1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/efi.h>
16 #include <linux/interrupt.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
22 #include <linux/mm.h>
23 #include <linux/msi.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
32 
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
36 
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39 
40 #include "irq-gic-common.h"
41 
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
45 #define ITS_FLAGS_SAVE_SUSPEND_STATE		(1ULL << 3)
46 
47 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
48 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED	(1 << 1)
49 
50 static u32 lpi_id_bits;
51 
52 /*
53  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
54  * deal with (one configuration byte per interrupt). PENDBASE has to
55  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
56  */
57 #define LPI_NRBITS		lpi_id_bits
58 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
59 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
60 
61 #define LPI_PROP_DEFAULT_PRIO	GICD_INT_DEF_PRI
62 
63 /*
64  * Collection structure - just an ID, and a redistributor address to
65  * ping. We use one per CPU as a bag of interrupts assigned to this
66  * CPU.
67  */
68 struct its_collection {
69 	u64			target_address;
70 	u16			col_id;
71 };
72 
73 /*
74  * The ITS_BASER structure - contains memory information, cached
75  * value of BASER register configuration and ITS page size.
76  */
77 struct its_baser {
78 	void		*base;
79 	u64		val;
80 	u32		order;
81 	u32		psz;
82 };
83 
84 struct its_device;
85 
86 /*
87  * The ITS structure - contains most of the infrastructure, with the
88  * top-level MSI domain, the command queue, the collections, and the
89  * list of devices writing to it.
90  *
91  * dev_alloc_lock has to be taken for device allocations, while the
92  * spinlock must be taken to parse data structures such as the device
93  * list.
94  */
95 struct its_node {
96 	raw_spinlock_t		lock;
97 	struct mutex		dev_alloc_lock;
98 	struct list_head	entry;
99 	void __iomem		*base;
100 	void __iomem		*sgir_base;
101 	phys_addr_t		phys_base;
102 	struct its_cmd_block	*cmd_base;
103 	struct its_cmd_block	*cmd_write;
104 	struct its_baser	tables[GITS_BASER_NR_REGS];
105 	struct its_collection	*collections;
106 	struct fwnode_handle	*fwnode_handle;
107 	u64			(*get_msi_base)(struct its_device *its_dev);
108 	u64			typer;
109 	u64			cbaser_save;
110 	u32			ctlr_save;
111 	u32			mpidr;
112 	struct list_head	its_device_list;
113 	u64			flags;
114 	unsigned long		list_nr;
115 	int			numa_node;
116 	unsigned int		msi_domain_flags;
117 	u32			pre_its_base; /* for Socionext Synquacer */
118 	int			vlpi_redist_offset;
119 };
120 
121 #define is_v4(its)		(!!((its)->typer & GITS_TYPER_VLPIS))
122 #define is_v4_1(its)		(!!((its)->typer & GITS_TYPER_VMAPP))
123 #define device_ids(its)		(FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
124 
125 #define ITS_ITT_ALIGN		SZ_256
126 
127 /* The maximum number of VPEID bits supported by VLPI commands */
128 #define ITS_MAX_VPEID_BITS						\
129 	({								\
130 		int nvpeid = 16;					\
131 		if (gic_rdists->has_rvpeid &&				\
132 		    gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)		\
133 			nvpeid = 1 + (gic_rdists->gicd_typer2 &		\
134 				      GICD_TYPER2_VID);			\
135 									\
136 		nvpeid;							\
137 	})
138 #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
139 
140 /* Convert page order to size in bytes */
141 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
142 
143 struct event_lpi_map {
144 	unsigned long		*lpi_map;
145 	u16			*col_map;
146 	irq_hw_number_t		lpi_base;
147 	int			nr_lpis;
148 	raw_spinlock_t		vlpi_lock;
149 	struct its_vm		*vm;
150 	struct its_vlpi_map	*vlpi_maps;
151 	int			nr_vlpis;
152 };
153 
154 /*
155  * The ITS view of a device - belongs to an ITS, owns an interrupt
156  * translation table, and a list of interrupts.  If it some of its
157  * LPIs are injected into a guest (GICv4), the event_map.vm field
158  * indicates which one.
159  */
160 struct its_device {
161 	struct list_head	entry;
162 	struct its_node		*its;
163 	struct event_lpi_map	event_map;
164 	void			*itt;
165 	u32			nr_ites;
166 	u32			device_id;
167 	bool			shared;
168 };
169 
170 static struct {
171 	raw_spinlock_t		lock;
172 	struct its_device	*dev;
173 	struct its_vpe		**vpes;
174 	int			next_victim;
175 } vpe_proxy;
176 
177 static LIST_HEAD(its_nodes);
178 static DEFINE_RAW_SPINLOCK(its_lock);
179 static struct rdists *gic_rdists;
180 static struct irq_domain *its_parent;
181 
182 static unsigned long its_list_map;
183 static u16 vmovp_seq_num;
184 static DEFINE_RAW_SPINLOCK(vmovp_lock);
185 
186 static DEFINE_IDA(its_vpeid_ida);
187 
188 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
189 #define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
190 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
191 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
192 
193 /*
194  * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
195  * always have vSGIs mapped.
196  */
197 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
198 {
199 	return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
200 }
201 
202 static u16 get_its_list(struct its_vm *vm)
203 {
204 	struct its_node *its;
205 	unsigned long its_list = 0;
206 
207 	list_for_each_entry(its, &its_nodes, entry) {
208 		if (!is_v4(its))
209 			continue;
210 
211 		if (require_its_list_vmovp(vm, its))
212 			__set_bit(its->list_nr, &its_list);
213 	}
214 
215 	return (u16)its_list;
216 }
217 
218 static inline u32 its_get_event_id(struct irq_data *d)
219 {
220 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
221 	return d->hwirq - its_dev->event_map.lpi_base;
222 }
223 
224 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
225 					       u32 event)
226 {
227 	struct its_node *its = its_dev->its;
228 
229 	return its->collections + its_dev->event_map.col_map[event];
230 }
231 
232 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
233 					       u32 event)
234 {
235 	if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
236 		return NULL;
237 
238 	return &its_dev->event_map.vlpi_maps[event];
239 }
240 
241 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
242 {
243 	if (irqd_is_forwarded_to_vcpu(d)) {
244 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
245 		u32 event = its_get_event_id(d);
246 
247 		return dev_event_to_vlpi_map(its_dev, event);
248 	}
249 
250 	return NULL;
251 }
252 
253 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
254 {
255 	raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
256 	return vpe->col_idx;
257 }
258 
259 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
260 {
261 	raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
262 }
263 
264 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
265 {
266 	struct its_vlpi_map *map = get_vlpi_map(d);
267 	int cpu;
268 
269 	if (map) {
270 		cpu = vpe_to_cpuid_lock(map->vpe, flags);
271 	} else {
272 		/* Physical LPIs are already locked via the irq_desc lock */
273 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
274 		cpu = its_dev->event_map.col_map[its_get_event_id(d)];
275 		/* Keep GCC quiet... */
276 		*flags = 0;
277 	}
278 
279 	return cpu;
280 }
281 
282 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
283 {
284 	struct its_vlpi_map *map = get_vlpi_map(d);
285 
286 	if (map)
287 		vpe_to_cpuid_unlock(map->vpe, flags);
288 }
289 
290 static struct its_collection *valid_col(struct its_collection *col)
291 {
292 	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
293 		return NULL;
294 
295 	return col;
296 }
297 
298 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
299 {
300 	if (valid_col(its->collections + vpe->col_idx))
301 		return vpe;
302 
303 	return NULL;
304 }
305 
306 /*
307  * ITS command descriptors - parameters to be encoded in a command
308  * block.
309  */
310 struct its_cmd_desc {
311 	union {
312 		struct {
313 			struct its_device *dev;
314 			u32 event_id;
315 		} its_inv_cmd;
316 
317 		struct {
318 			struct its_device *dev;
319 			u32 event_id;
320 		} its_clear_cmd;
321 
322 		struct {
323 			struct its_device *dev;
324 			u32 event_id;
325 		} its_int_cmd;
326 
327 		struct {
328 			struct its_device *dev;
329 			int valid;
330 		} its_mapd_cmd;
331 
332 		struct {
333 			struct its_collection *col;
334 			int valid;
335 		} its_mapc_cmd;
336 
337 		struct {
338 			struct its_device *dev;
339 			u32 phys_id;
340 			u32 event_id;
341 		} its_mapti_cmd;
342 
343 		struct {
344 			struct its_device *dev;
345 			struct its_collection *col;
346 			u32 event_id;
347 		} its_movi_cmd;
348 
349 		struct {
350 			struct its_device *dev;
351 			u32 event_id;
352 		} its_discard_cmd;
353 
354 		struct {
355 			struct its_collection *col;
356 		} its_invall_cmd;
357 
358 		struct {
359 			struct its_vpe *vpe;
360 		} its_vinvall_cmd;
361 
362 		struct {
363 			struct its_vpe *vpe;
364 			struct its_collection *col;
365 			bool valid;
366 		} its_vmapp_cmd;
367 
368 		struct {
369 			struct its_vpe *vpe;
370 			struct its_device *dev;
371 			u32 virt_id;
372 			u32 event_id;
373 			bool db_enabled;
374 		} its_vmapti_cmd;
375 
376 		struct {
377 			struct its_vpe *vpe;
378 			struct its_device *dev;
379 			u32 event_id;
380 			bool db_enabled;
381 		} its_vmovi_cmd;
382 
383 		struct {
384 			struct its_vpe *vpe;
385 			struct its_collection *col;
386 			u16 seq_num;
387 			u16 its_list;
388 		} its_vmovp_cmd;
389 
390 		struct {
391 			struct its_vpe *vpe;
392 		} its_invdb_cmd;
393 
394 		struct {
395 			struct its_vpe *vpe;
396 			u8 sgi;
397 			u8 priority;
398 			bool enable;
399 			bool group;
400 			bool clear;
401 		} its_vsgi_cmd;
402 	};
403 };
404 
405 /*
406  * The ITS command block, which is what the ITS actually parses.
407  */
408 struct its_cmd_block {
409 	union {
410 		u64	raw_cmd[4];
411 		__le64	raw_cmd_le[4];
412 	};
413 };
414 
415 #define ITS_CMD_QUEUE_SZ		SZ_64K
416 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
417 
418 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
419 						    struct its_cmd_block *,
420 						    struct its_cmd_desc *);
421 
422 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
423 					      struct its_cmd_block *,
424 					      struct its_cmd_desc *);
425 
426 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
427 {
428 	u64 mask = GENMASK_ULL(h, l);
429 	*raw_cmd &= ~mask;
430 	*raw_cmd |= (val << l) & mask;
431 }
432 
433 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
434 {
435 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
436 }
437 
438 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
439 {
440 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
441 }
442 
443 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
444 {
445 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
446 }
447 
448 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
449 {
450 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
451 }
452 
453 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
454 {
455 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
456 }
457 
458 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
459 {
460 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
461 }
462 
463 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
464 {
465 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
466 }
467 
468 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
469 {
470 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
471 }
472 
473 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
474 {
475 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
476 }
477 
478 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
479 {
480 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
481 }
482 
483 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
484 {
485 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
486 }
487 
488 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
489 {
490 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
491 }
492 
493 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
494 {
495 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
496 }
497 
498 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
499 {
500 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
501 }
502 
503 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
504 {
505 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
506 }
507 
508 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
509 {
510 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
511 }
512 
513 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
514 {
515 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
516 }
517 
518 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
519 {
520 	its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
521 }
522 
523 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
524 {
525 	its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
526 }
527 
528 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
529 {
530 	its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
531 }
532 
533 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
534 					u32 vpe_db_lpi)
535 {
536 	its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
537 }
538 
539 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
540 					u32 vpe_db_lpi)
541 {
542 	its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
543 }
544 
545 static void its_encode_db(struct its_cmd_block *cmd, bool db)
546 {
547 	its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
548 }
549 
550 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
551 {
552 	its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
553 }
554 
555 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
556 {
557 	its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
558 }
559 
560 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
561 {
562 	its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
563 }
564 
565 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
566 {
567 	its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
568 }
569 
570 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
571 {
572 	its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
573 }
574 
575 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
576 {
577 	/* Let's fixup BE commands */
578 	cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
579 	cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
580 	cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
581 	cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
582 }
583 
584 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
585 						 struct its_cmd_block *cmd,
586 						 struct its_cmd_desc *desc)
587 {
588 	unsigned long itt_addr;
589 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
590 
591 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
592 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
593 
594 	its_encode_cmd(cmd, GITS_CMD_MAPD);
595 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
596 	its_encode_size(cmd, size - 1);
597 	its_encode_itt(cmd, itt_addr);
598 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
599 
600 	its_fixup_cmd(cmd);
601 
602 	return NULL;
603 }
604 
605 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
606 						 struct its_cmd_block *cmd,
607 						 struct its_cmd_desc *desc)
608 {
609 	its_encode_cmd(cmd, GITS_CMD_MAPC);
610 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
611 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
612 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
613 
614 	its_fixup_cmd(cmd);
615 
616 	return desc->its_mapc_cmd.col;
617 }
618 
619 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
620 						  struct its_cmd_block *cmd,
621 						  struct its_cmd_desc *desc)
622 {
623 	struct its_collection *col;
624 
625 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
626 			       desc->its_mapti_cmd.event_id);
627 
628 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
629 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
630 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
631 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
632 	its_encode_collection(cmd, col->col_id);
633 
634 	its_fixup_cmd(cmd);
635 
636 	return valid_col(col);
637 }
638 
639 static struct its_collection *its_build_movi_cmd(struct its_node *its,
640 						 struct its_cmd_block *cmd,
641 						 struct its_cmd_desc *desc)
642 {
643 	struct its_collection *col;
644 
645 	col = dev_event_to_col(desc->its_movi_cmd.dev,
646 			       desc->its_movi_cmd.event_id);
647 
648 	its_encode_cmd(cmd, GITS_CMD_MOVI);
649 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
650 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
651 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
652 
653 	its_fixup_cmd(cmd);
654 
655 	return valid_col(col);
656 }
657 
658 static struct its_collection *its_build_discard_cmd(struct its_node *its,
659 						    struct its_cmd_block *cmd,
660 						    struct its_cmd_desc *desc)
661 {
662 	struct its_collection *col;
663 
664 	col = dev_event_to_col(desc->its_discard_cmd.dev,
665 			       desc->its_discard_cmd.event_id);
666 
667 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
668 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
669 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
670 
671 	its_fixup_cmd(cmd);
672 
673 	return valid_col(col);
674 }
675 
676 static struct its_collection *its_build_inv_cmd(struct its_node *its,
677 						struct its_cmd_block *cmd,
678 						struct its_cmd_desc *desc)
679 {
680 	struct its_collection *col;
681 
682 	col = dev_event_to_col(desc->its_inv_cmd.dev,
683 			       desc->its_inv_cmd.event_id);
684 
685 	its_encode_cmd(cmd, GITS_CMD_INV);
686 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
687 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
688 
689 	its_fixup_cmd(cmd);
690 
691 	return valid_col(col);
692 }
693 
694 static struct its_collection *its_build_int_cmd(struct its_node *its,
695 						struct its_cmd_block *cmd,
696 						struct its_cmd_desc *desc)
697 {
698 	struct its_collection *col;
699 
700 	col = dev_event_to_col(desc->its_int_cmd.dev,
701 			       desc->its_int_cmd.event_id);
702 
703 	its_encode_cmd(cmd, GITS_CMD_INT);
704 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
705 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
706 
707 	its_fixup_cmd(cmd);
708 
709 	return valid_col(col);
710 }
711 
712 static struct its_collection *its_build_clear_cmd(struct its_node *its,
713 						  struct its_cmd_block *cmd,
714 						  struct its_cmd_desc *desc)
715 {
716 	struct its_collection *col;
717 
718 	col = dev_event_to_col(desc->its_clear_cmd.dev,
719 			       desc->its_clear_cmd.event_id);
720 
721 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
722 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
723 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
724 
725 	its_fixup_cmd(cmd);
726 
727 	return valid_col(col);
728 }
729 
730 static struct its_collection *its_build_invall_cmd(struct its_node *its,
731 						   struct its_cmd_block *cmd,
732 						   struct its_cmd_desc *desc)
733 {
734 	its_encode_cmd(cmd, GITS_CMD_INVALL);
735 	its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
736 
737 	its_fixup_cmd(cmd);
738 
739 	return NULL;
740 }
741 
742 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
743 					     struct its_cmd_block *cmd,
744 					     struct its_cmd_desc *desc)
745 {
746 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
747 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
748 
749 	its_fixup_cmd(cmd);
750 
751 	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
752 }
753 
754 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
755 					   struct its_cmd_block *cmd,
756 					   struct its_cmd_desc *desc)
757 {
758 	unsigned long vpt_addr, vconf_addr;
759 	u64 target;
760 	bool alloc;
761 
762 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
763 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
764 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
765 
766 	if (!desc->its_vmapp_cmd.valid) {
767 		if (is_v4_1(its)) {
768 			alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
769 			its_encode_alloc(cmd, alloc);
770 		}
771 
772 		goto out;
773 	}
774 
775 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
776 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
777 
778 	its_encode_target(cmd, target);
779 	its_encode_vpt_addr(cmd, vpt_addr);
780 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
781 
782 	if (!is_v4_1(its))
783 		goto out;
784 
785 	vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
786 
787 	alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
788 
789 	its_encode_alloc(cmd, alloc);
790 
791 	/* We can only signal PTZ when alloc==1. Why do we have two bits? */
792 	its_encode_ptz(cmd, alloc);
793 	its_encode_vconf_addr(cmd, vconf_addr);
794 	its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
795 
796 out:
797 	its_fixup_cmd(cmd);
798 
799 	return valid_vpe(its, desc->its_vmapp_cmd.vpe);
800 }
801 
802 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
803 					    struct its_cmd_block *cmd,
804 					    struct its_cmd_desc *desc)
805 {
806 	u32 db;
807 
808 	if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
809 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
810 	else
811 		db = 1023;
812 
813 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
814 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
815 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
816 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
817 	its_encode_db_phys_id(cmd, db);
818 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
819 
820 	its_fixup_cmd(cmd);
821 
822 	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
823 }
824 
825 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
826 					   struct its_cmd_block *cmd,
827 					   struct its_cmd_desc *desc)
828 {
829 	u32 db;
830 
831 	if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
832 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
833 	else
834 		db = 1023;
835 
836 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
837 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
838 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
839 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
840 	its_encode_db_phys_id(cmd, db);
841 	its_encode_db_valid(cmd, true);
842 
843 	its_fixup_cmd(cmd);
844 
845 	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
846 }
847 
848 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
849 					   struct its_cmd_block *cmd,
850 					   struct its_cmd_desc *desc)
851 {
852 	u64 target;
853 
854 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
855 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
856 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
857 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
858 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
859 	its_encode_target(cmd, target);
860 
861 	if (is_v4_1(its)) {
862 		its_encode_db(cmd, true);
863 		its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
864 	}
865 
866 	its_fixup_cmd(cmd);
867 
868 	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
869 }
870 
871 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
872 					  struct its_cmd_block *cmd,
873 					  struct its_cmd_desc *desc)
874 {
875 	struct its_vlpi_map *map;
876 
877 	map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
878 				    desc->its_inv_cmd.event_id);
879 
880 	its_encode_cmd(cmd, GITS_CMD_INV);
881 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
882 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
883 
884 	its_fixup_cmd(cmd);
885 
886 	return valid_vpe(its, map->vpe);
887 }
888 
889 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
890 					  struct its_cmd_block *cmd,
891 					  struct its_cmd_desc *desc)
892 {
893 	struct its_vlpi_map *map;
894 
895 	map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
896 				    desc->its_int_cmd.event_id);
897 
898 	its_encode_cmd(cmd, GITS_CMD_INT);
899 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
900 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
901 
902 	its_fixup_cmd(cmd);
903 
904 	return valid_vpe(its, map->vpe);
905 }
906 
907 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
908 					    struct its_cmd_block *cmd,
909 					    struct its_cmd_desc *desc)
910 {
911 	struct its_vlpi_map *map;
912 
913 	map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
914 				    desc->its_clear_cmd.event_id);
915 
916 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
917 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
918 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
919 
920 	its_fixup_cmd(cmd);
921 
922 	return valid_vpe(its, map->vpe);
923 }
924 
925 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
926 					   struct its_cmd_block *cmd,
927 					   struct its_cmd_desc *desc)
928 {
929 	if (WARN_ON(!is_v4_1(its)))
930 		return NULL;
931 
932 	its_encode_cmd(cmd, GITS_CMD_INVDB);
933 	its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
934 
935 	its_fixup_cmd(cmd);
936 
937 	return valid_vpe(its, desc->its_invdb_cmd.vpe);
938 }
939 
940 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
941 					  struct its_cmd_block *cmd,
942 					  struct its_cmd_desc *desc)
943 {
944 	if (WARN_ON(!is_v4_1(its)))
945 		return NULL;
946 
947 	its_encode_cmd(cmd, GITS_CMD_VSGI);
948 	its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
949 	its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
950 	its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
951 	its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
952 	its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
953 	its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
954 
955 	its_fixup_cmd(cmd);
956 
957 	return valid_vpe(its, desc->its_vsgi_cmd.vpe);
958 }
959 
960 static u64 its_cmd_ptr_to_offset(struct its_node *its,
961 				 struct its_cmd_block *ptr)
962 {
963 	return (ptr - its->cmd_base) * sizeof(*ptr);
964 }
965 
966 static int its_queue_full(struct its_node *its)
967 {
968 	int widx;
969 	int ridx;
970 
971 	widx = its->cmd_write - its->cmd_base;
972 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
973 
974 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
975 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
976 		return 1;
977 
978 	return 0;
979 }
980 
981 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
982 {
983 	struct its_cmd_block *cmd;
984 	u32 count = 1000000;	/* 1s! */
985 
986 	while (its_queue_full(its)) {
987 		count--;
988 		if (!count) {
989 			pr_err_ratelimited("ITS queue not draining\n");
990 			return NULL;
991 		}
992 		cpu_relax();
993 		udelay(1);
994 	}
995 
996 	cmd = its->cmd_write++;
997 
998 	/* Handle queue wrapping */
999 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1000 		its->cmd_write = its->cmd_base;
1001 
1002 	/* Clear command  */
1003 	cmd->raw_cmd[0] = 0;
1004 	cmd->raw_cmd[1] = 0;
1005 	cmd->raw_cmd[2] = 0;
1006 	cmd->raw_cmd[3] = 0;
1007 
1008 	return cmd;
1009 }
1010 
1011 static struct its_cmd_block *its_post_commands(struct its_node *its)
1012 {
1013 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1014 
1015 	writel_relaxed(wr, its->base + GITS_CWRITER);
1016 
1017 	return its->cmd_write;
1018 }
1019 
1020 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1021 {
1022 	/*
1023 	 * Make sure the commands written to memory are observable by
1024 	 * the ITS.
