1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/acpi_iort.h> 9 #include <linux/bitfield.h> 10 #include <linux/bitmap.h> 11 #include <linux/cpu.h> 12 #include <linux/crash_dump.h> 13 #include <linux/delay.h> 14 #include <linux/efi.h> 15 #include <linux/interrupt.h> 16 #include <linux/iommu.h> 17 #include <linux/iopoll.h> 18 #include <linux/irqdomain.h> 19 #include <linux/list.h> 20 #include <linux/log2.h> 21 #include <linux/memblock.h> 22 #include <linux/mm.h> 23 #include <linux/msi.h> 24 #include <linux/of.h> 25 #include <linux/of_address.h> 26 #include <linux/of_irq.h> 27 #include <linux/of_pci.h> 28 #include <linux/of_platform.h> 29 #include <linux/percpu.h> 30 #include <linux/slab.h> 31 #include <linux/syscore_ops.h> 32 33 #include <linux/irqchip.h> 34 #include <linux/irqchip/arm-gic-v3.h> 35 #include <linux/irqchip/arm-gic-v4.h> 36 37 #include <asm/cputype.h> 38 #include <asm/exception.h> 39 40 #include "irq-gic-common.h" 41 42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) 43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) 44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) 45 #define ITS_FLAGS_FORCE_NON_SHAREABLE (1ULL << 3) 46 47 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0) 48 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED (1 << 1) 49 #define RDIST_FLAGS_FORCE_NON_SHAREABLE (1 << 2) 50 51 #define RD_LOCAL_LPI_ENABLED BIT(0) 52 #define RD_LOCAL_PENDTABLE_PREALLOCATED BIT(1) 53 #define RD_LOCAL_MEMRESERVE_DONE BIT(2) 54 55 static u32 lpi_id_bits; 56 57 /* 58 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to 59 * deal with (one configuration byte per interrupt). PENDBASE has to 60 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). 61 */ 62 #define LPI_NRBITS lpi_id_bits 63 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K) 64 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) 65 66 #define LPI_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI 67 68 /* 69 * Collection structure - just an ID, and a redistributor address to 70 * ping. We use one per CPU as a bag of interrupts assigned to this 71 * CPU. 72 */ 73 struct its_collection { 74 u64 target_address; 75 u16 col_id; 76 }; 77 78 /* 79 * The ITS_BASER structure - contains memory information, cached 80 * value of BASER register configuration and ITS page size. 81 */ 82 struct its_baser { 83 void *base; 84 u64 val; 85 u32 order; 86 u32 psz; 87 }; 88 89 struct its_device; 90 91 /* 92 * The ITS structure - contains most of the infrastructure, with the 93 * top-level MSI domain, the command queue, the collections, and the 94 * list of devices writing to it. 95 * 96 * dev_alloc_lock has to be taken for device allocations, while the 97 * spinlock must be taken to parse data structures such as the device 98 * list. 99 */ 100 struct its_node { 101 raw_spinlock_t lock; 102 struct mutex dev_alloc_lock; 103 struct list_head entry; 104 void __iomem *base; 105 void __iomem *sgir_base; 106 phys_addr_t phys_base; 107 struct its_cmd_block *cmd_base; 108 struct its_cmd_block *cmd_write; 109 struct its_baser tables[GITS_BASER_NR_REGS]; 110 struct its_collection *collections; 111 struct fwnode_handle *fwnode_handle; 112 u64 (*get_msi_base)(struct its_device *its_dev); 113 u64 typer; 114 u64 cbaser_save; 115 u32 ctlr_save; 116 u32 mpidr; 117 struct list_head its_device_list; 118 u64 flags; 119 unsigned long list_nr; 120 int numa_node; 121 unsigned int msi_domain_flags; 122 u32 pre_its_base; /* for Socionext Synquacer */ 123 int vlpi_redist_offset; 124 }; 125 126 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS)) 127 #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP)) 128 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1) 129 130 #define ITS_ITT_ALIGN SZ_256 131 132 /* The maximum number of VPEID bits supported by VLPI commands */ 133 #define ITS_MAX_VPEID_BITS \ 134 ({ \ 135 int nvpeid = 16; \ 136 if (gic_rdists->has_rvpeid && \ 137 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \ 138 nvpeid = 1 + (gic_rdists->gicd_typer2 & \ 139 GICD_TYPER2_VID); \ 140 \ 141 nvpeid; \ 142 }) 143 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS)) 144 145 /* Convert page order to size in bytes */ 146 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) 147 148 struct event_lpi_map { 149 unsigned long *lpi_map; 150 u16 *col_map; 151 irq_hw_number_t lpi_base; 152 int nr_lpis; 153 raw_spinlock_t vlpi_lock; 154 struct its_vm *vm; 155 struct its_vlpi_map *vlpi_maps; 156 int nr_vlpis; 157 }; 158 159 /* 160 * The ITS view of a device - belongs to an ITS, owns an interrupt 161 * translation table, and a list of interrupts. If it some of its 162 * LPIs are injected into a guest (GICv4), the event_map.vm field 163 * indicates which one. 164 */ 165 struct its_device { 166 struct list_head entry; 167 struct its_node *its; 168 struct event_lpi_map event_map; 169 void *itt; 170 u32 nr_ites; 171 u32 device_id; 172 bool shared; 173 }; 174 175 static struct { 176 raw_spinlock_t lock; 177 struct its_device *dev; 178 struct its_vpe **vpes; 179 int next_victim; 180 } vpe_proxy; 181 182 struct cpu_lpi_count { 183 atomic_t managed; 184 atomic_t unmanaged; 185 }; 186 187 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count); 188 189 static LIST_HEAD(its_nodes); 190 static DEFINE_RAW_SPINLOCK(its_lock); 191 static struct rdists *gic_rdists; 192 static struct irq_domain *its_parent; 193 194 static unsigned long its_list_map; 195 static u16 vmovp_seq_num; 196 static DEFINE_RAW_SPINLOCK(vmovp_lock); 197 198 static DEFINE_IDA(its_vpeid_ida); 199 200 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) 201 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu)) 202 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 203 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K) 204 205 /* 206 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we 207 * always have vSGIs mapped. 208 */ 209 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its) 210 { 211 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]); 212 } 213 214 static u16 get_its_list(struct its_vm *vm) 215 { 216 struct its_node *its; 217 unsigned long its_list = 0; 218 219 list_for_each_entry(its, &its_nodes, entry) { 220 if (!is_v4(its)) 221 continue; 222 223 if (require_its_list_vmovp(vm, its)) 224 __set_bit(its->list_nr, &its_list); 225 } 226 227 return (u16)its_list; 228 } 229 230 static inline u32 its_get_event_id(struct irq_data *d) 231 { 232 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 233 return d->hwirq - its_dev->event_map.lpi_base; 234 } 235 236 static struct its_collection *dev_event_to_col(struct its_device *its_dev, 237 u32 event) 238 { 239 struct its_node *its = its_dev->its; 240 241 return its->collections + its_dev->event_map.col_map[event]; 242 } 243 244 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev, 245 u32 event) 246 { 247 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis)) 248 return NULL; 249 250 return &its_dev->event_map.vlpi_maps[event]; 251 } 252 253 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d) 254 { 255 if (irqd_is_forwarded_to_vcpu(d)) { 256 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 257 u32 event = its_get_event_id(d); 258 259 return dev_event_to_vlpi_map(its_dev, event); 260 } 261 262 return NULL; 263 } 264 265 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags) 266 { 267 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags); 268 return vpe->col_idx; 269 } 270 271 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags) 272 { 273 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 274 } 275 276 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags) 277 { 278 struct its_vlpi_map *map = get_vlpi_map(d); 279 int cpu; 280 281 if (map) { 282 cpu = vpe_to_cpuid_lock(map->vpe, flags); 283 } else { 284 /* Physical LPIs are already locked via the irq_desc lock */ 285 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 286 cpu = its_dev->event_map.col_map[its_get_event_id(d)]; 287 /* Keep GCC quiet... */ 288 *flags = 0; 289 } 290 291 return cpu; 292 } 293 294 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags) 295 { 296 struct its_vlpi_map *map = get_vlpi_map(d); 297 298 if (map) 299 vpe_to_cpuid_unlock(map->vpe, flags); 300 } 301 302 static struct its_collection *valid_col(struct its_collection *col) 303 { 304 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0))) 305 return NULL; 306 307 return col; 308 } 309 310 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe) 311 { 312 if (valid_col(its->collections + vpe->col_idx)) 313 return vpe; 314 315 return NULL; 316 } 317 318 /* 319 * ITS command descriptors - parameters to be encoded in a command 320 * block. 321 */ 322 struct its_cmd_desc { 323 union { 324 struct { 325 struct its_device *dev; 326 u32 event_id; 327 } its_inv_cmd; 328 329 struct { 330 struct its_device *dev; 331 u32 event_id; 332 } its_clear_cmd; 333 334 struct { 335 struct its_device *dev; 336 u32 event_id; 337 } its_int_cmd; 338 339 struct { 340 struct its_device *dev; 341 int valid; 342 } its_mapd_cmd; 343 344 struct { 345 struct its_collection *col; 346 int valid; 347 } its_mapc_cmd; 348 349 struct { 350 struct its_device *dev; 351 u32 phys_id; 352 u32 event_id; 353 } its_mapti_cmd; 354 355 struct { 356 struct its_device *dev; 357 struct its_collection *col; 358 u32 event_id; 359 } its_movi_cmd; 360 361 struct { 362 struct its_device *dev; 363 u32 event_id; 364 } its_discard_cmd; 365 366 struct { 367 struct its_collection *col; 368 } its_invall_cmd; 369 370 struct { 371 struct its_vpe *vpe; 372 } its_vinvall_cmd; 373 374 struct { 375 struct its_vpe *vpe; 376 struct its_collection *col; 377 bool valid; 378 } its_vmapp_cmd; 379 380 struct { 381 struct its_vpe *vpe; 382 struct its_device *dev; 383 u32 virt_id; 384 u32 event_id; 385 bool db_enabled; 386 } its_vmapti_cmd; 387 388 struct { 389 struct its_vpe *vpe; 390 struct its_device *dev; 391 u32 event_id; 392 bool db_enabled; 393 } its_vmovi_cmd; 394 395 struct { 396 struct its_vpe *vpe; 397 struct its_collection *col; 398 u16 seq_num; 399 u16 its_list; 400 } its_vmovp_cmd; 401 402 struct { 403 struct its_vpe *vpe; 404 } its_invdb_cmd; 405 406 struct { 407 struct its_vpe *vpe; 408 u8 sgi; 409 u8 priority; 410 bool enable; 411 bool group; 412 bool clear; 413 } its_vsgi_cmd; 414 }; 415 }; 416 417 /* 418 * The ITS command block, which is what the ITS actually parses. 419 */ 420 struct its_cmd_block { 421 union { 422 u64 raw_cmd[4]; 423 __le64 raw_cmd_le[4]; 424 }; 425 }; 426 427 #define ITS_CMD_QUEUE_SZ SZ_64K 428 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) 429 430 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *, 431 struct its_cmd_block *, 432 struct its_cmd_desc *); 433 434 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *, 435 struct its_cmd_block *, 436 struct its_cmd_desc *); 437 438 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) 439 { 440 u64 mask = GENMASK_ULL(h, l); 441 *raw_cmd &= ~mask; 442 *raw_cmd |= (val << l) & mask; 443 } 444 445 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) 446 { 447 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); 448 } 449 450 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) 451 { 452 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); 453 } 454 455 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) 456 { 457 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); 458 } 459 460 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) 461 { 462 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); 463 } 464 465 static void its_encode_size(struct its_cmd_block *cmd, u8 size) 466 { 467 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); 468 } 469 470 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) 471 { 472 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); 473 } 474 475 static void its_encode_valid(struct its_cmd_block *cmd, int valid) 476 { 477 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); 478 } 479 480 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) 481 { 482 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); 483 } 484 485 static void its_encode_collection(struct its_cmd_block *cmd, u16 col) 486 { 487 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); 488 } 489 490 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) 491 { 492 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); 493 } 494 495 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) 496 { 497 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); 498 } 499 500 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) 501 { 502 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); 503 } 504 505 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) 506 { 507 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); 508 } 509 510 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) 511 { 512 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); 513 } 514 515 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) 516 { 517 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); 518 } 519 520 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) 521 { 522 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); 523 } 524 525 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) 526 { 527 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); 528 } 529 530 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa) 531 { 532 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16); 533 } 534 535 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc) 536 { 537 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8); 538 } 539 540 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz) 541 { 542 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9); 543 } 544 545 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd, 546 u32 vpe_db_lpi) 547 { 548 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0); 549 } 550 551 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd, 552 u32 vpe_db_lpi) 553 { 554 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0); 555 } 556 557 static void its_encode_db(struct its_cmd_block *cmd, bool db) 558 { 559 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63); 560 } 561 562 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi) 563 { 564 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32); 565 } 566 567 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio) 568 { 569 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20); 570 } 571 572 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp) 573 { 574 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10); 575 } 576 577 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr) 578 { 579 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9); 580 } 581 582 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en) 583 { 584 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8); 585 } 586 587 static inline void its_fixup_cmd(struct its_cmd_block *cmd) 588 { 589 /* Let's fixup BE commands */ 590 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]); 591 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]); 592 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]); 593 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]); 594 } 595 596 static struct its_collection *its_build_mapd_cmd(struct its_node *its, 597 struct its_cmd_block *cmd, 598 struct its_cmd_desc *desc) 599 { 600 unsigned long itt_addr; 601 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); 602 603 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); 604 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); 605 606 its_encode_cmd(cmd, GITS_CMD_MAPD); 607 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); 608 its_encode_size(cmd, size - 1); 609 its_encode_itt(cmd, itt_addr); 610 its_encode_valid(cmd, desc->its_mapd_cmd.valid); 611 612 its_fixup_cmd(cmd); 613 614 return NULL; 615 } 616 617 static struct its_collection *its_build_mapc_cmd(struct its_node *its, 618 struct its_cmd_block *cmd, 619 struct its_cmd_desc *desc) 620 { 621 its_encode_cmd(cmd, GITS_CMD_MAPC); 622 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 623 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); 624 its_encode_valid(cmd, desc->its_mapc_cmd.valid); 625 626 its_fixup_cmd(cmd); 627 628 return desc->its_mapc_cmd.col; 629 } 630 631 static struct its_collection *its_build_mapti_cmd(struct its_node *its, 632 struct its_cmd_block *cmd, 633 struct its_cmd_desc *desc) 634 { 635 struct its_collection *col; 636 637 col = dev_event_to_col(desc->its_mapti_cmd.dev, 638 desc->its_mapti_cmd.event_id); 639 640 its_encode_cmd(cmd, GITS_CMD_MAPTI); 641 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); 642 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); 643 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); 644 its_encode_collection(cmd, col->col_id); 645 646 its_fixup_cmd(cmd); 647 648 return valid_col(col); 649 } 650 651 static struct its_collection *its_build_movi_cmd(struct its_node *its, 652 struct its_cmd_block *cmd, 653 struct its_cmd_desc *desc) 654 { 655 struct its_collection *col; 656 657 col = dev_event_to_col(desc->its_movi_cmd.dev, 658 desc->its_movi_cmd.event_id); 659 660 its_encode_cmd(cmd, GITS_CMD_MOVI); 661 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); 662 its_encode_event_id(cmd, desc->its_movi_cmd.event_id); 663 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); 664 665 its_fixup_cmd(cmd); 666 667 return valid_col(col); 668 } 669 670 static struct its_collection *its_build_discard_cmd(struct its_node *its, 671 struct its_cmd_block *cmd, 672 struct its_cmd_desc *desc) 673 { 674 struct its_collection *col; 675 676 col = dev_event_to_col(desc->its_discard_cmd.dev, 677 desc->its_discard_cmd.event_id); 678 679 its_encode_cmd(cmd, GITS_CMD_DISCARD); 680 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); 681 its_encode_event_id(cmd, desc->its_discard_cmd.event_id); 682 683 its_fixup_cmd(cmd); 684 685 return valid_col(col); 686 } 687 688 static struct its_collection *its_build_inv_cmd(struct its_node *its, 689 struct its_cmd_block *cmd, 690 struct its_cmd_desc *desc) 691 { 692 struct its_collection *col; 693 694 col = dev_event_to_col(desc->its_inv_cmd.dev, 695 desc->its_inv_cmd.event_id); 696 697 its_encode_cmd(cmd, GITS_CMD_INV); 698 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 699 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 700 701 its_fixup_cmd(cmd); 702 703 return valid_col(col); 704 } 705 706 static struct its_collection *its_build_int_cmd(struct its_node *its, 707 struct its_cmd_block *cmd, 708 struct its_cmd_desc *desc) 709 { 710 struct its_collection *col; 711 712 col = dev_event_to_col(desc->its_int_cmd.dev, 713 desc->its_int_cmd.event_id); 714 715 its_encode_cmd(cmd, GITS_CMD_INT); 716 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 717 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 718 719 its_fixup_cmd(cmd); 720 721 return valid_col(col); 722 } 723 724 static struct its_collection *its_build_clear_cmd(struct its_node *its, 725 struct its_cmd_block *cmd, 726 struct its_cmd_desc *desc) 727 { 728 struct its_collection *col; 729 730 col = dev_event_to_col(desc->its_clear_cmd.dev, 731 desc->its_clear_cmd.event_id); 732 733 its_encode_cmd(cmd, GITS_CMD_CLEAR); 734 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 735 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 736 737 its_fixup_cmd(cmd); 738 739 return valid_col(col); 740 } 741 742 static struct its_collection *its_build_invall_cmd(struct its_node *its, 743 struct its_cmd_block *cmd, 744 struct its_cmd_desc *desc) 745 { 746 its_encode_cmd(cmd, GITS_CMD_INVALL); 747 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id); 748 749 its_fixup_cmd(cmd); 750 751 return desc->its_invall_cmd.col; 752 } 753 754 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its, 