1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/efi.h>
16 #include <linux/interrupt.h>
17 #include <linux/irqdomain.h>
18 #include <linux/list.h>
19 #include <linux/log2.h>
20 #include <linux/memblock.h>
21 #include <linux/mm.h>
22 #include <linux/msi.h>
23 #include <linux/of.h>
24 #include <linux/of_address.h>
25 #include <linux/of_irq.h>
26 #include <linux/of_pci.h>
27 #include <linux/of_platform.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/syscore_ops.h>
31 
32 #include <linux/irqchip.h>
33 #include <linux/irqchip/arm-gic-v3.h>
34 #include <linux/irqchip/arm-gic-v4.h>
35 
36 #include <asm/cputype.h>
37 #include <asm/exception.h>
38 
39 #include "irq-gic-common.h"
40 
41 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
42 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
44 #define ITS_FLAGS_SAVE_SUSPEND_STATE		(1ULL << 3)
45 
46 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
47 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED	(1 << 1)
48 
49 static u32 lpi_id_bits;
50 
51 /*
52  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
53  * deal with (one configuration byte per interrupt). PENDBASE has to
54  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
55  */
56 #define LPI_NRBITS		lpi_id_bits
57 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
58 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
59 
60 #define LPI_PROP_DEFAULT_PRIO	GICD_INT_DEF_PRI
61 
62 /*
63  * Collection structure - just an ID, and a redistributor address to
64  * ping. We use one per CPU as a bag of interrupts assigned to this
65  * CPU.
66  */
67 struct its_collection {
68 	u64			target_address;
69 	u16			col_id;
70 };
71 
72 /*
73  * The ITS_BASER structure - contains memory information, cached
74  * value of BASER register configuration and ITS page size.
75  */
76 struct its_baser {
77 	void		*base;
78 	u64		val;
79 	u32		order;
80 	u32		psz;
81 };
82 
83 struct its_device;
84 
85 /*
86  * The ITS structure - contains most of the infrastructure, with the
87  * top-level MSI domain, the command queue, the collections, and the
88  * list of devices writing to it.
89  *
90  * dev_alloc_lock has to be taken for device allocations, while the
91  * spinlock must be taken to parse data structures such as the device
92  * list.
93  */
94 struct its_node {
95 	raw_spinlock_t		lock;
96 	struct mutex		dev_alloc_lock;
97 	struct list_head	entry;
98 	void __iomem		*base;
99 	void __iomem		*sgir_base;
100 	phys_addr_t		phys_base;
101 	struct its_cmd_block	*cmd_base;
102 	struct its_cmd_block	*cmd_write;
103 	struct its_baser	tables[GITS_BASER_NR_REGS];
104 	struct its_collection	*collections;
105 	struct fwnode_handle	*fwnode_handle;
106 	u64			(*get_msi_base)(struct its_device *its_dev);
107 	u64			typer;
108 	u64			cbaser_save;
109 	u32			ctlr_save;
110 	u32			mpidr;
111 	struct list_head	its_device_list;
112 	u64			flags;
113 	unsigned long		list_nr;
114 	int			numa_node;
115 	unsigned int		msi_domain_flags;
116 	u32			pre_its_base; /* for Socionext Synquacer */
117 	int			vlpi_redist_offset;
118 };
119 
120 #define is_v4(its)		(!!((its)->typer & GITS_TYPER_VLPIS))
121 #define is_v4_1(its)		(!!((its)->typer & GITS_TYPER_VMAPP))
122 #define device_ids(its)		(FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
123 
124 #define ITS_ITT_ALIGN		SZ_256
125 
126 /* The maximum number of VPEID bits supported by VLPI commands */
127 #define ITS_MAX_VPEID_BITS						\
128 	({								\
129 		int nvpeid = 16;					\
130 		if (gic_rdists->has_rvpeid &&				\
131 		    gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)		\
132 			nvpeid = 1 + (gic_rdists->gicd_typer2 &		\
133 				      GICD_TYPER2_VID);			\
134 									\
135 		nvpeid;							\
136 	})
137 #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
138 
139 /* Convert page order to size in bytes */
140 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
141 
142 struct event_lpi_map {
143 	unsigned long		*lpi_map;
144 	u16			*col_map;
145 	irq_hw_number_t		lpi_base;
146 	int			nr_lpis;
147 	raw_spinlock_t		vlpi_lock;
148 	struct its_vm		*vm;
149 	struct its_vlpi_map	*vlpi_maps;
150 	int			nr_vlpis;
151 };
152 
153 /*
154  * The ITS view of a device - belongs to an ITS, owns an interrupt
155  * translation table, and a list of interrupts.  If it some of its
156  * LPIs are injected into a guest (GICv4), the event_map.vm field
157  * indicates which one.
