1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/acpi_iort.h> 9 #include <linux/bitfield.h> 10 #include <linux/bitmap.h> 11 #include <linux/cpu.h> 12 #include <linux/crash_dump.h> 13 #include <linux/delay.h> 14 #include <linux/efi.h> 15 #include <linux/interrupt.h> 16 #include <linux/iommu.h> 17 #include <linux/iopoll.h> 18 #include <linux/irqdomain.h> 19 #include <linux/list.h> 20 #include <linux/log2.h> 21 #include <linux/memblock.h> 22 #include <linux/mm.h> 23 #include <linux/msi.h> 24 #include <linux/of.h> 25 #include <linux/of_address.h> 26 #include <linux/of_irq.h> 27 #include <linux/of_pci.h> 28 #include <linux/of_platform.h> 29 #include <linux/percpu.h> 30 #include <linux/slab.h> 31 #include <linux/syscore_ops.h> 32 33 #include <linux/irqchip.h> 34 #include <linux/irqchip/arm-gic-v3.h> 35 #include <linux/irqchip/arm-gic-v4.h> 36 37 #include <asm/cputype.h> 38 #include <asm/exception.h> 39 40 #include "irq-gic-common.h" 41 42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) 43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) 44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) 45 #define ITS_FLAGS_FORCE_NON_SHAREABLE (1ULL << 3) 46 47 #define RD_LOCAL_LPI_ENABLED BIT(0) 48 #define RD_LOCAL_PENDTABLE_PREALLOCATED BIT(1) 49 #define RD_LOCAL_MEMRESERVE_DONE BIT(2) 50 51 static u32 lpi_id_bits; 52 53 /* 54 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to 55 * deal with (one configuration byte per interrupt). PENDBASE has to 56 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). 57 */ 58 #define LPI_NRBITS lpi_id_bits 59 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K) 60 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) 61 62 #define LPI_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI 63 64 /* 65 * Collection structure - just an ID, and a redistributor address to 66 * ping. We use one per CPU as a bag of interrupts assigned to this 67 * CPU. 68 */ 69 struct its_collection { 70 u64 target_address; 71 u16 col_id; 72 }; 73 74 /* 75 * The ITS_BASER structure - contains memory information, cached 76 * value of BASER register configuration and ITS page size. 77 */ 78 struct its_baser { 79 void *base; 80 u64 val; 81 u32 order; 82 u32 psz; 83 }; 84 85 struct its_device; 86 87 /* 88 * The ITS structure - contains most of the infrastructure, with the 89 * top-level MSI domain, the command queue, the collections, and the 90 * list of devices writing to it. 91 * 92 * dev_alloc_lock has to be taken for device allocations, while the 93 * spinlock must be taken to parse data structures such as the device 94 * list. 95 */ 96 struct its_node { 97 raw_spinlock_t lock; 98 struct mutex dev_alloc_lock; 99 struct list_head entry; 100 void __iomem *base; 101 void __iomem *sgir_base; 102 phys_addr_t phys_base; 103 struct its_cmd_block *cmd_base; 104 struct its_cmd_block *cmd_write; 105 struct its_baser tables[GITS_BASER_NR_REGS]; 106 struct its_collection *collections; 107 struct fwnode_handle *fwnode_handle; 108 u64 (*get_msi_base)(struct its_device *its_dev); 109 u64 typer; 110 u64 cbaser_save; 111 u32 ctlr_save; 112 u32 mpidr; 113 struct list_head its_device_list; 114 u64 flags; 115 unsigned long list_nr; 116 int numa_node; 117 unsigned int msi_domain_flags; 118 u32 pre_its_base; /* for Socionext Synquacer */ 119 int vlpi_redist_offset; 120 }; 121 122 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS)) 123 #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP)) 124 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1) 125 126 #define ITS_ITT_ALIGN SZ_256 127 128 /* The maximum number of VPEID bits supported by VLPI commands */ 129 #define ITS_MAX_VPEID_BITS \ 130 ({ \ 131 int nvpeid = 16; \ 132 if (gic_rdists->has_rvpeid && \ 133 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \ 134 nvpeid = 1 + (gic_rdists->gicd_typer2 & \ 135 GICD_TYPER2_VID); \ 136 \ 137 nvpeid; \ 138 }) 139 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS)) 140 141 /* Convert page order to size in bytes */ 142 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) 143 144 struct event_lpi_map { 145 unsigned long *lpi_map; 146 u16 *col_map; 147 irq_hw_number_t lpi_base; 148 int nr_lpis; 149 raw_spinlock_t vlpi_lock; 150 struct its_vm *vm; 151 struct its_vlpi_map *vlpi_maps; 152 int nr_vlpis; 153 }; 154 155 /* 156 * The ITS view of a device - belongs to an ITS, owns an interrupt 157 * translation table, and a list of interrupts. If it some of its 158 * LPIs are injected into a guest (GICv4), the event_map.vm field 159 * indicates which one. 160 */ 161 struct its_device { 162 struct list_head entry; 163 struct its_node *its; 164 struct event_lpi_map event_map; 165 void *itt; 166 u32 nr_ites; 167 u32 device_id; 168 bool shared; 169 }; 170 171 static struct { 172 raw_spinlock_t lock; 173 struct its_device *dev; 174 struct its_vpe **vpes; 175 int next_victim; 176 } vpe_proxy; 177 178 struct cpu_lpi_count { 179 atomic_t managed; 180 atomic_t unmanaged; 181 }; 182 183 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count); 184 185 static LIST_HEAD(its_nodes); 186 static DEFINE_RAW_SPINLOCK(its_lock); 187 static struct rdists *gic_rdists; 188 static struct irq_domain *its_parent; 189 190 static unsigned long its_list_map; 191 static u16 vmovp_seq_num; 192 static DEFINE_RAW_SPINLOCK(vmovp_lock); 193 194 static DEFINE_IDA(its_vpeid_ida); 195 196 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) 197 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu)) 198 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 199 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K) 200 201 /* 202 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we 203 * always have vSGIs mapped. 204 */ 205 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its) 206 { 207 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]); 208 } 209 210 static bool rdists_support_shareable(void) 211 { 212 return !(gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE); 213 } 214 215 static u16 get_its_list(struct its_vm *vm) 216 { 217 struct its_node *its; 218 unsigned long its_list = 0; 219 220 list_for_each_entry(its, &its_nodes, entry) { 221 if (!is_v4(its)) 222 continue; 223 224 if (require_its_list_vmovp(vm, its)) 225 __set_bit(its->list_nr, &its_list); 226 } 227 228 return (u16)its_list; 229 } 230 231 static inline u32 its_get_event_id(struct irq_data *d) 232 { 233 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 234 return d->hwirq - its_dev->event_map.lpi_base; 235 } 236 237 static struct its_collection *dev_event_to_col(struct its_device *its_dev, 238 u32 event) 239 { 240 struct its_node *its = its_dev->its; 241 242 return its->collections + its_dev->event_map.col_map[event]; 243 } 244 245 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev, 246 u32 event) 247 { 248 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis)) 249 return NULL; 250 251 return &its_dev->event_map.vlpi_maps[event]; 252 } 253 254 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d) 255 { 256 if (irqd_is_forwarded_to_vcpu(d)) { 257 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 258 u32 event = its_get_event_id(d); 259 260 return dev_event_to_vlpi_map(its_dev, event); 261 } 262 263 return NULL; 264 } 265 266 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags) 267 { 268 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags); 269 return vpe->col_idx; 270 } 271 272 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags) 273 { 274 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 275 } 276 277 static struct irq_chip its_vpe_irq_chip; 278 279 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags) 280 { 281 struct its_vpe *vpe = NULL; 282 int cpu; 283 284 if (d->chip == &its_vpe_irq_chip) { 285 vpe = irq_data_get_irq_chip_data(d); 286 } else { 287 struct its_vlpi_map *map = get_vlpi_map(d); 288 if (map) 289 vpe = map->vpe; 290 } 291 292 if (vpe) { 293 cpu = vpe_to_cpuid_lock(vpe, flags); 294 } else { 295 /* Physical LPIs are already locked via the irq_desc lock */ 296 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 297 cpu = its_dev->event_map.col_map[its_get_event_id(d)]; 298 /* Keep GCC quiet... */ 299 *flags = 0; 300 } 301 302 return cpu; 303 } 304 305 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags) 306 { 307 struct its_vpe *vpe = NULL; 308 309 if (d->chip == &its_vpe_irq_chip) { 310 vpe = irq_data_get_irq_chip_data(d); 311 } else { 312 struct its_vlpi_map *map = get_vlpi_map(d); 313 if (map) 314 vpe = map->vpe; 315 } 316 317 if (vpe) 318 vpe_to_cpuid_unlock(vpe, flags); 319 } 320 321 static struct its_collection *valid_col(struct its_collection *col) 322 { 323 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0))) 324 return NULL; 325 326 return col; 327 } 328 329 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe) 330 { 331 if (valid_col(its->collections + vpe->col_idx)) 332 return vpe; 333 334 return NULL; 335 } 336 337 /* 338 * ITS command descriptors - parameters to be encoded in a command 339 * block. 340 */ 341 struct its_cmd_desc { 342 union { 343 struct { 344 struct its_device *dev; 345 u32 event_id; 346 } its_inv_cmd; 347 348 struct { 349 struct its_device *dev; 350 u32 event_id; 351 } its_clear_cmd; 352 353 struct { 354 struct its_device *dev; 355 u32 event_id; 356 } its_int_cmd; 357 358 struct { 359 struct its_device *dev; 360 int valid; 361 } its_mapd_cmd; 362 363 struct { 364 struct its_collection *col; 365 int valid; 366 } its_mapc_cmd; 367 368 struct { 369 struct its_device *dev; 370 u32 phys_id; 371 u32 event_id; 372 } its_mapti_cmd; 373 374 struct { 375 struct its_device *dev; 376 struct its_collection *col; 377 u32 event_id; 378 } its_movi_cmd; 379 380 struct { 381 struct its_device *dev; 382 u32 event_id; 383 } its_discard_cmd; 384 385 struct { 386 struct its_collection *col; 387 } its_invall_cmd; 388 389 struct { 390 struct its_vpe *vpe; 391 } its_vinvall_cmd; 392 393 struct { 394 struct its_vpe *vpe; 395 struct its_collection *col; 396 bool valid; 397 } its_vmapp_cmd; 398 399 struct { 400 struct its_vpe *vpe; 401 struct its_device *dev; 402 u32 virt_id; 403 u32 event_id; 404 bool db_enabled; 405 } its_vmapti_cmd; 406 407 struct { 408 struct its_vpe *vpe; 409 struct its_device *dev; 410 u32 event_id; 411 bool db_enabled; 412 } its_vmovi_cmd; 413 414 struct { 415 struct its_vpe *vpe; 416 struct its_collection *col; 417 u16 seq_num; 418 u16 its_list; 419 } its_vmovp_cmd; 420 421 struct { 422 struct its_vpe *vpe; 423 } its_invdb_cmd; 424 425 struct { 426 struct its_vpe *vpe; 427 u8 sgi; 428 u8 priority; 429 bool enable; 430 bool group; 431 bool clear; 432 } its_vsgi_cmd; 433 }; 434 }; 435 436 /* 437 * The ITS command block, which is what the ITS actually parses. 438 */ 439 struct its_cmd_block { 440 union { 441 u64 raw_cmd[4]; 442 __le64 raw_cmd_le[4]; 443 }; 444 }; 445 446 #define ITS_CMD_QUEUE_SZ SZ_64K 447 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) 448 449 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *, 450 struct its_cmd_block *, 451 struct its_cmd_desc *); 452 453 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *, 454 struct its_cmd_block *, 455 struct its_cmd_desc *); 456 457 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) 458 { 459 u64 mask = GENMASK_ULL(h, l); 460 *raw_cmd &= ~mask; 461 *raw_cmd |= (val << l) & mask; 462 } 463 464 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) 465 { 466 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); 467 } 468 469 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) 470 { 471 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); 472 } 473 474 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) 475 { 476 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); 477 } 478 479 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) 480 { 481 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); 482 } 483 484 static void its_encode_size(struct its_cmd_block *cmd, u8 size) 485 { 486 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); 487 } 488 489 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) 490 { 491 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); 492 } 493 494 static void its_encode_valid(struct its_cmd_block *cmd, int valid) 495 { 496 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); 497 } 498 499 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) 500 { 501 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); 502 } 503 504 static void its_encode_collection(struct its_cmd_block *cmd, u16 col) 505 { 506 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); 507 } 508 509 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) 510 { 511 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); 512 } 513 514 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) 515 { 516 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); 517 } 518 519 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) 520 { 521 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); 522 } 523 524 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) 525 { 526 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); 527 } 528 529 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) 530 { 531 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); 532 } 533 534 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) 535 { 536 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); 537 } 538 539 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) 540 { 541 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); 542 } 543 544 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) 545 { 546 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); 547 } 548 549 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa) 550 { 551 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16); 552 } 553 554 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc) 555 { 556 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8); 557 } 558 559 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz) 560 { 561 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9); 562 } 563 564 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd, 565 u32 vpe_db_lpi) 566 { 567 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0); 568 } 569 570 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd, 571 u32 vpe_db_lpi) 572 { 573 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0); 574 } 575 576 static void its_encode_db(struct its_cmd_block *cmd, bool db) 577 { 578 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63); 579 } 580 581 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi) 582 { 583 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32); 584 } 585 586 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio) 587 { 588 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20); 589 } 590 591 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp) 592 { 593 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10); 594 } 595 596 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr) 597 { 598 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9); 599 } 600 601 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en) 602 { 603 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8); 604 } 605 606 static inline void its_fixup_cmd(struct its_cmd_block *cmd) 607 { 608 /* Let's fixup BE commands */ 609 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]); 610 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]); 611 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]); 612 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]); 613 } 614 615 static struct its_collection *its_build_mapd_cmd(struct its_node *its, 616 struct its_cmd_block *cmd, 617 struct its_cmd_desc *desc) 618 { 619 unsigned long itt_addr; 620 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); 621 622 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); 623 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); 624 625 its_encode_cmd(cmd, GITS_CMD_MAPD); 626 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); 627 its_encode_size(cmd, size - 1); 628 its_encode_itt(cmd, itt_addr); 629 its_encode_valid(cmd, desc->its_mapd_cmd.valid); 630 631 its_fixup_cmd(cmd); 632 633 return NULL; 634 } 635 636 static struct its_collection *its_build_mapc_cmd(struct its_node *its, 637 struct its_cmd_block *cmd, 638 struct its_cmd_desc *desc) 639 { 640 its_encode_cmd(cmd, GITS_CMD_MAPC); 641 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 642 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); 643 its_encode_valid(cmd, desc->its_mapc_cmd.valid); 644 645 its_fixup_cmd(cmd); 646 647 return desc->its_mapc_cmd.col; 648 } 649 650 static struct its_collection *its_build_mapti_cmd(struct its_node *its, 651 struct its_cmd_block *cmd, 652 struct its_cmd_desc *desc) 653 { 654 struct its_collection *col; 655 656 col = dev_event_to_col(desc->its_mapti_cmd.dev, 657 desc->its_mapti_cmd.event_id); 658 659 its_encode_cmd(cmd, GITS_CMD_MAPTI); 660 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); 661 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); 662 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); 663 its_encode_collection(cmd, col->col_id); 664 665 its_fixup_cmd(cmd); 666 667 return valid_col(col); 668 } 669 670 static struct its_collection *its_build_movi_cmd(struct its_node *its, 671 struct its_cmd_block *cmd, 672 struct its_cmd_desc *desc) 673 { 674 struct its_collection *col; 675 676 col = dev_event_to_col(desc->its_movi_cmd.dev, 677 desc->its_movi_cmd.event_id); 678 679 its_encode_cmd(cmd, GITS_CMD_MOVI); 680 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); 681 its_encode_event_id(cmd, desc->its_movi_cmd.event_id); 682 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); 683 684 its_fixup_cmd(cmd); 685 686 return valid_col(col); 687 } 688 689 static struct its_collection *its_build_discard_cmd(struct its_node *its, 690 struct its_cmd_block *cmd, 691 struct its_cmd_desc *desc) 692 { 693 struct its_collection *col; 694 695 col = dev_event_to_col(desc->its_discard_cmd.dev, 696 desc->its_discard_cmd.event_id); 697 698 its_encode_cmd(cmd, GITS_CMD_DISCARD); 699 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); 700 its_encode_event_id(cmd, desc->its_discard_cmd.event_id); 701 702 its_fixup_cmd(cmd); 703 704 return valid_col(col); 705 } 706 707 static struct its_collection *its_build_inv_cmd(struct its_node *its, 708 struct its_cmd_block *cmd, 709 struct its_cmd_desc *desc) 710 { 711 struct its_collection *col; 712 713 col = dev_event_to_col(desc->its_inv_cmd.dev, 714 desc->its_inv_cmd.event_id); 715 716 its_encode_cmd(cmd, GITS_CMD_INV); 717 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 718 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 719 720 its_fixup_cmd(cmd); 721 722 return valid_col(col); 723 } 724 725 static struct its_collection *its_build_int_cmd(struct its_node *its, 726 struct its_cmd_block *cmd, 727 struct its_cmd_desc *desc) 728 { 729 struct its_collection *col; 730 731 col = dev_event_to_col(desc->its_int_cmd.dev, 732 desc->its_int_cmd.event_id); 733 734 its_encode_cmd(cmd, GITS_CMD_INT); 735 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 736 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 737 738 its_fixup_cmd(cmd); 739 740 return valid_col(col); 741 } 742 743 static struct its_collection *its_build_clear_cmd(struct its_node *its, 744 struct its_cmd_block *cmd, 745 struct its_cmd_desc *desc) 746 { 747 struct its_collection *col; 748 749 col = dev_event_to_col(desc->its_clear_cmd.dev, 750 desc->its_clear_cmd.event_id); 751 752 its_encode_cmd(cmd, GITS_CMD_CLEAR); 753 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 754 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 755 756 its_fixup_cmd(cmd); 757 758 return valid_col(col); 759 } 760 761 static struct its_collection *its_build_invall_cmd(struct its_node *its, 762 struct its_cmd_block *cmd, 763 struct its_cmd_desc *desc) 764 { 765 its_encode_cmd(cmd, GITS_CMD_INVALL); 766 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id); 767 