3264 3265 static struct its_device *its_find_device(struct its_node *its, u32 dev_id) 3266 { 3267 struct its_device *its_dev = NULL, *tmp; 3268 unsigned long flags; 3269 3270 raw_spin_lock_irqsave(&its->lock, flags); 3271 3272 list_for_each_entry(tmp, &its->its_device_list, entry) { 3273 if (tmp->device_id == dev_id) { 3274 its_dev = tmp; 3275 break; 3276 } 3277 } 3278 3279 raw_spin_unlock_irqrestore(&its->lock, flags); 3280 3281 return its_dev; 3282 } 3283 3284 static struct its_baser *its_get_baser(struct its_node *its, u32 type) 3285 { 3286 int i; 3287 3288 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 3289 if (GITS_BASER_TYPE(its->tables[i].val) == type) 3290 return &its->tables[i]; 3291 } 3292 3293 return NULL; 3294 } 3295 3296 static bool its_alloc_table_entry(struct its_node *its, 3297 struct its_baser *baser, u32 id) 3298 { 3299 struct page *page; 3300 u32 esz, idx; 3301 __le64 *table; 3302 3303 /* Don't allow device id that exceeds single, flat table limit */ 3304 esz = GITS_BASER_ENTRY_SIZE(baser->val); 3305 if (!(baser->val & GITS_BASER_INDIRECT)) 3306 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); 3307 3308 /* Compute 1st level table index & check if that exceeds table limit */ 3309 idx = id >> ilog2(baser->psz / esz); 3310 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) 3311 return false; 3312 3313 table = baser->base; 3314 3315 /* Allocate memory for 2nd level table */ 3316 if (!table[idx]) { 3317 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 3318 get_order(baser->psz)); 3319 if (!page) 3320 return false; 3321 3322 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 3323 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3324 gic_flush_dcache_to_poc(page_address(page), baser->psz); 3325 3326 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 3327 3328 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 3329 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3330 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 3331 3332 /* Ensure updated table contents are visible to ITS hardware */ 3333 dsb(sy); 3334 } 3335 3336 return true; 3337 } 3338 3339 static bool its_alloc_device_table(struct its_node *its, u32 dev_id) 3340 { 3341 struct its_baser *baser; 3342 3343 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); 3344 3345 /* Don't allow device id that exceeds ITS hardware limit */ 3346 if (!baser) 3347 return (ilog2(dev_id) < device_ids(its)); 3348 3349 return its_alloc_table_entry(its, baser, dev_id); 3350 } 3351 3352 static bool its_alloc_vpe_table(u32 vpe_id) 3353 { 3354 struct its_node *its; 3355 int cpu; 3356 3357 /* 3358 * Make sure the L2 tables are allocated on *all* v4 ITSs. We 3359 * could try and only do it on ITSs corresponding to devices 3360 * that have interrupts targeted at this VPE, but the 3361 * complexity becomes crazy (and you have tons of memory 3362 * anyway, right?). 3363 */ 3364 list_for_each_entry(its, &its_nodes, entry) { 3365 struct its_baser *baser; 3366 3367 if (!is_v4(its)) 3368 continue; 3369 3370 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); 3371 if (!baser) 3372 return false; 3373 3374 if (!its_alloc_table_entry(its, baser, vpe_id)) 3375 return false; 3376 } 3377 3378 /* Non v4.1? No need to iterate RDs and go back early. */ 3379 if (!gic_rdists->has_rvpeid) 3380 return true; 3381 3382 /* 3383 * Make sure the L2 tables are allocated for all copies of 3384 * the L1 table on *all* v4.1 RDs. 3385 */ 3386 for_each_possible_cpu(cpu) { 3387 if (!allocate_vpe_l2_table(cpu, vpe_id)) 3388 return false; 3389 } 3390 3391 return true; 3392 } 3393 3394 static struct its_device *its_create_device(struct its_node *its, u32 dev_id, 3395 int nvecs, bool alloc_lpis) 3396 { 3397 struct its_device *dev; 3398 unsigned long *lpi_map = NULL; 3399 unsigned long flags; 3400 u16 *col_map = NULL; 3401 void *itt; 3402 int lpi_base; 3403 int nr_lpis; 3404 int nr_ites; 3405 int sz; 3406 3407 if (!its_alloc_device_table(its, dev_id)) 3408 return NULL; 3409 3410 if (WARN_ON(!is_power_of_2(nvecs))) 3411 nvecs = roundup_pow_of_two(nvecs); 3412 3413 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3414 /* 3415 * Even if the device wants a single LPI, the ITT must be 3416 * sized as a power of two (and you need at least one bit...). 3417 */ 3418 nr_ites = max(2, nvecs); 3419 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1); 3420 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; 3421 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node); 3422 if (alloc_lpis) { 3423 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis); 3424 if (lpi_map) 3425 col_map = kcalloc(nr_lpis, sizeof(*col_map), 3426 GFP_KERNEL); 3427 } else { 3428 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL); 3429 nr_lpis = 0; 3430 lpi_base = 0; 3431 } 3432 3433 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) { 3434 kfree(dev); 3435 kfree(itt); 3436 bitmap_free(lpi_map); 3437 kfree(col_map); 3438 return NULL; 3439 } 3440 3441 gic_flush_dcache_to_poc(itt, sz); 3442 3443 dev->its = its; 3444 dev->itt = itt; 3445 dev->nr_ites = nr_ites; 3446 dev->event_map.lpi_map = lpi_map; 3447 dev->event_map.col_map = col_map; 3448 dev->event_map.lpi_base = lpi_base; 3449 dev->event_map.nr_lpis = nr_lpis; 3450 raw_spin_lock_init(&dev->event_map.vlpi_lock); 3451 dev->device_id = dev_id; 3452 INIT_LIST_HEAD(&dev->entry); 3453 3454 raw_spin_lock_irqsave(&its->lock, flags); 3455 list_add(&dev->entry, &its->its_device_list); 3456 raw_spin_unlock_irqrestore(&its->lock, flags); 3457 3458 /* Map device to its ITT */ 3459 its_send_mapd(dev, 1); 3460 3461 return dev; 3462 } 3463 3464 static void its_free_device(struct its_device *its_dev) 3465 { 3466 unsigned long flags; 3467 3468 raw_spin_lock_irqsave(&its_dev->its->lock, flags); 3469 list_del(&its_dev->entry); 3470 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); 3471 kfree(its_dev->event_map.col_map); 3472 kfree(its_dev->itt); 3473 kfree(its_dev); 3474 } 3475 3476 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq) 3477 { 3478 int idx; 3479 3480 /* Find a free LPI region in lpi_map and allocate them. */ 3481 idx = bitmap_find_free_region(dev->event_map.lpi_map, 3482 dev->event_map.nr_lpis, 3483 get_count_order(nvecs)); 3484 if (idx < 0) 3485 return -ENOSPC; 3486 3487 *hwirq = dev->event_map.lpi_base + idx; 3488 3489 return 0; 3490 } 3491 3492 static int its_msi_prepare(struct irq_domain *domain, struct device *dev, 3493 int nvec, msi_alloc_info_t *info) 3494 { 3495 struct its_node *its; 3496 struct its_device *its_dev; 3497 struct msi_domain_info *msi_info; 3498 u32 dev_id; 3499 int err = 0; 3500 3501 /* 3502 * We ignore "dev" entirely, and rely on the dev_id that has 3503 * been passed via the scratchpad. This limits this domain's 3504 * usefulness to upper layers that definitely know that they 3505 * are built on top of the ITS. 3506 */ 3507 dev_id = info->scratchpad[0].ul; 3508 3509 msi_info = msi_get_domain_info(domain); 3510 its = msi_info->data; 3511 3512 if (!gic_rdists->has_direct_lpi && 3513 vpe_proxy.dev && 3514 vpe_proxy.dev->its == its && 3515 dev_id == vpe_proxy.dev->device_id) { 3516 /* Bad luck. Get yourself a better implementation */ 3517 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", 3518 dev_id); 3519 return -EINVAL; 3520 } 3521 3522 mutex_lock(&its->dev_alloc_lock); 3523 its_dev = its_find_device(its, dev_id); 3524 if (its_dev) { 3525 /* 3526 * We already have seen this ID, probably through 3527 * another alias (PCI bridge of some sort). No need to 3528 * create the device. 