158  */
159 struct its_device {
160 	struct list_head	entry;
161 	struct its_node		*its;
162 	struct event_lpi_map	event_map;
163 	void			*itt;
164 	u32			nr_ites;
165 	u32			device_id;
166 	bool			shared;
167 };
168 
169 static struct {
170 	raw_spinlock_t		lock;
171 	struct its_device	*dev;
172 	struct its_vpe		**vpes;
173 	int			next_victim;
174 } vpe_proxy;
175 
176 static LIST_HEAD(its_nodes);
177 static DEFINE_RAW_SPINLOCK(its_lock);
178 static struct rdists *gic_rdists;
179 static struct irq_domain *its_parent;
180 
181 static unsigned long its_list_map;
182 static u16 vmovp_seq_num;
183 static DEFINE_RAW_SPINLOCK(vmovp_lock);
184 
185 static DEFINE_IDA(its_vpeid_ida);
186 
187 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
188 #define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
189 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
190 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
191 
192 /*
193  * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
194  * always have vSGIs mapped.
195  */
196 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
197 {
198 	return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
199 }
200 
201 static u16 get_its_list(struct its_vm *vm)
202 {
203 	struct its_node *its;
204 	unsigned long its_list = 0;
205 
206 	list_for_each_entry(its, &its_nodes, entry) {
207 		if (!is_v4(its))
208 			continue;
209 
210 		if (require_its_list_vmovp(vm, its))
211 			__set_bit(its->list_nr, &its_list);
212 	}
213 
214 	return (u16)its_list;
215 }
216 
217 static inline u32 its_get_event_id(struct irq_data *d)
218 {
219 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
220 	return d->hwirq - its_dev->event_map.lpi_base;
221 }
222 
223 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
224 					       u32 event)
225 {
226 	struct its_node *its = its_dev->its;
227 
228 	return its->collections + its_dev->event_map.col_map[event];
229 }
230 
231 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
232 					       u32 event)
233 {
234 	if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
235 		return NULL;
236 
237 	return &its_dev->event_map.vlpi_maps[event];
238 }
239 
240 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
241 {
242 	if (irqd_is_forwarded_to_vcpu(d)) {
243 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
244 		u32 event = its_get_event_id(d);
245 
246 		return dev_event_to_vlpi_map(its_dev, event);
247 	}
248 
249 	return NULL;
250 }
251 
252 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
253 {
254 	raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
255 	return vpe->col_idx;
256 }
257 
258 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
259 {
260 	raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
261 }
262 
263 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
264 {
265 	struct its_vlpi_map *map = get_vlpi_map(d);
266 	int cpu;
267 
268 	if (map) {
269 		cpu = vpe_to_cpuid_lock(map->vpe, flags);
270 	} else {
271 		/* Physical LPIs are already locked via the irq_desc lock */
272 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
273 		cpu = its_dev->event_map.col_map[its_get_event_id(d)];
274 		/* Keep GCC quiet... */
275 		*flags = 0;
276 	}
277 
278 	return cpu;
279 }
280 
281 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
282 {
283 	struct its_vlpi_map *map = get_vlpi_map(d);
284 
285 	if (map)
286 		vpe_to_cpuid_unlock(map->vpe, flags);
287 }
288 
289 static struct its_collection *valid_col(struct its_collection *col)
290 {
291 	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
292 		return NULL;
293 
294 	return col;
295 }
296 
297 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
298 {
299 	if (valid_col(its->collections + vpe->col_idx))
300 		return vpe;
301 
302 	return NULL;
303 }
304 
305 /*
306  * ITS command descriptors - parameters to be encoded in a command
307  * block.
