1 /* 2 * Copyright (C) 2013, 2014 ARM Limited, All Rights Reserved. 3 * Author: Marc Zyngier <marc.zyngier@arm.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #include <linux/bitmap.h> 19 #include <linux/cpu.h> 20 #include <linux/delay.h> 21 #include <linux/interrupt.h> 22 #include <linux/log2.h> 23 #include <linux/mm.h> 24 #include <linux/msi.h> 25 #include <linux/of.h> 26 #include <linux/of_address.h> 27 #include <linux/of_irq.h> 28 #include <linux/of_pci.h> 29 #include <linux/of_platform.h> 30 #include <linux/percpu.h> 31 #include <linux/slab.h> 32 33 #include <linux/irqchip.h> 34 #include <linux/irqchip/arm-gic-v3.h> 35 36 #include <asm/cacheflush.h> 37 #include <asm/cputype.h> 38 #include <asm/exception.h> 39 40 #include "irq-gic-common.h" 41 42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) 43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) 44 45 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0) 46 47 /* 48 * Collection structure - just an ID, and a redistributor address to 49 * ping. We use one per CPU as a bag of interrupts assigned to this 50 * CPU. 51 */ 52 struct its_collection { 53 u64 target_address; 54 u16 col_id; 55 }; 56 57 /* 58 * The ITS structure - contains most of the infrastructure, with the 59 * top-level MSI domain, the command queue, the collections, and the 60 * list of devices writing to it. 61 */ 62 struct its_node { 63 raw_spinlock_t lock; 64 struct list_head entry; 65 void __iomem *base; 66 unsigned long phys_base; 67 struct its_cmd_block *cmd_base; 68 struct its_cmd_block *cmd_write; 69 struct { 70 void *base; 71 u32 order; 72 } tables[GITS_BASER_NR_REGS]; 73 struct its_collection *collections; 74 struct list_head its_device_list; 75 u64 flags; 76 u32 ite_size; 77 }; 78 79 #define ITS_ITT_ALIGN SZ_256 80 81 /* Convert page order to size in bytes */ 82 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) 83 84 struct event_lpi_map { 85 unsigned long *lpi_map; 86 u16 *col_map; 87 irq_hw_number_t lpi_base; 88 int nr_lpis; 89 }; 90 91 /* 92 * The ITS view of a device - belongs to an ITS, a collection, owns an 93 * interrupt translation table, and a list of interrupts. 94 */ 95 struct its_device { 96 struct list_head entry; 97 struct its_node *its; 98 struct event_lpi_map event_map; 99 void *itt; 100 u32 nr_ites; 101 u32 device_id; 102 }; 103 104 static LIST_HEAD(its_nodes); 105 static DEFINE_SPINLOCK(its_lock); 106 static struct device_node *gic_root_node; 107 static struct rdists *gic_rdists; 108 109 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) 110 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 111 112 static struct its_collection *dev_event_to_col(struct its_device *its_dev, 113 u32 event) 114 { 115 struct its_node *its = its_dev->its; 116 117 return its->collections + its_dev->event_map.col_map[event]; 118 } 119 120 /* 121 * ITS command descriptors - parameters to be encoded in a command 122 * block. 123 */ 124 struct its_cmd_desc { 125 union { 126 struct { 127 struct its_device *dev; 128 u32 event_id; 129 } its_inv_cmd; 130 131 struct { 132 struct its_device *dev; 133 u32 event_id; 134 } its_int_cmd; 135 136 struct { 137 struct its_device *dev; 138 int valid; 139 } its_mapd_cmd; 140 141 struct { 142 struct its_collection *col; 143 int valid; 144 } its_mapc_cmd; 145 146 struct { 147 struct its_device *dev; 148 u32 phys_id; 149 u32 event_id; 150 } its_mapvi_cmd; 151 152 struct { 153 struct its_device *dev; 154 struct its_collection *col; 155 u32 event_id; 156 } its_movi_cmd; 157 158 struct { 159 struct its_device *dev; 160 u32 event_id; 161 } its_discard_cmd; 162 163 struct { 164 struct its_collection *col; 165 } its_invall_cmd; 166 }; 167 }; 168 169 /* 170 * The ITS command block, which is what the ITS actually parses. 171 */ 172 struct its_cmd_block { 173 u64 raw_cmd[4]; 174 }; 175 176 #define ITS_CMD_QUEUE_SZ SZ_64K 177 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) 178 179 typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *, 180 struct its_cmd_desc *); 181 182 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) 183 { 184 cmd->raw_cmd[0] &= ~0xffUL; 185 cmd->raw_cmd[0] |= cmd_nr; 186 } 187 188 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) 189 { 190 cmd->raw_cmd[0] &= BIT_ULL(32) - 1; 191 cmd->raw_cmd[0] |= ((u64)devid) << 32; 192 } 193 194 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) 195 { 196 cmd->raw_cmd[1] &= ~0xffffffffUL; 197 cmd->raw_cmd[1] |= id; 198 } 199 200 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) 201 { 202 cmd->raw_cmd[1] &= 0xffffffffUL; 203 cmd->raw_cmd[1] |= ((u64)phys_id) << 32; 204 } 205 206 static void its_encode_size(struct its_cmd_block *cmd, u8 size) 207 { 208 cmd->raw_cmd[1] &= ~0x1fUL; 209 cmd->raw_cmd[1] |= size & 0x1f; 210 } 211 212 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) 213 { 214 cmd->raw_cmd[2] &= ~0xffffffffffffUL; 215 cmd->raw_cmd[2] |= itt_addr & 0xffffffffff00UL; 216 } 217 218 static void its_encode_valid(struct its_cmd_block *cmd, int valid) 219 { 220 cmd->raw_cmd[2] &= ~(1UL << 63); 221 cmd->raw_cmd[2] |= ((u64)!!valid) << 63; 222 } 223 224 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) 225 { 226 cmd->raw_cmd[2] &= ~(0xffffffffUL << 16); 227 cmd->raw_cmd[2] |= (target_addr & (0xffffffffUL << 16)); 228 } 229 230 static void its_encode_collection(struct its_cmd_block *cmd, u16 col) 231 { 