1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/acpi_iort.h> 9 #include <linux/bitfield.h> 10 #include <linux/bitmap.h> 11 #include <linux/cpu.h> 12 #include <linux/crash_dump.h> 13 #include <linux/delay.h> 14 #include <linux/dma-iommu.h> 15 #include <linux/efi.h> 16 #include <linux/interrupt.h> 17 #include <linux/iopoll.h> 18 #include <linux/irqdomain.h> 19 #include <linux/list.h> 20 #include <linux/log2.h> 21 #include <linux/memblock.h> 22 #include <linux/mm.h> 23 #include <linux/msi.h> 24 #include <linux/of.h> 25 #include <linux/of_address.h> 26 #include <linux/of_irq.h> 27 #include <linux/of_pci.h> 28 #include <linux/of_platform.h> 29 #include <linux/percpu.h> 30 #include <linux/slab.h> 31 #include <linux/syscore_ops.h> 32 33 #include <linux/irqchip.h> 34 #include <linux/irqchip/arm-gic-v3.h> 35 #include <linux/irqchip/arm-gic-v4.h> 36 37 #include <asm/cputype.h> 38 #include <asm/exception.h> 39 40 #include "irq-gic-common.h" 41 42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) 43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) 44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) 45 #define ITS_FLAGS_SAVE_SUSPEND_STATE (1ULL << 3) 46 47 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0) 48 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED (1 << 1) 49 50 static u32 lpi_id_bits; 51 52 /* 53 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to 54 * deal with (one configuration byte per interrupt). PENDBASE has to 55 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). 56 */ 57 #define LPI_NRBITS lpi_id_bits 58 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K) 59 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) 60 61 #define LPI_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI 62 63 /* 64 * Collection structure - just an ID, and a redistributor address to 65 * ping. We use one per CPU as a bag of interrupts assigned to this 66 * CPU. 67 */ 68 struct its_collection { 69 u64 target_address; 70 u16 col_id; 71 }; 72 73 /* 74 * The ITS_BASER structure - contains memory information, cached 75 * value of BASER register configuration and ITS page size. 76 */ 77 struct its_baser { 78 void *base; 79 u64 val; 80 u32 order; 81 u32 psz; 82 }; 83 84 struct its_device; 85 86 /* 87 * The ITS structure - contains most of the infrastructure, with the 88 * top-level MSI domain, the command queue, the collections, and the 89 * list of devices writing to it. 90 * 91 * dev_alloc_lock has to be taken for device allocations, while the 92 * spinlock must be taken to parse data structures such as the device 93 * list. 94 */ 95 struct its_node { 96 raw_spinlock_t lock; 97 struct mutex dev_alloc_lock; 98 struct list_head entry; 99 void __iomem *base; 100 void __iomem *sgir_base; 101 phys_addr_t phys_base; 102 struct its_cmd_block *cmd_base; 103 struct its_cmd_block *cmd_write; 104 struct its_baser tables[GITS_BASER_NR_REGS]; 105 struct its_collection *collections; 106 struct fwnode_handle *fwnode_handle; 107 u64 (*get_msi_base)(struct its_device *its_dev); 108 u64 typer; 109 u64 cbaser_save; 110 u32 ctlr_save; 111 u32 mpidr; 112 struct list_head its_device_list; 113 u64 flags; 114 unsigned long list_nr; 115 int numa_node; 116 unsigned int msi_domain_flags; 117 u32 pre_its_base; /* for Socionext Synquacer */ 118 int vlpi_redist_offset; 119 }; 120 121 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS)) 122 #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP)) 123 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1) 124 125 #define ITS_ITT_ALIGN SZ_256 126 127 /* The maximum number of VPEID bits supported by VLPI commands */ 128 #define ITS_MAX_VPEID_BITS \ 129 ({ \ 130 int nvpeid = 16; \ 131 if (gic_rdists->has_rvpeid && \ 132 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \ 133 nvpeid = 1 + (gic_rdists->gicd_typer2 & \ 134 GICD_TYPER2_VID); \ 135 \ 136 nvpeid; \ 137 }) 138 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS)) 139 140 /* Convert page order to size in bytes */ 141 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) 142 143 struct event_lpi_map { 144 unsigned long *lpi_map; 145 u16 *col_map; 146 irq_hw_number_t lpi_base; 147 int nr_lpis; 148 raw_spinlock_t vlpi_lock; 149 struct its_vm *vm; 150 struct its_vlpi_map *vlpi_maps; 151 int nr_vlpis; 152 }; 153 154 /* 155 * The ITS view of a device - belongs to an ITS, owns an interrupt 156 * translation table, and a list of interrupts. If it some of its 157 * LPIs are injected into a guest (GICv4), the event_map.vm field 158 * indicates which one. 159 */ 160 struct its_device { 161 struct list_head entry; 162 struct its_node *its; 163 struct event_lpi_map event_map; 164 void *itt; 165 u32 nr_ites; 166 u32 device_id; 167 bool shared; 168 }; 169 170 static struct { 171 raw_spinlock_t lock; 172 struct its_device *dev; 173 struct its_vpe **vpes; 174 int next_victim; 175 } vpe_proxy; 176 177 static LIST_HEAD(its_nodes); 178 static DEFINE_RAW_SPINLOCK(its_lock); 179 static struct rdists *gic_rdists; 180 static struct irq_domain *its_parent; 181 182 static unsigned long its_list_map; 183 static u16 vmovp_seq_num; 184 static DEFINE_RAW_SPINLOCK(vmovp_lock); 185 186 static DEFINE_IDA(its_vpeid_ida); 187 188 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) 189 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu)) 190 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 191 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K) 192 193 /* 194 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we 195 * always have vSGIs mapped. 196 */ 197 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its) 198 { 199 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]); 200 } 201 202 static u16 get_its_list(struct its_vm *vm) 203 { 204 struct its_node *its; 205 unsigned long its_list = 0; 206 207 list_for_each_entry(its, &its_nodes, entry) { 208 if (!is_v4(its)) 209 continue; 210 211 if (require_its_list_vmovp(vm, its)) 212 __set_bit(its->list_nr, &its_list); 213 } 214 215 return (u16)its_list; 216 } 217 218 static inline u32 its_get_event_id(struct irq_data *d) 219 { 220 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 221 return d->hwirq - its_dev->event_map.lpi_base; 222 } 223 224 static struct its_collection *dev_event_to_col(struct its_device *its_dev, 225 u32 event) 226 { 227 struct its_node *its = its_dev->its; 228 229 return its->collections + its_dev->event_map.col_map[event]; 230 } 231 232 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev, 233 u32 event) 234 { 235 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis)) 236 return NULL; 237 238 return &its_dev->event_map.vlpi_maps[event]; 239 } 240 241 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d) 242 { 243 if (irqd_is_forwarded_to_vcpu(d)) { 244 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 245 u32 event = its_get_event_id(d); 246 247 return dev_event_to_vlpi_map(its_dev, event); 248 } 249 250 return NULL; 251 } 252 253 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags) 254 { 255 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags); 256 return vpe->col_idx; 257 } 258 259 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags) 260 { 261 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 262 } 263 264 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags) 265 { 266 struct its_vlpi_map *map = get_vlpi_map(d); 267 int cpu; 268 269 if (map) { 270 cpu = vpe_to_cpuid_lock(map->vpe, flags); 271 } else { 272 /* Physical LPIs are already locked via the irq_desc lock */ 273 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 274 cpu = its_dev->event_map.col_map[its_get_event_id(d)]; 275 /* Keep GCC quiet... */ 276 *flags = 0; 277 } 278 279 return cpu; 280 } 281 282 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags) 283 { 284 struct its_vlpi_map *map = get_vlpi_map(d); 285 286 if (map) 287 vpe_to_cpuid_unlock(map->vpe, flags); 288 } 289 290 static struct its_collection *valid_col(struct its_collection *col) 291 { 292 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0))) 293 return NULL; 294 295 return col; 296 } 297 298 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe) 299 { 300 if (valid_col(its->collections + vpe->col_idx)) 301 return vpe; 302 303 return NULL; 304 } 305 306 /* 307 * ITS command descriptors - parameters to be encoded in a command 308 * block. 309 */ 310 struct its_cmd_desc { 311 union { 312 struct { 313 struct its_device *dev; 314 u32 event_id; 315 } its_inv_cmd; 316 317 struct { 318 struct its_device *dev; 319 u32 event_id; 320 } its_clear_cmd; 321 322 struct { 323 struct its_device *dev; 324 u32 event_id; 325 } its_int_cmd; 326 327 struct { 328 struct its_device *dev; 329 int valid; 330 } its_mapd_cmd; 331 332 struct { 333 struct its_collection *col; 334 int valid; 335 } its_mapc_cmd; 336 337 struct { 338 struct its_device *dev; 339 u32 phys_id; 340 u32 event_id; 341 } its_mapti_cmd; 342 343 struct { 344 struct its_device *dev; 345 struct its_collection *col; 346 u32 event_id; 347 } its_movi_cmd; 348 349 struct { 350 struct its_device *dev; 351 u32 event_id; 352 } its_discard_cmd; 353 354 struct { 355 struct its_collection *col; 356 } its_invall_cmd; 357 358 struct { 359 struct its_vpe *vpe; 360 } its_vinvall_cmd; 361 362 struct { 363 struct its_vpe *vpe; 364 struct its_collection *col; 365 bool valid; 366 } its_vmapp_cmd; 367 368 struct { 369 struct its_vpe *vpe; 370 struct its_device *dev; 371 u32 virt_id; 372 u32 event_id; 373 bool db_enabled; 374 } its_vmapti_cmd; 375 376 struct { 377 struct its_vpe *vpe; 378 struct its_device *dev; 379 u32 event_id; 380 bool db_enabled; 381 } its_vmovi_cmd; 382 383 struct { 384 struct its_vpe *vpe; 385 struct its_collection *col; 386 u16 seq_num; 387 u16 its_list; 388 } its_vmovp_cmd; 389 390 struct { 391 struct its_vpe *vpe; 392 } its_invdb_cmd; 393 394 struct { 395 struct its_vpe *vpe; 396 u8 sgi; 397 u8 priority; 398 bool enable; 399 bool group; 400 bool clear; 401 } its_vsgi_cmd; 402 }; 403 }; 404 405 /* 406 * The ITS command block, which is what the ITS actually parses. 407 */ 408 struct its_cmd_block { 409 union { 410 u64 raw_cmd[4]; 411 __le64 raw_cmd_le[4]; 412 }; 413 }; 414 415 #define ITS_CMD_QUEUE_SZ SZ_64K 416 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) 417 418 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *, 419 struct its_cmd_block *, 420 struct its_cmd_desc *); 421 422 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *, 423 struct its_cmd_block *, 424 struct its_cmd_desc *); 425 426 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) 427 { 428 u64 mask = GENMASK_ULL(h, l); 429 *raw_cmd &= ~mask; 430 *raw_cmd |= (val << l) & mask; 431 } 432 433 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) 434 { 435 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); 436 } 437 438 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) 439 { 440 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); 441 } 442 443 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) 444 { 445 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); 446 } 447 448 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) 449 { 450 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); 451 } 452 453 static void its_encode_size(struct its_cmd_block *cmd, u8 size) 454 { 455 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); 456 } 457 458 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) 459 { 460 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); 461 } 462 463 static void its_encode_valid(struct its_cmd_block *cmd, int valid) 464 { 465 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); 466 } 467 468 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) 469 { 470 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); 471 } 472 473 static void its_encode_collection(struct its_cmd_block *cmd, u16 col) 474 { 475 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); 476 } 477 478 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) 479 { 480 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); 481 } 482 483 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) 484 { 485 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); 486 } 487 488 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) 489 { 490 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); 491 } 492 493 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) 494 { 495 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); 496 } 497 498 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) 499 { 500 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); 501 } 502 503 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) 504 { 505 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); 506 } 507 508 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) 509 { 510 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); 511 } 512 513 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) 514 { 515 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); 516 } 517 518 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa) 519 { 520 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16); 521 } 522 523 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc) 524 { 525 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8); 526 } 527 528 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz) 529 { 530 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9); 531 } 532 533 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd, 534 u32 vpe_db_lpi) 535 { 536 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0); 537 } 538 539 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd, 540 u32 vpe_db_lpi) 541 { 542 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0); 543 } 544 545 static void its_encode_db(struct its_cmd_block *cmd, bool db) 546 { 547 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63); 548 } 549 550 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi) 551 { 552 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32); 553 } 554 555 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio) 556 { 557 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20); 558 } 559 560 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp) 561 { 562 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10); 563 } 564 565 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr) 566 { 567 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9); 568 } 569 570 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en) 571 { 572 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8); 573 } 574 575 static inline void its_fixup_cmd(struct its_cmd_block *cmd) 576 { 577 /* Let's fixup BE commands */ 578 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]); 579 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]); 580 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]); 581 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]); 582 } 583 584 static struct its_collection *its_build_mapd_cmd(struct its_node *its, 585 struct its_cmd_block *cmd, 586 struct its_cmd_desc *desc) 587 { 588 unsigned long itt_addr; 589 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); 590 591 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); 592 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); 593 594 its_encode_cmd(cmd, GITS_CMD_MAPD); 595 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); 596 its_encode_size(cmd, size - 1); 597 its_encode_itt(cmd, itt_addr); 598 its_encode_valid(cmd, desc->its_mapd_cmd.valid); 599 600 its_fixup_cmd(cmd); 601 602 return NULL; 603 } 604 605 static struct its_collection *its_build_mapc_cmd(struct its_node *its, 606 struct its_cmd_block *cmd, 607 struct its_cmd_desc *desc) 608 { 609 its_encode_cmd(cmd, GITS_CMD_MAPC); 610 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 611 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); 612 its_encode_valid(cmd, desc->its_mapc_cmd.valid); 613 614 its_fixup_cmd(cmd); 615 616 return desc->its_mapc_cmd.col; 617 } 618 619 static struct its_collection *its_build_mapti_cmd(struct its_node *its, 620 struct its_cmd_block *cmd, 621 struct its_cmd_desc *desc) 622 { 623 struct its_collection *col; 624 625 col = dev_event_to_col(desc->its_mapti_cmd.dev, 626 desc->its_mapti_cmd.event_id); 627 628 its_encode_cmd(cmd, GITS_CMD_MAPTI); 629 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); 630 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); 631 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); 632 its_encode_collection(cmd, col->col_id); 633 634 its_fixup_cmd(cmd); 635 636 return valid_col(col); 637 } 638 639 static struct its_collection *its_build_movi_cmd(struct its_node *its, 640 struct its_cmd_block *cmd, 641 struct its_cmd_desc *desc) 642 { 643 struct its_collection *col; 644 645 col = dev_event_to_col(desc->its_movi_cmd.dev, 646 desc->its_movi_cmd.event_id); 647 648 its_encode_cmd(cmd, GITS_CMD_MOVI); 649 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); 650 its_encode_event_id(cmd, desc->its_movi_cmd.event_id); 651 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); 652 653 its_fixup_cmd(cmd); 654 655 return valid_col(col); 656 } 657 658 static struct its_collection *its_build_discard_cmd(struct its_node *its, 659 struct its_cmd_block *cmd, 660 struct its_cmd_desc *desc) 661 { 662 struct its_collection *col; 663 664 col = dev_event_to_col(desc->its_discard_cmd.dev, 665 desc->its_discard_cmd.event_id); 666 667 its_encode_cmd(cmd, GITS_CMD_DISCARD); 668 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); 669 its_encode_event_id(cmd, desc->its_discard_cmd.event_id); 670 671 its_fixup_cmd(cmd); 672 673 return valid_col(col); 674 } 675 676 static struct its_collection *its_build_inv_cmd(struct its_node *its, 677 struct its_cmd_block *cmd, 678 struct its_cmd_desc *desc) 679 { 680 struct its_collection *col; 681 682 col = dev_event_to_col(desc->its_inv_cmd.dev, 683 desc->its_inv_cmd.event_id); 684 685 its_encode_cmd(cmd, GITS_CMD_INV); 686 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 687 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 688 689 its_fixup_cmd(cmd); 690 691 return valid_col(col); 692 } 693 694 static struct its_collection *its_build_int_cmd(struct its_node *its, 695 struct its_cmd_block *cmd, 696 struct its_cmd_desc *desc) 697 { 698 struct its_collection *col; 699 700 col = dev_event_to_col(desc->its_int_cmd.dev, 701 desc->its_int_cmd.event_id); 702 703 its_encode_cmd(cmd, GITS_CMD_INT); 704 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 705 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 706 707 its_fixup_cmd(cmd); 