3529 */ 3530 its_dev->shared = true; 3531 pr_debug("Reusing ITT for devID %x\n", dev_id); 3532 goto out; 3533 } 3534 3535 its_dev = its_create_device(its, dev_id, nvec, true); 3536 if (!its_dev) { 3537 err = -ENOMEM; 3538 goto out; 3539 } 3540 3541 if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE) 3542 its_dev->shared = true; 3543 3544 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); 3545 out: 3546 mutex_unlock(&its->dev_alloc_lock); 3547 info->scratchpad[0].ptr = its_dev; 3548 return err; 3549 } 3550 3551 static struct msi_domain_ops its_msi_domain_ops = { 3552 .msi_prepare = its_msi_prepare, 3553 }; 3554 3555 static int its_irq_gic_domain_alloc(struct irq_domain *domain, 3556 unsigned int virq, 3557 irq_hw_number_t hwirq) 3558 { 3559 struct irq_fwspec fwspec; 3560 3561 if (irq_domain_get_of_node(domain->parent)) { 3562 fwspec.fwnode = domain->parent->fwnode; 3563 fwspec.param_count = 3; 3564 fwspec.param[0] = GIC_IRQ_TYPE_LPI; 3565 fwspec.param[1] = hwirq; 3566 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 3567 } else if (is_fwnode_irqchip(domain->parent->fwnode)) { 3568 fwspec.fwnode = domain->parent->fwnode; 3569 fwspec.param_count = 2; 3570 fwspec.param[0] = hwirq; 3571 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 3572 } else { 3573 return -EINVAL; 3574 } 3575 3576 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 3577 } 3578 3579 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 3580 unsigned int nr_irqs, void *args) 3581 { 3582 msi_alloc_info_t *info = args; 3583 struct its_device *its_dev = info->scratchpad[0].ptr; 3584 struct its_node *its = its_dev->its; 3585 struct irq_data *irqd; 3586 irq_hw_number_t hwirq; 3587 int err; 3588 int i; 3589 3590 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq); 3591 if (err) 3592 return err; 3593 3594 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev)); 3595 if (err) 3596 return err; 3597 3598 for (i = 0; i < nr_irqs; i++) { 3599 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i); 3600 if (err) 3601 return err; 3602 3603 irq_domain_set_hwirq_and_chip(domain, virq + i, 3604 hwirq + i, &its_irq_chip, its_dev); 3605 irqd = irq_get_irq_data(virq + i); 3606 irqd_set_single_target(irqd); 3607 irqd_set_affinity_on_activate(irqd); 3608 irqd_set_resend_when_in_progress(irqd); 3609 pr_debug("ID:%d pID:%d vID:%d\n", 3610 (int)(hwirq + i - its_dev->event_map.lpi_base), 3611 (int)(hwirq + i), virq + i); 3612 } 3613 3614 return 0; 3615 } 3616 3617 static int its_irq_domain_activate(struct irq_domain *domain, 3618 struct irq_data *d, bool reserve) 3619 { 3620 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3621 u32 event = its_get_event_id(d); 3622 int cpu; 3623 3624 cpu = its_select_cpu(d, cpu_online_mask); 3625 if (cpu < 0 || cpu >= nr_cpu_ids) 3626 return -EINVAL; 3627 3628 its_inc_lpi_count(d, cpu); 3629 its_dev->event_map.col_map[event] = cpu; 3630 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3631 3632 /* Map the GIC IRQ and event to the device */ 3633 its_send_mapti(its_dev, d->hwirq, event); 3634 return 0; 3635 } 3636 3637 static void its_irq_domain_deactivate(struct irq_domain *domain, 3638 struct irq_data *d) 3639 { 3640 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3641 u32 event = its_get_event_id(d); 3642 3643 its_dec_lpi_count(d, its_dev->event_map.col_map[event]); 3644 /* Stop the delivery of interrupts */ 3645 its_send_discard(its_dev, event); 3646 } 3647 3648 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, 3649 unsigned int nr_irqs) 3650 { 3651 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 3652 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3653 struct its_node *its = its_dev->its; 3654 int i; 3655 3656 bitmap_release_region(its_dev->event_map.lpi_map, 3657 its_get_event_id(irq_domain_get_irq_data(domain, virq)), 3658 get_count_order(nr_irqs)); 3659 3660 for (i = 0; i < nr_irqs; i++) { 3661 struct irq_data *data = irq_domain_get_irq_data(domain, 3662 virq + i); 3663 /* Nuke the entry in the domain */ 3664 irq_domain_reset_irq_data(data); 3665 } 3666 3667 mutex_lock(&its->dev_alloc_lock); 3668 3669 /* 3670 * If all interrupts have been freed, start mopping the 3671 * floor. This is conditioned on the device not being shared. 3672 */ 3673 if (!its_dev->shared && 3674 bitmap_empty(its_dev->event_map.lpi_map, 3675 its_dev->event_map.nr_lpis)) { 3676 its_lpi_free(its_dev->event_map.lpi_map, 3677 its_dev->event_map.lpi_base, 3678 its_dev->event_map.nr_lpis); 3679 3680 /* Unmap device/itt */ 3681 its_send_mapd(its_dev, 0); 3682 its_free_device(its_dev); 3683 } 3684 3685 mutex_unlock(&its->dev_alloc_lock); 3686 3687 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 3688 } 3689 3690 static const struct irq_domain_ops its_domain_ops = { 3691 .alloc = its_irq_domain_alloc, 3692 .free = its_irq_domain_free, 3693 .activate = its_irq_domain_activate, 3694 .deactivate = its_irq_domain_deactivate, 3695 }; 3696 3697 /* 3698 * This is insane. 3699 * 3700 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely 3701 * likely), the only way to perform an invalidate is to use a fake 3702 * device to issue an INV command, implying that the LPI has first 3703 * been mapped to some event on that device. Since this is not exactly 3704 * cheap, we try to keep that mapping around as long as possible, and 3705 * only issue an UNMAP if we're short on available slots. 3706 * 3707 * Broken by design(tm). 3708 * 3709 * GICv4.1, on the other hand, mandates that we're able to invalidate 3710 * by writing to a MMIO register. It doesn't implement the whole of 3711 * DirectLPI, but that's good enough. And most of the time, we don't 3712 * even have to invalidate anything, as the redistributor can be told 3713 * whether to generate a doorbell or not (we thus leave it enabled, 3714 * always). 3715 */ 3716 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) 3717 { 3718 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3719 if (gic_rdists->has_rvpeid) 3720 return; 3721 3722 /* Already unmapped? */ 3723 if (vpe->vpe_proxy_event == -1) 3724 return; 3725 3726 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); 3727 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; 3728 3729 /* 3730 * We don't track empty slots at all, so let's move the 3731 * next_victim pointer if we can quickly reuse that slot 3732 * instead of nuking an existing entry. Not clear that this is 3733 * always a win though, and this might just generate a ripple 3734 * effect... Let's just hope VPEs don't migrate too often. 3735 */ 3736 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3737 vpe_proxy.next_victim = vpe->vpe_proxy_event; 3738 3739 vpe->vpe_proxy_event = -1; 3740 } 3741 3742 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) 3743 { 3744 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3745 if (gic_rdists->has_rvpeid) 3746 return; 3747 3748 if (!gic_rdists->has_direct_lpi) { 3749 unsigned long flags; 3750 3751 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3752 its_vpe_db_proxy_unmap_locked(vpe); 3753 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3754 } 3755 } 3756 3757 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) 3758 { 3759 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3760 if (gic_rdists->has_rvpeid) 3761 return; 3762 3763 /* Already mapped? */ 3764 if (vpe->vpe_proxy_event != -1) 3765 return; 3766 3767 /* This slot was already allocated. Kick the other VPE out. */ 3768 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3769 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); 3770 3771 /* Map the new VPE instead */ 3772 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; 3773 vpe->vpe_proxy_event = vpe_proxy.next_victim; 3774 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; 3775 3776 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; 3777 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); 3778 } 3779 3780 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) 3781 { 3782 unsigned long flags; 3783 struct its_collection *target_col; 3784 3785 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3786 if (gic_rdists->has_rvpeid) 3787 return; 3788 3789 if (gic_rdists->has_direct_lpi) { 3790 void __iomem *rdbase; 3791 3792 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; 3793 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 3794 wait_for_syncr(rdbase); 3795 3796 return; 3797 } 3798 3799 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3800 3801 its_vpe_db_proxy_map_locked(vpe); 3802 3803 target_col = &vpe_proxy.dev->its->collections[to]; 3804 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); 3805 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; 3806 3807 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3808 } 3809 3810 static int its_vpe_set_affinity(struct irq_data *d, 3811 const struct cpumask *mask_val, 3812 bool force) 3813 { 3814 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3815 struct cpumask common, *table_mask; 3816 unsigned long flags; 3817 int from, cpu; 3818 3819 /* 3820 * Changing affinity is mega expensive, so let's be as lazy as 3821 * we can and only do it if we really have to. Also, if mapped 3822 * into the proxy device, we need to move the doorbell 3823 * interrupt to its new location. 