232 cmd->raw_cmd[2] &= ~0xffffUL; 233 cmd->raw_cmd[2] |= col; 234 } 235 236 static inline void its_fixup_cmd(struct its_cmd_block *cmd) 237 { 238 /* Let's fixup BE commands */ 239 cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]); 240 cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]); 241 cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]); 242 cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]); 243 } 244 245 static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd, 246 struct its_cmd_desc *desc) 247 { 248 unsigned long itt_addr; 249 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); 250 251 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); 252 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); 253 254 its_encode_cmd(cmd, GITS_CMD_MAPD); 255 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); 256 its_encode_size(cmd, size - 1); 257 its_encode_itt(cmd, itt_addr); 258 its_encode_valid(cmd, desc->its_mapd_cmd.valid); 259 260 its_fixup_cmd(cmd); 261 262 return NULL; 263 } 264 265 static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd, 266 struct its_cmd_desc *desc) 267 { 268 its_encode_cmd(cmd, GITS_CMD_MAPC); 269 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 270 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); 271 its_encode_valid(cmd, desc->its_mapc_cmd.valid); 272 273 its_fixup_cmd(cmd); 274 275 return desc->its_mapc_cmd.col; 276 } 277 278 static struct its_collection *its_build_mapvi_cmd(struct its_cmd_block *cmd, 279 struct its_cmd_desc *desc) 280 { 281 struct its_collection *col; 282 283 col = dev_event_to_col(desc->its_mapvi_cmd.dev, 284 desc->its_mapvi_cmd.event_id); 285 286 its_encode_cmd(cmd, GITS_CMD_MAPVI); 287 its_encode_devid(cmd, desc->its_mapvi_cmd.dev->device_id); 288 its_encode_event_id(cmd, desc->its_mapvi_cmd.event_id); 289 its_encode_phys_id(cmd, desc->its_mapvi_cmd.phys_id); 290 its_encode_collection(cmd, col->col_id); 291 292 its_fixup_cmd(cmd); 293 294 return col; 295 } 296 297 static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd, 298 struct its_cmd_desc *desc) 299 { 300 struct its_collection *col; 301 302 col = dev_event_to_col(desc->its_movi_cmd.dev, 303 desc->its_movi_cmd.event_id); 304 305 its_encode_cmd(cmd, GITS_CMD_MOVI); 306 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); 307 its_encode_event_id(cmd, desc->its_movi_cmd.event_id); 308 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); 309 310 its_fixup_cmd(cmd); 311 312 return col; 313 } 314 315 static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd, 316 struct its_cmd_desc *desc) 317 { 318 struct its_collection *col; 319 320 col = dev_event_to_col(desc->its_discard_cmd.dev, 321 desc->its_discard_cmd.event_id); 322 323 its_encode_cmd(cmd, GITS_CMD_DISCARD); 324 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); 325 its_encode_event_id(cmd, desc->its_discard_cmd.event_id); 326 327 its_fixup_cmd(cmd); 328 329 return col; 330 } 331 332 static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd, 333 struct its_cmd_desc *desc) 334 { 335 struct its_collection *col; 336 337 col = dev_event_to_col(desc->its_inv_cmd.dev, 338 desc->its_inv_cmd.event_id); 339 340 its_encode_cmd(cmd, GITS_CMD_INV); 341 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 342 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 343 344 its_fixup_cmd(cmd); 345 346 return col; 347 } 348 349 static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd, 350 struct its_cmd_desc *desc) 351 { 352 its_encode_cmd(cmd, GITS_CMD_INVALL); 353 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 354 355 its_fixup_cmd(cmd); 356 357 return NULL; 358 } 359 360 static u64 its_cmd_ptr_to_offset(struct its_node *its, 361 struct its_cmd_block *ptr) 362 { 363 return (ptr - its->cmd_base) * sizeof(*ptr); 364 } 365 366 static int its_queue_full(struct its_node *its) 367 { 368 int widx; 369 int ridx; 370 371 widx = its->cmd_write - its->cmd_base; 372 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); 373 374 /* This is incredibly unlikely to happen, unless the ITS locks up. */ 375 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) 376 return 1; 377 378 return 0; 379 } 380 381 static struct its_cmd_block *its_allocate_entry(struct its_node *its) 382 { 383 struct its_cmd_block *cmd; 384 u32 count = 1000000; /* 1s! */ 385 386 while (its_queue_full(its)) { 387 count--; 388 if (!count) { 389 pr_err_ratelimited("ITS queue not draining\n"); 390 return NULL; 391 } 392 cpu_relax(); 393 udelay(1); 394 } 395 396 cmd = its->cmd_write++; 397 398 /* Handle queue wrapping */ 399 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) 400 its->cmd_write = its->cmd_base; 401 402 return cmd; 403 } 404 405 static struct its_cmd_block *its_post_commands(struct its_node *its) 406 { 407 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); 408 409 writel_relaxed(wr, its->base + GITS_CWRITER); 410 411 return its->cmd_write; 412 } 413 414 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) 415 { 416 /* 417 * Make sure the commands written to memory are observable by 418 * the ITS. 419 */ 420 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) 421 __flush_dcache_area(cmd, sizeof(*cmd)); 422 else 423 dsb(ishst); 424 } 425 426 static void its_wait_for_range_completion(struct its_node *its, 427 struct its_cmd_block *from, 428 struct its_cmd_block *to) 429 { 430 u64 rd_idx, from_idx, to_idx; 431 u32 count = 1000000; /* 1s! */ 432 433 from_idx = its_cmd_ptr_to_offset(its, from); 434 to_idx = its_cmd_ptr_to_offset(its, to); 435 436 while (1) { 437 rd_idx = readl_relaxed(its->base + GITS_CREADR); 438 if (rd_idx >= to_idx || rd_idx < from_idx) 439 break; 440 441 count--; 442 if (!count) { 443 pr_err_ratelimited("ITS queue timeout\n"); 444 return; 445 } 446 cpu_relax(); 447 udelay(1); 448 } 449 } 450 451 static void its_send_single_command(struct its_node *its, 452 its_cmd_builder_t builder, 453 struct its_cmd_desc *desc) 454 { 455 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; 456 struct its_collection *sync_col; 457 unsigned long flags; 458 459 raw_spin_lock_irqsave(&its->lock, flags); 460 461 cmd = its_allocate_entry(its); 462 if (!cmd) { /* We're soooooo screewed... */ 463 pr_err_ratelimited("ITS can't allocate, dropping command\n"); 464 raw_spin_unlock_irqrestore(&its->lock, flags); 465 return; 466 } 467 sync_col = builder(cmd, desc); 468 its_flush_cmd(its, cmd); 469 470 if (sync_col) { 471 sync_cmd = its_allocate_entry(its); 472 if (!sync_cmd) { 473 pr_err_ratelimited("ITS can't SYNC, skipping\n"); 474 goto post; 475 } 476 its_encode_cmd(sync_cmd, GITS_CMD_SYNC); 477 its_encode_target(sync_cmd, sync_col->target_address); 478 its_fixup_cmd(sync_cmd); 479 its_flush_cmd(its, sync_cmd); 480 } 481 482 post: 483 next_cmd = its_post_commands(its); 484 raw_spin_unlock_irqrestore(&its->lock, flags); 485 486 its_wait_for_range_completion(its, cmd, next_cmd); 487 } 488 489 static void its_send_inv(struct its_device *dev, u32 event_id) 490 { 491 struct its_cmd_desc desc; 492 493 desc.its_inv_cmd.dev = dev; 494 desc.its_inv_cmd.event_id = event_id; 495 496 its_send_single_command(dev->its, its_build_inv_cmd, &desc); 497 } 498 499 static void its_send_mapd(struct its_device *dev, int valid) 500 { 501 struct its_cmd_desc desc; 502 503 desc.its_mapd_cmd.dev = dev; 504 desc.its_mapd_cmd.valid = !!valid; 505 506 its_send_single_command(dev->its, its_build_mapd_cmd, &desc); 507 } 508 509 static void its_send_mapc(struct its_node *its, struct its_collection *col, 510 int valid) 511 { 512 struct its_cmd_desc desc; 513 514 desc.its_mapc_cmd.col = col; 515 desc.its_mapc_cmd.valid = !!valid; 516 517 its_send_single_command(its, its_build_mapc_cmd, &desc); 518 } 519 520 static void its_send_mapvi(struct its_device *dev, u32 irq_id, u32 id) 521 { 522 struct its_cmd_desc desc; 523 524 desc.its_mapvi_cmd.dev = dev; 525 desc.its_mapvi_cmd.phys_id = irq_id; 526 desc.its_mapvi_cmd.event_id = id; 527 528 its_send_single_command(dev->its, its_build_mapvi_cmd, &desc); 529 } 530 531 static void its_send_movi(struct its_device *dev, 532 struct its_collection *col, u32 id) 533 { 534 struct its_cmd_desc desc; 535 536 desc.its_movi_cmd.dev = dev; 537 desc.its_movi_cmd.col = col; 538 desc.its_movi_cmd.event_id = id; 539 540 its_send_single_command(dev->its, its_build_movi_cmd, &desc); 541 } 542 543 static void its_send_discard(struct its_device *dev, u32 id) 544 { 545 struct its_cmd_desc desc; 546 547 desc.its_discard_cmd.dev = dev; 548 desc.its_discard_cmd.event_id = id; 549 550 its_send_single_command(dev->its, its_build_discard_cmd, &desc); 551 } 552 553 static void its_send_invall(struct its_node *its, struct its_collection *col) 554 { 555 struct its_cmd_desc desc; 556 557 desc.its_invall_cmd.col = col; 558 559 its_send_single_command(its, its_build_invall_cmd, &desc); 560 } 561 562 /* 563 * irqchip functions - assumes MSI, mostly. 564 */ 565 566 static inline u32 its_get_event_id(struct irq_data *d) 567 { 568 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 569 return d->hwirq - its_dev->event_map.lpi_base; 570 } 571 572 static void lpi_set_config(struct irq_data *d, bool enable) 573 { 574 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 575 irq_hw_number_t hwirq = d->hwirq; 576 u32 id = its_get_event_id(d); 577 u8 *cfg = page_address(gic_rdists->prop_page) + hwirq - 8192; 578 579 if (enable) 580 *cfg |= LPI_PROP_ENABLED; 581 else 582 *cfg &= ~LPI_PROP_ENABLED; 583 584 /* 585 * Make the above write visible to the redistributors. 586 * And yes, we're flushing exactly: One. Single. Byte. 587 * Humpf... 588 */ 589 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) 590 __flush_dcache_area(cfg, sizeof(*cfg)); 591 else 592 dsb(ishst); 593 its_send_inv(its_dev, id); 594 } 595 596 static void its_mask_irq(struct irq_data *d) 597 { 598 lpi_set_config(d, false); 599 } 600 601 static void its_unmask_irq(struct irq_data *d) 602 { 603 lpi_set_config(d, true); 604 } 605 606 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 607 bool force) 608 { 609 unsigned int cpu = cpumask_any_and(mask_val, cpu_online_mask); 610 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 611 struct its_collection *target_col; 612 u32 id = its_get_event_id(d); 613 614 if (cpu >= nr_cpu_ids) 615 return -EINVAL; 616 617 target_col = &its_dev->its->collections[cpu]; 618 its_send_movi(its_dev, target_col, id); 619 its_dev->event_map.col_map[id] = cpu; 620 621 return IRQ_SET_MASK_OK_DONE; 622 } 623 624 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) 625 { 626 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 627 struct its_node *its; 628 u64 addr; 629 630 its = its_dev->its; 631 addr = its->phys_base + GITS_TRANSLATER; 632 633 msg->address_lo = addr & ((1UL << 32) - 1); 634 msg->address_hi = addr >> 32; 635 msg->data = its_get_event_id(d); 636 } 637 638 static struct irq_chip its_irq_chip = { 639 .name = "ITS", 640 .irq_mask = its_mask_irq, 641 .irq_unmask = its_unmask_irq, 642 .irq_eoi = irq_chip_eoi_parent, 643 .irq_set_affinity = its_set_affinity, 644 .irq_compose_msi_msg = its_irq_compose_msi_msg, 645 }; 646 647 /* 648 * How we allocate LPIs: 649 * 650 * The GIC has id_bits bits for interrupt identifiers. From there, we 651 * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as 652 * we allocate LPIs by chunks of 32, we can shift the whole thing by 5 653 * bits to the right. 