768 its_fixup_cmd(cmd); 769 770 return desc->its_invall_cmd.col; 771 } 772 773 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its, 774 struct its_cmd_block *cmd, 775 struct its_cmd_desc *desc) 776 { 777 its_encode_cmd(cmd, GITS_CMD_VINVALL); 778 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); 779 780 its_fixup_cmd(cmd); 781 782 return valid_vpe(its, desc->its_vinvall_cmd.vpe); 783 } 784 785 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its, 786 struct its_cmd_block *cmd, 787 struct its_cmd_desc *desc) 788 { 789 unsigned long vpt_addr, vconf_addr; 790 u64 target; 791 bool alloc; 792 793 its_encode_cmd(cmd, GITS_CMD_VMAPP); 794 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); 795 its_encode_valid(cmd, desc->its_vmapp_cmd.valid); 796 797 if (!desc->its_vmapp_cmd.valid) { 798 if (is_v4_1(its)) { 799 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count); 800 its_encode_alloc(cmd, alloc); 801 } 802 803 goto out; 804 } 805 806 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); 807 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset; 808 809 its_encode_target(cmd, target); 810 its_encode_vpt_addr(cmd, vpt_addr); 811 its_encode_vpt_size(cmd, LPI_NRBITS - 1); 812 813 if (!is_v4_1(its)) 814 goto out; 815 816 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page)); 817 818 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count); 819 820 its_encode_alloc(cmd, alloc); 821 822 /* 823 * GICv4.1 provides a way to get the VLPI state, which needs the vPE 824 * to be unmapped first, and in this case, we may remap the vPE 825 * back while the VPT is not empty. So we can't assume that the 826 * VPT is empty on map. This is why we never advertise PTZ. 827 */ 828 its_encode_ptz(cmd, false); 829 its_encode_vconf_addr(cmd, vconf_addr); 830 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi); 831 832 out: 833 its_fixup_cmd(cmd); 834 835 return valid_vpe(its, desc->its_vmapp_cmd.vpe); 836 } 837 838 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its, 839 struct its_cmd_block *cmd, 840 struct its_cmd_desc *desc) 841 { 842 u32 db; 843 844 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled) 845 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; 846 else 847 db = 1023; 848 849 its_encode_cmd(cmd, GITS_CMD_VMAPTI); 850 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); 851 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); 852 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); 853 its_encode_db_phys_id(cmd, db); 854 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); 855 856 its_fixup_cmd(cmd); 857 858 return valid_vpe(its, desc->its_vmapti_cmd.vpe); 859 } 860 861 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its, 862 struct its_cmd_block *cmd, 863 struct its_cmd_desc *desc) 864 { 865 u32 db; 866 867 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled) 868 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; 869 else 870 db = 1023; 871 872 its_encode_cmd(cmd, GITS_CMD_VMOVI); 873 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); 874 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); 875 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); 876 its_encode_db_phys_id(cmd, db); 877 its_encode_db_valid(cmd, true); 878 879 its_fixup_cmd(cmd); 880 881 return valid_vpe(its, desc->its_vmovi_cmd.vpe); 882 } 883 884 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its, 885 struct its_cmd_block *cmd, 886 struct its_cmd_desc *desc) 887 { 888 u64 target; 889 890 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset; 891 its_encode_cmd(cmd, GITS_CMD_VMOVP); 892 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); 893 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); 894 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); 895 its_encode_target(cmd, target); 896 897 if (is_v4_1(its)) { 898 its_encode_db(cmd, true); 899 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi); 900 } 901 902 its_fixup_cmd(cmd); 903 904 return valid_vpe(its, desc->its_vmovp_cmd.vpe); 905 } 906 907 static struct its_vpe *its_build_vinv_cmd(struct its_node *its, 908 struct its_cmd_block *cmd, 909 struct its_cmd_desc *desc) 910 { 911 struct its_vlpi_map *map; 912 913 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev, 914 desc->its_inv_cmd.event_id); 915 916 its_encode_cmd(cmd, GITS_CMD_INV); 917 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 918 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 919 920 its_fixup_cmd(cmd); 921 922 return valid_vpe(its, map->vpe); 923 } 924 925 static struct its_vpe *its_build_vint_cmd(struct its_node *its, 926 struct its_cmd_block *cmd, 927 struct its_cmd_desc *desc) 928 { 929 struct its_vlpi_map *map; 930 931 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev, 932 desc->its_int_cmd.event_id); 933 934 its_encode_cmd(cmd, GITS_CMD_INT); 935 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 936 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 937 938 its_fixup_cmd(cmd); 939 940 return valid_vpe(its, map->vpe); 941 } 942 943 static struct its_vpe *its_build_vclear_cmd(struct its_node *its, 944 struct its_cmd_block *cmd, 945 struct its_cmd_desc *desc) 946 { 947 struct its_vlpi_map *map; 948 949 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev, 950 desc->its_clear_cmd.event_id); 951 952 its_encode_cmd(cmd, GITS_CMD_CLEAR); 953 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 954 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 955 956 its_fixup_cmd(cmd); 957 958 return valid_vpe(its, map->vpe); 959 } 960 961 static struct its_vpe *its_build_invdb_cmd(struct its_node *its, 962 struct its_cmd_block *cmd, 963 struct its_cmd_desc *desc) 964 { 965 if (WARN_ON(!is_v4_1(its))) 966 return NULL; 967 968 its_encode_cmd(cmd, GITS_CMD_INVDB); 969 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id); 970 971 its_fixup_cmd(cmd); 972 973 return valid_vpe(its, desc->its_invdb_cmd.vpe); 974 } 975 976 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its, 977 struct its_cmd_block *cmd, 978 struct its_cmd_desc *desc) 979 { 980 if (WARN_ON(!is_v4_1(its))) 981 return NULL; 982 983 its_encode_cmd(cmd, GITS_CMD_VSGI); 984 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id); 985 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi); 986 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority); 987 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group); 988 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear); 989 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable); 990 991 its_fixup_cmd(cmd); 992 993 return valid_vpe(its, desc->its_vsgi_cmd.vpe); 994 } 995 996 static u64 its_cmd_ptr_to_offset(struct its_node *its, 997 struct its_cmd_block *ptr) 998 { 999 return (ptr - its->cmd_base) * sizeof(*ptr); 1000 } 1001 1002 static int its_queue_full(struct its_node *its) 1003 { 1004 int widx; 1005 int ridx; 1006 1007 widx = its->cmd_write - its->cmd_base; 1008 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); 1009 1010 /* This is incredibly unlikely to happen, unless the ITS locks up. */ 1011 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) 1012 return 1; 1013 1014 return 0; 1015 } 1016 1017 static struct its_cmd_block *its_allocate_entry(struct its_node *its) 1018 { 1019 struct its_cmd_block *cmd; 1020 u32 count = 1000000; /* 1s! */ 1021 1022 while (its_queue_full(its)) { 1023 count--; 1024 if (!count) { 1025 pr_err_ratelimited("ITS queue not draining\n"); 1026 return NULL; 1027 } 1028 cpu_relax(); 1029 udelay(1); 1030 } 1031 1032 cmd = its->cmd_write++; 1033 1034 /* Handle queue wrapping */ 1035 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) 1036 its->cmd_write = its->cmd_base; 1037 1038 /* Clear command */ 1039 cmd->raw_cmd[0] = 0; 1040 cmd->raw_cmd[1] = 0; 1041 cmd->raw_cmd[2] = 0; 1042 cmd->raw_cmd[3] = 0; 1043 1044 return cmd; 1045 } 1046 1047 static struct its_cmd_block *its_post_commands(struct its_node *its) 1048 { 1049 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); 1050 1051 writel_relaxed(wr, its->base + GITS_CWRITER); 1052 1053 return its->cmd_write; 1054 } 1055 1056 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) 1057 { 1058 /* 1059 * Make sure the commands written to memory are observable by 1060 * the ITS. 1061 */ 1062 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) 1063 gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); 1064 else 1065 dsb(ishst); 1066 } 1067 1068 static int its_wait_for_range_completion(struct its_node *its, 1069 u64 prev_idx, 1070 struct its_cmd_block *to) 1071 { 1072 u64 rd_idx, to_idx, linear_idx; 1073 u32 count = 1000000; /* 1s! */ 1074 1075 /* Linearize to_idx if the command set has wrapped around */ 1076 to_idx = its_cmd_ptr_to_offset(its, to); 1077 if (to_idx < prev_idx) 1078 to_idx += ITS_CMD_QUEUE_SZ; 1079 1080 linear_idx = prev_idx; 1081 1082 while (1) { 1083 s64 delta; 1084 1085 rd_idx = readl_relaxed(its->base + GITS_CREADR); 1086 1087 /* 1088 * Compute the read pointer progress, taking the 1089 * potential wrap-around into account. 1090 */ 1091 delta = rd_idx - prev_idx; 1092 if (rd_idx < prev_idx) 1093 delta += ITS_CMD_QUEUE_SZ; 1094 1095 linear_idx += delta; 1096 if (linear_idx >= to_idx) 1097 break; 1098 1099 count--; 1100 if (!count) { 1101 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n", 1102 to_idx, linear_idx); 1103 return -1; 1104 } 1105 prev_idx = rd_idx; 1106 cpu_relax(); 1107 udelay(1); 1108 } 1109 1110 return 0; 1111 } 1112 1113 /* Warning, macro hell follows */ 1114 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \ 1115 void name(struct its_node *its, \ 1116 buildtype builder, \ 1117 struct its_cmd_desc *desc) \ 1118 { \ 1119 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \ 1120 synctype *sync_obj; \ 1121 unsigned long flags; \ 1122 u64 rd_idx; \ 1123 \ 1124 raw_spin_lock_irqsave(&its->lock, flags); \ 1125 \ 1126 cmd = its_allocate_entry(its); \ 1127 if (!cmd) { /* We're soooooo screewed... */ \ 1128 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1129 return; \ 1130 } \ 1131 sync_obj = builder(its, cmd, desc); \ 1132 its_flush_cmd(its, cmd); \ 1133 \ 1134 if (sync_obj) { \ 1135 sync_cmd = its_allocate_entry(its); \ 1136 if (!sync_cmd) \ 1137 goto post; \ 1138 \ 1139 buildfn(its, sync_cmd, sync_obj); \ 1140 its_flush_cmd(its, sync_cmd); \ 1141 } \ 1142 \ 1143 post: \ 1144 rd_idx = readl_relaxed(its->base + GITS_CREADR); \ 1145 next_cmd = its_post_commands(its); \ 1146 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1147 \ 1148 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \ 1149 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \ 1150 } 1151 1152 static void its_build_sync_cmd(struct its_node *its, 1153 struct its_cmd_block *sync_cmd, 1154 struct its_collection *sync_col) 1155 { 1156 its_encode_cmd(sync_cmd, GITS_CMD_SYNC); 1157 its_encode_target(sync_cmd, sync_col->target_address); 1158 1159 its_fixup_cmd(sync_cmd); 1160 } 1161 1162 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, 1163 struct its_collection, its_build_sync_cmd) 1164 1165 static void its_build_vsync_cmd(struct its_node *its, 1166 struct its_cmd_block *sync_cmd, 1167 struct its_vpe *sync_vpe) 1168 { 1169 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); 1170 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); 1171 1172 its_fixup_cmd(sync_cmd); 1173 } 1174 1175 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, 1176 struct its_vpe, its_build_vsync_cmd) 1177 1178 static void its_send_int(struct its_device *dev, u32 event_id) 1179 { 1180 struct its_cmd_desc desc; 1181 1182 desc.its_int_cmd.dev = dev; 1183 desc.its_int_cmd.event_id = event_id; 1184 1185 its_send_single_command(dev->its, its_build_int_cmd, &desc); 1186 } 1187 1188 static void its_send_clear(struct its_device *dev, u32 event_id) 1189 { 1190 struct its_cmd_desc desc; 1191 1192 desc.its_clear_cmd.dev = dev; 1193 desc.its_clear_cmd.event_id = event_id; 1194 1195 its_send_single_command(dev->its, its_build_clear_cmd, &desc); 1196 } 1197 1198 static void its_send_inv(struct its_device *dev, u32 event_id) 1199 { 1200 struct its_cmd_desc desc; 1201 1202 desc.its_inv_cmd.dev = dev; 1203 desc.its_inv_cmd.event_id = event_id; 1204 1205 its_send_single_command(dev->its, its_build_inv_cmd, &desc); 1206 } 1207 1208 static void its_send_mapd(struct its_device *dev, int valid) 1209 { 1210 struct its_cmd_desc desc; 1211 1212 desc.its_mapd_cmd.dev = dev; 1213 desc.its_mapd_cmd.valid = !!valid; 1214 1215 its_send_single_command(dev->its, its_build_mapd_cmd, &desc); 1216 } 1217 1218 static void its_send_mapc(struct its_node *its, struct its_collection *col, 1219 int valid) 1220 { 1221 struct its_cmd_desc desc; 1222 1223 desc.its_mapc_cmd.col = col; 1224 desc.its_mapc_cmd.valid = !!valid; 1225 1226 its_send_single_command(its, its_build_mapc_cmd, &desc); 1227 } 1228 1229 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) 1230 { 1231 struct its_cmd_desc desc; 1232 1233 desc.its_mapti_cmd.dev = dev; 1234 desc.its_mapti_cmd.phys_id = irq_id; 1235 desc.its_mapti_cmd.event_id = id; 1236 1237 its_send_single_command(dev->its, its_build_mapti_cmd, &desc); 1238 } 1239 1240 static void its_send_movi(struct its_device *dev, 1241 struct its_collection *col, u32 id) 1242 { 1243 struct its_cmd_desc desc; 1244 1245 desc.its_movi_cmd.dev = dev; 1246 desc.its_movi_cmd.col = col; 1247 desc.its_movi_cmd.event_id = id; 1248 1249 its_send_single_command(dev->its, its_build_movi_cmd, &desc); 1250 } 1251 1252 static void its_send_discard(struct its_device *dev, u32 id) 1253 { 1254 struct its_cmd_desc desc; 1255 1256 desc.its_discard_cmd.dev = dev; 1257 desc.its_discard_cmd.event_id = id; 1258 1259 its_send_single_command(dev->its, its_build_discard_cmd, &desc); 1260 } 1261 1262 static void its_send_invall(struct its_node *its, struct its_collection *col) 1263 { 1264 struct its_cmd_desc desc; 1265 1266 desc.its_invall_cmd.col = col; 1267 1268 its_send_single_command(its, its_build_invall_cmd, &desc); 1269 } 1270 1271 static void its_send_vmapti(struct its_device *dev, u32 id) 1272 { 1273 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1274 struct its_cmd_desc desc; 1275 1276 desc.its_vmapti_cmd.vpe = map->vpe; 1277 desc.its_vmapti_cmd.dev = dev; 1278 desc.its_vmapti_cmd.virt_id = map->vintid; 1279 desc.its_vmapti_cmd.event_id = id; 1280 desc.its_vmapti_cmd.db_enabled = map->db_enabled; 1281 1282 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); 1283 } 1284 1285 static void its_send_vmovi(struct its_device *dev, u32 id) 1286 { 1287 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1288 struct its_cmd_desc desc; 1289 1290 desc.its_vmovi_cmd.vpe = map->vpe; 1291 desc.its_vmovi_cmd.dev = dev; 1292 desc.its_vmovi_cmd.event_id = id; 1293 desc.its_vmovi_cmd.db_enabled = map->db_enabled; 1294 1295 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); 1296 } 1297 1298 static void its_send_vmapp(struct its_node *its, 1299 struct its_vpe *vpe, bool valid) 1300 { 1301 struct its_cmd_desc desc; 1302 1303 desc.its_vmapp_cmd.vpe = vpe; 1304 desc.its_vmapp_cmd.valid = valid; 1305 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; 1306 1307 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); 1308 } 1309 1310 static void its_send_vmovp(struct its_vpe *vpe) 1311 { 1312 struct its_cmd_desc desc = {}; 1313 struct its_node *its; 1314 unsigned long flags; 1315 int col_id = vpe->col_idx; 1316 1317 desc.its_vmovp_cmd.vpe = vpe; 1318 1319 if (!its_list_map) { 1320 its = list_first_entry(&its_nodes, struct its_node, entry); 1321 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1322 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1323 return; 1324 } 1325 1326 /* 1327 * Yet another marvel of the architecture. If using the 1328 * its_list "feature", we need to make sure that all ITSs 1329 * receive all VMOVP commands in the same order. The only way 1330 * to guarantee this is to make vmovp a serialization point. 1331 * 1332 * Wall <-- Head. 1333 */ 1334 raw_spin_lock_irqsave(&vmovp_lock, flags); 1335 1336 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; 1337 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm); 1338 1339 /* Emit VMOVPs */ 1340 list_for_each_entry(its, &its_nodes, entry) { 1341 if (!is_v4(its)) 1342 continue; 1343 1344 if (!require_its_list_vmovp(vpe->its_vm, its)) 1345 continue; 1346 1347 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1348 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1349 } 1350 1351 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1352 } 1353 1354 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe) 1355 { 1356 struct its_cmd_desc desc; 1357 1358 desc.its_vinvall_cmd.vpe = vpe; 1359 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); 1360 } 1361 1362 static void its_send_vinv(struct its_device *dev, u32 event_id) 1363 { 1364 struct its_cmd_desc desc; 1365 1366 /* 1367 * There is no real VINV command. This is just a normal INV, 1368 * with a VSYNC instead of a SYNC. 1369 */ 1370 desc.its_inv_cmd.dev = dev; 1371 desc.its_inv_cmd.event_id = event_id; 1372 1373 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc); 1374 } 1375 1376 static void its_send_vint(struct its_device *dev, u32 event_id) 1377 { 1378 struct its_cmd_desc desc; 1379 1380 /* 1381 * There is no real VINT command. This is just a normal INT, 1382 * with a VSYNC instead of a SYNC. 1383 */ 1384 desc.its_int_cmd.dev = dev; 1385 desc.its_int_cmd.event_id = event_id; 1386 1387 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc); 1388 } 1389 1390 static void its_send_vclear(struct its_device *dev, u32 event_id) 1391 { 1392 struct its_cmd_desc desc; 1393 1394 /* 1395 * There is no real VCLEAR command. This is just a normal CLEAR, 1396 * with a VSYNC instead of a SYNC. 1397 */ 1398 desc.its_clear_cmd.dev = dev; 1399 desc.its_clear_cmd.event_id = event_id; 1400 1401 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc); 1402 } 1403 1404 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe) 1405 { 1406 struct its_cmd_desc desc; 1407 1408 desc.its_invdb_cmd.vpe = vpe; 1409 its_send_single_vcommand(its, its_build_invdb_cmd, &desc); 1410 } 1411 1412 /* 1413 * irqchip functions - assumes MSI, mostly. 1414 */ 1415 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) 1416 { 1417 struct its_vlpi_map *map = get_vlpi_map(d); 1418 irq_hw_number_t hwirq; 1419 void *va; 1420 u8 *cfg; 1421 1422 if (map) { 1423 va = page_address(map->vm->vprop_page); 1424 hwirq = map->vintid; 1425 1426 /* Remember the updated property */ 1427 map->properties &= ~clr; 1428 map->properties |= set | LPI_PROP_GROUP1; 1429 } else { 1430 va = gic_rdists->prop_table_va; 1431 hwirq = d->hwirq; 1432 } 1433 1434 cfg = va + hwirq - 8192; 1435 *cfg &= ~clr; 1436 *cfg |= set | LPI_PROP_GROUP1; 1437 1438 /* 1439 * Make the above write visible to the redistributors. 1440 * And yes, we're flushing exactly: One. Single. Byte. 1441 * Humpf... 