1025 	 */
1026 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1027 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1028 	else
1029 		dsb(ishst);
1030 }
1031 
1032 static int its_wait_for_range_completion(struct its_node *its,
1033 					 u64	prev_idx,
1034 					 struct its_cmd_block *to)
1035 {
1036 	u64 rd_idx, to_idx, linear_idx;
1037 	u32 count = 1000000;	/* 1s! */
1038 
1039 	/* Linearize to_idx if the command set has wrapped around */
1040 	to_idx = its_cmd_ptr_to_offset(its, to);
1041 	if (to_idx < prev_idx)
1042 		to_idx += ITS_CMD_QUEUE_SZ;
1043 
1044 	linear_idx = prev_idx;
1045 
1046 	while (1) {
1047 		s64 delta;
1048 
1049 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
1050 
1051 		/*
1052 		 * Compute the read pointer progress, taking the
1053 		 * potential wrap-around into account.
1054 		 */
1055 		delta = rd_idx - prev_idx;
1056 		if (rd_idx < prev_idx)
1057 			delta += ITS_CMD_QUEUE_SZ;
1058 
1059 		linear_idx += delta;
1060 		if (linear_idx >= to_idx)
1061 			break;
1062 
1063 		count--;
1064 		if (!count) {
1065 			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1066 					   to_idx, linear_idx);
1067 			return -1;
1068 		}
1069 		prev_idx = rd_idx;
1070 		cpu_relax();
1071 		udelay(1);
1072 	}
1073 
1074 	return 0;
1075 }
1076 
1077 /* Warning, macro hell follows */
1078 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
1079 void name(struct its_node *its,						\
1080 	  buildtype builder,						\
1081 	  struct its_cmd_desc *desc)					\
1082 {									\
1083 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
1084 	synctype *sync_obj;						\
1085 	unsigned long flags;						\
1086 	u64 rd_idx;							\
1087 									\
1088 	raw_spin_lock_irqsave(&its->lock, flags);			\
1089 									\
1090 	cmd = its_allocate_entry(its);					\
1091 	if (!cmd) {		/* We're soooooo screewed... */		\
1092 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
1093 		return;							\
1094 	}								\
1095 	sync_obj = builder(its, cmd, desc);				\
1096 	its_flush_cmd(its, cmd);					\
1097 									\
1098 	if (sync_obj) {							\
1099 		sync_cmd = its_allocate_entry(its);			\
1100 		if (!sync_cmd)						\
1101 			goto post;					\
1102 									\
1103 		buildfn(its, sync_cmd, sync_obj);			\
1104 		its_flush_cmd(its, sync_cmd);				\
1105 	}								\
1106 									\
1107 post:									\
1108 	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\
1109 	next_cmd = its_post_commands(its);				\
1110 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
1111 									\
1112 	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\
1113 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
1114 }
1115 
1116 static void its_build_sync_cmd(struct its_node *its,
1117 			       struct its_cmd_block *sync_cmd,
1118 			       struct its_collection *sync_col)
1119 {
1120 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1121 	its_encode_target(sync_cmd, sync_col->target_address);
1122 
1123 	its_fixup_cmd(sync_cmd);
1124 }
1125 
1126 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1127 			     struct its_collection, its_build_sync_cmd)
1128 
1129 static void its_build_vsync_cmd(struct its_node *its,
1130 				struct its_cmd_block *sync_cmd,
1131 				struct its_vpe *sync_vpe)
1132 {
1133 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1134 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1135 
1136 	its_fixup_cmd(sync_cmd);
1137 }
1138 
1139 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1140 			     struct its_vpe, its_build_vsync_cmd)
1141 
1142 static void its_send_int(struct its_device *dev, u32 event_id)
1143 {
1144 	struct its_cmd_desc desc;
1145 
1146 	desc.its_int_cmd.dev = dev;
1147 	desc.its_int_cmd.event_id = event_id;
1148 
1149 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
1150 }
1151 
1152 static void its_send_clear(struct its_device *dev, u32 event_id)
1153 {
1154 	struct its_cmd_desc desc;
1155 
1156 	desc.its_clear_cmd.dev = dev;
1157 	desc.its_clear_cmd.event_id = event_id;
1158 
1159 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1160 }
1161 
1162 static void its_send_inv(struct its_device *dev, u32 event_id)
1163 {
1164 	struct its_cmd_desc desc;
1165 
1166 	desc.its_inv_cmd.dev = dev;
1167 	desc.its_inv_cmd.event_id = event_id;
1168 
1169 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1170 }
1171 
1172 static void its_send_mapd(struct its_device *dev, int valid)
1173 {
1174 	struct its_cmd_desc desc;
1175 
1176 	desc.its_mapd_cmd.dev = dev;
1177 	desc.its_mapd_cmd.valid = !!valid;
1178 
1179 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1180 }
1181 
1182 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1183 			  int valid)
1184 {
1185 	struct its_cmd_desc desc;
1186 
1187 	desc.its_mapc_cmd.col = col;
1188 	desc.its_mapc_cmd.valid = !!valid;
1189 
1190 	its_send_single_command(its, its_build_mapc_cmd, &desc);
1191 }
1192 
1193 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1194 {
1195 	struct its_cmd_desc desc;
1196 
1197 	desc.its_mapti_cmd.dev = dev;
1198 	desc.its_mapti_cmd.phys_id = irq_id;
1199 	desc.its_mapti_cmd.event_id = id;
1200 
1201 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1202 }
1203 
1204 static void its_send_movi(struct its_device *dev,
1205 			  struct its_collection *col, u32 id)
1206 {
1207 	struct its_cmd_desc desc;
1208 
1209 	desc.its_movi_cmd.dev = dev;
1210 	desc.its_movi_cmd.col = col;
1211 	desc.its_movi_cmd.event_id = id;
1212 
1213 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1214 }
1215 
1216 static void its_send_discard(struct its_device *dev, u32 id)
1217 {
1218 	struct its_cmd_desc desc;
1219 
1220 	desc.its_discard_cmd.dev = dev;
1221 	desc.its_discard_cmd.event_id = id;
1222 
1223 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1224 }
1225 
1226 static void its_send_invall(struct its_node *its, struct its_collection *col)
1227 {
1228 	struct its_cmd_desc desc;
1229 
1230 	desc.its_invall_cmd.col = col;
1231 
1232 	its_send_single_command(its, its_build_invall_cmd, &desc);
1233 }
1234 
1235 static void its_send_vmapti(struct its_device *dev, u32 id)
1236 {
1237 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1238 	struct its_cmd_desc desc;
1239 
1240 	desc.its_vmapti_cmd.vpe = map->vpe;
1241 	desc.its_vmapti_cmd.dev = dev;
1242 	desc.its_vmapti_cmd.virt_id = map->vintid;
1243 	desc.its_vmapti_cmd.event_id = id;
1244 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1245 
1246 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1247 }
1248 
1249 static void its_send_vmovi(struct its_device *dev, u32 id)
1250 {
1251 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1252 	struct its_cmd_desc desc;
1253 
1254 	desc.its_vmovi_cmd.vpe = map->vpe;
1255 	desc.its_vmovi_cmd.dev = dev;
1256 	desc.its_vmovi_cmd.event_id = id;
1257 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1258 
1259 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1260 }
1261 
1262 static void its_send_vmapp(struct its_node *its,
1263 			   struct its_vpe *vpe, bool valid)
1264 {
1265 	struct its_cmd_desc desc;
1266 
1267 	desc.its_vmapp_cmd.vpe = vpe;
1268 	desc.its_vmapp_cmd.valid = valid;
1269 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1270 
1271 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1272 }
1273 
1274 static void its_send_vmovp(struct its_vpe *vpe)
1275 {
1276 	struct its_cmd_desc desc = {};
1277 	struct its_node *its;
1278 	unsigned long flags;
1279 	int col_id = vpe->col_idx;
1280 
1281 	desc.its_vmovp_cmd.vpe = vpe;
1282 
1283 	if (!its_list_map) {
1284 		its = list_first_entry(&its_nodes, struct its_node, entry);
1285 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1286 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1287 		return;
1288 	}
1289 
1290 	/*
1291 	 * Yet another marvel of the architecture. If using the
1292 	 * its_list "feature", we need to make sure that all ITSs
1293 	 * receive all VMOVP commands in the same order. The only way
1294 	 * to guarantee this is to make vmovp a serialization point.
1295 	 *
1296 	 * Wall <-- Head.
1297 	 */
1298 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1299 
1300 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1301 	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1302 
1303 	/* Emit VMOVPs */
1304 	list_for_each_entry(its, &its_nodes, entry) {
1305 		if (!is_v4(its))
1306 			continue;
1307 
1308 		if (!require_its_list_vmovp(vpe->its_vm, its))
1309 			continue;
1310 
1311 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1312 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1313 	}
1314 
1315 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1316 }
1317 
1318 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1319 {
1320 	struct its_cmd_desc desc;
1321 
1322 	desc.its_vinvall_cmd.vpe = vpe;
1323 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1324 }
1325 
1326 static void its_send_vinv(struct its_device *dev, u32 event_id)
1327 {
1328 	struct its_cmd_desc desc;
1329 
1330 	/*
1331 	 * There is no real VINV command. This is just a normal INV,
1332 	 * with a VSYNC instead of a SYNC.
1333 	 */
1334 	desc.its_inv_cmd.dev = dev;
1335 	desc.its_inv_cmd.event_id = event_id;
1336 
1337 	its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1338 }
1339 
1340 static void its_send_vint(struct its_device *dev, u32 event_id)
1341 {
1342 	struct its_cmd_desc desc;
1343 
1344 	/*
1345 	 * There is no real VINT command. This is just a normal INT,
1346 	 * with a VSYNC instead of a SYNC.
1347 	 */
1348 	desc.its_int_cmd.dev = dev;
1349 	desc.its_int_cmd.event_id = event_id;
1350 
1351 	its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1352 }
1353 
1354 static void its_send_vclear(struct its_device *dev, u32 event_id)
1355 {
1356 	struct its_cmd_desc desc;
1357 
1358 	/*
1359 	 * There is no real VCLEAR command. This is just a normal CLEAR,
1360 	 * with a VSYNC instead of a SYNC.
1361 	 */
1362 	desc.its_clear_cmd.dev = dev;
1363 	desc.its_clear_cmd.event_id = event_id;
1364 
1365 	its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1366 }
1367 
1368 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1369 {
1370 	struct its_cmd_desc desc;
1371 
1372 	desc.its_invdb_cmd.vpe = vpe;
1373 	its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1374 }
1375 
1376 /*
1377  * irqchip functions - assumes MSI, mostly.
1378  */
1379 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1380 {
1381 	struct its_vlpi_map *map = get_vlpi_map(d);
1382 	irq_hw_number_t hwirq;
1383 	void *va;
1384 	u8 *cfg;
1385 
1386 	if (map) {
1387 		va = page_address(map->vm->vprop_page);
1388 		hwirq = map->vintid;
1389 
1390 		/* Remember the updated property */
1391 		map->properties &= ~clr;
1392 		map->properties |= set | LPI_PROP_GROUP1;
1393 	} else {
1394 		va = gic_rdists->prop_table_va;
1395 		hwirq = d->hwirq;
1396 	}
1397 
1398 	cfg = va + hwirq - 8192;
1399 	*cfg &= ~clr;
1400 	*cfg |= set | LPI_PROP_GROUP1;
1401 
1402 	/*
1403 	 * Make the above write visible to the redistributors.
1404 	 * And yes, we're flushing exactly: One. Single. Byte.
1405 	 * Humpf...
1406 	 */
1407 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1408 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1409 	else
1410 		dsb(ishst);
1411 }
1412 
1413 static void wait_for_syncr(void __iomem *rdbase)
1414 {
1415 	while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1416 		cpu_relax();
1417 }
1418 
1419 static void direct_lpi_inv(struct irq_data *d)
1420 {
1421 	struct its_vlpi_map *map = get_vlpi_map(d);
1422 	void __iomem *rdbase;
1423 	unsigned long flags;
1424 	u64 val;
1425 	int cpu;
1426 
1427 	if (map) {
1428 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1429 
1430 		WARN_ON(!is_v4_1(its_dev->its));
1431 
1432 		val  = GICR_INVLPIR_V;
1433 		val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1434 		val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1435 	} else {
1436 		val = d->hwirq;
1437 	}
1438 
1439 	/* Target the redistributor this LPI is currently routed to */
1440 	cpu = irq_to_cpuid_lock(d, &flags);
1441 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1442 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1443 	gic_write_lpir(val, rdbase + GICR_INVLPIR);
1444 
1445 	wait_for_syncr(rdbase);
1446 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1447 	irq_to_cpuid_unlock(d, flags);
1448 }
1449 
1450 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1451 {
1452 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1453 
1454 	lpi_write_config(d, clr, set);
1455 	if (gic_rdists->has_direct_lpi &&
1456 	    (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1457 		direct_lpi_inv(d);
1458 	else if (!irqd_is_forwarded_to_vcpu(d))
1459 		its_send_inv(its_dev, its_get_event_id(d));
1460 	else
1461 		its_send_vinv(its_dev, its_get_event_id(d));
1462 }
1463 
1464 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1465 {
1466 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1467 	u32 event = its_get_event_id(d);
1468 	struct its_vlpi_map *map;
1469 
1470 	/*
1471 	 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1472 	 * here.
1473 	 */
1474 	if (is_v4_1(its_dev->its))
1475 		return;
1476 
1477 	map = dev_event_to_vlpi_map(its_dev, event);
1478 
1479 	if (map->db_enabled == enable)
1480 		return;
1481 
1482 	map->db_enabled = enable;
1483 
1484 	/*
1485 	 * More fun with the architecture:
1486 	 *
1487 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1488 	 * value or to 1023, depending on the enable bit. But that
1489 	 * would be issueing a mapping for an /existing/ DevID+EventID
1490 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1491 	 * to the /same/ vPE, using this opportunity to adjust the
1492 	 * doorbell. Mouahahahaha. We loves it, Precious.