308  */
309 struct its_cmd_desc {
310 	union {
311 		struct {
312 			struct its_device *dev;
313 			u32 event_id;
314 		} its_inv_cmd;
315 
316 		struct {
317 			struct its_device *dev;
318 			u32 event_id;
319 		} its_clear_cmd;
320 
321 		struct {
322 			struct its_device *dev;
323 			u32 event_id;
324 		} its_int_cmd;
325 
326 		struct {
327 			struct its_device *dev;
328 			int valid;
329 		} its_mapd_cmd;
330 
331 		struct {
332 			struct its_collection *col;
333 			int valid;
334 		} its_mapc_cmd;
335 
336 		struct {
337 			struct its_device *dev;
338 			u32 phys_id;
339 			u32 event_id;
340 		} its_mapti_cmd;
341 
342 		struct {
343 			struct its_device *dev;
344 			struct its_collection *col;
345 			u32 event_id;
346 		} its_movi_cmd;
347 
348 		struct {
349 			struct its_device *dev;
350 			u32 event_id;
351 		} its_discard_cmd;
352 
353 		struct {
354 			struct its_collection *col;
355 		} its_invall_cmd;
356 
357 		struct {
358 			struct its_vpe *vpe;
359 		} its_vinvall_cmd;
360 
361 		struct {
362 			struct its_vpe *vpe;
363 			struct its_collection *col;
364 			bool valid;
365 		} its_vmapp_cmd;
366 
367 		struct {
368 			struct its_vpe *vpe;
369 			struct its_device *dev;
370 			u32 virt_id;
371 			u32 event_id;
372 			bool db_enabled;
373 		} its_vmapti_cmd;
374 
375 		struct {
376 			struct its_vpe *vpe;
377 			struct its_device *dev;
378 			u32 event_id;
379 			bool db_enabled;
380 		} its_vmovi_cmd;
381 
382 		struct {
383 			struct its_vpe *vpe;
384 			struct its_collection *col;
385 			u16 seq_num;
386 			u16 its_list;
387 		} its_vmovp_cmd;
388 
389 		struct {
390 			struct its_vpe *vpe;
391 		} its_invdb_cmd;
392 
393 		struct {
394 			struct its_vpe *vpe;
395 			u8 sgi;
396 			u8 priority;
397 			bool enable;
398 			bool group;
399 			bool clear;
400 		} its_vsgi_cmd;
401 	};
402 };
403 
404 /*
405  * The ITS command block, which is what the ITS actually parses.
406  */
407 struct its_cmd_block {
408 	union {
409 		u64	raw_cmd[4];
410 		__le64	raw_cmd_le[4];
411 	};
412 };
413 
414 #define ITS_CMD_QUEUE_SZ		SZ_64K
415 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
416 
417 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
418 						    struct its_cmd_block *,
419 						    struct its_cmd_desc *);
420 
421 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
422 					      struct its_cmd_block *,
423 					      struct its_cmd_desc *);
424 
425 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
426 {
427 	u64 mask = GENMASK_ULL(h, l);
428 	*raw_cmd &= ~mask;
429 	*raw_cmd |= (val << l) & mask;
430 }
431 
432 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
433 {
434 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
435 }
436 
437 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
438 {
439 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
440 }
441 
442 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
443 {
444 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
445 }
446 
447 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
448 {
449 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
450 }
451 
452 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
453 {
454 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
455 }
456 
457 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
458 {
459 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
460 }
461 
462 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
463 {
464 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
465 }
466 
467 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
468 {
469 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
470 }
471 
472 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
473 {
474 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
475 }
476 
477 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
478 {
479 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
480 }
481 
482 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
483 {
484 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
485 }
486 
487 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
488 {
489 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
490 }
491 
492 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
493 {
494 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
495 }
496 
497 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
498 {
499 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
500 }
501 
502 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
503 {
504 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
505 }
506 
507 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
508 {
509 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
510 }
511 
512 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
513 {
514 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
515 }
516 
517 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
518 {
519 	its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
520 }
521 
522 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
523 {
524 	its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
525 }
526 
527 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