654 * 655 * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations. 656 */ 657 #define IRQS_PER_CHUNK_SHIFT 5 658 #define IRQS_PER_CHUNK (1 << IRQS_PER_CHUNK_SHIFT) 659 660 static unsigned long *lpi_bitmap; 661 static u32 lpi_chunks; 662 static DEFINE_SPINLOCK(lpi_lock); 663 664 static int its_lpi_to_chunk(int lpi) 665 { 666 return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT; 667 } 668 669 static int its_chunk_to_lpi(int chunk) 670 { 671 return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192; 672 } 673 674 static int its_lpi_init(u32 id_bits) 675 { 676 lpi_chunks = its_lpi_to_chunk(1UL << id_bits); 677 678 lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long), 679 GFP_KERNEL); 680 if (!lpi_bitmap) { 681 lpi_chunks = 0; 682 return -ENOMEM; 683 } 684 685 pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks); 686 return 0; 687 } 688 689 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids) 690 { 691 unsigned long *bitmap = NULL; 692 int chunk_id; 693 int nr_chunks; 694 int i; 695 696 nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK); 697 698 spin_lock(&lpi_lock); 699 700 do { 701 chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks, 702 0, nr_chunks, 0); 703 if (chunk_id < lpi_chunks) 704 break; 705 706 nr_chunks--; 707 } while (nr_chunks > 0); 708 709 if (!nr_chunks) 710 goto out; 711 712 bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long), 713 GFP_ATOMIC); 714 if (!bitmap) 715 goto out; 716 717 for (i = 0; i < nr_chunks; i++) 718 set_bit(chunk_id + i, lpi_bitmap); 719 720 *base = its_chunk_to_lpi(chunk_id); 721 *nr_ids = nr_chunks * IRQS_PER_CHUNK; 722 723 out: 724 spin_unlock(&lpi_lock); 725 726 if (!bitmap) 727 *base = *nr_ids = 0; 728 729 return bitmap; 730 } 731 732 static void its_lpi_free(struct event_lpi_map *map) 733 { 734 int base = map->lpi_base; 735 int nr_ids = map->nr_lpis; 736 int lpi; 737 738 spin_lock(&lpi_lock); 739 740 for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) { 741 int chunk = its_lpi_to_chunk(lpi); 742 BUG_ON(chunk > lpi_chunks); 743 if (test_bit(chunk, lpi_bitmap)) { 744 clear_bit(chunk, lpi_bitmap); 745 } else { 746 pr_err("Bad LPI chunk %d\n", chunk); 747 } 748 } 749 750 spin_unlock(&lpi_lock); 751 752 kfree(map->lpi_map); 753 kfree(map->col_map); 754 } 755 756 /* 757 * We allocate 64kB for PROPBASE. That gives us at most 64K LPIs to 758 * deal with (one configuration byte per interrupt). PENDBASE has to 759 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). 760 */ 761 #define LPI_PROPBASE_SZ SZ_64K 762 #define LPI_PENDBASE_SZ (LPI_PROPBASE_SZ / 8 + SZ_1K) 763 764 /* 765 * This is how many bits of ID we need, including the useless ones. 766 */ 767 #define LPI_NRBITS ilog2(LPI_PROPBASE_SZ + SZ_8K) 768 769 #define LPI_PROP_DEFAULT_PRIO 0xa0 770 771 static int __init its_alloc_lpi_tables(void) 772 { 773 phys_addr_t paddr; 774 775 gic_rdists->prop_page = alloc_pages(GFP_NOWAIT, 776 get_order(LPI_PROPBASE_SZ)); 777 if (!gic_rdists->prop_page) { 778 pr_err("Failed to allocate PROPBASE\n"); 779 return -ENOMEM; 780 } 781 782 paddr = page_to_phys(gic_rdists->prop_page); 783 pr_info("GIC: using LPI property table @%pa\n", &paddr); 784 785 /* Priority 0xa0, Group-1, disabled */ 786 memset(page_address(gic_rdists->prop_page), 787 LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, 788 LPI_PROPBASE_SZ); 789 790 /* Make sure the GIC will observe the written configuration */ 791 __flush_dcache_area(page_address(gic_rdists->prop_page), LPI_PROPBASE_SZ); 792 793 return 0; 794 } 795 796 static const char *its_base_type_string[] = { 797 [GITS_BASER_TYPE_DEVICE] = "Devices", 798 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", 799 [GITS_BASER_TYPE_CPU] = "Physical CPUs", 800 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", 801 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", 802 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", 803 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", 804 }; 805 806 static void its_free_tables(struct its_node *its) 807 { 808 int i; 809 810 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 811 if (its->tables[i].base) { 812 free_pages((unsigned long)its->tables[i].base, 813 its->tables[i].order); 814 its->tables[i].base = NULL; 815 } 816 } 817 } 818 819 static int its_alloc_tables(const char *node_name, struct its_node *its) 820 { 821 int err; 822 int i; 823 int psz = SZ_64K; 824 u64 shr = GITS_BASER_InnerShareable; 825 u64 cache; 826 u64 typer; 827 u32 ids; 828 829 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) { 830 /* 831 * erratum 22375: only alloc 8MB table size 832 * erratum 24313: ignore memory access type 833 */ 834 cache = 0; 835 ids = 0x14; /* 20 bits, 8MB */ 836 } else { 837 cache = GITS_BASER_WaWb; 838 typer = readq_relaxed(its->base + GITS_TYPER); 839 ids = GITS_TYPER_DEVBITS(typer); 840 } 841 842 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 843 u64 val = readq_relaxed(its->base + GITS_BASER + i * 8); 844 u64 type = GITS_BASER_TYPE(val); 845 u64 entry_size = GITS_BASER_ENTRY_SIZE(val); 846 int order = get_order(psz); 847 int alloc_pages; 848 u64 tmp; 849 void *base; 850 851 if (type == GITS_BASER_TYPE_NONE) 852 continue; 853 854 /* 855 * Allocate as many entries as required to fit the 856 * range of device IDs that the ITS can grok... The ID 857 * space being incredibly sparse, this results in a 858 * massive waste of memory. 