708 709 return valid_col(col); 710 } 711 712 static struct its_collection *its_build_clear_cmd(struct its_node *its, 713 struct its_cmd_block *cmd, 714 struct its_cmd_desc *desc) 715 { 716 struct its_collection *col; 717 718 col = dev_event_to_col(desc->its_clear_cmd.dev, 719 desc->its_clear_cmd.event_id); 720 721 its_encode_cmd(cmd, GITS_CMD_CLEAR); 722 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 723 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 724 725 its_fixup_cmd(cmd); 726 727 return valid_col(col); 728 } 729 730 static struct its_collection *its_build_invall_cmd(struct its_node *its, 731 struct its_cmd_block *cmd, 732 struct its_cmd_desc *desc) 733 { 734 its_encode_cmd(cmd, GITS_CMD_INVALL); 735 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id); 736 737 its_fixup_cmd(cmd); 738 739 return NULL; 740 } 741 742 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its, 743 struct its_cmd_block *cmd, 744 struct its_cmd_desc *desc) 745 { 746 its_encode_cmd(cmd, GITS_CMD_VINVALL); 747 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); 748 749 its_fixup_cmd(cmd); 750 751 return valid_vpe(its, desc->its_vinvall_cmd.vpe); 752 } 753 754 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its, 755 struct its_cmd_block *cmd, 756 struct its_cmd_desc *desc) 757 { 758 unsigned long vpt_addr, vconf_addr; 759 u64 target; 760 bool alloc; 761 762 its_encode_cmd(cmd, GITS_CMD_VMAPP); 763 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); 764 its_encode_valid(cmd, desc->its_vmapp_cmd.valid); 765 766 if (!desc->its_vmapp_cmd.valid) { 767 if (is_v4_1(its)) { 768 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count); 769 its_encode_alloc(cmd, alloc); 770 } 771 772 goto out; 773 } 774 775 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); 776 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset; 777 778 its_encode_target(cmd, target); 779 its_encode_vpt_addr(cmd, vpt_addr); 780 its_encode_vpt_size(cmd, LPI_NRBITS - 1); 781 782 if (!is_v4_1(its)) 783 goto out; 784 785 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page)); 786 787 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count); 788 789 its_encode_alloc(cmd, alloc); 790 791 /* We can only signal PTZ when alloc==1. Why do we have two bits? */ 792 its_encode_ptz(cmd, alloc); 793 its_encode_vconf_addr(cmd, vconf_addr); 794 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi); 795 796 out: 797 its_fixup_cmd(cmd); 798 799 return valid_vpe(its, desc->its_vmapp_cmd.vpe); 800 } 801 802 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its, 803 struct its_cmd_block *cmd, 804 struct its_cmd_desc *desc) 805 { 806 u32 db; 807 808 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled) 809 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; 810 else 811 db = 1023; 812 813 its_encode_cmd(cmd, GITS_CMD_VMAPTI); 814 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); 815 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); 816 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); 817 its_encode_db_phys_id(cmd, db); 818 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); 819 820 its_fixup_cmd(cmd); 821 822 return valid_vpe(its, desc->its_vmapti_cmd.vpe); 823 } 824 825 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its, 826 struct its_cmd_block *cmd, 827 struct its_cmd_desc *desc) 828 { 829 u32 db; 830 831 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled) 832 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; 833 else 834 db = 1023; 835 836 its_encode_cmd(cmd, GITS_CMD_VMOVI); 837 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); 838 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); 839 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); 840 its_encode_db_phys_id(cmd, db); 841 its_encode_db_valid(cmd, true); 842 843 its_fixup_cmd(cmd); 844 845 return valid_vpe(its, desc->its_vmovi_cmd.vpe); 846 } 847 848 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its, 849 struct its_cmd_block *cmd, 850 struct its_cmd_desc *desc) 851 { 852 u64 target; 853 854 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset; 855 its_encode_cmd(cmd, GITS_CMD_VMOVP); 856 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); 857 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); 858 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); 859 its_encode_target(cmd, target); 860 861 if (is_v4_1(its)) { 862 its_encode_db(cmd, true); 863 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi); 864 } 865 866 its_fixup_cmd(cmd); 867 868 return valid_vpe(its, desc->its_vmovp_cmd.vpe); 869 } 870 871 static struct its_vpe *its_build_vinv_cmd(struct its_node *its, 872 struct its_cmd_block *cmd, 873 struct its_cmd_desc *desc) 874 { 875 struct its_vlpi_map *map; 876 877 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev, 878 desc->its_inv_cmd.event_id); 879 880 its_encode_cmd(cmd, GITS_CMD_INV); 881 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 882 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 883 884 its_fixup_cmd(cmd); 885 886 return valid_vpe(its, map->vpe); 887 } 888 889 static struct its_vpe *its_build_vint_cmd(struct its_node *its, 890 struct its_cmd_block *cmd, 891 struct its_cmd_desc *desc) 892 { 893 struct its_vlpi_map *map; 894 895 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev, 896 desc->its_int_cmd.event_id); 897 898 its_encode_cmd(cmd, GITS_CMD_INT); 899 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 900 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 901 902 its_fixup_cmd(cmd); 903 904 return valid_vpe(its, map->vpe); 905 } 906 907 static struct its_vpe *its_build_vclear_cmd(struct its_node *its, 908 struct its_cmd_block *cmd, 909 struct its_cmd_desc *desc) 910 { 911 struct its_vlpi_map *map; 912 913 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev, 914 desc->its_clear_cmd.event_id); 915 916 its_encode_cmd(cmd, GITS_CMD_CLEAR); 917 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 918 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 919 920 its_fixup_cmd(cmd); 921 922 return valid_vpe(its, map->vpe); 923 } 924 925 static struct its_vpe *its_build_invdb_cmd(struct its_node *its, 926 struct its_cmd_block *cmd, 927 struct its_cmd_desc *desc) 928 { 929 if (WARN_ON(!is_v4_1(its))) 930 return NULL; 931 932 its_encode_cmd(cmd, GITS_CMD_INVDB); 933 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id); 934 935 its_fixup_cmd(cmd); 936 937 return valid_vpe(its, desc->its_invdb_cmd.vpe); 938 } 939 940 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its, 941 struct its_cmd_block *cmd, 942 struct its_cmd_desc *desc) 943 { 944 if (WARN_ON(!is_v4_1(its))) 945 return NULL; 946 947 its_encode_cmd(cmd, GITS_CMD_VSGI); 948 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id); 949 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi); 950 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority); 951 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group); 952 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear); 953 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable); 954 955 its_fixup_cmd(cmd); 956 957 return valid_vpe(its, desc->its_vsgi_cmd.vpe); 958 } 959 960 static u64 its_cmd_ptr_to_offset(struct its_node *its, 961 struct its_cmd_block *ptr) 962 { 963 return (ptr - its->cmd_base) * sizeof(*ptr); 964 } 965 966 static int its_queue_full(struct its_node *its) 967 { 968 int widx; 969 int ridx; 970 971 widx = its->cmd_write - its->cmd_base; 972 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); 973 974 /* This is incredibly unlikely to happen, unless the ITS locks up. */ 975 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) 976 return 1; 977 978 return 0; 979 } 980 981 static struct its_cmd_block *its_allocate_entry(struct its_node *its) 982 { 983 struct its_cmd_block *cmd; 984 u32 count = 1000000; /* 1s! */ 985 986 while (its_queue_full(its)) { 987 count--; 988 if (!count) { 989 pr_err_ratelimited("ITS queue not draining\n"); 990 return NULL; 991 } 992 cpu_relax(); 993 udelay(1); 994 } 995 996 cmd = its->cmd_write++; 997 998 /* Handle queue wrapping */ 999 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) 1000 its->cmd_write = its->cmd_base; 1001 1002 /* Clear command */ 1003 cmd->raw_cmd[0] = 0; 1004 cmd->raw_cmd[1] = 0; 1005 cmd->raw_cmd[2] = 0; 1006 cmd->raw_cmd[3] = 0; 1007 1008 return cmd; 1009 } 1010 1011 static struct its_cmd_block *its_post_commands(struct its_node *its) 1012 { 1013 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); 1014 1015 writel_relaxed(wr, its->base + GITS_CWRITER); 1016 1017 return its->cmd_write; 1018 } 1019 1020 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) 1021 { 1022 /* 1023 * Make sure the commands written to memory are observable by 1024 * the ITS. 1025 */ 1026 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) 1027 gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); 1028 else 1029 dsb(ishst); 1030 } 1031 1032 static int its_wait_for_range_completion(struct its_node *its, 1033 u64 prev_idx, 1034 struct its_cmd_block *to) 1035 { 1036 u64 rd_idx, to_idx, linear_idx; 1037 u32 count = 1000000; /* 1s! */ 1038 1039 /* Linearize to_idx if the command set has wrapped around */ 1040 to_idx = its_cmd_ptr_to_offset(its, to); 1041 if (to_idx < prev_idx) 1042 to_idx += ITS_CMD_QUEUE_SZ; 1043 1044 linear_idx = prev_idx; 1045 1046 while (1) { 1047 s64 delta; 1048 1049 rd_idx = readl_relaxed(its->base + GITS_CREADR); 1050 1051 /* 1052 * Compute the read pointer progress, taking the 1053 * potential wrap-around into account. 1054 */ 1055 delta = rd_idx - prev_idx; 1056 if (rd_idx < prev_idx) 1057 delta += ITS_CMD_QUEUE_SZ; 1058 1059 linear_idx += delta; 1060 if (linear_idx >= to_idx) 1061 break; 1062 1063 count--; 1064 if (!count) { 1065 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n", 1066 to_idx, linear_idx); 1067 return -1; 1068 } 1069 prev_idx = rd_idx; 1070 cpu_relax(); 1071 udelay(1); 1072 } 1073 1074 return 0; 1075 } 1076 1077 /* Warning, macro hell follows */ 1078 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \ 1079 void name(struct its_node *its, \ 1080 buildtype builder, \ 1081 struct its_cmd_desc *desc) \ 1082 { \ 1083 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \ 1084 synctype *sync_obj; \ 1085 unsigned long flags; \ 1086 u64 rd_idx; \ 1087 \ 1088 raw_spin_lock_irqsave(&its->lock, flags); \ 1089 \ 1090 cmd = its_allocate_entry(its); \ 1091 if (!cmd) { /* We're soooooo screewed... */ \ 1092 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1093 return; \ 1094 } \ 1095 sync_obj = builder(its, cmd, desc); \ 1096 its_flush_cmd(its, cmd); \ 1097 \ 1098 if (sync_obj) { \ 1099 sync_cmd = its_allocate_entry(its); \ 1100 if (!sync_cmd) \ 1101 goto post; \ 1102 \ 1103 buildfn(its, sync_cmd, sync_obj); \ 1104 its_flush_cmd(its, sync_cmd); \ 1105 } \ 1106 \ 1107 post: \ 1108 rd_idx = readl_relaxed(its->base + GITS_CREADR); \ 1109 next_cmd = its_post_commands(its); \ 1110 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1111 \ 1112 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \ 1113 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \ 1114 } 1115 1116 static void its_build_sync_cmd(struct its_node *its, 1117 struct its_cmd_block *sync_cmd, 1118 struct its_collection *sync_col) 1119 { 1120 its_encode_cmd(sync_cmd, GITS_CMD_SYNC); 1121 its_encode_target(sync_cmd, sync_col->target_address); 1122 1123 its_fixup_cmd(sync_cmd); 1124 } 1125 1126 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, 1127 struct its_collection, its_build_sync_cmd) 1128 1129 static void its_build_vsync_cmd(struct its_node *its, 1130 struct its_cmd_block *sync_cmd, 1131 struct its_vpe *sync_vpe) 1132 { 1133 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); 1134 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); 1135 1136 its_fixup_cmd(sync_cmd); 1137 } 1138 1139 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, 1140 struct its_vpe, its_build_vsync_cmd) 1141 1142 static void its_send_int(struct its_device *dev, u32 event_id) 1143 { 1144 struct its_cmd_desc desc; 1145 1146 desc.its_int_cmd.dev = dev; 1147 desc.its_int_cmd.event_id = event_id; 1148 1149 its_send_single_command(dev->its, its_build_int_cmd, &desc); 1150 } 1151 1152 static void its_send_clear(struct its_device *dev, u32 event_id) 1153 { 1154 struct its_cmd_desc desc; 1155 1156 desc.its_clear_cmd.dev = dev; 1157 desc.its_clear_cmd.event_id = event_id; 1158 1159 its_send_single_command(dev->its, its_build_clear_cmd, &desc); 1160 } 1161 1162 static void its_send_inv(struct its_device *dev, u32 event_id) 1163 { 1164 struct its_cmd_desc desc; 1165 1166 desc.its_inv_cmd.dev = dev; 1167 desc.its_inv_cmd.event_id = event_id; 1168 1169 its_send_single_command(dev->its, its_build_inv_cmd, &desc); 1170 } 1171 1172 static void its_send_mapd(struct its_device *dev, int valid) 1173 { 1174 struct its_cmd_desc desc; 1175 1176 desc.its_mapd_cmd.dev = dev; 1177 desc.its_mapd_cmd.valid = !!valid; 1178 1179 its_send_single_command(dev->its, its_build_mapd_cmd, &desc); 1180 } 1181 1182 static void its_send_mapc(struct its_node *its, struct its_collection *col, 1183 int valid) 1184 { 1185 struct its_cmd_desc desc; 1186 1187 desc.its_mapc_cmd.col = col; 1188 desc.its_mapc_cmd.valid = !!valid; 1189 1190 its_send_single_command(its, its_build_mapc_cmd, &desc); 1191 } 1192 1193 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) 1194 { 1195 struct its_cmd_desc desc; 1196 1197 desc.its_mapti_cmd.dev = dev; 1198 desc.its_mapti_cmd.phys_id = irq_id; 1199 desc.its_mapti_cmd.event_id = id; 1200 1201 its_send_single_command(dev->its, its_build_mapti_cmd, &desc); 1202 } 1203 1204 static void its_send_movi(struct its_device *dev, 1205 struct its_collection *col, u32 id) 1206 { 1207 struct its_cmd_desc desc; 1208 1209 desc.its_movi_cmd.dev = dev; 1210 desc.its_movi_cmd.col = col; 1211 desc.its_movi_cmd.event_id = id; 1212 1213 its_send_single_command(dev->its, its_build_movi_cmd, &desc); 1214 } 1215 1216 static void its_send_discard(struct its_device *dev, u32 id) 1217 { 1218 struct its_cmd_desc desc; 1219 1220 desc.its_discard_cmd.dev = dev; 1221 desc.its_discard_cmd.event_id = id; 1222 1223 its_send_single_command(dev->its, its_build_discard_cmd, &desc); 1224 } 1225 1226 static void its_send_invall(struct its_node *its, struct its_collection *col) 1227 { 1228 struct its_cmd_desc desc; 1229 1230 desc.its_invall_cmd.col = col; 1231 1232 its_send_single_command(its, its_build_invall_cmd, &desc); 1233 } 1234 1235 static void its_send_vmapti(struct its_device *dev, u32 id) 1236 { 1237 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1238 struct its_cmd_desc desc; 1239 1240 desc.its_vmapti_cmd.vpe = map->vpe; 1241 desc.its_vmapti_cmd.dev = dev; 1242 desc.its_vmapti_cmd.virt_id = map->vintid; 1243 desc.its_vmapti_cmd.event_id = id; 1244 desc.its_vmapti_cmd.db_enabled = map->db_enabled; 1245 1246 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); 1247 } 1248 1249 static void its_send_vmovi(struct its_device *dev, u32 id) 1250 { 1251 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1252 struct its_cmd_desc desc; 1253 1254 desc.its_vmovi_cmd.vpe = map->vpe; 1255 desc.its_vmovi_cmd.dev = dev; 1256 desc.its_vmovi_cmd.event_id = id; 1257 desc.its_vmovi_cmd.db_enabled = map->db_enabled; 1258 1259 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); 1260 } 1261 1262 static void its_send_vmapp(struct its_node *its, 1263 struct its_vpe *vpe, bool valid) 1264 { 1265 struct its_cmd_desc desc; 1266 1267 desc.its_vmapp_cmd.vpe = vpe; 1268 desc.its_vmapp_cmd.valid = valid; 1269 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; 1270 1271 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); 1272 } 1273 1274 static void its_send_vmovp(struct its_vpe *vpe) 1275 { 1276 struct its_cmd_desc desc = {}; 1277 struct its_node *its; 1278 unsigned long flags; 1279 int col_id = vpe->col_idx; 1280 1281 desc.its_vmovp_cmd.vpe = vpe; 1282 1283 if (!its_list_map) { 1284 its = list_first_entry(&its_nodes, struct its_node, entry); 1285 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1286 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1287 return; 1288 } 1289 1290 /* 1291 * Yet another marvel of the architecture. If using the 1292 * its_list "feature", we need to make sure that all ITSs 1293 * receive all VMOVP commands in the same order. The only way 1294 * to guarantee this is to make vmovp a serialization point. 1295 * 1296 * Wall <-- Head. 1297 */ 1298 raw_spin_lock_irqsave(&vmovp_lock, flags); 1299 1300 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; 1301 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm); 1302 1303 /* Emit VMOVPs */ 1304 list_for_each_entry(its, &its_nodes, entry) { 1305 if (!is_v4(its)) 1306 continue; 1307 1308 if (!require_its_list_vmovp(vpe->its_vm, its)) 1309 continue; 1310 1311 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1312 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1313 } 1314 1315 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1316 } 1317 1318 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe) 1319 { 1320 struct its_cmd_desc desc; 1321 1322 desc.its_vinvall_cmd.vpe = vpe; 1323 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); 1324 } 1325 1326 static void its_send_vinv(struct its_device *dev, u32 event_id) 1327 { 1328 struct its_cmd_desc desc; 1329 1330 /* 1331 * There is no real VINV command. This is just a normal INV, 1332 * with a VSYNC instead of a SYNC. 1333 */ 1334 desc.its_inv_cmd.dev = dev; 1335 desc.its_inv_cmd.event_id = event_id; 1336 1337 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc); 1338 } 1339 1340 static void its_send_vint(struct its_device *dev, u32 event_id) 1341 { 1342 struct its_cmd_desc desc; 1343 1344 /* 1345 * There is no real VINT command. This is just a normal INT, 1346 * with a VSYNC instead of a SYNC. 1347 */ 1348 desc.its_int_cmd.dev = dev; 1349 desc.its_int_cmd.event_id = event_id; 1350 1351 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc); 1352 } 1353 1354 static void its_send_vclear(struct its_device *dev, u32 event_id) 1355 { 1356 struct its_cmd_desc desc; 1357 1358 /* 1359 * There is no real VCLEAR command. This is just a normal CLEAR, 1360 * with a VSYNC instead of a SYNC. 1361 */ 1362 desc.its_clear_cmd.dev = dev; 1363 desc.its_clear_cmd.event_id = event_id; 1364 1365 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc); 1366 } 1367 1368 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe) 1369 { 1370 struct its_cmd_desc desc; 1371 1372 desc.its_invdb_cmd.vpe = vpe; 1373 its_send_single_vcommand(its, its_build_invdb_cmd, &desc); 1374 } 1375 1376 /* 1377 * irqchip functions - assumes MSI, mostly. 