528 {
529 	its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
530 }
531 
532 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
533 					u32 vpe_db_lpi)
534 {
535 	its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
536 }
537 
538 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
539 					u32 vpe_db_lpi)
540 {
541 	its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
542 }
543 
544 static void its_encode_db(struct its_cmd_block *cmd, bool db)
545 {
546 	its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
547 }
548 
549 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
550 {
551 	its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
552 }
553 
554 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
555 {
556 	its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
557 }
558 
559 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
560 {
561 	its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
562 }
563 
564 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
565 {
566 	its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
567 }
568 
569 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
570 {
571 	its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
572 }
573 
574 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
575 {
576 	/* Let's fixup BE commands */
577 	cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
578 	cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
579 	cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
580 	cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
581 }
582 
583 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
584 						 struct its_cmd_block *cmd,
585 						 struct its_cmd_desc *desc)
586 {
587 	unsigned long itt_addr;
588 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
589 
590 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
591 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
592 
593 	its_encode_cmd(cmd, GITS_CMD_MAPD);
594 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
595 	its_encode_size(cmd, size - 1);
596 	its_encode_itt(cmd, itt_addr);
597 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
598 
599 	its_fixup_cmd(cmd);
600 
601 	return NULL;
602 }
603 
604 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
605 						 struct its_cmd_block *cmd,
606 						 struct its_cmd_desc *desc)
607 {
608 	its_encode_cmd(cmd, GITS_CMD_MAPC);
609 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
610 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
611 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
612 
613 	its_fixup_cmd(cmd);
614 
615 	return desc->its_mapc_cmd.col;
616 }
617 
618 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
619 						  struct its_cmd_block *cmd,
620 						  struct its_cmd_desc *desc)
621 {
622 	struct its_collection *col;
623 
624 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
625 			       desc->its_mapti_cmd.event_id);
626 
627 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
628 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
629 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
630 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
631 	its_encode_collection(cmd, col->col_id);
632 
633 	its_fixup_cmd(cmd);
634 
635 	return valid_col(col);
636 }
637 
638 static struct its_collection *its_build_movi_cmd(struct its_node *its,
639 						 struct its_cmd_block *cmd,
640 						 struct its_cmd_desc *desc)
641 {
642 	struct its_collection *col;
643 
644 	col = dev_event_to_col(desc->its_movi_cmd.dev,
645 			       desc->its_movi_cmd.event_id);
646 
647 	its_encode_cmd(cmd, GITS_CMD_MOVI);
648 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
649 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
650 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
651 
652 	its_fixup_cmd(cmd);
653 
654 	return valid_col(col);
655 }
656 
657 static struct its_collection *its_build_discard_cmd(struct its_node *its,
658 						    struct its_cmd_block *cmd,
659 						    struct its_cmd_desc *desc)
660 {
661 	struct its_collection *col;
662 
663 	col = dev_event_to_col(desc->its_discard_cmd.dev,
664 			       desc->its_discard_cmd.event_id);
665 
666 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
667 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
668 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
669 
670 	its_fixup_cmd(cmd);
671 
672 	return valid_col(col);
673 }
674 
675 static struct its_collection *its_build_inv_cmd(struct its_node *its,
676 						struct its_cmd_block *cmd,
677 						struct its_cmd_desc *desc)
678 {
679 	struct its_collection *col;
680 
681 	col = dev_event_to_col(desc->its_inv_cmd.dev,
682 			       desc->its_inv_cmd.event_id);
683 
684 	its_encode_cmd(cmd, GITS_CMD_INV);
685 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
686 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
687 
688 	its_fixup_cmd(cmd);
689 
690 	return valid_col(col);
691 }
692 
693 static struct its_collection *its_build_int_cmd(struct its_node *its,
694 						struct its_cmd_block *cmd,
695 						struct its_cmd_desc *desc)
696 {
697 	struct its_collection *col;