1493 	 */
1494 	its_send_vmovi(its_dev, event);
1495 }
1496 
1497 static void its_mask_irq(struct irq_data *d)
1498 {
1499 	if (irqd_is_forwarded_to_vcpu(d))
1500 		its_vlpi_set_doorbell(d, false);
1501 
1502 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1503 }
1504 
1505 static void its_unmask_irq(struct irq_data *d)
1506 {
1507 	if (irqd_is_forwarded_to_vcpu(d))
1508 		its_vlpi_set_doorbell(d, true);
1509 
1510 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1511 }
1512 
1513 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1514 			    bool force)
1515 {
1516 	unsigned int cpu;
1517 	const struct cpumask *cpu_mask = cpu_online_mask;
1518 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1519 	struct its_collection *target_col;
1520 	u32 id = its_get_event_id(d);
1521 
1522 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1523 	if (irqd_is_forwarded_to_vcpu(d))
1524 		return -EINVAL;
1525 
1526        /* lpi cannot be routed to a redistributor that is on a foreign node */
1527 	if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1528 		if (its_dev->its->numa_node >= 0) {
1529 			cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1530 			if (!cpumask_intersects(mask_val, cpu_mask))
1531 				return -EINVAL;
1532 		}
1533 	}
1534 
1535 	cpu = cpumask_any_and(mask_val, cpu_mask);
1536 
1537 	if (cpu >= nr_cpu_ids)
1538 		return -EINVAL;
1539 
1540 	/* don't set the affinity when the target cpu is same as current one */
1541 	if (cpu != its_dev->event_map.col_map[id]) {
1542 		target_col = &its_dev->its->collections[cpu];
1543 		its_send_movi(its_dev, target_col, id);
1544 		its_dev->event_map.col_map[id] = cpu;
1545 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1546 	}
1547 
1548 	return IRQ_SET_MASK_OK_DONE;
1549 }
1550 
1551 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1552 {
1553 	struct its_node *its = its_dev->its;
1554 
1555 	return its->phys_base + GITS_TRANSLATER;
1556 }
1557 
1558 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1559 {
1560 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1561 	struct its_node *its;
1562 	u64 addr;
1563 
1564 	its = its_dev->its;
1565 	addr = its->get_msi_base(its_dev);
1566 
1567 	msg->address_lo		= lower_32_bits(addr);
1568 	msg->address_hi		= upper_32_bits(addr);
1569 	msg->data		= its_get_event_id(d);
1570 
1571 	iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1572 }
1573 
1574 static int its_irq_set_irqchip_state(struct irq_data *d,
1575 				     enum irqchip_irq_state which,
1576 				     bool state)
1577 {
1578 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1579 	u32 event = its_get_event_id(d);
1580 
1581 	if (which != IRQCHIP_STATE_PENDING)
1582 		return -EINVAL;
1583 
1584 	if (irqd_is_forwarded_to_vcpu(d)) {
1585 		if (state)
1586 			its_send_vint(its_dev, event);
1587 		else
1588 			its_send_vclear(its_dev, event);
1589 	} else {
1590 		if (state)
1591 			its_send_int(its_dev, event);
1592 		else
1593 			its_send_clear(its_dev, event);
1594 	}
1595 
1596 	return 0;
1597 }
1598 
1599 /*
1600  * Two favourable cases:
1601  *
1602  * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1603  *     for vSGI delivery
1604  *
1605  * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1606  *     and we're better off mapping all VPEs always
1607  *
1608  * If neither (a) nor (b) is true, then we map vPEs on demand.
1609  *
1610  */
1611 static bool gic_requires_eager_mapping(void)
1612 {
1613 	if (!its_list_map || gic_rdists->has_rvpeid)
1614 		return true;
1615 
1616 	return false;
1617 }
1618 
1619 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1620 {
1621 	unsigned long flags;
1622 
1623 	if (gic_requires_eager_mapping())
1624 		return;
1625 
1626 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1627 
1628 	/*
1629 	 * If the VM wasn't mapped yet, iterate over the vpes and get
1630 	 * them mapped now.
1631 	 */
1632 	vm->vlpi_count[its->list_nr]++;
1633 
1634 	if (vm->vlpi_count[its->list_nr] == 1) {
1635 		int i;
1636 
1637 		for (i = 0; i < vm->nr_vpes; i++) {
1638 			struct its_vpe *vpe = vm->vpes[i];
1639 			struct irq_data *d = irq_get_irq_data(vpe->irq);
1640 
1641 			/* Map the VPE to the first possible CPU */
1642 			vpe->col_idx = cpumask_first(cpu_online_mask);
1643 			its_send_vmapp(its, vpe, true);
1644 			its_send_vinvall(its, vpe);
1645 			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1646 		}
1647 	}
1648 
1649 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1650 }
1651 
1652 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1653 {
1654 	unsigned long flags;
1655 
1656 	/* Not using the ITS list? Everything is always mapped. */
1657 	if (gic_requires_eager_mapping())
1658 		return;
1659 
1660 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1661 
1662 	if (!--vm->vlpi_count[its->list_nr]) {
1663 		int i;
1664 
1665 		for (i = 0; i < vm->nr_vpes; i++)
1666 			its_send_vmapp(its, vm->vpes[i], false);
1667 	}
1668 
1669 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1670 }
1671 
1672 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1673 {
1674 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1675 	u32 event = its_get_event_id(d);
1676 	int ret = 0;
1677 
1678 	if (!info->map)
1679 		return -EINVAL;
1680 
1681 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1682 
1683 	if (!its_dev->event_map.vm) {
1684 		struct its_vlpi_map *maps;
1685 
1686 		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1687 			       GFP_ATOMIC);
1688 		if (!maps) {
1689 			ret = -ENOMEM;
1690 			goto out;
1691 		}
1692 
1693 		its_dev->event_map.vm = info->map->vm;
1694 		its_dev->event_map.vlpi_maps = maps;
1695 	} else if (its_dev->event_map.vm != info->map->vm) {
1696 		ret = -EINVAL;
1697 		goto out;
1698 	}
1699 
1700 	/* Get our private copy of the mapping information */
1701 	its_dev->event_map.vlpi_maps[event] = *info->map;
1702 
1703 	if (irqd_is_forwarded_to_vcpu(d)) {
1704 		/* Already mapped, move it around */
1705 		its_send_vmovi(its_dev, event);
1706 	} else {
1707 		/* Ensure all the VPEs are mapped on this ITS */
1708 		its_map_vm(its_dev->its, info->map->vm);
1709 
1710 		/*
1711 		 * Flag the interrupt as forwarded so that we can
1712 		 * start poking the virtual property table.
1713 		 */
1714 		irqd_set_forwarded_to_vcpu(d);
1715 
1716 		/* Write out the property to the prop table */
1717 		lpi_write_config(d, 0xff, info->map->properties);
1718 
1719 		/* Drop the physical mapping */
1720 		its_send_discard(its_dev, event);
1721 
1722 		/* and install the virtual one */
1723 		its_send_vmapti(its_dev, event);
1724 
1725 		/* Increment the number of VLPIs */
1726 		its_dev->event_map.nr_vlpis++;
1727 	}
1728 
1729 out:
1730 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1731 	return ret;
1732 }
1733 
1734 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1735 {
1736 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1737 	struct its_vlpi_map *map;
1738 	int ret = 0;
1739 
1740 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1741 
1742 	map = get_vlpi_map(d);
1743 
1744 	if (!its_dev->event_map.vm || !map) {
1745 		ret = -EINVAL;
1746 		goto out;
1747 	}
1748 
1749 	/* Copy our mapping information to the incoming request */
1750 	*info->map = *map;
1751 
1752 out:
1753 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1754 	return ret;
1755 }
1756 
1757 static int its_vlpi_unmap(struct irq_data *d)
1758 {
1759 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1760 	u32 event = its_get_event_id(d);
1761 	int ret = 0;
1762 
1763 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1764 
1765 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1766 		ret = -EINVAL;
1767 		goto out;
1768 	}
1769 
1770 	/* Drop the virtual mapping */
1771 	its_send_discard(its_dev, event);
1772 
1773 	/* and restore the physical one */
1774 	irqd_clr_forwarded_to_vcpu(d);
1775 	its_send_mapti(its_dev, d->hwirq, event);
1776 	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1777 				    LPI_PROP_ENABLED |
1778 				    LPI_PROP_GROUP1));
1779 
1780 	/* Potentially unmap the VM from this ITS */
1781 	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1782 
1783 	/*
1784 	 * Drop the refcount and make the device available again if
1785 	 * this was the last VLPI.
1786 	 */
1787 	if (!--its_dev->event_map.nr_vlpis) {
1788 		its_dev->event_map.vm = NULL;
1789 		kfree(its_dev->event_map.vlpi_maps);
1790 	}
1791 
1792 out:
1793 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1794 	return ret;
1795 }
1796 
1797 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1798 {
1799 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1800 
1801 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1802 		return -EINVAL;
1803 
1804 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1805 		lpi_update_config(d, 0xff, info->config);
1806 	else
1807 		lpi_write_config(d, 0xff, info->config);
1808 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1809 
1810 	return 0;
1811 }
1812 
1813 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1814 {
1815 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1816 	struct its_cmd_info *info = vcpu_info;
1817 
1818 	/* Need a v4 ITS */
1819 	if (!is_v4(its_dev->its))
1820 		return -EINVAL;
1821 
1822 	/* Unmap request? */
1823 	if (!info)
1824 		return its_vlpi_unmap(d);
1825 
1826 	switch (info->cmd_type) {
1827 	case MAP_VLPI:
1828 		return its_vlpi_map(d, info);
1829 
1830 	case GET_VLPI:
1831 		return its_vlpi_get(d, info);
1832 
1833 	case PROP_UPDATE_VLPI:
1834 	case PROP_UPDATE_AND_INV_VLPI:
1835 		return its_vlpi_prop_update(d, info);
1836 
1837 	default:
1838 		return -EINVAL;
1839 	}
1840 }
1841 
1842 static struct irq_chip its_irq_chip = {
1843 	.name			= "ITS",
1844 	.irq_mask		= its_mask_irq,
1845 	.irq_unmask		= its_unmask_irq,
1846 	.irq_eoi		= irq_chip_eoi_parent,
1847 	.irq_set_affinity	= its_set_affinity,
1848 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
1849 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
1850 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
1851 };
1852 
1853 
1854 /*
1855  * How we allocate LPIs:
1856  *
1857  * lpi_range_list contains ranges of LPIs that are to available to
1858  * allocate from. To allocate LPIs, just pick the first range that
1859  * fits the required allocation, and reduce it by the required
1860  * amount. Once empty, remove the range from the list.
1861  *
1862  * To free a range of LPIs, add a free range to the list, sort it and
1863  * merge the result if the new range happens to be adjacent to an
1864  * already free block.
1865  *
1866  * The consequence of the above is that allocation is cost is low, but
1867  * freeing is expensive. We assumes that freeing rarely occurs.
1868  */
1869 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
1870 
1871 static DEFINE_MUTEX(lpi_range_lock);
1872 static LIST_HEAD(lpi_range_list);
1873 
1874 struct lpi_range {
1875 	struct list_head	entry;
1876 	u32			base_id;
1877 	u32			span;
1878 };
1879 
1880 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
1881 {
1882 	struct lpi_range *range;
1883 
1884 	range = kmalloc(sizeof(*range), GFP_KERNEL);
1885 	if (range) {
1886 		range->base_id = base;
1887 		range->span = span;
1888 	}
1889 
1890 	return range;
1891 }
1892 
1893 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
1894 {
1895 	struct lpi_range *range, *tmp;
1896 	int err = -ENOSPC;
1897 
1898 	mutex_lock(&lpi_range_lock);
1899 
1900 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
1901 		if (range->span >= nr_lpis) {
1902 			*base = range->base_id;
1903 			range->base_id += nr_lpis;
1904 			range->span -= nr_lpis;
1905 
1906 			if (range->span == 0) {
1907 				list_del(&range->entry);
1908 				kfree(range);
1909 			}
1910 
1911 			err = 0;
1912 			break;
1913 		}
1914 	}
1915 
1916 	mutex_unlock(&lpi_range_lock);
1917 
1918 	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
1919 	return err;
1920 }
1921 
1922 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
1923 {
1924 	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
1925 		return;
1926 	if (a->base_id + a->span != b->base_id)
1927 		return;
1928 	b->base_id = a->base_id;
1929 	b->span += a->span;
1930 	list_del(&a->entry);
1931 	kfree(a);
1932 }
1933 
1934 static int free_lpi_range(u32 base, u32 nr_lpis)
1935 {
1936 	struct lpi_range *new, *old;
1937 
1938 	new = mk_lpi_range(base, nr_lpis);
1939 	if (!new)
1940 		return -ENOMEM;
1941 
1942 	mutex_lock(&lpi_range_lock);
1943 
1944 	list_for_each_entry_reverse(old, &lpi_range_list, entry) {
1945 		if (old->base_id < base)
1946 			break;
1947 	}
1948 	/*
1949 	 * old is the last element with ->base_id smaller than base,
1950 	 * so new goes right after it. If there are no elements with
1951 	 * ->base_id smaller than base, &old->entry ends up pointing
1952 	 * at the head of the list, and inserting new it the start of
1953 	 * the list is the right thing to do in that case as well.
1954 	 */
1955 	list_add(&new->entry, &old->entry);
1956 	/*
1957 	 * Now check if we can merge with the preceding and/or
1958 	 * following ranges.
1959 	 */
1960 	merge_lpi_ranges(old, new);
1961 	merge_lpi_ranges(new, list_next_entry(new, entry));
1962 
1963 	mutex_unlock(&lpi_range_lock);
1964 	return 0;
1965 }
1966 
1967 static int __init its_lpi_init(u32 id_bits)
1968 {
1969 	u32 lpis = (1UL << id_bits) - 8192;
1970 	u32 numlpis;
1971 	int err;
1972 
1973 	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
1974 
1975 	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
1976 		lpis = numlpis;
1977 		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
1978 			lpis);
1979 	}
1980 
1981 	/*
1982 	 * Initializing the allocator is just the same as freeing the
1983 	 * full range of LPIs.
1984 	 */
1985 	err = free_lpi_range(8192, lpis);
1986 	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
1987 	return err;
1988 }
1989 
1990 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
1991 {
1992 	unsigned long *bitmap = NULL;
1993 	int err = 0;
1994 
1995 	do {
1996 		err = alloc_lpi_range(nr_irqs, base);
1997 		if (!err)
1998 			break;
1999 
2000 		nr_irqs /= 2;
2001 	} while (nr_irqs > 0);
2002 
2003 	if (!nr_irqs)
2004 		err = -ENOSPC;
2005 
2006 	if (err)
2007 		goto out;
2008 
2009 	bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC);
2010 	if (!bitmap)
2011 		goto out;
2012 
2013 	*nr_ids = nr_irqs;
2014 
2015 out:
2016 	if (!bitmap)
2017 		*base = *nr_ids = 0;
2018 
2019 	return bitmap;
2020 }
2021 
2022 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2023 {
2024 	WARN_ON(free_lpi_range(base, nr_ids));
2025 	kfree(bitmap);
2026 }
2027 
2028 static void gic_reset_prop_table(void *va)
2029 {
2030 	/* Priority 0xa0, Group-1, disabled */
2031 	memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2032 
2033 	/* Make sure the GIC will observe the written configuration */
2034 	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2035 }
2036 
2037 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2038 {
2039 	struct page *prop_page;
2040 
2041 	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2042 	if (!prop_page)
2043 		return NULL;
2044 
2045 	gic_reset_prop_table(page_address(prop_page));
2046 
2047 	return prop_page;
2048 }
2049 
2050 static void its_free_prop_table(struct page *prop_page)
2051 {
2052 	free_pages((unsigned long)page_address(prop_page),
2053 		   get_order(LPI_PROPBASE_SZ));
2054 }
2055 
2056 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2057 {
2058 	phys_addr_t start, end, addr_end;
2059 	u64 i;
2060 
2061 	/*
2062 	 * We don't bother checking for a kdump kernel as by
2063 	 * construction, the LPI tables are out of this kernel's
2064 	 * memory map.
2065 	 */
2066 	if (is_kdump_kernel())
2067 		return true;
2068 
2069 	addr_end = addr + size - 1;
2070 
2071 	for_each_reserved_mem_region(i, &start, &end) {
2072 		if (addr >= start && addr_end <= end)
2073 			return true;
2074 	}
2075 
2076 	/* Not found, not a good sign... */
2077 	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2078 		&addr, &addr_end);
2079 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2080 	return false;
2081 }
2082 
2083 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2084 {
2085 	if (efi_enabled(EFI_CONFIG_TABLES))
2086 		return efi_mem_reserve_persistent(addr, size);
2087 
2088 	return 0;
2089 }
2090 
2091 static int __init its_setup_lpi_prop_table(void)
2092 {
2093 	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2094 		u64 val;
2095 
2096 		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2097 		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2098 
2099 		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2100 		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2101 						     LPI_PROPBASE_SZ,
2102 						     MEMREMAP_WB);
2103 		gic_reset_prop_table(gic_rdists->prop_table_va);
2104 	} else {
2105 		struct page *page;
2106 
2107 		lpi_id_bits = min_t(u32,
2108 				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2109 				    ITS_MAX_LPI_NRBITS);
2110 		page = its_allocate_prop_table(GFP_NOWAIT);
2111 		if (!page) {
2112 			pr_err("Failed to allocate PROPBASE\n");
2113 			return -ENOMEM;
2114 		}
2115 
2116 		gic_rdists->prop_table_pa = page_to_phys(page);
2117 		gic_rdists->prop_table_va = page_address(page);
2118 		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2119 					  LPI_PROPBASE_SZ));
2120 	}
2121 
2122 	pr_info("GICv3: using LPI property table @%pa\n",
2123 		&gic_rdists->prop_table_pa);
2124 
2125 	return its_lpi_init(lpi_id_bits);
2126 }
2127 
2128 static const char *its_base_type_string[] = {
2129 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
2130 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
2131 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
2132 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
2133 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
2134 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
2135 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
2136 };
2137 
2138 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2139 {
2140 	u32 idx = baser - its->tables;
2141 
2142 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2143 }
2144 
2145 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2146 			    u64 val)
2147 {
2148 	u32 idx = baser - its->tables;
2149 
2150 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2151 	baser->val = its_read_baser(its, baser);
2152 }
2153 
2154 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2155 			   u64 cache, u64 shr, u32 order, bool indirect)
2156 {
2157 	u64 val = its_read_baser(its, baser);
2158 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
2159 	u64 type = GITS_BASER_TYPE(val);
2160 	u64 baser_phys, tmp;
2161 	u32 alloc_pages, psz;
2162 	struct page *page;
2163 	void *base;
2164 
2165 	psz = baser->psz;
2166 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2167 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
2168 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2169 			&its->phys_base, its_base_type_string[type],
2170 			alloc_pages, GITS_BASER_PAGES_MAX);
2171 		alloc_pages = GITS_BASER_PAGES_MAX;
2172 		order = get_order(GITS_BASER_PAGES_MAX * psz);
2173 	}
2174 
2175 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2176 	if (!page)
2177 		return -ENOMEM;
2178 
2179 	base = (void *)page_address(page);
2180 	baser_phys = virt_to_phys(base);
2181 
2182 	/* Check if the physical address of the memory is above 48bits */
2183 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2184 
2185 		/* 52bit PA is supported only when PageSize=64K */
2186 		if (psz != SZ_64K) {
2187 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2188 			free_pages((unsigned long)base, order);
2189 			return -ENXIO;
2190 		}
2191 
2192 		/* Convert 52bit PA to 48bit field */
2193 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2194 	}
2195 
2196 retry_baser:
2197 	val = (baser_phys					 |
2198 		(type << GITS_BASER_TYPE_SHIFT)			 |
2199 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
2200 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
2201 		cache						 |
2202 		shr						 |
2203 		GITS_BASER_VALID);
2204 
2205 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
2206 
2207 	switch (psz) {
2208 	case SZ_4K:
2209 		val |= GITS_BASER_PAGE_SIZE_4K;
2210 		break;
2211 	case SZ_16K:
2212 		val |= GITS_BASER_PAGE_SIZE_16K;
2213 		break;
2214 	case SZ_64K:
2215 		val |= GITS_BASER_PAGE_SIZE_64K;
2216 		break;
2217 	}
2218 
2219 	its_write_baser(its, baser, val);
2220 	tmp = baser->val;
2221 
2222 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2223 		/*
2224 		 * Shareability didn't stick. Just use
2225 		 * whatever the read reported, which is likely
2226 		 * to be the only thing this redistributor
2227 		 * supports. If that's zero, make it
2228 		 * non-cacheable as well.