1442 */ 1443 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) 1444 gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); 1445 else 1446 dsb(ishst); 1447 } 1448 1449 static void wait_for_syncr(void __iomem *rdbase) 1450 { 1451 while (readl_relaxed(rdbase + GICR_SYNCR) & 1) 1452 cpu_relax(); 1453 } 1454 1455 static void __direct_lpi_inv(struct irq_data *d, u64 val) 1456 { 1457 void __iomem *rdbase; 1458 unsigned long flags; 1459 int cpu; 1460 1461 /* Target the redistributor this LPI is currently routed to */ 1462 cpu = irq_to_cpuid_lock(d, &flags); 1463 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 1464 1465 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 1466 gic_write_lpir(val, rdbase + GICR_INVLPIR); 1467 wait_for_syncr(rdbase); 1468 1469 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 1470 irq_to_cpuid_unlock(d, flags); 1471 } 1472 1473 static void direct_lpi_inv(struct irq_data *d) 1474 { 1475 struct its_vlpi_map *map = get_vlpi_map(d); 1476 u64 val; 1477 1478 if (map) { 1479 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1480 1481 WARN_ON(!is_v4_1(its_dev->its)); 1482 1483 val = GICR_INVLPIR_V; 1484 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id); 1485 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid); 1486 } else { 1487 val = d->hwirq; 1488 } 1489 1490 __direct_lpi_inv(d, val); 1491 } 1492 1493 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) 1494 { 1495 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1496 1497 lpi_write_config(d, clr, set); 1498 if (gic_rdists->has_direct_lpi && 1499 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d))) 1500 direct_lpi_inv(d); 1501 else if (!irqd_is_forwarded_to_vcpu(d)) 1502 its_send_inv(its_dev, its_get_event_id(d)); 1503 else 1504 its_send_vinv(its_dev, its_get_event_id(d)); 1505 } 1506 1507 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) 1508 { 1509 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1510 u32 event = its_get_event_id(d); 1511 struct its_vlpi_map *map; 1512 1513 /* 1514 * GICv4.1 does away with the per-LPI nonsense, nothing to do 1515 * here. 1516 */ 1517 if (is_v4_1(its_dev->its)) 1518 return; 1519 1520 map = dev_event_to_vlpi_map(its_dev, event); 1521 1522 if (map->db_enabled == enable) 1523 return; 1524 1525 map->db_enabled = enable; 1526 1527 /* 1528 * More fun with the architecture: 1529 * 1530 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI 1531 * value or to 1023, depending on the enable bit. But that 1532 * would be issuing a mapping for an /existing/ DevID+EventID 1533 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI 1534 * to the /same/ vPE, using this opportunity to adjust the 1535 * doorbell. Mouahahahaha. We loves it, Precious. 1536 */ 1537 its_send_vmovi(its_dev, event); 1538 } 1539 1540 static void its_mask_irq(struct irq_data *d) 1541 { 1542 if (irqd_is_forwarded_to_vcpu(d)) 1543 its_vlpi_set_doorbell(d, false); 1544 1545 lpi_update_config(d, LPI_PROP_ENABLED, 0); 1546 } 1547 1548 static void its_unmask_irq(struct irq_data *d) 1549 { 1550 if (irqd_is_forwarded_to_vcpu(d)) 1551 its_vlpi_set_doorbell(d, true); 1552 1553 lpi_update_config(d, 0, LPI_PROP_ENABLED); 1554 } 1555 1556 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu) 1557 { 1558 if (irqd_affinity_is_managed(d)) 1559 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1560 1561 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1562 } 1563 1564 static void its_inc_lpi_count(struct irq_data *d, int cpu) 1565 { 1566 if (irqd_affinity_is_managed(d)) 1567 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1568 else 1569 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1570 } 1571 1572 static void its_dec_lpi_count(struct irq_data *d, int cpu) 1573 { 1574 if (irqd_affinity_is_managed(d)) 1575 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1576 else 1577 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1578 } 1579 1580 static unsigned int cpumask_pick_least_loaded(struct irq_data *d, 1581 const struct cpumask *cpu_mask) 1582 { 1583 unsigned int cpu = nr_cpu_ids, tmp; 1584 int count = S32_MAX; 1585 1586 for_each_cpu(tmp, cpu_mask) { 1587 int this_count = its_read_lpi_count(d, tmp); 1588 if (this_count < count) { 1589 cpu = tmp; 1590 count = this_count; 1591 } 1592 } 1593 1594 return cpu; 1595 } 1596 1597 /* 1598 * As suggested by Thomas Gleixner in: 1599 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de 1600 */ 1601 static int its_select_cpu(struct irq_data *d, 1602 const struct cpumask *aff_mask) 1603 { 1604 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1605 static DEFINE_RAW_SPINLOCK(tmpmask_lock); 1606 static struct cpumask __tmpmask; 1607 struct cpumask *tmpmask; 1608 unsigned long flags; 1609 int cpu, node; 1610 node = its_dev->its->numa_node; 1611 tmpmask = &__tmpmask; 1612 1613 raw_spin_lock_irqsave(&tmpmask_lock, flags); 1614 1615 if (!irqd_affinity_is_managed(d)) { 1616 /* First try the NUMA node */ 1617 if (node != NUMA_NO_NODE) { 1618 /* 1619 * Try the intersection of the affinity mask and the 1620 * node mask (and the online mask, just to be safe). 1621 */ 1622 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask); 1623 cpumask_and(tmpmask, tmpmask, cpu_online_mask); 1624 1625 /* 1626 * Ideally, we would check if the mask is empty, and 1627 * try again on the full node here. 1628 * 1629 * But it turns out that the way ACPI describes the 1630 * affinity for ITSs only deals about memory, and 1631 * not target CPUs, so it cannot describe a single 1632 * ITS placed next to two NUMA nodes. 1633 * 1634 * Instead, just fallback on the online mask. This 1635 * diverges from Thomas' suggestion above. 1636 */ 1637 cpu = cpumask_pick_least_loaded(d, tmpmask); 1638 if (cpu < nr_cpu_ids) 1639 goto out; 1640 1641 /* If we can't cross sockets, give up */ 1642 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)) 1643 goto out; 1644 1645 /* If the above failed, expand the search */ 1646 } 1647 1648 /* Try the intersection of the affinity and online masks */ 1649 cpumask_and(tmpmask, aff_mask, cpu_online_mask); 1650 1651 /* If that doesn't fly, the online mask is the last resort */ 1652 if (cpumask_empty(tmpmask)) 1653 cpumask_copy(tmpmask, cpu_online_mask); 1654 1655 cpu = cpumask_pick_least_loaded(d, tmpmask); 1656 } else { 1657 cpumask_copy(tmpmask, aff_mask); 1658 1659 /* If we cannot cross sockets, limit the search to that node */ 1660 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) && 1661 node != NUMA_NO_NODE) 1662 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node)); 1663 1664 cpu = cpumask_pick_least_loaded(d, tmpmask); 1665 } 1666 out: 1667 raw_spin_unlock_irqrestore(&tmpmask_lock, flags); 1668 1669 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu); 1670 return cpu; 1671 } 1672 1673 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 1674 bool force) 1675 { 1676 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1677 struct its_collection *target_col; 1678 u32 id = its_get_event_id(d); 1679 int cpu, prev_cpu; 1680 1681 /* A forwarded interrupt should use irq_set_vcpu_affinity */ 1682 if (irqd_is_forwarded_to_vcpu(d)) 1683 return -EINVAL; 1684 1685 prev_cpu = its_dev->event_map.col_map[id]; 1686 its_dec_lpi_count(d, prev_cpu); 1687 1688 if (!force) 1689 cpu = its_select_cpu(d, mask_val); 1690 else 1691 cpu = cpumask_pick_least_loaded(d, mask_val); 1692 1693 if (cpu < 0 || cpu >= nr_cpu_ids) 1694 goto err; 1695 1696 /* don't set the affinity when the target cpu is same as current one */ 1697 if (cpu != prev_cpu) { 1698 target_col = &its_dev->its->collections[cpu]; 1699 its_send_movi(its_dev, target_col, id); 1700 its_dev->event_map.col_map[id] = cpu; 1701 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 1702 } 1703 1704 its_inc_lpi_count(d, cpu); 1705 1706 return IRQ_SET_MASK_OK_DONE; 1707 1708 err: 1709 its_inc_lpi_count(d, prev_cpu); 1710 return -EINVAL; 1711 } 1712 1713 static u64 its_irq_get_msi_base(struct its_device *its_dev) 1714 { 1715 struct its_node *its = its_dev->its; 1716 1717 return its->phys_base + GITS_TRANSLATER; 1718 } 1719 1720 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) 1721 { 1722 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1723 struct its_node *its; 1724 u64 addr; 1725 1726 its = its_dev->its; 1727 addr = its->get_msi_base(its_dev); 1728 1729 msg->address_lo = lower_32_bits(addr); 1730 msg->address_hi = upper_32_bits(addr); 1731 msg->data = its_get_event_id(d); 1732 1733 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg); 1734 } 1735 1736 static int its_irq_set_irqchip_state(struct irq_data *d, 1737 enum irqchip_irq_state which, 1738 bool state) 1739 { 1740 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1741 u32 event = its_get_event_id(d); 1742 1743 if (which != IRQCHIP_STATE_PENDING) 1744 return -EINVAL; 1745 1746 if (irqd_is_forwarded_to_vcpu(d)) { 1747 if (state) 1748 its_send_vint(its_dev, event); 1749 else 1750 its_send_vclear(its_dev, event); 1751 } else { 1752 if (state) 1753 its_send_int(its_dev, event); 1754 else 1755 its_send_clear(its_dev, event); 1756 } 1757 1758 return 0; 1759 } 1760 1761 static int its_irq_retrigger(struct irq_data *d) 1762 { 1763 return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 1764 } 1765 1766 /* 1767 * Two favourable cases: 1768 * 1769 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times 1770 * for vSGI delivery 1771 * 1772 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough 1773 * and we're better off mapping all VPEs always 1774 * 1775 * If neither (a) nor (b) is true, then we map vPEs on demand. 1776 * 1777 */ 1778 static bool gic_requires_eager_mapping(void) 1779 { 1780 if (!its_list_map || gic_rdists->has_rvpeid) 1781 return true; 1782 1783 return false; 1784 } 1785 1786 static void its_map_vm(struct its_node *its, struct its_vm *vm) 1787 { 1788 unsigned long flags; 1789 1790 if (gic_requires_eager_mapping()) 1791 return; 1792 1793 raw_spin_lock_irqsave(&vmovp_lock, flags); 1794 1795 /* 1796 * If the VM wasn't mapped yet, iterate over the vpes and get 1797 * them mapped now. 1798 */ 1799 vm->vlpi_count[its->list_nr]++; 1800 1801 if (vm->vlpi_count[its->list_nr] == 1) { 1802 int i; 1803 1804 for (i = 0; i < vm->nr_vpes; i++) { 1805 struct its_vpe *vpe = vm->vpes[i]; 1806 struct irq_data *d = irq_get_irq_data(vpe->irq); 1807 1808 /* Map the VPE to the first possible CPU */ 1809 vpe->col_idx = cpumask_first(cpu_online_mask); 1810 its_send_vmapp(its, vpe, true); 1811 its_send_vinvall(its, vpe); 1812 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 1813 } 1814 } 1815 1816 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1817 } 1818 1819 static void its_unmap_vm(struct its_node *its, struct its_vm *vm) 1820 { 1821 unsigned long flags; 1822 1823 /* Not using the ITS list? Everything is always mapped. */ 1824 if (gic_requires_eager_mapping()) 1825 return; 1826 1827 raw_spin_lock_irqsave(&vmovp_lock, flags); 1828 1829 if (!--vm->vlpi_count[its->list_nr]) { 1830 int i; 1831 1832 for (i = 0; i < vm->nr_vpes; i++) 1833 its_send_vmapp(its, vm->vpes[i], false); 1834 } 1835 1836 raw_spin_unlock_irqrestore(&vmovp_lock, flags); 1837 } 1838 1839 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) 1840 { 1841 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1842 u32 event = its_get_event_id(d); 1843 int ret = 0; 1844 1845 if (!info->map) 1846 return -EINVAL; 1847 1848 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1849 1850 if (!its_dev->event_map.vm) { 1851 struct its_vlpi_map *maps; 1852 1853 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps), 1854 GFP_ATOMIC); 1855 if (!maps) { 1856 ret = -ENOMEM; 1857 goto out; 1858 } 1859 1860 its_dev->event_map.vm = info->map->vm; 1861 its_dev->event_map.vlpi_maps = maps; 1862 } else if (its_dev->event_map.vm != info->map->vm) { 1863 ret = -EINVAL; 1864 goto out; 1865 } 1866 1867 /* Get our private copy of the mapping information */ 1868 its_dev->event_map.vlpi_maps[event] = *info->map; 1869 1870 if (irqd_is_forwarded_to_vcpu(d)) { 1871 /* Already mapped, move it around */ 1872 its_send_vmovi(its_dev, event); 1873 } else { 1874 /* Ensure all the VPEs are mapped on this ITS */ 1875 its_map_vm(its_dev->its, info->map->vm); 1876 1877 /* 1878 * Flag the interrupt as forwarded so that we can 1879 * start poking the virtual property table. 1880 */ 1881 irqd_set_forwarded_to_vcpu(d); 1882 1883 /* Write out the property to the prop table */ 1884 lpi_write_config(d, 0xff, info->map->properties); 1885 1886 /* Drop the physical mapping */ 1887 its_send_discard(its_dev, event); 1888 1889 /* and install the virtual one */ 1890 its_send_vmapti(its_dev, event); 1891 1892 /* Increment the number of VLPIs */ 1893 its_dev->event_map.nr_vlpis++; 1894 } 1895 1896 out: 1897 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1898 return ret; 1899 } 1900 1901 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) 1902 { 1903 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1904 struct its_vlpi_map *map; 1905 int ret = 0; 1906 1907 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1908 1909 map = get_vlpi_map(d); 1910 1911 if (!its_dev->event_map.vm || !map) { 1912 ret = -EINVAL; 1913 goto out; 1914 } 1915 1916 /* Copy our mapping information to the incoming request */ 1917 *info->map = *map; 1918 1919 out: 1920 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1921 return ret; 1922 } 1923 1924 static int its_vlpi_unmap(struct irq_data *d) 1925 { 1926 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1927 u32 event = its_get_event_id(d); 1928 int ret = 0; 1929 1930 raw_spin_lock(&its_dev->event_map.vlpi_lock); 1931 1932 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) { 1933 ret = -EINVAL; 1934 goto out; 1935 } 1936 1937 /* Drop the virtual mapping */ 1938 its_send_discard(its_dev, event); 1939 1940 /* and restore the physical one */ 1941 irqd_clr_forwarded_to_vcpu(d); 1942 its_send_mapti(its_dev, d->hwirq, event); 1943 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO | 1944 LPI_PROP_ENABLED | 1945 LPI_PROP_GROUP1)); 1946 1947 /* Potentially unmap the VM from this ITS */ 1948 its_unmap_vm(its_dev->its, its_dev->event_map.vm); 1949 1950 /* 1951 * Drop the refcount and make the device available again if 1952 * this was the last VLPI. 1953 */ 1954 if (!--its_dev->event_map.nr_vlpis) { 1955 its_dev->event_map.vm = NULL; 1956 kfree(its_dev->event_map.vlpi_maps); 1957 } 1958 1959 out: 1960 raw_spin_unlock(&its_dev->event_map.vlpi_lock); 1961 return ret; 1962 } 1963 1964 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) 1965 { 1966 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1967 1968 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 1969 return -EINVAL; 1970 1971 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) 1972 lpi_update_config(d, 0xff, info->config); 1973 else 1974 lpi_write_config(d, 0xff, info->config); 1975 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); 1976 1977 return 0; 1978 } 1979 1980 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 1981 { 1982 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1983 struct its_cmd_info *info = vcpu_info; 1984 1985 /* Need a v4 ITS */ 1986 if (!is_v4(its_dev->its)) 1987 return -EINVAL; 1988 1989 /* Unmap request? */ 1990 if (!info) 1991 return its_vlpi_unmap(d); 1992 1993 switch (info->cmd_type) { 1994 case MAP_VLPI: 1995 return its_vlpi_map(d, info); 1996 1997 case GET_VLPI: 1998 return its_vlpi_get(d, info); 1999 2000 case PROP_UPDATE_VLPI: 2001 case PROP_UPDATE_AND_INV_VLPI: 2002 return its_vlpi_prop_update(d, info); 2003 2004 default: 2005 return -EINVAL; 2006 } 2007 } 2008 2009 static struct irq_chip its_irq_chip = { 2010 .name = "ITS", 2011 .irq_mask = its_mask_irq, 2012 .irq_unmask = its_unmask_irq, 2013 .irq_eoi = irq_chip_eoi_parent, 2014 .irq_set_affinity = its_set_affinity, 2015 .irq_compose_msi_msg = its_irq_compose_msi_msg, 2016 .irq_set_irqchip_state = its_irq_set_irqchip_state, 2017 .irq_retrigger = its_irq_retrigger, 2018 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity, 2019 }; 2020 2021 2022 /* 2023 * How we allocate LPIs: 2024 * 2025 * lpi_range_list contains ranges of LPIs that are to available to 2026 * allocate from. To allocate LPIs, just pick the first range that 2027 * fits the required allocation, and reduce it by the required 2028 * amount. Once empty, remove the range from the list. 2029 * 2030 * To free a range of LPIs, add a free range to the list, sort it and 2031 * merge the result if the new range happens to be adjacent to an 2032 * already free block. 2033 * 2034 * The consequence of the above is that allocation is cost is low, but 2035 * freeing is expensive. We assumes that freeing rarely occurs. 2036 */ 2037 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */ 2038 2039 static DEFINE_MUTEX(lpi_range_lock); 2040 static LIST_HEAD(lpi_range_list); 2041 2042 struct lpi_range { 2043 struct list_head entry; 2044 u32 base_id; 2045 u32 span; 2046 }; 2047 2048 static struct lpi_range *mk_lpi_range(u32 base, u32 span) 2049 { 2050 struct lpi_range *range; 2051 2052 range = kmalloc(sizeof(*range), GFP_KERNEL); 2053 if (range) { 2054 range->base_id = base; 2055 range->span = span; 2056 } 2057 2058 return range; 2059 } 2060 2061 static int alloc_lpi_range(u32 nr_lpis, u32 *base) 2062 { 2063 struct lpi_range *range, *tmp; 2064 int err = -ENOSPC; 2065 2066 mutex_lock(&lpi_range_lock); 2067 2068 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { 2069 if (range->span >= nr_lpis) { 2070 *base = range->base_id; 2071 range->base_id += nr_lpis; 2072 range->span -= nr_lpis; 2073 2074 if (range->span == 0) { 2075 list_del(&range->entry); 2076 kfree(range); 2077 } 2078 2079 err = 0; 2080 break; 2081 } 2082 } 2083 2084 mutex_unlock(&lpi_range_lock); 2085 2086 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis); 2087 return err; 2088 } 2089 2090 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b) 2091 { 2092 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list) 2093 return; 2094 if (a->base_id + a->span != b->base_id) 2095 return; 2096 b->base_id = a->base_id; 2097 b->span += a->span; 2098 list_del(&a->entry); 2099 kfree(a); 2100 } 2101 2102 static int free_lpi_range(u32 base, u32 nr_lpis) 2103 { 2104 struct lpi_range *new, *old; 2105 2106 new = mk_lpi_range(base, nr_lpis); 2107 if (!new) 2108 return -ENOMEM; 2109 2110 mutex_lock(&lpi_range_lock); 2111 2112 list_for_each_entry_reverse(old, &lpi_range_list, entry) { 2113 if (old->base_id < base) 2114 break; 2115 } 2116 /* 2117 * old is the last element with ->base_id smaller than base, 2118 * so new goes right after it. If there are no elements with 2119 * ->base_id smaller than base, &old->entry ends up pointing 2120 * at the head of the list, and inserting new it the start of 2121 * the list is the right thing to do in that case as well. 2122 */ 2123 list_add(&new->entry, &old->entry); 2124 /* 2125 * Now check if we can merge with the preceding and/or 2126 * following ranges. 