3824 * 3825 * Another thing is that changing the affinity of a vPE affects 3826 * *other interrupts* such as all the vLPIs that are routed to 3827 * this vPE. This means that the irq_desc lock is not enough to 3828 * protect us, and that we must ensure nobody samples vpe->col_idx 3829 * during the update, hence the lock below which must also be 3830 * taken on any vLPI handling path that evaluates vpe->col_idx. 3831 */ 3832 from = vpe_to_cpuid_lock(vpe, &flags); 3833 table_mask = gic_data_rdist_cpu(from)->vpe_table_mask; 3834 3835 /* 3836 * If we are offered another CPU in the same GICv4.1 ITS 3837 * affinity, pick this one. Otherwise, any CPU will do. 3838 */ 3839 if (table_mask && cpumask_and(&common, mask_val, table_mask)) 3840 cpu = cpumask_test_cpu(from, &common) ? from : cpumask_first(&common); 3841 else 3842 cpu = cpumask_first(mask_val); 3843 3844 if (from == cpu) 3845 goto out; 3846 3847 vpe->col_idx = cpu; 3848 3849 its_send_vmovp(vpe); 3850 its_vpe_db_proxy_move(vpe, from, cpu); 3851 3852 out: 3853 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3854 vpe_to_cpuid_unlock(vpe, flags); 3855 3856 return IRQ_SET_MASK_OK_DONE; 3857 } 3858 3859 static void its_wait_vpt_parse_complete(void) 3860 { 3861 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3862 u64 val; 3863 3864 if (!gic_rdists->has_vpend_valid_dirty) 3865 return; 3866 3867 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER, 3868 val, 3869 !(val & GICR_VPENDBASER_Dirty), 3870 1, 500)); 3871 } 3872 3873 static void its_vpe_schedule(struct its_vpe *vpe) 3874 { 3875 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3876 u64 val; 3877 3878 /* Schedule the VPE */ 3879 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & 3880 GENMASK_ULL(51, 12); 3881 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3882 if (rdists_support_shareable()) { 3883 val |= GICR_VPROPBASER_RaWb; 3884 val |= GICR_VPROPBASER_InnerShareable; 3885 } 3886 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3887 3888 val = virt_to_phys(page_address(vpe->vpt_page)) & 3889 GENMASK_ULL(51, 16); 3890 if (rdists_support_shareable()) { 3891 val |= GICR_VPENDBASER_RaWaWb; 3892 val |= GICR_VPENDBASER_InnerShareable; 3893 } 3894 /* 3895 * There is no good way of finding out if the pending table is 3896 * empty as we can race against the doorbell interrupt very 3897 * easily. So in the end, vpe->pending_last is only an 3898 * indication that the vcpu has something pending, not one 3899 * that the pending table is empty. A good implementation 3900 * would be able to read its coarse map pretty quickly anyway, 3901 * making this a tolerable issue. 3902 */ 3903 val |= GICR_VPENDBASER_PendingLast; 3904 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; 3905 val |= GICR_VPENDBASER_Valid; 3906 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3907 } 3908 3909 static void its_vpe_deschedule(struct its_vpe *vpe) 3910 { 3911 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3912 u64 val; 3913 3914 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3915 3916 vpe->idai = !!(val & GICR_VPENDBASER_IDAI); 3917 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 3918 } 3919 3920 static void its_vpe_invall(struct its_vpe *vpe) 3921 { 3922 struct its_node *its; 3923 3924 list_for_each_entry(its, &its_nodes, entry) { 3925 if (!is_v4(its)) 3926 continue; 3927 3928 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr]) 3929 continue; 3930 3931 /* 3932 * Sending a VINVALL to a single ITS is enough, as all 3933 * we need is to reach the redistributors. 3934 */ 3935 its_send_vinvall(its, vpe); 3936 return; 3937 } 3938 } 3939 3940 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 3941 { 3942 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3943 struct its_cmd_info *info = vcpu_info; 3944 3945 switch (info->cmd_type) { 3946 case SCHEDULE_VPE: 3947 its_vpe_schedule(vpe); 3948 return 0; 3949 3950 case DESCHEDULE_VPE: 3951 its_vpe_deschedule(vpe); 3952 return 0; 3953 3954 case COMMIT_VPE: 3955 its_wait_vpt_parse_complete(); 3956 return 0; 3957 3958 case INVALL_VPE: 3959 its_vpe_invall(vpe); 3960 return 0; 3961 3962 default: 3963 return -EINVAL; 3964 } 3965 } 3966 3967 static void its_vpe_send_cmd(struct its_vpe *vpe, 3968 void (*cmd)(struct its_device *, u32)) 3969 { 3970 unsigned long flags; 3971 3972 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3973 3974 its_vpe_db_proxy_map_locked(vpe); 3975 cmd(vpe_proxy.dev, vpe->vpe_proxy_event); 3976 3977 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3978 } 3979 3980 static void its_vpe_send_inv(struct irq_data *d) 3981 { 3982 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3983 3984 if (gic_rdists->has_direct_lpi) 3985 __direct_lpi_inv(d, d->parent_data->hwirq); 3986 else 3987 its_vpe_send_cmd(vpe, its_send_inv); 3988 } 3989 3990 static void its_vpe_mask_irq(struct irq_data *d) 3991 { 3992 /* 3993 * We need to unmask the LPI, which is described by the parent 3994 * irq_data. Instead of calling into the parent (which won't 3995 * exactly do the right thing, let's simply use the 3996 * parent_data pointer. Yes, I'm naughty. 3997 */ 3998 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 3999 its_vpe_send_inv(d); 4000 } 4001 4002 static void its_vpe_unmask_irq(struct irq_data *d) 4003 { 4004 /* Same hack as above... */ 4005 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 4006 its_vpe_send_inv(d); 4007 } 4008 4009 static int its_vpe_set_irqchip_state(struct irq_data *d, 4010 enum irqchip_irq_state which, 4011 bool state) 4012 { 4013 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4014 4015 if (which != IRQCHIP_STATE_PENDING) 4016 return -EINVAL; 4017 4018 if (gic_rdists->has_direct_lpi) { 4019 void __iomem *rdbase; 4020 4021 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 4022 if (state) { 4023 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); 4024 } else { 4025 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 4026 wait_for_syncr(rdbase); 4027 } 4028 } else { 4029 if (state) 4030 its_vpe_send_cmd(vpe, its_send_int); 4031 else 4032 its_vpe_send_cmd(vpe, its_send_clear); 4033 } 4034 4035 return 0; 4036 } 4037 4038 static int its_vpe_retrigger(struct irq_data *d) 4039 { 4040 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 4041 } 4042 4043 static struct irq_chip its_vpe_irq_chip = { 4044 .name = "GICv4-vpe", 4045 .irq_mask = its_vpe_mask_irq, 4046 .irq_unmask = its_vpe_unmask_irq, 4047 .irq_eoi = irq_chip_eoi_parent, 4048 .irq_set_affinity = its_vpe_set_affinity, 4049 .irq_retrigger = its_vpe_retrigger, 4050 .irq_set_irqchip_state = its_vpe_set_irqchip_state, 4051 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity, 4052 }; 4053 4054 static struct its_node *find_4_1_its(void) 4055 { 4056 static struct its_node *its = NULL; 4057 4058 if (!its) { 4059 list_for_each_entry(its, &its_nodes, entry) { 4060 if (is_v4_1(its)) 4061 return its; 4062 } 4063 4064 /* Oops? */ 4065 its = NULL; 4066 } 4067 4068 return its; 4069 } 4070 4071 static void its_vpe_4_1_send_inv(struct irq_data *d) 4072 { 4073 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4074 struct its_node *its; 4075 4076 /* 4077 * GICv4.1 wants doorbells to be invalidated using the 4078 * INVDB command in order to be broadcast to all RDs. Send 4079 * it to the first valid ITS, and let the HW do its magic. 4080 */ 4081 its = find_4_1_its(); 4082 if (its) 4083 its_send_invdb(its, vpe); 4084 } 4085 4086 static void its_vpe_4_1_mask_irq(struct irq_data *d) 4087 { 4088 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 4089 its_vpe_4_1_send_inv(d); 4090 } 4091 4092 static void its_vpe_4_1_unmask_irq(struct irq_data *d) 4093 { 4094 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 4095 its_vpe_4_1_send_inv(d); 4096 } 4097 4098 static void its_vpe_4_1_schedule(struct its_vpe *vpe, 4099 struct its_cmd_info *info) 4100 { 4101 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4102 u64 val = 0; 4103 4104 /* Schedule the VPE */ 4105 val |= GICR_VPENDBASER_Valid; 4106 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0; 4107 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0; 4108 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id); 4109 4110 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 4111 } 4112 4113 static void its_vpe_4_1_deschedule(struct its_vpe *vpe, 4114 struct its_cmd_info *info) 4115 { 4116 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4117 u64 val; 4118 4119 if (info->req_db) { 4120 unsigned long flags; 4121 4122 /* 4123 * vPE is going to block: make the vPE non-resident with 4124 * PendingLast clear and DB set. The GIC guarantees that if 4125 * we read-back PendingLast clear, then a doorbell will be 4126 * delivered when an interrupt comes. 4127 * 4128 * Note the locking to deal with the concurrent update of 4129 * pending_last from the doorbell interrupt handler that can 4130 * run concurrently. 