1378 */ 1379 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) 1380 { 1381 struct its_vlpi_map *map = get_vlpi_map(d); 1382 irq_hw_number_t hwirq; 1383 void *va; 1384 u8 *cfg; 1385 1386 if (map) { 1387 va = page_address(map->vm->vprop_page); 1388 hwirq = map->vintid; 1389 1390 /* Remember the updated property */ 1391 map->properties &= ~clr; 1392 map->properties |= set | LPI_PROP_GROUP1; 1393 } else { 1394 va = gic_rdists->prop_table_va; 1395 hwirq = d->hwirq; 1396 } 1397 1398 cfg = va + hwirq - 8192; 1399 *cfg &= ~clr; 1400 *cfg |= set | LPI_PROP_GROUP1; 1401 1402 /* 1403 * Make the above write visible to the redistributors. 1404 * And yes, we're flushing exactly: One. Single. Byte. 1405 * Humpf... 1406 */ 1407 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) 1408 gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); 1409 else 1410 dsb(ishst); 1411 } 1412 1413 static void wait_for_syncr(void __iomem *rdbase) 1414 { 1415 while (readl_relaxed(rdbase + GICR_SYNCR) & 1) 1416 cpu_relax(); 1417 } 1418 1419 static void direct_lpi_inv(struct irq_data *d) 1420 { 1421 struct its_vlpi_map *map = get_vlpi_map(d); 1422 void __iomem *rdbase; 1423 unsigned long flags; 1424 u64 val; 1425 int cpu; 1426 1427 if (map) { 1428 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1429 1430 WARN_ON(!is_v4_1(its_dev->its)); 1431 1432 val = GICR_INVLPIR_V; 1433 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id); 1434 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid); 1435 } else { 1436 val = d->hwirq; 1437 } 1438 1439 /* Target the redistributor this LPI is currently routed to */ 1440 cpu = irq_to_cpuid_lock(d, &flags); 1441 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 1442 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 1443 gic_write_lpir(val, rdbase + GICR_INVLPIR); 1444 1445 wait_for_syncr(rdbase); 1446 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 1447 irq_to_cpuid_unlock(d, flags); 1448 } 1449 1450 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) 1451 { 1452 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1453 1454 lpi_write_config(d, clr, set); 1455 if (gic_rdists->has_direct_lpi && 1456 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d))) 1457 direct_lpi_inv(d); 1458 else if (!irqd_is_forwarded_to_vcpu(d)) 1459 its_send_inv(its_dev, its_get_event_id(d)); 1460 else 1461 its_send_vinv(its_dev, its_get_event_id(d)); 1462 } 1463 1464 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) 1465 { 1466 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1467 u32 event = its_get_event_id(d); 1468 struct its_vlpi_map *map; 1469 1470 /* 1471 * GICv4.1 does away with the per-LPI nonsense, nothing to do 1472 * here. 1473 */ 1474 if (is_v4_1(its_dev->its)) 1475 return; 1476 1477 map = dev_event_to_vlpi_map(its_dev, event); 1478 1479 if (map->db_enabled == enable) 1480 return; 1481 1482 map->db_enabled = enable; 1483 1484 /* 1485 * More fun with the architecture: 1486 * 1487 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI 1488 * value or to 1023, depending on the enable bit. But that 1489 * would be issueing a mapping for an /existing/ DevID+EventID 1490 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI 1491 * to the /same/ vPE, using this opportunity to adjust the 1492 * doorbell. Mouahahahaha. We loves it, Precious. 1493 */ 1494 its_send_vmovi(its_dev, event); 1495 } 1496 1497 static void its_mask_irq(struct irq_data *d) 1498 { 1499 if (irqd_is_forwarded_to_vcpu(d)) 1500 its_vlpi_set_doorbell(d, false); 1501 1502 lpi_update_config(d, LPI_PROP_ENABLED, 0); 1503 } 1504 1505 static void its_unmask_irq(struct irq_data *d) 1506 { 1507 if (irqd_is_forwarded_to_vcpu(d)) 1508 its_vlpi_set_doorbell(d, true); 1509 1510 lpi_update_config(d, 0, LPI_PROP_ENABLED); 1511 } 1512 1513 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 1514 bool force) 1515 { 1516 unsigned int cpu; 1517 const struct cpumask *cpu_mask = cpu_online_mask; 1518 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1519 struct its_collection *target_col; 1520 u32 id = its_get_event_id(d); 1521 1522 /* A forwarded interrupt should use irq_set_vcpu_affinity */ 1523 if (irqd_is_forwarded_to_vcpu(d)) 1524 return -EINVAL; 1525 1526 /* lpi cannot be routed to a redistributor that is on a foreign node */ 1527 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 1528 if (its_dev->its->numa_node >= 0) { 1529 cpu_mask = cpumask_of_node(its_dev->its->numa_node); 1530 if (!cpumask_intersects(mask_val, cpu_mask)) 1531 return -EINVAL; 1532 } 1533 } 1534 1535 cpu = cpumask_any_and(mask_val, cpu_mask); 1536 1537 if (cpu >= nr_cpu_ids) 1538 return -EINVAL; 1539 1540 /* don't set the affinity when the target cpu is same as current one */ 1541 if (cpu != its_dev->event_map.col_map[id]) { 1542 target_col = &its_dev->its->collections[cpu]; 1543 its_send_movi(its_dev, target_col, id); 1544 its_dev->event_map.col_map[id] = cpu; 1545 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 1546 } 1547 1548 return IRQ_SET_MASK_OK_DONE; 1549 } 1550 1551 static u64 its_irq_get_msi_base(struct its_device *its_dev) 1552 { 1553 struct its_node *its = its_dev->its; 1554 1555 return its->phys_base + GITS_TRANSLATER; 1556 } 1557 1558 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) 1559 { 1560 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1561 struct its_node *its; 1562 u64 addr; 1563 1564 its = its_dev->its; 1565 addr = its->get_msi_base(its_dev); 1566 1567 msg->address_lo = lower_32_bits(addr); 1568 msg->address_hi = upper_32_bits(addr); 1569 msg->data = its_get_event_id(d); 1570 1571 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg); 1572 } 1573 1574 static int its_irq_set_irqchip_state(struct irq_data *d, 1575 enum irqchip_irq_state which, 1576 bool state) 1577 { 1578 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1579 u32 event = its_get_event_id(d); 1580 1581 if (which != IRQCHIP_STATE_PENDING) 1582 return -EINVAL; 1583 1584 if (irqd_is_forwarded_to_vcpu(d)) { 1585 if (state) 1586 its_send_vint(its_dev, event); 1587 else 1588 its_send_vclear(its_dev, event); 1589 } else { 1590 if (state) 1591 its_send_int(its_dev, event); 1592 else 1593 its_send_clear(its_dev, event); 1594 } 1595 1596 return 0; 1597 } 1598 1599 /* 1600 * Two favourable cases: 1601 * 1602 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times 1603 * for vSGI delivery 1604 * 1605 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough 1606 * and we're better off mapping all VPEs always 1607 * 1608 * If neither (a) nor (b) is true, then we map vPEs on demand. 1609 * 1610 */ 1611 static bool gic_requires_eager_mapping(void) 1612 { 1613 if (!its_list_map || gic_rdists->has_rvpeid) 1614 return true; 1615 1616 return false; 1617 } 1618 1619 static void its_map_vm(struct its_node *its, struct its_vm *vm) 1620 { 1621 unsigned long flags; 1622 1623 if (gic_requires_eager_mapping()) 1624 return; 1625 1626 raw_spin_lock_irqsave(&vmovp_lock, flags); 1627 1628 /* 1629 * If the VM wasn't mapped yet, iterate over the vpes and get 1630 * them mapped now. 1631 */ 1632 vm->vlpi_count[its->list_nr]++; 1633 1634 if (vm->vlpi_count[its->list_nr] == 1) { 1635 int i; 1636 1637 for (i = 0; i < vm->nr_vpes; i++) { 1638 struct its_vpe *vpe = vm->vpes[i]; 1639 struct irq_data *d = irq_get_irq_data(vpe->irq); 1640 1641 /* Map the VPE to the first possible CPU */ 1642 vpe->col_idx = cpumask_first(cpu_online_mask); 1643 its_send_vmapp(its, vpe, true); 1644 its_send_vinvall(its, vpe); 1645 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 1646 } 1647 } 1648 1649 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1650 } 1651 1652 static void its_unmap_vm(struct its_node *its, struct its_vm *vm) 1653 { 1654 unsigned long flags; 1655 1656 /* Not using the ITS list? Everything is always mapped. */ 1657 if (gic_requires_eager_mapping()) 1658 return; 1659 1660 raw_spin_lock_irqsave(&vmovp_lock, flags); 1661 1662 if (!--vm->vlpi_count[its->list_nr]) { 1663 int i; 1664 1665 for (i = 0; i < vm->nr_vpes; i++) 1666 its_send_vmapp(its, vm->vpes[i], false); 1667 } 1668 1669 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1670 } 1671 1672 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) 1673 { 1674 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1675 u32 event = its_get_event_id(d); 1676 int ret = 0; 1677 1678 if (!info->map) 1679 return -EINVAL; 1680 1681 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1682 1683 if (!its_dev->event_map.vm) { 1684 struct its_vlpi_map *maps; 1685 1686 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps), 1687 GFP_ATOMIC); 1688 if (!maps) { 1689 ret = -ENOMEM; 1690 goto out; 1691 } 1692 1693 its_dev->event_map.vm = info->map->vm; 1694 its_dev->event_map.vlpi_maps = maps; 1695 } else if (its_dev->event_map.vm != info->map->vm) { 1696 ret = -EINVAL; 1697 goto out; 1698 } 1699 1700 /* Get our private copy of the mapping information */ 1701 its_dev->event_map.vlpi_maps[event] = *info->map; 1702 1703 if (irqd_is_forwarded_to_vcpu(d)) { 1704 /* Already mapped, move it around */ 1705 its_send_vmovi(its_dev, event); 1706 } else { 1707 /* Ensure all the VPEs are mapped on this ITS */ 1708 its_map_vm(its_dev->its, info->map->vm); 1709 1710 /* 1711 * Flag the interrupt as forwarded so that we can 1712 * start poking the virtual property table. 1713 */ 1714 irqd_set_forwarded_to_vcpu(d); 1715 1716 /* Write out the property to the prop table */ 1717 lpi_write_config(d, 0xff, info->map->properties); 1718 1719 /* Drop the physical mapping */ 1720 its_send_discard(its_dev, event); 1721 1722 /* and install the virtual one */ 1723 its_send_vmapti(its_dev, event); 1724 1725 /* Increment the number of VLPIs */ 1726 its_dev->event_map.nr_vlpis++; 1727 } 1728 1729 out: 1730 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1731 return ret; 1732 } 1733 1734 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) 1735 { 1736 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1737 struct its_vlpi_map *map; 1738 int ret = 0; 1739 1740 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1741 1742 map = get_vlpi_map(d); 1743 1744 if (!its_dev->event_map.vm || !map) { 1745 ret = -EINVAL; 1746 goto out; 1747 } 1748 1749 /* Copy our mapping information to the incoming request */ 1750 *info->map = *map; 1751 1752 out: 1753 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1754 return ret; 1755 } 1756 1757 static int its_vlpi_unmap(struct irq_data *d) 1758 { 1759 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1760 u32 event = its_get_event_id(d); 1761 int ret = 0; 1762 1763 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1764 1765 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) { 1766 ret = -EINVAL; 1767 goto out; 1768 } 1769 1770 /* Drop the virtual mapping */ 1771 its_send_discard(its_dev, event); 1772 1773 /* and restore the physical one */ 1774 irqd_clr_forwarded_to_vcpu(d); 1775 its_send_mapti(its_dev, d->hwirq, event); 1776 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO | 1777 LPI_PROP_ENABLED | 1778 LPI_PROP_GROUP1)); 1779 1780 /* Potentially unmap the VM from this ITS */ 1781 its_unmap_vm(its_dev->its, its_dev->event_map.vm); 1782 1783 /* 1784 * Drop the refcount and make the device available again if 1785 * this was the last VLPI. 1786 */ 1787 if (!--its_dev->event_map.nr_vlpis) { 1788 its_dev->event_map.vm = NULL; 1789 kfree(its_dev->event_map.vlpi_maps); 1790 } 1791 1792 out: 1793 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1794 return ret; 1795 } 1796 1797 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) 1798 { 1799 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1800 1801 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 1802 return -EINVAL; 1803 1804 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) 1805 lpi_update_config(d, 0xff, info->config); 1806 else 1807 lpi_write_config(d, 0xff, info->config); 1808 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); 1809 1810 return 0; 1811 } 1812 1813 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 1814 { 1815 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1816 struct its_cmd_info *info = vcpu_info; 1817 1818 /* Need a v4 ITS */ 1819 if (!is_v4(its_dev->its)) 1820 return -EINVAL; 1821 1822 /* Unmap request? */ 1823 if (!info) 1824 return its_vlpi_unmap(d); 1825 1826 switch (info->cmd_type) { 1827 case MAP_VLPI: 1828 return its_vlpi_map(d, info); 1829 1830 case GET_VLPI: 1831 return its_vlpi_get(d, info); 1832 1833 case PROP_UPDATE_VLPI: 1834 case PROP_UPDATE_AND_INV_VLPI: 1835 return its_vlpi_prop_update(d, info); 1836 1837 default: 1838 return -EINVAL; 1839 } 1840 } 1841 1842 static struct irq_chip its_irq_chip = { 1843 .name = "ITS", 1844 .irq_mask = its_mask_irq, 1845 .irq_unmask = its_unmask_irq, 1846 .irq_eoi = irq_chip_eoi_parent, 1847 .irq_set_affinity = its_set_affinity, 1848 .irq_compose_msi_msg = its_irq_compose_msi_msg, 1849 .irq_set_irqchip_state = its_irq_set_irqchip_state, 1850 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity, 1851 }; 1852 1853 1854 /* 1855 * How we allocate LPIs: 1856 * 1857 * lpi_range_list contains ranges of LPIs that are to available to 1858 * allocate from. To allocate LPIs, just pick the first range that 1859 * fits the required allocation, and reduce it by the required 1860 * amount. Once empty, remove the range from the list. 1861 * 1862 * To free a range of LPIs, add a free range to the list, sort it and 1863 * merge the result if the new range happens to be adjacent to an 1864 * already free block. 1865 * 1866 * The consequence of the above is that allocation is cost is low, but 1867 * freeing is expensive. We assumes that freeing rarely occurs. 1868 */ 1869 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */ 1870 1871 static DEFINE_MUTEX(lpi_range_lock); 1872 static LIST_HEAD(lpi_range_list); 1873 1874 struct lpi_range { 1875 struct list_head entry; 1876 u32 base_id; 1877 u32 span; 1878 }; 1879 1880 static struct lpi_range *mk_lpi_range(u32 base, u32 span) 1881 { 1882 struct lpi_range *range; 1883 1884 range = kmalloc(sizeof(*range), GFP_KERNEL); 1885 if (range) { 1886 range->base_id = base; 1887 range->span = span; 1888 } 1889 1890 return range; 1891 } 1892 1893 static int alloc_lpi_range(u32 nr_lpis, u32 *base) 1894 { 1895 struct lpi_range *range, *tmp; 1896 int err = -ENOSPC; 1897 1898 mutex_lock(&lpi_range_lock); 1899 1900 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { 1901 if (range->span >= nr_lpis) { 1902 *base = range->base_id; 1903 range->base_id += nr_lpis; 1904 range->span -= nr_lpis; 1905 1906 if (range->span == 0) { 1907 list_del(&range->entry); 1908 kfree(range); 1909 } 1910 1911 err = 0; 1912 break; 1913 } 1914 } 1915 1916 mutex_unlock(&lpi_range_lock); 1917 1918 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis); 1919 return err; 1920 } 1921 1922 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b) 1923 { 1924 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list) 1925 return; 1926 if (a->base_id + a->span != b->base_id) 1927 return; 1928 b->base_id = a->base_id; 1929 b->span += a->span; 1930 list_del(&a->entry); 1931 kfree(a); 1932 } 1933 1934 static int free_lpi_range(u32 base, u32 nr_lpis) 1935 { 1936 struct lpi_range *new, *old; 1937 1938 new = mk_lpi_range(base, nr_lpis); 1939 if (!new) 1940 return -ENOMEM; 1941 1942 mutex_lock(&lpi_range_lock); 1943 1944 list_for_each_entry_reverse(old, &lpi_range_list, entry) { 1945 if (old->base_id < base) 1946 break; 1947 } 1948 /* 1949 * old is the last element with ->base_id smaller than base, 1950 * so new goes right after it. If there are no elements with 1951 * ->base_id smaller than base, &old->entry ends up pointing 1952 * at the head of the list, and inserting new it the start of 1953 * the list is the right thing to do in that case as well. 1954 */ 1955 list_add(&new->entry, &old->entry); 1956 /* 1957 * Now check if we can merge with the preceding and/or 1958 * following ranges. 