2127 */ 2128 merge_lpi_ranges(old, new); 2129 merge_lpi_ranges(new, list_next_entry(new, entry)); 2130 2131 mutex_unlock(&lpi_range_lock); 2132 return 0; 2133 } 2134 2135 static int __init its_lpi_init(u32 id_bits) 2136 { 2137 u32 lpis = (1UL << id_bits) - 8192; 2138 u32 numlpis; 2139 int err; 2140 2141 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer); 2142 2143 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) { 2144 lpis = numlpis; 2145 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n", 2146 lpis); 2147 } 2148 2149 /* 2150 * Initializing the allocator is just the same as freeing the 2151 * full range of LPIs. 2152 */ 2153 err = free_lpi_range(8192, lpis); 2154 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis); 2155 return err; 2156 } 2157 2158 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids) 2159 { 2160 unsigned long *bitmap = NULL; 2161 int err = 0; 2162 2163 do { 2164 err = alloc_lpi_range(nr_irqs, base); 2165 if (!err) 2166 break; 2167 2168 nr_irqs /= 2; 2169 } while (nr_irqs > 0); 2170 2171 if (!nr_irqs) 2172 err = -ENOSPC; 2173 2174 if (err) 2175 goto out; 2176 2177 bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC); 2178 if (!bitmap) 2179 goto out; 2180 2181 *nr_ids = nr_irqs; 2182 2183 out: 2184 if (!bitmap) 2185 *base = *nr_ids = 0; 2186 2187 return bitmap; 2188 } 2189 2190 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids) 2191 { 2192 WARN_ON(free_lpi_range(base, nr_ids)); 2193 bitmap_free(bitmap); 2194 } 2195 2196 static void gic_reset_prop_table(void *va) 2197 { 2198 /* Priority 0xa0, Group-1, disabled */ 2199 memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ); 2200 2201 /* Make sure the GIC will observe the written configuration */ 2202 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ); 2203 } 2204 2205 static struct page *its_allocate_prop_table(gfp_t gfp_flags) 2206 { 2207 struct page *prop_page; 2208 2209 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ)); 2210 if (!prop_page) 2211 return NULL; 2212 2213 gic_reset_prop_table(page_address(prop_page)); 2214 2215 return prop_page; 2216 } 2217 2218 static void its_free_prop_table(struct page *prop_page) 2219 { 2220 free_pages((unsigned long)page_address(prop_page), 2221 get_order(LPI_PROPBASE_SZ)); 2222 } 2223 2224 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size) 2225 { 2226 phys_addr_t start, end, addr_end; 2227 u64 i; 2228 2229 /* 2230 * We don't bother checking for a kdump kernel as by 2231 * construction, the LPI tables are out of this kernel's 2232 * memory map. 2233 */ 2234 if (is_kdump_kernel()) 2235 return true; 2236 2237 addr_end = addr + size - 1; 2238 2239 for_each_reserved_mem_range(i, &start, &end) { 2240 if (addr >= start && addr_end <= end) 2241 return true; 2242 } 2243 2244 /* Not found, not a good sign... */ 2245 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n", 2246 &addr, &addr_end); 2247 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 2248 return false; 2249 } 2250 2251 static int gic_reserve_range(phys_addr_t addr, unsigned long size) 2252 { 2253 if (efi_enabled(EFI_CONFIG_TABLES)) 2254 return efi_mem_reserve_persistent(addr, size); 2255 2256 return 0; 2257 } 2258 2259 static int __init its_setup_lpi_prop_table(void) 2260 { 2261 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) { 2262 u64 val; 2263 2264 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2265 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1; 2266 2267 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12); 2268 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa, 2269 LPI_PROPBASE_SZ, 2270 MEMREMAP_WB); 2271 gic_reset_prop_table(gic_rdists->prop_table_va); 2272 } else { 2273 struct page *page; 2274 2275 lpi_id_bits = min_t(u32, 2276 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer), 2277 ITS_MAX_LPI_NRBITS); 2278 page = its_allocate_prop_table(GFP_NOWAIT); 2279 if (!page) { 2280 pr_err("Failed to allocate PROPBASE\n"); 2281 return -ENOMEM; 2282 } 2283 2284 gic_rdists->prop_table_pa = page_to_phys(page); 2285 gic_rdists->prop_table_va = page_address(page); 2286 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa, 2287 LPI_PROPBASE_SZ)); 2288 } 2289 2290 pr_info("GICv3: using LPI property table @%pa\n", 2291 &gic_rdists->prop_table_pa); 2292 2293 return its_lpi_init(lpi_id_bits); 2294 } 2295 2296 static const char *its_base_type_string[] = { 2297 [GITS_BASER_TYPE_DEVICE] = "Devices", 2298 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", 2299 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)", 2300 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", 2301 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", 2302 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", 2303 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", 2304 }; 2305 2306 static u64 its_read_baser(struct its_node *its, struct its_baser *baser) 2307 { 2308 u32 idx = baser - its->tables; 2309 2310 return gits_read_baser(its->base + GITS_BASER + (idx << 3)); 2311 } 2312 2313 static void its_write_baser(struct its_node *its, struct its_baser *baser, 2314 u64 val) 2315 { 2316 u32 idx = baser - its->tables; 2317 2318 gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); 2319 baser->val = its_read_baser(its, baser); 2320 } 2321 2322 static int its_setup_baser(struct its_node *its, struct its_baser *baser, 2323 u64 cache, u64 shr, u32 order, bool indirect) 2324 { 2325 u64 val = its_read_baser(its, baser); 2326 u64 esz = GITS_BASER_ENTRY_SIZE(val); 2327 u64 type = GITS_BASER_TYPE(val); 2328 u64 baser_phys, tmp; 2329 u32 alloc_pages, psz; 2330 struct page *page; 2331 void *base; 2332 2333 psz = baser->psz; 2334 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); 2335 if (alloc_pages > GITS_BASER_PAGES_MAX) { 2336 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", 2337 &its->phys_base, its_base_type_string[type], 2338 alloc_pages, GITS_BASER_PAGES_MAX); 2339 alloc_pages = GITS_BASER_PAGES_MAX; 2340 order = get_order(GITS_BASER_PAGES_MAX * psz); 2341 } 2342 2343 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order); 2344 if (!page) 2345 return -ENOMEM; 2346 2347 base = (void *)page_address(page); 2348 baser_phys = virt_to_phys(base); 2349 2350 /* Check if the physical address of the memory is above 48bits */ 2351 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { 2352 2353 /* 52bit PA is supported only when PageSize=64K */ 2354 if (psz != SZ_64K) { 2355 pr_err("ITS: no 52bit PA support when psz=%d\n", psz); 2356 free_pages((unsigned long)base, order); 2357 return -ENXIO; 2358 } 2359 2360 /* Convert 52bit PA to 48bit field */ 2361 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); 2362 } 2363 2364 retry_baser: 2365 val = (baser_phys | 2366 (type << GITS_BASER_TYPE_SHIFT) | 2367 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | 2368 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | 2369 cache | 2370 shr | 2371 GITS_BASER_VALID); 2372 2373 val |= indirect ? GITS_BASER_INDIRECT : 0x0; 2374 2375 switch (psz) { 2376 case SZ_4K: 2377 val |= GITS_BASER_PAGE_SIZE_4K; 2378 break; 2379 case SZ_16K: 2380 val |= GITS_BASER_PAGE_SIZE_16K; 2381 break; 2382 case SZ_64K: 2383 val |= GITS_BASER_PAGE_SIZE_64K; 2384 break; 2385 } 2386 2387 if (!shr) 2388 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); 2389 2390 its_write_baser(its, baser, val); 2391 tmp = baser->val; 2392 2393 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { 2394 /* 2395 * Shareability didn't stick. Just use 2396 * whatever the read reported, which is likely 2397 * to be the only thing this redistributor 2398 * supports. If that's zero, make it 2399 * non-cacheable as well. 2400 */ 2401 shr = tmp & GITS_BASER_SHAREABILITY_MASK; 2402 if (!shr) 2403 cache = GITS_BASER_nC; 2404 2405 goto retry_baser; 2406 } 2407 2408 if (val != tmp) { 2409 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", 2410 &its->phys_base, its_base_type_string[type], 2411 val, tmp); 2412 free_pages((unsigned long)base, order); 2413 return -ENXIO; 2414 } 2415 2416 baser->order = order; 2417 baser->base = base; 2418 baser->psz = psz; 2419 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; 2420 2421 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", 2422 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), 2423 its_base_type_string[type], 2424 (unsigned long)virt_to_phys(base), 2425 indirect ? "indirect" : "flat", (int)esz, 2426 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); 2427 2428 return 0; 2429 } 2430 2431 static bool its_parse_indirect_baser(struct its_node *its, 2432 struct its_baser *baser, 2433 u32 *order, u32 ids) 2434 { 2435 u64 tmp = its_read_baser(its, baser); 2436 u64 type = GITS_BASER_TYPE(tmp); 2437 u64 esz = GITS_BASER_ENTRY_SIZE(tmp); 2438 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; 2439 u32 new_order = *order; 2440 u32 psz = baser->psz; 2441 bool indirect = false; 2442 2443 /* No need to enable Indirection if memory requirement < (psz*2)bytes */ 2444 if ((esz << ids) > (psz * 2)) { 2445 /* 2446 * Find out whether hw supports a single or two-level table by 2447 * table by reading bit at offset '62' after writing '1' to it. 2448 */ 2449 its_write_baser(its, baser, val | GITS_BASER_INDIRECT); 2450 indirect = !!(baser->val & GITS_BASER_INDIRECT); 2451 2452 if (indirect) { 2453 /* 2454 * The size of the lvl2 table is equal to ITS page size 2455 * which is 'psz'. For computing lvl1 table size, 2456 * subtract ID bits that sparse lvl2 table from 'ids' 2457 * which is reported by ITS hardware times lvl1 table 2458 * entry size. 2459 */ 2460 ids -= ilog2(psz / (int)esz); 2461 esz = GITS_LVL1_ENTRY_SIZE; 2462 } 2463 } 2464 2465 /* 2466 * Allocate as many entries as required to fit the 2467 * range of device IDs that the ITS can grok... The ID 2468 * space being incredibly sparse, this results in a 2469 * massive waste of memory if two-level device table 2470 * feature is not supported by hardware. 2471 */ 2472 new_order = max_t(u32, get_order(esz << ids), new_order); 2473 if (new_order > MAX_ORDER) { 2474 new_order = MAX_ORDER; 2475 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); 2476 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n", 2477 &its->phys_base, its_base_type_string[type], 2478 device_ids(its), ids); 2479 } 2480 2481 *order = new_order; 2482 2483 return indirect; 2484 } 2485 2486 static u32 compute_common_aff(u64 val) 2487 { 2488 u32 aff, clpiaff; 2489 2490 aff = FIELD_GET(GICR_TYPER_AFFINITY, val); 2491 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val); 2492 2493 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8)); 2494 } 2495 2496 static u32 compute_its_aff(struct its_node *its) 2497 { 2498 u64 val; 2499 u32 svpet; 2500 2501 /* 2502 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute 2503 * the resulting affinity. We then use that to see if this match 2504 * our own affinity. 2505 */ 2506 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); 2507 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet); 2508 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr); 2509 return compute_common_aff(val); 2510 } 2511 2512 static struct its_node *find_sibling_its(struct its_node *cur_its) 2513 { 2514 struct its_node *its; 2515 u32 aff; 2516 2517 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer)) 2518 return NULL; 2519 2520 aff = compute_its_aff(cur_its); 2521 2522 list_for_each_entry(its, &its_nodes, entry) { 2523 u64 baser; 2524 2525 if (!is_v4_1(its) || its == cur_its) 2526 continue; 2527 2528 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2529 continue; 2530 2531 if (aff != compute_its_aff(its)) 2532 continue; 2533 2534 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2535 baser = its->tables[2].val; 2536 if (!(baser & GITS_BASER_VALID)) 2537 continue; 2538 2539 return its; 2540 } 2541 2542 return NULL; 2543 } 2544 2545 static void its_free_tables(struct its_node *its) 2546 { 2547 int i; 2548 2549 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2550 if (its->tables[i].base) { 2551 free_pages((unsigned long)its->tables[i].base, 2552 its->tables[i].order); 2553 its->tables[i].base = NULL; 2554 } 2555 } 2556 } 2557 2558 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser) 2559 { 2560 u64 psz = SZ_64K; 2561 2562 while (psz) { 2563 u64 val, gpsz; 2564 2565 val = its_read_baser(its, baser); 2566 val &= ~GITS_BASER_PAGE_SIZE_MASK; 2567 2568 switch (psz) { 2569 case SZ_64K: 2570 gpsz = GITS_BASER_PAGE_SIZE_64K; 2571 break; 2572 case SZ_16K: 2573 gpsz = GITS_BASER_PAGE_SIZE_16K; 2574 break; 2575 case SZ_4K: 2576 default: 2577 gpsz = GITS_BASER_PAGE_SIZE_4K; 2578 break; 2579 } 2580 2581 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT; 2582 2583 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz); 2584 its_write_baser(its, baser, val); 2585 2586 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz) 2587 break; 2588 2589 switch (psz) { 2590 case SZ_64K: 2591 psz = SZ_16K; 2592 break; 2593 case SZ_16K: 2594 psz = SZ_4K; 2595 break; 2596 case SZ_4K: 2597 default: 2598 return -1; 2599 } 2600 } 2601 2602 baser->psz = psz; 2603 return 0; 2604 } 2605 2606 static int its_alloc_tables(struct its_node *its) 2607 { 2608 u64 shr = GITS_BASER_InnerShareable; 2609 u64 cache = GITS_BASER_RaWaWb; 2610 int err, i; 2611 2612 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) 2613 /* erratum 24313: ignore memory access type */ 2614 cache = GITS_BASER_nCnB; 2615 2616 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) { 2617 cache = GITS_BASER_nC; 2618 shr = 0; 2619 } 2620 2621 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2622 struct its_baser *baser = its->tables + i; 2623 u64 val = its_read_baser(its, baser); 2624 u64 type = GITS_BASER_TYPE(val); 2625 bool indirect = false; 2626 u32 order; 2627 2628 if (type == GITS_BASER_TYPE_NONE) 2629 continue; 2630 2631 if (its_probe_baser_psz(its, baser)) { 2632 its_free_tables(its); 2633 return -ENXIO; 2634 } 2635 2636 order = get_order(baser->psz); 2637 2638 switch (type) { 2639 case GITS_BASER_TYPE_DEVICE: 2640 indirect = its_parse_indirect_baser(its, baser, &order, 2641 device_ids(its)); 2642 break; 2643 2644 case GITS_BASER_TYPE_VCPU: 2645 if (is_v4_1(its)) { 2646 struct its_node *sibling; 2647 2648 WARN_ON(i != 2); 2649 if ((sibling = find_sibling_its(its))) { 2650 *baser = sibling->tables[2]; 2651 its_write_baser(its, baser, baser->val); 2652 continue; 2653 } 2654 } 2655 2656 indirect = its_parse_indirect_baser(its, baser, &order, 2657 ITS_MAX_VPEID_BITS); 2658 break; 2659 } 2660 2661 err = its_setup_baser(its, baser, cache, shr, order, indirect); 2662 if (err < 0) { 2663 its_free_tables(its); 2664 return err; 2665 } 2666 2667 /* Update settings which will be used for next BASERn */ 2668 cache = baser->val & GITS_BASER_CACHEABILITY_MASK; 2669 shr = baser->val & GITS_BASER_SHAREABILITY_MASK; 2670 } 2671 2672 return 0; 2673 } 2674 2675 static u64 inherit_vpe_l1_table_from_its(void) 2676 { 2677 struct its_node *its; 2678 u64 val; 2679 u32 aff; 2680 2681 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2682 aff = compute_common_aff(val); 2683 2684 list_for_each_entry(its, &its_nodes, entry) { 2685 u64 baser, addr; 2686 2687 if (!is_v4_1(its)) 2688 continue; 2689 2690 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2691 continue; 2692 2693 if (aff != compute_its_aff(its)) 2694 continue; 2695 2696 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2697 baser = its->tables[2].val; 2698 if (!(baser & GITS_BASER_VALID)) 2699 continue; 2700 2701 /* We have a winner! */ 2702 gic_data_rdist()->vpe_l1_base = its->tables[2].base; 2703 2704 val = GICR_VPROPBASER_4_1_VALID; 2705 if (baser & GITS_BASER_INDIRECT) 2706 val |= GICR_VPROPBASER_4_1_INDIRECT; 2707 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, 2708 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)); 2709 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) { 2710 case GIC_PAGE_SIZE_64K: 2711 addr = GITS_BASER_ADDR_48_to_52(baser); 2712 break; 2713 default: 2714 addr = baser & GENMASK_ULL(47, 12); 2715 break; 2716 } 2717 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12); 2718 if (rdists_support_shareable()) { 2719 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK, 2720 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser)); 2721 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK, 2722 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser)); 2723 } 2724 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1); 2725 2726 return val; 2727 } 2728 2729 return 0; 2730 } 2731 2732 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask) 2733 { 2734 u32 aff; 2735 u64 val; 2736 int cpu; 2737 2738 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2739 aff = compute_common_aff(val); 2740 2741 for_each_possible_cpu(cpu) { 2742 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2743 2744 if (!base || cpu == smp_processor_id()) 2745 continue; 2746 2747 val = gic_read_typer(base + GICR_TYPER); 2748 if (aff != compute_common_aff(val)) 2749 continue; 2750 2751 /* 2752 * At this point, we have a victim. This particular CPU 2753 * has already booted, and has an affinity that matches 2754 * ours wrt CommonLPIAff. Let's use its own VPROPBASER. 2755 * Make sure we don't write the Z bit in that case. 2756 */ 2757 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2758 val &= ~GICR_VPROPBASER_4_1_Z; 2759 2760 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2761 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask; 2762 2763 return val; 2764 } 2765 2766 return 0; 2767 } 2768 2769 static bool allocate_vpe_l2_table(int cpu, u32 id) 2770 { 2771 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2772 unsigned int psz, esz, idx, npg, gpsz; 2773 u64 val; 2774 struct page *page; 2775 __le64 *table; 2776 2777 if (!gic_rdists->has_rvpeid) 2778 return true; 2779 2780 /* Skip non-present CPUs */ 2781 if (!base) 2782 return true; 2783 2784 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2785 2786 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1; 2787 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2788 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1; 2789 2790 switch (gpsz) { 2791 default: 2792 WARN_ON(1); 2793 fallthrough; 2794 case GIC_PAGE_SIZE_4K: 2795 psz = SZ_4K; 2796 break; 2797 case GIC_PAGE_SIZE_16K: 2798 psz = SZ_16K; 2799 break; 2800 case GIC_PAGE_SIZE_64K: 2801 psz = SZ_64K; 2802 break; 2803 } 2804 2805 /* Don't allow vpe_id that exceeds single, flat table limit */ 2806 if (!(val & GICR_VPROPBASER_4_1_INDIRECT)) 2807 return (id < (npg * psz / (esz * SZ_8))); 2808 2809 /* Compute 1st level table index & check if that exceeds table limit */ 2810 idx = id >> ilog2(psz / (esz * SZ_8)); 2811 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE)) 2812 return false; 2813 2814 table = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2815 2816 /* Allocate memory for 2nd level table */ 2817 if (!table[idx]) { 2818 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz)); 2819 if (!page) 2820 return false; 2821 2822 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 2823 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2824 gic_flush_dcache_to_poc(page_address(page), psz); 2825 2826 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 2827 2828 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 2829 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2830 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 2831 2832 /* Ensure updated table contents are visible to RD hardware */ 2833 dsb(sy); 2834 } 2835 2836 return true; 2837 } 2838 2839 static int allocate_vpe_l1_table(void) 2840 { 2841 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2842 u64 val, gpsz, npg, pa; 2843 unsigned int psz = SZ_64K; 2844 unsigned int np, epp, esz; 2845 struct page *page; 2846 2847 if (!gic_rdists->has_rvpeid) 2848 return 0; 2849 2850 /* 2851 * if VPENDBASER.Valid is set, disable any previously programmed 2852 * VPE by setting PendingLast while clearing Valid. This has the 2853 * effect of making sure no doorbell will be generated and we can 2854 * then safely clear VPROPBASER.Valid. 2855 */ 2856 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid) 2857 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast, 2858 vlpi_base + GICR_VPENDBASER); 2859 2860 /* 2861 * If we can inherit the configuration from another RD, let's do 2862 * so. Otherwise, we have to go through the allocation process. We 2863 * assume that all RDs have the exact same requirements, as 2864 * nothing will work otherwise. 2865 */ 2866 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask); 2867 if (val & GICR_VPROPBASER_4_1_VALID) 2868 goto out; 2869 2870 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC); 2871 if (!gic_data_rdist()->vpe_table_mask) 2872 return -ENOMEM; 2873 2874 val = inherit_vpe_l1_table_from_its(); 2875 if (val & GICR_VPROPBASER_4_1_VALID) 2876 goto out; 2877 2878 /* First probe the page size */ 2879 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K); 2880 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2881 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER); 2882 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2883 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val); 2884 2885 switch (gpsz) { 2886 default: 2887 gpsz = GIC_PAGE_SIZE_4K; 2888 fallthrough; 2889 case GIC_PAGE_SIZE_4K: 2890 psz = SZ_4K; 2891 break; 2892 case GIC_PAGE_SIZE_16K: 2893 psz = SZ_16K; 2894 break; 2895 case GIC_PAGE_SIZE_64K: 2896 psz = SZ_64K; 2897 break; 2898 } 2899 2900 /* 2901 * Start populating the register from scratch, including RO fields 2902 * (which we want to print in debug cases...) 2903 */ 2904 val = 0; 2905 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz); 2906 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz); 2907 2908 /* How many entries per GIC page? */ 2909 esz++; 2910 epp = psz / (esz * SZ_8); 2911 2912 /* 2913 * If we need more than just a single L1 page, flag the table 2914 * as indirect and compute the number of required L1 pages. 