4131 */ 4132 raw_spin_lock_irqsave(&vpe->vpe_lock, flags); 4133 val = its_clear_vpend_valid(vlpi_base, 4134 GICR_VPENDBASER_PendingLast, 4135 GICR_VPENDBASER_4_1_DB); 4136 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 4137 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 4138 } else { 4139 /* 4140 * We're not blocking, so just make the vPE non-resident 4141 * with PendingLast set, indicating that we'll be back. 4142 */ 4143 val = its_clear_vpend_valid(vlpi_base, 4144 0, 4145 GICR_VPENDBASER_PendingLast); 4146 vpe->pending_last = true; 4147 } 4148 } 4149 4150 static void its_vpe_4_1_invall(struct its_vpe *vpe) 4151 { 4152 void __iomem *rdbase; 4153 unsigned long flags; 4154 u64 val; 4155 int cpu; 4156 4157 val = GICR_INVALLR_V; 4158 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id); 4159 4160 /* Target the redistributor this vPE is currently known on */ 4161 cpu = vpe_to_cpuid_lock(vpe, &flags); 4162 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4163 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 4164 gic_write_lpir(val, rdbase + GICR_INVALLR); 4165 4166 wait_for_syncr(rdbase); 4167 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4168 vpe_to_cpuid_unlock(vpe, flags); 4169 } 4170 4171 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4172 { 4173 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4174 struct its_cmd_info *info = vcpu_info; 4175 4176 switch (info->cmd_type) { 4177 case SCHEDULE_VPE: 4178 its_vpe_4_1_schedule(vpe, info); 4179 return 0; 4180 4181 case DESCHEDULE_VPE: 4182 its_vpe_4_1_deschedule(vpe, info); 4183 return 0; 4184 4185 case COMMIT_VPE: 4186 its_wait_vpt_parse_complete(); 4187 return 0; 4188 4189 case INVALL_VPE: 4190 its_vpe_4_1_invall(vpe); 4191 return 0; 4192 4193 default: 4194 return -EINVAL; 4195 } 4196 } 4197 4198 static struct irq_chip its_vpe_4_1_irq_chip = { 4199 .name = "GICv4.1-vpe", 4200 .irq_mask = its_vpe_4_1_mask_irq, 4201 .irq_unmask = its_vpe_4_1_unmask_irq, 4202 .irq_eoi = irq_chip_eoi_parent, 4203 .irq_set_affinity = its_vpe_set_affinity, 4204 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity, 4205 }; 4206 4207 static void its_configure_sgi(struct irq_data *d, bool clear) 4208 { 4209 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4210 struct its_cmd_desc desc; 4211 4212 desc.its_vsgi_cmd.vpe = vpe; 4213 desc.its_vsgi_cmd.sgi = d->hwirq; 4214 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority; 4215 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled; 4216 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group; 4217 desc.its_vsgi_cmd.clear = clear; 4218 4219 /* 4220 * GICv4.1 allows us to send VSGI commands to any ITS as long as the 4221 * destination VPE is mapped there. Since we map them eagerly at 4222 * activation time, we're pretty sure the first GICv4.1 ITS will do. 4223 */ 4224 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc); 4225 } 4226 4227 static void its_sgi_mask_irq(struct irq_data *d) 4228 { 4229 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4230 4231 vpe->sgi_config[d->hwirq].enabled = false; 4232 its_configure_sgi(d, false); 4233 } 4234 4235 static void its_sgi_unmask_irq(struct irq_data *d) 4236 { 4237 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4238 4239 vpe->sgi_config[d->hwirq].enabled = true; 4240 its_configure_sgi(d, false); 4241 } 4242 4243 static int its_sgi_set_affinity(struct irq_data *d, 4244 const struct cpumask *mask_val, 4245 bool force) 4246 { 4247 /* 4248 * There is no notion of affinity for virtual SGIs, at least 4249 * not on the host (since they can only be targeting a vPE). 4250 * Tell the kernel we've done whatever it asked for. 4251 */ 4252 irq_data_update_effective_affinity(d, mask_val); 4253 return IRQ_SET_MASK_OK; 4254 } 4255 4256 static int its_sgi_set_irqchip_state(struct irq_data *d, 4257 enum irqchip_irq_state which, 4258 bool state) 4259 { 4260 if (which != IRQCHIP_STATE_PENDING) 4261 return -EINVAL; 4262 4263 if (state) { 4264 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4265 struct its_node *its = find_4_1_its(); 4266 u64 val; 4267 4268 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id); 4269 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq); 4270 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K); 4271 } else { 4272 its_configure_sgi(d, true); 4273 } 4274 4275 return 0; 4276 } 4277 4278 static int its_sgi_get_irqchip_state(struct irq_data *d, 4279 enum irqchip_irq_state which, bool *val) 4280 { 4281 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4282 void __iomem *base; 4283 unsigned long flags; 4284 u32 count = 1000000; /* 1s! */ 4285 u32 status; 4286 int cpu; 4287 4288 if (which != IRQCHIP_STATE_PENDING) 4289 return -EINVAL; 4290 4291 /* 4292 * Locking galore! We can race against two different events: 4293 * 4294 * - Concurrent vPE affinity change: we must make sure it cannot 4295 * happen, or we'll talk to the wrong redistributor. This is 4296 * identical to what happens with vLPIs. 4297 * 4298 * - Concurrent VSGIPENDR access: As it involves accessing two 4299 * MMIO registers, this must be made atomic one way or another. 4300 */ 4301 cpu = vpe_to_cpuid_lock(vpe, &flags); 4302 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4303 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K; 4304 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR); 4305 do { 4306 status = readl_relaxed(base + GICR_VSGIPENDR); 4307 if (!(status & GICR_VSGIPENDR_BUSY)) 4308 goto out; 4309 4310 count--; 4311 if (!count) { 4312 pr_err_ratelimited("Unable to get SGI status\n"); 4313 goto out; 4314 } 4315 cpu_relax(); 4316 udelay(1); 4317 } while (count); 4318 4319 out: 4320 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4321 vpe_to_cpuid_unlock(vpe, flags); 4322 4323 if (!count) 4324 return -ENXIO; 4325 4326 *val = !!(status & (1 << d->hwirq)); 4327 4328 return 0; 4329 } 4330 4331 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4332 { 4333 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4334 struct its_cmd_info *info = vcpu_info; 4335 4336 switch (info->cmd_type) { 4337 case PROP_UPDATE_VSGI: 4338 vpe->sgi_config[d->hwirq].priority = info->priority; 4339 vpe->sgi_config[d->hwirq].group = info->group; 4340 its_configure_sgi(d, false); 4341 return 0; 4342 4343 default: 4344 return -EINVAL; 4345 } 4346 } 4347 4348 static struct irq_chip its_sgi_irq_chip = { 4349 .name = "GICv4.1-sgi", 4350 .irq_mask = its_sgi_mask_irq, 4351 .irq_unmask = its_sgi_unmask_irq, 4352 .irq_set_affinity = its_sgi_set_affinity, 4353 .irq_set_irqchip_state = its_sgi_set_irqchip_state, 4354 .irq_get_irqchip_state = its_sgi_get_irqchip_state, 4355 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity, 4356 }; 4357 4358 static int its_sgi_irq_domain_alloc(struct irq_domain *domain, 4359 unsigned int virq, unsigned int nr_irqs, 4360 void *args) 4361 { 4362 struct its_vpe *vpe = args; 4363 int i; 4364 4365 /* Yes, we do want 16 SGIs */ 4366 WARN_ON(nr_irqs != 16); 4367 4368 for (i = 0; i < 16; i++) { 4369 vpe->sgi_config[i].priority = 0; 4370 vpe->sgi_config[i].enabled = false; 4371 vpe->sgi_config[i].group = false; 4372 4373 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4374 &its_sgi_irq_chip, vpe); 4375 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY); 4376 } 4377 4378 return 0; 4379 } 4380 4381 static void its_sgi_irq_domain_free(struct irq_domain *domain, 4382 unsigned int virq, 4383 unsigned int nr_irqs) 4384 { 4385 /* Nothing to do */ 4386 } 4387 4388 static int its_sgi_irq_domain_activate(struct irq_domain *domain, 4389 struct irq_data *d, bool reserve) 4390 { 4391 /* Write out the initial SGI configuration */ 4392 its_configure_sgi(d, false); 4393 return 0; 4394 } 4395 4396 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain, 4397 struct irq_data *d) 4398 { 4399 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4400 4401 /* 4402 * The VSGI command is awkward: 4403 * 4404 * - To change the configuration, CLEAR must be set to false, 4405 * leaving the pending bit unchanged. 4406 * - To clear the pending bit, CLEAR must be set to true, leaving 4407 * the configuration unchanged. 4408 * 4409 * You just can't do both at once, hence the two commands below. 