1959 */ 1960 merge_lpi_ranges(old, new); 1961 merge_lpi_ranges(new, list_next_entry(new, entry)); 1962 1963 mutex_unlock(&lpi_range_lock); 1964 return 0; 1965 } 1966 1967 static int __init its_lpi_init(u32 id_bits) 1968 { 1969 u32 lpis = (1UL << id_bits) - 8192; 1970 u32 numlpis; 1971 int err; 1972 1973 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer); 1974 1975 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) { 1976 lpis = numlpis; 1977 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n", 1978 lpis); 1979 } 1980 1981 /* 1982 * Initializing the allocator is just the same as freeing the 1983 * full range of LPIs. 1984 */ 1985 err = free_lpi_range(8192, lpis); 1986 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis); 1987 return err; 1988 } 1989 1990 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids) 1991 { 1992 unsigned long *bitmap = NULL; 1993 int err = 0; 1994 1995 do { 1996 err = alloc_lpi_range(nr_irqs, base); 1997 if (!err) 1998 break; 1999 2000 nr_irqs /= 2; 2001 } while (nr_irqs > 0); 2002 2003 if (!nr_irqs) 2004 err = -ENOSPC; 2005 2006 if (err) 2007 goto out; 2008 2009 bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC); 2010 if (!bitmap) 2011 goto out; 2012 2013 *nr_ids = nr_irqs; 2014 2015 out: 2016 if (!bitmap) 2017 *base = *nr_ids = 0; 2018 2019 return bitmap; 2020 } 2021 2022 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids) 2023 { 2024 WARN_ON(free_lpi_range(base, nr_ids)); 2025 kfree(bitmap); 2026 } 2027 2028 static void gic_reset_prop_table(void *va) 2029 { 2030 /* Priority 0xa0, Group-1, disabled */ 2031 memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ); 2032 2033 /* Make sure the GIC will observe the written configuration */ 2034 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ); 2035 } 2036 2037 static struct page *its_allocate_prop_table(gfp_t gfp_flags) 2038 { 2039 struct page *prop_page; 2040 2041 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ)); 2042 if (!prop_page) 2043 return NULL; 2044 2045 gic_reset_prop_table(page_address(prop_page)); 2046 2047 return prop_page; 2048 } 2049 2050 static void its_free_prop_table(struct page *prop_page) 2051 { 2052 free_pages((unsigned long)page_address(prop_page), 2053 get_order(LPI_PROPBASE_SZ)); 2054 } 2055 2056 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size) 2057 { 2058 phys_addr_t start, end, addr_end; 2059 u64 i; 2060 2061 /* 2062 * We don't bother checking for a kdump kernel as by 2063 * construction, the LPI tables are out of this kernel's 2064 * memory map. 2065 */ 2066 if (is_kdump_kernel()) 2067 return true; 2068 2069 addr_end = addr + size - 1; 2070 2071 for_each_reserved_mem_region(i, &start, &end) { 2072 if (addr >= start && addr_end <= end) 2073 return true; 2074 } 2075 2076 /* Not found, not a good sign... */ 2077 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n", 2078 &addr, &addr_end); 2079 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 2080 return false; 2081 } 2082 2083 static int gic_reserve_range(phys_addr_t addr, unsigned long size) 2084 { 2085 if (efi_enabled(EFI_CONFIG_TABLES)) 2086 return efi_mem_reserve_persistent(addr, size); 2087 2088 return 0; 2089 } 2090 2091 static int __init its_setup_lpi_prop_table(void) 2092 { 2093 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) { 2094 u64 val; 2095 2096 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2097 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1; 2098 2099 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12); 2100 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa, 2101 LPI_PROPBASE_SZ, 2102 MEMREMAP_WB); 2103 gic_reset_prop_table(gic_rdists->prop_table_va); 2104 } else { 2105 struct page *page; 2106 2107 lpi_id_bits = min_t(u32, 2108 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer), 2109 ITS_MAX_LPI_NRBITS); 2110 page = its_allocate_prop_table(GFP_NOWAIT); 2111 if (!page) { 2112 pr_err("Failed to allocate PROPBASE\n"); 2113 return -ENOMEM; 2114 } 2115 2116 gic_rdists->prop_table_pa = page_to_phys(page); 2117 gic_rdists->prop_table_va = page_address(page); 2118 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa, 2119 LPI_PROPBASE_SZ)); 2120 } 2121 2122 pr_info("GICv3: using LPI property table @%pa\n", 2123 &gic_rdists->prop_table_pa); 2124 2125 return its_lpi_init(lpi_id_bits); 2126 } 2127 2128 static const char *its_base_type_string[] = { 2129 [GITS_BASER_TYPE_DEVICE] = "Devices", 2130 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", 2131 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)", 2132 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", 2133 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", 2134 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", 2135 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", 2136 }; 2137 2138 static u64 its_read_baser(struct its_node *its, struct its_baser *baser) 2139 { 2140 u32 idx = baser - its->tables; 2141 2142 return gits_read_baser(its->base + GITS_BASER + (idx << 3)); 2143 } 2144 2145 static void its_write_baser(struct its_node *its, struct its_baser *baser, 2146 u64 val) 2147 { 2148 u32 idx = baser - its->tables; 2149 2150 gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); 2151 baser->val = its_read_baser(its, baser); 2152 } 2153 2154 static int its_setup_baser(struct its_node *its, struct its_baser *baser, 2155 u64 cache, u64 shr, u32 order, bool indirect) 2156 { 2157 u64 val = its_read_baser(its, baser); 2158 u64 esz = GITS_BASER_ENTRY_SIZE(val); 2159 u64 type = GITS_BASER_TYPE(val); 2160 u64 baser_phys, tmp; 2161 u32 alloc_pages, psz; 2162 struct page *page; 2163 void *base; 2164 2165 psz = baser->psz; 2166 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); 2167 if (alloc_pages > GITS_BASER_PAGES_MAX) { 2168 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", 2169 &its->phys_base, its_base_type_string[type], 2170 alloc_pages, GITS_BASER_PAGES_MAX); 2171 alloc_pages = GITS_BASER_PAGES_MAX; 2172 order = get_order(GITS_BASER_PAGES_MAX * psz); 2173 } 2174 2175 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order); 2176 if (!page) 2177 return -ENOMEM; 2178 2179 base = (void *)page_address(page); 2180 baser_phys = virt_to_phys(base); 2181 2182 /* Check if the physical address of the memory is above 48bits */ 2183 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { 2184 2185 /* 52bit PA is supported only when PageSize=64K */ 2186 if (psz != SZ_64K) { 2187 pr_err("ITS: no 52bit PA support when psz=%d\n", psz); 2188 free_pages((unsigned long)base, order); 2189 return -ENXIO; 2190 } 2191 2192 /* Convert 52bit PA to 48bit field */ 2193 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); 2194 } 2195 2196 retry_baser: 2197 val = (baser_phys | 2198 (type << GITS_BASER_TYPE_SHIFT) | 2199 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | 2200 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | 2201 cache | 2202 shr | 2203 GITS_BASER_VALID); 2204 2205 val |= indirect ? GITS_BASER_INDIRECT : 0x0; 2206 2207 switch (psz) { 2208 case SZ_4K: 2209 val |= GITS_BASER_PAGE_SIZE_4K; 2210 break; 2211 case SZ_16K: 2212 val |= GITS_BASER_PAGE_SIZE_16K; 2213 break; 2214 case SZ_64K: 2215 val |= GITS_BASER_PAGE_SIZE_64K; 2216 break; 2217 } 2218 2219 its_write_baser(its, baser, val); 2220 tmp = baser->val; 2221 2222 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { 2223 /* 2224 * Shareability didn't stick. Just use 2225 * whatever the read reported, which is likely 2226 * to be the only thing this redistributor 2227 * supports. If that's zero, make it 2228 * non-cacheable as well. 2229 */ 2230 shr = tmp & GITS_BASER_SHAREABILITY_MASK; 2231 if (!shr) { 2232 cache = GITS_BASER_nC; 2233 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); 2234 } 2235 goto retry_baser; 2236 } 2237 2238 if (val != tmp) { 2239 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", 2240 &its->phys_base, its_base_type_string[type], 2241 val, tmp); 2242 free_pages((unsigned long)base, order); 2243 return -ENXIO; 2244 } 2245 2246 baser->order = order; 2247 baser->base = base; 2248 baser->psz = psz; 2249 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; 2250 2251 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", 2252 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), 2253 its_base_type_string[type], 2254 (unsigned long)virt_to_phys(base), 2255 indirect ? "indirect" : "flat", (int)esz, 2256 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); 2257 2258 return 0; 2259 } 2260 2261 static bool its_parse_indirect_baser(struct its_node *its, 2262 struct its_baser *baser, 2263 u32 *order, u32 ids) 2264 { 2265 u64 tmp = its_read_baser(its, baser); 2266 u64 type = GITS_BASER_TYPE(tmp); 2267 u64 esz = GITS_BASER_ENTRY_SIZE(tmp); 2268 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; 2269 u32 new_order = *order; 2270 u32 psz = baser->psz; 2271 bool indirect = false; 2272 2273 /* No need to enable Indirection if memory requirement < (psz*2)bytes */ 2274 if ((esz << ids) > (psz * 2)) { 2275 /* 2276 * Find out whether hw supports a single or two-level table by 2277 * table by reading bit at offset '62' after writing '1' to it. 2278 */ 2279 its_write_baser(its, baser, val | GITS_BASER_INDIRECT); 2280 indirect = !!(baser->val & GITS_BASER_INDIRECT); 2281 2282 if (indirect) { 2283 /* 2284 * The size of the lvl2 table is equal to ITS page size 2285 * which is 'psz'. For computing lvl1 table size, 2286 * subtract ID bits that sparse lvl2 table from 'ids' 2287 * which is reported by ITS hardware times lvl1 table 2288 * entry size. 2289 */ 2290 ids -= ilog2(psz / (int)esz); 2291 esz = GITS_LVL1_ENTRY_SIZE; 2292 } 2293 } 2294 2295 /* 2296 * Allocate as many entries as required to fit the 2297 * range of device IDs that the ITS can grok... The ID 2298 * space being incredibly sparse, this results in a 2299 * massive waste of memory if two-level device table 2300 * feature is not supported by hardware. 2301 */ 2302 new_order = max_t(u32, get_order(esz << ids), new_order); 2303 if (new_order >= MAX_ORDER) { 2304 new_order = MAX_ORDER - 1; 2305 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); 2306 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n", 2307 &its->phys_base, its_base_type_string[type], 2308 device_ids(its), ids); 2309 } 2310 2311 *order = new_order; 2312 2313 return indirect; 2314 } 2315 2316 static u32 compute_common_aff(u64 val) 2317 { 2318 u32 aff, clpiaff; 2319 2320 aff = FIELD_GET(GICR_TYPER_AFFINITY, val); 2321 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val); 2322 2323 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8)); 2324 } 2325 2326 static u32 compute_its_aff(struct its_node *its) 2327 { 2328 u64 val; 2329 u32 svpet; 2330 2331 /* 2332 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute 2333 * the resulting affinity. We then use that to see if this match 2334 * our own affinity. 2335 */ 2336 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); 2337 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet); 2338 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr); 2339 return compute_common_aff(val); 2340 } 2341 2342 static struct its_node *find_sibling_its(struct its_node *cur_its) 2343 { 2344 struct its_node *its; 2345 u32 aff; 2346 2347 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer)) 2348 return NULL; 2349 2350 aff = compute_its_aff(cur_its); 2351 2352 list_for_each_entry(its, &its_nodes, entry) { 2353 u64 baser; 2354 2355 if (!is_v4_1(its) || its == cur_its) 2356 continue; 2357 2358 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2359 continue; 2360 2361 if (aff != compute_its_aff(its)) 2362 continue; 2363 2364 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2365 baser = its->tables[2].val; 2366 if (!(baser & GITS_BASER_VALID)) 2367 continue; 2368 2369 return its; 2370 } 2371 2372 return NULL; 2373 } 2374 2375 static void its_free_tables(struct its_node *its) 2376 { 2377 int i; 2378 2379 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2380 if (its->tables[i].base) { 2381 free_pages((unsigned long)its->tables[i].base, 2382 its->tables[i].order); 2383 its->tables[i].base = NULL; 2384 } 2385 } 2386 } 2387 2388 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser) 2389 { 2390 u64 psz = SZ_64K; 2391 2392 while (psz) { 2393 u64 val, gpsz; 2394 2395 val = its_read_baser(its, baser); 2396 val &= ~GITS_BASER_PAGE_SIZE_MASK; 2397 2398 switch (psz) { 2399 case SZ_64K: 2400 gpsz = GITS_BASER_PAGE_SIZE_64K; 2401 break; 2402 case SZ_16K: 2403 gpsz = GITS_BASER_PAGE_SIZE_16K; 2404 break; 2405 case SZ_4K: 2406 default: 2407 gpsz = GITS_BASER_PAGE_SIZE_4K; 2408 break; 2409 } 2410 2411 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT; 2412 2413 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz); 2414 its_write_baser(its, baser, val); 2415 2416 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz) 2417 break; 2418 2419 switch (psz) { 2420 case SZ_64K: 2421 psz = SZ_16K; 2422 break; 2423 case SZ_16K: 2424 psz = SZ_4K; 2425 break; 2426 case SZ_4K: 2427 default: 2428 return -1; 2429 } 2430 } 2431 2432 baser->psz = psz; 2433 return 0; 2434 } 2435 2436 static int its_alloc_tables(struct its_node *its) 2437 { 2438 u64 shr = GITS_BASER_InnerShareable; 2439 u64 cache = GITS_BASER_RaWaWb; 2440 int err, i; 2441 2442 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) 2443 /* erratum 24313: ignore memory access type */ 2444 cache = GITS_BASER_nCnB; 2445 2446 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2447 struct its_baser *baser = its->tables + i; 2448 u64 val = its_read_baser(its, baser); 2449 u64 type = GITS_BASER_TYPE(val); 2450 bool indirect = false; 2451 u32 order; 2452 2453 if (type == GITS_BASER_TYPE_NONE) 2454 continue; 2455 2456 if (its_probe_baser_psz(its, baser)) { 2457 its_free_tables(its); 2458 return -ENXIO; 2459 } 2460 2461 order = get_order(baser->psz); 2462 2463 switch (type) { 2464 case GITS_BASER_TYPE_DEVICE: 2465 indirect = its_parse_indirect_baser(its, baser, &order, 2466 device_ids(its)); 2467 break; 2468 2469 case GITS_BASER_TYPE_VCPU: 2470 if (is_v4_1(its)) { 2471 struct its_node *sibling; 2472 2473 WARN_ON(i != 2); 2474 if ((sibling = find_sibling_its(its))) { 2475 *baser = sibling->tables[2]; 2476 its_write_baser(its, baser, baser->val); 2477 continue; 2478 } 2479 } 2480 2481 indirect = its_parse_indirect_baser(its, baser, &order, 2482 ITS_MAX_VPEID_BITS); 2483 break; 2484 } 2485 2486 err = its_setup_baser(its, baser, cache, shr, order, indirect); 2487 if (err < 0) { 2488 its_free_tables(its); 2489 return err; 2490 } 2491 2492 /* Update settings which will be used for next BASERn */ 2493 cache = baser->val & GITS_BASER_CACHEABILITY_MASK; 2494 shr = baser->val & GITS_BASER_SHAREABILITY_MASK; 2495 } 2496 2497 return 0; 2498 } 2499 2500 static u64 inherit_vpe_l1_table_from_its(void) 2501 { 2502 struct its_node *its; 2503 u64 val; 2504 u32 aff; 2505 2506 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2507 aff = compute_common_aff(val); 2508 2509 list_for_each_entry(its, &its_nodes, entry) { 2510 u64 baser, addr; 2511 2512 if (!is_v4_1(its)) 2513 continue; 2514 2515 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2516 continue; 2517 2518 if (aff != compute_its_aff(its)) 2519 continue; 2520 2521 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2522 baser = its->tables[2].val; 2523 if (!(baser & GITS_BASER_VALID)) 2524 continue; 2525 2526 /* We have a winner! */ 2527 gic_data_rdist()->vpe_l1_base = its->tables[2].base; 2528 2529 val = GICR_VPROPBASER_4_1_VALID; 2530 if (baser & GITS_BASER_INDIRECT) 2531 val |= GICR_VPROPBASER_4_1_INDIRECT; 2532 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, 2533 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)); 2534 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) { 2535 case GIC_PAGE_SIZE_64K: 2536 addr = GITS_BASER_ADDR_48_to_52(baser); 2537 break; 2538 default: 2539 addr = baser & GENMASK_ULL(47, 12); 2540 break; 2541 } 2542 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12); 2543 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK, 2544 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser)); 2545 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK, 2546 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser)); 2547 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1); 2548 2549 return val; 2550 } 2551 2552 return 0; 2553 } 2554 2555 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask) 2556 { 2557 u32 aff; 2558 u64 val; 2559 int cpu; 2560 2561 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2562 aff = compute_common_aff(val); 2563 2564 for_each_possible_cpu(cpu) { 2565 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2566 2567 if (!base || cpu == smp_processor_id()) 2568 continue; 2569 2570 val = gic_read_typer(base + GICR_TYPER); 2571 if (aff != compute_common_aff(val)) 2572 continue; 2573 2574 /* 2575 * At this point, we have a victim. This particular CPU 2576 * has already booted, and has an affinity that matches 2577 * ours wrt CommonLPIAff. Let's use its own VPROPBASER. 2578 * Make sure we don't write the Z bit in that case. 2579 */ 2580 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2581 val &= ~GICR_VPROPBASER_4_1_Z; 2582 2583 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2584 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask; 2585 2586 return val; 2587 } 2588 2589 return 0; 2590 } 2591 2592 static bool allocate_vpe_l2_table(int cpu, u32 id) 2593 { 2594 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2595 unsigned int psz, esz, idx, npg, gpsz; 2596 u64 val; 2597 struct page *page; 2598 __le64 *table; 2599 2600 if (!gic_rdists->has_rvpeid) 2601 return true; 2602 2603 /* Skip non-present CPUs */ 2604 if (!base) 2605 return true; 2606 2607 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2608 2609 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1; 2610 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2611 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1; 2612 2613 switch (gpsz) { 2614 default: 2615 WARN_ON(1); 2616 /* fall through */ 2617 case GIC_PAGE_SIZE_4K: 2618 psz = SZ_4K; 2619 break; 2620 case GIC_PAGE_SIZE_16K: 2621 psz = SZ_16K; 2622 break; 2623 case GIC_PAGE_SIZE_64K: 2624 psz = SZ_64K; 2625 break; 2626 } 2627 2628 /* Don't allow vpe_id that exceeds single, flat table limit */ 2629 if (!(val & GICR_VPROPBASER_4_1_INDIRECT)) 2630 return (id < (npg * psz / (esz * SZ_8))); 2631 2632 /* Compute 1st level table index & check if that exceeds table limit */ 2633 idx = id >> ilog2(psz / (esz * SZ_8)); 2634 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE)) 2635 return false; 2636 2637 table = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2638 2639 /* Allocate memory for 2nd level table */ 2640 if (!table[idx]) { 2641 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz)); 2642 if (!page) 2643 return false; 2644 2645 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 2646 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2647 gic_flush_dcache_to_poc(page_address(page), psz); 2648 2649 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 2650 2651 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 2652 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2653 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 2654 2655 /* Ensure updated table contents are visible to RD hardware */ 2656 dsb(sy); 2657 } 2658 2659 return true; 2660 } 2661 2662 static int allocate_vpe_l1_table(void) 2663 { 2664 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2665 u64 val, gpsz, npg, pa; 2666 unsigned int psz = SZ_64K; 2667 unsigned int np, epp, esz; 2668 struct page *page; 2669 2670 if (!gic_rdists->has_rvpeid) 2671 return 0; 2672 2673 /* 2674 * if VPENDBASER.Valid is set, disable any previously programmed 2675 * VPE by setting PendingLast while clearing Valid. This has the 2676 * effect of making sure no doorbell will be generated and we can 2677 * then safely clear VPROPBASER.Valid. 2678 */ 2679 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid) 2680 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast, 2681 vlpi_base + GICR_VPENDBASER); 2682 2683 /* 2684 * If we can inherit the configuration from another RD, let's do 2685 * so. Otherwise, we have to go through the allocation process. We 2686 * assume that all RDs have the exact same requirements, as 2687 * nothing will work otherwise. 2688 */ 2689 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask); 2690 if (val & GICR_VPROPBASER_4_1_VALID) 2691 goto out; 2692 2693 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_KERNEL); 2694 if (!gic_data_rdist()->vpe_table_mask) 2695 return -ENOMEM; 2696 2697 val = inherit_vpe_l1_table_from_its(); 2698 if (val & GICR_VPROPBASER_4_1_VALID) 2699 goto out; 2700 2701 /* First probe the page size */ 2702 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K); 2703 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2704 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER); 2705 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2706 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val); 2707 2708 switch (gpsz) { 2709 default: 2710 gpsz = GIC_PAGE_SIZE_4K; 2711 /* fall through */ 2712 case GIC_PAGE_SIZE_4K: 2713 psz = SZ_4K; 2714 break; 2715 case GIC_PAGE_SIZE_16K: 2716 psz = SZ_16K; 2717 break; 2718 case GIC_PAGE_SIZE_64K: 2719 psz = SZ_64K; 2720 break; 2721 } 2722 2723 /* 2724 * Start populating the register from scratch, including RO fields 2725 * (which we want to print in debug cases...) 