755 struct its_cmd_block *cmd, 756 struct its_cmd_desc *desc) 757 { 758 its_encode_cmd(cmd, GITS_CMD_VINVALL); 759 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); 760 761 its_fixup_cmd(cmd); 762 763 return valid_vpe(its, desc->its_vinvall_cmd.vpe); 764 } 765 766 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its, 767 struct its_cmd_block *cmd, 768 struct its_cmd_desc *desc) 769 { 770 unsigned long vpt_addr, vconf_addr; 771 u64 target; 772 bool alloc; 773 774 its_encode_cmd(cmd, GITS_CMD_VMAPP); 775 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); 776 its_encode_valid(cmd, desc->its_vmapp_cmd.valid); 777 778 if (!desc->its_vmapp_cmd.valid) { 779 if (is_v4_1(its)) { 780 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count); 781 its_encode_alloc(cmd, alloc); 782 } 783 784 goto out; 785 } 786 787 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); 788 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset; 789 790 its_encode_target(cmd, target); 791 its_encode_vpt_addr(cmd, vpt_addr); 792 its_encode_vpt_size(cmd, LPI_NRBITS - 1); 793 794 if (!is_v4_1(its)) 795 goto out; 796 797 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page)); 798 799 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count); 800 801 its_encode_alloc(cmd, alloc); 802 803 /* 804 * GICv4.1 provides a way to get the VLPI state, which needs the vPE 805 * to be unmapped first, and in this case, we may remap the vPE 806 * back while the VPT is not empty. So we can't assume that the 807 * VPT is empty on map. This is why we never advertise PTZ. 808 */ 809 its_encode_ptz(cmd, false); 810 its_encode_vconf_addr(cmd, vconf_addr); 811 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi); 812 813 out: 814 its_fixup_cmd(cmd); 815 816 return valid_vpe(its, desc->its_vmapp_cmd.vpe); 817 } 818 819 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its, 820 struct its_cmd_block *cmd, 821 struct its_cmd_desc *desc) 822 { 823 u32 db; 824 825 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled) 826 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; 827 else 828 db = 1023; 829 830 its_encode_cmd(cmd, GITS_CMD_VMAPTI); 831 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); 832 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); 833 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); 834 its_encode_db_phys_id(cmd, db); 835 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); 836 837 its_fixup_cmd(cmd); 838 839 return valid_vpe(its, desc->its_vmapti_cmd.vpe); 840 } 841 842 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its, 843 struct its_cmd_block *cmd, 844 struct its_cmd_desc *desc) 845 { 846 u32 db; 847 848 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled) 849 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; 850 else 851 db = 1023; 852 853 its_encode_cmd(cmd, GITS_CMD_VMOVI); 854 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); 855 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); 856 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); 857 its_encode_db_phys_id(cmd, db); 858 its_encode_db_valid(cmd, true); 859 860 its_fixup_cmd(cmd); 861 862 return valid_vpe(its, desc->its_vmovi_cmd.vpe); 863 } 864 865 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its, 866 struct its_cmd_block *cmd, 867 struct its_cmd_desc *desc) 868 { 869 u64 target; 870 871 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset; 872 its_encode_cmd(cmd, GITS_CMD_VMOVP); 873 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); 874 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); 875 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); 876 its_encode_target(cmd, target); 877 878 if (is_v4_1(its)) { 879 its_encode_db(cmd, true); 880 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi); 881 } 882 883 its_fixup_cmd(cmd); 884 885 return valid_vpe(its, desc->its_vmovp_cmd.vpe); 886 } 887 888 static struct its_vpe *its_build_vinv_cmd(struct its_node *its, 889 struct its_cmd_block *cmd, 890 struct its_cmd_desc *desc) 891 { 892 struct its_vlpi_map *map; 893 894 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev, 895 desc->its_inv_cmd.event_id); 896 897 its_encode_cmd(cmd, GITS_CMD_INV); 898 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 899 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 900 901 its_fixup_cmd(cmd); 902 903 return valid_vpe(its, map->vpe); 904 } 905 906 static struct its_vpe *its_build_vint_cmd(struct its_node *its, 907 struct its_cmd_block *cmd, 908 struct its_cmd_desc *desc) 909 { 910 struct its_vlpi_map *map; 911 912 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev, 913 desc->its_int_cmd.event_id); 914 915 its_encode_cmd(cmd, GITS_CMD_INT); 916 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 917 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 918 919 its_fixup_cmd(cmd); 920 921 return valid_vpe(its, map->vpe); 922 } 923 924 static struct its_vpe *its_build_vclear_cmd(struct its_node *its, 925 struct its_cmd_block *cmd, 926 struct its_cmd_desc *desc) 927 { 928 struct its_vlpi_map *map; 929 930 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev, 931 desc->its_clear_cmd.event_id); 932 933 its_encode_cmd(cmd, GITS_CMD_CLEAR); 934 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 935 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 936 937 its_fixup_cmd(cmd); 938 939 return valid_vpe(its, map->vpe); 940 } 941 942 static struct its_vpe *its_build_invdb_cmd(struct its_node *its, 943 struct its_cmd_block *cmd, 944 struct its_cmd_desc *desc) 945 { 946 if (WARN_ON(!is_v4_1(its))) 947 return NULL; 948 949 its_encode_cmd(cmd, GITS_CMD_INVDB); 950 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id); 951 952 its_fixup_cmd(cmd); 953 954 return valid_vpe(its, desc->its_invdb_cmd.vpe); 955 } 956 957 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its, 958 struct its_cmd_block *cmd, 959 struct its_cmd_desc *desc) 960 { 961 if (WARN_ON(!is_v4_1(its))) 962 return NULL; 963 964 its_encode_cmd(cmd, GITS_CMD_VSGI); 965 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id); 966 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi); 967 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority); 968 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group); 969 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear); 970 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable); 971 972 its_fixup_cmd(cmd); 973 974 return valid_vpe(its, desc->its_vsgi_cmd.vpe); 975 } 976 977 static u64 its_cmd_ptr_to_offset(struct its_node *its, 978 struct its_cmd_block *ptr) 979 { 980 return (ptr - its->cmd_base) * sizeof(*ptr); 981 } 982 983 static int its_queue_full(struct its_node *its) 984 { 985 int widx; 986 int ridx; 987 988 widx = its->cmd_write - its->cmd_base; 989 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); 990 991 /* This is incredibly unlikely to happen, unless the ITS locks up. */ 992 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) 993 return 1; 994 995 return 0; 996 } 997 998 static struct its_cmd_block *its_allocate_entry(struct its_node *its) 999 { 1000 struct its_cmd_block *cmd; 1001 u32 count = 1000000; /* 1s! */ 1002 1003 while (its_queue_full(its)) { 1004 count--; 1005 if (!count) { 1006 pr_err_ratelimited("ITS queue not draining\n"); 1007 return NULL; 1008 } 1009 cpu_relax(); 1010 udelay(1); 1011 } 1012 1013 cmd = its->cmd_write++; 1014 1015 /* Handle queue wrapping */ 1016 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) 1017 its->cmd_write = its->cmd_base; 1018 1019 /* Clear command */ 1020 cmd->raw_cmd[0] = 0; 1021 cmd->raw_cmd[1] = 0; 1022 cmd->raw_cmd[2] = 0; 1023 cmd->raw_cmd[3] = 0; 1024 1025 return cmd; 1026 } 1027 1028 static struct its_cmd_block *its_post_commands(struct its_node *its) 1029 { 1030 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); 1031 1032 writel_relaxed(wr, its->base + GITS_CWRITER); 1033 1034 return its->cmd_write; 1035 } 1036 1037 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) 1038 { 1039 /* 1040 * Make sure the commands written to memory are observable by 1041 * the ITS. 1042 */ 1043 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) 1044 gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); 1045 else 1046 dsb(ishst); 1047 } 1048 1049 static int its_wait_for_range_completion(struct its_node *its, 1050 u64 prev_idx, 1051 struct its_cmd_block *to) 1052 { 1053 u64 rd_idx, to_idx, linear_idx; 1054 u32 count = 1000000; /* 1s! */ 1055 1056 /* Linearize to_idx if the command set has wrapped around */ 1057 to_idx = its_cmd_ptr_to_offset(its, to); 1058 if (to_idx < prev_idx) 1059 to_idx += ITS_CMD_QUEUE_SZ; 1060 1061 linear_idx = prev_idx; 1062 1063 while (1) { 1064 s64 delta; 1065 1066 rd_idx = readl_relaxed(its->base + GITS_CREADR); 1067 1068 /* 1069 * Compute the read pointer progress, taking the 1070 * potential wrap-around into account. 1071 */ 1072 delta = rd_idx - prev_idx; 1073 if (rd_idx < prev_idx) 1074 delta += ITS_CMD_QUEUE_SZ; 1075 1076 linear_idx += delta; 1077 if (linear_idx >= to_idx) 1078 break; 1079 1080 count--; 1081 if (!count) { 1082 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n", 1083 to_idx, linear_idx); 1084 return -1; 1085 } 1086 prev_idx = rd_idx; 1087 cpu_relax(); 1088 udelay(1); 1089 } 1090 1091 return 0; 1092 } 1093 1094 /* Warning, macro hell follows */ 1095 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \ 1096 void name(struct its_node *its, \ 1097 buildtype builder, \ 1098 struct its_cmd_desc *desc) \ 1099 { \ 1100 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \ 1101 synctype *sync_obj; \ 1102 unsigned long flags; \ 1103 u64 rd_idx; \ 1104 \ 1105 raw_spin_lock_irqsave(&its->lock, flags); \ 1106 \ 1107 cmd = its_allocate_entry(its); \ 1108 if (!cmd) { /* We're soooooo screewed... */ \ 1109 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1110 return; \ 1111 } \ 1112 sync_obj = builder(its, cmd, desc); \ 1113 its_flush_cmd(its, cmd); \ 1114 \ 1115 if (sync_obj) { \ 1116 sync_cmd = its_allocate_entry(its); \ 1117 if (!sync_cmd) \ 1118 goto post; \ 1119 \ 1120 buildfn(its, sync_cmd, sync_obj); \ 1121 its_flush_cmd(its, sync_cmd); \ 1122 } \ 1123 \ 1124 post: \ 1125 rd_idx = readl_relaxed(its->base + GITS_CREADR); \ 1126 next_cmd = its_post_commands(its); \ 1127 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1128 \ 1129 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \ 1130 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \ 1131 } 1132 1133 static void its_build_sync_cmd(struct its_node *its, 1134 struct its_cmd_block *sync_cmd, 1135 struct its_collection *sync_col) 1136 { 1137 its_encode_cmd(sync_cmd, GITS_CMD_SYNC); 1138 its_encode_target(sync_cmd, sync_col->target_address); 1139 1140 its_fixup_cmd(sync_cmd); 1141 } 1142 1143 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, 1144 struct its_collection, its_build_sync_cmd) 1145 1146 static void its_build_vsync_cmd(struct its_node *its, 1147 struct its_cmd_block *sync_cmd, 1148 struct its_vpe *sync_vpe) 1149 { 1150 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); 1151 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); 1152 1153 its_fixup_cmd(sync_cmd); 1154 } 1155 1156 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, 1157 struct its_vpe, its_build_vsync_cmd) 1158 1159 static void its_send_int(struct its_device *dev, u32 event_id) 1160 { 1161 struct its_cmd_desc desc; 1162 1163 desc.its_int_cmd.dev = dev; 1164 desc.its_int_cmd.event_id = event_id; 1165 1166 its_send_single_command(dev->its, its_build_int_cmd, &desc); 1167 } 1168 1169 static void its_send_clear(struct its_device *dev, u32 event_id) 1170 { 1171 struct its_cmd_desc desc; 1172 1173 desc.its_clear_cmd.dev = dev; 1174 desc.its_clear_cmd.event_id = event_id; 1175 1176 its_send_single_command(dev->its, its_build_clear_cmd, &desc); 1177 } 1178 1179 static void its_send_inv(struct its_device *dev, u32 event_id) 1180 { 1181 struct its_cmd_desc desc; 1182 1183 desc.its_inv_cmd.dev = dev; 1184 desc.its_inv_cmd.event_id = event_id; 1185 1186 its_send_single_command(dev->its, its_build_inv_cmd, &desc); 1187 } 1188 1189 static void its_send_mapd(struct its_device *dev, int valid) 1190 { 1191 struct its_cmd_desc desc; 1192 1193 desc.its_mapd_cmd.dev = dev; 1194 desc.its_mapd_cmd.valid = !!valid; 1195 1196 its_send_single_command(dev->its, its_build_mapd_cmd, &desc); 1197 } 1198 1199 static void its_send_mapc(struct its_node *its, struct its_collection *col, 1200 int valid) 1201 { 1202 struct its_cmd_desc desc; 1203 1204 desc.its_mapc_cmd.col = col; 1205 desc.its_mapc_cmd.valid = !!valid; 1206 1207 its_send_single_command(its, its_build_mapc_cmd, &desc); 1208 } 1209 1210 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) 1211 { 1212 struct its_cmd_desc desc; 1213 1214 desc.its_mapti_cmd.dev = dev; 1215 desc.its_mapti_cmd.phys_id = irq_id; 1216 desc.its_mapti_cmd.event_id = id; 1217 1218 its_send_single_command(dev->its, its_build_mapti_cmd, &desc); 1219 } 1220 1221 static void its_send_movi(struct its_device *dev, 1222 struct its_collection *col, u32 id) 1223 { 1224 struct its_cmd_desc desc; 1225 1226 desc.its_movi_cmd.dev = dev; 1227 desc.its_movi_cmd.col = col; 1228 desc.its_movi_cmd.event_id = id; 1229 1230 its_send_single_command(dev->its, its_build_movi_cmd, &desc); 1231 } 1232 1233 static void its_send_discard(struct its_device *dev, u32 id) 1234 { 1235 struct its_cmd_desc desc; 1236 1237 desc.its_discard_cmd.dev = dev; 1238 desc.its_discard_cmd.event_id = id; 1239 1240 its_send_single_command(dev->its, its_build_discard_cmd, &desc); 1241 } 1242 1243 static void its_send_invall(struct its_node *its, struct its_collection *col) 1244 { 1245 struct its_cmd_desc desc; 1246 1247 desc.its_invall_cmd.col = col; 1248 1249 its_send_single_command(its, its_build_invall_cmd, &desc); 1250 } 1251 1252 static void its_send_vmapti(struct its_device *dev, u32 id) 1253 { 1254 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1255 struct its_cmd_desc desc; 1256 1257 desc.its_vmapti_cmd.vpe = map->vpe; 1258 desc.its_vmapti_cmd.dev = dev; 1259 desc.its_vmapti_cmd.virt_id = map->vintid; 1260 desc.its_vmapti_cmd.event_id = id; 1261 desc.its_vmapti_cmd.db_enabled = map->db_enabled; 1262 1263 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); 1264 } 1265 1266 static void its_send_vmovi(struct its_device *dev, u32 id) 1267 { 1268 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1269 struct its_cmd_desc desc; 1270 1271 desc.its_vmovi_cmd.vpe = map->vpe; 1272 desc.its_vmovi_cmd.dev = dev; 1273 desc.its_vmovi_cmd.event_id = id; 1274 desc.its_vmovi_cmd.db_enabled = map->db_enabled; 1275 1276 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); 1277 } 1278 1279 static void its_send_vmapp(struct its_node *its, 1280 struct its_vpe *vpe, bool valid) 1281 { 1282 struct its_cmd_desc desc; 1283 1284 desc.its_vmapp_cmd.vpe = vpe; 1285 desc.its_vmapp_cmd.valid = valid; 1286 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; 1287 1288 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); 1289 } 1290 1291 static void its_send_vmovp(struct its_vpe *vpe) 1292 { 1293 struct its_cmd_desc desc = {}; 1294 struct its_node *its; 1295 unsigned long flags; 1296 int col_id = vpe->col_idx; 1297 1298 desc.its_vmovp_cmd.vpe = vpe; 1299 1300 if (!its_list_map) { 1301 its = list_first_entry(&its_nodes, struct its_node, entry); 1302 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1303 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1304 return; 1305 } 1306 1307 /* 1308 * Yet another marvel of the architecture. If using the 1309 * its_list "feature", we need to make sure that all ITSs 1310 * receive all VMOVP commands in the same order. The only way 1311 * to guarantee this is to make vmovp a serialization point. 1312 * 1313 * Wall <-- Head. 1314 */ 1315 raw_spin_lock_irqsave(&vmovp_lock, flags); 1316 1317 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; 1318 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm); 1319 1320 /* Emit VMOVPs */ 1321 list_for_each_entry(its, &its_nodes, entry) { 1322 if (!is_v4(its)) 1323 continue; 1324 1325 if (!require_its_list_vmovp(vpe->its_vm, its)) 1326 continue; 1327 1328 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1329 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1330 } 1331 1332 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1333 } 1334 1335 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe) 1336 { 1337 struct its_cmd_desc desc; 1338 1339 desc.its_vinvall_cmd.vpe = vpe; 1340 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); 1341 } 1342 1343 static void its_send_vinv(struct its_device *dev, u32 event_id) 1344 { 1345 struct its_cmd_desc desc; 1346 1347 /* 1348 * There is no real VINV command. This is just a normal INV, 1349 * with a VSYNC instead of a SYNC. 1350 */ 1351 desc.its_inv_cmd.dev = dev; 1352 desc.its_inv_cmd.event_id = event_id; 1353 1354 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc); 1355 } 1356 1357 static void its_send_vint(struct its_device *dev, u32 event_id) 1358 { 1359 struct its_cmd_desc desc; 1360 1361 /* 1362 * There is no real VINT command. This is just a normal INT, 1363 * with a VSYNC instead of a SYNC. 1364 */ 1365 desc.its_int_cmd.dev = dev; 1366 desc.its_int_cmd.event_id = event_id; 1367 1368 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc); 1369 } 1370 1371 static void its_send_vclear(struct its_device *dev, u32 event_id) 1372 { 1373 struct its_cmd_desc desc; 1374 1375 /* 1376 * There is no real VCLEAR command. This is just a normal CLEAR, 1377 * with a VSYNC instead of a SYNC. 1378 */ 1379 desc.its_clear_cmd.dev = dev; 1380 desc.its_clear_cmd.event_id = event_id; 1381 1382 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc); 1383 } 1384 1385 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe) 1386 { 1387 struct its_cmd_desc desc; 1388 1389 desc.its_invdb_cmd.vpe = vpe; 1390 its_send_single_vcommand(its, its_build_invdb_cmd, &desc); 1391 } 1392 1393 /* 1394 * irqchip functions - assumes MSI, mostly. 1395 */ 1396 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) 1397 { 1398 struct its_vlpi_map *map = get_vlpi_map(d); 1399 irq_hw_number_t hwirq; 1400 void *va; 1401 u8 *cfg; 1402 1403 if (map) { 1404 va = page_address(map->vm->vprop_page); 1405 hwirq = map->vintid; 1406 1407 /* Remember the updated property */ 1408 map->properties &= ~clr; 1409 map->properties |= set | LPI_PROP_GROUP1; 1410 } else { 1411 va = gic_rdists->prop_table_va; 1412 hwirq = d->hwirq; 1413 } 1414 1415 cfg = va + hwirq - 8192; 1416 *cfg &= ~clr; 1417 *cfg |= set | LPI_PROP_GROUP1; 1418 1419 /* 1420 * Make the above write visible to the redistributors. 1421 * And yes, we're flushing exactly: One. Single. Byte. 1422 * Humpf... 