4410 */ 4411 vpe->sgi_config[d->hwirq].enabled = false; 4412 its_configure_sgi(d, false); 4413 its_configure_sgi(d, true); 4414 } 4415 4416 static const struct irq_domain_ops its_sgi_domain_ops = { 4417 .alloc = its_sgi_irq_domain_alloc, 4418 .free = its_sgi_irq_domain_free, 4419 .activate = its_sgi_irq_domain_activate, 4420 .deactivate = its_sgi_irq_domain_deactivate, 4421 }; 4422 4423 static int its_vpe_id_alloc(void) 4424 { 4425 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL); 4426 } 4427 4428 static void its_vpe_id_free(u16 id) 4429 { 4430 ida_simple_remove(&its_vpeid_ida, id); 4431 } 4432 4433 static int its_vpe_init(struct its_vpe *vpe) 4434 { 4435 struct page *vpt_page; 4436 int vpe_id; 4437 4438 /* Allocate vpe_id */ 4439 vpe_id = its_vpe_id_alloc(); 4440 if (vpe_id < 0) 4441 return vpe_id; 4442 4443 /* Allocate VPT */ 4444 vpt_page = its_allocate_pending_table(GFP_KERNEL); 4445 if (!vpt_page) { 4446 its_vpe_id_free(vpe_id); 4447 return -ENOMEM; 4448 } 4449 4450 if (!its_alloc_vpe_table(vpe_id)) { 4451 its_vpe_id_free(vpe_id); 4452 its_free_pending_table(vpt_page); 4453 return -ENOMEM; 4454 } 4455 4456 raw_spin_lock_init(&vpe->vpe_lock); 4457 vpe->vpe_id = vpe_id; 4458 vpe->vpt_page = vpt_page; 4459 if (gic_rdists->has_rvpeid) 4460 atomic_set(&vpe->vmapp_count, 0); 4461 else 4462 vpe->vpe_proxy_event = -1; 4463 4464 return 0; 4465 } 4466 4467 static void its_vpe_teardown(struct its_vpe *vpe) 4468 { 4469 its_vpe_db_proxy_unmap(vpe); 4470 its_vpe_id_free(vpe->vpe_id); 4471 its_free_pending_table(vpe->vpt_page); 4472 } 4473 4474 static void its_vpe_irq_domain_free(struct irq_domain *domain, 4475 unsigned int virq, 4476 unsigned int nr_irqs) 4477 { 4478 struct its_vm *vm = domain->host_data; 4479 int i; 4480 4481 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 4482 4483 for (i = 0; i < nr_irqs; i++) { 4484 struct irq_data *data = irq_domain_get_irq_data(domain, 4485 virq + i); 4486 struct its_vpe *vpe = irq_data_get_irq_chip_data(data); 4487 4488 BUG_ON(vm != vpe->its_vm); 4489 4490 clear_bit(data->hwirq, vm->db_bitmap); 4491 its_vpe_teardown(vpe); 4492 irq_domain_reset_irq_data(data); 4493 } 4494 4495 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { 4496 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); 4497 its_free_prop_table(vm->vprop_page); 4498 } 4499 } 4500 4501 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 4502 unsigned int nr_irqs, void *args) 4503 { 4504 struct irq_chip *irqchip = &its_vpe_irq_chip; 4505 struct its_vm *vm = args; 4506 unsigned long *bitmap; 4507 struct page *vprop_page; 4508 int base, nr_ids, i, err = 0; 4509 4510 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids); 4511 if (!bitmap) 4512 return -ENOMEM; 4513 4514 if (nr_ids < nr_irqs) { 4515 its_lpi_free(bitmap, base, nr_ids); 4516 return -ENOMEM; 4517 } 4518 4519 vprop_page = its_allocate_prop_table(GFP_KERNEL); 4520 if (!vprop_page) { 4521 its_lpi_free(bitmap, base, nr_ids); 4522 return -ENOMEM; 4523 } 4524 4525 vm->db_bitmap = bitmap; 4526 vm->db_lpi_base = base; 4527 vm->nr_db_lpis = nr_ids; 4528 vm->vprop_page = vprop_page; 4529 4530 if (gic_rdists->has_rvpeid) 4531 irqchip = &its_vpe_4_1_irq_chip; 4532 4533 for (i = 0; i < nr_irqs; i++) { 4534 vm->vpes[i]->vpe_db_lpi = base + i; 4535 err = its_vpe_init(vm->vpes[i]); 4536 if (err) 4537 break; 4538 err = its_irq_gic_domain_alloc(domain, virq + i, 4539 vm->vpes[i]->vpe_db_lpi); 4540 if (err) 4541 break; 4542 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4543 irqchip, vm->vpes[i]); 4544 set_bit(i, bitmap); 4545 irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i)); 4546 } 4547 4548 if (err) 4549 its_vpe_irq_domain_free(domain, virq, i); 4550 4551 return err; 4552 } 4553 4554 static int its_vpe_irq_domain_activate(struct irq_domain *domain, 4555 struct irq_data *d, bool reserve) 4556 { 4557 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4558 struct its_node *its; 4559 4560 /* 4561 * If we use the list map, we issue VMAPP on demand... Unless 4562 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs 4563 * so that VSGIs can work. 4564 */ 4565 if (!gic_requires_eager_mapping()) 4566 return 0; 4567 4568 /* Map the VPE to the first possible CPU */ 4569 vpe->col_idx = cpumask_first(cpu_online_mask); 4570 4571 list_for_each_entry(its, &its_nodes, entry) { 4572 if (!is_v4(its)) 4573 continue; 4574 4575 its_send_vmapp(its, vpe, true); 4576 its_send_vinvall(its, vpe); 4577 } 4578 4579 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 4580 4581 return 0; 4582 } 4583 4584 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, 4585 struct irq_data *d) 4586 { 4587 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4588 struct its_node *its; 4589 4590 /* 4591 * If we use the list map on GICv4.0, we unmap the VPE once no 4592 * VLPIs are associated with the VM. 4593 */ 4594 if (!gic_requires_eager_mapping()) 4595 return; 4596 4597 list_for_each_entry(its, &its_nodes, entry) { 4598 if (!is_v4(its)) 4599 continue; 4600 4601 its_send_vmapp(its, vpe, false); 4602 } 4603 4604 /* 4605 * There may be a direct read to the VPT after unmapping the 4606 * vPE, to guarantee the validity of this, we make the VPT 4607 * memory coherent with the CPU caches here. 4608 */ 4609 if (find_4_1_its() && !atomic_read(&vpe->vmapp_count)) 4610 gic_flush_dcache_to_poc(page_address(vpe->vpt_page), 4611 LPI_PENDBASE_SZ); 4612 } 4613 4614 static const struct irq_domain_ops its_vpe_domain_ops = { 4615 .alloc = its_vpe_irq_domain_alloc, 4616 .free = its_vpe_irq_domain_free, 4617 .activate = its_vpe_irq_domain_activate, 4618 .deactivate = its_vpe_irq_domain_deactivate, 4619 }; 4620 4621 static int its_force_quiescent(void __iomem *base) 4622 { 4623 u32 count = 1000000; /* 1s */ 4624 u32 val; 4625 4626 val = readl_relaxed(base + GITS_CTLR); 4627 /* 4628 * GIC architecture specification requires the ITS to be both 4629 * disabled and quiescent for writes to GITS_BASER<n> or 4630 * GITS_CBASER to not have UNPREDICTABLE results. 4631 */ 4632 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) 4633 return 0; 4634 4635 /* Disable the generation of all interrupts to this ITS */ 4636 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); 4637 writel_relaxed(val, base + GITS_CTLR); 4638 4639 /* Poll GITS_CTLR and wait until ITS becomes quiescent */ 4640 while (1) { 4641 val = readl_relaxed(base + GITS_CTLR); 4642 if (val & GITS_CTLR_QUIESCENT) 4643 return 0; 4644 4645 count--; 4646 if (!count) 4647 return -EBUSY; 4648 4649 cpu_relax(); 4650 udelay(1); 4651 } 4652 } 4653 4654 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data) 4655 { 4656 struct its_node *its = data; 4657 4658 /* erratum 22375: only alloc 8MB table size (20 bits) */ 4659 its->typer &= ~GITS_TYPER_DEVBITS; 4660 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1); 4661 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; 4662 4663 return true; 4664 } 4665 4666 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data) 4667 { 4668 struct its_node *its = data; 4669 4670 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; 4671 4672 return true; 4673 } 4674 4675 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) 4676 { 4677 struct its_node *its = data; 4678 4679 /* On QDF2400, the size of the ITE is 16Bytes */ 4680 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE; 4681 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1); 4682 4683 return true; 4684 } 4685 4686 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev) 4687 { 4688 struct its_node *its = its_dev->its; 4689 4690 /* 4691 * The Socionext Synquacer SoC has a so-called 'pre-ITS', 4692 * which maps 32-bit writes targeted at a separate window of 4693 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER 4694 * with device ID taken from bits [device_id_bits + 1:2] of 4695 * the window offset. 4696 */ 4697 return its->pre_its_base + (its_dev->device_id << 2); 4698 } 4699 4700 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data) 4701 { 4702 struct its_node *its = data; 4703 u32 pre_its_window[2]; 4704 u32 ids; 4705 4706 if (!fwnode_property_read_u32_array(its->fwnode_handle, 4707 "socionext,synquacer-pre-its", 4708 pre_its_window, 4709 ARRAY_SIZE(pre_its_window))) { 4710 4711 its->pre_its_base = pre_its_window[0]; 4712 its->get_msi_base = its_irq_get_msi_base_pre_its; 4713 4714 ids = ilog2(pre_its_window[1]) - 2; 4715 if (device_ids(its) > ids) { 4716 its->typer &= ~GITS_TYPER_DEVBITS; 4717 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1); 4718 } 4719 4720 /* the pre-ITS breaks isolation, so disable MSI remapping */ 4721 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI; 4722 return true; 4723 } 4724 return false; 4725 } 4726 4727 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data) 4728 { 4729 struct its_node *its = data; 4730 4731 /* 4732 * Hip07 insists on using the wrong address for the VLPI 4733 * page. Trick it into doing the right thing... 