2726 */ 2727 val = 0; 2728 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz); 2729 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz); 2730 2731 /* How many entries per GIC page? */ 2732 esz++; 2733 epp = psz / (esz * SZ_8); 2734 2735 /* 2736 * If we need more than just a single L1 page, flag the table 2737 * as indirect and compute the number of required L1 pages. 2738 */ 2739 if (epp < ITS_MAX_VPEID) { 2740 int nl2; 2741 2742 val |= GICR_VPROPBASER_4_1_INDIRECT; 2743 2744 /* Number of L2 pages required to cover the VPEID space */ 2745 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp); 2746 2747 /* Number of L1 pages to point to the L2 pages */ 2748 npg = DIV_ROUND_UP(nl2 * SZ_8, psz); 2749 } else { 2750 npg = 1; 2751 } 2752 2753 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1); 2754 2755 /* Right, that's the number of CPU pages we need for L1 */ 2756 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE); 2757 2758 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n", 2759 np, npg, psz, epp, esz); 2760 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(np * PAGE_SIZE)); 2761 if (!page) 2762 return -ENOMEM; 2763 2764 gic_data_rdist()->vpe_l1_base = page_address(page); 2765 pa = virt_to_phys(page_address(page)); 2766 WARN_ON(!IS_ALIGNED(pa, psz)); 2767 2768 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12); 2769 val |= GICR_VPROPBASER_RaWb; 2770 val |= GICR_VPROPBASER_InnerShareable; 2771 val |= GICR_VPROPBASER_4_1_Z; 2772 val |= GICR_VPROPBASER_4_1_VALID; 2773 2774 out: 2775 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2776 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask); 2777 2778 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n", 2779 smp_processor_id(), val, 2780 cpumask_pr_args(gic_data_rdist()->vpe_table_mask)); 2781 2782 return 0; 2783 } 2784 2785 static int its_alloc_collections(struct its_node *its) 2786 { 2787 int i; 2788 2789 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections), 2790 GFP_KERNEL); 2791 if (!its->collections) 2792 return -ENOMEM; 2793 2794 for (i = 0; i < nr_cpu_ids; i++) 2795 its->collections[i].target_address = ~0ULL; 2796 2797 return 0; 2798 } 2799 2800 static struct page *its_allocate_pending_table(gfp_t gfp_flags) 2801 { 2802 struct page *pend_page; 2803 2804 pend_page = alloc_pages(gfp_flags | __GFP_ZERO, 2805 get_order(LPI_PENDBASE_SZ)); 2806 if (!pend_page) 2807 return NULL; 2808 2809 /* Make sure the GIC will observe the zero-ed page */ 2810 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); 2811 2812 return pend_page; 2813 } 2814 2815 static void its_free_pending_table(struct page *pt) 2816 { 2817 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ)); 2818 } 2819 2820 /* 2821 * Booting with kdump and LPIs enabled is generally fine. Any other 2822 * case is wrong in the absence of firmware/EFI support. 2823 */ 2824 static bool enabled_lpis_allowed(void) 2825 { 2826 phys_addr_t addr; 2827 u64 val; 2828 2829 /* Check whether the property table is in a reserved region */ 2830 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2831 addr = val & GENMASK_ULL(51, 12); 2832 2833 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ); 2834 } 2835 2836 static int __init allocate_lpi_tables(void) 2837 { 2838 u64 val; 2839 int err, cpu; 2840 2841 /* 2842 * If LPIs are enabled while we run this from the boot CPU, 2843 * flag the RD tables as pre-allocated if the stars do align. 2844 */ 2845 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR); 2846 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) { 2847 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED | 2848 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING); 2849 pr_info("GICv3: Using preallocated redistributor tables\n"); 2850 } 2851 2852 err = its_setup_lpi_prop_table(); 2853 if (err) 2854 return err; 2855 2856 /* 2857 * We allocate all the pending tables anyway, as we may have a 2858 * mix of RDs that have had LPIs enabled, and some that 2859 * don't. We'll free the unused ones as each CPU comes online. 2860 */ 2861 for_each_possible_cpu(cpu) { 2862 struct page *pend_page; 2863 2864 pend_page = its_allocate_pending_table(GFP_NOWAIT); 2865 if (!pend_page) { 2866 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu); 2867 return -ENOMEM; 2868 } 2869 2870 gic_data_rdist_cpu(cpu)->pend_page = pend_page; 2871 } 2872 2873 return 0; 2874 } 2875 2876 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set) 2877 { 2878 u32 count = 1000000; /* 1s! */ 2879 bool clean; 2880 u64 val; 2881 2882 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 2883 val &= ~GICR_VPENDBASER_Valid; 2884 val &= ~clr; 2885 val |= set; 2886 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 2887 2888 do { 2889 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 2890 clean = !(val & GICR_VPENDBASER_Dirty); 2891 if (!clean) { 2892 count--; 2893 cpu_relax(); 2894 udelay(1); 2895 } 2896 } while (!clean && count); 2897 2898 if (unlikely(val & GICR_VPENDBASER_Dirty)) { 2899 pr_err_ratelimited("ITS virtual pending table not cleaning\n"); 2900 val |= GICR_VPENDBASER_PendingLast; 2901 } 2902 2903 return val; 2904 } 2905 2906 static void its_cpu_init_lpis(void) 2907 { 2908 void __iomem *rbase = gic_data_rdist_rd_base(); 2909 struct page *pend_page; 2910 phys_addr_t paddr; 2911 u64 val, tmp; 2912 2913 if (gic_data_rdist()->lpi_enabled) 2914 return; 2915 2916 val = readl_relaxed(rbase + GICR_CTLR); 2917 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) && 2918 (val & GICR_CTLR_ENABLE_LPIS)) { 2919 /* 2920 * Check that we get the same property table on all 2921 * RDs. If we don't, this is hopeless. 2922 */ 2923 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER); 2924 paddr &= GENMASK_ULL(51, 12); 2925 if (WARN_ON(gic_rdists->prop_table_pa != paddr)) 2926 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 2927 2928 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER); 2929 paddr &= GENMASK_ULL(51, 16); 2930 2931 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ)); 2932 its_free_pending_table(gic_data_rdist()->pend_page); 2933 gic_data_rdist()->pend_page = NULL; 2934 2935 goto out; 2936 } 2937 2938 pend_page = gic_data_rdist()->pend_page; 2939 paddr = page_to_phys(pend_page); 2940 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ)); 2941 2942 /* set PROPBASE */ 2943 val = (gic_rdists->prop_table_pa | 2944 GICR_PROPBASER_InnerShareable | 2945 GICR_PROPBASER_RaWaWb | 2946 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); 2947 2948 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 2949 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); 2950 2951 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { 2952 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { 2953 /* 2954 * The HW reports non-shareable, we must 2955 * remove the cacheability attributes as 2956 * well. 2957 */ 2958 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | 2959 GICR_PROPBASER_CACHEABILITY_MASK); 2960 val |= GICR_PROPBASER_nC; 2961 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 2962 } 2963 pr_info_once("GIC: using cache flushing for LPI property table\n"); 2964 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; 2965 } 2966 2967 /* set PENDBASE */ 2968 val = (page_to_phys(pend_page) | 2969 GICR_PENDBASER_InnerShareable | 2970 GICR_PENDBASER_RaWaWb); 2971 2972 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 2973 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); 2974 2975 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { 2976 /* 2977 * The HW reports non-shareable, we must remove the 2978 * cacheability attributes as well. 2979 */ 2980 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | 2981 GICR_PENDBASER_CACHEABILITY_MASK); 2982 val |= GICR_PENDBASER_nC; 2983 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 2984 } 2985 2986 /* Enable LPIs */ 2987 val = readl_relaxed(rbase + GICR_CTLR); 2988 val |= GICR_CTLR_ENABLE_LPIS; 2989 writel_relaxed(val, rbase + GICR_CTLR); 2990 2991 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) { 2992 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2993 2994 /* 2995 * It's possible for CPU to receive VLPIs before it is 2996 * sheduled as a vPE, especially for the first CPU, and the 2997 * VLPI with INTID larger than 2^(IDbits+1) will be considered 2998 * as out of range and dropped by GIC. 2999 * So we initialize IDbits to known value to avoid VLPI drop. 3000 */ 3001 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3002 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n", 3003 smp_processor_id(), val); 3004 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3005 3006 /* 3007 * Also clear Valid bit of GICR_VPENDBASER, in case some 3008 * ancient programming gets left in and has possibility of 3009 * corrupting memory. 3010 */ 3011 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3012 } 3013 3014 if (allocate_vpe_l1_table()) { 3015 /* 3016 * If the allocation has failed, we're in massive trouble. 3017 * Disable direct injection, and pray that no VM was 3018 * already running... 3019 */ 3020 gic_rdists->has_rvpeid = false; 3021 gic_rdists->has_vlpis = false; 3022 } 3023 3024 /* Make sure the GIC has seen the above */ 3025 dsb(sy); 3026 out: 3027 gic_data_rdist()->lpi_enabled = true; 3028 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n", 3029 smp_processor_id(), 3030 gic_data_rdist()->pend_page ? "allocated" : "reserved", 3031 &paddr); 3032 } 3033 3034 static void its_cpu_init_collection(struct its_node *its) 3035 { 3036 int cpu = smp_processor_id(); 3037 u64 target; 3038 3039 /* avoid cross node collections and its mapping */ 3040 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 3041 struct device_node *cpu_node; 3042 3043 cpu_node = of_get_cpu_node(cpu, NULL); 3044 if (its->numa_node != NUMA_NO_NODE && 3045 its->numa_node != of_node_to_nid(cpu_node)) 3046 return; 3047 } 3048 3049 /* 3050 * We now have to bind each collection to its target 3051 * redistributor. 3052 */ 3053 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { 3054 /* 3055 * This ITS wants the physical address of the 3056 * redistributor. 3057 */ 3058 target = gic_data_rdist()->phys_base; 3059 } else { 3060 /* This ITS wants a linear CPU number. */ 3061 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 3062 target = GICR_TYPER_CPU_NUMBER(target) << 16; 3063 } 3064 3065 /* Perform collection mapping */ 3066 its->collections[cpu].target_address = target; 3067 its->collections[cpu].col_id = cpu; 3068 3069 its_send_mapc(its, &its->collections[cpu], 1); 3070 its_send_invall(its, &its->collections[cpu]); 3071 } 3072 3073 static void its_cpu_init_collections(void) 3074 { 3075 struct its_node *its; 3076 3077 raw_spin_lock(&its_lock); 3078 3079 list_for_each_entry(its, &its_nodes, entry) 3080 its_cpu_init_collection(its); 3081 3082 raw_spin_unlock(&its_lock); 3083 } 3084 3085 static struct its_device *its_find_device(struct its_node *its, u32 dev_id) 3086 { 3087 struct its_device *its_dev = NULL, *tmp; 3088 unsigned long flags; 3089 3090 raw_spin_lock_irqsave(&its->lock, flags); 3091 3092 list_for_each_entry(tmp, &its->its_device_list, entry) { 3093 if (tmp->device_id == dev_id) { 3094 its_dev = tmp; 3095 break; 3096 } 3097 } 3098 3099 raw_spin_unlock_irqrestore(&its->lock, flags); 3100 3101 return its_dev; 3102 } 3103 3104 static struct its_baser *its_get_baser(struct its_node *its, u32 type) 3105 { 3106 int i; 3107 3108 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 3109 if (GITS_BASER_TYPE(its->tables[i].val) == type) 3110 return &its->tables[i]; 3111 } 3112 3113 return NULL; 3114 } 3115 3116 static bool its_alloc_table_entry(struct its_node *its, 3117 struct its_baser *baser, u32 id) 3118 { 3119 struct page *page; 3120 u32 esz, idx; 3121 __le64 *table; 3122 3123 /* Don't allow device id that exceeds single, flat table limit */ 3124 esz = GITS_BASER_ENTRY_SIZE(baser->val); 3125 if (!(baser->val & GITS_BASER_INDIRECT)) 3126 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); 3127 3128 /* Compute 1st level table index & check if that exceeds table limit */ 3129 idx = id >> ilog2(baser->psz / esz); 3130 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) 3131 return false; 3132 3133 table = baser->base; 3134 3135 /* Allocate memory for 2nd level table */ 3136 if (!table[idx]) { 3137 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 3138 get_order(baser->psz)); 3139 if (!page) 3140 return false; 3141 3142 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 3143 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3144 gic_flush_dcache_to_poc(page_address(page), baser->psz); 3145 3146 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 3147 3148 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 3149 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3150 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 3151 3152 /* Ensure updated table contents are visible to ITS hardware */ 3153 dsb(sy); 3154 } 3155 3156 return true; 3157 } 3158 3159 static bool its_alloc_device_table(struct its_node *its, u32 dev_id) 3160 { 3161 struct its_baser *baser; 3162 3163 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); 3164 3165 /* Don't allow device id that exceeds ITS hardware limit */ 3166 if (!baser) 3167 return (ilog2(dev_id) < device_ids(its)); 3168 3169 return its_alloc_table_entry(its, baser, dev_id); 3170 } 3171 3172 static bool its_alloc_vpe_table(u32 vpe_id) 3173 { 3174 struct its_node *its; 3175 int cpu; 3176 3177 /* 3178 * Make sure the L2 tables are allocated on *all* v4 ITSs. We 3179 * could try and only do it on ITSs corresponding to devices 3180 * that have interrupts targeted at this VPE, but the 3181 * complexity becomes crazy (and you have tons of memory 3182 * anyway, right?). 3183 */ 3184 list_for_each_entry(its, &its_nodes, entry) { 3185 struct its_baser *baser; 3186 3187 if (!is_v4(its)) 3188 continue; 3189 3190 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); 3191 if (!baser) 3192 return false; 3193 3194 if (!its_alloc_table_entry(its, baser, vpe_id)) 3195 return false; 3196 } 3197 3198 /* Non v4.1? No need to iterate RDs and go back early. */ 3199 if (!gic_rdists->has_rvpeid) 3200 return true; 3201 3202 /* 3203 * Make sure the L2 tables are allocated for all copies of 3204 * the L1 table on *all* v4.1 RDs. 3205 */ 3206 for_each_possible_cpu(cpu) { 3207 if (!allocate_vpe_l2_table(cpu, vpe_id)) 3208 return false; 3209 } 3210 3211 return true; 3212 } 3213 3214 static struct its_device *its_create_device(struct its_node *its, u32 dev_id, 3215 int nvecs, bool alloc_lpis) 3216 { 3217 struct its_device *dev; 3218 unsigned long *lpi_map = NULL; 3219 unsigned long flags; 3220 u16 *col_map = NULL; 3221 void *itt; 3222 int lpi_base; 3223 int nr_lpis; 3224 int nr_ites; 3225 int sz; 3226 3227 if (!its_alloc_device_table(its, dev_id)) 3228 return NULL; 3229 3230 if (WARN_ON(!is_power_of_2(nvecs))) 3231 nvecs = roundup_pow_of_two(nvecs); 3232 3233 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3234 /* 3235 * Even if the device wants a single LPI, the ITT must be 3236 * sized as a power of two (and you need at least one bit...). 3237 */ 3238 nr_ites = max(2, nvecs); 3239 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1); 3240 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; 3241 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node); 3242 if (alloc_lpis) { 3243 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis); 3244 if (lpi_map) 3245 col_map = kcalloc(nr_lpis, sizeof(*col_map), 3246 GFP_KERNEL); 3247 } else { 3248 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL); 3249 nr_lpis = 0; 3250 lpi_base = 0; 3251 } 3252 3253 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) { 3254 kfree(dev); 3255 kfree(itt); 3256 kfree(lpi_map); 3257 kfree(col_map); 3258 return NULL; 3259 } 3260 3261 gic_flush_dcache_to_poc(itt, sz); 3262 3263 dev->its = its; 3264 dev->itt = itt; 3265 dev->nr_ites = nr_ites; 3266 dev->event_map.lpi_map = lpi_map; 3267 dev->event_map.col_map = col_map; 3268 dev->event_map.lpi_base = lpi_base; 3269 dev->event_map.nr_lpis = nr_lpis; 3270 raw_spin_lock_init(&dev->event_map.vlpi_lock); 3271 dev->device_id = dev_id; 3272 INIT_LIST_HEAD(&dev->entry); 3273 3274 raw_spin_lock_irqsave(&its->lock, flags); 3275 list_add(&dev->entry, &its->its_device_list); 3276 raw_spin_unlock_irqrestore(&its->lock, flags); 3277 3278 /* Map device to its ITT */ 3279 its_send_mapd(dev, 1); 3280 3281 return dev; 3282 } 3283 3284 static void its_free_device(struct its_device *its_dev) 3285 { 3286 unsigned long flags; 3287 3288 raw_spin_lock_irqsave(&its_dev->its->lock, flags); 3289 list_del(&its_dev->entry); 3290 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); 3291 kfree(its_dev->event_map.col_map); 3292 kfree(its_dev->itt); 3293 kfree(its_dev); 3294 } 3295 3296 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq) 3297 { 3298 int idx; 3299 3300 /* Find a free LPI region in lpi_map and allocate them. */ 3301 idx = bitmap_find_free_region(dev->event_map.lpi_map, 3302 dev->event_map.nr_lpis, 3303 get_count_order(nvecs)); 3304 if (idx < 0) 3305 return -ENOSPC; 3306 3307 *hwirq = dev->event_map.lpi_base + idx; 3308 3309 return 0; 3310 } 3311 3312 static int its_msi_prepare(struct irq_domain *domain, struct device *dev, 3313 int nvec, msi_alloc_info_t *info) 3314 { 3315 struct its_node *its; 3316 struct its_device *its_dev; 3317 struct msi_domain_info *msi_info; 3318 u32 dev_id; 3319 int err = 0; 3320 3321 /* 3322 * We ignore "dev" entirely, and rely on the dev_id that has 3323 * been passed via the scratchpad. This limits this domain's 3324 * usefulness to upper layers that definitely know that they 3325 * are built on top of the ITS. 3326 */ 3327 dev_id = info->scratchpad[0].ul; 3328 3329 msi_info = msi_get_domain_info(domain); 3330 its = msi_info->data; 3331 3332 if (!gic_rdists->has_direct_lpi && 3333 vpe_proxy.dev && 3334 vpe_proxy.dev->its == its && 3335 dev_id == vpe_proxy.dev->device_id) { 3336 /* Bad luck. Get yourself a better implementation */ 3337 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", 3338 dev_id); 3339 return -EINVAL; 3340 } 3341 3342 mutex_lock(&its->dev_alloc_lock); 3343 its_dev = its_find_device(its, dev_id); 3344 if (its_dev) { 3345 /* 3346 * We already have seen this ID, probably through 3347 * another alias (PCI bridge of some sort). No need to 3348 * create the device. 