1423 */ 1424 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) 1425 gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); 1426 else 1427 dsb(ishst); 1428 } 1429 1430 static void wait_for_syncr(void __iomem *rdbase) 1431 { 1432 while (readl_relaxed(rdbase + GICR_SYNCR) & 1) 1433 cpu_relax(); 1434 } 1435 1436 static void direct_lpi_inv(struct irq_data *d) 1437 { 1438 struct its_vlpi_map *map = get_vlpi_map(d); 1439 void __iomem *rdbase; 1440 unsigned long flags; 1441 u64 val; 1442 int cpu; 1443 1444 if (map) { 1445 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1446 1447 WARN_ON(!is_v4_1(its_dev->its)); 1448 1449 val = GICR_INVLPIR_V; 1450 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id); 1451 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid); 1452 } else { 1453 val = d->hwirq; 1454 } 1455 1456 /* Target the redistributor this LPI is currently routed to */ 1457 cpu = irq_to_cpuid_lock(d, &flags); 1458 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 1459 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 1460 gic_write_lpir(val, rdbase + GICR_INVLPIR); 1461 1462 wait_for_syncr(rdbase); 1463 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 1464 irq_to_cpuid_unlock(d, flags); 1465 } 1466 1467 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) 1468 { 1469 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1470 1471 lpi_write_config(d, clr, set); 1472 if (gic_rdists->has_direct_lpi && 1473 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d))) 1474 direct_lpi_inv(d); 1475 else if (!irqd_is_forwarded_to_vcpu(d)) 1476 its_send_inv(its_dev, its_get_event_id(d)); 1477 else 1478 its_send_vinv(its_dev, its_get_event_id(d)); 1479 } 1480 1481 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) 1482 { 1483 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1484 u32 event = its_get_event_id(d); 1485 struct its_vlpi_map *map; 1486 1487 /* 1488 * GICv4.1 does away with the per-LPI nonsense, nothing to do 1489 * here. 1490 */ 1491 if (is_v4_1(its_dev->its)) 1492 return; 1493 1494 map = dev_event_to_vlpi_map(its_dev, event); 1495 1496 if (map->db_enabled == enable) 1497 return; 1498 1499 map->db_enabled = enable; 1500 1501 /* 1502 * More fun with the architecture: 1503 * 1504 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI 1505 * value or to 1023, depending on the enable bit. But that 1506 * would be issuing a mapping for an /existing/ DevID+EventID 1507 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI 1508 * to the /same/ vPE, using this opportunity to adjust the 1509 * doorbell. Mouahahahaha. We loves it, Precious. 1510 */ 1511 its_send_vmovi(its_dev, event); 1512 } 1513 1514 static void its_mask_irq(struct irq_data *d) 1515 { 1516 if (irqd_is_forwarded_to_vcpu(d)) 1517 its_vlpi_set_doorbell(d, false); 1518 1519 lpi_update_config(d, LPI_PROP_ENABLED, 0); 1520 } 1521 1522 static void its_unmask_irq(struct irq_data *d) 1523 { 1524 if (irqd_is_forwarded_to_vcpu(d)) 1525 its_vlpi_set_doorbell(d, true); 1526 1527 lpi_update_config(d, 0, LPI_PROP_ENABLED); 1528 } 1529 1530 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu) 1531 { 1532 if (irqd_affinity_is_managed(d)) 1533 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1534 1535 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1536 } 1537 1538 static void its_inc_lpi_count(struct irq_data *d, int cpu) 1539 { 1540 if (irqd_affinity_is_managed(d)) 1541 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1542 else 1543 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1544 } 1545 1546 static void its_dec_lpi_count(struct irq_data *d, int cpu) 1547 { 1548 if (irqd_affinity_is_managed(d)) 1549 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1550 else 1551 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1552 } 1553 1554 static unsigned int cpumask_pick_least_loaded(struct irq_data *d, 1555 const struct cpumask *cpu_mask) 1556 { 1557 unsigned int cpu = nr_cpu_ids, tmp; 1558 int count = S32_MAX; 1559 1560 for_each_cpu(tmp, cpu_mask) { 1561 int this_count = its_read_lpi_count(d, tmp); 1562 if (this_count < count) { 1563 cpu = tmp; 1564 count = this_count; 1565 } 1566 } 1567 1568 return cpu; 1569 } 1570 1571 /* 1572 * As suggested by Thomas Gleixner in: 1573 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de 1574 */ 1575 static int its_select_cpu(struct irq_data *d, 1576 const struct cpumask *aff_mask) 1577 { 1578 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1579 static DEFINE_RAW_SPINLOCK(tmpmask_lock); 1580 static struct cpumask __tmpmask; 1581 struct cpumask *tmpmask; 1582 unsigned long flags; 1583 int cpu, node; 1584 node = its_dev->its->numa_node; 1585 tmpmask = &__tmpmask; 1586 1587 raw_spin_lock_irqsave(&tmpmask_lock, flags); 1588 1589 if (!irqd_affinity_is_managed(d)) { 1590 /* First try the NUMA node */ 1591 if (node != NUMA_NO_NODE) { 1592 /* 1593 * Try the intersection of the affinity mask and the 1594 * node mask (and the online mask, just to be safe). 1595 */ 1596 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask); 1597 cpumask_and(tmpmask, tmpmask, cpu_online_mask); 1598 1599 /* 1600 * Ideally, we would check if the mask is empty, and 1601 * try again on the full node here. 1602 * 1603 * But it turns out that the way ACPI describes the 1604 * affinity for ITSs only deals about memory, and 1605 * not target CPUs, so it cannot describe a single 1606 * ITS placed next to two NUMA nodes. 1607 * 1608 * Instead, just fallback on the online mask. This 1609 * diverges from Thomas' suggestion above. 1610 */ 1611 cpu = cpumask_pick_least_loaded(d, tmpmask); 1612 if (cpu < nr_cpu_ids) 1613 goto out; 1614 1615 /* If we can't cross sockets, give up */ 1616 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)) 1617 goto out; 1618 1619 /* If the above failed, expand the search */ 1620 } 1621 1622 /* Try the intersection of the affinity and online masks */ 1623 cpumask_and(tmpmask, aff_mask, cpu_online_mask); 1624 1625 /* If that doesn't fly, the online mask is the last resort */ 1626 if (cpumask_empty(tmpmask)) 1627 cpumask_copy(tmpmask, cpu_online_mask); 1628 1629 cpu = cpumask_pick_least_loaded(d, tmpmask); 1630 } else { 1631 cpumask_copy(tmpmask, aff_mask); 1632 1633 /* If we cannot cross sockets, limit the search to that node */ 1634 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) && 1635 node != NUMA_NO_NODE) 1636 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node)); 1637 1638 cpu = cpumask_pick_least_loaded(d, tmpmask); 1639 } 1640 out: 1641 raw_spin_unlock_irqrestore(&tmpmask_lock, flags); 1642 1643 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu); 1644 return cpu; 1645 } 1646 1647 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 1648 bool force) 1649 { 1650 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1651 struct its_collection *target_col; 1652 u32 id = its_get_event_id(d); 1653 int cpu, prev_cpu; 1654 1655 /* A forwarded interrupt should use irq_set_vcpu_affinity */ 1656 if (irqd_is_forwarded_to_vcpu(d)) 1657 return -EINVAL; 1658 1659 prev_cpu = its_dev->event_map.col_map[id]; 1660 its_dec_lpi_count(d, prev_cpu); 1661 1662 if (!force) 1663 cpu = its_select_cpu(d, mask_val); 1664 else 1665 cpu = cpumask_pick_least_loaded(d, mask_val); 1666 1667 if (cpu < 0 || cpu >= nr_cpu_ids) 1668 goto err; 1669 1670 /* don't set the affinity when the target cpu is same as current one */ 1671 if (cpu != prev_cpu) { 1672 target_col = &its_dev->its->collections[cpu]; 1673 its_send_movi(its_dev, target_col, id); 1674 its_dev->event_map.col_map[id] = cpu; 1675 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 1676 } 1677 1678 its_inc_lpi_count(d, cpu); 1679 1680 return IRQ_SET_MASK_OK_DONE; 1681 1682 err: 1683 its_inc_lpi_count(d, prev_cpu); 1684 return -EINVAL; 1685 } 1686 1687 static u64 its_irq_get_msi_base(struct its_device *its_dev) 1688 { 1689 struct its_node *its = its_dev->its; 1690 1691 return its->phys_base + GITS_TRANSLATER; 1692 } 1693 1694 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) 1695 { 1696 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1697 struct its_node *its; 1698 u64 addr; 1699 1700 its = its_dev->its; 1701 addr = its->get_msi_base(its_dev); 1702 1703 msg->address_lo = lower_32_bits(addr); 1704 msg->address_hi = upper_32_bits(addr); 1705 msg->data = its_get_event_id(d); 1706 1707 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg); 1708 } 1709 1710 static int its_irq_set_irqchip_state(struct irq_data *d, 1711 enum irqchip_irq_state which, 1712 bool state) 1713 { 1714 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1715 u32 event = its_get_event_id(d); 1716 1717 if (which != IRQCHIP_STATE_PENDING) 1718 return -EINVAL; 1719 1720 if (irqd_is_forwarded_to_vcpu(d)) { 1721 if (state) 1722 its_send_vint(its_dev, event); 1723 else 1724 its_send_vclear(its_dev, event); 1725 } else { 1726 if (state) 1727 its_send_int(its_dev, event); 1728 else 1729 its_send_clear(its_dev, event); 1730 } 1731 1732 return 0; 1733 } 1734 1735 static int its_irq_retrigger(struct irq_data *d) 1736 { 1737 return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 1738 } 1739 1740 /* 1741 * Two favourable cases: 1742 * 1743 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times 1744 * for vSGI delivery 1745 * 1746 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough 1747 * and we're better off mapping all VPEs always 1748 * 1749 * If neither (a) nor (b) is true, then we map vPEs on demand. 1750 * 1751 */ 1752 static bool gic_requires_eager_mapping(void) 1753 { 1754 if (!its_list_map || gic_rdists->has_rvpeid) 1755 return true; 1756 1757 return false; 1758 } 1759 1760 static void its_map_vm(struct its_node *its, struct its_vm *vm) 1761 { 1762 unsigned long flags; 1763 1764 if (gic_requires_eager_mapping()) 1765 return; 1766 1767 raw_spin_lock_irqsave(&vmovp_lock, flags); 1768 1769 /* 1770 * If the VM wasn't mapped yet, iterate over the vpes and get 1771 * them mapped now. 1772 */ 1773 vm->vlpi_count[its->list_nr]++; 1774 1775 if (vm->vlpi_count[its->list_nr] == 1) { 1776 int i; 1777 1778 for (i = 0; i < vm->nr_vpes; i++) { 1779 struct its_vpe *vpe = vm->vpes[i]; 1780 struct irq_data *d = irq_get_irq_data(vpe->irq); 1781 1782 /* Map the VPE to the first possible CPU */ 1783 vpe->col_idx = cpumask_first(cpu_online_mask); 1784 its_send_vmapp(its, vpe, true); 1785 its_send_vinvall(its, vpe); 1786 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 1787 } 1788 } 1789 1790 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1791 } 1792 1793 static void its_unmap_vm(struct its_node *its, struct its_vm *vm) 1794 { 1795 unsigned long flags; 1796 1797 /* Not using the ITS list? Everything is always mapped. */ 1798 if (gic_requires_eager_mapping()) 1799 return; 1800 1801 raw_spin_lock_irqsave(&vmovp_lock, flags); 1802 1803 if (!--vm->vlpi_count[its->list_nr]) { 1804 int i; 1805 1806 for (i = 0; i < vm->nr_vpes; i++) 1807 its_send_vmapp(its, vm->vpes[i], false); 1808 } 1809 1810 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1811 } 1812 1813 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) 1814 { 1815 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1816 u32 event = its_get_event_id(d); 1817 int ret = 0; 1818 1819 if (!info->map) 1820 return -EINVAL; 1821 1822 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1823 1824 if (!its_dev->event_map.vm) { 1825 struct its_vlpi_map *maps; 1826 1827 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps), 1828 GFP_ATOMIC); 1829 if (!maps) { 1830 ret = -ENOMEM; 1831 goto out; 1832 } 1833 1834 its_dev->event_map.vm = info->map->vm; 1835 its_dev->event_map.vlpi_maps = maps; 1836 } else if (its_dev->event_map.vm != info->map->vm) { 1837 ret = -EINVAL; 1838 goto out; 1839 } 1840 1841 /* Get our private copy of the mapping information */ 1842 its_dev->event_map.vlpi_maps[event] = *info->map; 1843 1844 if (irqd_is_forwarded_to_vcpu(d)) { 1845 /* Already mapped, move it around */ 1846 its_send_vmovi(its_dev, event); 1847 } else { 1848 /* Ensure all the VPEs are mapped on this ITS */ 1849 its_map_vm(its_dev->its, info->map->vm); 1850 1851 /* 1852 * Flag the interrupt as forwarded so that we can 1853 * start poking the virtual property table. 1854 */ 1855 irqd_set_forwarded_to_vcpu(d); 1856 1857 /* Write out the property to the prop table */ 1858 lpi_write_config(d, 0xff, info->map->properties); 1859 1860 /* Drop the physical mapping */ 1861 its_send_discard(its_dev, event); 1862 1863 /* and install the virtual one */ 1864 its_send_vmapti(its_dev, event); 1865 1866 /* Increment the number of VLPIs */ 1867 its_dev->event_map.nr_vlpis++; 1868 } 1869 1870 out: 1871 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1872 return ret; 1873 } 1874 1875 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) 1876 { 1877 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1878 struct its_vlpi_map *map; 1879 int ret = 0; 1880 1881 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1882 1883 map = get_vlpi_map(d); 1884 1885 if (!its_dev->event_map.vm || !map) { 1886 ret = -EINVAL; 1887 goto out; 1888 } 1889 1890 /* Copy our mapping information to the incoming request */ 1891 *info->map = *map; 1892 1893 out: 1894 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1895 return ret; 1896 } 1897 1898 static int its_vlpi_unmap(struct irq_data *d) 1899 { 1900 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1901 u32 event = its_get_event_id(d); 1902 int ret = 0; 1903 1904 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1905 1906 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) { 1907 ret = -EINVAL; 1908 goto out; 1909 } 1910 1911 /* Drop the virtual mapping */ 1912 its_send_discard(its_dev, event); 1913 1914 /* and restore the physical one */ 1915 irqd_clr_forwarded_to_vcpu(d); 1916 its_send_mapti(its_dev, d->hwirq, event); 1917 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO | 1918 LPI_PROP_ENABLED | 1919 LPI_PROP_GROUP1)); 1920 1921 /* Potentially unmap the VM from this ITS */ 1922 its_unmap_vm(its_dev->its, its_dev->event_map.vm); 1923 1924 /* 1925 * Drop the refcount and make the device available again if 1926 * this was the last VLPI. 1927 */ 1928 if (!--its_dev->event_map.nr_vlpis) { 1929 its_dev->event_map.vm = NULL; 1930 kfree(its_dev->event_map.vlpi_maps); 1931 } 1932 1933 out: 1934 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1935 return ret; 1936 } 1937 1938 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) 1939 { 1940 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1941 1942 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 1943 return -EINVAL; 1944 1945 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) 1946 lpi_update_config(d, 0xff, info->config); 1947 else 1948 lpi_write_config(d, 0xff, info->config); 1949 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); 1950 1951 return 0; 1952 } 1953 1954 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 1955 { 1956 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1957 struct its_cmd_info *info = vcpu_info; 1958 1959 /* Need a v4 ITS */ 1960 if (!is_v4(its_dev->its)) 1961 return -EINVAL; 1962 1963 /* Unmap request? */ 1964 if (!info) 1965 return its_vlpi_unmap(d); 1966 1967 switch (info->cmd_type) { 1968 case MAP_VLPI: 1969 return its_vlpi_map(d, info); 1970 1971 case GET_VLPI: 1972 return its_vlpi_get(d, info); 1973 1974 case PROP_UPDATE_VLPI: 1975 case PROP_UPDATE_AND_INV_VLPI: 1976 return its_vlpi_prop_update(d, info); 1977 1978 default: 1979 return -EINVAL; 1980 } 1981 } 1982 1983 static struct irq_chip its_irq_chip = { 1984 .name = "ITS", 1985 .irq_mask = its_mask_irq, 1986 .irq_unmask = its_unmask_irq, 1987 .irq_eoi = irq_chip_eoi_parent, 1988 .irq_set_affinity = its_set_affinity, 1989 .irq_compose_msi_msg = its_irq_compose_msi_msg, 1990 .irq_set_irqchip_state = its_irq_set_irqchip_state, 1991 .irq_retrigger = its_irq_retrigger, 1992 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity, 1993 }; 1994 1995 1996 /* 1997 * How we allocate LPIs: 1998 * 1999 * lpi_range_list contains ranges of LPIs that are to available to 2000 * allocate from. To allocate LPIs, just pick the first range that 2001 * fits the required allocation, and reduce it by the required 2002 * amount. Once empty, remove the range from the list. 2003 * 2004 * To free a range of LPIs, add a free range to the list, sort it and 2005 * merge the result if the new range happens to be adjacent to an 2006 * already free block. 2007 * 2008 * The consequence of the above is that allocation is cost is low, but 2009 * freeing is expensive. We assumes that freeing rarely occurs. 2010 */ 2011 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */ 2012 2013 static DEFINE_MUTEX(lpi_range_lock); 2014 static LIST_HEAD(lpi_range_list); 2015 2016 struct lpi_range { 2017 struct list_head entry; 2018 u32 base_id; 2019 u32 span; 2020 }; 2021 2022 static struct lpi_range *mk_lpi_range(u32 base, u32 span) 2023 { 2024 struct lpi_range *range; 2025 2026 range = kmalloc(sizeof(*range), GFP_KERNEL); 2027 if (range) { 2028 range->base_id = base; 2029 range->span = span; 2030 } 2031 2032 return range; 2033 } 2034 2035 static int alloc_lpi_range(u32 nr_lpis, u32 *base) 2036 { 2037 struct lpi_range *range, *tmp; 2038 int err = -ENOSPC; 2039 2040 mutex_lock(&lpi_range_lock); 2041 2042 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { 2043 if (range->span >= nr_lpis) { 2044 *base = range->base_id; 2045 range->base_id += nr_lpis; 2046 range->span -= nr_lpis; 2047 2048 if (range->span == 0) { 2049 list_del(&range->entry); 2050 kfree(range); 2051 } 2052 2053 err = 0; 2054 break; 2055 } 2056 } 2057 2058 mutex_unlock(&lpi_range_lock); 2059 2060 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis); 2061 return err; 2062 } 2063 2064 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b) 2065 { 2066 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list) 2067 return; 2068 if (a->base_id + a->span != b->base_id) 2069 return; 2070 b->base_id = a->base_id; 2071 b->span += a->span; 2072 list_del(&a->entry); 2073 kfree(a); 2074 } 2075 2076 static int free_lpi_range(u32 base, u32 nr_lpis) 2077 { 2078 struct lpi_range *new, *old; 2079 2080 new = mk_lpi_range(base, nr_lpis); 2081 if (!new) 2082 return -ENOMEM; 2083 2084 mutex_lock(&lpi_range_lock); 2085 2086 list_for_each_entry_reverse(old, &lpi_range_list, entry) { 2087 if (old->base_id < base) 2088 break; 2089 } 2090 /* 2091 * old is the last element with ->base_id smaller than base, 2092 * so new goes right after it. If there are no elements with 2093 * ->base_id smaller than base, &old->entry ends up pointing 2094 * at the head of the list, and inserting new it the start of 2095 * the list is the right thing to do in that case as well. 2096 */ 2097 list_add(&new->entry, &old->entry); 2098 /* 2099 * Now check if we can merge with the preceding and/or 2100 * following ranges. 