4734 */ 4735 its->vlpi_redist_offset = SZ_128K; 4736 return true; 4737 } 4738 4739 static bool __maybe_unused its_enable_rk3588001(void *data) 4740 { 4741 struct its_node *its = data; 4742 4743 if (!of_machine_is_compatible("rockchip,rk3588") && 4744 !of_machine_is_compatible("rockchip,rk3588s")) 4745 return false; 4746 4747 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 4748 gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE; 4749 4750 return true; 4751 } 4752 4753 static bool its_set_non_coherent(void *data) 4754 { 4755 struct its_node *its = data; 4756 4757 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 4758 return true; 4759 } 4760 4761 static const struct gic_quirk its_quirks[] = { 4762 #ifdef CONFIG_CAVIUM_ERRATUM_22375 4763 { 4764 .desc = "ITS: Cavium errata 22375, 24313", 4765 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4766 .mask = 0xffff0fff, 4767 .init = its_enable_quirk_cavium_22375, 4768 }, 4769 #endif 4770 #ifdef CONFIG_CAVIUM_ERRATUM_23144 4771 { 4772 .desc = "ITS: Cavium erratum 23144", 4773 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4774 .mask = 0xffff0fff, 4775 .init = its_enable_quirk_cavium_23144, 4776 }, 4777 #endif 4778 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 4779 { 4780 .desc = "ITS: QDF2400 erratum 0065", 4781 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */ 4782 .mask = 0xffffffff, 4783 .init = its_enable_quirk_qdf2400_e0065, 4784 }, 4785 #endif 4786 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS 4787 { 4788 /* 4789 * The Socionext Synquacer SoC incorporates ARM's own GIC-500 4790 * implementation, but with a 'pre-ITS' added that requires 4791 * special handling in software. 4792 */ 4793 .desc = "ITS: Socionext Synquacer pre-ITS", 4794 .iidr = 0x0001143b, 4795 .mask = 0xffffffff, 4796 .init = its_enable_quirk_socionext_synquacer, 4797 }, 4798 #endif 4799 #ifdef CONFIG_HISILICON_ERRATUM_161600802 4800 { 4801 .desc = "ITS: Hip07 erratum 161600802", 4802 .iidr = 0x00000004, 4803 .mask = 0xffffffff, 4804 .init = its_enable_quirk_hip07_161600802, 4805 }, 4806 #endif 4807 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001 4808 { 4809 .desc = "ITS: Rockchip erratum RK3588001", 4810 .iidr = 0x0201743b, 4811 .mask = 0xffffffff, 4812 .init = its_enable_rk3588001, 4813 }, 4814 #endif 4815 { 4816 .desc = "ITS: non-coherent attribute", 4817 .property = "dma-noncoherent", 4818 .init = its_set_non_coherent, 4819 }, 4820 { 4821 } 4822 }; 4823 4824 static void its_enable_quirks(struct its_node *its) 4825 { 4826 u32 iidr = readl_relaxed(its->base + GITS_IIDR); 4827 4828 gic_enable_quirks(iidr, its_quirks, its); 4829 4830 if (is_of_node(its->fwnode_handle)) 4831 gic_enable_of_quirks(to_of_node(its->fwnode_handle), 4832 its_quirks, its); 4833 } 4834 4835 static int its_save_disable(void) 4836 { 4837 struct its_node *its; 4838 int err = 0; 4839 4840 raw_spin_lock(&its_lock); 4841 list_for_each_entry(its, &its_nodes, entry) { 4842 void __iomem *base; 4843 4844 base = its->base; 4845 its->ctlr_save = readl_relaxed(base + GITS_CTLR); 4846 err = its_force_quiescent(base); 4847 if (err) { 4848 pr_err("ITS@%pa: failed to quiesce: %d\n", 4849 &its->phys_base, err); 4850 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4851 goto err; 4852 } 4853 4854 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER); 4855 } 4856 4857 err: 4858 if (err) { 4859 list_for_each_entry_continue_reverse(its, &its_nodes, entry) { 4860 void __iomem *base; 4861 4862 base = its->base; 4863 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4864 } 4865 } 4866 raw_spin_unlock(&its_lock); 4867 4868 return err; 4869 } 4870 4871 static void its_restore_enable(void) 4872 { 4873 struct its_node *its; 4874 int ret; 4875 4876 raw_spin_lock(&its_lock); 4877 list_for_each_entry(its, &its_nodes, entry) { 4878 void __iomem *base; 4879 int i; 4880 4881 base = its->base; 4882 4883 /* 4884 * Make sure that the ITS is disabled. If it fails to quiesce, 4885 * don't restore it since writing to CBASER or BASER<n> 4886 * registers is undefined according to the GIC v3 ITS 4887 * Specification. 4888 * 4889 * Firmware resuming with the ITS enabled is terminally broken. 4890 */ 4891 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE); 4892 ret = its_force_quiescent(base); 4893 if (ret) { 4894 pr_err("ITS@%pa: failed to quiesce on resume: %d\n", 4895 &its->phys_base, ret); 4896 continue; 4897 } 4898 4899 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER); 4900 4901 /* 4902 * Writing CBASER resets CREADR to 0, so make CWRITER and 4903 * cmd_write line up with it. 4904 */ 4905 its->cmd_write = its->cmd_base; 4906 gits_write_cwriter(0, base + GITS_CWRITER); 4907 4908 /* Restore GITS_BASER from the value cache. */ 4909 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 4910 struct its_baser *baser = &its->tables[i]; 4911 4912 if (!(baser->val & GITS_BASER_VALID)) 4913 continue; 4914 4915 its_write_baser(its, baser, baser->val); 4916 } 4917 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4918 4919 /* 4920 * Reinit the collection if it's stored in the ITS. This is 4921 * indicated by the col_id being less than the HCC field. 4922 * CID < HCC as specified in the GIC v3 Documentation. 4923 */ 4924 if (its->collections[smp_processor_id()].col_id < 4925 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER))) 4926 its_cpu_init_collection(its); 4927 } 4928 raw_spin_unlock(&its_lock); 4929 } 4930 4931 static struct syscore_ops its_syscore_ops = { 4932 .suspend = its_save_disable, 4933 .resume = its_restore_enable, 4934 }; 4935 4936 static void __init __iomem *its_map_one(struct resource *res, int *err) 4937 { 4938 void __iomem *its_base; 4939 u32 val; 4940 4941 its_base = ioremap(res->start, SZ_64K); 4942 if (!its_base) { 4943 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); 4944 *err = -ENOMEM; 4945 return NULL; 4946 } 4947 4948 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; 4949 if (val != 0x30 && val != 0x40) { 4950 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); 4951 *err = -ENODEV; 4952 goto out_unmap; 4953 } 4954 4955 *err = its_force_quiescent(its_base); 4956 if (*err) { 4957 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); 4958 goto out_unmap; 4959 } 4960 4961 return its_base; 4962 4963 out_unmap: 4964 iounmap(its_base); 4965 return NULL; 4966 } 4967 4968 static int its_init_domain(struct its_node *its) 4969 { 4970 struct irq_domain *inner_domain; 4971 struct msi_domain_info *info; 4972 4973 info = kzalloc(sizeof(*info), GFP_KERNEL); 4974 if (!info) 4975 return -ENOMEM; 4976 4977 info->ops = &its_msi_domain_ops; 4978 info->data = its; 4979 4980 inner_domain = irq_domain_create_hierarchy(its_parent, 4981 its->msi_domain_flags, 0, 4982 its->fwnode_handle, &its_domain_ops, 4983 info); 4984 if (!inner_domain) { 4985 kfree(info); 4986 return -ENOMEM; 4987 } 4988 4989 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS); 4990 4991 return 0; 4992 } 4993 4994 static int its_init_vpe_domain(void) 4995 { 4996 struct its_node *its; 4997 u32 devid; 4998 int entries; 4999 5000 if (gic_rdists->has_direct_lpi) { 5001 pr_info("ITS: Using DirectLPI for VPE invalidation\n"); 5002 return 0; 5003 } 5004 5005 /* Any ITS will do, even if not v4 */ 5006 its = list_first_entry(&its_nodes, struct its_node, entry); 5007 5008 entries = roundup_pow_of_two(nr_cpu_ids); 5009 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes), 5010 GFP_KERNEL); 5011 if (!vpe_proxy.vpes) 5012 return -ENOMEM; 5013 5014 /* Use the last possible DevID */ 5015 devid = GENMASK(device_ids(its) - 1, 0); 5016 vpe_proxy.dev = its_create_device(its, devid, entries, false); 5017 if (!vpe_proxy.dev) { 5018 kfree(vpe_proxy.vpes); 5019 pr_err("ITS: Can't allocate GICv4 proxy device\n"); 5020 return -ENOMEM; 5021 } 5022 5023 BUG_ON(entries > vpe_proxy.dev->nr_ites); 5024 5025 raw_spin_lock_init(&vpe_proxy.lock); 5026 vpe_proxy.next_victim = 0; 5027 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", 5028 devid, vpe_proxy.dev->nr_ites); 5029 5030 return 0; 5031 } 5032 5033 static int __init its_compute_its_list_map(struct its_node *its) 5034 { 5035 int its_number; 5036 u32 ctlr; 5037 5038 /* 5039 * This is assumed to be done early enough that we're 5040 * guaranteed to be single-threaded, hence no 5041 * locking. Should this change, we should address 5042 * this. 5043 */ 5044 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX); 5045 if (its_number >= GICv4_ITS_LIST_MAX) { 5046 pr_err("ITS@%pa: No ITSList entry available!\n", 5047 &its->phys_base); 5048 return -EINVAL; 5049 } 5050 5051 ctlr = readl_relaxed(its->base + GITS_CTLR); 5052 ctlr &= ~GITS_CTLR_ITS_NUMBER; 5053 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; 5054 writel_relaxed(ctlr, its->base + GITS_CTLR); 5055 ctlr = readl_relaxed(its->base + GITS_CTLR); 5056 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { 5057 its_number = ctlr & GITS_CTLR_ITS_NUMBER; 5058 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; 5059 } 5060 5061 if (test_and_set_bit(its_number, &its_list_map)) { 5062 pr_err("ITS@%pa: Duplicate ITSList entry %d\n", 5063 &its->phys_base, its_number); 5064 return -EINVAL; 5065 } 5066 5067 return its_number; 5068 } 5069 5070 static int __init its_probe_one(struct its_node *its) 5071 { 5072 u64 baser, tmp; 5073 struct page *page; 5074 u32 ctlr; 5075 int err; 5076 5077 its_enable_quirks(its); 5078 5079 if (is_v4(its)) { 5080 if (!