2229 		 */
2230 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2231 		if (!shr) {
2232 			cache = GITS_BASER_nC;
2233 			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2234 		}
2235 		goto retry_baser;
2236 	}
2237 
2238 	if (val != tmp) {
2239 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2240 		       &its->phys_base, its_base_type_string[type],
2241 		       val, tmp);
2242 		free_pages((unsigned long)base, order);
2243 		return -ENXIO;
2244 	}
2245 
2246 	baser->order = order;
2247 	baser->base = base;
2248 	baser->psz = psz;
2249 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2250 
2251 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2252 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2253 		its_base_type_string[type],
2254 		(unsigned long)virt_to_phys(base),
2255 		indirect ? "indirect" : "flat", (int)esz,
2256 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2257 
2258 	return 0;
2259 }
2260 
2261 static bool its_parse_indirect_baser(struct its_node *its,
2262 				     struct its_baser *baser,
2263 				     u32 *order, u32 ids)
2264 {
2265 	u64 tmp = its_read_baser(its, baser);
2266 	u64 type = GITS_BASER_TYPE(tmp);
2267 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2268 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2269 	u32 new_order = *order;
2270 	u32 psz = baser->psz;
2271 	bool indirect = false;
2272 
2273 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
2274 	if ((esz << ids) > (psz * 2)) {
2275 		/*
2276 		 * Find out whether hw supports a single or two-level table by
2277 		 * table by reading bit at offset '62' after writing '1' to it.
2278 		 */
2279 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2280 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
2281 
2282 		if (indirect) {
2283 			/*
2284 			 * The size of the lvl2 table is equal to ITS page size
2285 			 * which is 'psz'. For computing lvl1 table size,
2286 			 * subtract ID bits that sparse lvl2 table from 'ids'
2287 			 * which is reported by ITS hardware times lvl1 table
2288 			 * entry size.
2289 			 */
2290 			ids -= ilog2(psz / (int)esz);
2291 			esz = GITS_LVL1_ENTRY_SIZE;
2292 		}
2293 	}
2294 
2295 	/*
2296 	 * Allocate as many entries as required to fit the
2297 	 * range of device IDs that the ITS can grok... The ID
2298 	 * space being incredibly sparse, this results in a
2299 	 * massive waste of memory if two-level device table
2300 	 * feature is not supported by hardware.
2301 	 */
2302 	new_order = max_t(u32, get_order(esz << ids), new_order);
2303 	if (new_order >= MAX_ORDER) {
2304 		new_order = MAX_ORDER - 1;
2305 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2306 		pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2307 			&its->phys_base, its_base_type_string[type],
2308 			device_ids(its), ids);
2309 	}
2310 
2311 	*order = new_order;
2312 
2313 	return indirect;
2314 }
2315 
2316 static u32 compute_common_aff(u64 val)
2317 {
2318 	u32 aff, clpiaff;
2319 
2320 	aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2321 	clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2322 
2323 	return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2324 }
2325 
2326 static u32 compute_its_aff(struct its_node *its)
2327 {
2328 	u64 val;
2329 	u32 svpet;
2330 
2331 	/*
2332 	 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2333 	 * the resulting affinity. We then use that to see if this match
2334 	 * our own affinity.
2335 	 */
2336 	svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2337 	val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2338 	val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2339 	return compute_common_aff(val);
2340 }
2341 
2342 static struct its_node *find_sibling_its(struct its_node *cur_its)
2343 {
2344 	struct its_node *its;
2345 	u32 aff;
2346 
2347 	if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2348 		return NULL;
2349 
2350 	aff = compute_its_aff(cur_its);
2351 
2352 	list_for_each_entry(its, &its_nodes, entry) {
2353 		u64 baser;
2354 
2355 		if (!is_v4_1(its) || its == cur_its)
2356 			continue;
2357 
2358 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2359 			continue;
2360 
2361 		if (aff != compute_its_aff(its))
2362 			continue;
2363 
2364 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2365 		baser = its->tables[2].val;
2366 		if (!(baser & GITS_BASER_VALID))
2367 			continue;
2368 
2369 		return its;
2370 	}
2371 
2372 	return NULL;
2373 }
2374 
2375 static void its_free_tables(struct its_node *its)
2376 {
2377 	int i;
2378 
2379 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2380 		if (its->tables[i].base) {
2381 			free_pages((unsigned long)its->tables[i].base,
2382 				   its->tables[i].order);
2383 			its->tables[i].base = NULL;
2384 		}
2385 	}
2386 }
2387 
2388 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2389 {
2390 	u64 psz = SZ_64K;
2391 
2392 	while (psz) {
2393 		u64 val, gpsz;
2394 
2395 		val = its_read_baser(its, baser);
2396 		val &= ~GITS_BASER_PAGE_SIZE_MASK;
2397 
2398 		switch (psz) {
2399 		case SZ_64K:
2400 			gpsz = GITS_BASER_PAGE_SIZE_64K;
2401 			break;
2402 		case SZ_16K:
2403 			gpsz = GITS_BASER_PAGE_SIZE_16K;
2404 			break;
2405 		case SZ_4K:
2406 		default:
2407 			gpsz = GITS_BASER_PAGE_SIZE_4K;
2408 			break;
2409 		}
2410 
2411 		gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2412 
2413 		val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2414 		its_write_baser(its, baser, val);
2415 
2416 		if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2417 			break;
2418 
2419 		switch (psz) {
2420 		case SZ_64K:
2421 			psz = SZ_16K;
2422 			break;
2423 		case SZ_16K:
2424 			psz = SZ_4K;
2425 			break;
2426 		case SZ_4K:
2427 		default:
2428 			return -1;
2429 		}
2430 	}
2431 
2432 	baser->psz = psz;
2433 	return 0;
2434 }
2435 
2436 static int its_alloc_tables(struct its_node *its)
2437 {
2438 	u64 shr = GITS_BASER_InnerShareable;
2439 	u64 cache = GITS_BASER_RaWaWb;
2440 	int err, i;
2441 
2442 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2443 		/* erratum 24313: ignore memory access type */
2444 		cache = GITS_BASER_nCnB;
2445 
2446 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2447 		struct its_baser *baser = its->tables + i;
2448 		u64 val = its_read_baser(its, baser);
2449 		u64 type = GITS_BASER_TYPE(val);
2450 		bool indirect = false;
2451 		u32 order;
2452 
2453 		if (type == GITS_BASER_TYPE_NONE)
2454 			continue;
2455 
2456 		if (its_probe_baser_psz(its, baser)) {
2457 			its_free_tables(its);
2458 			return -ENXIO;
2459 		}
2460 
2461 		order = get_order(baser->psz);
2462 
2463 		switch (type) {
2464 		case GITS_BASER_TYPE_DEVICE:
2465 			indirect = its_parse_indirect_baser(its, baser, &order,
2466 							    device_ids(its));
2467 			break;
2468 
2469 		case GITS_BASER_TYPE_VCPU:
2470 			if (is_v4_1(its)) {
2471 				struct its_node *sibling;
2472 
2473 				WARN_ON(i != 2);
2474 				if ((sibling = find_sibling_its(its))) {
2475 					*baser = sibling->tables[2];
2476 					its_write_baser(its, baser, baser->val);
2477 					continue;
2478 				}
2479 			}
2480 
2481 			indirect = its_parse_indirect_baser(its, baser, &order,
2482 							    ITS_MAX_VPEID_BITS);
2483 			break;
2484 		}
2485 
2486 		err = its_setup_baser(its, baser, cache, shr, order, indirect);
2487 		if (err < 0) {
2488 			its_free_tables(its);
2489 			return err;
2490 		}
2491 
2492 		/* Update settings which will be used for next BASERn */
2493 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2494 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2495 	}
2496 
2497 	return 0;
2498 }
2499 
2500 static u64 inherit_vpe_l1_table_from_its(void)
2501 {
2502 	struct its_node *its;
2503 	u64 val;
2504 	u32 aff;
2505 
2506 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2507 	aff = compute_common_aff(val);
2508 
2509 	list_for_each_entry(its, &its_nodes, entry) {
2510 		u64 baser, addr;
2511 
2512 		if (!is_v4_1(its))
2513 			continue;
2514 
2515 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2516 			continue;
2517 
2518 		if (aff != compute_its_aff(its))
2519 			continue;
2520 
2521 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2522 		baser = its->tables[2].val;
2523 		if (!(baser & GITS_BASER_VALID))
2524 			continue;
2525 
2526 		/* We have a winner! */
2527 		gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2528 
2529 		val  = GICR_VPROPBASER_4_1_VALID;
2530 		if (baser & GITS_BASER_INDIRECT)
2531 			val |= GICR_VPROPBASER_4_1_INDIRECT;
2532 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2533 				  FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2534 		switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2535 		case GIC_PAGE_SIZE_64K:
2536 			addr = GITS_BASER_ADDR_48_to_52(baser);
2537 			break;
2538 		default:
2539 			addr = baser & GENMASK_ULL(47, 12);
2540 			break;
2541 		}
2542 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2543 		val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2544 				  FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2545 		val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2546 				  FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2547 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2548 
2549 		return val;
2550 	}
2551 
2552 	return 0;
2553 }
2554 
2555 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2556 {
2557 	u32 aff;
2558 	u64 val;
2559 	int cpu;
2560 
2561 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2562 	aff = compute_common_aff(val);
2563 
2564 	for_each_possible_cpu(cpu) {
2565 		void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2566 
2567 		if (!base || cpu == smp_processor_id())
2568 			continue;
2569 
2570 		val = gic_read_typer(base + GICR_TYPER);
2571 		if (aff != compute_common_aff(val))
2572 			continue;
2573 
2574 		/*
2575 		 * At this point, we have a victim. This particular CPU
2576 		 * has already booted, and has an affinity that matches
2577 		 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2578 		 * Make sure we don't write the Z bit in that case.
2579 		 */
2580 		val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2581 		val &= ~GICR_VPROPBASER_4_1_Z;
2582 
2583 		gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2584 		*mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2585 
2586 		return val;
2587 	}
2588 
2589 	return 0;
2590 }
2591 
2592 static bool allocate_vpe_l2_table(int cpu, u32 id)
2593 {
2594 	void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2595 	unsigned int psz, esz, idx, npg, gpsz;
2596 	u64 val;
2597 	struct page *page;
2598 	__le64 *table;
2599 
2600 	if (!gic_rdists->has_rvpeid)
2601 		return true;
2602 
2603 	/* Skip non-present CPUs */
2604 	if (!base)
2605 		return true;
2606 
2607 	val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2608 
2609 	esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2610 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2611 	npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2612 
2613 	switch (gpsz) {
2614 	default:
2615 		WARN_ON(1);
2616 		/* fall through */
2617 	case GIC_PAGE_SIZE_4K:
2618 		psz = SZ_4K;
2619 		break;
2620 	case GIC_PAGE_SIZE_16K:
2621 		psz = SZ_16K;
2622 		break;
2623 	case GIC_PAGE_SIZE_64K:
2624 		psz = SZ_64K;
2625 		break;
2626 	}
2627 
2628 	/* Don't allow vpe_id that exceeds single, flat table limit */
2629 	if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2630 		return (id < (npg * psz / (esz * SZ_8)));
2631 
2632 	/* Compute 1st level table index & check if that exceeds table limit */
2633 	idx = id >> ilog2(psz / (esz * SZ_8));
2634 	if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2635 		return false;
2636 
2637 	table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2638 
2639 	/* Allocate memory for 2nd level table */
2640 	if (!table[idx]) {
2641 		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2642 		if (!page)
2643 			return false;
2644 
2645 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2646 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2647 			gic_flush_dcache_to_poc(page_address(page), psz);
2648 
2649 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2650 
2651 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2652 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2653 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2654 
2655 		/* Ensure updated table contents are visible to RD hardware */
2656 		dsb(sy);
2657 	}
2658 
2659 	return true;
2660 }
2661 
2662 static int allocate_vpe_l1_table(void)
2663 {
2664 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2665 	u64 val, gpsz, npg, pa;
2666 	unsigned int psz = SZ_64K;
2667 	unsigned int np, epp, esz;
2668 	struct page *page;
2669 
2670 	if (!gic_rdists->has_rvpeid)
2671 		return 0;
2672 
2673 	/*
2674 	 * if VPENDBASER.Valid is set, disable any previously programmed
2675 	 * VPE by setting PendingLast while clearing Valid. This has the
2676 	 * effect of making sure no doorbell will be generated and we can
2677 	 * then safely clear VPROPBASER.Valid.
2678 	 */
2679 	if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2680 		gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2681 				      vlpi_base + GICR_VPENDBASER);
2682 
2683 	/*
2684 	 * If we can inherit the configuration from another RD, let's do
2685 	 * so. Otherwise, we have to go through the allocation process. We
2686 	 * assume that all RDs have the exact same requirements, as
2687 	 * nothing will work otherwise.
2688 	 */
2689 	val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2690 	if (val & GICR_VPROPBASER_4_1_VALID)
2691 		goto out;
2692 
2693 	gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_KERNEL);
2694 	if (!gic_data_rdist()->vpe_table_mask)
2695 		return -ENOMEM;
2696 
2697 	val = inherit_vpe_l1_table_from_its();
2698 	if (val & GICR_VPROPBASER_4_1_VALID)
2699 		goto out;
2700 
2701 	/* First probe the page size */
2702 	val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2703 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2704 	val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2705 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2706 	esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2707 
2708 	switch (gpsz) {
2709 	default:
2710 		gpsz = GIC_PAGE_SIZE_4K;
2711 		/* fall through */
2712 	case GIC_PAGE_SIZE_4K:
2713 		psz = SZ_4K;
2714 		break;
2715 	case GIC_PAGE_SIZE_16K:
2716 		psz = SZ_16K;
2717 		break;
2718 	case GIC_PAGE_SIZE_64K:
2719 		psz = SZ_64K;
2720 		break;
2721 	}
2722 
2723 	/*
2724 	 * Start populating the register from scratch, including RO fields
2725 	 * (which we want to print in debug cases...)
2726 	 */
2727 	val = 0;
2728 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2729 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2730 
2731 	/* How many entries per GIC page? */
2732 	esz++;
2733 	epp = psz / (esz * SZ_8);
2734 
2735 	/*
2736 	 * If we need more than just a single L1 page, flag the table
2737 	 * as indirect and compute the number of required L1 pages.
2738 	 */
2739 	if (epp < ITS_MAX_VPEID) {
2740 		int nl2;
2741 
2742 		val |= GICR_VPROPBASER_4_1_INDIRECT;
2743 
2744 		/* Number of L2 pages required to cover the VPEID space */
2745 		nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2746 
2747 		/* Number of L1 pages to point to the L2 pages */
2748 		npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2749 	} else {
2750 		npg = 1;
2751 	}
2752 
2753 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2754 
2755 	/* Right, that's the number of CPU pages we need for L1 */
2756 	np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2757 
2758 	pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2759 		 np, npg, psz, epp, esz);
2760 	page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(np * PAGE_SIZE));
2761 	if (!page)
2762 		return -ENOMEM;
2763 
2764 	gic_data_rdist()->vpe_l1_base = page_address(page);
2765 	pa = virt_to_phys(page_address(page));
2766 	WARN_ON(!IS_ALIGNED(pa, psz));
2767 
2768 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2769 	val |= GICR_VPROPBASER_RaWb;
2770 	val |= GICR_VPROPBASER_InnerShareable;
2771 	val |= GICR_VPROPBASER_4_1_Z;
2772 	val |= GICR_VPROPBASER_4_1_VALID;
2773 
2774 out:
2775 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2776 	cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2777 
2778 	pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2779 		 smp_processor_id(), val,
2780 		 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2781 
2782 	return 0;
2783 }
2784 
2785 static int its_alloc_collections(struct its_node *its)
2786 {
2787 	int i;
2788 
2789 	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2790 				   GFP_KERNEL);
2791 	if (!its->collections)
2792 		return -ENOMEM;
2793 
2794 	for (i = 0; i < nr_cpu_ids; i++)
2795 		its->collections[i].target_address = ~0ULL;
2796 
2797 	return 0;
2798 }
2799 
2800 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2801 {
2802 	struct page *pend_page;
2803 
2804 	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2805 				get_order(LPI_PENDBASE_SZ));
2806 	if (!pend_page)
2807 		return NULL;
2808 
2809 	/* Make sure the GIC will observe the zero-ed page */
2810 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2811 
2812 	return pend_page;
2813 }
2814 
2815 static void its_free_pending_table(struct page *pt)
2816 {
2817 	free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2818 }
2819 
2820 /*
2821  * Booting with kdump and LPIs enabled is generally fine. Any other
2822  * case is wrong in the absence of firmware/EFI support.