3349 */ 3350 its_dev->shared = true; 3351 pr_debug("Reusing ITT for devID %x\n", dev_id); 3352 goto out; 3353 } 3354 3355 its_dev = its_create_device(its, dev_id, nvec, true); 3356 if (!its_dev) { 3357 err = -ENOMEM; 3358 goto out; 3359 } 3360 3361 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); 3362 out: 3363 mutex_unlock(&its->dev_alloc_lock); 3364 info->scratchpad[0].ptr = its_dev; 3365 return err; 3366 } 3367 3368 static struct msi_domain_ops its_msi_domain_ops = { 3369 .msi_prepare = its_msi_prepare, 3370 }; 3371 3372 static int its_irq_gic_domain_alloc(struct irq_domain *domain, 3373 unsigned int virq, 3374 irq_hw_number_t hwirq) 3375 { 3376 struct irq_fwspec fwspec; 3377 3378 if (irq_domain_get_of_node(domain->parent)) { 3379 fwspec.fwnode = domain->parent->fwnode; 3380 fwspec.param_count = 3; 3381 fwspec.param[0] = GIC_IRQ_TYPE_LPI; 3382 fwspec.param[1] = hwirq; 3383 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 3384 } else if (is_fwnode_irqchip(domain->parent->fwnode)) { 3385 fwspec.fwnode = domain->parent->fwnode; 3386 fwspec.param_count = 2; 3387 fwspec.param[0] = hwirq; 3388 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 3389 } else { 3390 return -EINVAL; 3391 } 3392 3393 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 3394 } 3395 3396 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 3397 unsigned int nr_irqs, void *args) 3398 { 3399 msi_alloc_info_t *info = args; 3400 struct its_device *its_dev = info->scratchpad[0].ptr; 3401 struct its_node *its = its_dev->its; 3402 irq_hw_number_t hwirq; 3403 int err; 3404 int i; 3405 3406 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq); 3407 if (err) 3408 return err; 3409 3410 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev)); 3411 if (err) 3412 return err; 3413 3414 for (i = 0; i < nr_irqs; i++) { 3415 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i); 3416 if (err) 3417 return err; 3418 3419 irq_domain_set_hwirq_and_chip(domain, virq + i, 3420 hwirq + i, &its_irq_chip, its_dev); 3421 irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i))); 3422 pr_debug("ID:%d pID:%d vID:%d\n", 3423 (int)(hwirq + i - its_dev->event_map.lpi_base), 3424 (int)(hwirq + i), virq + i); 3425 } 3426 3427 return 0; 3428 } 3429 3430 static int its_irq_domain_activate(struct irq_domain *domain, 3431 struct irq_data *d, bool reserve) 3432 { 3433 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3434 u32 event = its_get_event_id(d); 3435 const struct cpumask *cpu_mask = cpu_online_mask; 3436 int cpu; 3437 3438 /* get the cpu_mask of local node */ 3439 if (its_dev->its->numa_node >= 0) 3440 cpu_mask = cpumask_of_node(its_dev->its->numa_node); 3441 3442 /* Bind the LPI to the first possible CPU */ 3443 cpu = cpumask_first_and(cpu_mask, cpu_online_mask); 3444 if (cpu >= nr_cpu_ids) { 3445 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) 3446 return -EINVAL; 3447 3448 cpu = cpumask_first(cpu_online_mask); 3449 } 3450 3451 its_dev->event_map.col_map[event] = cpu; 3452 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3453 3454 /* Map the GIC IRQ and event to the device */ 3455 its_send_mapti(its_dev, d->hwirq, event); 3456 return 0; 3457 } 3458 3459 static void its_irq_domain_deactivate(struct irq_domain *domain, 3460 struct irq_data *d) 3461 { 3462 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3463 u32 event = its_get_event_id(d); 3464 3465 /* Stop the delivery of interrupts */ 3466 its_send_discard(its_dev, event); 3467 } 3468 3469 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, 3470 unsigned int nr_irqs) 3471 { 3472 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 3473 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3474 struct its_node *its = its_dev->its; 3475 int i; 3476 3477 bitmap_release_region(its_dev->event_map.lpi_map, 3478 its_get_event_id(irq_domain_get_irq_data(domain, virq)), 3479 get_count_order(nr_irqs)); 3480 3481 for (i = 0; i < nr_irqs; i++) { 3482 struct irq_data *data = irq_domain_get_irq_data(domain, 3483 virq + i); 3484 /* Nuke the entry in the domain */ 3485 irq_domain_reset_irq_data(data); 3486 } 3487 3488 mutex_lock(&its->dev_alloc_lock); 3489 3490 /* 3491 * If all interrupts have been freed, start mopping the 3492 * floor. This is conditionned on the device not being shared. 3493 */ 3494 if (!its_dev->shared && 3495 bitmap_empty(its_dev->event_map.lpi_map, 3496 its_dev->event_map.nr_lpis)) { 3497 its_lpi_free(its_dev->event_map.lpi_map, 3498 its_dev->event_map.lpi_base, 3499 its_dev->event_map.nr_lpis); 3500 3501 /* Unmap device/itt */ 3502 its_send_mapd(its_dev, 0); 3503 its_free_device(its_dev); 3504 } 3505 3506 mutex_unlock(&its->dev_alloc_lock); 3507 3508 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 3509 } 3510 3511 static const struct irq_domain_ops its_domain_ops = { 3512 .alloc = its_irq_domain_alloc, 3513 .free = its_irq_domain_free, 3514 .activate = its_irq_domain_activate, 3515 .deactivate = its_irq_domain_deactivate, 3516 }; 3517 3518 /* 3519 * This is insane. 3520 * 3521 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely 3522 * likely), the only way to perform an invalidate is to use a fake 3523 * device to issue an INV command, implying that the LPI has first 3524 * been mapped to some event on that device. Since this is not exactly 3525 * cheap, we try to keep that mapping around as long as possible, and 3526 * only issue an UNMAP if we're short on available slots. 3527 * 3528 * Broken by design(tm). 3529 * 3530 * GICv4.1, on the other hand, mandates that we're able to invalidate 3531 * by writing to a MMIO register. It doesn't implement the whole of 3532 * DirectLPI, but that's good enough. And most of the time, we don't 3533 * even have to invalidate anything, as the redistributor can be told 3534 * whether to generate a doorbell or not (we thus leave it enabled, 3535 * always). 3536 */ 3537 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) 3538 { 3539 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3540 if (gic_rdists->has_rvpeid) 3541 return; 3542 3543 /* Already unmapped? */ 3544 if (vpe->vpe_proxy_event == -1) 3545 return; 3546 3547 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); 3548 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; 3549 3550 /* 3551 * We don't track empty slots at all, so let's move the 3552 * next_victim pointer if we can quickly reuse that slot 3553 * instead of nuking an existing entry. Not clear that this is 3554 * always a win though, and this might just generate a ripple 3555 * effect... Let's just hope VPEs don't migrate too often. 3556 */ 3557 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3558 vpe_proxy.next_victim = vpe->vpe_proxy_event; 3559 3560 vpe->vpe_proxy_event = -1; 3561 } 3562 3563 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) 3564 { 3565 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3566 if (gic_rdists->has_rvpeid) 3567 return; 3568 3569 if (!gic_rdists->has_direct_lpi) { 3570 unsigned long flags; 3571 3572 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3573 its_vpe_db_proxy_unmap_locked(vpe); 3574 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3575 } 3576 } 3577 3578 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) 3579 { 3580 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3581 if (gic_rdists->has_rvpeid) 3582 return; 3583 3584 /* Already mapped? */ 3585 if (vpe->vpe_proxy_event != -1) 3586 return; 3587 3588 /* This slot was already allocated. Kick the other VPE out. */ 3589 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3590 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); 3591 3592 /* Map the new VPE instead */ 3593 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; 3594 vpe->vpe_proxy_event = vpe_proxy.next_victim; 3595 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; 3596 3597 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; 3598 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); 3599 } 3600 3601 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) 3602 { 3603 unsigned long flags; 3604 struct its_collection *target_col; 3605 3606 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3607 if (gic_rdists->has_rvpeid) 3608 return; 3609 3610 if (gic_rdists->has_direct_lpi) { 3611 void __iomem *rdbase; 3612 3613 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; 3614 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 3615 wait_for_syncr(rdbase); 3616 3617 return; 3618 } 3619 3620 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3621 3622 its_vpe_db_proxy_map_locked(vpe); 3623 3624 target_col = &vpe_proxy.dev->its->collections[to]; 3625 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); 3626 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; 3627 3628 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3629 } 3630 3631 static int its_vpe_set_affinity(struct irq_data *d, 3632 const struct cpumask *mask_val, 3633 bool force) 3634 { 3635 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3636 int from, cpu = cpumask_first(mask_val); 3637 unsigned long flags; 3638 3639 /* 3640 * Changing affinity is mega expensive, so let's be as lazy as 3641 * we can and only do it if we really have to. Also, if mapped 3642 * into the proxy device, we need to move the doorbell 3643 * interrupt to its new location. 3644 * 3645 * Another thing is that changing the affinity of a vPE affects 3646 * *other interrupts* such as all the vLPIs that are routed to 3647 * this vPE. This means that the irq_desc lock is not enough to 3648 * protect us, and that we must ensure nobody samples vpe->col_idx 3649 * during the update, hence the lock below which must also be 3650 * taken on any vLPI handling path that evaluates vpe->col_idx. 3651 */ 3652 from = vpe_to_cpuid_lock(vpe, &flags); 3653 if (from == cpu) 3654 goto out; 3655 3656 vpe->col_idx = cpu; 3657 3658 /* 3659 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD 3660 * is sharing its VPE table with the current one. 3661 */ 3662 if (gic_data_rdist_cpu(cpu)->vpe_table_mask && 3663 cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask)) 3664 goto out; 3665 3666 its_send_vmovp(vpe); 3667 its_vpe_db_proxy_move(vpe, from, cpu); 3668 3669 out: 3670 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3671 vpe_to_cpuid_unlock(vpe, flags); 3672 3673 return IRQ_SET_MASK_OK_DONE; 3674 } 3675 3676 static void its_wait_vpt_parse_complete(void) 3677 { 3678 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3679 u64 val; 3680 3681 if (!gic_rdists->has_vpend_valid_dirty) 3682 return; 3683 3684 WARN_ON_ONCE(readq_relaxed_poll_timeout(vlpi_base + GICR_VPENDBASER, 3685 val, 3686 !(val & GICR_VPENDBASER_Dirty), 3687 10, 500)); 3688 } 3689 3690 static void its_vpe_schedule(struct its_vpe *vpe) 3691 { 3692 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3693 u64 val; 3694 3695 /* Schedule the VPE */ 3696 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & 3697 GENMASK_ULL(51, 12); 3698 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3699 val |= GICR_VPROPBASER_RaWb; 3700 val |= GICR_VPROPBASER_InnerShareable; 3701 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3702 3703 val = virt_to_phys(page_address(vpe->vpt_page)) & 3704 GENMASK_ULL(51, 16); 3705 val |= GICR_VPENDBASER_RaWaWb; 3706 val |= GICR_VPENDBASER_InnerShareable; 3707 /* 3708 * There is no good way of finding out if the pending table is 3709 * empty as we can race against the doorbell interrupt very 3710 * easily. So in the end, vpe->pending_last is only an 3711 * indication that the vcpu has something pending, not one 3712 * that the pending table is empty. A good implementation 3713 * would be able to read its coarse map pretty quickly anyway, 3714 * making this a tolerable issue. 3715 */ 3716 val |= GICR_VPENDBASER_PendingLast; 3717 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; 3718 val |= GICR_VPENDBASER_Valid; 3719 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3720 3721 its_wait_vpt_parse_complete(); 3722 } 3723 3724 static void its_vpe_deschedule(struct its_vpe *vpe) 3725 { 3726 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3727 u64 val; 3728 3729 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3730 3731 vpe->idai = !!(val & GICR_VPENDBASER_IDAI); 3732 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 3733 } 3734 3735 static void its_vpe_invall(struct its_vpe *vpe) 3736 { 3737 struct its_node *its; 3738 3739 list_for_each_entry(its, &its_nodes, entry) { 3740 if (!is_v4(its)) 3741 continue; 3742 3743 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr]) 3744 continue; 3745 3746 /* 3747 * Sending a VINVALL to a single ITS is enough, as all 3748 * we need is to reach the redistributors. 3749 */ 3750 its_send_vinvall(its, vpe); 3751 return; 3752 } 3753 } 3754 3755 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 3756 { 3757 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3758 struct its_cmd_info *info = vcpu_info; 3759 3760 switch (info->cmd_type) { 3761 case SCHEDULE_VPE: 3762 its_vpe_schedule(vpe); 3763 return 0; 3764 3765 case DESCHEDULE_VPE: 3766 its_vpe_deschedule(vpe); 3767 return 0; 3768 3769 case INVALL_VPE: 3770 its_vpe_invall(vpe); 3771 return 0; 3772 3773 default: 3774 return -EINVAL; 3775 } 3776 } 3777 3778 static void its_vpe_send_cmd(struct its_vpe *vpe, 3779 void (*cmd)(struct its_device *, u32)) 3780 { 3781 unsigned long flags; 3782 3783 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3784 3785 its_vpe_db_proxy_map_locked(vpe); 3786 cmd(vpe_proxy.dev, vpe->vpe_proxy_event); 3787 3788 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3789 } 3790 3791 static void its_vpe_send_inv(struct irq_data *d) 3792 { 3793 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3794 3795 if (gic_rdists->has_direct_lpi) { 3796 void __iomem *rdbase; 3797 3798 /* Target the redistributor this VPE is currently known on */ 3799 raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock); 3800 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 3801 gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR); 3802 wait_for_syncr(rdbase); 3803 raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock); 3804 } else { 3805 its_vpe_send_cmd(vpe, its_send_inv); 3806 } 3807 } 3808 3809 static void its_vpe_mask_irq(struct irq_data *d) 3810 { 3811 /* 3812 * We need to unmask the LPI, which is described by the parent 3813 * irq_data. Instead of calling into the parent (which won't 3814 * exactly do the right thing, let's simply use the 3815 * parent_data pointer. Yes, I'm naughty. 3816 */ 3817 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 3818 its_vpe_send_inv(d); 3819 } 3820 3821 static void its_vpe_unmask_irq(struct irq_data *d) 3822 { 3823 /* Same hack as above... */ 3824 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 3825 its_vpe_send_inv(d); 3826 } 3827 3828 static int its_vpe_set_irqchip_state(struct irq_data *d, 3829 enum irqchip_irq_state which, 3830 bool state) 3831 { 3832 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3833 3834 if (which != IRQCHIP_STATE_PENDING) 3835 return -EINVAL; 3836 3837 if (gic_rdists->has_direct_lpi) { 3838 void __iomem *rdbase; 3839 3840 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 3841 if (state) { 3842 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); 3843 } else { 3844 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 3845 wait_for_syncr(rdbase); 3846 } 3847 } else { 3848 if (state) 3849 its_vpe_send_cmd(vpe, its_send_int); 3850 else 3851 its_vpe_send_cmd(vpe, its_send_clear); 3852 } 3853 3854 return 0; 3855 } 3856 3857 static int its_vpe_retrigger(struct irq_data *d) 3858 { 3859 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 3860 } 3861 3862 static struct irq_chip its_vpe_irq_chip = { 3863 .name = "GICv4-vpe", 3864 .irq_mask = its_vpe_mask_irq, 3865 .irq_unmask = its_vpe_unmask_irq, 3866 .irq_eoi = irq_chip_eoi_parent, 3867 .irq_set_affinity = its_vpe_set_affinity, 3868 .irq_retrigger = its_vpe_retrigger, 3869 .irq_set_irqchip_state = its_vpe_set_irqchip_state, 3870 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity, 3871 }; 3872 3873 static struct its_node *find_4_1_its(void) 3874 { 3875 static struct its_node *its = NULL; 3876 3877 if (!its) { 3878 list_for_each_entry(its, &its_nodes, entry) { 3879 if (is_v4_1(its)) 3880 return its; 3881 } 3882 3883 /* Oops? */ 3884 its = NULL; 3885 } 3886 3887 return its; 3888 } 3889 3890 static void its_vpe_4_1_send_inv(struct irq_data *d) 3891 { 3892 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3893 struct its_node *its; 3894 3895 /* 3896 * GICv4.1 wants doorbells to be invalidated using the 3897 * INVDB command in order to be broadcast to all RDs. Send 3898 * it to the first valid ITS, and let the HW do its magic. 3899 */ 3900 its = find_4_1_its(); 3901 if (its) 3902 its_send_invdb(its, vpe); 3903 } 3904 3905 static void its_vpe_4_1_mask_irq(struct irq_data *d) 3906 { 3907 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 3908 its_vpe_4_1_send_inv(d); 3909 } 3910 3911 static void its_vpe_4_1_unmask_irq(struct irq_data *d) 3912 { 3913 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 3914 its_vpe_4_1_send_inv(d); 3915 } 3916 3917 static void its_vpe_4_1_schedule(struct its_vpe *vpe, 3918 struct its_cmd_info *info) 3919 { 3920 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3921 u64 val = 0; 3922 3923 /* Schedule the VPE */ 3924 val |= GICR_VPENDBASER_Valid; 3925 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0; 3926 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0; 3927 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id); 3928 3929 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3930 3931 its_wait_vpt_parse_complete(); 3932 } 3933 3934 static void its_vpe_4_1_deschedule(struct its_vpe *vpe, 3935 struct its_cmd_info *info) 3936 { 3937 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3938 u64 val; 3939 3940 if (info->req_db) { 3941 /* 3942 * vPE is going to block: make the vPE non-resident with 3943 * PendingLast clear and DB set. The GIC guarantees that if 3944 * we read-back PendingLast clear, then a doorbell will be 3945 * delivered when an interrupt comes. 