698 
699 	col = dev_event_to_col(desc->its_int_cmd.dev,
700 			       desc->its_int_cmd.event_id);
701 
702 	its_encode_cmd(cmd, GITS_CMD_INT);
703 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
704 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
705 
706 	its_fixup_cmd(cmd);
707 
708 	return valid_col(col);
709 }
710 
711 static struct its_collection *its_build_clear_cmd(struct its_node *its,
712 						  struct its_cmd_block *cmd,
713 						  struct its_cmd_desc *desc)
714 {
715 	struct its_collection *col;
716 
717 	col = dev_event_to_col(desc->its_clear_cmd.dev,
718 			       desc->its_clear_cmd.event_id);
719 
720 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
721 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
722 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
723 
724 	its_fixup_cmd(cmd);
725 
726 	return valid_col(col);
727 }
728 
729 static struct its_collection *its_build_invall_cmd(struct its_node *its,
730 						   struct its_cmd_block *cmd,
731 						   struct its_cmd_desc *desc)
732 {
733 	its_encode_cmd(cmd, GITS_CMD_INVALL);
734 	its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
735 
736 	its_fixup_cmd(cmd);
737 
738 	return NULL;
739 }
740 
741 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
742 					     struct its_cmd_block *cmd,
743 					     struct its_cmd_desc *desc)
744 {
745 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
746 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
747 
748 	its_fixup_cmd(cmd);
749 
750 	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
751 }
752 
753 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
754 					   struct its_cmd_block *cmd,
755 					   struct its_cmd_desc *desc)
756 {
757 	unsigned long vpt_addr, vconf_addr;
758 	u64 target;
759 	bool alloc;
760 
761 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
762 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
763 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
764 
765 	if (!desc->its_vmapp_cmd.valid) {
766 		if (is_v4_1(its)) {
767 			alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
768 			its_encode_alloc(cmd, alloc);
769 		}
770 
771 		goto out;
772 	}
773 
774 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
775 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
776 
777 	its_encode_target(cmd, target);
778 	its_encode_vpt_addr(cmd, vpt_addr);
779 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
780 
781 	if (!is_v4_1(its))
782 		goto out;
783 
784 	vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
785 
786 	alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
787 
788 	its_encode_alloc(cmd, alloc);
789 
790 	/* We can only signal PTZ when alloc==1. Why do we have two bits? */
791 	its_encode_ptz(cmd, alloc);
792 	its_encode_vconf_addr(cmd, vconf_addr);
793 	its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
794 
795 out:
796 	its_fixup_cmd(cmd);
797 
798 	return valid_vpe(its, desc->its_vmapp_cmd.vpe);
799 }
800 
801 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
802 					    struct its_cmd_block *cmd,
803 					    struct its_cmd_desc *desc)
804 {
805 	u32 db;
806 
807 	if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
808 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
809 	else
810 		db = 1023;
811 
812 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
813 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
814 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
815 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
816 	its_encode_db_phys_id(cmd, db);
817 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
818 
819 	its_fixup_cmd(cmd);
820 
821 	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
822 }
823 
824 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
825 					   struct its_cmd_block *cmd,
826 					   struct its_cmd_desc *desc)
827 {
828 	u32 db;
829 
830 	if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
831 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
832 	else
833 		db = 1023;
834 
835 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
836 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
837 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
838 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
839 	its_encode_db_phys_id(cmd, db);
840 	its_encode_db_valid(cmd, true);
841 
842 	its_fixup_cmd(cmd);
843 
844 	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
845 }
846 
847 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
848 					   struct its_cmd_block *cmd,
849 					   struct its_cmd_desc *desc)
850 {
851 	u64 target;
852 
853 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
854 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
855 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
856 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
857 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
858 	its_encode_target(cmd, target);
859 
860 	if (is_v4_1(its)) {
861 		its_encode_db(cmd, true);
862 		its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
863 	}
864 
865 	its_fixup_cmd(cmd);
866 
867 	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