2823  */
2824 static bool enabled_lpis_allowed(void)
2825 {
2826 	phys_addr_t addr;
2827 	u64 val;
2828 
2829 	/* Check whether the property table is in a reserved region */
2830 	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2831 	addr = val & GENMASK_ULL(51, 12);
2832 
2833 	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2834 }
2835 
2836 static int __init allocate_lpi_tables(void)
2837 {
2838 	u64 val;
2839 	int err, cpu;
2840 
2841 	/*
2842 	 * If LPIs are enabled while we run this from the boot CPU,
2843 	 * flag the RD tables as pre-allocated if the stars do align.
2844 	 */
2845 	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2846 	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2847 		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2848 				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2849 		pr_info("GICv3: Using preallocated redistributor tables\n");
2850 	}
2851 
2852 	err = its_setup_lpi_prop_table();
2853 	if (err)
2854 		return err;
2855 
2856 	/*
2857 	 * We allocate all the pending tables anyway, as we may have a
2858 	 * mix of RDs that have had LPIs enabled, and some that
2859 	 * don't. We'll free the unused ones as each CPU comes online.
2860 	 */
2861 	for_each_possible_cpu(cpu) {
2862 		struct page *pend_page;
2863 
2864 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
2865 		if (!pend_page) {
2866 			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
2867 			return -ENOMEM;
2868 		}
2869 
2870 		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
2871 	}
2872 
2873 	return 0;
2874 }
2875 
2876 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
2877 {
2878 	u32 count = 1000000;	/* 1s! */
2879 	bool clean;
2880 	u64 val;
2881 
2882 	val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2883 	val &= ~GICR_VPENDBASER_Valid;
2884 	val &= ~clr;
2885 	val |= set;
2886 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2887 
2888 	do {
2889 		val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2890 		clean = !(val & GICR_VPENDBASER_Dirty);
2891 		if (!clean) {
2892 			count--;
2893 			cpu_relax();
2894 			udelay(1);
2895 		}
2896 	} while (!clean && count);
2897 
2898 	if (unlikely(val & GICR_VPENDBASER_Dirty)) {
2899 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
2900 		val |= GICR_VPENDBASER_PendingLast;
2901 	}
2902 
2903 	return val;
2904 }
2905 
2906 static void its_cpu_init_lpis(void)
2907 {
2908 	void __iomem *rbase = gic_data_rdist_rd_base();
2909 	struct page *pend_page;
2910 	phys_addr_t paddr;
2911 	u64 val, tmp;
2912 
2913 	if (gic_data_rdist()->lpi_enabled)
2914 		return;
2915 
2916 	val = readl_relaxed(rbase + GICR_CTLR);
2917 	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
2918 	    (val & GICR_CTLR_ENABLE_LPIS)) {
2919 		/*
2920 		 * Check that we get the same property table on all
2921 		 * RDs. If we don't, this is hopeless.
2922 		 */
2923 		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
2924 		paddr &= GENMASK_ULL(51, 12);
2925 		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
2926 			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2927 
2928 		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2929 		paddr &= GENMASK_ULL(51, 16);
2930 
2931 		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
2932 		its_free_pending_table(gic_data_rdist()->pend_page);
2933 		gic_data_rdist()->pend_page = NULL;
2934 
2935 		goto out;
2936 	}
2937 
2938 	pend_page = gic_data_rdist()->pend_page;
2939 	paddr = page_to_phys(pend_page);
2940 	WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
2941 
2942 	/* set PROPBASE */
2943 	val = (gic_rdists->prop_table_pa |
2944 	       GICR_PROPBASER_InnerShareable |
2945 	       GICR_PROPBASER_RaWaWb |
2946 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
2947 
2948 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2949 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
2950 
2951 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
2952 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
2953 			/*
2954 			 * The HW reports non-shareable, we must
2955 			 * remove the cacheability attributes as
2956 			 * well.
2957 			 */
2958 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
2959 				 GICR_PROPBASER_CACHEABILITY_MASK);
2960 			val |= GICR_PROPBASER_nC;
2961 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2962 		}
2963 		pr_info_once("GIC: using cache flushing for LPI property table\n");
2964 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
2965 	}
2966 
2967 	/* set PENDBASE */
2968 	val = (page_to_phys(pend_page) |
2969 	       GICR_PENDBASER_InnerShareable |
2970 	       GICR_PENDBASER_RaWaWb);
2971 
2972 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2973 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2974 
2975 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
2976 		/*
2977 		 * The HW reports non-shareable, we must remove the
2978 		 * cacheability attributes as well.
2979 		 */
2980 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
2981 			 GICR_PENDBASER_CACHEABILITY_MASK);
2982 		val |= GICR_PENDBASER_nC;
2983 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2984 	}
2985 
2986 	/* Enable LPIs */
2987 	val = readl_relaxed(rbase + GICR_CTLR);
2988 	val |= GICR_CTLR_ENABLE_LPIS;
2989 	writel_relaxed(val, rbase + GICR_CTLR);
2990 
2991 	if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
2992 		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2993 
2994 		/*
2995 		 * It's possible for CPU to receive VLPIs before it is
2996 		 * sheduled as a vPE, especially for the first CPU, and the
2997 		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
2998 		 * as out of range and dropped by GIC.
2999 		 * So we initialize IDbits to known value to avoid VLPI drop.
3000 		 */
3001 		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3002 		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3003 			smp_processor_id(), val);
3004 		gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3005 
3006 		/*
3007 		 * Also clear Valid bit of GICR_VPENDBASER, in case some
3008 		 * ancient programming gets left in and has possibility of
3009 		 * corrupting memory.
3010 		 */
3011 		val = its_clear_vpend_valid(vlpi_base, 0, 0);
3012 	}
3013 
3014 	if (allocate_vpe_l1_table()) {
3015 		/*
3016 		 * If the allocation has failed, we're in massive trouble.
3017 		 * Disable direct injection, and pray that no VM was
3018 		 * already running...
3019 		 */
3020 		gic_rdists->has_rvpeid = false;
3021 		gic_rdists->has_vlpis = false;
3022 	}
3023 
3024 	/* Make sure the GIC has seen the above */
3025 	dsb(sy);
3026 out:
3027 	gic_data_rdist()->lpi_enabled = true;
3028 	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3029 		smp_processor_id(),
3030 		gic_data_rdist()->pend_page ? "allocated" : "reserved",
3031 		&paddr);
3032 }
3033 
3034 static void its_cpu_init_collection(struct its_node *its)
3035 {
3036 	int cpu = smp_processor_id();
3037 	u64 target;
3038 
3039 	/* avoid cross node collections and its mapping */
3040 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3041 		struct device_node *cpu_node;
3042 
3043 		cpu_node = of_get_cpu_node(cpu, NULL);
3044 		if (its->numa_node != NUMA_NO_NODE &&
3045 			its->numa_node != of_node_to_nid(cpu_node))
3046 			return;
3047 	}
3048 
3049 	/*
3050 	 * We now have to bind each collection to its target
3051 	 * redistributor.
3052 	 */
3053 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3054 		/*
3055 		 * This ITS wants the physical address of the
3056 		 * redistributor.
3057 		 */
3058 		target = gic_data_rdist()->phys_base;
3059 	} else {
3060 		/* This ITS wants a linear CPU number. */
3061 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3062 		target = GICR_TYPER_CPU_NUMBER(target) << 16;
3063 	}
3064 
3065 	/* Perform collection mapping */
3066 	its->collections[cpu].target_address = target;
3067 	its->collections[cpu].col_id = cpu;
3068 
3069 	its_send_mapc(its, &its->collections[cpu], 1);
3070 	its_send_invall(its, &its->collections[cpu]);
3071 }
3072 
3073 static void its_cpu_init_collections(void)
3074 {
3075 	struct its_node *its;
3076 
3077 	raw_spin_lock(&its_lock);
3078 
3079 	list_for_each_entry(its, &its_nodes, entry)
3080 		its_cpu_init_collection(its);
3081 
3082 	raw_spin_unlock(&its_lock);
3083 }
3084 
3085 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3086 {
3087 	struct its_device *its_dev = NULL, *tmp;
3088 	unsigned long flags;
3089 
3090 	raw_spin_lock_irqsave(&its->lock, flags);
3091 
3092 	list_for_each_entry(tmp, &its->its_device_list, entry) {
3093 		if (tmp->device_id == dev_id) {
3094 			its_dev = tmp;
3095 			break;
3096 		}
3097 	}
3098 
3099 	raw_spin_unlock_irqrestore(&its->lock, flags);
3100 
3101 	return its_dev;
3102 }
3103 
3104 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3105 {
3106 	int i;
3107 
3108 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3109 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
3110 			return &its->tables[i];
3111 	}
3112 
3113 	return NULL;
3114 }
3115 
3116 static bool its_alloc_table_entry(struct its_node *its,
3117 				  struct its_baser *baser, u32 id)
3118 {
3119 	struct page *page;
3120 	u32 esz, idx;
3121 	__le64 *table;
3122 
3123 	/* Don't allow device id that exceeds single, flat table limit */
3124 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
3125 	if (!(baser->val & GITS_BASER_INDIRECT))
3126 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3127 
3128 	/* Compute 1st level table index & check if that exceeds table limit */
3129 	idx = id >> ilog2(baser->psz / esz);
3130 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3131 		return false;
3132 
3133 	table = baser->base;
3134 
3135 	/* Allocate memory for 2nd level table */
3136 	if (!table[idx]) {
3137 		page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3138 					get_order(baser->psz));
3139 		if (!page)
3140 			return false;
3141 
3142 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
3143 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3144 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
3145 
3146 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3147 
3148 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3149 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3150 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3151 
3152 		/* Ensure updated table contents are visible to ITS hardware */
3153 		dsb(sy);
3154 	}
3155 
3156 	return true;
3157 }
3158 
3159 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3160 {
3161 	struct its_baser *baser;
3162 
3163 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3164 
3165 	/* Don't allow device id that exceeds ITS hardware limit */
3166 	if (!baser)
3167 		return (ilog2(dev_id) < device_ids(its));
3168 
3169 	return its_alloc_table_entry(its, baser, dev_id);
3170 }
3171 
3172 static bool its_alloc_vpe_table(u32 vpe_id)
3173 {
3174 	struct its_node *its;
3175 	int cpu;
3176 
3177 	/*
3178 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3179 	 * could try and only do it on ITSs corresponding to devices
3180 	 * that have interrupts targeted at this VPE, but the
3181 	 * complexity becomes crazy (and you have tons of memory
3182 	 * anyway, right?).
3183 	 */
3184 	list_for_each_entry(its, &its_nodes, entry) {
3185 		struct its_baser *baser;
3186 
3187 		if (!is_v4(its))
3188 			continue;
3189 
3190 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3191 		if (!baser)
3192 			return false;
3193 
3194 		if (!its_alloc_table_entry(its, baser, vpe_id))
3195 			return false;
3196 	}
3197 
3198 	/* Non v4.1? No need to iterate RDs and go back early. */
3199 	if (!gic_rdists->has_rvpeid)
3200 		return true;
3201 
3202 	/*
3203 	 * Make sure the L2 tables are allocated for all copies of
3204 	 * the L1 table on *all* v4.1 RDs.
3205 	 */
3206 	for_each_possible_cpu(cpu) {
3207 		if (!allocate_vpe_l2_table(cpu, vpe_id))
3208 			return false;
3209 	}
3210 
3211 	return true;
3212 }
3213 
3214 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3215 					    int nvecs, bool alloc_lpis)
3216 {
3217 	struct its_device *dev;
3218 	unsigned long *lpi_map = NULL;
3219 	unsigned long flags;
3220 	u16 *col_map = NULL;
3221 	void *itt;
3222 	int lpi_base;
3223 	int nr_lpis;
3224 	int nr_ites;
3225 	int sz;
3226 
3227 	if (!its_alloc_device_table(its, dev_id))
3228 		return NULL;
3229 
3230 	if (WARN_ON(!is_power_of_2(nvecs)))
3231 		nvecs = roundup_pow_of_two(nvecs);
3232 
3233 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3234 	/*
3235 	 * Even if the device wants a single LPI, the ITT must be
3236 	 * sized as a power of two (and you need at least one bit...).
3237 	 */
3238 	nr_ites = max(2, nvecs);
3239 	sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3240 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3241 	itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3242 	if (alloc_lpis) {
3243 		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3244 		if (lpi_map)
3245 			col_map = kcalloc(nr_lpis, sizeof(*col_map),
3246 					  GFP_KERNEL);
3247 	} else {
3248 		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3249 		nr_lpis = 0;
3250 		lpi_base = 0;
3251 	}
3252 
3253 	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
3254 		kfree(dev);
3255 		kfree(itt);
3256 		kfree(lpi_map);
3257 		kfree(col_map);
3258 		return NULL;
3259 	}
3260 
3261 	gic_flush_dcache_to_poc(itt, sz);
3262 
3263 	dev->its = its;
3264 	dev->itt = itt;
3265 	dev->nr_ites = nr_ites;
3266 	dev->event_map.lpi_map = lpi_map;
3267 	dev->event_map.col_map = col_map;
3268 	dev->event_map.lpi_base = lpi_base;
3269 	dev->event_map.nr_lpis = nr_lpis;
3270 	raw_spin_lock_init(&dev->event_map.vlpi_lock);
3271 	dev->device_id = dev_id;
3272 	INIT_LIST_HEAD(&dev->entry);
3273 
3274 	raw_spin_lock_irqsave(&its->lock, flags);
3275 	list_add(&dev->entry, &its->its_device_list);
3276 	raw_spin_unlock_irqrestore(&its->lock, flags);
3277 
3278 	/* Map device to its ITT */
3279 	its_send_mapd(dev, 1);
3280 
3281 	return dev;
3282 }
3283 
3284 static void its_free_device(struct its_device *its_dev)
3285 {
3286 	unsigned long flags;
3287 
3288 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3289 	list_del(&its_dev->entry);
3290 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3291 	kfree(its_dev->event_map.col_map);
3292 	kfree(its_dev->itt);
3293 	kfree(its_dev);
3294 }
3295 
3296 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3297 {
3298 	int idx;
3299 
3300 	/* Find a free LPI region in lpi_map and allocate them. */
3301 	idx = bitmap_find_free_region(dev->event_map.lpi_map,
3302 				      dev->event_map.nr_lpis,
3303 				      get_count_order(nvecs));
3304 	if (idx < 0)
3305 		return -ENOSPC;
3306 
3307 	*hwirq = dev->event_map.lpi_base + idx;
3308 
3309 	return 0;
3310 }
3311 
3312 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3313 			   int nvec, msi_alloc_info_t *info)
3314 {
3315 	struct its_node *its;
3316 	struct its_device *its_dev;
3317 	struct msi_domain_info *msi_info;
3318 	u32 dev_id;
3319 	int err = 0;
3320 
3321 	/*
3322 	 * We ignore "dev" entirely, and rely on the dev_id that has
3323 	 * been passed via the scratchpad. This limits this domain's
3324 	 * usefulness to upper layers that definitely know that they
3325 	 * are built on top of the ITS.
3326 	 */
3327 	dev_id = info->scratchpad[0].ul;
3328 
3329 	msi_info = msi_get_domain_info(domain);
3330 	its = msi_info->data;
3331 
3332 	if (!gic_rdists->has_direct_lpi &&
3333 	    vpe_proxy.dev &&
3334 	    vpe_proxy.dev->its == its &&
3335 	    dev_id == vpe_proxy.dev->device_id) {
3336 		/* Bad luck. Get yourself a better implementation */
3337 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3338 			  dev_id);
3339 		return -EINVAL;
3340 	}
3341 
3342 	mutex_lock(&its->dev_alloc_lock);
3343 	its_dev = its_find_device(its, dev_id);
3344 	if (its_dev) {
3345 		/*
3346 		 * We already have seen this ID, probably through
3347 		 * another alias (PCI bridge of some sort). No need to
3348 		 * create the device.
3349 		 */
3350 		its_dev->shared = true;
3351 		pr_debug("Reusing ITT for devID %x\n", dev_id);
3352 		goto out;
3353 	}
3354 
3355 	its_dev = its_create_device(its, dev_id, nvec, true);
3356 	if (!its_dev) {
3357 		err = -ENOMEM;
3358 		goto out;
3359 	}
3360 
3361 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3362 out:
3363 	mutex_unlock(&its->dev_alloc_lock);
3364 	info->scratchpad[0].ptr = its_dev;
3365 	return err;
3366 }
3367 
3368 static struct msi_domain_ops its_msi_domain_ops = {
3369 	.msi_prepare	= its_msi_prepare,
3370 };
3371 
3372 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3373 				    unsigned int virq,
3374 				    irq_hw_number_t hwirq)
3375 {
3376 	struct irq_fwspec fwspec;
3377 
3378 	if (irq_domain_get_of_node(domain->parent)) {
3379 		fwspec.fwnode = domain->parent->fwnode;
3380 		fwspec.param_count = 3;
3381 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3382 		fwspec.param[1] = hwirq;
3383 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3384 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3385 		fwspec.fwnode = domain->parent->fwnode;
3386 		fwspec.param_count = 2;
3387 		fwspec.param[0] = hwirq;
3388 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3389 	} else {
3390 		return -EINVAL;
3391 	}
3392 
3393 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3394 }
3395 
3396 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3397 				unsigned int nr_irqs, void *args)
3398 {
3399 	msi_alloc_info_t *info = args;
3400 	struct its_device *its_dev = info->scratchpad[0].ptr;
3401 	struct its_node *its = its_dev->its;
3402 	irq_hw_number_t hwirq;
3403 	int err;
3404 	int i;
3405 
3406 	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3407 	if (err)
3408 		return err;
3409 
3410 	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3411 	if (err)
3412 		return err;
3413 
3414 	for (i = 0; i < nr_irqs; i++) {
3415 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3416 		if (err)
3417 			return err;
3418 
3419 		irq_domain_set_hwirq_and_chip(domain, virq + i,
3420 					      hwirq + i, &its_irq_chip, its_dev);
3421 		irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i)));
3422 		pr_debug("ID:%d pID:%d vID:%d\n",
3423 			 (int)(hwirq + i - its_dev->event_map.lpi_base),
3424 			 (int)(hwirq + i), virq + i);
3425 	}
3426 
3427 	return 0;
3428 }
3429 
3430 static int its_irq_domain_activate(struct irq_domain *domain,
3431 				   struct irq_data *d, bool reserve)
3432 {
3433 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3434 	u32 event = its_get_event_id(d);
3435 	const struct cpumask *cpu_mask = cpu_online_mask;
3436 	int cpu;
3437 
3438 	/* get the cpu_mask of local node */
3439 	if (its_dev->its->numa_node >= 0)
3440 		cpu_mask = cpumask_of_node(its_dev->its->numa_node);
3441 
3442 	/* Bind the LPI to the first possible CPU */
3443 	cpu = cpumask_first_and(cpu_mask, cpu_online_mask);
3444 	if (cpu >= nr_cpu_ids) {
3445 		if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)
3446 			return -EINVAL;
3447 
3448 		cpu = cpumask_first(cpu_online_mask);
3449 	}
3450 
3451 	its_dev->event_map.col_map[event] = cpu;
3452 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3453 
3454 	/* Map the GIC IRQ and event to the device */
3455 	its_send_mapti(its_dev, d->hwirq, event);
3456 	return 0;
3457 }
3458 
3459 static void its_irq_domain_deactivate(struct irq_domain *domain,
3460 				      struct irq_data *d)
3461 {
3462 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3463 	u32 event = its_get_event_id(d);
3464 
3465 	/* Stop the delivery of interrupts */
3466 	its_send_discard(its_dev, event);
3467 }
3468 
3469 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3470 				unsigned int nr_irqs)
3471 {
3472 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3473 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3474 	struct its_node *its = its_dev->its;
3475 	int i;
3476 
3477 	bitmap_release_region(its_dev->event_map.lpi_map,
3478 			      its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3479 			      get_count_order(nr_irqs));
3480 
3481 	for (i = 0; i < nr_irqs; i++) {
3482 		struct irq_data *data = irq_domain_get_irq_data(domain,
3483 								virq + i);
3484 		/* Nuke the entry in the domain */
3485 		irq_domain_reset_irq_data(data);
3486 	}
3487 
3488 	mutex_lock(&its->dev_alloc_lock);
3489 
3490 	/*
3491 	 * If all interrupts have been freed, start mopping the
3492 	 * floor. This is conditionned on the device not being shared.