859 * 860 * For other tables, only allocate a single page. 861 */ 862 if (type == GITS_BASER_TYPE_DEVICE) { 863 /* 864 * 'order' was initialized earlier to the default page 865 * granule of the the ITS. We can't have an allocation 866 * smaller than that. If the requested allocation 867 * is smaller, round up to the default page granule. 868 */ 869 order = max(get_order((1UL << ids) * entry_size), 870 order); 871 if (order >= MAX_ORDER) { 872 order = MAX_ORDER - 1; 873 pr_warn("%s: Device Table too large, reduce its page order to %u\n", 874 node_name, order); 875 } 876 } 877 878 retry_alloc_baser: 879 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); 880 if (alloc_pages > GITS_BASER_PAGES_MAX) { 881 alloc_pages = GITS_BASER_PAGES_MAX; 882 order = get_order(GITS_BASER_PAGES_MAX * psz); 883 pr_warn("%s: Device Table too large, reduce its page order to %u (%u pages)\n", 884 node_name, order, alloc_pages); 885 } 886 887 base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 888 if (!base) { 889 err = -ENOMEM; 890 goto out_free; 891 } 892 893 its->tables[i].base = base; 894 its->tables[i].order = order; 895 896 retry_baser: 897 val = (virt_to_phys(base) | 898 (type << GITS_BASER_TYPE_SHIFT) | 899 ((entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | 900 cache | 901 shr | 902 GITS_BASER_VALID); 903 904 switch (psz) { 905 case SZ_4K: 906 val |= GITS_BASER_PAGE_SIZE_4K; 907 break; 908 case SZ_16K: 909 val |= GITS_BASER_PAGE_SIZE_16K; 910 break; 911 case SZ_64K: 912 val |= GITS_BASER_PAGE_SIZE_64K; 913 break; 914 } 915 916 val |= alloc_pages - 1; 917 918 writeq_relaxed(val, its->base + GITS_BASER + i * 8); 919 tmp = readq_relaxed(its->base + GITS_BASER + i * 8); 920 921 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { 922 /* 923 * Shareability didn't stick. Just use 924 * whatever the read reported, which is likely 925 * to be the only thing this redistributor 926 * supports. If that's zero, make it 927 * non-cacheable as well. 928 */ 929 shr = tmp & GITS_BASER_SHAREABILITY_MASK; 930 if (!shr) { 931 cache = GITS_BASER_nC; 932 __flush_dcache_area(base, PAGE_ORDER_TO_SIZE(order)); 933 } 934 goto retry_baser; 935 } 936 937 if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) { 938 /* 939 * Page size didn't stick. Let's try a smaller 940 * size and retry. If we reach 4K, then 941 * something is horribly wrong... 942 */ 943 free_pages((unsigned long)base, order); 944 its->tables[i].base = NULL; 945 946 switch (psz) { 947 case SZ_16K: 948 psz = SZ_4K; 949 goto retry_alloc_baser; 950 case SZ_64K: 951 psz = SZ_16K; 952 goto retry_alloc_baser; 953 } 954 } 955 956 if (val != tmp) { 957 pr_err("ITS: %s: GITS_BASER%d doesn't stick: %lx %lx\n", 958 node_name, i, 959 (unsigned long) val, (unsigned long) tmp); 960 err = -ENXIO; 961 goto out_free; 962 } 963 964 pr_info("ITS: allocated %d %s @%lx (psz %dK, shr %d)\n", 965 (int)(PAGE_ORDER_TO_SIZE(order) / entry_size), 966 its_base_type_string[type], 967 (unsigned long)virt_to_phys(base), 968 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); 969 } 970 971 return 0; 972 973 out_free: 974 its_free_tables(its); 975 976 return err; 977 } 978 979 static int its_alloc_collections(struct its_node *its) 980 { 981 its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections), 982 GFP_KERNEL); 983 if (!its->collections) 984 return -ENOMEM; 985 986 return 0; 987 } 988 989 static void its_cpu_init_lpis(void) 990 { 991 void __iomem *rbase = gic_data_rdist_rd_base(); 992 struct page *pend_page; 993 u64 val, tmp; 994 995 /* If we didn't allocate the pending table yet, do it now */ 996 pend_page = gic_data_rdist()->pend_page; 997 if (!pend_page) { 998 phys_addr_t paddr; 999 /* 1000 * The pending pages have to be at least 64kB aligned, 1001 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below. 1002 */ 1003 pend_page = alloc_pages(GFP_NOWAIT | __GFP_ZERO, 1004 get_order(max(LPI_PENDBASE_SZ, SZ_64K))); 1005 if (!pend_page) { 1006 pr_err("Failed to allocate PENDBASE for CPU%d\n", 1007 smp_processor_id()); 1008 return; 1009 } 1010 1011 /* Make sure the GIC will observe the zero-ed page */ 1012 __flush_dcache_area(page_address(pend_page), LPI_PENDBASE_SZ); 1013 1014 paddr = page_to_phys(pend_page); 1015 pr_info("CPU%d: using LPI pending table @%pa\n", 1016 smp_processor_id(), &paddr); 1017 gic_data_rdist()->pend_page = pend_page; 1018 } 1019 1020 /* Disable LPIs */ 1021 val = readl_relaxed(rbase + GICR_CTLR); 1022 val &= ~GICR_CTLR_ENABLE_LPIS; 1023 writel_relaxed(val, rbase + GICR_CTLR); 1024 1025 /* 1026 * Make sure any change to the table is observable by the GIC. 1027 */ 1028 dsb(sy); 1029 1030 /* set PROPBASE */ 1031 val = (page_to_phys(gic_rdists->prop_page) | 