2101 */ 2102 merge_lpi_ranges(old, new); 2103 merge_lpi_ranges(new, list_next_entry(new, entry)); 2104 2105 mutex_unlock(&lpi_range_lock); 2106 return 0; 2107 } 2108 2109 static int __init its_lpi_init(u32 id_bits) 2110 { 2111 u32 lpis = (1UL << id_bits) - 8192; 2112 u32 numlpis; 2113 int err; 2114 2115 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer); 2116 2117 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) { 2118 lpis = numlpis; 2119 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n", 2120 lpis); 2121 } 2122 2123 /* 2124 * Initializing the allocator is just the same as freeing the 2125 * full range of LPIs. 2126 */ 2127 err = free_lpi_range(8192, lpis); 2128 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis); 2129 return err; 2130 } 2131 2132 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids) 2133 { 2134 unsigned long *bitmap = NULL; 2135 int err = 0; 2136 2137 do { 2138 err = alloc_lpi_range(nr_irqs, base); 2139 if (!err) 2140 break; 2141 2142 nr_irqs /= 2; 2143 } while (nr_irqs > 0); 2144 2145 if (!nr_irqs) 2146 err = -ENOSPC; 2147 2148 if (err) 2149 goto out; 2150 2151 bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC); 2152 if (!bitmap) 2153 goto out; 2154 2155 *nr_ids = nr_irqs; 2156 2157 out: 2158 if (!bitmap) 2159 *base = *nr_ids = 0; 2160 2161 return bitmap; 2162 } 2163 2164 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids) 2165 { 2166 WARN_ON(free_lpi_range(base, nr_ids)); 2167 bitmap_free(bitmap); 2168 } 2169 2170 static void gic_reset_prop_table(void *va) 2171 { 2172 /* Priority 0xa0, Group-1, disabled */ 2173 memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ); 2174 2175 /* Make sure the GIC will observe the written configuration */ 2176 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ); 2177 } 2178 2179 static struct page *its_allocate_prop_table(gfp_t gfp_flags) 2180 { 2181 struct page *prop_page; 2182 2183 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ)); 2184 if (!prop_page) 2185 return NULL; 2186 2187 gic_reset_prop_table(page_address(prop_page)); 2188 2189 return prop_page; 2190 } 2191 2192 static void its_free_prop_table(struct page *prop_page) 2193 { 2194 free_pages((unsigned long)page_address(prop_page), 2195 get_order(LPI_PROPBASE_SZ)); 2196 } 2197 2198 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size) 2199 { 2200 phys_addr_t start, end, addr_end; 2201 u64 i; 2202 2203 /* 2204 * We don't bother checking for a kdump kernel as by 2205 * construction, the LPI tables are out of this kernel's 2206 * memory map. 2207 */ 2208 if (is_kdump_kernel()) 2209 return true; 2210 2211 addr_end = addr + size - 1; 2212 2213 for_each_reserved_mem_range(i, &start, &end) { 2214 if (addr >= start && addr_end <= end) 2215 return true; 2216 } 2217 2218 /* Not found, not a good sign... */ 2219 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n", 2220 &addr, &addr_end); 2221 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 2222 return false; 2223 } 2224 2225 static int gic_reserve_range(phys_addr_t addr, unsigned long size) 2226 { 2227 if (efi_enabled(EFI_CONFIG_TABLES)) 2228 return efi_mem_reserve_persistent(addr, size); 2229 2230 return 0; 2231 } 2232 2233 static int __init its_setup_lpi_prop_table(void) 2234 { 2235 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) { 2236 u64 val; 2237 2238 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2239 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1; 2240 2241 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12); 2242 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa, 2243 LPI_PROPBASE_SZ, 2244 MEMREMAP_WB); 2245 gic_reset_prop_table(gic_rdists->prop_table_va); 2246 } else { 2247 struct page *page; 2248 2249 lpi_id_bits = min_t(u32, 2250 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer), 2251 ITS_MAX_LPI_NRBITS); 2252 page = its_allocate_prop_table(GFP_NOWAIT); 2253 if (!page) { 2254 pr_err("Failed to allocate PROPBASE\n"); 2255 return -ENOMEM; 2256 } 2257 2258 gic_rdists->prop_table_pa = page_to_phys(page); 2259 gic_rdists->prop_table_va = page_address(page); 2260 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa, 2261 LPI_PROPBASE_SZ)); 2262 } 2263 2264 pr_info("GICv3: using LPI property table @%pa\n", 2265 &gic_rdists->prop_table_pa); 2266 2267 return its_lpi_init(lpi_id_bits); 2268 } 2269 2270 static const char *its_base_type_string[] = { 2271 [GITS_BASER_TYPE_DEVICE] = "Devices", 2272 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", 2273 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)", 2274 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", 2275 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", 2276 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", 2277 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", 2278 }; 2279 2280 static u64 its_read_baser(struct its_node *its, struct its_baser *baser) 2281 { 2282 u32 idx = baser - its->tables; 2283 2284 return gits_read_baser(its->base + GITS_BASER + (idx << 3)); 2285 } 2286 2287 static void its_write_baser(struct its_node *its, struct its_baser *baser, 2288 u64 val) 2289 { 2290 u32 idx = baser - its->tables; 2291 2292 gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); 2293 baser->val = its_read_baser(its, baser); 2294 } 2295 2296 static int its_setup_baser(struct its_node *its, struct its_baser *baser, 2297 u64 cache, u64 shr, u32 order, bool indirect) 2298 { 2299 u64 val = its_read_baser(its, baser); 2300 u64 esz = GITS_BASER_ENTRY_SIZE(val); 2301 u64 type = GITS_BASER_TYPE(val); 2302 u64 baser_phys, tmp; 2303 u32 alloc_pages, psz; 2304 struct page *page; 2305 void *base; 2306 2307 psz = baser->psz; 2308 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); 2309 if (alloc_pages > GITS_BASER_PAGES_MAX) { 2310 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", 2311 &its->phys_base, its_base_type_string[type], 2312 alloc_pages, GITS_BASER_PAGES_MAX); 2313 alloc_pages = GITS_BASER_PAGES_MAX; 2314 order = get_order(GITS_BASER_PAGES_MAX * psz); 2315 } 2316 2317 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order); 2318 if (!page) 2319 return -ENOMEM; 2320 2321 base = (void *)page_address(page); 2322 baser_phys = virt_to_phys(base); 2323 2324 /* Check if the physical address of the memory is above 48bits */ 2325 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { 2326 2327 /* 52bit PA is supported only when PageSize=64K */ 2328 if (psz != SZ_64K) { 2329 pr_err("ITS: no 52bit PA support when psz=%d\n", psz); 2330 free_pages((unsigned long)base, order); 2331 return -ENXIO; 2332 } 2333 2334 /* Convert 52bit PA to 48bit field */ 2335 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); 2336 } 2337 2338 retry_baser: 2339 val = (baser_phys | 2340 (type << GITS_BASER_TYPE_SHIFT) | 2341 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | 2342 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | 2343 cache | 2344 shr | 2345 GITS_BASER_VALID); 2346 2347 val |= indirect ? GITS_BASER_INDIRECT : 0x0; 2348 2349 switch (psz) { 2350 case SZ_4K: 2351 val |= GITS_BASER_PAGE_SIZE_4K; 2352 break; 2353 case SZ_16K: 2354 val |= GITS_BASER_PAGE_SIZE_16K; 2355 break; 2356 case SZ_64K: 2357 val |= GITS_BASER_PAGE_SIZE_64K; 2358 break; 2359 } 2360 2361 its_write_baser(its, baser, val); 2362 tmp = baser->val; 2363 2364 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) 2365 tmp &= ~GITS_BASER_SHAREABILITY_MASK; 2366 2367 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { 2368 /* 2369 * Shareability didn't stick. Just use 2370 * whatever the read reported, which is likely 2371 * to be the only thing this redistributor 2372 * supports. If that's zero, make it 2373 * non-cacheable as well. 2374 */ 2375 shr = tmp & GITS_BASER_SHAREABILITY_MASK; 2376 if (!shr) { 2377 cache = GITS_BASER_nC; 2378 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); 2379 } 2380 goto retry_baser; 2381 } 2382 2383 if (val != tmp) { 2384 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", 2385 &its->phys_base, its_base_type_string[type], 2386 val, tmp); 2387 free_pages((unsigned long)base, order); 2388 return -ENXIO; 2389 } 2390 2391 baser->order = order; 2392 baser->base = base; 2393 baser->psz = psz; 2394 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; 2395 2396 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", 2397 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), 2398 its_base_type_string[type], 2399 (unsigned long)virt_to_phys(base), 2400 indirect ? "indirect" : "flat", (int)esz, 2401 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); 2402 2403 return 0; 2404 } 2405 2406 static bool its_parse_indirect_baser(struct its_node *its, 2407 struct its_baser *baser, 2408 u32 *order, u32 ids) 2409 { 2410 u64 tmp = its_read_baser(its, baser); 2411 u64 type = GITS_BASER_TYPE(tmp); 2412 u64 esz = GITS_BASER_ENTRY_SIZE(tmp); 2413 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; 2414 u32 new_order = *order; 2415 u32 psz = baser->psz; 2416 bool indirect = false; 2417 2418 /* No need to enable Indirection if memory requirement < (psz*2)bytes */ 2419 if ((esz << ids) > (psz * 2)) { 2420 /* 2421 * Find out whether hw supports a single or two-level table by 2422 * table by reading bit at offset '62' after writing '1' to it. 2423 */ 2424 its_write_baser(its, baser, val | GITS_BASER_INDIRECT); 2425 indirect = !!(baser->val & GITS_BASER_INDIRECT); 2426 2427 if (indirect) { 2428 /* 2429 * The size of the lvl2 table is equal to ITS page size 2430 * which is 'psz'. For computing lvl1 table size, 2431 * subtract ID bits that sparse lvl2 table from 'ids' 2432 * which is reported by ITS hardware times lvl1 table 2433 * entry size. 2434 */ 2435 ids -= ilog2(psz / (int)esz); 2436 esz = GITS_LVL1_ENTRY_SIZE; 2437 } 2438 } 2439 2440 /* 2441 * Allocate as many entries as required to fit the 2442 * range of device IDs that the ITS can grok... The ID 2443 * space being incredibly sparse, this results in a 2444 * massive waste of memory if two-level device table 2445 * feature is not supported by hardware. 2446 */ 2447 new_order = max_t(u32, get_order(esz << ids), new_order); 2448 if (new_order > MAX_ORDER) { 2449 new_order = MAX_ORDER; 2450 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); 2451 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n", 2452 &its->phys_base, its_base_type_string[type], 2453 device_ids(its), ids); 2454 } 2455 2456 *order = new_order; 2457 2458 return indirect; 2459 } 2460 2461 static u32 compute_common_aff(u64 val) 2462 { 2463 u32 aff, clpiaff; 2464 2465 aff = FIELD_GET(GICR_TYPER_AFFINITY, val); 2466 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val); 2467 2468 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8)); 2469 } 2470 2471 static u32 compute_its_aff(struct its_node *its) 2472 { 2473 u64 val; 2474 u32 svpet; 2475 2476 /* 2477 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute 2478 * the resulting affinity. We then use that to see if this match 2479 * our own affinity. 2480 */ 2481 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); 2482 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet); 2483 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr); 2484 return compute_common_aff(val); 2485 } 2486 2487 static struct its_node *find_sibling_its(struct its_node *cur_its) 2488 { 2489 struct its_node *its; 2490 u32 aff; 2491 2492 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer)) 2493 return NULL; 2494 2495 aff = compute_its_aff(cur_its); 2496 2497 list_for_each_entry(its, &its_nodes, entry) { 2498 u64 baser; 2499 2500 if (!is_v4_1(its) || its == cur_its) 2501 continue; 2502 2503 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2504 continue; 2505 2506 if (aff != compute_its_aff(its)) 2507 continue; 2508 2509 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2510 baser = its->tables[2].val; 2511 if (!(baser & GITS_BASER_VALID)) 2512 continue; 2513 2514 return its; 2515 } 2516 2517 return NULL; 2518 } 2519 2520 static void its_free_tables(struct its_node *its) 2521 { 2522 int i; 2523 2524 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2525 if (its->tables[i].base) { 2526 free_pages((unsigned long)its->tables[i].base, 2527 its->tables[i].order); 2528 its->tables[i].base = NULL; 2529 } 2530 } 2531 } 2532 2533 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser) 2534 { 2535 u64 psz = SZ_64K; 2536 2537 while (psz) { 2538 u64 val, gpsz; 2539 2540 val = its_read_baser(its, baser); 2541 val &= ~GITS_BASER_PAGE_SIZE_MASK; 2542 2543 switch (psz) { 2544 case SZ_64K: 2545 gpsz = GITS_BASER_PAGE_SIZE_64K; 2546 break; 2547 case SZ_16K: 2548 gpsz = GITS_BASER_PAGE_SIZE_16K; 2549 break; 2550 case SZ_4K: 2551 default: 2552 gpsz = GITS_BASER_PAGE_SIZE_4K; 2553 break; 2554 } 2555 2556 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT; 2557 2558 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz); 2559 its_write_baser(its, baser, val); 2560 2561 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz) 2562 break; 2563 2564 switch (psz) { 2565 case SZ_64K: 2566 psz = SZ_16K; 2567 break; 2568 case SZ_16K: 2569 psz = SZ_4K; 2570 break; 2571 case SZ_4K: 2572 default: 2573 return -1; 2574 } 2575 } 2576 2577 baser->psz = psz; 2578 return 0; 2579 } 2580 2581 static int its_alloc_tables(struct its_node *its) 2582 { 2583 u64 shr = GITS_BASER_InnerShareable; 2584 u64 cache = GITS_BASER_RaWaWb; 2585 int err, i; 2586 2587 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) 2588 /* erratum 24313: ignore memory access type */ 2589 cache = GITS_BASER_nCnB; 2590 2591 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2592 struct its_baser *baser = its->tables + i; 2593 u64 val = its_read_baser(its, baser); 2594 u64 type = GITS_BASER_TYPE(val); 2595 bool indirect = false; 2596 u32 order; 2597 2598 if (type == GITS_BASER_TYPE_NONE) 2599 continue; 2600 2601 if (its_probe_baser_psz(its, baser)) { 2602 its_free_tables(its); 2603 return -ENXIO; 2604 } 2605 2606 order = get_order(baser->psz); 2607 2608 switch (type) { 2609 case GITS_BASER_TYPE_DEVICE: 2610 indirect = its_parse_indirect_baser(its, baser, &order, 2611 device_ids(its)); 2612 break; 2613 2614 case GITS_BASER_TYPE_VCPU: 2615 if (is_v4_1(its)) { 2616 struct its_node *sibling; 2617 2618 WARN_ON(i != 2); 2619 if ((sibling = find_sibling_its(its))) { 2620 *baser = sibling->tables[2]; 2621 its_write_baser(its, baser, baser->val); 2622 continue; 2623 } 2624 } 2625 2626 indirect = its_parse_indirect_baser(its, baser, &order, 2627 ITS_MAX_VPEID_BITS); 2628 break; 2629 } 2630 2631 err = its_setup_baser(its, baser, cache, shr, order, indirect); 2632 if (err < 0) { 2633 its_free_tables(its); 2634 return err; 2635 } 2636 2637 /* Update settings which will be used for next BASERn */ 2638 cache = baser->val & GITS_BASER_CACHEABILITY_MASK; 2639 shr = baser->val & GITS_BASER_SHAREABILITY_MASK; 2640 } 2641 2642 return 0; 2643 } 2644 2645 static u64 inherit_vpe_l1_table_from_its(void) 2646 { 2647 struct its_node *its; 2648 u64 val; 2649 u32 aff; 2650 2651 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2652 aff = compute_common_aff(val); 2653 2654 list_for_each_entry(its, &its_nodes, entry) { 2655 u64 baser, addr; 2656 2657 if (!is_v4_1(its)) 2658 continue; 2659 2660 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2661 continue; 2662 2663 if (aff != compute_its_aff(its)) 2664 continue; 2665 2666 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2667 baser = its->tables[2].val; 2668 if (!(baser & GITS_BASER_VALID)) 2669 continue; 2670 2671 /* We have a winner! */ 2672 gic_data_rdist()->vpe_l1_base = its->tables[2].base; 2673 2674 val = GICR_VPROPBASER_4_1_VALID; 2675 if (baser & GITS_BASER_INDIRECT) 2676 val |= GICR_VPROPBASER_4_1_INDIRECT; 2677 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, 2678 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)); 2679 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) { 2680 case GIC_PAGE_SIZE_64K: 2681 addr = GITS_BASER_ADDR_48_to_52(baser); 2682 break; 2683 default: 2684 addr = baser & GENMASK_ULL(47, 12); 2685 break; 2686 } 2687 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12); 2688 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK, 2689 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser)); 2690 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK, 2691 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser)); 2692 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1); 2693 2694 return val; 2695 } 2696 2697 return 0; 2698 } 2699 2700 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask) 2701 { 2702 u32 aff; 2703 u64 val; 2704 int cpu; 2705 2706 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2707 aff = compute_common_aff(val); 2708 2709 for_each_possible_cpu(cpu) { 2710 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2711 2712 if (!base || cpu == smp_processor_id()) 2713 continue; 2714 2715 val = gic_read_typer(base + GICR_TYPER); 2716 if (aff != compute_common_aff(val)) 2717 continue; 2718 2719 /* 2720 * At this point, we have a victim. This particular CPU 2721 * has already booted, and has an affinity that matches 2722 * ours wrt CommonLPIAff. Let's use its own VPROPBASER. 2723 * Make sure we don't write the Z bit in that case. 2724 */ 2725 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2726 val &= ~GICR_VPROPBASER_4_1_Z; 2727 2728 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2729 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask; 2730 2731 return val; 2732 } 2733 2734 return 0; 2735 } 2736 2737 static bool allocate_vpe_l2_table(int cpu, u32 id) 2738 { 2739 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2740 unsigned int psz, esz, idx, npg, gpsz; 2741 u64 val; 2742 struct page *page; 2743 __le64 *table; 2744 2745 if (!gic_rdists->has_rvpeid) 2746 return true; 2747 2748 /* Skip non-present CPUs */ 2749 if (!base) 2750 return true; 2751 2752 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2753 2754 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1; 2755 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2756 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1; 2757 2758 switch (gpsz) { 2759 default: 2760 WARN_ON(1); 2761 fallthrough; 2762 case GIC_PAGE_SIZE_4K: 2763 psz = SZ_4K; 2764 break; 2765 case GIC_PAGE_SIZE_16K: 2766 psz = SZ_16K; 2767 break; 2768 case GIC_PAGE_SIZE_64K: 2769 psz = SZ_64K; 2770 break; 2771 } 2772 2773 /* Don't allow vpe_id that exceeds single, flat table limit */ 2774 if (!(val & GICR_VPROPBASER_4_1_INDIRECT)) 2775 return (id < (npg * psz / (esz * SZ_8))); 2776 2777 /* Compute 1st level table index & check if that exceeds table limit */ 2778 idx = id >> ilog2(psz / (esz * SZ_8)); 2779 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE)) 2780 return false; 2781 2782 table = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2783 2784 /* Allocate memory for 2nd level table */ 2785 if (!table[idx]) { 2786 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz)); 2787 if (!page) 2788 return false; 2789 2790 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 2791 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2792 gic_flush_dcache_to_poc(page_address(page), psz); 2793 2794 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 2795 2796 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 2797 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2798 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 2799 2800 /* Ensure updated table contents are visible to RD hardware */ 2801 dsb(sy); 2802 } 2803 2804 return true; 2805 } 2806 2807 static int allocate_vpe_l1_table(void) 2808 { 2809 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2810 u64 val, gpsz, npg, pa; 2811 unsigned int psz = SZ_64K; 2812 unsigned int np, epp, esz; 2813 struct page *page; 2814 2815 if (!gic_rdists->has_rvpeid) 2816 return 0; 2817 2818 /* 2819 * if VPENDBASER.Valid is set, disable any previously programmed 2820 * VPE by setting PendingLast while clearing Valid. This has the 2821 * effect of making sure no doorbell will be generated and we can 2822 * then safely clear VPROPBASER.Valid. 2823 */ 2824 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid) 2825 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast, 2826 vlpi_base + GICR_VPENDBASER); 2827 2828 /* 2829 * If we can inherit the configuration from another RD, let's do 2830 * so. Otherwise, we have to go through the allocation process. We 2831 * assume that all RDs have the exact same requirements, as 2832 * nothing will work otherwise. 2833 */ 2834 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask); 2835 if (val & GICR_VPROPBASER_4_1_VALID) 2836 goto out; 2837 2838 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC); 2839 if (!gic_data_rdist()->vpe_table_mask) 2840 return -ENOMEM; 2841 2842 val = inherit_vpe_l1_table_from_its(); 2843 if (val & GICR_VPROPBASER_4_1_VALID) 2844 goto out; 2845 2846 /* First probe the page size */ 2847 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K); 2848 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2849 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER); 2850 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2851 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val); 2852 2853 switch (gpsz) { 2854 default: 2855 gpsz = GIC_PAGE_SIZE_4K; 2856 fallthrough; 2857 case GIC_PAGE_SIZE_4K: 2858 psz = SZ_4K; 2859 break; 2860 case GIC_PAGE_SIZE_16K: 2861 psz = SZ_16K; 2862 break; 2863 case GIC_PAGE_SIZE_64K: 2864 psz = SZ_64K; 2865 break; 2866 } 2867 2868 /* 2869 * Start populating the register from scratch, including RO fields 2870 * (which we want to print in debug cases...) 2871 */ 2872 val = 0; 2873 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz); 2874 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz); 2875 2876 /* How many entries per GIC page? */ 2877 esz++; 2878 epp = psz / (esz * SZ_8); 2879 2880 /* 2881 * If we need more than just a single L1 page, flag the table 2882 * as indirect and compute the number of required L1 pages. 