2915 */ 2916 if (epp < ITS_MAX_VPEID) { 2917 int nl2; 2918 2919 val |= GICR_VPROPBASER_4_1_INDIRECT; 2920 2921 /* Number of L2 pages required to cover the VPEID space */ 2922 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp); 2923 2924 /* Number of L1 pages to point to the L2 pages */ 2925 npg = DIV_ROUND_UP(nl2 * SZ_8, psz); 2926 } else { 2927 npg = 1; 2928 } 2929 2930 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1); 2931 2932 /* Right, that's the number of CPU pages we need for L1 */ 2933 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE); 2934 2935 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n", 2936 np, npg, psz, epp, esz); 2937 page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE)); 2938 if (!page) 2939 return -ENOMEM; 2940 2941 gic_data_rdist()->vpe_l1_base = page_address(page); 2942 pa = virt_to_phys(page_address(page)); 2943 WARN_ON(!IS_ALIGNED(pa, psz)); 2944 2945 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12); 2946 if (rdists_support_shareable()) { 2947 val |= GICR_VPROPBASER_RaWb; 2948 val |= GICR_VPROPBASER_InnerShareable; 2949 } 2950 val |= GICR_VPROPBASER_4_1_Z; 2951 val |= GICR_VPROPBASER_4_1_VALID; 2952 2953 out: 2954 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2955 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask); 2956 2957 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n", 2958 smp_processor_id(), val, 2959 cpumask_pr_args(gic_data_rdist()->vpe_table_mask)); 2960 2961 return 0; 2962 } 2963 2964 static int its_alloc_collections(struct its_node *its) 2965 { 2966 int i; 2967 2968 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections), 2969 GFP_KERNEL); 2970 if (!its->collections) 2971 return -ENOMEM; 2972 2973 for (i = 0; i < nr_cpu_ids; i++) 2974 its->collections[i].target_address = ~0ULL; 2975 2976 return 0; 2977 } 2978 2979 static struct page *its_allocate_pending_table(gfp_t gfp_flags) 2980 { 2981 struct page *pend_page; 2982 2983 pend_page = alloc_pages(gfp_flags | __GFP_ZERO, 2984 get_order(LPI_PENDBASE_SZ)); 2985 if (!pend_page) 2986 return NULL; 2987 2988 /* Make sure the GIC will observe the zero-ed page */ 2989 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); 2990 2991 return pend_page; 2992 } 2993 2994 static void its_free_pending_table(struct page *pt) 2995 { 2996 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ)); 2997 } 2998 2999 /* 3000 * Booting with kdump and LPIs enabled is generally fine. Any other 3001 * case is wrong in the absence of firmware/EFI support. 3002 */ 3003 static bool enabled_lpis_allowed(void) 3004 { 3005 phys_addr_t addr; 3006 u64 val; 3007 3008 /* Check whether the property table is in a reserved region */ 3009 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 3010 addr = val & GENMASK_ULL(51, 12); 3011 3012 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ); 3013 } 3014 3015 static int __init allocate_lpi_tables(void) 3016 { 3017 u64 val; 3018 int err, cpu; 3019 3020 /* 3021 * If LPIs are enabled while we run this from the boot CPU, 3022 * flag the RD tables as pre-allocated if the stars do align. 3023 */ 3024 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR); 3025 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) { 3026 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED | 3027 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING); 3028 pr_info("GICv3: Using preallocated redistributor tables\n"); 3029 } 3030 3031 err = its_setup_lpi_prop_table(); 3032 if (err) 3033 return err; 3034 3035 /* 3036 * We allocate all the pending tables anyway, as we may have a 3037 * mix of RDs that have had LPIs enabled, and some that 3038 * don't. We'll free the unused ones as each CPU comes online. 3039 */ 3040 for_each_possible_cpu(cpu) { 3041 struct page *pend_page; 3042 3043 pend_page = its_allocate_pending_table(GFP_NOWAIT); 3044 if (!pend_page) { 3045 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu); 3046 return -ENOMEM; 3047 } 3048 3049 gic_data_rdist_cpu(cpu)->pend_page = pend_page; 3050 } 3051 3052 return 0; 3053 } 3054 3055 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base) 3056 { 3057 u32 count = 1000000; /* 1s! */ 3058 bool clean; 3059 u64 val; 3060 3061 do { 3062 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 3063 clean = !(val & GICR_VPENDBASER_Dirty); 3064 if (!clean) { 3065 count--; 3066 cpu_relax(); 3067 udelay(1); 3068 } 3069 } while (!clean && count); 3070 3071 if (unlikely(!clean)) 3072 pr_err_ratelimited("ITS virtual pending table not cleaning\n"); 3073 3074 return val; 3075 } 3076 3077 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set) 3078 { 3079 u64 val; 3080 3081 /* Make sure we wait until the RD is done with the initial scan */ 3082 val = read_vpend_dirty_clear(vlpi_base); 3083 val &= ~GICR_VPENDBASER_Valid; 3084 val &= ~clr; 3085 val |= set; 3086 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3087 3088 val = read_vpend_dirty_clear(vlpi_base); 3089 if (unlikely(val & GICR_VPENDBASER_Dirty)) 3090 val |= GICR_VPENDBASER_PendingLast; 3091 3092 return val; 3093 } 3094 3095 static void its_cpu_init_lpis(void) 3096 { 3097 void __iomem *rbase = gic_data_rdist_rd_base(); 3098 struct page *pend_page; 3099 phys_addr_t paddr; 3100 u64 val, tmp; 3101 3102 if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) 3103 return; 3104 3105 val = readl_relaxed(rbase + GICR_CTLR); 3106 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) && 3107 (val & GICR_CTLR_ENABLE_LPIS)) { 3108 /* 3109 * Check that we get the same property table on all 3110 * RDs. If we don't, this is hopeless. 3111 */ 3112 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER); 3113 paddr &= GENMASK_ULL(51, 12); 3114 if (WARN_ON(gic_rdists->prop_table_pa != paddr)) 3115 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 3116 3117 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3118 paddr &= GENMASK_ULL(51, 16); 3119 3120 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ)); 3121 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED; 3122 3123 goto out; 3124 } 3125 3126 pend_page = gic_data_rdist()->pend_page; 3127 paddr = page_to_phys(pend_page); 3128 3129 /* set PROPBASE */ 3130 val = (gic_rdists->prop_table_pa | 3131 GICR_PROPBASER_InnerShareable | 3132 GICR_PROPBASER_RaWaWb | 3133 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); 3134 3135 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3136 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); 3137 3138 if (!rdists_support_shareable()) 3139 tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK; 3140 3141 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { 3142 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { 3143 /* 3144 * The HW reports non-shareable, we must 3145 * remove the cacheability attributes as 3146 * well. 3147 */ 3148 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | 3149 GICR_PROPBASER_CACHEABILITY_MASK); 3150 val |= GICR_PROPBASER_nC; 3151 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3152 } 3153 pr_info_once("GIC: using cache flushing for LPI property table\n"); 3154 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; 3155 } 3156 3157 /* set PENDBASE */ 3158 val = (page_to_phys(pend_page) | 3159 GICR_PENDBASER_InnerShareable | 3160 GICR_PENDBASER_RaWaWb); 3161 3162 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3163 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3164 3165 if (!rdists_support_shareable()) 3166 tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK; 3167 3168 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { 3169 /* 3170 * The HW reports non-shareable, we must remove the 3171 * cacheability attributes as well. 3172 */ 3173 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | 3174 GICR_PENDBASER_CACHEABILITY_MASK); 3175 val |= GICR_PENDBASER_nC; 3176 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3177 } 3178 3179 /* Enable LPIs */ 3180 val = readl_relaxed(rbase + GICR_CTLR); 3181 val |= GICR_CTLR_ENABLE_LPIS; 3182 writel_relaxed(val, rbase + GICR_CTLR); 3183 3184 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) { 3185 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3186 3187 /* 3188 * It's possible for CPU to receive VLPIs before it is 3189 * scheduled as a vPE, especially for the first CPU, and the 3190 * VLPI with INTID larger than 2^(IDbits+1) will be considered 3191 * as out of range and dropped by GIC. 3192 * So we initialize IDbits to known value to avoid VLPI drop. 3193 */ 3194 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3195 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n", 3196 smp_processor_id(), val); 3197 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3198 3199 /* 3200 * Also clear Valid bit of GICR_VPENDBASER, in case some 3201 * ancient programming gets left in and has possibility of 3202 * corrupting memory. 3203 */ 3204 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3205 } 3206 3207 if (allocate_vpe_l1_table()) { 3208 /* 3209 * If the allocation has failed, we're in massive trouble. 3210 * Disable direct injection, and pray that no VM was 3211 * already running... 3212 */ 3213 gic_rdists->has_rvpeid = false; 3214 gic_rdists->has_vlpis = false; 3215 } 3216 3217 /* Make sure the GIC has seen the above */ 3218 dsb(sy); 3219 out: 3220 gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED; 3221 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n", 3222 smp_processor_id(), 3223 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ? 3224 "reserved" : "allocated", 3225 &paddr); 3226 } 3227 3228 static void its_cpu_init_collection(struct its_node *its) 3229 { 3230 int cpu = smp_processor_id(); 3231 u64 target; 3232 3233 /* avoid cross node collections and its mapping */ 3234 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 3235 struct device_node *cpu_node; 3236 3237 cpu_node = of_get_cpu_node(cpu, NULL); 3238 if (its->numa_node != NUMA_NO_NODE && 3239 its->numa_node != of_node_to_nid(cpu_node)) 3240 return; 3241 } 3242 3243 /* 3244 * We now have to bind each collection to its target 3245 * redistributor. 3246 */ 3247 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { 3248 /* 3249 * This ITS wants the physical address of the 3250 * redistributor. 3251 */ 3252 target = gic_data_rdist()->phys_base; 3253 } else { 3254 /* This ITS wants a linear CPU number. */ 3255 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 3256 target = GICR_TYPER_CPU_NUMBER(target) << 16; 3257 } 3258 3259 /* Perform collection mapping */ 3260 its->collections[cpu].target_address = target; 3261 its->collections[cpu].col_id = cpu; 3262 3263 its_send_mapc(its, &its->collections[cpu], 1); 3264 its_send_invall(its, &its->collections[cpu]); 3265 } 3266 3267 static void its_cpu_init_collections(void) 3268 { 3269 struct its_node *its; 3270 3271 raw_spin_lock(&its_lock); 3272 3273 list_for_each_entry(its, &its_nodes, entry) 3274 its_cpu_init_collection(its); 3275 3276 raw_spin_unlock(&its_lock); 3277 } 3278 3279 static struct its_device *its_find_device(struct its_node *its, u32 dev_id) 3280 { 3281 struct its_device *its_dev = NULL, *tmp; 3282 unsigned long flags; 3283 3284 raw_spin_lock_irqsave(&its->lock, flags); 3285 3286 list_for_each_entry(tmp, &its->its_device_list, entry) { 3287 if (tmp->device_id == dev_id) { 3288 its_dev = tmp; 3289 break; 3290 } 3291 } 3292 3293 raw_spin_unlock_irqrestore(&its->lock, flags); 3294 3295 return its_dev; 3296 } 3297 3298 static struct its_baser *its_get_baser(struct its_node *its, u32 type) 3299 { 3300 int i; 3301 3302 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 3303 if (GITS_BASER_TYPE(its->tables[i].val) == type) 3304 return &its->tables[i]; 3305 } 3306 3307 return NULL; 3308 } 3309 3310 static bool its_alloc_table_entry(struct its_node *its, 3311 struct its_baser *baser, u32 id) 3312 { 3313 struct page *page; 3314 u32 esz, idx; 3315 __le64 *table; 3316 3317 /* Don't allow device id that exceeds single, flat table limit */ 3318 esz = GITS_BASER_ENTRY_SIZE(baser->val); 3319 if (!(baser->val & GITS_BASER_INDIRECT)) 3320 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); 3321 3322 /* Compute 1st level table index & check if that exceeds table limit */ 3323 idx = id >> ilog2(baser->psz / esz); 3324 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) 3325 return false; 3326 3327 table = baser->base; 3328 3329 /* Allocate memory for 2nd level table */ 3330 if (!table[idx]) { 3331 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 3332 get_order(baser->psz)); 3333 if (!page) 3334 return false; 3335 3336 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 3337 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3338 gic_flush_dcache_to_poc(page_address(page), baser->psz); 3339 3340 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 3341 3342 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 3343 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3344 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 3345 3346 /* Ensure updated table contents are visible to ITS hardware */ 3347 dsb(sy); 3348 } 3349 3350 return true; 3351 } 3352 3353 static bool its_alloc_device_table(struct its_node *its, u32 dev_id) 3354 { 3355 struct its_baser *baser; 3356 3357 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); 3358 3359 /* Don't allow device id that exceeds ITS hardware limit */ 3360 if (!baser) 3361 return (ilog2(dev_id) < device_ids(its)); 3362 3363 return its_alloc_table_entry(its, baser, dev_id); 3364 } 3365 3366 static bool its_alloc_vpe_table(u32 vpe_id) 3367 { 3368 struct its_node *its; 3369 int cpu; 3370 3371 /* 3372 * Make sure the L2 tables are allocated on *all* v4 ITSs. We 3373 * could try and only do it on ITSs corresponding to devices 3374 * that have interrupts targeted at this VPE, but the 3375 * complexity becomes crazy (and you have tons of memory 3376 * anyway, right?). 3377 */ 3378 list_for_each_entry(its, &its_nodes, entry) { 3379 struct its_baser *baser; 3380 3381 if (!is_v4(its)) 3382 continue; 3383 3384 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); 3385 if (!baser) 3386 return false; 3387 3388 if (!its_alloc_table_entry(its, baser, vpe_id)) 3389 return false; 3390 } 3391 3392 /* Non v4.1? No need to iterate RDs and go back early. */ 3393 if (!gic_rdists->has_rvpeid) 3394 return true; 3395 3396 /* 3397 * Make sure the L2 tables are allocated for all copies of 3398 * the L1 table on *all* v4.1 RDs. 3399 */ 3400 for_each_possible_cpu(cpu) { 3401 if (!allocate_vpe_l2_table(cpu, vpe_id)) 3402 return false; 3403 } 3404 3405 return true; 3406 } 3407 3408 static struct its_device *its_create_device(struct its_node *its, u32 dev_id, 3409 int nvecs, bool alloc_lpis) 3410 { 3411 struct its_device *dev; 3412 unsigned long *lpi_map = NULL; 3413 unsigned long flags; 3414 u16 *col_map = NULL; 3415 void *itt; 3416 int lpi_base; 3417 int nr_lpis; 3418 int nr_ites; 3419 int sz; 3420 3421 if (!its_alloc_device_table(its, dev_id)) 3422 return NULL; 3423 3424 if (WARN_ON(!is_power_of_2(nvecs))) 3425 nvecs = roundup_pow_of_two(nvecs); 3426 3427 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3428 /* 3429 * Even if the device wants a single LPI, the ITT must be 3430 * sized as a power of two (and you need at least one bit...). 3431 */ 3432 nr_ites = max(2, nvecs); 3433 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1); 3434 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; 3435 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node); 3436 if (alloc_lpis) { 3437 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis); 3438 if (lpi_map) 3439 col_map = kcalloc(nr_lpis, sizeof(*col_map), 3440 GFP_KERNEL); 3441 } else { 3442 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL); 3443 nr_lpis = 0; 3444 lpi_base = 0; 3445 } 3446 3447 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) { 3448 kfree(dev); 3449 kfree(itt); 3450 bitmap_free(lpi_map); 3451 kfree(col_map); 3452 return NULL; 3453 } 3454 3455 gic_flush_dcache_to_poc(itt, sz); 3456 3457 dev->its = its; 3458 dev->itt = itt; 3459 dev->nr_ites = nr_ites; 3460 dev->event_map.lpi_map = lpi_map; 3461 dev->event_map.col_map = col_map; 3462 dev->event_map.lpi_base = lpi_base; 3463 dev->event_map.nr_lpis = nr_lpis; 3464 raw_spin_lock_init(&dev->event_map.vlpi_lock); 3465 dev->device_id = dev_id; 3466 INIT_LIST_HEAD(&dev->entry); 3467 3468 raw_spin_lock_irqsave(&its->lock, flags); 3469 list_add(&dev->entry, &its->its_device_list); 3470 raw_spin_unlock_irqrestore(&its->lock, flags); 3471 3472 /* Map device to its ITT */ 3473 its_send_mapd(dev, 1); 3474 3475 return dev; 3476 } 3477 3478 static void its_free_device(struct its_device *its_dev) 3479 { 3480 unsigned long flags; 3481 3482 raw_spin_lock_irqsave(&its_dev->its->lock, flags); 3483 list_del(&its_dev->entry); 3484 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); 3485 kfree(its_dev->event_map.col_map); 3486 kfree(its_dev->itt); 3487 kfree(its_dev); 3488 } 3489 3490 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq) 3491 { 3492 int idx; 3493 3494 /* Find a free LPI region in lpi_map and allocate them. */ 3495 idx = bitmap_find_free_region(dev->event_map.lpi_map, 3496 dev->event_map.nr_lpis, 3497 get_count_order(nvecs)); 3498 if (idx < 0) 3499 return -ENOSPC; 3500 3501 *hwirq = dev->event_map.lpi_base + idx; 3502 3503 return 0; 3504 } 3505 3506 static int its_msi_prepare(struct irq_domain *domain, struct device *dev, 3507 int nvec, msi_alloc_info_t *info) 3508 { 3509 struct its_node *its; 3510 struct its_device *its_dev; 3511 struct msi_domain_info *msi_info; 3512 u32 dev_id; 3513 int err = 0; 3514 3515 /* 3516 * We ignore "dev" entirely, and rely on the dev_id that has 3517 * been passed via the scratchpad. This limits this domain's 3518 * usefulness to upper layers that definitely know that they 3519 * are built on top of the ITS. 3520 */ 3521 dev_id = info->scratchpad[0].ul; 3522 3523 msi_info = msi_get_domain_info(domain); 3524 its = msi_info->data; 3525 3526 if (!gic_rdists->has_direct_lpi && 3527 vpe_proxy.dev && 3528 vpe_proxy.dev->its == its && 3529 dev_id == vpe_proxy.dev->device_id) { 3530 /* Bad luck. Get yourself a better implementation */ 3531 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", 3532 dev_id); 3533 return -EINVAL; 3534 } 3535 3536 mutex_lock(&its->dev_alloc_lock); 3537 its_dev = its_find_device(its, dev_id); 3538 if (its_dev) { 3539 /* 3540 * We already have seen this ID, probably through 3541 * another alias (PCI bridge of some sort). No need to 3542 * create the device. 