1032 GICR_PROPBASER_InnerShareable | 1033 GICR_PROPBASER_WaWb | 1034 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); 1035 1036 writeq_relaxed(val, rbase + GICR_PROPBASER); 1037 tmp = readq_relaxed(rbase + GICR_PROPBASER); 1038 1039 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { 1040 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { 1041 /* 1042 * The HW reports non-shareable, we must 1043 * remove the cacheability attributes as 1044 * well. 1045 */ 1046 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | 1047 GICR_PROPBASER_CACHEABILITY_MASK); 1048 val |= GICR_PROPBASER_nC; 1049 writeq_relaxed(val, rbase + GICR_PROPBASER); 1050 } 1051 pr_info_once("GIC: using cache flushing for LPI property table\n"); 1052 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; 1053 } 1054 1055 /* set PENDBASE */ 1056 val = (page_to_phys(pend_page) | 1057 GICR_PENDBASER_InnerShareable | 1058 GICR_PENDBASER_WaWb); 1059 1060 writeq_relaxed(val, rbase + GICR_PENDBASER); 1061 tmp = readq_relaxed(rbase + GICR_PENDBASER); 1062 1063 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { 1064 /* 1065 * The HW reports non-shareable, we must remove the 1066 * cacheability attributes as well. 1067 */ 1068 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | 1069 GICR_PENDBASER_CACHEABILITY_MASK); 1070 val |= GICR_PENDBASER_nC; 1071 writeq_relaxed(val, rbase + GICR_PENDBASER); 1072 } 1073 1074 /* Enable LPIs */ 1075 val = readl_relaxed(rbase + GICR_CTLR); 1076 val |= GICR_CTLR_ENABLE_LPIS; 1077 writel_relaxed(val, rbase + GICR_CTLR); 1078 1079 /* Make sure the GIC has seen the above */ 1080 dsb(sy); 1081 } 1082 1083 static void its_cpu_init_collection(void) 1084 { 1085 struct its_node *its; 1086 int cpu; 1087 1088 spin_lock(&its_lock); 1089 cpu = smp_processor_id(); 1090 1091 list_for_each_entry(its, &its_nodes, entry) { 1092 u64 target; 1093 1094 /* 1095 * We now have to bind each collection to its target 1096 * redistributor. 1097 */ 1098 if (readq_relaxed(its->base + GITS_TYPER) & GITS_TYPER_PTA) { 1099 /* 1100 * This ITS wants the physical address of the 1101 * redistributor. 1102 */ 1103 target = gic_data_rdist()->phys_base; 1104 } else { 1105 /* 1106 * This ITS wants a linear CPU number. 1107 */ 1108 target = readq_relaxed(gic_data_rdist_rd_base() + GICR_TYPER); 1109 target = GICR_TYPER_CPU_NUMBER(target) << 16; 1110 } 1111 1112 /* Perform collection mapping */ 1113 its->collections[cpu].target_address = target; 1114 its->collections[cpu].col_id = cpu; 1115 1116 its_send_mapc(its, &its->collections[cpu], 1); 1117 its_send_invall(its, &its->collections[cpu]); 1118 } 1119 1120 spin_unlock(&its_lock); 1121 } 1122 1123 static struct its_device *its_find_device(struct its_node *its, u32 dev_id) 1124 { 1125 struct its_device *its_dev = NULL, *tmp; 1126 unsigned long flags; 1127 1128 raw_spin_lock_irqsave(&its->lock, flags); 1129 1130 list_for_each_entry(tmp, &its->its_device_list, entry) { 1131 if (tmp->device_id == dev_id) { 1132 its_dev = tmp; 1133 break; 1134 } 1135 } 1136 1137 raw_spin_unlock_irqrestore(&its->lock, flags); 1138 1139 return its_dev; 1140 } 1141 1142 static struct its_device *its_create_device(struct its_node *its, u32 dev_id, 1143 int nvecs) 1144 { 1145 struct its_device *dev; 1146 unsigned long *lpi_map; 1147 unsigned long flags; 1148 u16 *col_map = NULL; 1149 void *itt; 1150 int lpi_base; 1151 int nr_lpis; 1152 int nr_ites; 1153 int sz; 1154 1155 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 1156 /* 1157 * At least one bit of EventID is being used, hence a minimum 1158 * of two entries. No, the architecture doesn't let you 1159 * express an ITT with a single entry. 1160 */ 1161 nr_ites = max(2UL, roundup_pow_of_two(nvecs)); 1162 sz = nr_ites * its->ite_size; 1163 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; 1164 itt = kzalloc(sz, GFP_KERNEL); 1165 lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis); 1166 if (lpi_map) 1167 col_map = kzalloc(sizeof(*col_map) * nr_lpis, GFP_KERNEL); 1168 1169 if (!dev || !itt || !lpi_map || !col_map) { 1170 kfree(dev); 1171 kfree(itt); 1172 kfree(lpi_map); 1173 kfree(col_map); 1174 return NULL; 1175 } 1176 1177 __flush_dcache_area(itt, sz); 1178 1179 dev->its = its; 1180 dev->itt = itt; 1181 dev->nr_ites = nr_ites; 1182 dev->event_map.lpi_map = lpi_map; 1183 dev->event_map.col_map = col_map; 1184 dev->event_map.lpi_base = lpi_base; 1185 dev->event_map.nr_lpis = nr_lpis; 1186 dev->device_id = dev_id; 1187 INIT_LIST_HEAD(&dev->entry); 1188 1189 raw_spin_lock_irqsave(&its->lock, flags); 1190 list_add(&dev->entry, &its->its_device_list); 1191 raw_spin_unlock_irqrestore(&its->lock, flags); 1192 1193 /* Map device to its ITT */ 1194 its_send_mapd(dev, 1); 1195 1196 return dev; 1197 } 1198 1199 static void its_free_device(struct its_device *its_dev) 1200 { 1201 unsigned long flags; 1202 1203 raw_spin_lock_irqsave(&its_dev->its->lock, flags); 1204 list_del(&its_dev->entry); 1205 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); 1206 kfree(its_dev->itt); 1207 kfree(its_dev); 1208 } 1209 1210 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq) 1211 { 1212 int idx; 1213 1214 idx = find_first_zero_bit(dev->event_map.lpi_map, 1215 dev->event_map.nr_lpis); 1216 if (idx == dev->event_map.nr_lpis) 1217 return -ENOSPC; 1218 1219 *hwirq = dev->event_map.lpi_base + idx; 1220 