3493 	 */
3494 	if (!its_dev->shared &&
3495 	    bitmap_empty(its_dev->event_map.lpi_map,
3496 			 its_dev->event_map.nr_lpis)) {
3497 		its_lpi_free(its_dev->event_map.lpi_map,
3498 			     its_dev->event_map.lpi_base,
3499 			     its_dev->event_map.nr_lpis);
3500 
3501 		/* Unmap device/itt */
3502 		its_send_mapd(its_dev, 0);
3503 		its_free_device(its_dev);
3504 	}
3505 
3506 	mutex_unlock(&its->dev_alloc_lock);
3507 
3508 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3509 }
3510 
3511 static const struct irq_domain_ops its_domain_ops = {
3512 	.alloc			= its_irq_domain_alloc,
3513 	.free			= its_irq_domain_free,
3514 	.activate		= its_irq_domain_activate,
3515 	.deactivate		= its_irq_domain_deactivate,
3516 };
3517 
3518 /*
3519  * This is insane.
3520  *
3521  * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3522  * likely), the only way to perform an invalidate is to use a fake
3523  * device to issue an INV command, implying that the LPI has first
3524  * been mapped to some event on that device. Since this is not exactly
3525  * cheap, we try to keep that mapping around as long as possible, and
3526  * only issue an UNMAP if we're short on available slots.
3527  *
3528  * Broken by design(tm).
3529  *
3530  * GICv4.1, on the other hand, mandates that we're able to invalidate
3531  * by writing to a MMIO register. It doesn't implement the whole of
3532  * DirectLPI, but that's good enough. And most of the time, we don't
3533  * even have to invalidate anything, as the redistributor can be told
3534  * whether to generate a doorbell or not (we thus leave it enabled,
3535  * always).
3536  */
3537 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3538 {
3539 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3540 	if (gic_rdists->has_rvpeid)
3541 		return;
3542 
3543 	/* Already unmapped? */
3544 	if (vpe->vpe_proxy_event == -1)
3545 		return;
3546 
3547 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3548 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3549 
3550 	/*
3551 	 * We don't track empty slots at all, so let's move the
3552 	 * next_victim pointer if we can quickly reuse that slot
3553 	 * instead of nuking an existing entry. Not clear that this is
3554 	 * always a win though, and this might just generate a ripple
3555 	 * effect... Let's just hope VPEs don't migrate too often.
3556 	 */
3557 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3558 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
3559 
3560 	vpe->vpe_proxy_event = -1;
3561 }
3562 
3563 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3564 {
3565 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3566 	if (gic_rdists->has_rvpeid)
3567 		return;
3568 
3569 	if (!gic_rdists->has_direct_lpi) {
3570 		unsigned long flags;
3571 
3572 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3573 		its_vpe_db_proxy_unmap_locked(vpe);
3574 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3575 	}
3576 }
3577 
3578 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3579 {
3580 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3581 	if (gic_rdists->has_rvpeid)
3582 		return;
3583 
3584 	/* Already mapped? */
3585 	if (vpe->vpe_proxy_event != -1)
3586 		return;
3587 
3588 	/* This slot was already allocated. Kick the other VPE out. */
3589 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3590 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3591 
3592 	/* Map the new VPE instead */
3593 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3594 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
3595 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3596 
3597 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3598 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3599 }
3600 
3601 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3602 {
3603 	unsigned long flags;
3604 	struct its_collection *target_col;
3605 
3606 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3607 	if (gic_rdists->has_rvpeid)
3608 		return;
3609 
3610 	if (gic_rdists->has_direct_lpi) {
3611 		void __iomem *rdbase;
3612 
3613 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3614 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3615 		wait_for_syncr(rdbase);
3616 
3617 		return;
3618 	}
3619 
3620 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3621 
3622 	its_vpe_db_proxy_map_locked(vpe);
3623 
3624 	target_col = &vpe_proxy.dev->its->collections[to];
3625 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3626 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3627 
3628 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3629 }
3630 
3631 static int its_vpe_set_affinity(struct irq_data *d,
3632 				const struct cpumask *mask_val,
3633 				bool force)
3634 {
3635 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3636 	int from, cpu = cpumask_first(mask_val);
3637 	unsigned long flags;
3638 
3639 	/*
3640 	 * Changing affinity is mega expensive, so let's be as lazy as
3641 	 * we can and only do it if we really have to. Also, if mapped
3642 	 * into the proxy device, we need to move the doorbell
3643 	 * interrupt to its new location.
3644 	 *
3645 	 * Another thing is that changing the affinity of a vPE affects
3646 	 * *other interrupts* such as all the vLPIs that are routed to
3647 	 * this vPE. This means that the irq_desc lock is not enough to
3648 	 * protect us, and that we must ensure nobody samples vpe->col_idx
3649 	 * during the update, hence the lock below which must also be
3650 	 * taken on any vLPI handling path that evaluates vpe->col_idx.
3651 	 */
3652 	from = vpe_to_cpuid_lock(vpe, &flags);
3653 	if (from == cpu)
3654 		goto out;
3655 
3656 	vpe->col_idx = cpu;
3657 
3658 	/*
3659 	 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD
3660 	 * is sharing its VPE table with the current one.
3661 	 */
3662 	if (gic_data_rdist_cpu(cpu)->vpe_table_mask &&
3663 	    cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask))
3664 		goto out;
3665 
3666 	its_send_vmovp(vpe);
3667 	its_vpe_db_proxy_move(vpe, from, cpu);
3668 
3669 out:
3670 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3671 	vpe_to_cpuid_unlock(vpe, flags);
3672 
3673 	return IRQ_SET_MASK_OK_DONE;
3674 }
3675 
3676 static void its_wait_vpt_parse_complete(void)
3677 {
3678 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3679 	u64 val;
3680 
3681 	if (!gic_rdists->has_vpend_valid_dirty)
3682 		return;
3683 
3684 	WARN_ON_ONCE(readq_relaxed_poll_timeout(vlpi_base + GICR_VPENDBASER,
3685 						val,
3686 						!(val & GICR_VPENDBASER_Dirty),
3687 						10, 500));
3688 }
3689 
3690 static void its_vpe_schedule(struct its_vpe *vpe)
3691 {
3692 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3693 	u64 val;
3694 
3695 	/* Schedule the VPE */
3696 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3697 		GENMASK_ULL(51, 12);
3698 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3699 	val |= GICR_VPROPBASER_RaWb;
3700 	val |= GICR_VPROPBASER_InnerShareable;
3701 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3702 
3703 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
3704 		GENMASK_ULL(51, 16);
3705 	val |= GICR_VPENDBASER_RaWaWb;
3706 	val |= GICR_VPENDBASER_InnerShareable;
3707 	/*
3708 	 * There is no good way of finding out if the pending table is
3709 	 * empty as we can race against the doorbell interrupt very
3710 	 * easily. So in the end, vpe->pending_last is only an
3711 	 * indication that the vcpu has something pending, not one
3712 	 * that the pending table is empty. A good implementation
3713 	 * would be able to read its coarse map pretty quickly anyway,
3714 	 * making this a tolerable issue.
3715 	 */
3716 	val |= GICR_VPENDBASER_PendingLast;
3717 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3718 	val |= GICR_VPENDBASER_Valid;
3719 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3720 
3721 	its_wait_vpt_parse_complete();
3722 }
3723 
3724 static void its_vpe_deschedule(struct its_vpe *vpe)
3725 {
3726 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3727 	u64 val;
3728 
3729 	val = its_clear_vpend_valid(vlpi_base, 0, 0);
3730 
3731 	vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3732 	vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3733 }
3734 
3735 static void its_vpe_invall(struct its_vpe *vpe)
3736 {
3737 	struct its_node *its;
3738 
3739 	list_for_each_entry(its, &its_nodes, entry) {
3740 		if (!is_v4(its))
3741 			continue;
3742 
3743 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3744 			continue;
3745 
3746 		/*
3747 		 * Sending a VINVALL to a single ITS is enough, as all
3748 		 * we need is to reach the redistributors.
3749 		 */
3750 		its_send_vinvall(its, vpe);
3751 		return;
3752 	}
3753 }
3754 
3755 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3756 {
3757 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3758 	struct its_cmd_info *info = vcpu_info;
3759 
3760 	switch (info->cmd_type) {
3761 	case SCHEDULE_VPE:
3762 		its_vpe_schedule(vpe);
3763 		return 0;
3764 
3765 	case DESCHEDULE_VPE:
3766 		its_vpe_deschedule(vpe);
3767 		return 0;
3768 
3769 	case INVALL_VPE:
3770 		its_vpe_invall(vpe);
3771 		return 0;
3772 
3773 	default:
3774 		return -EINVAL;
3775 	}
3776 }
3777 
3778 static void its_vpe_send_cmd(struct its_vpe *vpe,
3779 			     void (*cmd)(struct its_device *, u32))
3780 {
3781 	unsigned long flags;
3782 
3783 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3784 
3785 	its_vpe_db_proxy_map_locked(vpe);
3786 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3787 
3788 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3789 }
3790 
3791 static void its_vpe_send_inv(struct irq_data *d)
3792 {
3793 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3794 
3795 	if (gic_rdists->has_direct_lpi) {
3796 		void __iomem *rdbase;
3797 
3798 		/* Target the redistributor this VPE is currently known on */
3799 		raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3800 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3801 		gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR);
3802 		wait_for_syncr(rdbase);
3803 		raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3804 	} else {
3805 		its_vpe_send_cmd(vpe, its_send_inv);
3806 	}
3807 }
3808 
3809 static void its_vpe_mask_irq(struct irq_data *d)
3810 {
3811 	/*
3812 	 * We need to unmask the LPI, which is described by the parent
3813 	 * irq_data. Instead of calling into the parent (which won't
3814 	 * exactly do the right thing, let's simply use the
3815 	 * parent_data pointer. Yes, I'm naughty.
3816 	 */
3817 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3818 	its_vpe_send_inv(d);
3819 }
3820 
3821 static void its_vpe_unmask_irq(struct irq_data *d)
3822 {
3823 	/* Same hack as above... */
3824 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
3825 	its_vpe_send_inv(d);
3826 }
3827 
3828 static int its_vpe_set_irqchip_state(struct irq_data *d,
3829 				     enum irqchip_irq_state which,
3830 				     bool state)
3831 {
3832 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3833 
3834 	if (which != IRQCHIP_STATE_PENDING)
3835 		return -EINVAL;
3836 
3837 	if (gic_rdists->has_direct_lpi) {
3838 		void __iomem *rdbase;
3839 
3840 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3841 		if (state) {
3842 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
3843 		} else {
3844 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3845 			wait_for_syncr(rdbase);
3846 		}
3847 	} else {
3848 		if (state)
3849 			its_vpe_send_cmd(vpe, its_send_int);
3850 		else
3851 			its_vpe_send_cmd(vpe, its_send_clear);
3852 	}
3853 
3854 	return 0;
3855 }
3856 
3857 static int its_vpe_retrigger(struct irq_data *d)
3858 {
3859 	return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
3860 }
3861 
3862 static struct irq_chip its_vpe_irq_chip = {
3863 	.name			= "GICv4-vpe",
3864 	.irq_mask		= its_vpe_mask_irq,
3865 	.irq_unmask		= its_vpe_unmask_irq,
3866 	.irq_eoi		= irq_chip_eoi_parent,
3867 	.irq_set_affinity	= its_vpe_set_affinity,
3868 	.irq_retrigger		= its_vpe_retrigger,
3869 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
3870 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
3871 };
3872 
3873 static struct its_node *find_4_1_its(void)
3874 {
3875 	static struct its_node *its = NULL;
3876 
3877 	if (!its) {
3878 		list_for_each_entry(its, &its_nodes, entry) {
3879 			if (is_v4_1(its))
3880 				return its;
3881 		}
3882 
3883 		/* Oops? */
3884 		its = NULL;
3885 	}
3886 
3887 	return its;
3888 }
3889 
3890 static void its_vpe_4_1_send_inv(struct irq_data *d)
3891 {
3892 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3893 	struct its_node *its;
3894 
3895 	/*
3896 	 * GICv4.1 wants doorbells to be invalidated using the
3897 	 * INVDB command in order to be broadcast to all RDs. Send
3898 	 * it to the first valid ITS, and let the HW do its magic.
3899 	 */
3900 	its = find_4_1_its();
3901 	if (its)
3902 		its_send_invdb(its, vpe);
3903 }
3904 
3905 static void its_vpe_4_1_mask_irq(struct irq_data *d)
3906 {
3907 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3908 	its_vpe_4_1_send_inv(d);
3909 }
3910 
3911 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
3912 {
3913 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
3914 	its_vpe_4_1_send_inv(d);
3915 }
3916 
3917 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
3918 				 struct its_cmd_info *info)
3919 {
3920 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3921 	u64 val = 0;
3922 
3923 	/* Schedule the VPE */
3924 	val |= GICR_VPENDBASER_Valid;
3925 	val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
3926 	val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
3927 	val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
3928 
3929 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3930 
3931 	its_wait_vpt_parse_complete();
3932 }
3933 
3934 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
3935 				   struct its_cmd_info *info)
3936 {
3937 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3938 	u64 val;
3939 
3940 	if (info->req_db) {
3941 		/*
3942 		 * vPE is going to block: make the vPE non-resident with
3943 		 * PendingLast clear and DB set. The GIC guarantees that if
3944 		 * we read-back PendingLast clear, then a doorbell will be
3945 		 * delivered when an interrupt comes.
3946 		 */
3947 		val = its_clear_vpend_valid(vlpi_base,
3948 					    GICR_VPENDBASER_PendingLast,
3949 					    GICR_VPENDBASER_4_1_DB);
3950 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3951 	} else {
3952 		/*
3953 		 * We're not blocking, so just make the vPE non-resident
3954 		 * with PendingLast set, indicating that we'll be back.
3955 		 */
3956 		val = its_clear_vpend_valid(vlpi_base,
3957 					    0,
3958 					    GICR_VPENDBASER_PendingLast);
3959 		vpe->pending_last = true;
3960 	}
3961 }
3962 
3963 static void its_vpe_4_1_invall(struct its_vpe *vpe)
3964 {
3965 	void __iomem *rdbase;
3966 	u64 val;
3967 
3968 	val  = GICR_INVALLR_V;
3969 	val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
3970 
3971 	/* Target the redistributor this vPE is currently known on */
3972 	raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3973 	rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3974 	gic_write_lpir(val, rdbase + GICR_INVALLR);
3975 
3976 	wait_for_syncr(rdbase);
3977 	raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3978 }
3979 
3980 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3981 {
3982 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3983 	struct its_cmd_info *info = vcpu_info;
3984 
3985 	switch (info->cmd_type) {
3986 	case SCHEDULE_VPE:
3987 		its_vpe_4_1_schedule(vpe, info);
3988 		return 0;
3989 
3990 	case DESCHEDULE_VPE:
3991 		its_vpe_4_1_deschedule(vpe, info);
3992 		return 0;
3993 
3994 	case INVALL_VPE:
3995 		its_vpe_4_1_invall(vpe);
3996 		return 0;
3997 
3998 	default:
3999 		return -EINVAL;
4000 	}
4001 }
4002 
4003 static struct irq_chip its_vpe_4_1_irq_chip = {
4004 	.name			= "GICv4.1-vpe",
4005 	.irq_mask		= its_vpe_4_1_mask_irq,
4006 	.irq_unmask		= its_vpe_4_1_unmask_irq,
4007 	.irq_eoi		= irq_chip_eoi_parent,
4008 	.irq_set_affinity	= its_vpe_set_affinity,
4009 	.irq_set_vcpu_affinity	= its_vpe_4_1_set_vcpu_affinity,
4010 };
4011 
4012 static void its_configure_sgi(struct irq_data *d, bool clear)
4013 {
4014 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4015 	struct its_cmd_desc desc;
4016 
4017 	desc.its_vsgi_cmd.vpe = vpe;
4018 	desc.its_vsgi_cmd.sgi = d->hwirq;
4019 	desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4020 	desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4021 	desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4022 	desc.its_vsgi_cmd.clear = clear;
4023 
4024 	/*
4025 	 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4026 	 * destination VPE is mapped there. Since we map them eagerly at
4027 	 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4028 	 */
4029 	its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4030 }
4031 
4032 static void its_sgi_mask_irq(struct irq_data *d)
4033 {
4034 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4035 
4036 	vpe->sgi_config[d->hwirq].enabled = false;
4037 	its_configure_sgi(d, false);
4038 }
4039 
4040 static void its_sgi_unmask_irq(struct irq_data *d)
4041 {
4042 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4043 
4044 	vpe->sgi_config[d->hwirq].enabled = true;
4045 	its_configure_sgi(d, false);
4046 }
4047 
4048 static int its_sgi_set_affinity(struct irq_data *d,
4049 				const struct cpumask *mask_val,
4050 				bool force)
4051 {
4052 	/*
4053 	 * There is no notion of affinity for virtual SGIs, at least
4054 	 * not on the host (since they can only be targetting a vPE).
4055 	 * Tell the kernel we've done whatever it asked for.