3543 */ 3544 its_dev->shared = true; 3545 pr_debug("Reusing ITT for devID %x\n", dev_id); 3546 goto out; 3547 } 3548 3549 its_dev = its_create_device(its, dev_id, nvec, true); 3550 if (!its_dev) { 3551 err = -ENOMEM; 3552 goto out; 3553 } 3554 3555 if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE) 3556 its_dev->shared = true; 3557 3558 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); 3559 out: 3560 mutex_unlock(&its->dev_alloc_lock); 3561 info->scratchpad[0].ptr = its_dev; 3562 return err; 3563 } 3564 3565 static struct msi_domain_ops its_msi_domain_ops = { 3566 .msi_prepare = its_msi_prepare, 3567 }; 3568 3569 static int its_irq_gic_domain_alloc(struct irq_domain *domain, 3570 unsigned int virq, 3571 irq_hw_number_t hwirq) 3572 { 3573 struct irq_fwspec fwspec; 3574 3575 if (irq_domain_get_of_node(domain->parent)) { 3576 fwspec.fwnode = domain->parent->fwnode; 3577 fwspec.param_count = 3; 3578 fwspec.param[0] = GIC_IRQ_TYPE_LPI; 3579 fwspec.param[1] = hwirq; 3580 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 3581 } else if (is_fwnode_irqchip(domain->parent->fwnode)) { 3582 fwspec.fwnode = domain->parent->fwnode; 3583 fwspec.param_count = 2; 3584 fwspec.param[0] = hwirq; 3585 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 3586 } else { 3587 return -EINVAL; 3588 } 3589 3590 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 3591 } 3592 3593 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 3594 unsigned int nr_irqs, void *args) 3595 { 3596 msi_alloc_info_t *info = args; 3597 struct its_device *its_dev = info->scratchpad[0].ptr; 3598 struct its_node *its = its_dev->its; 3599 struct irq_data *irqd; 3600 irq_hw_number_t hwirq; 3601 int err; 3602 int i; 3603 3604 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq); 3605 if (err) 3606 return err; 3607 3608 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev)); 3609 if (err) 3610 return err; 3611 3612 for (i = 0; i < nr_irqs; i++) { 3613 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i); 3614 if (err) 3615 return err; 3616 3617 irq_domain_set_hwirq_and_chip(domain, virq + i, 3618 hwirq + i, &its_irq_chip, its_dev); 3619 irqd = irq_get_irq_data(virq + i); 3620 irqd_set_single_target(irqd); 3621 irqd_set_affinity_on_activate(irqd); 3622 irqd_set_resend_when_in_progress(irqd); 3623 pr_debug("ID:%d pID:%d vID:%d\n", 3624 (int)(hwirq + i - its_dev->event_map.lpi_base), 3625 (int)(hwirq + i), virq + i); 3626 } 3627 3628 return 0; 3629 } 3630 3631 static int its_irq_domain_activate(struct irq_domain *domain, 3632 struct irq_data *d, bool reserve) 3633 { 3634 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3635 u32 event = its_get_event_id(d); 3636 int cpu; 3637 3638 cpu = its_select_cpu(d, cpu_online_mask); 3639 if (cpu < 0 || cpu >= nr_cpu_ids) 3640 return -EINVAL; 3641 3642 its_inc_lpi_count(d, cpu); 3643 its_dev->event_map.col_map[event] = cpu; 3644 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3645 3646 /* Map the GIC IRQ and event to the device */ 3647 its_send_mapti(its_dev, d->hwirq, event); 3648 return 0; 3649 } 3650 3651 static void its_irq_domain_deactivate(struct irq_domain *domain, 3652 struct irq_data *d) 3653 { 3654 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3655 u32 event = its_get_event_id(d); 3656 3657 its_dec_lpi_count(d, its_dev->event_map.col_map[event]); 3658 /* Stop the delivery of interrupts */ 3659 its_send_discard(its_dev, event); 3660 } 3661 3662 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, 3663 unsigned int nr_irqs) 3664 { 3665 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 3666 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3667 struct its_node *its = its_dev->its; 3668 int i; 3669 3670 bitmap_release_region(its_dev->event_map.lpi_map, 3671 its_get_event_id(irq_domain_get_irq_data(domain, virq)), 3672 get_count_order(nr_irqs)); 3673 3674 for (i = 0; i < nr_irqs; i++) { 3675 struct irq_data *data = irq_domain_get_irq_data(domain, 3676 virq + i); 3677 /* Nuke the entry in the domain */ 3678 irq_domain_reset_irq_data(data); 3679 } 3680 3681 mutex_lock(&its->dev_alloc_lock); 3682 3683 /* 3684 * If all interrupts have been freed, start mopping the 3685 * floor. This is conditioned on the device not being shared. 3686 */ 3687 if (!its_dev->shared && 3688 bitmap_empty(its_dev->event_map.lpi_map, 3689 its_dev->event_map.nr_lpis)) { 3690 its_lpi_free(its_dev->event_map.lpi_map, 3691 its_dev->event_map.lpi_base, 3692 its_dev->event_map.nr_lpis); 3693 3694 /* Unmap device/itt */ 3695 its_send_mapd(its_dev, 0); 3696 its_free_device(its_dev); 3697 } 3698 3699 mutex_unlock(&its->dev_alloc_lock); 3700 3701 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 3702 } 3703 3704 static const struct irq_domain_ops its_domain_ops = { 3705 .alloc = its_irq_domain_alloc, 3706 .free = its_irq_domain_free, 3707 .activate = its_irq_domain_activate, 3708 .deactivate = its_irq_domain_deactivate, 3709 }; 3710 3711 /* 3712 * This is insane. 3713 * 3714 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely 3715 * likely), the only way to perform an invalidate is to use a fake 3716 * device to issue an INV command, implying that the LPI has first 3717 * been mapped to some event on that device. Since this is not exactly 3718 * cheap, we try to keep that mapping around as long as possible, and 3719 * only issue an UNMAP if we're short on available slots. 3720 * 3721 * Broken by design(tm). 3722 * 3723 * GICv4.1, on the other hand, mandates that we're able to invalidate 3724 * by writing to a MMIO register. It doesn't implement the whole of 3725 * DirectLPI, but that's good enough. And most of the time, we don't 3726 * even have to invalidate anything, as the redistributor can be told 3727 * whether to generate a doorbell or not (we thus leave it enabled, 3728 * always). 3729 */ 3730 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) 3731 { 3732 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3733 if (gic_rdists->has_rvpeid) 3734 return; 3735 3736 /* Already unmapped? */ 3737 if (vpe->vpe_proxy_event == -1) 3738 return; 3739 3740 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); 3741 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; 3742 3743 /* 3744 * We don't track empty slots at all, so let's move the 3745 * next_victim pointer if we can quickly reuse that slot 3746 * instead of nuking an existing entry. Not clear that this is 3747 * always a win though, and this might just generate a ripple 3748 * effect... Let's just hope VPEs don't migrate too often. 3749 */ 3750 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3751 vpe_proxy.next_victim = vpe->vpe_proxy_event; 3752 3753 vpe->vpe_proxy_event = -1; 3754 } 3755 3756 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) 3757 { 3758 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3759 if (gic_rdists->has_rvpeid) 3760 return; 3761 3762 if (!gic_rdists->has_direct_lpi) { 3763 unsigned long flags; 3764 3765 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3766 its_vpe_db_proxy_unmap_locked(vpe); 3767 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3768 } 3769 } 3770 3771 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) 3772 { 3773 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3774 if (gic_rdists->has_rvpeid) 3775 return; 3776 3777 /* Already mapped? */ 3778 if (vpe->vpe_proxy_event != -1) 3779 return; 3780 3781 /* This slot was already allocated. Kick the other VPE out. */ 3782 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3783 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); 3784 3785 /* Map the new VPE instead */ 3786 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; 3787 vpe->vpe_proxy_event = vpe_proxy.next_victim; 3788 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; 3789 3790 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; 3791 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); 3792 } 3793 3794 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) 3795 { 3796 unsigned long flags; 3797 struct its_collection *target_col; 3798 3799 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3800 if (gic_rdists->has_rvpeid) 3801 return; 3802 3803 if (gic_rdists->has_direct_lpi) { 3804 void __iomem *rdbase; 3805 3806 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; 3807 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 3808 wait_for_syncr(rdbase); 3809 3810 return; 3811 } 3812 3813 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3814 3815 its_vpe_db_proxy_map_locked(vpe); 3816 3817 target_col = &vpe_proxy.dev->its->collections[to]; 3818 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); 3819 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; 3820 3821 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3822 } 3823 3824 static int its_vpe_set_affinity(struct irq_data *d, 3825 const struct cpumask *mask_val, 3826 bool force) 3827 { 3828 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3829 struct cpumask common, *table_mask; 3830 unsigned long flags; 3831 int from, cpu; 3832 3833 /* 3834 * Changing affinity is mega expensive, so let's be as lazy as 3835 * we can and only do it if we really have to. Also, if mapped 3836 * into the proxy device, we need to move the doorbell 3837 * interrupt to its new location. 3838 * 3839 * Another thing is that changing the affinity of a vPE affects 3840 * *other interrupts* such as all the vLPIs that are routed to 3841 * this vPE. This means that the irq_desc lock is not enough to 3842 * protect us, and that we must ensure nobody samples vpe->col_idx 3843 * during the update, hence the lock below which must also be 3844 * taken on any vLPI handling path that evaluates vpe->col_idx. 3845 */ 3846 from = vpe_to_cpuid_lock(vpe, &flags); 3847 table_mask = gic_data_rdist_cpu(from)->vpe_table_mask; 3848 3849 /* 3850 * If we are offered another CPU in the same GICv4.1 ITS 3851 * affinity, pick this one. Otherwise, any CPU will do. 3852 */ 3853 if (table_mask && cpumask_and(&common, mask_val, table_mask)) 3854 cpu = cpumask_test_cpu(from, &common) ? from : cpumask_first(&common); 3855 else 3856 cpu = cpumask_first(mask_val); 3857 3858 if (from == cpu) 3859 goto out; 3860 3861 vpe->col_idx = cpu; 3862 3863 its_send_vmovp(vpe); 3864 its_vpe_db_proxy_move(vpe, from, cpu); 3865 3866 out: 3867 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3868 vpe_to_cpuid_unlock(vpe, flags); 3869 3870 return IRQ_SET_MASK_OK_DONE; 3871 } 3872 3873 static void its_wait_vpt_parse_complete(void) 3874 { 3875 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3876 u64 val; 3877 3878 if (!gic_rdists->has_vpend_valid_dirty) 3879 return; 3880 3881 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER, 3882 val, 3883 !(val & GICR_VPENDBASER_Dirty), 3884 1, 500)); 3885 } 3886 3887 static void its_vpe_schedule(struct its_vpe *vpe) 3888 { 3889 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3890 u64 val; 3891 3892 /* Schedule the VPE */ 3893 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & 3894 GENMASK_ULL(51, 12); 3895 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3896 if (rdists_support_shareable()) { 3897 val |= GICR_VPROPBASER_RaWb; 3898 val |= GICR_VPROPBASER_InnerShareable; 3899 } 3900 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3901 3902 val = virt_to_phys(page_address(vpe->vpt_page)) & 3903 GENMASK_ULL(51, 16); 3904 if (rdists_support_shareable()) { 3905 val |= GICR_VPENDBASER_RaWaWb; 3906 val |= GICR_VPENDBASER_InnerShareable; 3907 } 3908 /* 3909 * There is no good way of finding out if the pending table is 3910 * empty as we can race against the doorbell interrupt very 3911 * easily. So in the end, vpe->pending_last is only an 3912 * indication that the vcpu has something pending, not one 3913 * that the pending table is empty. A good implementation 3914 * would be able to read its coarse map pretty quickly anyway, 3915 * making this a tolerable issue. 3916 */ 3917 val |= GICR_VPENDBASER_PendingLast; 3918 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; 3919 val |= GICR_VPENDBASER_Valid; 3920 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3921 } 3922 3923 static void its_vpe_deschedule(struct its_vpe *vpe) 3924 { 3925 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3926 u64 val; 3927 3928 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3929 3930 vpe->idai = !!(val & GICR_VPENDBASER_IDAI); 3931 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 3932 } 3933 3934 static void its_vpe_invall(struct its_vpe *vpe) 3935 { 3936 struct its_node *its; 3937 3938 list_for_each_entry(its, &its_nodes, entry) { 3939 if (!is_v4(its)) 3940 continue; 3941 3942 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr]) 3943 continue; 3944 3945 /* 3946 * Sending a VINVALL to a single ITS is enough, as all 3947 * we need is to reach the redistributors. 3948 */ 3949 its_send_vinvall(its, vpe); 3950 return; 3951 } 3952 } 3953 3954 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 3955 { 3956 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3957 struct its_cmd_info *info = vcpu_info; 3958 3959 switch (info->cmd_type) { 3960 case SCHEDULE_VPE: 3961 its_vpe_schedule(vpe); 3962 return 0; 3963 3964 case DESCHEDULE_VPE: 3965 its_vpe_deschedule(vpe); 3966 return 0; 3967 3968 case COMMIT_VPE: 3969 its_wait_vpt_parse_complete(); 3970 return 0; 3971 3972 case INVALL_VPE: 3973 its_vpe_invall(vpe); 3974 return 0; 3975 3976 default: 3977 return -EINVAL; 3978 } 3979 } 3980 3981 static void its_vpe_send_cmd(struct its_vpe *vpe, 3982 void (*cmd)(struct its_device *, u32)) 3983 { 3984 unsigned long flags; 3985 3986 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3987 3988 its_vpe_db_proxy_map_locked(vpe); 3989 cmd(vpe_proxy.dev, vpe->vpe_proxy_event); 3990 3991 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3992 } 3993 3994 static void its_vpe_send_inv(struct irq_data *d) 3995 { 3996 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3997 3998 if (gic_rdists->has_direct_lpi) 3999 __direct_lpi_inv(d, d->parent_data->hwirq); 4000 else 4001 its_vpe_send_cmd(vpe, its_send_inv); 4002 } 4003 4004 static void its_vpe_mask_irq(struct irq_data *d) 4005 { 4006 /* 4007 * We need to unmask the LPI, which is described by the parent 4008 * irq_data. Instead of calling into the parent (which won't 4009 * exactly do the right thing, let's simply use the 4010 * parent_data pointer. Yes, I'm naughty. 4011 */ 4012 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 4013 its_vpe_send_inv(d); 4014 } 4015 4016 static void its_vpe_unmask_irq(struct irq_data *d) 4017 { 4018 /* Same hack as above... */ 4019 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 4020 its_vpe_send_inv(d); 4021 } 4022 4023 static int its_vpe_set_irqchip_state(struct irq_data *d, 4024 enum irqchip_irq_state which, 4025 bool state) 4026 { 4027 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4028 4029 if (which != IRQCHIP_STATE_PENDING) 4030 return -EINVAL; 4031 4032 if (gic_rdists->has_direct_lpi) { 4033 void __iomem *rdbase; 4034 4035 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 4036 if (state) { 4037 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); 4038 } else { 4039 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 4040 wait_for_syncr(rdbase); 4041 } 4042 } else { 4043 if (state) 4044 its_vpe_send_cmd(vpe, its_send_int); 4045 else 4046 its_vpe_send_cmd(vpe, its_send_clear); 4047 } 4048 4049 return 0; 4050 } 4051 4052 static int its_vpe_retrigger(struct irq_data *d) 4053 { 4054 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 4055 } 4056 4057 static struct irq_chip its_vpe_irq_chip = { 4058 .name = "GICv4-vpe", 4059 .irq_mask = its_vpe_mask_irq, 4060 .irq_unmask = its_vpe_unmask_irq, 4061 .irq_eoi = irq_chip_eoi_parent, 4062 .irq_set_affinity = its_vpe_set_affinity, 4063 .irq_retrigger = its_vpe_retrigger, 4064 .irq_set_irqchip_state = its_vpe_set_irqchip_state, 4065 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity, 4066 }; 4067 4068 static struct its_node *find_4_1_its(void) 4069 { 4070 static struct its_node *its = NULL; 4071 4072 if (!its) { 4073 list_for_each_entry(its, &its_nodes, entry) { 4074 if (is_v4_1(its)) 4075 return its; 4076 } 4077 4078 /* Oops? */ 4079 its = NULL; 4080 } 4081 4082 return its; 4083 } 4084 4085 static void its_vpe_4_1_send_inv(struct irq_data *d) 4086 { 4087 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4088 struct its_node *its; 4089 4090 /* 4091 * GICv4.1 wants doorbells to be invalidated using the 4092 * INVDB command in order to be broadcast to all RDs. Send 4093 * it to the first valid ITS, and let the HW do its magic. 4094 */ 4095 its = find_4_1_its(); 4096 if (its) 4097 its_send_invdb(its, vpe); 4098 } 4099 4100 static void its_vpe_4_1_mask_irq(struct irq_data *d) 4101 { 4102 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 4103 its_vpe_4_1_send_inv(d); 4104 } 4105 4106 static void its_vpe_4_1_unmask_irq(struct irq_data *d) 4107 { 4108 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 4109 its_vpe_4_1_send_inv(d); 4110 } 4111 4112 static void its_vpe_4_1_schedule(struct its_vpe *vpe, 4113 struct its_cmd_info *info) 4114 { 4115 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4116 u64 val = 0; 4117 4118 /* Schedule the VPE */ 4119 val |= GICR_VPENDBASER_Valid; 4120 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0; 4121 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0; 4122 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id); 4123 4124 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 4125 } 4126 4127 static void its_vpe_4_1_deschedule(struct its_vpe *vpe, 4128 struct its_cmd_info *info) 4129 { 4130 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4131 u64 val; 4132 4133 if (info->req_db) { 4134 unsigned long flags; 4135 4136 /* 4137 * vPE is going to block: make the vPE non-resident with 4138 * PendingLast clear and DB set. The GIC guarantees that if 4139 * we read-back PendingLast clear, then a doorbell will be 4140 * delivered when an interrupt comes. 4141 * 4142 * Note the locking to deal with the concurrent update of 4143 * pending_last from the doorbell interrupt handler that can 4144 * run concurrently. 4145 */ 4146 raw_spin_lock_irqsave(&vpe->vpe_lock, flags); 4147 val = its_clear_vpend_valid(vlpi_base, 4148 GICR_VPENDBASER_PendingLast, 4149 GICR_VPENDBASER_4_1_DB); 4150 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 4151 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 4152 } else { 4153 /* 4154 * We're not blocking, so just make the vPE non-resident 4155 * with PendingLast set, indicating that we'll be back. 4156 */ 4157 val = its_clear_vpend_valid(vlpi_base, 4158 0, 4159 GICR_VPENDBASER_PendingLast); 4160 vpe->pending_last = true; 4161 } 4162 } 4163 4164 static void its_vpe_4_1_invall(struct its_vpe *vpe) 4165 { 4166 void __iomem *rdbase; 4167 unsigned long flags; 4168 u64 val; 4169 int cpu; 4170 4171 val = GICR_INVALLR_V; 4172 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id); 4173 4174 /* Target the redistributor this vPE is currently known on */ 4175 cpu = vpe_to_cpuid_lock(vpe, &flags); 4176 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4177 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 4178 gic_write_lpir(val, rdbase + GICR_INVALLR); 4179 4180 wait_for_syncr(rdbase); 4181 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4182 vpe_to_cpuid_unlock(vpe, flags); 4183 } 4184 4185 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4186 { 4187 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4188 struct its_cmd_info *info = vcpu_info; 4189 4190 switch (info->cmd_type) { 4191 case SCHEDULE_VPE: 4192 its_vpe_4_1_schedule(vpe, info); 4193 return 0; 4194 4195 case DESCHEDULE_VPE: 4196 its_vpe_4_1_deschedule(vpe, info); 4197 return 0; 4198 4199 case COMMIT_VPE: 4200 its_wait_vpt_parse_complete(); 4201 return 0; 4202 4203 case INVALL_VPE: 4204 its_vpe_4_1_invall(vpe); 4205 return 0; 4206 4207 default: 4208 return -EINVAL; 4209 } 4210 } 4211 4212 static struct irq_chip its_vpe_4_1_irq_chip = { 4213 .name = "GICv4.1-vpe", 4214 .irq_mask = its_vpe_4_1_mask_irq, 4215 .irq_unmask = its_vpe_4_1_unmask_irq, 4216 .irq_eoi = irq_chip_eoi_parent, 4217 .irq_set_affinity = its_vpe_set_affinity, 4218 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity, 4219 }; 4220 4221 static void its_configure_sgi(struct irq_data *d, bool clear) 4222 { 4223 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4224 struct its_cmd_desc desc; 4225 4226 desc.its_vsgi_cmd.vpe = vpe; 4227 desc.its_vsgi_cmd.sgi = d->hwirq; 4228 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority; 4229 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled; 4230 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group; 4231 desc.its_vsgi_cmd.clear = clear; 4232 4233 /* 4234 * GICv4.1 allows us to send VSGI commands to any ITS as long as the 4235 * destination VPE is mapped there. Since we map them eagerly at 4236 * activation time, we're pretty sure the first GICv4.1 ITS will do. 4237 */ 4238 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc); 4239 } 4240 4241 static void its_sgi_mask_irq(struct irq_data *d) 4242 { 4243 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4244 4245 vpe->sgi_config[d->hwirq].enabled = false; 4246 its_configure_sgi(d, false); 4247 } 4248 4249 static void its_sgi_unmask_irq(struct irq_data *d) 4250 { 4251 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4252 4253 vpe->sgi_config[d->hwirq].enabled = true; 4254 its_configure_sgi(d, false); 4255 } 4256 4257 static int its_sgi_set_affinity(struct irq_data *d, 4258 const struct cpumask *mask_val, 4259 bool force) 4260 { 4261 /* 4262 * There is no notion of affinity for virtual SGIs, at least 4263 * not on the host (since they can only be targeting a vPE). 