(its->typer & GITS_TYPER_VMOVP)) { 5081 err = its_compute_its_list_map(its); 5082 if (err < 0) 5083 goto out; 5084 5085 its->list_nr = err; 5086 5087 pr_info("ITS@%pa: Using ITS number %d\n", 5088 &its->phys_base, err); 5089 } else { 5090 pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base); 5091 } 5092 5093 if (is_v4_1(its)) { 5094 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); 5095 5096 its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K); 5097 if (!its->sgir_base) { 5098 err = -ENOMEM; 5099 goto out; 5100 } 5101 5102 its->mpidr = readl_relaxed(its->base + GITS_MPIDR); 5103 5104 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n", 5105 &its->phys_base, its->mpidr, svpet); 5106 } 5107 } 5108 5109 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 5110 get_order(ITS_CMD_QUEUE_SZ)); 5111 if (!page) { 5112 err = -ENOMEM; 5113 goto out_unmap_sgir; 5114 } 5115 its->cmd_base = (void *)page_address(page); 5116 its->cmd_write = its->cmd_base; 5117 5118 err = its_alloc_tables(its); 5119 if (err) 5120 goto out_free_cmd; 5121 5122 err = its_alloc_collections(its); 5123 if (err) 5124 goto out_free_tables; 5125 5126 baser = (virt_to_phys(its->cmd_base) | 5127 GITS_CBASER_RaWaWb | 5128 GITS_CBASER_InnerShareable | 5129 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | 5130 GITS_CBASER_VALID); 5131 5132 gits_write_cbaser(baser, its->base + GITS_CBASER); 5133 tmp = gits_read_cbaser(its->base + GITS_CBASER); 5134 5135 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) 5136 tmp &= ~GITS_CBASER_SHAREABILITY_MASK; 5137 5138 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { 5139 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { 5140 /* 5141 * The HW reports non-shareable, we must 5142 * remove the cacheability attributes as 5143 * well. 5144 */ 5145 baser &= ~(GITS_CBASER_SHAREABILITY_MASK | 5146 GITS_CBASER_CACHEABILITY_MASK); 5147 baser |= GITS_CBASER_nC; 5148 gits_write_cbaser(baser, its->base + GITS_CBASER); 5149 } 5150 pr_info("ITS: using cache flushing for cmd queue\n"); 5151 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; 5152 } 5153 5154 gits_write_cwriter(0, its->base + GITS_CWRITER); 5155 ctlr = readl_relaxed(its->base + GITS_CTLR); 5156 ctlr |= GITS_CTLR_ENABLE; 5157 if (is_v4(its)) 5158 ctlr |= GITS_CTLR_ImDe; 5159 writel_relaxed(ctlr, its->base + GITS_CTLR); 5160 5161 err = its_init_domain(its); 5162 if (err) 5163 goto out_free_tables; 5164 5165 raw_spin_lock(&its_lock); 5166 list_add(&its->entry, &its_nodes); 5167 raw_spin_unlock(&its_lock); 5168 5169 return 0; 5170 5171 out_free_tables: 5172 its_free_tables(its); 5173 out_free_cmd: 5174 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); 5175 out_unmap_sgir: 5176 if (its->sgir_base) 5177 iounmap(its->sgir_base); 5178 out: 5179 pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err); 5180 return err; 5181 } 5182 5183 static bool gic_rdists_supports_plpis(void) 5184 { 5185 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); 5186 } 5187 5188 static int redist_disable_lpis(void) 5189 { 5190 void __iomem *rbase = gic_data_rdist_rd_base(); 5191 u64 timeout = USEC_PER_SEC; 5192 u64 val; 5193 5194 if (!gic_rdists_supports_plpis()) { 5195 pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); 5196 return -ENXIO; 5197 } 5198 5199 val = readl_relaxed(rbase + GICR_CTLR); 5200 if (!(val & GICR_CTLR_ENABLE_LPIS)) 5201 return 0; 5202 5203 /* 5204 * If coming via a CPU hotplug event, we don't need to disable 5205 * LPIs before trying to re-enable them. They are already 5206 * configured and all is well in the world. 5207 * 5208 * If running with preallocated tables, there is nothing to do. 5209 */ 5210 if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) || 5211 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED)) 5212 return 0; 5213 5214 /* 5215 * From that point on, we only try to do some damage control. 5216 */ 5217 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n", 5218 smp_processor_id()); 5219 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 5220 5221 /* Disable LPIs */ 5222 val &= ~GICR_CTLR_ENABLE_LPIS; 5223 writel_relaxed(val, rbase + GICR_CTLR); 5224 5225 /* Make sure any change to GICR_CTLR is observable by the GIC */ 5226 dsb(sy); 5227 5228 /* 5229 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs 5230 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers. 5231 * Error out if we time out waiting for RWP to clear. 5232 */ 5233 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) { 5234 if (!timeout) { 5235 pr_err("CPU%d: Timeout while disabling LPIs\n", 5236 smp_processor_id()); 5237 return -ETIMEDOUT; 5238 } 5239 udelay(1); 5240 timeout--; 5241 } 5242 5243 /* 5244 * After it has been written to 1, it is IMPLEMENTATION 5245 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be 5246 * cleared to 0. Error out if clearing the bit failed. 5247 */ 5248 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) { 5249 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id()); 5250 return -EBUSY; 5251 } 5252 5253 return 0; 5254 } 5255 5256 int its_cpu_init(void) 5257 { 5258 if (!list_empty(&its_nodes)) { 5259 int ret; 5260 5261 ret = redist_disable_lpis(); 5262 if (ret) 5263 return ret; 5264 5265 its_cpu_init_lpis(); 5266 its_cpu_init_collections(); 5267 } 5268 5269 return 0; 5270 } 5271 5272 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work) 5273 { 5274 cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state); 5275 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; 5276 } 5277 5278 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work, 5279 rdist_memreserve_cpuhp_cleanup_workfn); 5280 5281 static int its_cpu_memreserve_lpi(unsigned int cpu) 5282 { 5283 struct page *pend_page; 5284 int ret = 0; 5285 5286 /* This gets to run exactly once per CPU */ 5287 if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE) 5288 return 0; 5289 5290 pend_page = gic_data_rdist()->pend_page; 5291 if (WARN_ON(!pend_page)) { 5292 ret = -ENOMEM; 5293 goto out; 5294 } 5295 /* 5296 * If the pending table was pre-programmed, free the memory we 5297 * preemptively allocated. Otherwise, reserve that memory for 5298 * later kexecs. 5299 */ 5300 if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) { 5301 its_free_pending_table(pend_page); 5302 gic_data_rdist()->pend_page = NULL; 5303 } else { 5304 phys_addr_t paddr = page_to_phys(pend_page); 5305 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ)); 5306 } 5307 5308 out: 5309 /* Last CPU being brought up gets to issue the cleanup */ 5310 if (!IS_ENABLED(CONFIG_SMP) || 5311 cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask)) 5312 schedule_work(&rdist_memreserve_cpuhp_cleanup_work); 5313 5314 gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE; 5315 return ret; 5316 } 5317 5318 /* Mark all the BASER registers as invalid before they get reprogrammed */ 5319 static int __init its_reset_one(struct resource *res) 5320 { 5321 void __iomem *its_base; 5322 int err, i; 5323 5324 its_base = its_map_one(res, &err); 5325 if (!its_base) 5326 return err; 5327 5328 for (i = 0; i < GITS_BASER_NR_REGS; i++) 5329 gits_write_baser(0, its_base + GITS_BASER + (i << 3)); 5330 5331 iounmap(its_base); 5332 return 0; 5333 } 5334 5335 static const struct of_device_id its_device_id[] = { 5336 { .compatible = "arm,gic-v3-its", }, 5337 {}, 5338 }; 5339 5340 static struct its_node __init *its_node_init(struct resource *res, 5341 struct fwnode_handle *handle, int numa_node) 5342 { 5343 void __iomem *its_base; 5344 struct its_node *its; 5345 int err; 5346 5347 its_base = its_map_one(res, &err); 5348 if (!its_base) 5349 return NULL; 5350 5351 pr_info("ITS %pR\n", res); 5352 5353 its = kzalloc(sizeof(*its), GFP_KERNEL); 5354 if (!its) 5355 goto out_unmap; 5356 5357 raw_spin_lock_init(&its->lock); 5358 mutex_init(&its->dev_alloc_lock); 5359 INIT_LIST_HEAD(&its->entry); 5360 INIT_LIST_HEAD(&its->its_device_list); 5361 5362 its->typer = gic_read_typer(its_base + GITS_TYPER); 5363 its->base = its_base; 5364 its->phys_base = res->start; 5365 its->get_msi_base = its_irq_get_msi_base; 5366 its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI; 5367 5368 its->numa_node = numa_node; 5369 its->fwnode_handle = handle; 5370 5371 return its; 5372 5373 out_unmap: 5374 iounmap(its_base); 5375 return NULL; 5376 } 5377 5378 static void its_node_destroy(struct its_node *its) 5379 { 5380 iounmap(its->base); 5381 kfree(its); 5382 } 5383 5384 static int __init its_of_probe(struct device_node *node) 5385 { 5386 struct device_node *np; 5387 struct resource res; 5388 int err; 5389 5390 /* 5391 * Make sure *all* the ITS are reset before we probe any, as 5392 * they may be sharing memory. If any of the ITS fails to 5393 * reset, don't even try to go any further, as this could 5394 * result in something even worse. 