4056 	 */
4057 	irq_data_update_effective_affinity(d, mask_val);
4058 	return IRQ_SET_MASK_OK;
4059 }
4060 
4061 static int its_sgi_set_irqchip_state(struct irq_data *d,
4062 				     enum irqchip_irq_state which,
4063 				     bool state)
4064 {
4065 	if (which != IRQCHIP_STATE_PENDING)
4066 		return -EINVAL;
4067 
4068 	if (state) {
4069 		struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4070 		struct its_node *its = find_4_1_its();
4071 		u64 val;
4072 
4073 		val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4074 		val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4075 		writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4076 	} else {
4077 		its_configure_sgi(d, true);
4078 	}
4079 
4080 	return 0;
4081 }
4082 
4083 static int its_sgi_get_irqchip_state(struct irq_data *d,
4084 				     enum irqchip_irq_state which, bool *val)
4085 {
4086 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4087 	void __iomem *base;
4088 	unsigned long flags;
4089 	u32 count = 1000000;	/* 1s! */
4090 	u32 status;
4091 	int cpu;
4092 
4093 	if (which != IRQCHIP_STATE_PENDING)
4094 		return -EINVAL;
4095 
4096 	/*
4097 	 * Locking galore! We can race against two different events:
4098 	 *
4099 	 * - Concurent vPE affinity change: we must make sure it cannot
4100 	 *   happen, or we'll talk to the wrong redistributor. This is
4101 	 *   identical to what happens with vLPIs.
4102 	 *
4103 	 * - Concurrent VSGIPENDR access: As it involves accessing two
4104 	 *   MMIO registers, this must be made atomic one way or another.
4105 	 */
4106 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4107 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4108 	base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4109 	writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4110 	do {
4111 		status = readl_relaxed(base + GICR_VSGIPENDR);
4112 		if (!(status & GICR_VSGIPENDR_BUSY))
4113 			goto out;
4114 
4115 		count--;
4116 		if (!count) {
4117 			pr_err_ratelimited("Unable to get SGI status\n");
4118 			goto out;
4119 		}
4120 		cpu_relax();
4121 		udelay(1);
4122 	} while (count);
4123 
4124 out:
4125 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4126 	vpe_to_cpuid_unlock(vpe, flags);
4127 
4128 	if (!count)
4129 		return -ENXIO;
4130 
4131 	*val = !!(status & (1 << d->hwirq));
4132 
4133 	return 0;
4134 }
4135 
4136 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4137 {
4138 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4139 	struct its_cmd_info *info = vcpu_info;
4140 
4141 	switch (info->cmd_type) {
4142 	case PROP_UPDATE_VSGI:
4143 		vpe->sgi_config[d->hwirq].priority = info->priority;
4144 		vpe->sgi_config[d->hwirq].group = info->group;
4145 		its_configure_sgi(d, false);
4146 		return 0;
4147 
4148 	default:
4149 		return -EINVAL;
4150 	}
4151 }
4152 
4153 static struct irq_chip its_sgi_irq_chip = {
4154 	.name			= "GICv4.1-sgi",
4155 	.irq_mask		= its_sgi_mask_irq,
4156 	.irq_unmask		= its_sgi_unmask_irq,
4157 	.irq_set_affinity	= its_sgi_set_affinity,
4158 	.irq_set_irqchip_state	= its_sgi_set_irqchip_state,
4159 	.irq_get_irqchip_state	= its_sgi_get_irqchip_state,
4160 	.irq_set_vcpu_affinity	= its_sgi_set_vcpu_affinity,
4161 };
4162 
4163 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4164 				    unsigned int virq, unsigned int nr_irqs,
4165 				    void *args)
4166 {
4167 	struct its_vpe *vpe = args;
4168 	int i;
4169 
4170 	/* Yes, we do want 16 SGIs */
4171 	WARN_ON(nr_irqs != 16);
4172 
4173 	for (i = 0; i < 16; i++) {
4174 		vpe->sgi_config[i].priority = 0;
4175 		vpe->sgi_config[i].enabled = false;
4176 		vpe->sgi_config[i].group = false;
4177 
4178 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4179 					      &its_sgi_irq_chip, vpe);
4180 		irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4181 	}
4182 
4183 	return 0;
4184 }
4185 
4186 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4187 				    unsigned int virq,
4188 				    unsigned int nr_irqs)
4189 {
4190 	/* Nothing to do */
4191 }
4192 
4193 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4194 				       struct irq_data *d, bool reserve)
4195 {
4196 	/* Write out the initial SGI configuration */
4197 	its_configure_sgi(d, false);
4198 	return 0;
4199 }
4200 
4201 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4202 					  struct irq_data *d)
4203 {
4204 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4205 
4206 	/*
4207 	 * The VSGI command is awkward:
4208 	 *
4209 	 * - To change the configuration, CLEAR must be set to false,
4210 	 *   leaving the pending bit unchanged.
4211 	 * - To clear the pending bit, CLEAR must be set to true, leaving
4212 	 *   the configuration unchanged.
4213 	 *
4214 	 * You just can't do both at once, hence the two commands below.
4215 	 */
4216 	vpe->sgi_config[d->hwirq].enabled = false;
4217 	its_configure_sgi(d, false);
4218 	its_configure_sgi(d, true);
4219 }
4220 
4221 static const struct irq_domain_ops its_sgi_domain_ops = {
4222 	.alloc		= its_sgi_irq_domain_alloc,
4223 	.free		= its_sgi_irq_domain_free,
4224 	.activate	= its_sgi_irq_domain_activate,
4225 	.deactivate	= its_sgi_irq_domain_deactivate,
4226 };
4227 
4228 static int its_vpe_id_alloc(void)
4229 {
4230 	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4231 }
4232 
4233 static void its_vpe_id_free(u16 id)
4234 {
4235 	ida_simple_remove(&its_vpeid_ida, id);
4236 }
4237 
4238 static int its_vpe_init(struct its_vpe *vpe)
4239 {
4240 	struct page *vpt_page;
4241 	int vpe_id;
4242 
4243 	/* Allocate vpe_id */
4244 	vpe_id = its_vpe_id_alloc();
4245 	if (vpe_id < 0)
4246 		return vpe_id;
4247 
4248 	/* Allocate VPT */
4249 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
4250 	if (!vpt_page) {
4251 		its_vpe_id_free(vpe_id);
4252 		return -ENOMEM;
4253 	}
4254 
4255 	if (!its_alloc_vpe_table(vpe_id)) {
4256 		its_vpe_id_free(vpe_id);
4257 		its_free_pending_table(vpt_page);
4258 		return -ENOMEM;
4259 	}
4260 
4261 	raw_spin_lock_init(&vpe->vpe_lock);
4262 	vpe->vpe_id = vpe_id;
4263 	vpe->vpt_page = vpt_page;
4264 	if (gic_rdists->has_rvpeid)
4265 		atomic_set(&vpe->vmapp_count, 0);
4266 	else
4267 		vpe->vpe_proxy_event = -1;
4268 
4269 	return 0;
4270 }
4271 
4272 static void its_vpe_teardown(struct its_vpe *vpe)
4273 {
4274 	its_vpe_db_proxy_unmap(vpe);
4275 	its_vpe_id_free(vpe->vpe_id);
4276 	its_free_pending_table(vpe->vpt_page);
4277 }
4278 
4279 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4280 				    unsigned int virq,
4281 				    unsigned int nr_irqs)
4282 {
4283 	struct its_vm *vm = domain->host_data;
4284 	int i;
4285 
4286 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4287 
4288 	for (i = 0; i < nr_irqs; i++) {
4289 		struct irq_data *data = irq_domain_get_irq_data(domain,
4290 								virq + i);
4291 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4292 
4293 		BUG_ON(vm != vpe->its_vm);
4294 
4295 		clear_bit(data->hwirq, vm->db_bitmap);
4296 		its_vpe_teardown(vpe);
4297 		irq_domain_reset_irq_data(data);
4298 	}
4299 
4300 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4301 		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4302 		its_free_prop_table(vm->vprop_page);
4303 	}
4304 }
4305 
4306 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4307 				    unsigned int nr_irqs, void *args)
4308 {
4309 	struct irq_chip *irqchip = &its_vpe_irq_chip;
4310 	struct its_vm *vm = args;
4311 	unsigned long *bitmap;
4312 	struct page *vprop_page;
4313 	int base, nr_ids, i, err = 0;
4314 
4315 	BUG_ON(!vm);
4316 
4317 	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4318 	if (!bitmap)
4319 		return -ENOMEM;
4320 
4321 	if (nr_ids < nr_irqs) {
4322 		its_lpi_free(bitmap, base, nr_ids);
4323 		return -ENOMEM;
4324 	}
4325 
4326 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
4327 	if (!vprop_page) {
4328 		its_lpi_free(bitmap, base, nr_ids);
4329 		return -ENOMEM;
4330 	}
4331 
4332 	vm->db_bitmap = bitmap;
4333 	vm->db_lpi_base = base;
4334 	vm->nr_db_lpis = nr_ids;
4335 	vm->vprop_page = vprop_page;
4336 
4337 	if (gic_rdists->has_rvpeid)
4338 		irqchip = &its_vpe_4_1_irq_chip;
4339 
4340 	for (i = 0; i < nr_irqs; i++) {
4341 		vm->vpes[i]->vpe_db_lpi = base + i;
4342 		err = its_vpe_init(vm->vpes[i]);
4343 		if (err)
4344 			break;
4345 		err = its_irq_gic_domain_alloc(domain, virq + i,
4346 					       vm->vpes[i]->vpe_db_lpi);
4347 		if (err)
4348 			break;
4349 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4350 					      irqchip, vm->vpes[i]);
4351 		set_bit(i, bitmap);
4352 	}
4353 
4354 	if (err) {
4355 		if (i > 0)
4356 			its_vpe_irq_domain_free(domain, virq, i - 1);
4357 
4358 		its_lpi_free(bitmap, base, nr_ids);
4359 		its_free_prop_table(vprop_page);
4360 	}
4361 
4362 	return err;
4363 }
4364 
4365 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4366 				       struct irq_data *d, bool reserve)
4367 {
4368 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4369 	struct its_node *its;
4370 
4371 	/*
4372 	 * If we use the list map, we issue VMAPP on demand... Unless
4373 	 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4374 	 * so that VSGIs can work.
4375 	 */
4376 	if (!gic_requires_eager_mapping())
4377 		return 0;
4378 
4379 	/* Map the VPE to the first possible CPU */
4380 	vpe->col_idx = cpumask_first(cpu_online_mask);
4381 
4382 	list_for_each_entry(its, &its_nodes, entry) {
4383 		if (!is_v4(its))
4384 			continue;
4385 
4386 		its_send_vmapp(its, vpe, true);
4387 		its_send_vinvall(its, vpe);
4388 	}
4389 
4390 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4391 
4392 	return 0;
4393 }
4394 
4395 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4396 					  struct irq_data *d)
4397 {
4398 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4399 	struct its_node *its;
4400 
4401 	/*
4402 	 * If we use the list map on GICv4.0, we unmap the VPE once no
4403 	 * VLPIs are associated with the VM.
4404 	 */
4405 	if (!gic_requires_eager_mapping())
4406 		return;
4407 
4408 	list_for_each_entry(its, &its_nodes, entry) {
4409 		if (!is_v4(its))
4410 			continue;
4411 
4412 		its_send_vmapp(its, vpe, false);
4413 	}
4414 }
4415 
4416 static const struct irq_domain_ops its_vpe_domain_ops = {
4417 	.alloc			= its_vpe_irq_domain_alloc,
4418 	.free			= its_vpe_irq_domain_free,
4419 	.activate		= its_vpe_irq_domain_activate,
4420 	.deactivate		= its_vpe_irq_domain_deactivate,
4421 };
4422 
4423 static int its_force_quiescent(void __iomem *base)
4424 {
4425 	u32 count = 1000000;	/* 1s */
4426 	u32 val;
4427 
4428 	val = readl_relaxed(base + GITS_CTLR);
4429 	/*
4430 	 * GIC architecture specification requires the ITS to be both
4431 	 * disabled and quiescent for writes to GITS_BASER<n> or
4432 	 * GITS_CBASER to not have UNPREDICTABLE results.
4433 	 */
4434 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4435 		return 0;
4436 
4437 	/* Disable the generation of all interrupts to this ITS */
4438 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4439 	writel_relaxed(val, base + GITS_CTLR);
4440 
4441 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
4442 	while (1) {
4443 		val = readl_relaxed(base + GITS_CTLR);
4444 		if (val & GITS_CTLR_QUIESCENT)
4445 			return 0;
4446 
4447 		count--;
4448 		if (!count)
4449 			return -EBUSY;
4450 
4451 		cpu_relax();
4452 		udelay(1);
4453 	}
4454 }
4455 
4456 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4457 {
4458 	struct its_node *its = data;
4459 
4460 	/* erratum 22375: only alloc 8MB table size (20 bits) */
4461 	its->typer &= ~GITS_TYPER_DEVBITS;
4462 	its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4463 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4464 
4465 	return true;
4466 }
4467 
4468 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4469 {
4470 	struct its_node *its = data;
4471 
4472 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4473 
4474 	return true;
4475 }
4476 
4477 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4478 {
4479 	struct its_node *its = data;
4480 
4481 	/* On QDF2400, the size of the ITE is 16Bytes */
4482 	its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4483 	its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4484 
4485 	return true;
4486 }
4487 
4488 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4489 {
4490 	struct its_node *its = its_dev->its;
4491 
4492 	/*
4493 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4494 	 * which maps 32-bit writes targeted at a separate window of
4495 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4496 	 * with device ID taken from bits [device_id_bits + 1:2] of
4497 	 * the window offset.
4498 	 */
4499 	return its->pre_its_base + (its_dev->device_id << 2);
4500 }
4501 
4502 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4503 {
4504 	struct its_node *its = data;
4505 	u32 pre_its_window[2];
4506 	u32 ids;
4507 
4508 	if (!fwnode_property_read_u32_array(its->fwnode_handle,
4509 					   "socionext,synquacer-pre-its",
4510 					   pre_its_window,
4511 					   ARRAY_SIZE(pre_its_window))) {
4512 
4513 		its->pre_its_base = pre_its_window[0];
4514 		its->get_msi_base = its_irq_get_msi_base_pre_its;
4515 
4516 		ids = ilog2(pre_its_window[1]) - 2;
4517 		if (device_ids(its) > ids) {
4518 			its->typer &= ~GITS_TYPER_DEVBITS;
4519 			its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4520 		}
4521 
4522 		/* the pre-ITS breaks isolation, so disable MSI remapping */
4523 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
4524 		return true;
4525 	}
4526 	return false;
4527 }
4528 
4529 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4530 {
4531 	struct its_node *its = data;
4532 
4533 	/*
4534 	 * Hip07 insists on using the wrong address for the VLPI
4535 	 * page. Trick it into doing the right thing...
4536 	 */
4537 	its->vlpi_redist_offset = SZ_128K;
4538 	return true;
4539 }
4540 
4541 static const struct gic_quirk its_quirks[] = {
4542 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4543 	{
4544 		.desc	= "ITS: Cavium errata 22375, 24313",
4545 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4546 		.mask	= 0xffff0fff,
4547 		.init	= its_enable_quirk_cavium_22375,
4548 	},
4549 #endif
4550 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4551 	{
4552 		.desc	= "ITS: Cavium erratum 23144",
4553 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4554 		.mask	= 0xffff0fff,
4555 		.init	= its_enable_quirk_cavium_23144,
4556 	},
4557 #endif
4558 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4559 	{
4560 		.desc	= "ITS: QDF2400 erratum 0065",
4561 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
4562 		.mask	= 0xffffffff,
4563 		.init	= its_enable_quirk_qdf2400_e0065,
4564 	},
4565 #endif
4566 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4567 	{
4568 		/*
4569 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4570 		 * implementation, but with a 'pre-ITS' added that requires
4571 		 * special handling in software.
4572 		 */
4573 		.desc	= "ITS: Socionext Synquacer pre-ITS",
4574 		.iidr	= 0x0001143b,
4575 		.mask	= 0xffffffff,
4576 		.init	= its_enable_quirk_socionext_synquacer,
4577 	},
4578 #endif
4579 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4580 	{
4581 		.desc	= "ITS: Hip07 erratum 161600802",
4582 		.iidr	= 0x00000004,
4583 		.mask	= 0xffffffff,
4584 		.init	= its_enable_quirk_hip07_161600802,
4585 	},
4586 #endif
4587 	{
4588 	}
4589 };
4590 
4591 static void its_enable_quirks(struct its_node *its)
4592 {
4593 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4594 
4595 	gic_enable_quirks(iidr, its_quirks, its);
4596 }
4597 
4598 static int its_save_disable(void)
4599 {
4600 	struct its_node *its;
4601 	int err = 0;
4602 
4603 	raw_spin_lock(&its_lock);
4604 	list_for_each_entry(its, &its_nodes, entry) {
4605 		void __iomem *base;
4606 
4607 		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
4608 			continue;
4609 
4610 		base = its->base;
4611 		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4612 		err = its_force_quiescent(base);
4613 		if (err) {
4614 			pr_err("ITS@%pa: failed to quiesce: %d\n",
4615 			       &its->phys_base, err);
4616 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4617 			goto err;
4618 		}
4619 
4620 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4621 	}
4622 
4623 err:
4624 	if (err) {
4625 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4626 			void __iomem *base;
4627 
4628 			if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
4629 				continue;
4630 
4631 			base = its->base;
4632 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4633 		}
4634 	}
4635 	raw_spin_unlock(&its_lock);
4636 
4637 	return err;
4638 }
4639 
4640 static void its_restore_enable(void)
4641 {
4642 	struct its_node *its;
4643 	int ret;
4644 
4645 	raw_spin_lock(&its_lock);
4646 	list_for_each_entry(its, &its_nodes, entry) {
4647 		void __iomem *base;
4648 		int i;
4649 
4650 		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
4651 			continue;
4652 
4653 		base = its->base;
4654 
4655 		/*
4656 		 * Make sure that the ITS is disabled. If it fails to quiesce,
4657 		 * don't restore it since writing to CBASER or BASER<n>
4658 		 * registers is undefined according to the GIC v3 ITS
4659 		 * Specification.
4660 		 */
4661 		ret = its_force_quiescent(base);
4662 		if (ret) {
4663 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4664 			       &its->phys_base, ret);
4665 			continue;
4666 		}
4667 
4668 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4669 
4670 		/*
4671 		 * Writing CBASER resets CREADR to 0, so make CWRITER and
4672 		 * cmd_write line up with it.