3946 */ 3947 val = its_clear_vpend_valid(vlpi_base, 3948 GICR_VPENDBASER_PendingLast, 3949 GICR_VPENDBASER_4_1_DB); 3950 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 3951 } else { 3952 /* 3953 * We're not blocking, so just make the vPE non-resident 3954 * with PendingLast set, indicating that we'll be back. 3955 */ 3956 val = its_clear_vpend_valid(vlpi_base, 3957 0, 3958 GICR_VPENDBASER_PendingLast); 3959 vpe->pending_last = true; 3960 } 3961 } 3962 3963 static void its_vpe_4_1_invall(struct its_vpe *vpe) 3964 { 3965 void __iomem *rdbase; 3966 u64 val; 3967 3968 val = GICR_INVALLR_V; 3969 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id); 3970 3971 /* Target the redistributor this vPE is currently known on */ 3972 raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock); 3973 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 3974 gic_write_lpir(val, rdbase + GICR_INVALLR); 3975 3976 wait_for_syncr(rdbase); 3977 raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock); 3978 } 3979 3980 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 3981 { 3982 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3983 struct its_cmd_info *info = vcpu_info; 3984 3985 switch (info->cmd_type) { 3986 case SCHEDULE_VPE: 3987 its_vpe_4_1_schedule(vpe, info); 3988 return 0; 3989 3990 case DESCHEDULE_VPE: 3991 its_vpe_4_1_deschedule(vpe, info); 3992 return 0; 3993 3994 case INVALL_VPE: 3995 its_vpe_4_1_invall(vpe); 3996 return 0; 3997 3998 default: 3999 return -EINVAL; 4000 } 4001 } 4002 4003 static struct irq_chip its_vpe_4_1_irq_chip = { 4004 .name = "GICv4.1-vpe", 4005 .irq_mask = its_vpe_4_1_mask_irq, 4006 .irq_unmask = its_vpe_4_1_unmask_irq, 4007 .irq_eoi = irq_chip_eoi_parent, 4008 .irq_set_affinity = its_vpe_set_affinity, 4009 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity, 4010 }; 4011 4012 static void its_configure_sgi(struct irq_data *d, bool clear) 4013 { 4014 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4015 struct its_cmd_desc desc; 4016 4017 desc.its_vsgi_cmd.vpe = vpe; 4018 desc.its_vsgi_cmd.sgi = d->hwirq; 4019 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority; 4020 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled; 4021 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group; 4022 desc.its_vsgi_cmd.clear = clear; 4023 4024 /* 4025 * GICv4.1 allows us to send VSGI commands to any ITS as long as the 4026 * destination VPE is mapped there. Since we map them eagerly at 4027 * activation time, we're pretty sure the first GICv4.1 ITS will do. 4028 */ 4029 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc); 4030 } 4031 4032 static void its_sgi_mask_irq(struct irq_data *d) 4033 { 4034 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4035 4036 vpe->sgi_config[d->hwirq].enabled = false; 4037 its_configure_sgi(d, false); 4038 } 4039 4040 static void its_sgi_unmask_irq(struct irq_data *d) 4041 { 4042 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4043 4044 vpe->sgi_config[d->hwirq].enabled = true; 4045 its_configure_sgi(d, false); 4046 } 4047 4048 static int its_sgi_set_affinity(struct irq_data *d, 4049 const struct cpumask *mask_val, 4050 bool force) 4051 { 4052 /* 4053 * There is no notion of affinity for virtual SGIs, at least 4054 * not on the host (since they can only be targetting a vPE). 4055 * Tell the kernel we've done whatever it asked for. 4056 */ 4057 irq_data_update_effective_affinity(d, mask_val); 4058 return IRQ_SET_MASK_OK; 4059 } 4060 4061 static int its_sgi_set_irqchip_state(struct irq_data *d, 4062 enum irqchip_irq_state which, 4063 bool state) 4064 { 4065 if (which != IRQCHIP_STATE_PENDING) 4066 return -EINVAL; 4067 4068 if (state) { 4069 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4070 struct its_node *its = find_4_1_its(); 4071 u64 val; 4072 4073 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id); 4074 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq); 4075 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K); 4076 } else { 4077 its_configure_sgi(d, true); 4078 } 4079 4080 return 0; 4081 } 4082 4083 static int its_sgi_get_irqchip_state(struct irq_data *d, 4084 enum irqchip_irq_state which, bool *val) 4085 { 4086 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4087 void __iomem *base; 4088 unsigned long flags; 4089 u32 count = 1000000; /* 1s! */ 4090 u32 status; 4091 int cpu; 4092 4093 if (which != IRQCHIP_STATE_PENDING) 4094 return -EINVAL; 4095 4096 /* 4097 * Locking galore! We can race against two different events: 4098 * 4099 * - Concurent vPE affinity change: we must make sure it cannot 4100 * happen, or we'll talk to the wrong redistributor. This is 4101 * identical to what happens with vLPIs. 4102 * 4103 * - Concurrent VSGIPENDR access: As it involves accessing two 4104 * MMIO registers, this must be made atomic one way or another. 4105 */ 4106 cpu = vpe_to_cpuid_lock(vpe, &flags); 4107 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4108 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K; 4109 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR); 4110 do { 4111 status = readl_relaxed(base + GICR_VSGIPENDR); 4112 if (!(status & GICR_VSGIPENDR_BUSY)) 4113 goto out; 4114 4115 count--; 4116 if (!count) { 4117 pr_err_ratelimited("Unable to get SGI status\n"); 4118 goto out; 4119 } 4120 cpu_relax(); 4121 udelay(1); 4122 } while (count); 4123 4124 out: 4125 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4126 vpe_to_cpuid_unlock(vpe, flags); 4127 4128 if (!count) 4129 return -ENXIO; 4130 4131 *val = !!(status & (1 << d->hwirq)); 4132 4133 return 0; 4134 } 4135 4136 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4137 { 4138 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4139 struct its_cmd_info *info = vcpu_info; 4140 4141 switch (info->cmd_type) { 4142 case PROP_UPDATE_VSGI: 4143 vpe->sgi_config[d->hwirq].priority = info->priority; 4144 vpe->sgi_config[d->hwirq].group = info->group; 4145 its_configure_sgi(d, false); 4146 return 0; 4147 4148 default: 4149 return -EINVAL; 4150 } 4151 } 4152 4153 static struct irq_chip its_sgi_irq_chip = { 4154 .name = "GICv4.1-sgi", 4155 .irq_mask = its_sgi_mask_irq, 4156 .irq_unmask = its_sgi_unmask_irq, 4157 .irq_set_affinity = its_sgi_set_affinity, 4158 .irq_set_irqchip_state = its_sgi_set_irqchip_state, 4159 .irq_get_irqchip_state = its_sgi_get_irqchip_state, 4160 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity, 4161 }; 4162 4163 static int its_sgi_irq_domain_alloc(struct irq_domain *domain, 4164 unsigned int virq, unsigned int nr_irqs, 4165 void *args) 4166 { 4167 struct its_vpe *vpe = args; 4168 int i; 4169 4170 /* Yes, we do want 16 SGIs */ 4171 WARN_ON(nr_irqs != 16); 4172 4173 for (i = 0; i < 16; i++) { 4174 vpe->sgi_config[i].priority = 0; 4175 vpe->sgi_config[i].enabled = false; 4176 vpe->sgi_config[i].group = false; 4177 4178 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4179 &its_sgi_irq_chip, vpe); 4180 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY); 4181 } 4182 4183 return 0; 4184 } 4185 4186 static void its_sgi_irq_domain_free(struct irq_domain *domain, 4187 unsigned int virq, 4188 unsigned int nr_irqs) 4189 { 4190 /* Nothing to do */ 4191 } 4192 4193 static int its_sgi_irq_domain_activate(struct irq_domain *domain, 4194 struct irq_data *d, bool reserve) 4195 { 4196 /* Write out the initial SGI configuration */ 4197 its_configure_sgi(d, false); 4198 return 0; 4199 } 4200 4201 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain, 4202 struct irq_data *d) 4203 { 4204 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4205 4206 /* 4207 * The VSGI command is awkward: 4208 * 4209 * - To change the configuration, CLEAR must be set to false, 4210 * leaving the pending bit unchanged. 4211 * - To clear the pending bit, CLEAR must be set to true, leaving 4212 * the configuration unchanged. 4213 * 4214 * You just can't do both at once, hence the two commands below. 4215 */ 4216 vpe->sgi_config[d->hwirq].enabled = false; 4217 its_configure_sgi(d, false); 4218 its_configure_sgi(d, true); 4219 } 4220 4221 static const struct irq_domain_ops its_sgi_domain_ops = { 4222 .alloc = its_sgi_irq_domain_alloc, 4223 .free = its_sgi_irq_domain_free, 4224 .activate = its_sgi_irq_domain_activate, 4225 .deactivate = its_sgi_irq_domain_deactivate, 4226 }; 4227 4228 static int its_vpe_id_alloc(void) 4229 { 4230 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL); 4231 } 4232 4233 static void its_vpe_id_free(u16 id) 4234 { 4235 ida_simple_remove(&its_vpeid_ida, id); 4236 } 4237 4238 static int its_vpe_init(struct its_vpe *vpe) 4239 { 4240 struct page *vpt_page; 4241 int vpe_id; 4242 4243 /* Allocate vpe_id */ 4244 vpe_id = its_vpe_id_alloc(); 4245 if (vpe_id < 0) 4246 return vpe_id; 4247 4248 /* Allocate VPT */ 4249 vpt_page = its_allocate_pending_table(GFP_KERNEL); 4250 if (!vpt_page) { 4251 its_vpe_id_free(vpe_id); 4252 return -ENOMEM; 4253 } 4254 4255 if (!its_alloc_vpe_table(vpe_id)) { 4256 its_vpe_id_free(vpe_id); 4257 its_free_pending_table(vpt_page); 4258 return -ENOMEM; 4259 } 4260 4261 raw_spin_lock_init(&vpe->vpe_lock); 4262 vpe->vpe_id = vpe_id; 4263 vpe->vpt_page = vpt_page; 4264 if (gic_rdists->has_rvpeid) 4265 atomic_set(&vpe->vmapp_count, 0); 4266 else 4267 vpe->vpe_proxy_event = -1; 4268 4269 return 0; 4270 } 4271 4272 static void its_vpe_teardown(struct its_vpe *vpe) 4273 { 4274 its_vpe_db_proxy_unmap(vpe); 4275 its_vpe_id_free(vpe->vpe_id); 4276 its_free_pending_table(vpe->vpt_page); 4277 } 4278 4279 static void its_vpe_irq_domain_free(struct irq_domain *domain, 4280 unsigned int virq, 4281 unsigned int nr_irqs) 4282 { 4283 struct its_vm *vm = domain->host_data; 4284 int i; 4285 4286 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 4287 4288 for (i = 0; i < nr_irqs; i++) { 4289 struct irq_data *data = irq_domain_get_irq_data(domain, 4290 virq + i); 4291 struct its_vpe *vpe = irq_data_get_irq_chip_data(data); 4292 4293 BUG_ON(vm != vpe->its_vm); 4294 4295 clear_bit(data->hwirq, vm->db_bitmap); 4296 its_vpe_teardown(vpe); 4297 irq_domain_reset_irq_data(data); 4298 } 4299 4300 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { 4301 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); 4302 its_free_prop_table(vm->vprop_page); 4303 } 4304 } 4305 4306 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 4307 unsigned int nr_irqs, void *args) 4308 { 4309 struct irq_chip *irqchip = &its_vpe_irq_chip; 4310 struct its_vm *vm = args; 4311 unsigned long *bitmap; 4312 struct page *vprop_page; 4313 int base, nr_ids, i, err = 0; 4314 4315 BUG_ON(!vm); 4316 4317 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids); 4318 if (!bitmap) 4319 return -ENOMEM; 4320 4321 if (nr_ids < nr_irqs) { 4322 its_lpi_free(bitmap, base, nr_ids); 4323 return -ENOMEM; 4324 } 4325 4326 vprop_page = its_allocate_prop_table(GFP_KERNEL); 4327 if (!vprop_page) { 4328 its_lpi_free(bitmap, base, nr_ids); 4329 return -ENOMEM; 4330 } 4331 4332 vm->db_bitmap = bitmap; 4333 vm->db_lpi_base = base; 4334 vm->nr_db_lpis = nr_ids; 4335 vm->vprop_page = vprop_page; 4336 4337 if (gic_rdists->has_rvpeid) 4338 irqchip = &its_vpe_4_1_irq_chip; 4339 4340 for (i = 0; i < nr_irqs; i++) { 4341 vm->vpes[i]->vpe_db_lpi = base + i; 4342 err = its_vpe_init(vm->vpes[i]); 4343 if (err) 4344 break; 4345 err = its_irq_gic_domain_alloc(domain, virq + i, 4346 vm->vpes[i]->vpe_db_lpi); 4347 if (err) 4348 break; 4349 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4350 irqchip, vm->vpes[i]); 4351 set_bit(i, bitmap); 4352 } 4353 4354 if (err) { 4355 if (i > 0) 4356 its_vpe_irq_domain_free(domain, virq, i - 1); 4357 4358 its_lpi_free(bitmap, base, nr_ids); 4359 its_free_prop_table(vprop_page); 4360 } 4361 4362 return err; 4363 } 4364 4365 static int its_vpe_irq_domain_activate(struct irq_domain *domain, 4366 struct irq_data *d, bool reserve) 4367 { 4368 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4369 struct its_node *its; 4370 4371 /* 4372 * If we use the list map, we issue VMAPP on demand... Unless 4373 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs 4374 * so that VSGIs can work. 4375 */ 4376 if (!gic_requires_eager_mapping()) 4377 return 0; 4378 4379 /* Map the VPE to the first possible CPU */ 4380 vpe->col_idx = cpumask_first(cpu_online_mask); 4381 4382 list_for_each_entry(its, &its_nodes, entry) { 4383 if (!is_v4(its)) 4384 continue; 4385 4386 its_send_vmapp(its, vpe, true); 4387 its_send_vinvall(its, vpe); 4388 } 4389 4390 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 4391 4392 return 0; 4393 } 4394 4395 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, 4396 struct irq_data *d) 4397 { 4398 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4399 struct its_node *its; 4400 4401 /* 4402 * If we use the list map on GICv4.0, we unmap the VPE once no 4403 * VLPIs are associated with the VM. 4404 */ 4405 if (!gic_requires_eager_mapping()) 4406 return; 4407 4408 list_for_each_entry(its, &its_nodes, entry) { 4409 if (!is_v4(its)) 4410 continue; 4411 4412 its_send_vmapp(its, vpe, false); 4413 } 4414 } 4415 4416 static const struct irq_domain_ops its_vpe_domain_ops = { 4417 .alloc = its_vpe_irq_domain_alloc, 4418 .free = its_vpe_irq_domain_free, 4419 .activate = its_vpe_irq_domain_activate, 4420 .deactivate = its_vpe_irq_domain_deactivate, 4421 }; 4422 4423 static int its_force_quiescent(void __iomem *base) 4424 { 4425 u32 count = 1000000; /* 1s */ 4426 u32 val; 4427 4428 val = readl_relaxed(base + GITS_CTLR); 4429 /* 4430 * GIC architecture specification requires the ITS to be both 4431 * disabled and quiescent for writes to GITS_BASER<n> or 4432 * GITS_CBASER to not have UNPREDICTABLE results. 4433 */ 4434 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) 4435 return 0; 4436 4437 /* Disable the generation of all interrupts to this ITS */ 4438 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); 4439 writel_relaxed(val, base + GITS_CTLR); 4440 4441 /* Poll GITS_CTLR and wait until ITS becomes quiescent */ 4442 while (1) { 4443 val = readl_relaxed(base + GITS_CTLR); 4444 if (val & GITS_CTLR_QUIESCENT) 4445 return 0; 4446 4447 count--; 4448 if (!count) 4449 return -EBUSY; 4450 4451 cpu_relax(); 4452 udelay(1); 4453 } 4454 } 4455 4456 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data) 4457 { 4458 struct its_node *its = data; 4459 4460 /* erratum 22375: only alloc 8MB table size (20 bits) */ 4461 its->typer &= ~GITS_TYPER_DEVBITS; 4462 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1); 4463 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; 4464 4465 return true; 4466 } 4467 4468 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data) 4469 { 4470 struct its_node *its = data; 4471 4472 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; 4473 4474 return true; 4475 } 4476 4477 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) 4478 { 4479 struct its_node *its = data; 4480 4481 /* On QDF2400, the size of the ITE is 16Bytes */ 4482 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE; 4483 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1); 4484 4485 return true; 4486 } 4487 4488 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev) 4489 { 4490 struct its_node *its = its_dev->its; 4491 4492 /* 4493 * The Socionext Synquacer SoC has a so-called 'pre-ITS', 4494 * which maps 32-bit writes targeted at a separate window of 4495 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER 4496 * with device ID taken from bits [device_id_bits + 1:2] of 4497 * the window offset. 4498 */ 4499 return its->pre_its_base + (its_dev->device_id << 2); 4500 } 4501 4502 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data) 4503 { 4504 struct its_node *its = data; 4505 u32 pre_its_window[2]; 4506 u32 ids; 4507 4508 if (!fwnode_property_read_u32_array(its->fwnode_handle, 4509 "socionext,synquacer-pre-its", 4510 pre_its_window, 4511 ARRAY_SIZE(pre_its_window))) { 4512 4513 its->pre_its_base = pre_its_window[0]; 4514 its->get_msi_base = its_irq_get_msi_base_pre_its; 4515 4516 ids = ilog2(pre_its_window[1]) - 2; 4517 if (device_ids(its) > ids) { 4518 its->typer &= ~GITS_TYPER_DEVBITS; 4519 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1); 4520 } 4521 4522 /* the pre-ITS breaks isolation, so disable MSI remapping */ 4523 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP; 4524 return true; 4525 } 4526 return false; 4527 } 4528 4529 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data) 4530 { 4531 struct its_node *its = data; 4532 4533 /* 4534 * Hip07 insists on using the wrong address for the VLPI 4535 * page. Trick it into doing the right thing... 4536 */ 4537 its->vlpi_redist_offset = SZ_128K; 4538 return true; 4539 } 4540 4541 static const struct gic_quirk its_quirks[] = { 4542 #ifdef CONFIG_CAVIUM_ERRATUM_22375 4543 { 4544 .desc = "ITS: Cavium errata 22375, 24313", 4545 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4546 .mask = 0xffff0fff, 4547 .init = its_enable_quirk_cavium_22375, 4548 }, 4549 #endif 4550 #ifdef CONFIG_CAVIUM_ERRATUM_23144 4551 { 4552 .desc = "ITS: Cavium erratum 23144", 4553 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4554 .mask = 0xffff0fff, 4555 .init = its_enable_quirk_cavium_23144, 4556 }, 4557 #endif 4558 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 4559 { 4560 .desc = "ITS: QDF2400 erratum 0065", 4561 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */ 4562 .mask = 0xffffffff, 4563 .init = its_enable_quirk_qdf2400_e0065, 4564 }, 4565 #endif 4566 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS 4567 { 4568 /* 4569 * The Socionext Synquacer SoC incorporates ARM's own GIC-500 4570 * implementation, but with a 'pre-ITS' added that requires 4571 * special handling in software. 4572 */ 4573 .desc = "ITS: Socionext Synquacer pre-ITS", 4574 .iidr = 0x0001143b, 4575 .mask = 0xffffffff, 4576 .init = its_enable_quirk_socionext_synquacer, 4577 }, 4578 #endif 4579 #ifdef CONFIG_HISILICON_ERRATUM_161600802 4580 { 4581 .desc = "ITS: Hip07 erratum 161600802", 4582 .iidr = 0x00000004, 4583 .mask = 0xffffffff, 4584 .init = its_enable_quirk_hip07_161600802, 4585 }, 4586 #endif 4587 { 4588 } 4589 }; 4590 4591 static void its_enable_quirks(struct its_node *its) 4592 { 4593 u32 iidr = readl_relaxed(its->base + GITS_IIDR); 4594 4595 gic_enable_quirks(iidr, its_quirks, its); 4596 } 4597 4598 static int its_save_disable(void) 4599 { 4600 struct its_node *its; 4601 int err = 0; 4602 4603 raw_spin_lock(&its_lock); 4604 list_for_each_entry(its, &its_nodes, entry) { 4605 void __iomem *base; 4606 4607 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE)) 4608 continue; 4609 4610 base = its->base; 4611 its->ctlr_save = readl_relaxed(base + GITS_CTLR); 4612 err = its_force_quiescent(base); 4613 if (err) { 4614 pr_err("ITS@%pa: failed to quiesce: %d\n", 4615 &its->phys_base, err); 4616 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4617 goto err; 4618 } 4619 4620 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER); 4621 } 4622 4623 err: 4624 if (err) { 4625 list_for_each_entry_continue_reverse(its, &its_nodes, entry) { 4626 void __iomem *base; 4627 4628 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE)) 4629 continue; 4630 4631 base = its->base; 4632 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4633 } 4634 } 4635 raw_spin_unlock(&its_lock); 4636 4637 return err; 4638 } 4639 4640 static void its_restore_enable(void) 4641 { 4642 struct its_node *its; 4643 int ret; 4644 4645 raw_spin_lock(&its_lock); 4646 list_for_each_entry(its, &its_nodes, entry) { 4647 void __iomem *base; 4648 int i; 4649 4650 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE)) 4651 continue; 4652 4653 base = its->base; 4654 4655 /* 4656 * Make sure that the ITS is disabled. If it fails to quiesce, 4657 * don't restore it since writing to CBASER or BASER<n> 4658 * registers is undefined according to the GIC v3 ITS 4659 * Specification. 