5395 */ 5396 for (np = of_find_matching_node(node, its_device_id); np; 5397 np = of_find_matching_node(np, its_device_id)) { 5398 if (!of_device_is_available(np) || 5399 !of_property_read_bool(np, "msi-controller") || 5400 of_address_to_resource(np, 0, &res)) 5401 continue; 5402 5403 err = its_reset_one(&res); 5404 if (err) 5405 return err; 5406 } 5407 5408 for (np = of_find_matching_node(node, its_device_id); np; 5409 np = of_find_matching_node(np, its_device_id)) { 5410 struct its_node *its; 5411 5412 if (!of_device_is_available(np)) 5413 continue; 5414 if (!of_property_read_bool(np, "msi-controller")) { 5415 pr_warn("%pOF: no msi-controller property, ITS ignored\n", 5416 np); 5417 continue; 5418 } 5419 5420 if (of_address_to_resource(np, 0, &res)) { 5421 pr_warn("%pOF: no regs?\n", np); 5422 continue; 5423 } 5424 5425 5426 its = its_node_init(&res, &np->fwnode, of_node_to_nid(np)); 5427 if (!its) 5428 return -ENOMEM; 5429 5430 err = its_probe_one(its); 5431 if (err) { 5432 its_node_destroy(its); 5433 return err; 5434 } 5435 } 5436 return 0; 5437 } 5438 5439 #ifdef CONFIG_ACPI 5440 5441 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) 5442 5443 #ifdef CONFIG_ACPI_NUMA 5444 struct its_srat_map { 5445 /* numa node id */ 5446 u32 numa_node; 5447 /* GIC ITS ID */ 5448 u32 its_id; 5449 }; 5450 5451 static struct its_srat_map *its_srat_maps __initdata; 5452 static int its_in_srat __initdata; 5453 5454 static int __init acpi_get_its_numa_node(u32 its_id) 5455 { 5456 int i; 5457 5458 for (i = 0; i < its_in_srat; i++) { 5459 if (its_id == its_srat_maps[i].its_id) 5460 return its_srat_maps[i].numa_node; 5461 } 5462 return NUMA_NO_NODE; 5463 } 5464 5465 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header, 5466 const unsigned long end) 5467 { 5468 return 0; 5469 } 5470 5471 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header, 5472 const unsigned long end) 5473 { 5474 int node; 5475 struct acpi_srat_gic_its_affinity *its_affinity; 5476 5477 its_affinity = (struct acpi_srat_gic_its_affinity *)header; 5478 if (!its_affinity) 5479 return -EINVAL; 5480 5481 if (its_affinity->header.length < sizeof(*its_affinity)) { 5482 pr_err("SRAT: Invalid header length %d in ITS affinity\n", 5483 its_affinity->header.length); 5484 return -EINVAL; 5485 } 5486 5487 /* 5488 * Note that in theory a new proximity node could be created by this 5489 * entry as it is an SRAT resource allocation structure. 5490 * We do not currently support doing so. 5491 */ 5492 node = pxm_to_node(its_affinity->proximity_domain); 5493 5494 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { 5495 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); 5496 return 0; 5497 } 5498 5499 its_srat_maps[its_in_srat].numa_node = node; 5500 its_srat_maps[its_in_srat].its_id = its_affinity->its_id; 5501 its_in_srat++; 5502 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", 5503 its_affinity->proximity_domain, its_affinity->its_id, node); 5504 5505 return 0; 5506 } 5507 5508 static void __init acpi_table_parse_srat_its(void) 5509 { 5510 int count; 5511 5512 count = acpi_table_parse_entries(ACPI_SIG_SRAT, 5513 sizeof(struct acpi_table_srat), 5514 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5515 gic_acpi_match_srat_its, 0); 5516 if (count <= 0) 5517 return; 5518 5519 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map), 5520 GFP_KERNEL); 5521 if (!its_srat_maps) 5522 return; 5523 5524 acpi_table_parse_entries(ACPI_SIG_SRAT, 5525 sizeof(struct acpi_table_srat), 5526 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5527 gic_acpi_parse_srat_its, 0); 5528 } 5529 5530 /* free the its_srat_maps after ITS probing */ 5531 static void __init acpi_its_srat_maps_free(void) 5532 { 5533 kfree(its_srat_maps); 5534 } 5535 #else 5536 static void __init acpi_table_parse_srat_its(void) { } 5537 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } 5538 static void __init acpi_its_srat_maps_free(void) { } 5539 #endif 5540 5541 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header, 5542 const unsigned long end) 5543 { 5544 struct acpi_madt_generic_translator *its_entry; 5545 struct fwnode_handle *dom_handle; 5546 struct its_node *its; 5547 struct resource res; 5548 int err; 5549 5550 its_entry = (struct acpi_madt_generic_translator *)header; 5551 memset(&res, 0, sizeof(res)); 5552 res.start = its_entry->base_address; 5553 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; 5554 res.flags = IORESOURCE_MEM; 5555 5556 dom_handle = irq_domain_alloc_fwnode(&res.start); 5557 if (!dom_handle) { 5558 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", 5559 &res.start); 5560 return -ENOMEM; 5561 } 5562 5563 err = iort_register_domain_token(its_entry->translation_id, res.start, 5564 dom_handle); 5565 if (err) { 5566 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", 5567 &res.start, its_entry->translation_id); 5568 goto dom_err; 5569 } 5570 5571 its = its_node_init(&res, dom_handle, 5572 acpi_get_its_numa_node(its_entry->translation_id)); 5573 if (!its) { 5574 err = -ENOMEM; 5575 goto node_err; 5576 } 5577 5578 err = its_probe_one(its); 5579 if (!err) 5580 return 0; 5581 5582 node_err: 5583 iort_deregister_domain_token(its_entry->translation_id); 5584 dom_err: 5585 irq_domain_free_fwnode(dom_handle); 5586 return err; 5587 } 5588 5589 static int __init its_acpi_reset(union acpi_subtable_headers *header, 5590 const unsigned long end) 5591 { 5592 struct acpi_madt_generic_translator *its_entry; 5593 struct resource res; 5594 5595 its_entry = (struct acpi_madt_generic_translator *)header; 5596 res = (struct resource) { 5597 .start = its_entry->base_address, 5598 .end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1, 5599 .flags = IORESOURCE_MEM, 5600 }; 5601 5602 return its_reset_one(&res); 5603 } 5604 5605 static void __init its_acpi_probe(void) 5606 { 5607 acpi_table_parse_srat_its(); 5608 /* 5609 * Make sure *all* the ITS are reset before we probe any, as 5610 * they may be sharing memory. If any of the ITS fails to 5611 * reset, don't even try to go any further, as this could 5612 * result in something even worse. 5613 */ 5614 if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5615 its_acpi_reset, 0) > 0) 5616 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5617 gic_acpi_parse_madt_its, 0); 5618 acpi_its_srat_maps_free(); 5619 } 5620 #else 5621 static void __init its_acpi_probe(void) { } 5622 #endif 5623 5624 int __init its_lpi_memreserve_init(void) 5625 { 5626 int state; 5627 5628 if (!efi_enabled(EFI_CONFIG_TABLES)) 5629 return 0; 5630 5631 if (list_empty(&its_nodes)) 5632 return 0; 5633 5634 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; 5635 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, 5636 "irqchip/arm/gicv3/memreserve:online", 5637 its_cpu_memreserve_lpi, 5638 NULL); 5639 if (state < 0) 5640 return state; 5641 5642 gic_rdists->cpuhp_memreserve_state = state; 5643 5644 return 0; 5645 } 5646 5647 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, 5648 struct irq_domain *parent_domain) 5649 { 5650 struct device_node *of_node; 5651 struct its_node *its; 5652 bool has_v4 = false; 5653 bool has_v4_1 = false; 5654 int err; 5655 5656 gic_rdists = rdists; 5657 5658 its_parent = parent_domain; 5659 of_node = to_of_node(handle); 5660 if (of_node) 5661 its_of_probe(of_node); 5662 else 5663 its_acpi_probe(); 5664 5665 if (list_empty(&its_nodes)) { 5666 pr_warn("ITS: No ITS available, not enabling LPIs\n"); 5667 return -ENXIO; 5668 } 5669 5670 err = allocate_lpi_tables(); 5671 if (err) 5672 return err; 5673 5674 list_for_each_entry(its, &its_nodes, entry) { 5675 has_v4 |= is_v4(its); 5676 has_v4_1 |= is_v4_1(its); 5677 } 5678 5679 /* Don't bother with inconsistent systems */ 5680 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid)) 5681 rdists->has_rvpeid = false; 5682 5683 if (has_v4 & rdists->has_vlpis) { 5684 const struct irq_domain_ops *sgi_ops; 5685 5686 if (has_v4_1) 5687 sgi_ops = &its_sgi_domain_ops; 5688 else 5689 sgi_ops = NULL; 5690 5691 if (its_init_vpe_domain() || 5692 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) { 5693 rdists->has_vlpis = false; 5694 pr_err("ITS: Disabling GICv4 support\n"); 5695 } 5696 } 5697 5698 register_syscore_ops(&its_syscore_ops); 5699 5700 return 0; 5701 } 5702