4673 		 */
4674 		its->cmd_write = its->cmd_base;
4675 		gits_write_cwriter(0, base + GITS_CWRITER);
4676 
4677 		/* Restore GITS_BASER from the value cache. */
4678 		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4679 			struct its_baser *baser = &its->tables[i];
4680 
4681 			if (!(baser->val & GITS_BASER_VALID))
4682 				continue;
4683 
4684 			its_write_baser(its, baser, baser->val);
4685 		}
4686 		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4687 
4688 		/*
4689 		 * Reinit the collection if it's stored in the ITS. This is
4690 		 * indicated by the col_id being less than the HCC field.
4691 		 * CID < HCC as specified in the GIC v3 Documentation.
4692 		 */
4693 		if (its->collections[smp_processor_id()].col_id <
4694 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4695 			its_cpu_init_collection(its);
4696 	}
4697 	raw_spin_unlock(&its_lock);
4698 }
4699 
4700 static struct syscore_ops its_syscore_ops = {
4701 	.suspend = its_save_disable,
4702 	.resume = its_restore_enable,
4703 };
4704 
4705 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
4706 {
4707 	struct irq_domain *inner_domain;
4708 	struct msi_domain_info *info;
4709 
4710 	info = kzalloc(sizeof(*info), GFP_KERNEL);
4711 	if (!info)
4712 		return -ENOMEM;
4713 
4714 	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
4715 	if (!inner_domain) {
4716 		kfree(info);
4717 		return -ENOMEM;
4718 	}
4719 
4720 	inner_domain->parent = its_parent;
4721 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4722 	inner_domain->flags |= its->msi_domain_flags;
4723 	info->ops = &its_msi_domain_ops;
4724 	info->data = its;
4725 	inner_domain->host_data = info;
4726 
4727 	return 0;
4728 }
4729 
4730 static int its_init_vpe_domain(void)
4731 {
4732 	struct its_node *its;
4733 	u32 devid;
4734 	int entries;
4735 
4736 	if (gic_rdists->has_direct_lpi) {
4737 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4738 		return 0;
4739 	}
4740 
4741 	/* Any ITS will do, even if not v4 */
4742 	its = list_first_entry(&its_nodes, struct its_node, entry);
4743 
4744 	entries = roundup_pow_of_two(nr_cpu_ids);
4745 	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
4746 				 GFP_KERNEL);
4747 	if (!vpe_proxy.vpes) {
4748 		pr_err("ITS: Can't allocate GICv4 proxy device array\n");
4749 		return -ENOMEM;
4750 	}
4751 
4752 	/* Use the last possible DevID */
4753 	devid = GENMASK(device_ids(its) - 1, 0);
4754 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
4755 	if (!vpe_proxy.dev) {
4756 		kfree(vpe_proxy.vpes);
4757 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
4758 		return -ENOMEM;
4759 	}
4760 
4761 	BUG_ON(entries > vpe_proxy.dev->nr_ites);
4762 
4763 	raw_spin_lock_init(&vpe_proxy.lock);
4764 	vpe_proxy.next_victim = 0;
4765 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
4766 		devid, vpe_proxy.dev->nr_ites);
4767 
4768 	return 0;
4769 }
4770 
4771 static int __init its_compute_its_list_map(struct resource *res,
4772 					   void __iomem *its_base)
4773 {
4774 	int its_number;
4775 	u32 ctlr;
4776 
4777 	/*
4778 	 * This is assumed to be done early enough that we're
4779 	 * guaranteed to be single-threaded, hence no
4780 	 * locking. Should this change, we should address
4781 	 * this.
4782 	 */
4783 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
4784 	if (its_number >= GICv4_ITS_LIST_MAX) {
4785 		pr_err("ITS@%pa: No ITSList entry available!\n",
4786 		       &res->start);
4787 		return -EINVAL;
4788 	}
4789 
4790 	ctlr = readl_relaxed(its_base + GITS_CTLR);
4791 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
4792 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
4793 	writel_relaxed(ctlr, its_base + GITS_CTLR);
4794 	ctlr = readl_relaxed(its_base + GITS_CTLR);
4795 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
4796 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
4797 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
4798 	}
4799 
4800 	if (test_and_set_bit(its_number, &its_list_map)) {
4801 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
4802 		       &res->start, its_number);
4803 		return -EINVAL;
4804 	}
4805 
4806 	return its_number;
4807 }
4808 
4809 static int __init its_probe_one(struct resource *res,
4810 				struct fwnode_handle *handle, int numa_node)
4811 {
4812 	struct its_node *its;
4813 	void __iomem *its_base;
4814 	u32 val, ctlr;
4815 	u64 baser, tmp, typer;
4816 	struct page *page;
4817 	int err;
4818 
4819 	its_base = ioremap(res->start, SZ_64K);
4820 	if (!its_base) {
4821 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4822 		return -ENOMEM;
4823 	}
4824 
4825 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4826 	if (val != 0x30 && val != 0x40) {
4827 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4828 		err = -ENODEV;
4829 		goto out_unmap;
4830 	}
4831 
4832 	err = its_force_quiescent(its_base);
4833 	if (err) {
4834 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4835 		goto out_unmap;
4836 	}
4837 
4838 	pr_info("ITS %pR\n", res);
4839 
4840 	its = kzalloc(sizeof(*its), GFP_KERNEL);
4841 	if (!its) {
4842 		err = -ENOMEM;
4843 		goto out_unmap;
4844 	}
4845 
4846 	raw_spin_lock_init(&its->lock);
4847 	mutex_init(&its->dev_alloc_lock);
4848 	INIT_LIST_HEAD(&its->entry);
4849 	INIT_LIST_HEAD(&its->its_device_list);
4850 	typer = gic_read_typer(its_base + GITS_TYPER);
4851 	its->typer = typer;
4852 	its->base = its_base;
4853 	its->phys_base = res->start;
4854 	if (is_v4(its)) {
4855 		if (!(typer & GITS_TYPER_VMOVP)) {
4856 			err = its_compute_its_list_map(res, its_base);
4857 			if (err < 0)
4858 				goto out_free_its;
4859 
4860 			its->list_nr = err;
4861 
4862 			pr_info("ITS@%pa: Using ITS number %d\n",
4863 				&res->start, err);
4864 		} else {
4865 			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
4866 		}
4867 
4868 		if (is_v4_1(its)) {
4869 			u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer);
4870 
4871 			its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K);
4872 			if (!its->sgir_base) {
4873 				err = -ENOMEM;
4874 				goto out_free_its;
4875 			}
4876 
4877 			its->mpidr = readl_relaxed(its_base + GITS_MPIDR);
4878 
4879 			pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
4880 				&res->start, its->mpidr, svpet);
4881 		}
4882 	}
4883 
4884 	its->numa_node = numa_node;
4885 
4886 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
4887 				get_order(ITS_CMD_QUEUE_SZ));
4888 	if (!page) {
4889 		err = -ENOMEM;
4890 		goto out_unmap_sgir;
4891 	}
4892 	its->cmd_base = (void *)page_address(page);
4893 	its->cmd_write = its->cmd_base;
4894 	its->fwnode_handle = handle;
4895 	its->get_msi_base = its_irq_get_msi_base;
4896 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
4897 
4898 	its_enable_quirks(its);
4899 
4900 	err = its_alloc_tables(its);
4901 	if (err)
4902 		goto out_free_cmd;
4903 
4904 	err = its_alloc_collections(its);
4905 	if (err)
4906 		goto out_free_tables;
4907 
4908 	baser = (virt_to_phys(its->cmd_base)	|
4909 		 GITS_CBASER_RaWaWb		|
4910 		 GITS_CBASER_InnerShareable	|
4911 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
4912 		 GITS_CBASER_VALID);
4913 
4914 	gits_write_cbaser(baser, its->base + GITS_CBASER);
4915 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
4916 
4917 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
4918 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
4919 			/*
4920 			 * The HW reports non-shareable, we must
4921 			 * remove the cacheability attributes as
4922 			 * well.
4923 			 */
4924 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
4925 				   GITS_CBASER_CACHEABILITY_MASK);
4926 			baser |= GITS_CBASER_nC;
4927 			gits_write_cbaser(baser, its->base + GITS_CBASER);
4928 		}
4929 		pr_info("ITS: using cache flushing for cmd queue\n");
4930 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
4931 	}
4932 
4933 	gits_write_cwriter(0, its->base + GITS_CWRITER);
4934 	ctlr = readl_relaxed(its->base + GITS_CTLR);
4935 	ctlr |= GITS_CTLR_ENABLE;
4936 	if (is_v4(its))
4937 		ctlr |= GITS_CTLR_ImDe;
4938 	writel_relaxed(ctlr, its->base + GITS_CTLR);
4939 
4940 	if (GITS_TYPER_HCC(typer))
4941 		its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE;
4942 
4943 	err = its_init_domain(handle, its);
4944 	if (err)
4945 		goto out_free_tables;
4946 
4947 	raw_spin_lock(&its_lock);
4948 	list_add(&its->entry, &its_nodes);
4949 	raw_spin_unlock(&its_lock);
4950 
4951 	return 0;
4952 
4953 out_free_tables:
4954 	its_free_tables(its);
4955 out_free_cmd:
4956 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
4957 out_unmap_sgir:
4958 	if (its->sgir_base)
4959 		iounmap(its->sgir_base);
4960 out_free_its:
4961 	kfree(its);
4962 out_unmap:
4963 	iounmap(its_base);
4964 	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
4965 	return err;
4966 }
4967 
4968 static bool gic_rdists_supports_plpis(void)
4969 {
4970 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
4971 }
4972 
4973 static int redist_disable_lpis(void)
4974 {
4975 	void __iomem *rbase = gic_data_rdist_rd_base();
4976 	u64 timeout = USEC_PER_SEC;
4977 	u64 val;
4978 
4979 	if (!gic_rdists_supports_plpis()) {
4980 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
4981 		return -ENXIO;
4982 	}
4983 
4984 	val = readl_relaxed(rbase + GICR_CTLR);
4985 	if (!(val & GICR_CTLR_ENABLE_LPIS))
4986 		return 0;
4987 
4988 	/*
4989 	 * If coming via a CPU hotplug event, we don't need to disable
4990 	 * LPIs before trying to re-enable them. They are already
4991 	 * configured and all is well in the world.
4992 	 *
4993 	 * If running with preallocated tables, there is nothing to do.
4994 	 */
4995 	if (gic_data_rdist()->lpi_enabled ||
4996 	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
4997 		return 0;
4998 
4999 	/*
5000 	 * From that point on, we only try to do some damage control.
5001 	 */
5002 	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5003 		smp_processor_id());
5004 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5005 
5006 	/* Disable LPIs */
5007 	val &= ~GICR_CTLR_ENABLE_LPIS;
5008 	writel_relaxed(val, rbase + GICR_CTLR);
5009 
5010 	/* Make sure any change to GICR_CTLR is observable by the GIC */
5011 	dsb(sy);
5012 
5013 	/*
5014 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5015 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5016 	 * Error out if we time out waiting for RWP to clear.
5017 	 */
5018 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5019 		if (!timeout) {
5020 			pr_err("CPU%d: Timeout while disabling LPIs\n",
5021 			       smp_processor_id());
5022 			return -ETIMEDOUT;
5023 		}
5024 		udelay(1);
5025 		timeout--;
5026 	}
5027 
5028 	/*
5029 	 * After it has been written to 1, it is IMPLEMENTATION
5030 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5031 	 * cleared to 0. Error out if clearing the bit failed.
5032 	 */
5033 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5034 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5035 		return -EBUSY;
5036 	}
5037 
5038 	return 0;
5039 }
5040 
5041 int its_cpu_init(void)
5042 {
5043 	if (!list_empty(&its_nodes)) {
5044 		int ret;
5045 
5046 		ret = redist_disable_lpis();
5047 		if (ret)
5048 			return ret;
5049 
5050 		its_cpu_init_lpis();
5051 		its_cpu_init_collections();
5052 	}
5053 
5054 	return 0;
5055 }
5056 
5057 static const struct of_device_id its_device_id[] = {
5058 	{	.compatible	= "arm,gic-v3-its",	},
5059 	{},
5060 };
5061 
5062 static int __init its_of_probe(struct device_node *node)
5063 {
5064 	struct device_node *np;
5065 	struct resource res;
5066 
5067 	for (np = of_find_matching_node(node, its_device_id); np;
5068 	     np = of_find_matching_node(np, its_device_id)) {
5069 		if (!of_device_is_available(np))
5070 			continue;
5071 		if (!of_property_read_bool(np, "msi-controller")) {
5072 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5073 				np);
5074 			continue;
5075 		}
5076 
5077 		if (of_address_to_resource(np, 0, &res)) {
5078 			pr_warn("%pOF: no regs?\n", np);
5079 			continue;
5080 		}
5081 
5082 		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
5083 	}
5084 	return 0;
5085 }
5086 
5087 #ifdef CONFIG_ACPI
5088 
5089 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5090 
5091 #ifdef CONFIG_ACPI_NUMA
5092 struct its_srat_map {
5093 	/* numa node id */
5094 	u32	numa_node;
5095 	/* GIC ITS ID */
5096 	u32	its_id;
5097 };
5098 
5099 static struct its_srat_map *its_srat_maps __initdata;
5100 static int its_in_srat __initdata;
5101 
5102 static int __init acpi_get_its_numa_node(u32 its_id)
5103 {
5104 	int i;
5105 
5106 	for (i = 0; i < its_in_srat; i++) {
5107 		if (its_id == its_srat_maps[i].its_id)
5108 			return its_srat_maps[i].numa_node;
5109 	}
5110 	return NUMA_NO_NODE;
5111 }
5112 
5113 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5114 					  const unsigned long end)
5115 {
5116 	return 0;
5117 }
5118 
5119 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5120 			 const unsigned long end)
5121 {
5122 	int node;
5123 	struct acpi_srat_gic_its_affinity *its_affinity;
5124 
5125 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5126 	if (!its_affinity)
5127 		return -EINVAL;
5128 
5129 	if (its_affinity->header.length < sizeof(*its_affinity)) {
5130 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5131 			its_affinity->header.length);
5132 		return -EINVAL;
5133 	}
5134 
5135 	node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
5136 
5137 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5138 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5139 		return 0;
5140 	}
5141 
5142 	its_srat_maps[its_in_srat].numa_node = node;
5143 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5144 	its_in_srat++;
5145 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5146 		its_affinity->proximity_domain, its_affinity->its_id, node);
5147 
5148 	return 0;
5149 }
5150 
5151 static void __init acpi_table_parse_srat_its(void)
5152 {
5153 	int count;
5154 
5155 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5156 			sizeof(struct acpi_table_srat),
5157 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5158 			gic_acpi_match_srat_its, 0);
5159 	if (count <= 0)
5160 		return;
5161 
5162 	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5163 				      GFP_KERNEL);
5164 	if (!its_srat_maps) {
5165 		pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
5166 		return;
5167 	}
5168 
5169 	acpi_table_parse_entries(ACPI_SIG_SRAT,
5170 			sizeof(struct acpi_table_srat),
5171 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5172 			gic_acpi_parse_srat_its, 0);
5173 }
5174 
5175 /* free the its_srat_maps after ITS probing */
5176 static void __init acpi_its_srat_maps_free(void)
5177 {
5178 	kfree(its_srat_maps);
5179 }
5180 #else
5181 static void __init acpi_table_parse_srat_its(void)	{ }
5182 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5183 static void __init acpi_its_srat_maps_free(void) { }
5184 #endif
5185 
5186 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5187 					  const unsigned long end)
5188 {
5189 	struct acpi_madt_generic_translator *its_entry;
5190 	struct fwnode_handle *dom_handle;
5191 	struct resource res;
5192 	int err;
5193 
5194 	its_entry = (struct acpi_madt_generic_translator *)header;
5195 	memset(&res, 0, sizeof(res));
5196 	res.start = its_entry->base_address;
5197 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5198 	res.flags = IORESOURCE_MEM;
5199 
5200 	dom_handle = irq_domain_alloc_fwnode(&res.start);
5201 	if (!dom_handle) {
5202 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5203 		       &res.start);
5204 		return -ENOMEM;
5205 	}
5206 
5207 	err = iort_register_domain_token(its_entry->translation_id, res.start,
5208 					 dom_handle);
5209 	if (err) {
5210 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5211 		       &res.start, its_entry->translation_id);
5212 		goto dom_err;
5213 	}
5214 
5215 	err = its_probe_one(&res, dom_handle,
5216 			acpi_get_its_numa_node(its_entry->translation_id));
5217 	if (!err)
5218 		return 0;
5219 
5220 	iort_deregister_domain_token(its_entry->translation_id);
5221 dom_err:
5222 	irq_domain_free_fwnode(dom_handle);
5223 	return err;
5224 }
5225 
5226 static void __init its_acpi_probe(void)
5227 {
5228 	acpi_table_parse_srat_its();
5229 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5230 			      gic_acpi_parse_madt_its, 0);
5231 	acpi_its_srat_maps_free();
5232 }
5233 #else
5234 static void __init its_acpi_probe(void) { }
5235 #endif
5236 
5237 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5238 		    struct irq_domain *parent_domain)
5239 {
5240 	struct device_node *of_node;
5241 	struct its_node *its;
5242 	bool has_v4 = false;
5243 	bool has_v4_1 = false;
5244 	int err;
5245 
5246 	gic_rdists = rdists;
5247 
5248 	its_parent = parent_domain;
5249 	of_node = to_of_node(handle);
5250 	if (of_node)
5251 		its_of_probe(of_node);
5252 	else
5253 		its_acpi_probe();
5254 
5255 	if (list_empty(&its_nodes)) {
5256 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
5257 		return -ENXIO;
5258 	}
5259 
5260 	err = allocate_lpi_tables();
5261 	if (err)
5262 		return err;
5263 
5264 	list_for_each_entry(its, &its_nodes, entry) {
5265 		has_v4 |= is_v4(its);
5266 		has_v4_1 |= is_v4_1(its);
5267 	}
5268 
5269 	/* Don't bother with inconsistent systems */
5270 	if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5271 		rdists->has_rvpeid = false;
5272 
5273 	if (has_v4 & rdists->has_vlpis) {
5274 		const struct irq_domain_ops *sgi_ops;
5275 
5276 		if (has_v4_1)
5277 			sgi_ops = &its_sgi_domain_ops;
5278 		else
5279 			sgi_ops = NULL;
5280 
5281 		if (its_init_vpe_domain() ||
5282 		    its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5283 			rdists->has_vlpis = false;
5284 			pr_err("ITS: Disabling GICv4 support\n");
5285 		}
5286 	}
5287 
5288 	register_syscore_ops(&its_syscore_ops);
5289 
5290 	return 0;
5291 }
5292