2883 */ 2884 if (epp < ITS_MAX_VPEID) { 2885 int nl2; 2886 2887 val |= GICR_VPROPBASER_4_1_INDIRECT; 2888 2889 /* Number of L2 pages required to cover the VPEID space */ 2890 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp); 2891 2892 /* Number of L1 pages to point to the L2 pages */ 2893 npg = DIV_ROUND_UP(nl2 * SZ_8, psz); 2894 } else { 2895 npg = 1; 2896 } 2897 2898 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1); 2899 2900 /* Right, that's the number of CPU pages we need for L1 */ 2901 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE); 2902 2903 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n", 2904 np, npg, psz, epp, esz); 2905 page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE)); 2906 if (!page) 2907 return -ENOMEM; 2908 2909 gic_data_rdist()->vpe_l1_base = page_address(page); 2910 pa = virt_to_phys(page_address(page)); 2911 WARN_ON(!IS_ALIGNED(pa, psz)); 2912 2913 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12); 2914 val |= GICR_VPROPBASER_RaWb; 2915 val |= GICR_VPROPBASER_InnerShareable; 2916 val |= GICR_VPROPBASER_4_1_Z; 2917 val |= GICR_VPROPBASER_4_1_VALID; 2918 2919 out: 2920 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2921 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask); 2922 2923 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n", 2924 smp_processor_id(), val, 2925 cpumask_pr_args(gic_data_rdist()->vpe_table_mask)); 2926 2927 return 0; 2928 } 2929 2930 static int its_alloc_collections(struct its_node *its) 2931 { 2932 int i; 2933 2934 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections), 2935 GFP_KERNEL); 2936 if (!its->collections) 2937 return -ENOMEM; 2938 2939 for (i = 0; i < nr_cpu_ids; i++) 2940 its->collections[i].target_address = ~0ULL; 2941 2942 return 0; 2943 } 2944 2945 static struct page *its_allocate_pending_table(gfp_t gfp_flags) 2946 { 2947 struct page *pend_page; 2948 2949 pend_page = alloc_pages(gfp_flags | __GFP_ZERO, 2950 get_order(LPI_PENDBASE_SZ)); 2951 if (!pend_page) 2952 return NULL; 2953 2954 /* Make sure the GIC will observe the zero-ed page */ 2955 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); 2956 2957 return pend_page; 2958 } 2959 2960 static void its_free_pending_table(struct page *pt) 2961 { 2962 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ)); 2963 } 2964 2965 /* 2966 * Booting with kdump and LPIs enabled is generally fine. Any other 2967 * case is wrong in the absence of firmware/EFI support. 2968 */ 2969 static bool enabled_lpis_allowed(void) 2970 { 2971 phys_addr_t addr; 2972 u64 val; 2973 2974 /* Check whether the property table is in a reserved region */ 2975 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2976 addr = val & GENMASK_ULL(51, 12); 2977 2978 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ); 2979 } 2980 2981 static int __init allocate_lpi_tables(void) 2982 { 2983 u64 val; 2984 int err, cpu; 2985 2986 /* 2987 * If LPIs are enabled while we run this from the boot CPU, 2988 * flag the RD tables as pre-allocated if the stars do align. 2989 */ 2990 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR); 2991 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) { 2992 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED | 2993 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING); 2994 pr_info("GICv3: Using preallocated redistributor tables\n"); 2995 } 2996 2997 err = its_setup_lpi_prop_table(); 2998 if (err) 2999 return err; 3000 3001 /* 3002 * We allocate all the pending tables anyway, as we may have a 3003 * mix of RDs that have had LPIs enabled, and some that 3004 * don't. We'll free the unused ones as each CPU comes online. 3005 */ 3006 for_each_possible_cpu(cpu) { 3007 struct page *pend_page; 3008 3009 pend_page = its_allocate_pending_table(GFP_NOWAIT); 3010 if (!pend_page) { 3011 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu); 3012 return -ENOMEM; 3013 } 3014 3015 gic_data_rdist_cpu(cpu)->pend_page = pend_page; 3016 } 3017 3018 return 0; 3019 } 3020 3021 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base) 3022 { 3023 u32 count = 1000000; /* 1s! */ 3024 bool clean; 3025 u64 val; 3026 3027 do { 3028 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 3029 clean = !(val & GICR_VPENDBASER_Dirty); 3030 if (!clean) { 3031 count--; 3032 cpu_relax(); 3033 udelay(1); 3034 } 3035 } while (!clean && count); 3036 3037 if (unlikely(!clean)) 3038 pr_err_ratelimited("ITS virtual pending table not cleaning\n"); 3039 3040 return val; 3041 } 3042 3043 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set) 3044 { 3045 u64 val; 3046 3047 /* Make sure we wait until the RD is done with the initial scan */ 3048 val = read_vpend_dirty_clear(vlpi_base); 3049 val &= ~GICR_VPENDBASER_Valid; 3050 val &= ~clr; 3051 val |= set; 3052 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3053 3054 val = read_vpend_dirty_clear(vlpi_base); 3055 if (unlikely(val & GICR_VPENDBASER_Dirty)) 3056 val |= GICR_VPENDBASER_PendingLast; 3057 3058 return val; 3059 } 3060 3061 static void its_cpu_init_lpis(void) 3062 { 3063 void __iomem *rbase = gic_data_rdist_rd_base(); 3064 struct page *pend_page; 3065 phys_addr_t paddr; 3066 u64 val, tmp; 3067 3068 if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) 3069 return; 3070 3071 val = readl_relaxed(rbase + GICR_CTLR); 3072 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) && 3073 (val & GICR_CTLR_ENABLE_LPIS)) { 3074 /* 3075 * Check that we get the same property table on all 3076 * RDs. If we don't, this is hopeless. 3077 */ 3078 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER); 3079 paddr &= GENMASK_ULL(51, 12); 3080 if (WARN_ON(gic_rdists->prop_table_pa != paddr)) 3081 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 3082 3083 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3084 paddr &= GENMASK_ULL(51, 16); 3085 3086 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ)); 3087 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED; 3088 3089 goto out; 3090 } 3091 3092 pend_page = gic_data_rdist()->pend_page; 3093 paddr = page_to_phys(pend_page); 3094 3095 /* set PROPBASE */ 3096 val = (gic_rdists->prop_table_pa | 3097 GICR_PROPBASER_InnerShareable | 3098 GICR_PROPBASER_RaWaWb | 3099 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); 3100 3101 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3102 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); 3103 3104 if (gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE) 3105 tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK; 3106 3107 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { 3108 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { 3109 /* 3110 * The HW reports non-shareable, we must 3111 * remove the cacheability attributes as 3112 * well. 3113 */ 3114 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | 3115 GICR_PROPBASER_CACHEABILITY_MASK); 3116 val |= GICR_PROPBASER_nC; 3117 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3118 } 3119 pr_info_once("GIC: using cache flushing for LPI property table\n"); 3120 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; 3121 } 3122 3123 /* set PENDBASE */ 3124 val = (page_to_phys(pend_page) | 3125 GICR_PENDBASER_InnerShareable | 3126 GICR_PENDBASER_RaWaWb); 3127 3128 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3129 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3130 3131 if (gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE) 3132 tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK; 3133 3134 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { 3135 /* 3136 * The HW reports non-shareable, we must remove the 3137 * cacheability attributes as well. 3138 */ 3139 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | 3140 GICR_PENDBASER_CACHEABILITY_MASK); 3141 val |= GICR_PENDBASER_nC; 3142 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3143 } 3144 3145 /* Enable LPIs */ 3146 val = readl_relaxed(rbase + GICR_CTLR); 3147 val |= GICR_CTLR_ENABLE_LPIS; 3148 writel_relaxed(val, rbase + GICR_CTLR); 3149 3150 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) { 3151 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3152 3153 /* 3154 * It's possible for CPU to receive VLPIs before it is 3155 * scheduled as a vPE, especially for the first CPU, and the 3156 * VLPI with INTID larger than 2^(IDbits+1) will be considered 3157 * as out of range and dropped by GIC. 3158 * So we initialize IDbits to known value to avoid VLPI drop. 3159 */ 3160 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3161 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n", 3162 smp_processor_id(), val); 3163 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3164 3165 /* 3166 * Also clear Valid bit of GICR_VPENDBASER, in case some 3167 * ancient programming gets left in and has possibility of 3168 * corrupting memory. 3169 */ 3170 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3171 } 3172 3173 if (allocate_vpe_l1_table()) { 3174 /* 3175 * If the allocation has failed, we're in massive trouble. 3176 * Disable direct injection, and pray that no VM was 3177 * already running... 3178 */ 3179 gic_rdists->has_rvpeid = false; 3180 gic_rdists->has_vlpis = false; 3181 } 3182 3183 /* Make sure the GIC has seen the above */ 3184 dsb(sy); 3185 out: 3186 gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED; 3187 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n", 3188 smp_processor_id(), 3189 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ? 3190 "reserved" : "allocated", 3191 &paddr); 3192 } 3193 3194 static void its_cpu_init_collection(struct its_node *its) 3195 { 3196 int cpu = smp_processor_id(); 3197 u64 target; 3198 3199 /* avoid cross node collections and its mapping */ 3200 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 3201 struct device_node *cpu_node; 3202 3203 cpu_node = of_get_cpu_node(cpu, NULL); 3204 if (its->numa_node != NUMA_NO_NODE && 3205 its->numa_node != of_node_to_nid(cpu_node)) 3206 return; 3207 } 3208 3209 /* 3210 * We now have to bind each collection to its target 3211 * redistributor. 3212 */ 3213 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { 3214 /* 3215 * This ITS wants the physical address of the 3216 * redistributor. 3217 */ 3218 target = gic_data_rdist()->phys_base; 3219 } else { 3220 /* This ITS wants a linear CPU number. */ 3221 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 3222 target = GICR_TYPER_CPU_NUMBER(target) << 16; 3223 } 3224 3225 /* Perform collection mapping */ 3226 its->collections[cpu].target_address = target; 3227 its->collections[cpu].col_id = cpu; 3228 3229 its_send_mapc(its, &its->collections[cpu], 1); 3230 its_send_invall(its, &its->collections[cpu]); 3231 } 3232 3233 static void its_cpu_init_collections(void) 3234 { 3235 struct its_node *its; 3236 3237 raw_spin_lock(&its_lock); 3238 3239 list_for_each_entry(its, &its_nodes, entry) 3240 its_cpu_init_collection(its); 3241 3242 raw_spin_unlock(&its_lock); 3243 } 3244 3245 static struct its_device *its_find_device(struct its_node *its, u32 dev_id) 3246 { 3247 struct its_device *its_dev = NULL, *tmp; 3248 unsigned long flags; 3249 3250 raw_spin_lock_irqsave(&its->lock, flags); 3251 3252 list_for_each_entry(tmp, &its->its_device_list, entry) { 3253 if (tmp->device_id == dev_id) { 3254 its_dev = tmp; 3255 break; 3256 } 3257 } 3258 3259 raw_spin_unlock_irqrestore(&its->lock, flags); 3260 3261 return its_dev; 3262 } 3263 3264 static struct its_baser *its_get_baser(struct its_node *its, u32 type) 3265 { 3266 int i; 3267 3268 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 3269 if (GITS_BASER_TYPE(its->tables[i].val) == type) 3270 return &its->tables[i]; 3271 } 3272 3273 return NULL; 3274 } 3275 3276 static bool its_alloc_table_entry(struct its_node *its, 3277 struct its_baser *baser, u32 id) 3278 { 3279 struct page *page; 3280 u32 esz, idx; 3281 __le64 *table; 3282 3283 /* Don't allow device id that exceeds single, flat table limit */ 3284 esz = GITS_BASER_ENTRY_SIZE(baser->val); 3285 if (!(baser->val & GITS_BASER_INDIRECT)) 3286 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); 3287 3288 /* Compute 1st level table index & check if that exceeds table limit */ 3289 idx = id >> ilog2(baser->psz / esz); 3290 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) 3291 return false; 3292 3293 table = baser->base; 3294 3295 /* Allocate memory for 2nd level table */ 3296 if (!table[idx]) { 3297 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 3298 get_order(baser->psz)); 3299 if (!page) 3300 return false; 3301 3302 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 3303 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3304 gic_flush_dcache_to_poc(page_address(page), baser->psz); 3305 3306 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 3307 3308 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 3309 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3310 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 3311 3312 /* Ensure updated table contents are visible to ITS hardware */ 3313 dsb(sy); 3314 } 3315 3316 return true; 3317 } 3318 3319 static bool its_alloc_device_table(struct its_node *its, u32 dev_id) 3320 { 3321 struct its_baser *baser; 3322 3323 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); 3324 3325 /* Don't allow device id that exceeds ITS hardware limit */ 3326 if (!baser) 3327 return (ilog2(dev_id) < device_ids(its)); 3328 3329 return its_alloc_table_entry(its, baser, dev_id); 3330 } 3331 3332 static bool its_alloc_vpe_table(u32 vpe_id) 3333 { 3334 struct its_node *its; 3335 int cpu; 3336 3337 /* 3338 * Make sure the L2 tables are allocated on *all* v4 ITSs. We 3339 * could try and only do it on ITSs corresponding to devices 3340 * that have interrupts targeted at this VPE, but the 3341 * complexity becomes crazy (and you have tons of memory 3342 * anyway, right?). 3343 */ 3344 list_for_each_entry(its, &its_nodes, entry) { 3345 struct its_baser *baser; 3346 3347 if (!is_v4(its)) 3348 continue; 3349 3350 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); 3351 if (!baser) 3352 return false; 3353 3354 if (!its_alloc_table_entry(its, baser, vpe_id)) 3355 return false; 3356 } 3357 3358 /* Non v4.1? No need to iterate RDs and go back early. */ 3359 if (!gic_rdists->has_rvpeid) 3360 return true; 3361 3362 /* 3363 * Make sure the L2 tables are allocated for all copies of 3364 * the L1 table on *all* v4.1 RDs. 3365 */ 3366 for_each_possible_cpu(cpu) { 3367 if (!allocate_vpe_l2_table(cpu, vpe_id)) 3368 return false; 3369 } 3370 3371 return true; 3372 } 3373 3374 static struct its_device *its_create_device(struct its_node *its, u32 dev_id, 3375 int nvecs, bool alloc_lpis) 3376 { 3377 struct its_device *dev; 3378 unsigned long *lpi_map = NULL; 3379 unsigned long flags; 3380 u16 *col_map = NULL; 3381 void *itt; 3382 int lpi_base; 3383 int nr_lpis; 3384 int nr_ites; 3385 int sz; 3386 3387 if (!its_alloc_device_table(its, dev_id)) 3388 return NULL; 3389 3390 if (WARN_ON(!is_power_of_2(nvecs))) 3391 nvecs = roundup_pow_of_two(nvecs); 3392 3393 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3394 /* 3395 * Even if the device wants a single LPI, the ITT must be 3396 * sized as a power of two (and you need at least one bit...). 3397 */ 3398 nr_ites = max(2, nvecs); 3399 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1); 3400 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; 3401 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node); 3402 if (alloc_lpis) { 3403 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis); 3404 if (lpi_map) 3405 col_map = kcalloc(nr_lpis, sizeof(*col_map), 3406 GFP_KERNEL); 3407 } else { 3408 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL); 3409 nr_lpis = 0; 3410 lpi_base = 0; 3411 } 3412 3413 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) { 3414 kfree(dev); 3415 kfree(itt); 3416 bitmap_free(lpi_map); 3417 kfree(col_map); 3418 return NULL; 3419 } 3420 3421 gic_flush_dcache_to_poc(itt, sz); 3422 3423 dev->its = its; 3424 dev->itt = itt; 3425 dev->nr_ites = nr_ites; 3426 dev->event_map.lpi_map = lpi_map; 3427 dev->event_map.col_map = col_map; 3428 dev->event_map.lpi_base = lpi_base; 3429 dev->event_map.nr_lpis = nr_lpis; 3430 raw_spin_lock_init(&dev->event_map.vlpi_lock); 3431 dev->device_id = dev_id; 3432 INIT_LIST_HEAD(&dev->entry); 3433 3434 raw_spin_lock_irqsave(&its->lock, flags); 3435 list_add(&dev->entry, &its->its_device_list); 3436 raw_spin_unlock_irqrestore(&its->lock, flags); 3437 3438 /* Map device to its ITT */ 3439 its_send_mapd(dev, 1); 3440 3441 return dev; 3442 } 3443 3444 static void its_free_device(struct its_device *its_dev) 3445 { 3446 unsigned long flags; 3447 3448 raw_spin_lock_irqsave(&its_dev->its->lock, flags); 3449 list_del(&its_dev->entry); 3450 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); 3451 kfree(its_dev->event_map.col_map); 3452 kfree(its_dev->itt); 3453 kfree(its_dev); 3454 } 3455 3456 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq) 3457 { 3458 int idx; 3459 3460 /* Find a free LPI region in lpi_map and allocate them. */ 3461 idx = bitmap_find_free_region(dev->event_map.lpi_map, 3462 dev->event_map.nr_lpis, 3463 get_count_order(nvecs)); 3464 if (idx < 0) 3465 return -ENOSPC; 3466 3467 *hwirq = dev->event_map.lpi_base + idx; 3468 3469 return 0; 3470 } 3471 3472 static int its_msi_prepare(struct irq_domain *domain, struct device *dev, 3473 int nvec, msi_alloc_info_t *info) 3474 { 3475 struct its_node *its; 3476 struct its_device *its_dev; 3477 struct msi_domain_info *msi_info; 3478 u32 dev_id; 3479 int err = 0; 3480 3481 /* 3482 * We ignore "dev" entirely, and rely on the dev_id that has 3483 * been passed via the scratchpad. This limits this domain's 3484 * usefulness to upper layers that definitely know that they 3485 * are built on top of the ITS. 3486 */ 3487 dev_id = info->scratchpad[0].ul; 3488 3489 msi_info = msi_get_domain_info(domain); 3490 its = msi_info->data; 3491 3492 if (!gic_rdists->has_direct_lpi && 3493 vpe_proxy.dev && 3494 vpe_proxy.dev->its == its && 3495 dev_id == vpe_proxy.dev->device_id) { 3496 /* Bad luck. Get yourself a better implementation */ 3497 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", 3498 dev_id); 3499 return -EINVAL; 3500 } 3501 3502 mutex_lock(&its->dev_alloc_lock); 3503 its_dev = its_find_device(its, dev_id); 3504 if (its_dev) { 3505 /* 3506 * We already have seen this ID, probably through 3507 * another alias (PCI bridge of some sort). No need to 3508 * create the device. 