set_bit(idx, dev->event_map.lpi_map); 1221 1222 return 0; 1223 } 1224 1225 static int its_msi_prepare(struct irq_domain *domain, struct device *dev, 1226 int nvec, msi_alloc_info_t *info) 1227 { 1228 struct its_node *its; 1229 struct its_device *its_dev; 1230 struct msi_domain_info *msi_info; 1231 u32 dev_id; 1232 1233 /* 1234 * We ignore "dev" entierely, and rely on the dev_id that has 1235 * been passed via the scratchpad. This limits this domain's 1236 * usefulness to upper layers that definitely know that they 1237 * are built on top of the ITS. 1238 */ 1239 dev_id = info->scratchpad[0].ul; 1240 1241 msi_info = msi_get_domain_info(domain); 1242 its = msi_info->data; 1243 1244 its_dev = its_find_device(its, dev_id); 1245 if (its_dev) { 1246 /* 1247 * We already have seen this ID, probably through 1248 * another alias (PCI bridge of some sort). No need to 1249 * create the device. 1250 */ 1251 pr_debug("Reusing ITT for devID %x\n", dev_id); 1252 goto out; 1253 } 1254 1255 its_dev = its_create_device(its, dev_id, nvec); 1256 if (!its_dev) 1257 return -ENOMEM; 1258 1259 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); 1260 out: 1261 info->scratchpad[0].ptr = its_dev; 1262 return 0; 1263 } 1264 1265 static struct msi_domain_ops its_msi_domain_ops = { 1266 .msi_prepare = its_msi_prepare, 1267 }; 1268 1269 static int its_irq_gic_domain_alloc(struct irq_domain *domain, 1270 unsigned int virq, 1271 irq_hw_number_t hwirq) 1272 { 1273 struct irq_fwspec fwspec; 1274 1275 if (irq_domain_get_of_node(domain->parent)) { 1276 fwspec.fwnode = domain->parent->fwnode; 1277 fwspec.param_count = 3; 1278 fwspec.param[0] = GIC_IRQ_TYPE_LPI; 1279 fwspec.param[1] = hwirq; 1280 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 1281 } else { 1282 return -EINVAL; 1283 } 1284 1285 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 1286 } 1287 1288 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 1289 unsigned int nr_irqs, void *args) 1290 { 1291 msi_alloc_info_t *info = args; 1292 struct its_device *its_dev = info->scratchpad[0].ptr; 1293 irq_hw_number_t hwirq; 1294 int err; 1295 int i; 1296 1297 for (i = 0; i < nr_irqs; i++) { 1298 err = its_alloc_device_irq(its_dev, &hwirq); 1299 if (err) 1300 return err; 1301 1302 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq); 1303 if (err) 1304 return err; 1305 1306 irq_domain_set_hwirq_and_chip(domain, virq + i, 1307 hwirq, &its_irq_chip, its_dev); 1308 pr_debug("ID:%d pID:%d vID:%d\n", 1309 (int)(hwirq - its_dev->event_map.lpi_base), 1310 (int) hwirq, virq + i); 1311 } 1312 1313 return 0; 1314 } 1315 1316 static void its_irq_domain_activate(struct irq_domain *domain, 1317 struct irq_data *d) 1318 { 1319 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1320 u32 event = its_get_event_id(d); 1321 1322 /* Bind the LPI to the first possible CPU */ 1323 its_dev->event_map.col_map[event] = cpumask_first(cpu_online_mask); 1324 1325 /* Map the GIC IRQ and event to the device */ 1326 its_send_mapvi(its_dev, d->hwirq, event); 1327 } 1328 1329 static void its_irq_domain_deactivate(struct irq_domain *domain, 1330 struct irq_data *d) 1331 { 1332 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1333 u32 event = its_get_event_id(d); 1334 1335 /* Stop the delivery of interrupts */ 1336 its_send_discard(its_dev, event); 1337 } 1338 1339 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, 1340 unsigned int nr_irqs) 1341 { 1342 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 1343 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1344 int i; 1345 1346 for (i = 0; i < nr_irqs; i++) { 1347 struct irq_data *data = irq_domain_get_irq_data(domain, 1348 virq + i); 1349 u32 event = its_get_event_id(data); 1350 1351 /* Mark interrupt index as unused */ 1352 clear_bit(event, its_dev->event_map.lpi_map); 1353 1354 /* Nuke the entry in the domain */ 1355 irq_domain_reset_irq_data(data); 1356 } 1357 1358 /* If all interrupts have been freed, start mopping the floor */ 1359 if (bitmap_empty(its_dev->event_map.lpi_map, 1360 its_dev->event_map.nr_lpis)) { 1361 its_lpi_free(&its_dev->event_map); 1362 1363 /* Unmap device/itt */ 1364 its_send_mapd(its_dev, 0); 1365 its_free_device(its_dev); 1366 } 1367 1368 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 1369 } 1370 1371 static const struct irq_domain_ops its_domain_ops = { 1372 .alloc = its_irq_domain_alloc, 1373 .free = its_irq_domain_free, 1374 .activate = its_irq_domain_activate, 1375 .deactivate = its_irq_domain_deactivate, 1376 }; 1377 1378 static int its_force_quiescent(void __iomem *base) 1379 { 1380 u32 count = 1000000; /* 1s */ 1381 u32 val; 1382 1383 val = readl_relaxed(base + GITS_CTLR); 1384 if (val & GITS_CTLR_QUIESCENT) 1385 return 0; 1386 1387 /* Disable the generation of all interrupts to this ITS */ 1388 val &= ~GITS_CTLR_ENABLE; 1389 writel_relaxed(val, base + GITS_CTLR); 1390 1391 /* Poll GITS_CTLR and wait until ITS becomes quiescent */ 1392 while (1) { 1393 val = readl_relaxed(base + GITS_CTLR); 1394 if (val & GITS_CTLR_QUIESCENT) 1395 return 0; 1396 1397 count--; 1398 if (!count) 1399 return -EBUSY; 1400 1401 cpu_relax(); 1402 udelay(1); 1403 } 1404 } 1405 1406 static void __maybe_unused its_enable_quirk_cavium_22375(void *data) 1407 { 1408 struct its_node *its = data; 1409 1410 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; 1411 } 1412 1413 static const struct