4264 * Tell the kernel we've done whatever it asked for. 4265 */ 4266 irq_data_update_effective_affinity(d, mask_val); 4267 return IRQ_SET_MASK_OK; 4268 } 4269 4270 static int its_sgi_set_irqchip_state(struct irq_data *d, 4271 enum irqchip_irq_state which, 4272 bool state) 4273 { 4274 if (which != IRQCHIP_STATE_PENDING) 4275 return -EINVAL; 4276 4277 if (state) { 4278 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4279 struct its_node *its = find_4_1_its(); 4280 u64 val; 4281 4282 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id); 4283 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq); 4284 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K); 4285 } else { 4286 its_configure_sgi(d, true); 4287 } 4288 4289 return 0; 4290 } 4291 4292 static int its_sgi_get_irqchip_state(struct irq_data *d, 4293 enum irqchip_irq_state which, bool *val) 4294 { 4295 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4296 void __iomem *base; 4297 unsigned long flags; 4298 u32 count = 1000000; /* 1s! */ 4299 u32 status; 4300 int cpu; 4301 4302 if (which != IRQCHIP_STATE_PENDING) 4303 return -EINVAL; 4304 4305 /* 4306 * Locking galore! We can race against two different events: 4307 * 4308 * - Concurrent vPE affinity change: we must make sure it cannot 4309 * happen, or we'll talk to the wrong redistributor. This is 4310 * identical to what happens with vLPIs. 4311 * 4312 * - Concurrent VSGIPENDR access: As it involves accessing two 4313 * MMIO registers, this must be made atomic one way or another. 4314 */ 4315 cpu = vpe_to_cpuid_lock(vpe, &flags); 4316 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4317 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K; 4318 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR); 4319 do { 4320 status = readl_relaxed(base + GICR_VSGIPENDR); 4321 if (!(status & GICR_VSGIPENDR_BUSY)) 4322 goto out; 4323 4324 count--; 4325 if (!count) { 4326 pr_err_ratelimited("Unable to get SGI status\n"); 4327 goto out; 4328 } 4329 cpu_relax(); 4330 udelay(1); 4331 } while (count); 4332 4333 out: 4334 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4335 vpe_to_cpuid_unlock(vpe, flags); 4336 4337 if (!count) 4338 return -ENXIO; 4339 4340 *val = !!(status & (1 << d->hwirq)); 4341 4342 return 0; 4343 } 4344 4345 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4346 { 4347 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4348 struct its_cmd_info *info = vcpu_info; 4349 4350 switch (info->cmd_type) { 4351 case PROP_UPDATE_VSGI: 4352 vpe->sgi_config[d->hwirq].priority = info->priority; 4353 vpe->sgi_config[d->hwirq].group = info->group; 4354 its_configure_sgi(d, false); 4355 return 0; 4356 4357 default: 4358 return -EINVAL; 4359 } 4360 } 4361 4362 static struct irq_chip its_sgi_irq_chip = { 4363 .name = "GICv4.1-sgi", 4364 .irq_mask = its_sgi_mask_irq, 4365 .irq_unmask = its_sgi_unmask_irq, 4366 .irq_set_affinity = its_sgi_set_affinity, 4367 .irq_set_irqchip_state = its_sgi_set_irqchip_state, 4368 .irq_get_irqchip_state = its_sgi_get_irqchip_state, 4369 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity, 4370 }; 4371 4372 static int its_sgi_irq_domain_alloc(struct irq_domain *domain, 4373 unsigned int virq, unsigned int nr_irqs, 4374 void *args) 4375 { 4376 struct its_vpe *vpe = args; 4377 int i; 4378 4379 /* Yes, we do want 16 SGIs */ 4380 WARN_ON(nr_irqs != 16); 4381 4382 for (i = 0; i < 16; i++) { 4383 vpe->sgi_config[i].priority = 0; 4384 vpe->sgi_config[i].enabled = false; 4385 vpe->sgi_config[i].group = false; 4386 4387 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4388 &its_sgi_irq_chip, vpe); 4389 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY); 4390 } 4391 4392 return 0; 4393 } 4394 4395 static void its_sgi_irq_domain_free(struct irq_domain *domain, 4396 unsigned int virq, 4397 unsigned int nr_irqs) 4398 { 4399 /* Nothing to do */ 4400 } 4401 4402 static int its_sgi_irq_domain_activate(struct irq_domain *domain, 4403 struct irq_data *d, bool reserve) 4404 { 4405 /* Write out the initial SGI configuration */ 4406 its_configure_sgi(d, false); 4407 return 0; 4408 } 4409 4410 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain, 4411 struct irq_data *d) 4412 { 4413 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4414 4415 /* 4416 * The VSGI command is awkward: 4417 * 4418 * - To change the configuration, CLEAR must be set to false, 4419 * leaving the pending bit unchanged. 4420 * - To clear the pending bit, CLEAR must be set to true, leaving 4421 * the configuration unchanged. 4422 * 4423 * You just can't do both at once, hence the two commands below. 4424 */ 4425 vpe->sgi_config[d->hwirq].enabled = false; 4426 its_configure_sgi(d, false); 4427 its_configure_sgi(d, true); 4428 } 4429 4430 static const struct irq_domain_ops its_sgi_domain_ops = { 4431 .alloc = its_sgi_irq_domain_alloc, 4432 .free = its_sgi_irq_domain_free, 4433 .activate = its_sgi_irq_domain_activate, 4434 .deactivate = its_sgi_irq_domain_deactivate, 4435 }; 4436 4437 static int its_vpe_id_alloc(void) 4438 { 4439 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL); 4440 } 4441 4442 static void its_vpe_id_free(u16 id) 4443 { 4444 ida_simple_remove(&its_vpeid_ida, id); 4445 } 4446 4447 static int its_vpe_init(struct its_vpe *vpe) 4448 { 4449 struct page *vpt_page; 4450 int vpe_id; 4451 4452 /* Allocate vpe_id */ 4453 vpe_id = its_vpe_id_alloc(); 4454 if (vpe_id < 0) 4455 return vpe_id; 4456 4457 /* Allocate VPT */ 4458 vpt_page = its_allocate_pending_table(GFP_KERNEL); 4459 if (!vpt_page) { 4460 its_vpe_id_free(vpe_id); 4461 return -ENOMEM; 4462 } 4463 4464 if (!its_alloc_vpe_table(vpe_id)) { 4465 its_vpe_id_free(vpe_id); 4466 its_free_pending_table(vpt_page); 4467 return -ENOMEM; 4468 } 4469 4470 raw_spin_lock_init(&vpe->vpe_lock); 4471 vpe->vpe_id = vpe_id; 4472 vpe->vpt_page = vpt_page; 4473 if (gic_rdists->has_rvpeid) 4474 atomic_set(&vpe->vmapp_count, 0); 4475 else 4476 vpe->vpe_proxy_event = -1; 4477 4478 return 0; 4479 } 4480 4481 static void its_vpe_teardown(struct its_vpe *vpe) 4482 { 4483 its_vpe_db_proxy_unmap(vpe); 4484 its_vpe_id_free(vpe->vpe_id); 4485 its_free_pending_table(vpe->vpt_page); 4486 } 4487 4488 static void its_vpe_irq_domain_free(struct irq_domain *domain, 4489 unsigned int virq, 4490 unsigned int nr_irqs) 4491 { 4492 struct its_vm *vm = domain->host_data; 4493 int i; 4494 4495 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 4496 4497 for (i = 0; i < nr_irqs; i++) { 4498 struct irq_data *data = irq_domain_get_irq_data(domain, 4499 virq + i); 4500 struct its_vpe *vpe = irq_data_get_irq_chip_data(data); 4501 4502 BUG_ON(vm != vpe->its_vm); 4503 4504 clear_bit(data->hwirq, vm->db_bitmap); 4505 its_vpe_teardown(vpe); 4506 irq_domain_reset_irq_data(data); 4507 } 4508 4509 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { 4510 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); 4511 its_free_prop_table(vm->vprop_page); 4512 } 4513 } 4514 4515 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 4516 unsigned int nr_irqs, void *args) 4517 { 4518 struct irq_chip *irqchip = &its_vpe_irq_chip; 4519 struct its_vm *vm = args; 4520 unsigned long *bitmap; 4521 struct page *vprop_page; 4522 int base, nr_ids, i, err = 0; 4523 4524 BUG_ON(!vm); 4525 4526 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids); 4527 if (!bitmap) 4528 return -ENOMEM; 4529 4530 if (nr_ids < nr_irqs) { 4531 its_lpi_free(bitmap, base, nr_ids); 4532 return -ENOMEM; 4533 } 4534 4535 vprop_page = its_allocate_prop_table(GFP_KERNEL); 4536 if (!vprop_page) { 4537 its_lpi_free(bitmap, base, nr_ids); 4538 return -ENOMEM; 4539 } 4540 4541 vm->db_bitmap = bitmap; 4542 vm->db_lpi_base = base; 4543 vm->nr_db_lpis = nr_ids; 4544 vm->vprop_page = vprop_page; 4545 4546 if (gic_rdists->has_rvpeid) 4547 irqchip = &its_vpe_4_1_irq_chip; 4548 4549 for (i = 0; i < nr_irqs; i++) { 4550 vm->vpes[i]->vpe_db_lpi = base + i; 4551 err = its_vpe_init(vm->vpes[i]); 4552 if (err) 4553 break; 4554 err = its_irq_gic_domain_alloc(domain, virq + i, 4555 vm->vpes[i]->vpe_db_lpi); 4556 if (err) 4557 break; 4558 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4559 irqchip, vm->vpes[i]); 4560 set_bit(i, bitmap); 4561 irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i)); 4562 } 4563 4564 if (err) { 4565 if (i > 0) 4566 its_vpe_irq_domain_free(domain, virq, i); 4567 4568 its_lpi_free(bitmap, base, nr_ids); 4569 its_free_prop_table(vprop_page); 4570 } 4571 4572 return err; 4573 } 4574 4575 static int its_vpe_irq_domain_activate(struct irq_domain *domain, 4576 struct irq_data *d, bool reserve) 4577 { 4578 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4579 struct its_node *its; 4580 4581 /* 4582 * If we use the list map, we issue VMAPP on demand... Unless 4583 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs 4584 * so that VSGIs can work. 4585 */ 4586 if (!gic_requires_eager_mapping()) 4587 return 0; 4588 4589 /* Map the VPE to the first possible CPU */ 4590 vpe->col_idx = cpumask_first(cpu_online_mask); 4591 4592 list_for_each_entry(its, &its_nodes, entry) { 4593 if (!is_v4(its)) 4594 continue; 4595 4596 its_send_vmapp(its, vpe, true); 4597 its_send_vinvall(its, vpe); 4598 } 4599 4600 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 4601 4602 return 0; 4603 } 4604 4605 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, 4606 struct irq_data *d) 4607 { 4608 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4609 struct its_node *its; 4610 4611 /* 4612 * If we use the list map on GICv4.0, we unmap the VPE once no 4613 * VLPIs are associated with the VM. 4614 */ 4615 if (!gic_requires_eager_mapping()) 4616 return; 4617 4618 list_for_each_entry(its, &its_nodes, entry) { 4619 if (!is_v4(its)) 4620 continue; 4621 4622 its_send_vmapp(its, vpe, false); 4623 } 4624 4625 /* 4626 * There may be a direct read to the VPT after unmapping the 4627 * vPE, to guarantee the validity of this, we make the VPT 4628 * memory coherent with the CPU caches here. 4629 */ 4630 if (find_4_1_its() && !atomic_read(&vpe->vmapp_count)) 4631 gic_flush_dcache_to_poc(page_address(vpe->vpt_page), 4632 LPI_PENDBASE_SZ); 4633 } 4634 4635 static const struct irq_domain_ops its_vpe_domain_ops = { 4636 .alloc = its_vpe_irq_domain_alloc, 4637 .free = its_vpe_irq_domain_free, 4638 .activate = its_vpe_irq_domain_activate, 4639 .deactivate = its_vpe_irq_domain_deactivate, 4640 }; 4641 4642 static int its_force_quiescent(void __iomem *base) 4643 { 4644 u32 count = 1000000; /* 1s */ 4645 u32 val; 4646 4647 val = readl_relaxed(base + GITS_CTLR); 4648 /* 4649 * GIC architecture specification requires the ITS to be both 4650 * disabled and quiescent for writes to GITS_BASER<n> or 4651 * GITS_CBASER to not have UNPREDICTABLE results. 4652 */ 4653 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) 4654 return 0; 4655 4656 /* Disable the generation of all interrupts to this ITS */ 4657 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); 4658 writel_relaxed(val, base + GITS_CTLR); 4659 4660 /* Poll GITS_CTLR and wait until ITS becomes quiescent */ 4661 while (1) { 4662 val = readl_relaxed(base + GITS_CTLR); 4663 if (val & GITS_CTLR_QUIESCENT) 4664 return 0; 4665 4666 count--; 4667 if (!count) 4668 return -EBUSY; 4669 4670 cpu_relax(); 4671 udelay(1); 4672 } 4673 } 4674 4675 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data) 4676 { 4677 struct its_node *its = data; 4678 4679 /* erratum 22375: only alloc 8MB table size (20 bits) */ 4680 its->typer &= ~GITS_TYPER_DEVBITS; 4681 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1); 4682 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; 4683 4684 return true; 4685 } 4686 4687 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data) 4688 { 4689 struct its_node *its = data; 4690 4691 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; 4692 4693 return true; 4694 } 4695 4696 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) 4697 { 4698 struct its_node *its = data; 4699 4700 /* On QDF2400, the size of the ITE is 16Bytes */ 4701 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE; 4702 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1); 4703 4704 return true; 4705 } 4706 4707 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev) 4708 { 4709 struct its_node *its = its_dev->its; 4710 4711 /* 4712 * The Socionext Synquacer SoC has a so-called 'pre-ITS', 4713 * which maps 32-bit writes targeted at a separate window of 4714 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER 4715 * with device ID taken from bits [device_id_bits + 1:2] of 4716 * the window offset. 4717 */ 4718 return its->pre_its_base + (its_dev->device_id << 2); 4719 } 4720 4721 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data) 4722 { 4723 struct its_node *its = data; 4724 u32 pre_its_window[2]; 4725 u32 ids; 4726 4727 if (!fwnode_property_read_u32_array(its->fwnode_handle, 4728 "socionext,synquacer-pre-its", 4729 pre_its_window, 4730 ARRAY_SIZE(pre_its_window))) { 4731 4732 its->pre_its_base = pre_its_window[0]; 4733 its->get_msi_base = its_irq_get_msi_base_pre_its; 4734 4735 ids = ilog2(pre_its_window[1]) - 2; 4736 if (device_ids(its) > ids) { 4737 its->typer &= ~GITS_TYPER_DEVBITS; 4738 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1); 4739 } 4740 4741 /* the pre-ITS breaks isolation, so disable MSI remapping */ 4742 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI; 4743 return true; 4744 } 4745 return false; 4746 } 4747 4748 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data) 4749 { 4750 struct its_node *its = data; 4751 4752 /* 4753 * Hip07 insists on using the wrong address for the VLPI 4754 * page. Trick it into doing the right thing... 4755 */ 4756 its->vlpi_redist_offset = SZ_128K; 4757 return true; 4758 } 4759 4760 static bool __maybe_unused its_enable_rk3588001(void *data) 4761 { 4762 struct its_node *its = data; 4763 4764 if (!of_machine_is_compatible("rockchip,rk3588") && 4765 !of_machine_is_compatible("rockchip,rk3588s")) 4766 return false; 4767 4768 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 4769 gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE; 4770 4771 return true; 4772 } 4773 4774 static bool its_set_non_coherent(void *data) 4775 { 4776 struct its_node *its = data; 4777 4778 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 4779 return true; 4780 } 4781 4782 static const struct gic_quirk its_quirks[] = { 4783 #ifdef CONFIG_CAVIUM_ERRATUM_22375 4784 { 4785 .desc = "ITS: Cavium errata 22375, 24313", 4786 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4787 .mask = 0xffff0fff, 4788 .init = its_enable_quirk_cavium_22375, 4789 }, 4790 #endif 4791 #ifdef CONFIG_CAVIUM_ERRATUM_23144 4792 { 4793 .desc = "ITS: Cavium erratum 23144", 4794 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4795 .mask = 0xffff0fff, 4796 .init = its_enable_quirk_cavium_23144, 4797 }, 4798 #endif 4799 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 4800 { 4801 .desc = "ITS: QDF2400 erratum 0065", 4802 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */ 4803 .mask = 0xffffffff, 4804 .init = its_enable_quirk_qdf2400_e0065, 4805 }, 4806 #endif 4807 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS 4808 { 4809 /* 4810 * The Socionext Synquacer SoC incorporates ARM's own GIC-500 4811 * implementation, but with a 'pre-ITS' added that requires 4812 * special handling in software. 4813 */ 4814 .desc = "ITS: Socionext Synquacer pre-ITS", 4815 .iidr = 0x0001143b, 4816 .mask = 0xffffffff, 4817 .init = its_enable_quirk_socionext_synquacer, 4818 }, 4819 #endif 4820 #ifdef CONFIG_HISILICON_ERRATUM_161600802 4821 { 4822 .desc = "ITS: Hip07 erratum 161600802", 4823 .iidr = 0x00000004, 4824 .mask = 0xffffffff, 4825 .init = its_enable_quirk_hip07_161600802, 4826 }, 4827 #endif 4828 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001 4829 { 4830 .desc = "ITS: Rockchip erratum RK3588001", 4831 .iidr = 0x0201743b, 4832 .mask = 0xffffffff, 4833 .init = its_enable_rk3588001, 4834 }, 4835 #endif 4836 { 4837 .desc = "ITS: non-coherent attribute", 4838 .property = "dma-noncoherent", 4839 .init = its_set_non_coherent, 4840 }, 4841 { 4842 } 4843 }; 4844 4845 static void its_enable_quirks(struct its_node *its) 4846 { 4847 u32 iidr = readl_relaxed(its->base + GITS_IIDR); 4848 4849 gic_enable_quirks(iidr, its_quirks, its); 4850 4851 if (is_of_node(its->fwnode_handle)) 4852 gic_enable_of_quirks(to_of_node(its->fwnode_handle), 4853 its_quirks, its); 4854 } 4855 4856 static int its_save_disable(void) 4857 { 4858 struct its_node *its; 4859 int err = 0; 4860 4861 raw_spin_lock(&its_lock); 4862 list_for_each_entry(its, &its_nodes, entry) { 4863 void __iomem *base; 4864 4865 base = its->base; 4866 its->ctlr_save = readl_relaxed(base + GITS_CTLR); 4867 err = its_force_quiescent(base); 4868 if (err) { 4869 pr_err("ITS@%pa: failed to quiesce: %d\n", 4870 &its->phys_base, err); 4871 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4872 goto err; 4873 } 4874 4875 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER); 4876 } 4877 4878 err: 4879 if (err) { 4880 list_for_each_entry_continue_reverse(its, &its_nodes, entry) { 4881 void __iomem *base; 4882 4883 base = its->base; 4884 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4885 } 4886 } 4887 raw_spin_unlock(&its_lock); 4888 4889 return err; 4890 } 4891 4892 static void its_restore_enable(void) 4893 { 4894 struct its_node *its; 4895 int ret; 4896 4897 raw_spin_lock(&its_lock); 4898 list_for_each_entry(its, &its_nodes, entry) { 4899 void __iomem *base; 4900 int i; 4901 4902 base = its->base; 4903 4904 /* 4905 * Make sure that the ITS is disabled. If it fails to quiesce, 4906 * don't restore it since writing to CBASER or BASER<n> 4907 * registers is undefined according to the GIC v3 ITS 4908 * Specification. 4909 * 4910 * Firmware resuming with the ITS enabled is terminally broken. 4911 */ 4912 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE); 4913 ret = its_force_quiescent(base); 4914 if (ret) { 4915 pr_err("ITS@%pa: failed to quiesce on resume: %d\n", 4916 &its->phys_base, ret); 4917 continue; 4918 } 4919 4920 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER); 4921 4922 /* 4923 * Writing CBASER resets CREADR to 0, so make CWRITER and 4924 * cmd_write line up with it. 4925 */ 4926 its->cmd_write = its->cmd_base; 4927 gits_write_cwriter(0, base + GITS_CWRITER); 4928 4929 /* Restore GITS_BASER from the value cache. */ 4930 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 4931 struct its_baser *baser = &its->tables[i]; 4932 4933 if (!(baser->val & GITS_BASER_VALID)) 4934 continue; 4935 4936 its_write_baser(its, baser, baser->val); 4937 } 4938 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4939 4940 /* 4941 * Reinit the collection if it's stored in the ITS. This is 4942 * indicated by the col_id being less than the HCC field. 4943 * CID < HCC as specified in the GIC v3 Documentation. 