3509 */ 3510 its_dev->shared = true; 3511 pr_debug("Reusing ITT for devID %x\n", dev_id); 3512 goto out; 3513 } 3514 3515 its_dev = its_create_device(its, dev_id, nvec, true); 3516 if (!its_dev) { 3517 err = -ENOMEM; 3518 goto out; 3519 } 3520 3521 if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE) 3522 its_dev->shared = true; 3523 3524 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); 3525 out: 3526 mutex_unlock(&its->dev_alloc_lock); 3527 info->scratchpad[0].ptr = its_dev; 3528 return err; 3529 } 3530 3531 static struct msi_domain_ops its_msi_domain_ops = { 3532 .msi_prepare = its_msi_prepare, 3533 }; 3534 3535 static int its_irq_gic_domain_alloc(struct irq_domain *domain, 3536 unsigned int virq, 3537 irq_hw_number_t hwirq) 3538 { 3539 struct irq_fwspec fwspec; 3540 3541 if (irq_domain_get_of_node(domain->parent)) { 3542 fwspec.fwnode = domain->parent->fwnode; 3543 fwspec.param_count = 3; 3544 fwspec.param[0] = GIC_IRQ_TYPE_LPI; 3545 fwspec.param[1] = hwirq; 3546 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 3547 } else if (is_fwnode_irqchip(domain->parent->fwnode)) { 3548 fwspec.fwnode = domain->parent->fwnode; 3549 fwspec.param_count = 2; 3550 fwspec.param[0] = hwirq; 3551 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 3552 } else { 3553 return -EINVAL; 3554 } 3555 3556 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 3557 } 3558 3559 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 3560 unsigned int nr_irqs, void *args) 3561 { 3562 msi_alloc_info_t *info = args; 3563 struct its_device *its_dev = info->scratchpad[0].ptr; 3564 struct its_node *its = its_dev->its; 3565 struct irq_data *irqd; 3566 irq_hw_number_t hwirq; 3567 int err; 3568 int i; 3569 3570 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq); 3571 if (err) 3572 return err; 3573 3574 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev)); 3575 if (err) 3576 return err; 3577 3578 for (i = 0; i < nr_irqs; i++) { 3579 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i); 3580 if (err) 3581 return err; 3582 3583 irq_domain_set_hwirq_and_chip(domain, virq + i, 3584 hwirq + i, &its_irq_chip, its_dev); 3585 irqd = irq_get_irq_data(virq + i); 3586 irqd_set_single_target(irqd); 3587 irqd_set_affinity_on_activate(irqd); 3588 pr_debug("ID:%d pID:%d vID:%d\n", 3589 (int)(hwirq + i - its_dev->event_map.lpi_base), 3590 (int)(hwirq + i), virq + i); 3591 } 3592 3593 return 0; 3594 } 3595 3596 static int its_irq_domain_activate(struct irq_domain *domain, 3597 struct irq_data *d, bool reserve) 3598 { 3599 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3600 u32 event = its_get_event_id(d); 3601 int cpu; 3602 3603 cpu = its_select_cpu(d, cpu_online_mask); 3604 if (cpu < 0 || cpu >= nr_cpu_ids) 3605 return -EINVAL; 3606 3607 its_inc_lpi_count(d, cpu); 3608 its_dev->event_map.col_map[event] = cpu; 3609 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3610 3611 /* Map the GIC IRQ and event to the device */ 3612 its_send_mapti(its_dev, d->hwirq, event); 3613 return 0; 3614 } 3615 3616 static void its_irq_domain_deactivate(struct irq_domain *domain, 3617 struct irq_data *d) 3618 { 3619 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3620 u32 event = its_get_event_id(d); 3621 3622 its_dec_lpi_count(d, its_dev->event_map.col_map[event]); 3623 /* Stop the delivery of interrupts */ 3624 its_send_discard(its_dev, event); 3625 } 3626 3627 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, 3628 unsigned int nr_irqs) 3629 { 3630 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 3631 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3632 struct its_node *its = its_dev->its; 3633 int i; 3634 3635 bitmap_release_region(its_dev->event_map.lpi_map, 3636 its_get_event_id(irq_domain_get_irq_data(domain, virq)), 3637 get_count_order(nr_irqs)); 3638 3639 for (i = 0; i < nr_irqs; i++) { 3640 struct irq_data *data = irq_domain_get_irq_data(domain, 3641 virq + i); 3642 /* Nuke the entry in the domain */ 3643 irq_domain_reset_irq_data(data); 3644 } 3645 3646 mutex_lock(&its->dev_alloc_lock); 3647 3648 /* 3649 * If all interrupts have been freed, start mopping the 3650 * floor. This is conditioned on the device not being shared. 3651 */ 3652 if (!its_dev->shared && 3653 bitmap_empty(its_dev->event_map.lpi_map, 3654 its_dev->event_map.nr_lpis)) { 3655 its_lpi_free(its_dev->event_map.lpi_map, 3656 its_dev->event_map.lpi_base, 3657 its_dev->event_map.nr_lpis); 3658 3659 /* Unmap device/itt */ 3660 its_send_mapd(its_dev, 0); 3661 its_free_device(its_dev); 3662 } 3663 3664 mutex_unlock(&its->dev_alloc_lock); 3665 3666 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 3667 } 3668 3669 static const struct irq_domain_ops its_domain_ops = { 3670 .alloc = its_irq_domain_alloc, 3671 .free = its_irq_domain_free, 3672 .activate = its_irq_domain_activate, 3673 .deactivate = its_irq_domain_deactivate, 3674 }; 3675 3676 /* 3677 * This is insane. 3678 * 3679 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely 3680 * likely), the only way to perform an invalidate is to use a fake 3681 * device to issue an INV command, implying that the LPI has first 3682 * been mapped to some event on that device. Since this is not exactly 3683 * cheap, we try to keep that mapping around as long as possible, and 3684 * only issue an UNMAP if we're short on available slots. 3685 * 3686 * Broken by design(tm). 3687 * 3688 * GICv4.1, on the other hand, mandates that we're able to invalidate 3689 * by writing to a MMIO register. It doesn't implement the whole of 3690 * DirectLPI, but that's good enough. And most of the time, we don't 3691 * even have to invalidate anything, as the redistributor can be told 3692 * whether to generate a doorbell or not (we thus leave it enabled, 3693 * always). 3694 */ 3695 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) 3696 { 3697 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3698 if (gic_rdists->has_rvpeid) 3699 return; 3700 3701 /* Already unmapped? */ 3702 if (vpe->vpe_proxy_event == -1) 3703 return; 3704 3705 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); 3706 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; 3707 3708 /* 3709 * We don't track empty slots at all, so let's move the 3710 * next_victim pointer if we can quickly reuse that slot 3711 * instead of nuking an existing entry. Not clear that this is 3712 * always a win though, and this might just generate a ripple 3713 * effect... Let's just hope VPEs don't migrate too often. 3714 */ 3715 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3716 vpe_proxy.next_victim = vpe->vpe_proxy_event; 3717 3718 vpe->vpe_proxy_event = -1; 3719 } 3720 3721 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) 3722 { 3723 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3724 if (gic_rdists->has_rvpeid) 3725 return; 3726 3727 if (!gic_rdists->has_direct_lpi) { 3728 unsigned long flags; 3729 3730 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3731 its_vpe_db_proxy_unmap_locked(vpe); 3732 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3733 } 3734 } 3735 3736 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) 3737 { 3738 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3739 if (gic_rdists->has_rvpeid) 3740 return; 3741 3742 /* Already mapped? */ 3743 if (vpe->vpe_proxy_event != -1) 3744 return; 3745 3746 /* This slot was already allocated. Kick the other VPE out. */ 3747 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3748 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); 3749 3750 /* Map the new VPE instead */ 3751 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; 3752 vpe->vpe_proxy_event = vpe_proxy.next_victim; 3753 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; 3754 3755 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; 3756 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); 3757 } 3758 3759 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) 3760 { 3761 unsigned long flags; 3762 struct its_collection *target_col; 3763 3764 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3765 if (gic_rdists->has_rvpeid) 3766 return; 3767 3768 if (gic_rdists->has_direct_lpi) { 3769 void __iomem *rdbase; 3770 3771 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; 3772 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 3773 wait_for_syncr(rdbase); 3774 3775 return; 3776 } 3777 3778 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3779 3780 its_vpe_db_proxy_map_locked(vpe); 3781 3782 target_col = &vpe_proxy.dev->its->collections[to]; 3783 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); 3784 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; 3785 3786 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3787 } 3788 3789 static int its_vpe_set_affinity(struct irq_data *d, 3790 const struct cpumask *mask_val, 3791 bool force) 3792 { 3793 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3794 int from, cpu = cpumask_first(mask_val); 3795 unsigned long flags; 3796 3797 /* 3798 * Changing affinity is mega expensive, so let's be as lazy as 3799 * we can and only do it if we really have to. Also, if mapped 3800 * into the proxy device, we need to move the doorbell 3801 * interrupt to its new location. 3802 * 3803 * Another thing is that changing the affinity of a vPE affects 3804 * *other interrupts* such as all the vLPIs that are routed to 3805 * this vPE. This means that the irq_desc lock is not enough to 3806 * protect us, and that we must ensure nobody samples vpe->col_idx 3807 * during the update, hence the lock below which must also be 3808 * taken on any vLPI handling path that evaluates vpe->col_idx. 3809 */ 3810 from = vpe_to_cpuid_lock(vpe, &flags); 3811 if (from == cpu) 3812 goto out; 3813 3814 vpe->col_idx = cpu; 3815 3816 /* 3817 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD 3818 * is sharing its VPE table with the current one. 3819 */ 3820 if (gic_data_rdist_cpu(cpu)->vpe_table_mask && 3821 cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask)) 3822 goto out; 3823 3824 its_send_vmovp(vpe); 3825 its_vpe_db_proxy_move(vpe, from, cpu); 3826 3827 out: 3828 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3829 vpe_to_cpuid_unlock(vpe, flags); 3830 3831 return IRQ_SET_MASK_OK_DONE; 3832 } 3833 3834 static void its_wait_vpt_parse_complete(void) 3835 { 3836 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3837 u64 val; 3838 3839 if (!gic_rdists->has_vpend_valid_dirty) 3840 return; 3841 3842 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER, 3843 val, 3844 !(val & GICR_VPENDBASER_Dirty), 3845 1, 500)); 3846 } 3847 3848 static void its_vpe_schedule(struct its_vpe *vpe) 3849 { 3850 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3851 u64 val; 3852 3853 /* Schedule the VPE */ 3854 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & 3855 GENMASK_ULL(51, 12); 3856 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3857 val |= GICR_VPROPBASER_RaWb; 3858 val |= GICR_VPROPBASER_InnerShareable; 3859 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3860 3861 val = virt_to_phys(page_address(vpe->vpt_page)) & 3862 GENMASK_ULL(51, 16); 3863 val |= GICR_VPENDBASER_RaWaWb; 3864 val |= GICR_VPENDBASER_InnerShareable; 3865 /* 3866 * There is no good way of finding out if the pending table is 3867 * empty as we can race against the doorbell interrupt very 3868 * easily. So in the end, vpe->pending_last is only an 3869 * indication that the vcpu has something pending, not one 3870 * that the pending table is empty. A good implementation 3871 * would be able to read its coarse map pretty quickly anyway, 3872 * making this a tolerable issue. 3873 */ 3874 val |= GICR_VPENDBASER_PendingLast; 3875 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; 3876 val |= GICR_VPENDBASER_Valid; 3877 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3878 } 3879 3880 static void its_vpe_deschedule(struct its_vpe *vpe) 3881 { 3882 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3883 u64 val; 3884 3885 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3886 3887 vpe->idai = !!(val & GICR_VPENDBASER_IDAI); 3888 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 3889 } 3890 3891 static void its_vpe_invall(struct its_vpe *vpe) 3892 { 3893 struct its_node *its; 3894 3895 list_for_each_entry(its, &its_nodes, entry) { 3896 if (!is_v4(its)) 3897 continue; 3898 3899 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr]) 3900 continue; 3901 3902 /* 3903 * Sending a VINVALL to a single ITS is enough, as all 3904 * we need is to reach the redistributors. 3905 */ 3906 its_send_vinvall(its, vpe); 3907 return; 3908 } 3909 } 3910 3911 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 3912 { 3913 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3914 struct its_cmd_info *info = vcpu_info; 3915 3916 switch (info->cmd_type) { 3917 case SCHEDULE_VPE: 3918 its_vpe_schedule(vpe); 3919 return 0; 3920 3921 case DESCHEDULE_VPE: 3922 its_vpe_deschedule(vpe); 3923 return 0; 3924 3925 case COMMIT_VPE: 3926 its_wait_vpt_parse_complete(); 3927 return 0; 3928 3929 case INVALL_VPE: 3930 its_vpe_invall(vpe); 3931 return 0; 3932 3933 default: 3934 return -EINVAL; 3935 } 3936 } 3937 3938 static void its_vpe_send_cmd(struct its_vpe *vpe, 3939 void (*cmd)(struct its_device *, u32)) 3940 { 3941 unsigned long flags; 3942 3943 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3944 3945 its_vpe_db_proxy_map_locked(vpe); 3946 cmd(vpe_proxy.dev, vpe->vpe_proxy_event); 3947 3948 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3949 } 3950 3951 static void its_vpe_send_inv(struct irq_data *d) 3952 { 3953 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3954 3955 if (gic_rdists->has_direct_lpi) { 3956 void __iomem *rdbase; 3957 3958 /* Target the redistributor this VPE is currently known on */ 3959 raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock); 3960 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 3961 gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR); 3962 wait_for_syncr(rdbase); 3963 raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock); 3964 } else { 3965 its_vpe_send_cmd(vpe, its_send_inv); 3966 } 3967 } 3968 3969 static void its_vpe_mask_irq(struct irq_data *d) 3970 { 3971 /* 3972 * We need to unmask the LPI, which is described by the parent 3973 * irq_data. Instead of calling into the parent (which won't 3974 * exactly do the right thing, let's simply use the 3975 * parent_data pointer. Yes, I'm naughty. 3976 */ 3977 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 3978 its_vpe_send_inv(d); 3979 } 3980 3981 static void its_vpe_unmask_irq(struct irq_data *d) 3982 { 3983 /* Same hack as above... */ 3984 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 3985 its_vpe_send_inv(d); 3986 } 3987 3988 static int its_vpe_set_irqchip_state(struct irq_data *d, 3989 enum irqchip_irq_state which, 3990 bool state) 3991 { 3992 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3993 3994 if (which != IRQCHIP_STATE_PENDING) 3995 return -EINVAL; 3996 3997 if (gic_rdists->has_direct_lpi) { 3998 void __iomem *rdbase; 3999 4000 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 4001 if (state) { 4002 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); 4003 } else { 4004 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 4005 wait_for_syncr(rdbase); 4006 } 4007 } else { 4008 if (state) 4009 its_vpe_send_cmd(vpe, its_send_int); 4010 else 4011 its_vpe_send_cmd(vpe, its_send_clear); 4012 } 4013 4014 return 0; 4015 } 4016 4017 static int its_vpe_retrigger(struct irq_data *d) 4018 { 4019 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 4020 } 4021 4022 static struct irq_chip its_vpe_irq_chip = { 4023 .name = "GICv4-vpe", 4024 .irq_mask = its_vpe_mask_irq, 4025 .irq_unmask = its_vpe_unmask_irq, 4026 .irq_eoi = irq_chip_eoi_parent, 4027 .irq_set_affinity = its_vpe_set_affinity, 4028 .irq_retrigger = its_vpe_retrigger, 4029 .irq_set_irqchip_state = its_vpe_set_irqchip_state, 4030 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity, 4031 }; 4032 4033 static struct its_node *find_4_1_its(void) 4034 { 4035 static struct its_node *its = NULL; 4036 4037 if (!its) { 4038 list_for_each_entry(its, &its_nodes, entry) { 4039 if (is_v4_1(its)) 4040 return its; 4041 } 4042 4043 /* Oops? */ 4044 its = NULL; 4045 } 4046 4047 return its; 4048 } 4049 4050 static void its_vpe_4_1_send_inv(struct irq_data *d) 4051 { 4052 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4053 struct its_node *its; 4054 4055 /* 4056 * GICv4.1 wants doorbells to be invalidated using the 4057 * INVDB command in order to be broadcast to all RDs. Send 4058 * it to the first valid ITS, and let the HW do its magic. 4059 */ 4060 its = find_4_1_its(); 4061 if (its) 4062 its_send_invdb(its, vpe); 4063 } 4064 4065 static void its_vpe_4_1_mask_irq(struct irq_data *d) 4066 { 4067 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 4068 its_vpe_4_1_send_inv(d); 4069 } 4070 4071 static void its_vpe_4_1_unmask_irq(struct irq_data *d) 4072 { 4073 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 4074 its_vpe_4_1_send_inv(d); 4075 } 4076 4077 static void its_vpe_4_1_schedule(struct its_vpe *vpe, 4078 struct its_cmd_info *info) 4079 { 4080 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4081 u64 val = 0; 4082 4083 /* Schedule the VPE */ 4084 val |= GICR_VPENDBASER_Valid; 4085 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0; 4086 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0; 4087 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id); 4088 4089 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 4090 } 4091 4092 static void its_vpe_4_1_deschedule(struct its_vpe *vpe, 4093 struct its_cmd_info *info) 4094 { 4095 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4096 u64 val; 4097 4098 if (info->req_db) { 4099 unsigned long flags; 4100 4101 /* 4102 * vPE is going to block: make the vPE non-resident with 4103 * PendingLast clear and DB set. The GIC guarantees that if 4104 * we read-back PendingLast clear, then a doorbell will be 4105 * delivered when an interrupt comes. 4106 * 4107 * Note the locking to deal with the concurrent update of 4108 * pending_last from the doorbell interrupt handler that can 4109 * run concurrently. 4110 */ 4111 raw_spin_lock_irqsave(&vpe->vpe_lock, flags); 4112 val = its_clear_vpend_valid(vlpi_base, 4113 GICR_VPENDBASER_PendingLast, 4114 GICR_VPENDBASER_4_1_DB); 4115 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 4116 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 4117 } else { 4118 /* 4119 * We're not blocking, so just make the vPE non-resident 4120 * with PendingLast set, indicating that we'll be back. 4121 */ 4122 val = its_clear_vpend_valid(vlpi_base, 4123 0, 4124 GICR_VPENDBASER_PendingLast); 4125 vpe->pending_last = true; 4126 } 4127 } 4128 4129 static void its_vpe_4_1_invall(struct its_vpe *vpe) 4130 { 4131 void __iomem *rdbase; 4132 unsigned long flags; 4133 u64 val; 4134 int cpu; 4135 4136 val = GICR_INVALLR_V; 4137 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id); 4138 4139 /* Target the redistributor this vPE is currently known on */ 4140 cpu = vpe_to_cpuid_lock(vpe, &flags); 4141 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4142 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 4143 gic_write_lpir(val, rdbase + GICR_INVALLR); 4144 4145 wait_for_syncr(rdbase); 4146 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4147 vpe_to_cpuid_unlock(vpe, flags); 4148 } 4149 4150 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4151 { 4152 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4153 struct its_cmd_info *info = vcpu_info; 4154 4155 switch (info->cmd_type) { 4156 case SCHEDULE_VPE: 4157 its_vpe_4_1_schedule(vpe, info); 4158 return 0; 4159 4160 case DESCHEDULE_VPE: 4161 its_vpe_4_1_deschedule(vpe, info); 4162 return 0; 4163 4164 case COMMIT_VPE: 4165 its_wait_vpt_parse_complete(); 4166 return 0; 4167 4168 case INVALL_VPE: 4169 its_vpe_4_1_invall(vpe); 4170 return 0; 4171 4172 default: 4173 return -EINVAL; 4174 } 4175 } 4176 4177 static struct irq_chip its_vpe_4_1_irq_chip = { 4178 .name = "GICv4.1-vpe", 4179 .irq_mask = its_vpe_4_1_mask_irq, 4180 .irq_unmask = its_vpe_4_1_unmask_irq, 4181 .irq_eoi = irq_chip_eoi_parent, 4182 .irq_set_affinity = its_vpe_set_affinity, 4183 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity, 4184 }; 4185 4186 static void its_configure_sgi(struct irq_data *d, bool clear) 4187 { 4188 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4189 struct its_cmd_desc desc; 4190 4191 desc.its_vsgi_cmd.vpe = vpe; 4192 desc.its_vsgi_cmd.sgi = d->hwirq; 4193 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority; 4194 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled; 4195 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group; 4196 desc.its_vsgi_cmd.clear = clear; 4197 4198 /* 4199 * GICv4.1 allows us to send VSGI commands to any ITS as long as the 4200 * destination VPE is mapped there. Since we map them eagerly at 4201 * activation time, we're pretty sure the first GICv4.1 ITS will do. 4202 */ 4203 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc); 4204 } 4205 4206 static void its_sgi_mask_irq(struct irq_data *d) 4207 { 4208 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4209 4210 vpe->sgi_config[d->hwirq].enabled = false; 4211 its_configure_sgi(d, false); 4212 } 4213 4214 static void its_sgi_unmask_irq(struct irq_data *d) 4215 { 4216 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4217 4218 vpe->sgi_config[d->hwirq].enabled = true; 4219 its_configure_sgi(d, false); 4220 } 4221 4222 static int its_sgi_set_affinity(struct irq_data *d, 4223 const struct cpumask *mask_val, 4224 bool force) 4225 { 4226 /* 4227 * There is no notion of affinity for virtual SGIs, at least 4228 * not on the host (since they can only be targeting a vPE). 