gic_quirk its_quirks[] = { 1414 #ifdef CONFIG_CAVIUM_ERRATUM_22375 1415 { 1416 .desc = "ITS: Cavium errata 22375, 24313", 1417 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 1418 .mask = 0xffff0fff, 1419 .init = its_enable_quirk_cavium_22375, 1420 }, 1421 #endif 1422 { 1423 } 1424 }; 1425 1426 static void its_enable_quirks(struct its_node *its) 1427 { 1428 u32 iidr = readl_relaxed(its->base + GITS_IIDR); 1429 1430 gic_enable_quirks(iidr, its_quirks, its); 1431 } 1432 1433 static int its_probe(struct device_node *node, struct irq_domain *parent) 1434 { 1435 struct resource res; 1436 struct its_node *its; 1437 void __iomem *its_base; 1438 struct irq_domain *inner_domain; 1439 u32 val; 1440 u64 baser, tmp; 1441 int err; 1442 1443 err = of_address_to_resource(node, 0, &res); 1444 if (err) { 1445 pr_warn("%s: no regs?\n", node->full_name); 1446 return -ENXIO; 1447 } 1448 1449 its_base = ioremap(res.start, resource_size(&res)); 1450 if (!its_base) { 1451 pr_warn("%s: unable to map registers\n", node->full_name); 1452 return -ENOMEM; 1453 } 1454 1455 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; 1456 if (val != 0x30 && val != 0x40) { 1457 pr_warn("%s: no ITS detected, giving up\n", node->full_name); 1458 err = -ENODEV; 1459 goto out_unmap; 1460 } 1461 1462 err = its_force_quiescent(its_base); 1463 if (err) { 1464 pr_warn("%s: failed to quiesce, giving up\n", 1465 node->full_name); 1466 goto out_unmap; 1467 } 1468 1469 pr_info("ITS: %s\n", node->full_name); 1470 1471 its = kzalloc(sizeof(*its), GFP_KERNEL); 1472 if (!its) { 1473 err = -ENOMEM; 1474 goto out_unmap; 1475 } 1476 1477 raw_spin_lock_init(&its->lock); 1478 INIT_LIST_HEAD(&its->entry); 1479 INIT_LIST_HEAD(&its->its_device_list); 1480 its->base = its_base; 1481 its->phys_base = res.start; 1482 its->ite_size = ((readl_relaxed(its_base + GITS_TYPER) >> 4) & 0xf) + 1; 1483 1484 its->cmd_base = kzalloc(ITS_CMD_QUEUE_SZ, GFP_KERNEL); 1485 if (!its->cmd_base) { 1486 err = -ENOMEM; 1487 goto out_free_its; 1488 } 1489 its->cmd_write = its->cmd_base; 1490 1491 its_enable_quirks(its); 1492 1493 err = its_alloc_tables(node->full_name, its); 1494 if (err) 1495 goto out_free_cmd; 1496 1497 err = its_alloc_collections(its); 1498 if (err) 1499 goto out_free_tables; 1500 1501 baser = (virt_to_phys(its->cmd_base) | 1502 GITS_CBASER_WaWb | 1503 GITS_CBASER_InnerShareable | 1504 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | 1505 GITS_CBASER_VALID); 1506 1507 writeq_relaxed(baser, its->base + GITS_CBASER); 1508 tmp = readq_relaxed(its->base + GITS_CBASER); 1509 1510 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { 1511 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { 1512 /* 1513 * The HW reports non-shareable, we must 1514 * remove the cacheability attributes as 1515 * well. 1516 */ 1517 baser &= ~(GITS_CBASER_SHAREABILITY_MASK | 1518 GITS_CBASER_CACHEABILITY_MASK); 1519 baser |= GITS_CBASER_nC; 1520 writeq_relaxed(baser, its->base + GITS_CBASER); 1521 } 1522 pr_info("ITS: using cache flushing for cmd queue\n"); 1523 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; 1524 } 1525 1526 writeq_relaxed(0, its->base + GITS_CWRITER); 1527 writel_relaxed(GITS_CTLR_ENABLE, its->base + GITS_CTLR); 1528 1529 if (of_property_read_bool(node, "msi-controller")) { 1530 struct msi_domain_info *info; 1531 1532 info = kzalloc(sizeof(*info), GFP_KERNEL); 1533 if (!info) { 1534 err = -ENOMEM; 1535 goto out_free_tables; 1536 } 1537 1538 inner_domain = irq_domain_add_tree(node, &its_domain_ops, its); 1539 if (!inner_domain) { 1540 err = -ENOMEM; 1541 kfree(info); 1542 goto out_free_tables; 1543 } 1544 1545 inner_domain->parent = parent; 1546 inner_domain->bus_token = DOMAIN_BUS_NEXUS; 1547 info->ops = &its_msi_domain_ops; 1548 info->data = its; 1549 inner_domain->host_data = info; 1550 } 1551 1552 spin_lock(&its_lock); 1553 list_add(&its->entry, &its_nodes); 1554 spin_unlock(&its_lock); 1555 1556 return 0; 1557 1558 out_free_tables: 1559 its_free_tables(its); 1560 out_free_cmd: 1561 kfree(its->cmd_base); 1562 out_free_its: 1563 kfree(its); 1564 out_unmap: 1565 iounmap(its_base); 1566 pr_err("ITS: failed probing %s (%d)\n", node->full_name, err); 1567 return err; 1568 } 1569 1570 static bool gic_rdists_supports_plpis(void) 1571 { 1572 return !!(readl_relaxed(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); 1573 } 1574 1575 int its_cpu_init(void) 1576 { 1577 if (!list_empty(&its_nodes)) { 1578 if (!gic_rdists_supports_plpis()) { 1579 pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); 1580 return -ENXIO; 1581 } 1582 its_cpu_init_lpis(); 1583 its_cpu_init_collection(); 1584 } 1585 1586 return 0; 1587 } 1588 1589 static struct of_device_id its_device_id[] = { 1590 { .compatible = "arm,gic-v3-its", }, 1591 {}, 1592 }; 1593 1594 int its_init(struct device_node *node, struct rdists *rdists, 1595 struct irq_domain *parent_domain) 1596 { 1597 struct device_node *np; 1598 1599 for (np = of_find_matching_node(node, its_device_id); np; 1600 np = of_find_matching_node(np, its_device_id)) { 1601 its_probe(np, parent_domain); 1602 } 1603 1604 if (list_empty(&its_nodes)) { 1605 pr_warn("ITS: No ITS available, not enabling LPIs\n"); 1606 return -ENXIO; 1607 } 1608 1609 gic_rdists = rdists; 1610 gic_root_node = node; 1611 1612 its_alloc_lpi_tables(); 1613 its_lpi_init(rdists->id_bits); 1614 1615 return 0; 1616 } 1617