4944 */ 4945 if (its->collections[smp_processor_id()].col_id < 4946 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER))) 4947 its_cpu_init_collection(its); 4948 } 4949 raw_spin_unlock(&its_lock); 4950 } 4951 4952 static struct syscore_ops its_syscore_ops = { 4953 .suspend = its_save_disable, 4954 .resume = its_restore_enable, 4955 }; 4956 4957 static void __init __iomem *its_map_one(struct resource *res, int *err) 4958 { 4959 void __iomem *its_base; 4960 u32 val; 4961 4962 its_base = ioremap(res->start, SZ_64K); 4963 if (!its_base) { 4964 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); 4965 *err = -ENOMEM; 4966 return NULL; 4967 } 4968 4969 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; 4970 if (val != 0x30 && val != 0x40) { 4971 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); 4972 *err = -ENODEV; 4973 goto out_unmap; 4974 } 4975 4976 *err = its_force_quiescent(its_base); 4977 if (*err) { 4978 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); 4979 goto out_unmap; 4980 } 4981 4982 return its_base; 4983 4984 out_unmap: 4985 iounmap(its_base); 4986 return NULL; 4987 } 4988 4989 static int its_init_domain(struct its_node *its) 4990 { 4991 struct irq_domain *inner_domain; 4992 struct msi_domain_info *info; 4993 4994 info = kzalloc(sizeof(*info), GFP_KERNEL); 4995 if (!info) 4996 return -ENOMEM; 4997 4998 info->ops = &its_msi_domain_ops; 4999 info->data = its; 5000 5001 inner_domain = irq_domain_create_hierarchy(its_parent, 5002 its->msi_domain_flags, 0, 5003 its->fwnode_handle, &its_domain_ops, 5004 info); 5005 if (!inner_domain) { 5006 kfree(info); 5007 return -ENOMEM; 5008 } 5009 5010 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS); 5011 5012 return 0; 5013 } 5014 5015 static int its_init_vpe_domain(void) 5016 { 5017 struct its_node *its; 5018 u32 devid; 5019 int entries; 5020 5021 if (gic_rdists->has_direct_lpi) { 5022 pr_info("ITS: Using DirectLPI for VPE invalidation\n"); 5023 return 0; 5024 } 5025 5026 /* Any ITS will do, even if not v4 */ 5027 its = list_first_entry(&its_nodes, struct its_node, entry); 5028 5029 entries = roundup_pow_of_two(nr_cpu_ids); 5030 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes), 5031 GFP_KERNEL); 5032 if (!vpe_proxy.vpes) 5033 return -ENOMEM; 5034 5035 /* Use the last possible DevID */ 5036 devid = GENMASK(device_ids(its) - 1, 0); 5037 vpe_proxy.dev = its_create_device(its, devid, entries, false); 5038 if (!vpe_proxy.dev) { 5039 kfree(vpe_proxy.vpes); 5040 pr_err("ITS: Can't allocate GICv4 proxy device\n"); 5041 return -ENOMEM; 5042 } 5043 5044 BUG_ON(entries > vpe_proxy.dev->nr_ites); 5045 5046 raw_spin_lock_init(&vpe_proxy.lock); 5047 vpe_proxy.next_victim = 0; 5048 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", 5049 devid, vpe_proxy.dev->nr_ites); 5050 5051 return 0; 5052 } 5053 5054 static int __init its_compute_its_list_map(struct its_node *its) 5055 { 5056 int its_number; 5057 u32 ctlr; 5058 5059 /* 5060 * This is assumed to be done early enough that we're 5061 * guaranteed to be single-threaded, hence no 5062 * locking. Should this change, we should address 5063 * this. 5064 */ 5065 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX); 5066 if (its_number >= GICv4_ITS_LIST_MAX) { 5067 pr_err("ITS@%pa: No ITSList entry available!\n", 5068 &its->phys_base); 5069 return -EINVAL; 5070 } 5071 5072 ctlr = readl_relaxed(its->base + GITS_CTLR); 5073 ctlr &= ~GITS_CTLR_ITS_NUMBER; 5074 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; 5075 writel_relaxed(ctlr, its->base + GITS_CTLR); 5076 ctlr = readl_relaxed(its->base + GITS_CTLR); 5077 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { 5078 its_number = ctlr & GITS_CTLR_ITS_NUMBER; 5079 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; 5080 } 5081 5082 if (test_and_set_bit(its_number, &its_list_map)) { 5083 pr_err("ITS@%pa: Duplicate ITSList entry %d\n", 5084 &its->phys_base, its_number); 5085 return -EINVAL; 5086 } 5087 5088 return its_number; 5089 } 5090 5091 static int __init its_probe_one(struct its_node *its) 5092 { 5093 u64 baser, tmp; 5094 struct page *page; 5095 u32 ctlr; 5096 int err; 5097 5098 its_enable_quirks(its); 5099 5100 if (is_v4(its)) { 5101 if (!(its->typer & GITS_TYPER_VMOVP)) { 5102 err = its_compute_its_list_map(its); 5103 if (err < 0) 5104 goto out; 5105 5106 its->list_nr = err; 5107 5108 pr_info("ITS@%pa: Using ITS number %d\n", 5109 &its->phys_base, err); 5110 } else { 5111 pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base); 5112 } 5113 5114 if (is_v4_1(its)) { 5115 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); 5116 5117 its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K); 5118 if (!its->sgir_base) { 5119 err = -ENOMEM; 5120 goto out; 5121 } 5122 5123 its->mpidr = readl_relaxed(its->base + GITS_MPIDR); 5124 5125 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n", 5126 &its->phys_base, its->mpidr, svpet); 5127 } 5128 } 5129 5130 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 5131 get_order(ITS_CMD_QUEUE_SZ)); 5132 if (!page) { 5133 err = -ENOMEM; 5134 goto out_unmap_sgir; 5135 } 5136 its->cmd_base = (void *)page_address(page); 5137 its->cmd_write = its->cmd_base; 5138 5139 err = its_alloc_tables(its); 5140 if (err) 5141 goto out_free_cmd; 5142 5143 err = its_alloc_collections(its); 5144 if (err) 5145 goto out_free_tables; 5146 5147 baser = (virt_to_phys(its->cmd_base) | 5148 GITS_CBASER_RaWaWb | 5149 GITS_CBASER_InnerShareable | 5150 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | 5151 GITS_CBASER_VALID); 5152 5153 gits_write_cbaser(baser, its->base + GITS_CBASER); 5154 tmp = gits_read_cbaser(its->base + GITS_CBASER); 5155 5156 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) 5157 tmp &= ~GITS_CBASER_SHAREABILITY_MASK; 5158 5159 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { 5160 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { 5161 /* 5162 * The HW reports non-shareable, we must 5163 * remove the cacheability attributes as 5164 * well. 5165 */ 5166 baser &= ~(GITS_CBASER_SHAREABILITY_MASK | 5167 GITS_CBASER_CACHEABILITY_MASK); 5168 baser |= GITS_CBASER_nC; 5169 gits_write_cbaser(baser, its->base + GITS_CBASER); 5170 } 5171 pr_info("ITS: using cache flushing for cmd queue\n"); 5172 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; 5173 } 5174 5175 gits_write_cwriter(0, its->base + GITS_CWRITER); 5176 ctlr = readl_relaxed(its->base + GITS_CTLR); 5177 ctlr |= GITS_CTLR_ENABLE; 5178 if (is_v4(its)) 5179 ctlr |= GITS_CTLR_ImDe; 5180 writel_relaxed(ctlr, its->base + GITS_CTLR); 5181 5182 err = its_init_domain(its); 5183 if (err) 5184 goto out_free_tables; 5185 5186 raw_spin_lock(&its_lock); 5187 list_add(&its->entry, &its_nodes); 5188 raw_spin_unlock(&its_lock); 5189 5190 return 0; 5191 5192 out_free_tables: 5193 its_free_tables(its); 5194 out_free_cmd: 5195 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); 5196 out_unmap_sgir: 5197 if (its->sgir_base) 5198 iounmap(its->sgir_base); 5199 out: 5200 pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err); 5201 return err; 5202 } 5203 5204 static bool gic_rdists_supports_plpis(void) 5205 { 5206 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); 5207 } 5208 5209 static int redist_disable_lpis(void) 5210 { 5211 void __iomem *rbase = gic_data_rdist_rd_base(); 5212 u64 timeout = USEC_PER_SEC; 5213 u64 val; 5214 5215 if (!gic_rdists_supports_plpis()) { 5216 pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); 5217 return -ENXIO; 5218 } 5219 5220 val = readl_relaxed(rbase + GICR_CTLR); 5221 if (!(val & GICR_CTLR_ENABLE_LPIS)) 5222 return 0; 5223 5224 /* 5225 * If coming via a CPU hotplug event, we don't need to disable 5226 * LPIs before trying to re-enable them. They are already 5227 * configured and all is well in the world. 5228 * 5229 * If running with preallocated tables, there is nothing to do. 5230 */ 5231 if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) || 5232 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED)) 5233 return 0; 5234 5235 /* 5236 * From that point on, we only try to do some damage control. 5237 */ 5238 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n", 5239 smp_processor_id()); 5240 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 5241 5242 /* Disable LPIs */ 5243 val &= ~GICR_CTLR_ENABLE_LPIS; 5244 writel_relaxed(val, rbase + GICR_CTLR); 5245 5246 /* Make sure any change to GICR_CTLR is observable by the GIC */ 5247 dsb(sy); 5248 5249 /* 5250 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs 5251 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers. 5252 * Error out if we time out waiting for RWP to clear. 5253 */ 5254 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) { 5255 if (!timeout) { 5256 pr_err("CPU%d: Timeout while disabling LPIs\n", 5257 smp_processor_id()); 5258 return -ETIMEDOUT; 5259 } 5260 udelay(1); 5261 timeout--; 5262 } 5263 5264 /* 5265 * After it has been written to 1, it is IMPLEMENTATION 5266 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be 5267 * cleared to 0. Error out if clearing the bit failed. 5268 */ 5269 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) { 5270 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id()); 5271 return -EBUSY; 5272 } 5273 5274 return 0; 5275 } 5276 5277 int its_cpu_init(void) 5278 { 5279 if (!list_empty(&its_nodes)) { 5280 int ret; 5281 5282 ret = redist_disable_lpis(); 5283 if (ret) 5284 return ret; 5285 5286 its_cpu_init_lpis(); 5287 its_cpu_init_collections(); 5288 } 5289 5290 return 0; 5291 } 5292 5293 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work) 5294 { 5295 cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state); 5296 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; 5297 } 5298 5299 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work, 5300 rdist_memreserve_cpuhp_cleanup_workfn); 5301 5302 static int its_cpu_memreserve_lpi(unsigned int cpu) 5303 { 5304 struct page *pend_page; 5305 int ret = 0; 5306 5307 /* This gets to run exactly once per CPU */ 5308 if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE) 5309 return 0; 5310 5311 pend_page = gic_data_rdist()->pend_page; 5312 if (WARN_ON(!pend_page)) { 5313 ret = -ENOMEM; 5314 goto out; 5315 } 5316 /* 5317 * If the pending table was pre-programmed, free the memory we 5318 * preemptively allocated. Otherwise, reserve that memory for 5319 * later kexecs. 5320 */ 5321 if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) { 5322 its_free_pending_table(pend_page); 5323 gic_data_rdist()->pend_page = NULL; 5324 } else { 5325 phys_addr_t paddr = page_to_phys(pend_page); 5326 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ)); 5327 } 5328 5329 out: 5330 /* Last CPU being brought up gets to issue the cleanup */ 5331 if (!IS_ENABLED(CONFIG_SMP) || 5332 cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask)) 5333 schedule_work(&rdist_memreserve_cpuhp_cleanup_work); 5334 5335 gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE; 5336 return ret; 5337 } 5338 5339 /* Mark all the BASER registers as invalid before they get reprogrammed */ 5340 static int __init its_reset_one(struct resource *res) 5341 { 5342 void __iomem *its_base; 5343 int err, i; 5344 5345 its_base = its_map_one(res, &err); 5346 if (!its_base) 5347 return err; 5348 5349 for (i = 0; i < GITS_BASER_NR_REGS; i++) 5350 gits_write_baser(0, its_base + GITS_BASER + (i << 3)); 5351 5352 iounmap(its_base); 5353 return 0; 5354 } 5355 5356 static const struct of_device_id its_device_id[] = { 5357 { .compatible = "arm,gic-v3-its", }, 5358 {}, 5359 }; 5360 5361 static struct its_node __init *its_node_init(struct resource *res, 5362 struct fwnode_handle *handle, int numa_node) 5363 { 5364 void __iomem *its_base; 5365 struct its_node *its; 5366 int err; 5367 5368 its_base = its_map_one(res, &err); 5369 if (!its_base) 5370 return NULL; 5371 5372 pr_info("ITS %pR\n", res); 5373 5374 its = kzalloc(sizeof(*its), GFP_KERNEL); 5375 if (!its) 5376 goto out_unmap; 5377 5378 raw_spin_lock_init(&its->lock); 5379 mutex_init(&its->dev_alloc_lock); 5380 INIT_LIST_HEAD(&its->entry); 5381 INIT_LIST_HEAD(&its->its_device_list); 5382 5383 its->typer = gic_read_typer(its_base + GITS_TYPER); 5384 its->base = its_base; 5385 its->phys_base = res->start; 5386 its->get_msi_base = its_irq_get_msi_base; 5387 its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI; 5388 5389 its->numa_node = numa_node; 5390 its->fwnode_handle = handle; 5391 5392 return its; 5393 5394 out_unmap: 5395 iounmap(its_base); 5396 return NULL; 5397 } 5398 5399 static void its_node_destroy(struct its_node *its) 5400 { 5401 iounmap(its->base); 5402 kfree(its); 5403 } 5404 5405 static int __init its_of_probe(struct device_node *node) 5406 { 5407 struct device_node *np; 5408 struct resource res; 5409 int err; 5410 5411 /* 5412 * Make sure *all* the ITS are reset before we probe any, as 5413 * they may be sharing memory. If any of the ITS fails to 5414 * reset, don't even try to go any further, as this could 5415 * result in something even worse. 5416 */ 5417 for (np = of_find_matching_node(node, its_device_id); np; 5418 np = of_find_matching_node(np, its_device_id)) { 5419 if (!of_device_is_available(np) || 5420 !of_property_read_bool(np, "msi-controller") || 5421 of_address_to_resource(np, 0, &res)) 5422 continue; 5423 5424 err = its_reset_one(&res); 5425 if (err) 5426 return err; 5427 } 5428 5429 for (np = of_find_matching_node(node, its_device_id); np; 5430 np = of_find_matching_node(np, its_device_id)) { 5431 struct its_node *its; 5432 5433 if (!of_device_is_available(np)) 5434 continue; 5435 if (!of_property_read_bool(np, "msi-controller")) { 5436 pr_warn("%pOF: no msi-controller property, ITS ignored\n", 5437 np); 5438 continue; 5439 } 5440 5441 if (of_address_to_resource(np, 0, &res)) { 5442 pr_warn("%pOF: no regs?\n", np); 5443 continue; 5444 } 5445 5446 5447 its = its_node_init(&res, &np->fwnode, of_node_to_nid(np)); 5448 if (!its) 5449 return -ENOMEM; 5450 5451 err = its_probe_one(its); 5452 if (err) { 5453 its_node_destroy(its); 5454 return err; 5455 } 5456 } 5457 return 0; 5458 } 5459 5460 #ifdef CONFIG_ACPI 5461 5462 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) 5463 5464 #ifdef CONFIG_ACPI_NUMA 5465 struct its_srat_map { 5466 /* numa node id */ 5467 u32 numa_node; 5468 /* GIC ITS ID */ 5469 u32 its_id; 5470 }; 5471 5472 static struct its_srat_map *its_srat_maps __initdata; 5473 static int its_in_srat __initdata; 5474 5475 static int __init acpi_get_its_numa_node(u32 its_id) 5476 { 5477 int i; 5478 5479 for (i = 0; i < its_in_srat; i++) { 5480 if (its_id == its_srat_maps[i].its_id) 5481 return its_srat_maps[i].numa_node; 5482 } 5483 return NUMA_NO_NODE; 5484 } 5485 5486 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header, 5487 const unsigned long end) 5488 { 5489 return 0; 5490 } 5491 5492 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header, 5493 const unsigned long end) 5494 { 5495 int node; 5496 struct acpi_srat_gic_its_affinity *its_affinity; 5497 5498 its_affinity = (struct acpi_srat_gic_its_affinity *)header; 5499 if (!its_affinity) 5500 return -EINVAL; 5501 5502 if (its_affinity->header.length < sizeof(*its_affinity)) { 5503 pr_err("SRAT: Invalid header length %d in ITS affinity\n", 5504 its_affinity->header.length); 5505 return -EINVAL; 5506 } 5507 5508 /* 5509 * Note that in theory a new proximity node could be created by this 5510 * entry as it is an SRAT resource allocation structure. 5511 * We do not currently support doing so. 5512 */ 5513 node = pxm_to_node(its_affinity->proximity_domain); 5514 5515 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { 5516 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); 5517 return 0; 5518 } 5519 5520 its_srat_maps[its_in_srat].numa_node = node; 5521 its_srat_maps[its_in_srat].its_id = its_affinity->its_id; 5522 its_in_srat++; 5523 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", 5524 its_affinity->proximity_domain, its_affinity->its_id, node); 5525 5526 return 0; 5527 } 5528 5529 static void __init acpi_table_parse_srat_its(void) 5530 { 5531 int count; 5532 5533 count = acpi_table_parse_entries(ACPI_SIG_SRAT, 5534 sizeof(struct acpi_table_srat), 5535 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5536 gic_acpi_match_srat_its, 0); 5537 if (count <= 0) 5538 return; 5539 5540 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map), 5541 GFP_KERNEL); 5542 if (!its_srat_maps) 5543 return; 5544 5545 acpi_table_parse_entries(ACPI_SIG_SRAT, 5546 sizeof(struct acpi_table_srat), 5547 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5548 gic_acpi_parse_srat_its, 0); 5549 } 5550 5551 /* free the its_srat_maps after ITS probing */ 5552 static void __init acpi_its_srat_maps_free(void) 5553 { 5554 kfree(its_srat_maps); 5555 } 5556 #else 5557 static void __init acpi_table_parse_srat_its(void) { } 5558 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } 5559 static void __init acpi_its_srat_maps_free(void) { } 5560 #endif 5561 5562 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header, 5563 const unsigned long end) 5564 { 5565 struct acpi_madt_generic_translator *its_entry; 5566 struct fwnode_handle *dom_handle; 5567 struct its_node *its; 5568 struct resource res; 5569 int err; 5570 5571 its_entry = (struct acpi_madt_generic_translator *)header; 5572 memset(&res, 0, sizeof(res)); 5573 res.start = its_entry->base_address; 5574 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; 5575 res.flags = IORESOURCE_MEM; 5576 5577 dom_handle = irq_domain_alloc_fwnode(&res.start); 5578 if (!dom_handle) { 5579 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", 5580 &res.start); 5581 return -ENOMEM; 5582 } 5583 5584 err = iort_register_domain_token(its_entry->translation_id, res.start, 5585 dom_handle); 5586 if (err) { 5587 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", 5588 &res.start, its_entry->translation_id); 5589 goto dom_err; 5590 } 5591 5592 its = its_node_init(&res, dom_handle, 5593 acpi_get_its_numa_node(its_entry->translation_id)); 5594 if (!its) { 5595 err = -ENOMEM; 5596 goto node_err; 5597 } 5598 5599 err = its_probe_one(its); 5600 if (!err) 5601 return 0; 5602 5603 node_err: 5604 iort_deregister_domain_token(its_entry->translation_id); 5605 dom_err: 5606 irq_domain_free_fwnode(dom_handle); 5607 return err; 5608 } 5609 5610 static int __init its_acpi_reset(union acpi_subtable_headers *header, 5611 const unsigned long end) 5612 { 5613 struct acpi_madt_generic_translator *its_entry; 5614 struct resource res; 5615 5616 its_entry = (struct acpi_madt_generic_translator *)header; 5617 res = (struct resource) { 5618 .start = its_entry->base_address, 5619 .end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1, 5620 .flags = IORESOURCE_MEM, 5621 }; 5622 5623 return its_reset_one(&res); 5624 } 5625 5626 static void __init its_acpi_probe(void) 5627 { 5628 acpi_table_parse_srat_its(); 5629 /* 5630 * Make sure *all* the ITS are reset before we probe any, as 5631 * they may be sharing memory. If any of the ITS fails to 5632 * reset, don't even try to go any further, as this could 5633 * result in something even worse. 5634 */ 5635 if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5636 its_acpi_reset, 0) > 0) 5637 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5638 gic_acpi_parse_madt_its, 0); 5639 acpi_its_srat_maps_free(); 5640 } 5641 #else 5642 static void __init its_acpi_probe(void) { } 5643 #endif 5644 5645 int __init its_lpi_memreserve_init(void) 5646 { 5647 int state; 5648 5649 if (!efi_enabled(EFI_CONFIG_TABLES)) 5650 return 0; 5651 5652 if (list_empty(&its_nodes)) 5653 return 0; 5654 5655 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; 5656 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, 5657 "irqchip/arm/gicv3/memreserve:online", 5658 its_cpu_memreserve_lpi, 5659 NULL); 5660 if (state < 0) 5661 return state; 5662 5663 gic_rdists->cpuhp_memreserve_state = state; 5664 5665 return 0; 5666 } 5667 5668 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, 5669 struct irq_domain *parent_domain) 5670 { 5671 struct device_node *of_node; 5672 struct its_node *its; 5673 bool has_v4 = false; 5674 bool has_v4_1 = false; 5675 int err; 5676 5677 gic_rdists = rdists; 5678 5679 its_parent = parent_domain; 5680 of_node = to_of_node(handle); 5681 if (of_node) 5682 its_of_probe(of_node); 5683 else 5684 its_acpi_probe(); 5685 5686 if (list_empty(&its_nodes)) { 5687 pr_warn("ITS: No ITS available, not enabling LPIs\n"); 5688 return -ENXIO; 5689 } 5690 5691 err = allocate_lpi_tables(); 5692 if (err) 5693 return err; 5694 5695 list_for_each_entry(its, &its_nodes, entry) { 5696 has_v4 |= is_v4(its); 5697 has_v4_1 |= is_v4_1(its); 5698 } 5699 5700 /* Don't bother with inconsistent systems */ 5701 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid)) 5702 rdists->has_rvpeid = false; 5703 5704 if (has_v4 & rdists->has_vlpis) { 5705 const struct irq_domain_ops *sgi_ops; 5706 5707 if (has_v4_1) 5708 sgi_ops = &its_sgi_domain_ops; 5709 else 5710 sgi_ops = NULL; 5711 5712 if (its_init_vpe_domain() || 5713 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) { 5714 rdists->has_vlpis = false; 5715 pr_err("ITS: Disabling GICv4 support\n"); 5716 } 5717 } 5718 5719 register_syscore_ops(&its_syscore_ops); 5720 5721 return 0; 5722 } 5723