4229 * Tell the kernel we've done whatever it asked for. 4230 */ 4231 irq_data_update_effective_affinity(d, mask_val); 4232 return IRQ_SET_MASK_OK; 4233 } 4234 4235 static int its_sgi_set_irqchip_state(struct irq_data *d, 4236 enum irqchip_irq_state which, 4237 bool state) 4238 { 4239 if (which != IRQCHIP_STATE_PENDING) 4240 return -EINVAL; 4241 4242 if (state) { 4243 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4244 struct its_node *its = find_4_1_its(); 4245 u64 val; 4246 4247 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id); 4248 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq); 4249 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K); 4250 } else { 4251 its_configure_sgi(d, true); 4252 } 4253 4254 return 0; 4255 } 4256 4257 static int its_sgi_get_irqchip_state(struct irq_data *d, 4258 enum irqchip_irq_state which, bool *val) 4259 { 4260 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4261 void __iomem *base; 4262 unsigned long flags; 4263 u32 count = 1000000; /* 1s! */ 4264 u32 status; 4265 int cpu; 4266 4267 if (which != IRQCHIP_STATE_PENDING) 4268 return -EINVAL; 4269 4270 /* 4271 * Locking galore! We can race against two different events: 4272 * 4273 * - Concurrent vPE affinity change: we must make sure it cannot 4274 * happen, or we'll talk to the wrong redistributor. This is 4275 * identical to what happens with vLPIs. 4276 * 4277 * - Concurrent VSGIPENDR access: As it involves accessing two 4278 * MMIO registers, this must be made atomic one way or another. 4279 */ 4280 cpu = vpe_to_cpuid_lock(vpe, &flags); 4281 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4282 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K; 4283 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR); 4284 do { 4285 status = readl_relaxed(base + GICR_VSGIPENDR); 4286 if (!(status & GICR_VSGIPENDR_BUSY)) 4287 goto out; 4288 4289 count--; 4290 if (!count) { 4291 pr_err_ratelimited("Unable to get SGI status\n"); 4292 goto out; 4293 } 4294 cpu_relax(); 4295 udelay(1); 4296 } while (count); 4297 4298 out: 4299 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4300 vpe_to_cpuid_unlock(vpe, flags); 4301 4302 if (!count) 4303 return -ENXIO; 4304 4305 *val = !!(status & (1 << d->hwirq)); 4306 4307 return 0; 4308 } 4309 4310 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4311 { 4312 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4313 struct its_cmd_info *info = vcpu_info; 4314 4315 switch (info->cmd_type) { 4316 case PROP_UPDATE_VSGI: 4317 vpe->sgi_config[d->hwirq].priority = info->priority; 4318 vpe->sgi_config[d->hwirq].group = info->group; 4319 its_configure_sgi(d, false); 4320 return 0; 4321 4322 default: 4323 return -EINVAL; 4324 } 4325 } 4326 4327 static struct irq_chip its_sgi_irq_chip = { 4328 .name = "GICv4.1-sgi", 4329 .irq_mask = its_sgi_mask_irq, 4330 .irq_unmask = its_sgi_unmask_irq, 4331 .irq_set_affinity = its_sgi_set_affinity, 4332 .irq_set_irqchip_state = its_sgi_set_irqchip_state, 4333 .irq_get_irqchip_state = its_sgi_get_irqchip_state, 4334 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity, 4335 }; 4336 4337 static int its_sgi_irq_domain_alloc(struct irq_domain *domain, 4338 unsigned int virq, unsigned int nr_irqs, 4339 void *args) 4340 { 4341 struct its_vpe *vpe = args; 4342 int i; 4343 4344 /* Yes, we do want 16 SGIs */ 4345 WARN_ON(nr_irqs != 16); 4346 4347 for (i = 0; i < 16; i++) { 4348 vpe->sgi_config[i].priority = 0; 4349 vpe->sgi_config[i].enabled = false; 4350 vpe->sgi_config[i].group = false; 4351 4352 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4353 &its_sgi_irq_chip, vpe); 4354 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY); 4355 } 4356 4357 return 0; 4358 } 4359 4360 static void its_sgi_irq_domain_free(struct irq_domain *domain, 4361 unsigned int virq, 4362 unsigned int nr_irqs) 4363 { 4364 /* Nothing to do */ 4365 } 4366 4367 static int its_sgi_irq_domain_activate(struct irq_domain *domain, 4368 struct irq_data *d, bool reserve) 4369 { 4370 /* Write out the initial SGI configuration */ 4371 its_configure_sgi(d, false); 4372 return 0; 4373 } 4374 4375 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain, 4376 struct irq_data *d) 4377 { 4378 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4379 4380 /* 4381 * The VSGI command is awkward: 4382 * 4383 * - To change the configuration, CLEAR must be set to false, 4384 * leaving the pending bit unchanged. 4385 * - To clear the pending bit, CLEAR must be set to true, leaving 4386 * the configuration unchanged. 4387 * 4388 * You just can't do both at once, hence the two commands below. 4389 */ 4390 vpe->sgi_config[d->hwirq].enabled = false; 4391 its_configure_sgi(d, false); 4392 its_configure_sgi(d, true); 4393 } 4394 4395 static const struct irq_domain_ops its_sgi_domain_ops = { 4396 .alloc = its_sgi_irq_domain_alloc, 4397 .free = its_sgi_irq_domain_free, 4398 .activate = its_sgi_irq_domain_activate, 4399 .deactivate = its_sgi_irq_domain_deactivate, 4400 }; 4401 4402 static int its_vpe_id_alloc(void) 4403 { 4404 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL); 4405 } 4406 4407 static void its_vpe_id_free(u16 id) 4408 { 4409 ida_simple_remove(&its_vpeid_ida, id); 4410 } 4411 4412 static int its_vpe_init(struct its_vpe *vpe) 4413 { 4414 struct page *vpt_page; 4415 int vpe_id; 4416 4417 /* Allocate vpe_id */ 4418 vpe_id = its_vpe_id_alloc(); 4419 if (vpe_id < 0) 4420 return vpe_id; 4421 4422 /* Allocate VPT */ 4423 vpt_page = its_allocate_pending_table(GFP_KERNEL); 4424 if (!vpt_page) { 4425 its_vpe_id_free(vpe_id); 4426 return -ENOMEM; 4427 } 4428 4429 if (!its_alloc_vpe_table(vpe_id)) { 4430 its_vpe_id_free(vpe_id); 4431 its_free_pending_table(vpt_page); 4432 return -ENOMEM; 4433 } 4434 4435 raw_spin_lock_init(&vpe->vpe_lock); 4436 vpe->vpe_id = vpe_id; 4437 vpe->vpt_page = vpt_page; 4438 if (gic_rdists->has_rvpeid) 4439 atomic_set(&vpe->vmapp_count, 0); 4440 else 4441 vpe->vpe_proxy_event = -1; 4442 4443 return 0; 4444 } 4445 4446 static void its_vpe_teardown(struct its_vpe *vpe) 4447 { 4448 its_vpe_db_proxy_unmap(vpe); 4449 its_vpe_id_free(vpe->vpe_id); 4450 its_free_pending_table(vpe->vpt_page); 4451 } 4452 4453 static void its_vpe_irq_domain_free(struct irq_domain *domain, 4454 unsigned int virq, 4455 unsigned int nr_irqs) 4456 { 4457 struct its_vm *vm = domain->host_data; 4458 int i; 4459 4460 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 4461 4462 for (i = 0; i < nr_irqs; i++) { 4463 struct irq_data *data = irq_domain_get_irq_data(domain, 4464 virq + i); 4465 struct its_vpe *vpe = irq_data_get_irq_chip_data(data); 4466 4467 BUG_ON(vm != vpe->its_vm); 4468 4469 clear_bit(data->hwirq, vm->db_bitmap); 4470 its_vpe_teardown(vpe); 4471 irq_domain_reset_irq_data(data); 4472 } 4473 4474 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { 4475 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); 4476 its_free_prop_table(vm->vprop_page); 4477 } 4478 } 4479 4480 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 4481 unsigned int nr_irqs, void *args) 4482 { 4483 struct irq_chip *irqchip = &its_vpe_irq_chip; 4484 struct its_vm *vm = args; 4485 unsigned long *bitmap; 4486 struct page *vprop_page; 4487 int base, nr_ids, i, err = 0; 4488 4489 BUG_ON(!vm); 4490 4491 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids); 4492 if (!bitmap) 4493 return -ENOMEM; 4494 4495 if (nr_ids < nr_irqs) { 4496 its_lpi_free(bitmap, base, nr_ids); 4497 return -ENOMEM; 4498 } 4499 4500 vprop_page = its_allocate_prop_table(GFP_KERNEL); 4501 if (!vprop_page) { 4502 its_lpi_free(bitmap, base, nr_ids); 4503 return -ENOMEM; 4504 } 4505 4506 vm->db_bitmap = bitmap; 4507 vm->db_lpi_base = base; 4508 vm->nr_db_lpis = nr_ids; 4509 vm->vprop_page = vprop_page; 4510 4511 if (gic_rdists->has_rvpeid) 4512 irqchip = &its_vpe_4_1_irq_chip; 4513 4514 for (i = 0; i < nr_irqs; i++) { 4515 vm->vpes[i]->vpe_db_lpi = base + i; 4516 err = its_vpe_init(vm->vpes[i]); 4517 if (err) 4518 break; 4519 err = its_irq_gic_domain_alloc(domain, virq + i, 4520 vm->vpes[i]->vpe_db_lpi); 4521 if (err) 4522 break; 4523 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4524 irqchip, vm->vpes[i]); 4525 set_bit(i, bitmap); 4526 } 4527 4528 if (err) { 4529 if (i > 0) 4530 its_vpe_irq_domain_free(domain, virq, i); 4531 4532 its_lpi_free(bitmap, base, nr_ids); 4533 its_free_prop_table(vprop_page); 4534 } 4535 4536 return err; 4537 } 4538 4539 static int its_vpe_irq_domain_activate(struct irq_domain *domain, 4540 struct irq_data *d, bool reserve) 4541 { 4542 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4543 struct its_node *its; 4544 4545 /* 4546 * If we use the list map, we issue VMAPP on demand... Unless 4547 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs 4548 * so that VSGIs can work. 4549 */ 4550 if (!gic_requires_eager_mapping()) 4551 return 0; 4552 4553 /* Map the VPE to the first possible CPU */ 4554 vpe->col_idx = cpumask_first(cpu_online_mask); 4555 4556 list_for_each_entry(its, &its_nodes, entry) { 4557 if (!is_v4(its)) 4558 continue; 4559 4560 its_send_vmapp(its, vpe, true); 4561 its_send_vinvall(its, vpe); 4562 } 4563 4564 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 4565 4566 return 0; 4567 } 4568 4569 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, 4570 struct irq_data *d) 4571 { 4572 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4573 struct its_node *its; 4574 4575 /* 4576 * If we use the list map on GICv4.0, we unmap the VPE once no 4577 * VLPIs are associated with the VM. 4578 */ 4579 if (!gic_requires_eager_mapping()) 4580 return; 4581 4582 list_for_each_entry(its, &its_nodes, entry) { 4583 if (!is_v4(its)) 4584 continue; 4585 4586 its_send_vmapp(its, vpe, false); 4587 } 4588 4589 /* 4590 * There may be a direct read to the VPT after unmapping the 4591 * vPE, to guarantee the validity of this, we make the VPT 4592 * memory coherent with the CPU caches here. 4593 */ 4594 if (find_4_1_its() && !atomic_read(&vpe->vmapp_count)) 4595 gic_flush_dcache_to_poc(page_address(vpe->vpt_page), 4596 LPI_PENDBASE_SZ); 4597 } 4598 4599 static const struct irq_domain_ops its_vpe_domain_ops = { 4600 .alloc = its_vpe_irq_domain_alloc, 4601 .free = its_vpe_irq_domain_free, 4602 .activate = its_vpe_irq_domain_activate, 4603 .deactivate = its_vpe_irq_domain_deactivate, 4604 }; 4605 4606 static int its_force_quiescent(void __iomem *base) 4607 { 4608 u32 count = 1000000; /* 1s */ 4609 u32 val; 4610 4611 val = readl_relaxed(base + GITS_CTLR); 4612 /* 4613 * GIC architecture specification requires the ITS to be both 4614 * disabled and quiescent for writes to GITS_BASER<n> or 4615 * GITS_CBASER to not have UNPREDICTABLE results. 4616 */ 4617 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) 4618 return 0; 4619 4620 /* Disable the generation of all interrupts to this ITS */ 4621 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); 4622 writel_relaxed(val, base + GITS_CTLR); 4623 4624 /* Poll GITS_CTLR and wait until ITS becomes quiescent */ 4625 while (1) { 4626 val = readl_relaxed(base + GITS_CTLR); 4627 if (val & GITS_CTLR_QUIESCENT) 4628 return 0; 4629 4630 count--; 4631 if (!count) 4632 return -EBUSY; 4633 4634 cpu_relax(); 4635 udelay(1); 4636 } 4637 } 4638 4639 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data) 4640 { 4641 struct its_node *its = data; 4642 4643 /* erratum 22375: only alloc 8MB table size (20 bits) */ 4644 its->typer &= ~GITS_TYPER_DEVBITS; 4645 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1); 4646 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; 4647 4648 return true; 4649 } 4650 4651 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data) 4652 { 4653 struct its_node *its = data; 4654 4655 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; 4656 4657 return true; 4658 } 4659 4660 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) 4661 { 4662 struct its_node *its = data; 4663 4664 /* On QDF2400, the size of the ITE is 16Bytes */ 4665 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE; 4666 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1); 4667 4668 return true; 4669 } 4670 4671 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev) 4672 { 4673 struct its_node *its = its_dev->its; 4674 4675 /* 4676 * The Socionext Synquacer SoC has a so-called 'pre-ITS', 4677 * which maps 32-bit writes targeted at a separate window of 4678 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER 4679 * with device ID taken from bits [device_id_bits + 1:2] of 4680 * the window offset. 4681 */ 4682 return its->pre_its_base + (its_dev->device_id << 2); 4683 } 4684 4685 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data) 4686 { 4687 struct its_node *its = data; 4688 u32 pre_its_window[2]; 4689 u32 ids; 4690 4691 if (!fwnode_property_read_u32_array(its->fwnode_handle, 4692 "socionext,synquacer-pre-its", 4693 pre_its_window, 4694 ARRAY_SIZE(pre_its_window))) { 4695 4696 its->pre_its_base = pre_its_window[0]; 4697 its->get_msi_base = its_irq_get_msi_base_pre_its; 4698 4699 ids = ilog2(pre_its_window[1]) - 2; 4700 if (device_ids(its) > ids) { 4701 its->typer &= ~GITS_TYPER_DEVBITS; 4702 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1); 4703 } 4704 4705 /* the pre-ITS breaks isolation, so disable MSI remapping */ 4706 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI; 4707 return true; 4708 } 4709 return false; 4710 } 4711 4712 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data) 4713 { 4714 struct its_node *its = data; 4715 4716 /* 4717 * Hip07 insists on using the wrong address for the VLPI 4718 * page. Trick it into doing the right thing... 4719 */ 4720 its->vlpi_redist_offset = SZ_128K; 4721 return true; 4722 } 4723 4724 static bool __maybe_unused its_enable_rk3588001(void *data) 4725 { 4726 struct its_node *its = data; 4727 4728 if (!of_machine_is_compatible("rockchip,rk3588")) 4729 return false; 4730 4731 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 4732 gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE; 4733 4734 return true; 4735 } 4736 4737 static const struct gic_quirk its_quirks[] = { 4738 #ifdef CONFIG_CAVIUM_ERRATUM_22375 4739 { 4740 .desc = "ITS: Cavium errata 22375, 24313", 4741 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4742 .mask = 0xffff0fff, 4743 .init = its_enable_quirk_cavium_22375, 4744 }, 4745 #endif 4746 #ifdef CONFIG_CAVIUM_ERRATUM_23144 4747 { 4748 .desc = "ITS: Cavium erratum 23144", 4749 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4750 .mask = 0xffff0fff, 4751 .init = its_enable_quirk_cavium_23144, 4752 }, 4753 #endif 4754 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 4755 { 4756 .desc = "ITS: QDF2400 erratum 0065", 4757 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */ 4758 .mask = 0xffffffff, 4759 .init = its_enable_quirk_qdf2400_e0065, 4760 }, 4761 #endif 4762 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS 4763 { 4764 /* 4765 * The Socionext Synquacer SoC incorporates ARM's own GIC-500 4766 * implementation, but with a 'pre-ITS' added that requires 4767 * special handling in software. 4768 */ 4769 .desc = "ITS: Socionext Synquacer pre-ITS", 4770 .iidr = 0x0001143b, 4771 .mask = 0xffffffff, 4772 .init = its_enable_quirk_socionext_synquacer, 4773 }, 4774 #endif 4775 #ifdef CONFIG_HISILICON_ERRATUM_161600802 4776 { 4777 .desc = "ITS: Hip07 erratum 161600802", 4778 .iidr = 0x00000004, 4779 .mask = 0xffffffff, 4780 .init = its_enable_quirk_hip07_161600802, 4781 }, 4782 #endif 4783 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001 4784 { 4785 .desc = "ITS: Rockchip erratum RK3588001", 4786 .iidr = 0x0201743b, 4787 .mask = 0xffffffff, 4788 .init = its_enable_rk3588001, 4789 }, 4790 #endif 4791 { 4792 } 4793 }; 4794 4795 static void its_enable_quirks(struct its_node *its) 4796 { 4797 u32 iidr = readl_relaxed(its->base + GITS_IIDR); 4798 4799 gic_enable_quirks(iidr, its_quirks, its); 4800 } 4801 4802 static int its_save_disable(void) 4803 { 4804 struct its_node *its; 4805 int err = 0; 4806 4807 raw_spin_lock(&its_lock); 4808 list_for_each_entry(its, &its_nodes, entry) { 4809 void __iomem *base; 4810 4811 base = its->base; 4812 its->ctlr_save = readl_relaxed(base + GITS_CTLR); 4813 err = its_force_quiescent(base); 4814 if (err) { 4815 pr_err("ITS@%pa: failed to quiesce: %d\n", 4816 &its->phys_base, err); 4817 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4818 goto err; 4819 } 4820 4821 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER); 4822 } 4823 4824 err: 4825 if (err) { 4826 list_for_each_entry_continue_reverse(its, &its_nodes, entry) { 4827 void __iomem *base; 4828 4829 base = its->base; 4830 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4831 } 4832 } 4833 raw_spin_unlock(&its_lock); 4834 4835 return err; 4836 } 4837 4838 static void its_restore_enable(void) 4839 { 4840 struct its_node *its; 4841 int ret; 4842 4843 raw_spin_lock(&its_lock); 4844 list_for_each_entry(its, &its_nodes, entry) { 4845 void __iomem *base; 4846 int i; 4847 4848 base = its->base; 4849 4850 /* 4851 * Make sure that the ITS is disabled. If it fails to quiesce, 4852 * don't restore it since writing to CBASER or BASER<n> 4853 * registers is undefined according to the GIC v3 ITS 4854 * Specification. 4855 * 4856 * Firmware resuming with the ITS enabled is terminally broken. 4857 */ 4858 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE); 4859 ret = its_force_quiescent(base); 4860 if (ret) { 4861 pr_err("ITS@%pa: failed to quiesce on resume: %d\n", 4862 &its->phys_base, ret); 4863 continue; 4864 } 4865 4866 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER); 4867 4868 /* 4869 * Writing CBASER resets CREADR to 0, so make CWRITER and 4870 * cmd_write line up with it. 4871 */ 4872 its->cmd_write = its->cmd_base; 4873 gits_write_cwriter(0, base + GITS_CWRITER); 4874 4875 /* Restore GITS_BASER from the value cache. */ 4876 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 4877 struct its_baser *baser = &its->tables[i]; 4878 4879 if (!(baser->val & GITS_BASER_VALID)) 4880 continue; 4881 4882 its_write_baser(its, baser, baser->val); 4883 } 4884 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4885 4886 /* 4887 * Reinit the collection if it's stored in the ITS. This is 4888 * indicated by the col_id being less than the HCC field. 4889 * CID < HCC as specified in the GIC v3 Documentation. 