4660 */ 4661 ret = its_force_quiescent(base); 4662 if (ret) { 4663 pr_err("ITS@%pa: failed to quiesce on resume: %d\n", 4664 &its->phys_base, ret); 4665 continue; 4666 } 4667 4668 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER); 4669 4670 /* 4671 * Writing CBASER resets CREADR to 0, so make CWRITER and 4672 * cmd_write line up with it. 4673 */ 4674 its->cmd_write = its->cmd_base; 4675 gits_write_cwriter(0, base + GITS_CWRITER); 4676 4677 /* Restore GITS_BASER from the value cache. */ 4678 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 4679 struct its_baser *baser = &its->tables[i]; 4680 4681 if (!(baser->val & GITS_BASER_VALID)) 4682 continue; 4683 4684 its_write_baser(its, baser, baser->val); 4685 } 4686 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4687 4688 /* 4689 * Reinit the collection if it's stored in the ITS. This is 4690 * indicated by the col_id being less than the HCC field. 4691 * CID < HCC as specified in the GIC v3 Documentation. 4692 */ 4693 if (its->collections[smp_processor_id()].col_id < 4694 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER))) 4695 its_cpu_init_collection(its); 4696 } 4697 raw_spin_unlock(&its_lock); 4698 } 4699 4700 static struct syscore_ops its_syscore_ops = { 4701 .suspend = its_save_disable, 4702 .resume = its_restore_enable, 4703 }; 4704 4705 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its) 4706 { 4707 struct irq_domain *inner_domain; 4708 struct msi_domain_info *info; 4709 4710 info = kzalloc(sizeof(*info), GFP_KERNEL); 4711 if (!info) 4712 return -ENOMEM; 4713 4714 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its); 4715 if (!inner_domain) { 4716 kfree(info); 4717 return -ENOMEM; 4718 } 4719 4720 inner_domain->parent = its_parent; 4721 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS); 4722 inner_domain->flags |= its->msi_domain_flags; 4723 info->ops = &its_msi_domain_ops; 4724 info->data = its; 4725 inner_domain->host_data = info; 4726 4727 return 0; 4728 } 4729 4730 static int its_init_vpe_domain(void) 4731 { 4732 struct its_node *its; 4733 u32 devid; 4734 int entries; 4735 4736 if (gic_rdists->has_direct_lpi) { 4737 pr_info("ITS: Using DirectLPI for VPE invalidation\n"); 4738 return 0; 4739 } 4740 4741 /* Any ITS will do, even if not v4 */ 4742 its = list_first_entry(&its_nodes, struct its_node, entry); 4743 4744 entries = roundup_pow_of_two(nr_cpu_ids); 4745 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes), 4746 GFP_KERNEL); 4747 if (!vpe_proxy.vpes) { 4748 pr_err("ITS: Can't allocate GICv4 proxy device array\n"); 4749 return -ENOMEM; 4750 } 4751 4752 /* Use the last possible DevID */ 4753 devid = GENMASK(device_ids(its) - 1, 0); 4754 vpe_proxy.dev = its_create_device(its, devid, entries, false); 4755 if (!vpe_proxy.dev) { 4756 kfree(vpe_proxy.vpes); 4757 pr_err("ITS: Can't allocate GICv4 proxy device\n"); 4758 return -ENOMEM; 4759 } 4760 4761 BUG_ON(entries > vpe_proxy.dev->nr_ites); 4762 4763 raw_spin_lock_init(&vpe_proxy.lock); 4764 vpe_proxy.next_victim = 0; 4765 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", 4766 devid, vpe_proxy.dev->nr_ites); 4767 4768 return 0; 4769 } 4770 4771 static int __init its_compute_its_list_map(struct resource *res, 4772 void __iomem *its_base) 4773 { 4774 int its_number; 4775 u32 ctlr; 4776 4777 /* 4778 * This is assumed to be done early enough that we're 4779 * guaranteed to be single-threaded, hence no 4780 * locking. Should this change, we should address 4781 * this. 4782 */ 4783 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX); 4784 if (its_number >= GICv4_ITS_LIST_MAX) { 4785 pr_err("ITS@%pa: No ITSList entry available!\n", 4786 &res->start); 4787 return -EINVAL; 4788 } 4789 4790 ctlr = readl_relaxed(its_base + GITS_CTLR); 4791 ctlr &= ~GITS_CTLR_ITS_NUMBER; 4792 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; 4793 writel_relaxed(ctlr, its_base + GITS_CTLR); 4794 ctlr = readl_relaxed(its_base + GITS_CTLR); 4795 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { 4796 its_number = ctlr & GITS_CTLR_ITS_NUMBER; 4797 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; 4798 } 4799 4800 if (test_and_set_bit(its_number, &its_list_map)) { 4801 pr_err("ITS@%pa: Duplicate ITSList entry %d\n", 4802 &res->start, its_number); 4803 return -EINVAL; 4804 } 4805 4806 return its_number; 4807 } 4808 4809 static int __init its_probe_one(struct resource *res, 4810 struct fwnode_handle *handle, int numa_node) 4811 { 4812 struct its_node *its; 4813 void __iomem *its_base; 4814 u32 val, ctlr; 4815 u64 baser, tmp, typer; 4816 struct page *page; 4817 int err; 4818 4819 its_base = ioremap(res->start, SZ_64K); 4820 if (!its_base) { 4821 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); 4822 return -ENOMEM; 4823 } 4824 4825 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; 4826 if (val != 0x30 && val != 0x40) { 4827 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); 4828 err = -ENODEV; 4829 goto out_unmap; 4830 } 4831 4832 err = its_force_quiescent(its_base); 4833 if (err) { 4834 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); 4835 goto out_unmap; 4836 } 4837 4838 pr_info("ITS %pR\n", res); 4839 4840 its = kzalloc(sizeof(*its), GFP_KERNEL); 4841 if (!its) { 4842 err = -ENOMEM; 4843 goto out_unmap; 4844 } 4845 4846 raw_spin_lock_init(&its->lock); 4847 mutex_init(&its->dev_alloc_lock); 4848 INIT_LIST_HEAD(&its->entry); 4849 INIT_LIST_HEAD(&its->its_device_list); 4850 typer = gic_read_typer(its_base + GITS_TYPER); 4851 its->typer = typer; 4852 its->base = its_base; 4853 its->phys_base = res->start; 4854 if (is_v4(its)) { 4855 if (!(typer & GITS_TYPER_VMOVP)) { 4856 err = its_compute_its_list_map(res, its_base); 4857 if (err < 0) 4858 goto out_free_its; 4859 4860 its->list_nr = err; 4861 4862 pr_info("ITS@%pa: Using ITS number %d\n", 4863 &res->start, err); 4864 } else { 4865 pr_info("ITS@%pa: Single VMOVP capable\n", &res->start); 4866 } 4867 4868 if (is_v4_1(its)) { 4869 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer); 4870 4871 its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K); 4872 if (!its->sgir_base) { 4873 err = -ENOMEM; 4874 goto out_free_its; 4875 } 4876 4877 its->mpidr = readl_relaxed(its_base + GITS_MPIDR); 4878 4879 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n", 4880 &res->start, its->mpidr, svpet); 4881 } 4882 } 4883 4884 its->numa_node = numa_node; 4885 4886 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 4887 get_order(ITS_CMD_QUEUE_SZ)); 4888 if (!page) { 4889 err = -ENOMEM; 4890 goto out_unmap_sgir; 4891 } 4892 its->cmd_base = (void *)page_address(page); 4893 its->cmd_write = its->cmd_base; 4894 its->fwnode_handle = handle; 4895 its->get_msi_base = its_irq_get_msi_base; 4896 its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP; 4897 4898 its_enable_quirks(its); 4899 4900 err = its_alloc_tables(its); 4901 if (err) 4902 goto out_free_cmd; 4903 4904 err = its_alloc_collections(its); 4905 if (err) 4906 goto out_free_tables; 4907 4908 baser = (virt_to_phys(its->cmd_base) | 4909 GITS_CBASER_RaWaWb | 4910 GITS_CBASER_InnerShareable | 4911 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | 4912 GITS_CBASER_VALID); 4913 4914 gits_write_cbaser(baser, its->base + GITS_CBASER); 4915 tmp = gits_read_cbaser(its->base + GITS_CBASER); 4916 4917 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { 4918 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { 4919 /* 4920 * The HW reports non-shareable, we must 4921 * remove the cacheability attributes as 4922 * well. 4923 */ 4924 baser &= ~(GITS_CBASER_SHAREABILITY_MASK | 4925 GITS_CBASER_CACHEABILITY_MASK); 4926 baser |= GITS_CBASER_nC; 4927 gits_write_cbaser(baser, its->base + GITS_CBASER); 4928 } 4929 pr_info("ITS: using cache flushing for cmd queue\n"); 4930 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; 4931 } 4932 4933 gits_write_cwriter(0, its->base + GITS_CWRITER); 4934 ctlr = readl_relaxed(its->base + GITS_CTLR); 4935 ctlr |= GITS_CTLR_ENABLE; 4936 if (is_v4(its)) 4937 ctlr |= GITS_CTLR_ImDe; 4938 writel_relaxed(ctlr, its->base + GITS_CTLR); 4939 4940 if (GITS_TYPER_HCC(typer)) 4941 its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE; 4942 4943 err = its_init_domain(handle, its); 4944 if (err) 4945 goto out_free_tables; 4946 4947 raw_spin_lock(&its_lock); 4948 list_add(&its->entry, &its_nodes); 4949 raw_spin_unlock(&its_lock); 4950 4951 return 0; 4952 4953 out_free_tables: 4954 its_free_tables(its); 4955 out_free_cmd: 4956 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); 4957 out_unmap_sgir: 4958 if (its->sgir_base) 4959 iounmap(its->sgir_base); 4960 out_free_its: 4961 kfree(its); 4962 out_unmap: 4963 iounmap(its_base); 4964 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err); 4965 return err; 4966 } 4967 4968 static bool gic_rdists_supports_plpis(void) 4969 { 4970 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); 4971 } 4972 4973 static int redist_disable_lpis(void) 4974 { 4975 void __iomem *rbase = gic_data_rdist_rd_base(); 4976 u64 timeout = USEC_PER_SEC; 4977 u64 val; 4978 4979 if (!gic_rdists_supports_plpis()) { 4980 pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); 4981 return -ENXIO; 4982 } 4983 4984 val = readl_relaxed(rbase + GICR_CTLR); 4985 if (!(val & GICR_CTLR_ENABLE_LPIS)) 4986 return 0; 4987 4988 /* 4989 * If coming via a CPU hotplug event, we don't need to disable 4990 * LPIs before trying to re-enable them. They are already 4991 * configured and all is well in the world. 4992 * 4993 * If running with preallocated tables, there is nothing to do. 4994 */ 4995 if (gic_data_rdist()->lpi_enabled || 4996 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED)) 4997 return 0; 4998 4999 /* 5000 * From that point on, we only try to do some damage control. 5001 */ 5002 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n", 5003 smp_processor_id()); 5004 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 5005 5006 /* Disable LPIs */ 5007 val &= ~GICR_CTLR_ENABLE_LPIS; 5008 writel_relaxed(val, rbase + GICR_CTLR); 5009 5010 /* Make sure any change to GICR_CTLR is observable by the GIC */ 5011 dsb(sy); 5012 5013 /* 5014 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs 5015 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers. 5016 * Error out if we time out waiting for RWP to clear. 5017 */ 5018 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) { 5019 if (!timeout) { 5020 pr_err("CPU%d: Timeout while disabling LPIs\n", 5021 smp_processor_id()); 5022 return -ETIMEDOUT; 5023 } 5024 udelay(1); 5025 timeout--; 5026 } 5027 5028 /* 5029 * After it has been written to 1, it is IMPLEMENTATION 5030 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be 5031 * cleared to 0. Error out if clearing the bit failed. 5032 */ 5033 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) { 5034 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id()); 5035 return -EBUSY; 5036 } 5037 5038 return 0; 5039 } 5040 5041 int its_cpu_init(void) 5042 { 5043 if (!list_empty(&its_nodes)) { 5044 int ret; 5045 5046 ret = redist_disable_lpis(); 5047 if (ret) 5048 return ret; 5049 5050 its_cpu_init_lpis(); 5051 its_cpu_init_collections(); 5052 } 5053 5054 return 0; 5055 } 5056 5057 static const struct of_device_id its_device_id[] = { 5058 { .compatible = "arm,gic-v3-its", }, 5059 {}, 5060 }; 5061 5062 static int __init its_of_probe(struct device_node *node) 5063 { 5064 struct device_node *np; 5065 struct resource res; 5066 5067 for (np = of_find_matching_node(node, its_device_id); np; 5068 np = of_find_matching_node(np, its_device_id)) { 5069 if (!of_device_is_available(np)) 5070 continue; 5071 if (!of_property_read_bool(np, "msi-controller")) { 5072 pr_warn("%pOF: no msi-controller property, ITS ignored\n", 5073 np); 5074 continue; 5075 } 5076 5077 if (of_address_to_resource(np, 0, &res)) { 5078 pr_warn("%pOF: no regs?\n", np); 5079 continue; 5080 } 5081 5082 its_probe_one(&res, &np->fwnode, of_node_to_nid(np)); 5083 } 5084 return 0; 5085 } 5086 5087 #ifdef CONFIG_ACPI 5088 5089 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) 5090 5091 #ifdef CONFIG_ACPI_NUMA 5092 struct its_srat_map { 5093 /* numa node id */ 5094 u32 numa_node; 5095 /* GIC ITS ID */ 5096 u32 its_id; 5097 }; 5098 5099 static struct its_srat_map *its_srat_maps __initdata; 5100 static int its_in_srat __initdata; 5101 5102 static int __init acpi_get_its_numa_node(u32 its_id) 5103 { 5104 int i; 5105 5106 for (i = 0; i < its_in_srat; i++) { 5107 if (its_id == its_srat_maps[i].its_id) 5108 return its_srat_maps[i].numa_node; 5109 } 5110 return NUMA_NO_NODE; 5111 } 5112 5113 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header, 5114 const unsigned long end) 5115 { 5116 return 0; 5117 } 5118 5119 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header, 5120 const unsigned long end) 5121 { 5122 int node; 5123 struct acpi_srat_gic_its_affinity *its_affinity; 5124 5125 its_affinity = (struct acpi_srat_gic_its_affinity *)header; 5126 if (!its_affinity) 5127 return -EINVAL; 5128 5129 if (its_affinity->header.length < sizeof(*its_affinity)) { 5130 pr_err("SRAT: Invalid header length %d in ITS affinity\n", 5131 its_affinity->header.length); 5132 return -EINVAL; 5133 } 5134 5135 node = acpi_map_pxm_to_node(its_affinity->proximity_domain); 5136 5137 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { 5138 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); 5139 return 0; 5140 } 5141 5142 its_srat_maps[its_in_srat].numa_node = node; 5143 its_srat_maps[its_in_srat].its_id = its_affinity->its_id; 5144 its_in_srat++; 5145 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", 5146 its_affinity->proximity_domain, its_affinity->its_id, node); 5147 5148 return 0; 5149 } 5150 5151 static void __init acpi_table_parse_srat_its(void) 5152 { 5153 int count; 5154 5155 count = acpi_table_parse_entries(ACPI_SIG_SRAT, 5156 sizeof(struct acpi_table_srat), 5157 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5158 gic_acpi_match_srat_its, 0); 5159 if (count <= 0) 5160 return; 5161 5162 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map), 5163 GFP_KERNEL); 5164 if (!its_srat_maps) { 5165 pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n"); 5166 return; 5167 } 5168 5169 acpi_table_parse_entries(ACPI_SIG_SRAT, 5170 sizeof(struct acpi_table_srat), 5171 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5172 gic_acpi_parse_srat_its, 0); 5173 } 5174 5175 /* free the its_srat_maps after ITS probing */ 5176 static void __init acpi_its_srat_maps_free(void) 5177 { 5178 kfree(its_srat_maps); 5179 } 5180 #else 5181 static void __init acpi_table_parse_srat_its(void) { } 5182 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } 5183 static void __init acpi_its_srat_maps_free(void) { } 5184 #endif 5185 5186 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header, 5187 const unsigned long end) 5188 { 5189 struct acpi_madt_generic_translator *its_entry; 5190 struct fwnode_handle *dom_handle; 5191 struct resource res; 5192 int err; 5193 5194 its_entry = (struct acpi_madt_generic_translator *)header; 5195 memset(&res, 0, sizeof(res)); 5196 res.start = its_entry->base_address; 5197 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; 5198 res.flags = IORESOURCE_MEM; 5199 5200 dom_handle = irq_domain_alloc_fwnode(&res.start); 5201 if (!dom_handle) { 5202 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", 5203 &res.start); 5204 return -ENOMEM; 5205 } 5206 5207 err = iort_register_domain_token(its_entry->translation_id, res.start, 5208 dom_handle); 5209 if (err) { 5210 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", 5211 &res.start, its_entry->translation_id); 5212 goto dom_err; 5213 } 5214 5215 err = its_probe_one(&res, dom_handle, 5216 acpi_get_its_numa_node(its_entry->translation_id)); 5217 if (!err) 5218 return 0; 5219 5220 iort_deregister_domain_token(its_entry->translation_id); 5221 dom_err: 5222 irq_domain_free_fwnode(dom_handle); 5223 return err; 5224 } 5225 5226 static void __init its_acpi_probe(void) 5227 { 5228 acpi_table_parse_srat_its(); 5229 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5230 gic_acpi_parse_madt_its, 0); 5231 acpi_its_srat_maps_free(); 5232 } 5233 #else 5234 static void __init its_acpi_probe(void) { } 5235 #endif 5236 5237 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, 5238 struct irq_domain *parent_domain) 5239 { 5240 struct device_node *of_node; 5241 struct its_node *its; 5242 bool has_v4 = false; 5243 bool has_v4_1 = false; 5244 int err; 5245 5246 gic_rdists = rdists; 5247 5248 its_parent = parent_domain; 5249 of_node = to_of_node(handle); 5250 if (of_node) 5251 its_of_probe(of_node); 5252 else 5253 its_acpi_probe(); 5254 5255 if (list_empty(&its_nodes)) { 5256 pr_warn("ITS: No ITS available, not enabling LPIs\n"); 5257 return -ENXIO; 5258 } 5259 5260 err = allocate_lpi_tables(); 5261 if (err) 5262 return err; 5263 5264 list_for_each_entry(its, &its_nodes, entry) { 5265 has_v4 |= is_v4(its); 5266 has_v4_1 |= is_v4_1(its); 5267 } 5268 5269 /* Don't bother with inconsistent systems */ 5270 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid)) 5271 rdists->has_rvpeid = false; 5272 5273 if (has_v4 & rdists->has_vlpis) { 5274 const struct irq_domain_ops *sgi_ops; 5275 5276 if (has_v4_1) 5277 sgi_ops = &its_sgi_domain_ops; 5278 else 5279 sgi_ops = NULL; 5280 5281 if (its_init_vpe_domain() || 5282 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) { 5283 rdists->has_vlpis = false; 5284 pr_err("ITS: Disabling GICv4 support\n"); 5285 } 5286 } 5287 5288 register_syscore_ops(&its_syscore_ops); 5289 5290 return 0; 5291 } 5292