4890 */ 4891 if (its->collections[smp_processor_id()].col_id < 4892 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER))) 4893 its_cpu_init_collection(its); 4894 } 4895 raw_spin_unlock(&its_lock); 4896 } 4897 4898 static struct syscore_ops its_syscore_ops = { 4899 .suspend = its_save_disable, 4900 .resume = its_restore_enable, 4901 }; 4902 4903 static void __init __iomem *its_map_one(struct resource *res, int *err) 4904 { 4905 void __iomem *its_base; 4906 u32 val; 4907 4908 its_base = ioremap(res->start, SZ_64K); 4909 if (!its_base) { 4910 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); 4911 *err = -ENOMEM; 4912 return NULL; 4913 } 4914 4915 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; 4916 if (val != 0x30 && val != 0x40) { 4917 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); 4918 *err = -ENODEV; 4919 goto out_unmap; 4920 } 4921 4922 *err = its_force_quiescent(its_base); 4923 if (*err) { 4924 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); 4925 goto out_unmap; 4926 } 4927 4928 return its_base; 4929 4930 out_unmap: 4931 iounmap(its_base); 4932 return NULL; 4933 } 4934 4935 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its) 4936 { 4937 struct irq_domain *inner_domain; 4938 struct msi_domain_info *info; 4939 4940 info = kzalloc(sizeof(*info), GFP_KERNEL); 4941 if (!info) 4942 return -ENOMEM; 4943 4944 info->ops = &its_msi_domain_ops; 4945 info->data = its; 4946 4947 inner_domain = irq_domain_create_hierarchy(its_parent, 4948 its->msi_domain_flags, 0, 4949 handle, &its_domain_ops, 4950 info); 4951 if (!inner_domain) { 4952 kfree(info); 4953 return -ENOMEM; 4954 } 4955 4956 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS); 4957 4958 return 0; 4959 } 4960 4961 static int its_init_vpe_domain(void) 4962 { 4963 struct its_node *its; 4964 u32 devid; 4965 int entries; 4966 4967 if (gic_rdists->has_direct_lpi) { 4968 pr_info("ITS: Using DirectLPI for VPE invalidation\n"); 4969 return 0; 4970 } 4971 4972 /* Any ITS will do, even if not v4 */ 4973 its = list_first_entry(&its_nodes, struct its_node, entry); 4974 4975 entries = roundup_pow_of_two(nr_cpu_ids); 4976 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes), 4977 GFP_KERNEL); 4978 if (!vpe_proxy.vpes) 4979 return -ENOMEM; 4980 4981 /* Use the last possible DevID */ 4982 devid = GENMASK(device_ids(its) - 1, 0); 4983 vpe_proxy.dev = its_create_device(its, devid, entries, false); 4984 if (!vpe_proxy.dev) { 4985 kfree(vpe_proxy.vpes); 4986 pr_err("ITS: Can't allocate GICv4 proxy device\n"); 4987 return -ENOMEM; 4988 } 4989 4990 BUG_ON(entries > vpe_proxy.dev->nr_ites); 4991 4992 raw_spin_lock_init(&vpe_proxy.lock); 4993 vpe_proxy.next_victim = 0; 4994 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", 4995 devid, vpe_proxy.dev->nr_ites); 4996 4997 return 0; 4998 } 4999 5000 static int __init its_compute_its_list_map(struct resource *res, 5001 void __iomem *its_base) 5002 { 5003 int its_number; 5004 u32 ctlr; 5005 5006 /* 5007 * This is assumed to be done early enough that we're 5008 * guaranteed to be single-threaded, hence no 5009 * locking. Should this change, we should address 5010 * this. 5011 */ 5012 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX); 5013 if (its_number >= GICv4_ITS_LIST_MAX) { 5014 pr_err("ITS@%pa: No ITSList entry available!\n", 5015 &res->start); 5016 return -EINVAL; 5017 } 5018 5019 ctlr = readl_relaxed(its_base + GITS_CTLR); 5020 ctlr &= ~GITS_CTLR_ITS_NUMBER; 5021 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; 5022 writel_relaxed(ctlr, its_base + GITS_CTLR); 5023 ctlr = readl_relaxed(its_base + GITS_CTLR); 5024 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { 5025 its_number = ctlr & GITS_CTLR_ITS_NUMBER; 5026 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; 5027 } 5028 5029 if (test_and_set_bit(its_number, &its_list_map)) { 5030 pr_err("ITS@%pa: Duplicate ITSList entry %d\n", 5031 &res->start, its_number); 5032 return -EINVAL; 5033 } 5034 5035 return its_number; 5036 } 5037 5038 static int __init its_probe_one(struct resource *res, 5039 struct fwnode_handle *handle, int numa_node) 5040 { 5041 struct its_node *its; 5042 void __iomem *its_base; 5043 u64 baser, tmp, typer; 5044 struct page *page; 5045 u32 ctlr; 5046 int err; 5047 5048 its_base = its_map_one(res, &err); 5049 if (!its_base) 5050 return err; 5051 5052 pr_info("ITS %pR\n", res); 5053 5054 its = kzalloc(sizeof(*its), GFP_KERNEL); 5055 if (!its) { 5056 err = -ENOMEM; 5057 goto out_unmap; 5058 } 5059 5060 raw_spin_lock_init(&its->lock); 5061 mutex_init(&its->dev_alloc_lock); 5062 INIT_LIST_HEAD(&its->entry); 5063 INIT_LIST_HEAD(&its->its_device_list); 5064 typer = gic_read_typer(its_base + GITS_TYPER); 5065 its->typer = typer; 5066 its->base = its_base; 5067 its->phys_base = res->start; 5068 if (is_v4(its)) { 5069 if (!(typer & GITS_TYPER_VMOVP)) { 5070 err = its_compute_its_list_map(res, its_base); 5071 if (err < 0) 5072 goto out_free_its; 5073 5074 its->list_nr = err; 5075 5076 pr_info("ITS@%pa: Using ITS number %d\n", 5077 &res->start, err); 5078 } else { 5079 pr_info("ITS@%pa: Single VMOVP capable\n", &res->start); 5080 } 5081 5082 if (is_v4_1(its)) { 5083 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer); 5084 5085 its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K); 5086 if (!its->sgir_base) { 5087 err = -ENOMEM; 5088 goto out_free_its; 5089 } 5090 5091 its->mpidr = readl_relaxed(its_base + GITS_MPIDR); 5092 5093 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n", 5094 &res->start, its->mpidr, svpet); 5095 } 5096 } 5097 5098 its->numa_node = numa_node; 5099 5100 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 5101 get_order(ITS_CMD_QUEUE_SZ)); 5102 if (!page) { 5103 err = -ENOMEM; 5104 goto out_unmap_sgir; 5105 } 5106 its->cmd_base = (void *)page_address(page); 5107 its->cmd_write = its->cmd_base; 5108 its->fwnode_handle = handle; 5109 its->get_msi_base = its_irq_get_msi_base; 5110 its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI; 5111 5112 its_enable_quirks(its); 5113 5114 err = its_alloc_tables(its); 5115 if (err) 5116 goto out_free_cmd; 5117 5118 err = its_alloc_collections(its); 5119 if (err) 5120 goto out_free_tables; 5121 5122 baser = (virt_to_phys(its->cmd_base) | 5123 GITS_CBASER_RaWaWb | 5124 GITS_CBASER_InnerShareable | 5125 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | 5126 GITS_CBASER_VALID); 5127 5128 gits_write_cbaser(baser, its->base + GITS_CBASER); 5129 tmp = gits_read_cbaser(its->base + GITS_CBASER); 5130 5131 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) 5132 tmp &= ~GITS_CBASER_SHAREABILITY_MASK; 5133 5134 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { 5135 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { 5136 /* 5137 * The HW reports non-shareable, we must 5138 * remove the cacheability attributes as 5139 * well. 5140 */ 5141 baser &= ~(GITS_CBASER_SHAREABILITY_MASK | 5142 GITS_CBASER_CACHEABILITY_MASK); 5143 baser |= GITS_CBASER_nC; 5144 gits_write_cbaser(baser, its->base + GITS_CBASER); 5145 } 5146 pr_info("ITS: using cache flushing for cmd queue\n"); 5147 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; 5148 } 5149 5150 gits_write_cwriter(0, its->base + GITS_CWRITER); 5151 ctlr = readl_relaxed(its->base + GITS_CTLR); 5152 ctlr |= GITS_CTLR_ENABLE; 5153 if (is_v4(its)) 5154 ctlr |= GITS_CTLR_ImDe; 5155 writel_relaxed(ctlr, its->base + GITS_CTLR); 5156 5157 err = its_init_domain(handle, its); 5158 if (err) 5159 goto out_free_tables; 5160 5161 raw_spin_lock(&its_lock); 5162 list_add(&its->entry, &its_nodes); 5163 raw_spin_unlock(&its_lock); 5164 5165 return 0; 5166 5167 out_free_tables: 5168 its_free_tables(its); 5169 out_free_cmd: 5170 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); 5171 out_unmap_sgir: 5172 if (its->sgir_base) 5173 iounmap(its->sgir_base); 5174 out_free_its: 5175 kfree(its); 5176 out_unmap: 5177 iounmap(its_base); 5178 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err); 5179 return err; 5180 } 5181 5182 static bool gic_rdists_supports_plpis(void) 5183 { 5184 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); 5185 } 5186 5187 static int redist_disable_lpis(void) 5188 { 5189 void __iomem *rbase = gic_data_rdist_rd_base(); 5190 u64 timeout = USEC_PER_SEC; 5191 u64 val; 5192 5193 if (!gic_rdists_supports_plpis()) { 5194 pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); 5195 return -ENXIO; 5196 } 5197 5198 val = readl_relaxed(rbase + GICR_CTLR); 5199 if (!(val & GICR_CTLR_ENABLE_LPIS)) 5200 return 0; 5201 5202 /* 5203 * If coming via a CPU hotplug event, we don't need to disable 5204 * LPIs before trying to re-enable them. They are already 5205 * configured and all is well in the world. 5206 * 5207 * If running with preallocated tables, there is nothing to do. 5208 */ 5209 if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) || 5210 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED)) 5211 return 0; 5212 5213 /* 5214 * From that point on, we only try to do some damage control. 5215 */ 5216 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n", 5217 smp_processor_id()); 5218 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 5219 5220 /* Disable LPIs */ 5221 val &= ~GICR_CTLR_ENABLE_LPIS; 5222 writel_relaxed(val, rbase + GICR_CTLR); 5223 5224 /* Make sure any change to GICR_CTLR is observable by the GIC */ 5225 dsb(sy); 5226 5227 /* 5228 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs 5229 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers. 5230 * Error out if we time out waiting for RWP to clear. 5231 */ 5232 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) { 5233 if (!timeout) { 5234 pr_err("CPU%d: Timeout while disabling LPIs\n", 5235 smp_processor_id()); 5236 return -ETIMEDOUT; 5237 } 5238 udelay(1); 5239 timeout--; 5240 } 5241 5242 /* 5243 * After it has been written to 1, it is IMPLEMENTATION 5244 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be 5245 * cleared to 0. Error out if clearing the bit failed. 5246 */ 5247 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) { 5248 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id()); 5249 return -EBUSY; 5250 } 5251 5252 return 0; 5253 } 5254 5255 int its_cpu_init(void) 5256 { 5257 if (!list_empty(&its_nodes)) { 5258 int ret; 5259 5260 ret = redist_disable_lpis(); 5261 if (ret) 5262 return ret; 5263 5264 its_cpu_init_lpis(); 5265 its_cpu_init_collections(); 5266 } 5267 5268 return 0; 5269 } 5270 5271 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work) 5272 { 5273 cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state); 5274 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; 5275 } 5276 5277 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work, 5278 rdist_memreserve_cpuhp_cleanup_workfn); 5279 5280 static int its_cpu_memreserve_lpi(unsigned int cpu) 5281 { 5282 struct page *pend_page; 5283 int ret = 0; 5284 5285 /* This gets to run exactly once per CPU */ 5286 if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE) 5287 return 0; 5288 5289 pend_page = gic_data_rdist()->pend_page; 5290 if (WARN_ON(!pend_page)) { 5291 ret = -ENOMEM; 5292 goto out; 5293 } 5294 /* 5295 * If the pending table was pre-programmed, free the memory we 5296 * preemptively allocated. Otherwise, reserve that memory for 5297 * later kexecs. 5298 */ 5299 if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) { 5300 its_free_pending_table(pend_page); 5301 gic_data_rdist()->pend_page = NULL; 5302 } else { 5303 phys_addr_t paddr = page_to_phys(pend_page); 5304 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ)); 5305 } 5306 5307 out: 5308 /* Last CPU being brought up gets to issue the cleanup */ 5309 if (!IS_ENABLED(CONFIG_SMP) || 5310 cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask)) 5311 schedule_work(&rdist_memreserve_cpuhp_cleanup_work); 5312 5313 gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE; 5314 return ret; 5315 } 5316 5317 /* Mark all the BASER registers as invalid before they get reprogrammed */ 5318 static int __init its_reset_one(struct resource *res) 5319 { 5320 void __iomem *its_base; 5321 int err, i; 5322 5323 its_base = its_map_one(res, &err); 5324 if (!its_base) 5325 return err; 5326 5327 for (i = 0; i < GITS_BASER_NR_REGS; i++) 5328 gits_write_baser(0, its_base + GITS_BASER + (i << 3)); 5329 5330 iounmap(its_base); 5331 return 0; 5332 } 5333 5334 static const struct of_device_id its_device_id[] = { 5335 { .compatible = "arm,gic-v3-its", }, 5336 {}, 5337 }; 5338 5339 static int __init its_of_probe(struct device_node *node) 5340 { 5341 struct device_node *np; 5342 struct resource res; 5343 5344 /* 5345 * Make sure *all* the ITS are reset before we probe any, as 5346 * they may be sharing memory. If any of the ITS fails to 5347 * reset, don't even try to go any further, as this could 5348 * result in something even worse. 5349 */ 5350 for (np = of_find_matching_node(node, its_device_id); np; 5351 np = of_find_matching_node(np, its_device_id)) { 5352 int err; 5353 5354 if (!of_device_is_available(np) || 5355 !of_property_read_bool(np, "msi-controller") || 5356 of_address_to_resource(np, 0, &res)) 5357 continue; 5358 5359 err = its_reset_one(&res); 5360 if (err) 5361 return err; 5362 } 5363 5364 for (np = of_find_matching_node(node, its_device_id); np; 5365 np = of_find_matching_node(np, its_device_id)) { 5366 if (!of_device_is_available(np)) 5367 continue; 5368 if (!of_property_read_bool(np, "msi-controller")) { 5369 pr_warn("%pOF: no msi-controller property, ITS ignored\n", 5370 np); 5371 continue; 5372 } 5373 5374 if (of_address_to_resource(np, 0, &res)) { 5375 pr_warn("%pOF: no regs?\n", np); 5376 continue; 5377 } 5378 5379 its_probe_one(&res, &np->fwnode, of_node_to_nid(np)); 5380 } 5381 return 0; 5382 } 5383 5384 #ifdef CONFIG_ACPI 5385 5386 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) 5387 5388 #ifdef CONFIG_ACPI_NUMA 5389 struct its_srat_map { 5390 /* numa node id */ 5391 u32 numa_node; 5392 /* GIC ITS ID */ 5393 u32 its_id; 5394 }; 5395 5396 static struct its_srat_map *its_srat_maps __initdata; 5397 static int its_in_srat __initdata; 5398 5399 static int __init acpi_get_its_numa_node(u32 its_id) 5400 { 5401 int i; 5402 5403 for (i = 0; i < its_in_srat; i++) { 5404 if (its_id == its_srat_maps[i].its_id) 5405 return its_srat_maps[i].numa_node; 5406 } 5407 return NUMA_NO_NODE; 5408 } 5409 5410 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header, 5411 const unsigned long end) 5412 { 5413 return 0; 5414 } 5415 5416 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header, 5417 const unsigned long end) 5418 { 5419 int node; 5420 struct acpi_srat_gic_its_affinity *its_affinity; 5421 5422 its_affinity = (struct acpi_srat_gic_its_affinity *)header; 5423 if (!its_affinity) 5424 return -EINVAL; 5425 5426 if (its_affinity->header.length < sizeof(*its_affinity)) { 5427 pr_err("SRAT: Invalid header length %d in ITS affinity\n", 5428 its_affinity->header.length); 5429 return -EINVAL; 5430 } 5431 5432 /* 5433 * Note that in theory a new proximity node could be created by this 5434 * entry as it is an SRAT resource allocation structure. 5435 * We do not currently support doing so. 5436 */ 5437 node = pxm_to_node(its_affinity->proximity_domain); 5438 5439 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { 5440 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); 5441 return 0; 5442 } 5443 5444 its_srat_maps[its_in_srat].numa_node = node; 5445 its_srat_maps[its_in_srat].its_id = its_affinity->its_id; 5446 its_in_srat++; 5447 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", 5448 its_affinity->proximity_domain, its_affinity->its_id, node); 5449 5450 return 0; 5451 } 5452 5453 static void __init acpi_table_parse_srat_its(void) 5454 { 5455 int count; 5456 5457 count = acpi_table_parse_entries(ACPI_SIG_SRAT, 5458 sizeof(struct acpi_table_srat), 5459 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5460 gic_acpi_match_srat_its, 0); 5461 if (count <= 0) 5462 return; 5463 5464 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map), 5465 GFP_KERNEL); 5466 if (!its_srat_maps) 5467 return; 5468 5469 acpi_table_parse_entries(ACPI_SIG_SRAT, 5470 sizeof(struct acpi_table_srat), 5471 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5472 gic_acpi_parse_srat_its, 0); 5473 } 5474 5475 /* free the its_srat_maps after ITS probing */ 5476 static void __init acpi_its_srat_maps_free(void) 5477 { 5478 kfree(its_srat_maps); 5479 } 5480 #else 5481 static void __init acpi_table_parse_srat_its(void) { } 5482 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } 5483 static void __init acpi_its_srat_maps_free(void) { } 5484 #endif 5485 5486 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header, 5487 const unsigned long end) 5488 { 5489 struct acpi_madt_generic_translator *its_entry; 5490 struct fwnode_handle *dom_handle; 5491 struct resource res; 5492 int err; 5493 5494 its_entry = (struct acpi_madt_generic_translator *)header; 5495 memset(&res, 0, sizeof(res)); 5496 res.start = its_entry->base_address; 5497 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; 5498 res.flags = IORESOURCE_MEM; 5499 5500 dom_handle = irq_domain_alloc_fwnode(&res.start); 5501 if (!dom_handle) { 5502 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", 5503 &res.start); 5504 return -ENOMEM; 5505 } 5506 5507 err = iort_register_domain_token(its_entry->translation_id, res.start, 5508 dom_handle); 5509 if (err) { 5510 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", 5511 &res.start, its_entry->translation_id); 5512 goto dom_err; 5513 } 5514 5515 err = its_probe_one(&res, dom_handle, 5516 acpi_get_its_numa_node(its_entry->translation_id)); 5517 if (!err) 5518 return 0; 5519 5520 iort_deregister_domain_token(its_entry->translation_id); 5521 dom_err: 5522 irq_domain_free_fwnode(dom_handle); 5523 return err; 5524 } 5525 5526 static int __init its_acpi_reset(union acpi_subtable_headers *header, 5527 const unsigned long end) 5528 { 5529 struct acpi_madt_generic_translator *its_entry; 5530 struct resource res; 5531 5532 its_entry = (struct acpi_madt_generic_translator *)header; 5533 res = (struct resource) { 5534 .start = its_entry->base_address, 5535 .end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1, 5536 .flags = IORESOURCE_MEM, 5537 }; 5538 5539 return its_reset_one(&res); 5540 } 5541 5542 static void __init its_acpi_probe(void) 5543 { 5544 acpi_table_parse_srat_its(); 5545 /* 5546 * Make sure *all* the ITS are reset before we probe any, as 5547 * they may be sharing memory. If any of the ITS fails to 5548 * reset, don't even try to go any further, as this could 5549 * result in something even worse. 5550 */ 5551 if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5552 its_acpi_reset, 0) > 0) 5553 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5554 gic_acpi_parse_madt_its, 0); 5555 acpi_its_srat_maps_free(); 5556 } 5557 #else 5558 static void __init its_acpi_probe(void) { } 5559 #endif 5560 5561 int __init its_lpi_memreserve_init(void) 5562 { 5563 int state; 5564 5565 if (!efi_enabled(EFI_CONFIG_TABLES)) 5566 return 0; 5567 5568 if (list_empty(&its_nodes)) 5569 return 0; 5570 5571 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; 5572 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, 5573 "irqchip/arm/gicv3/memreserve:online", 5574 its_cpu_memreserve_lpi, 5575 NULL); 5576 if (state < 0) 5577 return state; 5578 5579 gic_rdists->cpuhp_memreserve_state = state; 5580 5581 return 0; 5582 } 5583 5584 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, 5585 struct irq_domain *parent_domain) 5586 { 5587 struct device_node *of_node; 5588 struct its_node *its; 5589 bool has_v4 = false; 5590 bool has_v4_1 = false; 5591 int err; 5592 5593 gic_rdists = rdists; 5594 5595 its_parent = parent_domain; 5596 of_node = to_of_node(handle); 5597 if (of_node) 5598 its_of_probe(of_node); 5599 else 5600 its_acpi_probe(); 5601 5602 if (list_empty(&its_nodes)) { 5603 pr_warn("ITS: No ITS available, not enabling LPIs\n"); 5604 return -ENXIO; 5605 } 5606 5607 err = allocate_lpi_tables(); 5608 if (err) 5609 return err; 5610 5611 list_for_each_entry(its, &its_nodes, entry) { 5612 has_v4 |= is_v4(its); 5613 has_v4_1 |= is_v4_1(its); 5614 } 5615 5616 /* Don't bother with inconsistent systems */ 5617 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid)) 5618 rdists->has_rvpeid = false; 5619 5620 if (has_v4 & rdists->has_vlpis) { 5621 const struct irq_domain_ops *sgi_ops; 5622 5623 if (has_v4_1) 5624 sgi_ops = &its_sgi_domain_ops; 5625 else 5626 sgi_ops = NULL; 5627 5628 if (its_init_vpe_domain() || 5629 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) { 5630 rdists->has_vlpis = false; 5631 pr_err("ITS: Disabling GICv4 support\n"); 5632 } 5633 } 5634 5635 register_syscore_ops(&its_syscore_ops); 5636 5637 return 0; 5638 } 5639