868 }
869 
870 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
871 					  struct its_cmd_block *cmd,
872 					  struct its_cmd_desc *desc)
873 {
874 	struct its_vlpi_map *map;
875 
876 	map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
877 				    desc->its_inv_cmd.event_id);
878 
879 	its_encode_cmd(cmd, GITS_CMD_INV);
880 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
881 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
882 
883 	its_fixup_cmd(cmd);
884 
885 	return valid_vpe(its, map->vpe);
886 }
887 
888 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
889 					  struct its_cmd_block *cmd,
890 					  struct its_cmd_desc *desc)
891 {
892 	struct its_vlpi_map *map;
893 
894 	map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
895 				    desc->its_int_cmd.event_id);
896 
897 	its_encode_cmd(cmd, GITS_CMD_INT);
898 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
899 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
900 
901 	its_fixup_cmd(cmd);
902 
903 	return valid_vpe(its, map->vpe);
904 }
905 
906 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
907 					    struct its_cmd_block *cmd,
908 					    struct its_cmd_desc *desc)
909 {
910 	struct its_vlpi_map *map;
911 
912 	map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
913 				    desc->its_clear_cmd.event_id);
914 
915 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
916 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
917 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
918 
919 	its_fixup_cmd(cmd);
920 
921 	return valid_vpe(its, map->vpe);
922 }
923 
924 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
925 					   struct its_cmd_block *cmd,
926 					   struct its_cmd_desc *desc)
927 {
928 	if (WARN_ON(!is_v4_1(its)))
929 		return NULL;
930 
931 	its_encode_cmd(cmd, GITS_CMD_INVDB);
932 	its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
933 
934 	its_fixup_cmd(cmd);
935 
936 	return valid_vpe(its, desc->its_invdb_cmd.vpe);
937 }
938 
939 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
940 					  struct its_cmd_block *cmd,
941 					  struct its_cmd_desc *desc)
942 {
943 	if (WARN_ON(!is_v4_1(its)))
944 		return NULL;
945 
946 	its_encode_cmd(cmd, GITS_CMD_VSGI);
947 	its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
948 	its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
949 	its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
950 	its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
951 	its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
952 	its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
953 
954 	its_fixup_cmd(cmd);
955 
956 	return valid_vpe(its, desc->its_vsgi_cmd.vpe);
957 }
958 
959 static u64 its_cmd_ptr_to_offset(struct its_node *its,
960 				 struct its_cmd_block *ptr)
961 {
962 	return (ptr - its->cmd_base) * sizeof(*ptr);
963 }
964 
965 static int its_queue_full(struct its_node *its)
966 {
967 	int widx;
968 	int ridx;
969 
970 	widx = its->cmd_write - its->cmd_base;
971 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
972 
973 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
974 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
975 		return 1;
976 
977 	return 0;
978 }
979 
980 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
981 {
982 	struct its_cmd_block *cmd;
983 	u32 count = 1000000;	/* 1s! */
984 
985 	while (its_queue_full(its)) {
986 		count--;
987 		if (!count) {
988 			pr_err_ratelimited("ITS queue not draining\n");
989 			return NULL;
990 		}
991 		cpu_relax();
992 		udelay(1);
993 	}
994 
995 	cmd = its->cmd_write++;
996 
997 	/* Handle queue wrapping */
998 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
999 		its->cmd_write = its->cmd_base;
1000 
1001 	/* Clear command  */
1002 	cmd->raw_cmd[0] = 0;
1003 	cmd->raw_cmd[1] = 0;
1004 	cmd->raw_cmd[2] = 0;
1005 	cmd->raw_cmd[3] = 0;
1006 
1007 	return cmd;
1008 }
1009 
1010 static struct its_cmd_block *its_post_commands(struct its_node *its)
1011 {
1012 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1013 
1014 	writel_relaxed(wr, its->base + GITS_CWRITER);
1015 
1016 	return its->cmd_write;
1017 }
1018 
1019 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1020 {
1021 	/*
1022 	 * Make sure the commands written to memory are observable by
1023 	 * the ITS.
1024 	 */
1025 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1026 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1027 	else
1028 		dsb(ishst);
1029 }
1030 
1031 static int its_wait_for_range_completion(struct its_node *its,
1032 					 u64	prev_idx,
1033 					 struct its_cmd_block *to)
1034 {
1035 	u64 rd_idx, to_idx, linear_idx;
1036 	u32 count = 1000000;	/* 1s! */
1037 
1038 	/* Linearize to_idx if the command set has wrapped around */
1039 	to_idx = its_cmd_ptr_to_offset(its, to);
1040 	if (to_idx < prev_idx)
1041 		to_idx += ITS_CMD_QUEUE_SZ;
1042 
1043 	linear_idx = prev_idx;
1044 
1045 	while (1) {
1046 		s64 delta;
1047 
1048 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
1049 
1050 		/*
1051 		 * Compute the read pointer progress, taking the
1052 		 * potential wrap-around into account.
1053 		 */
1054 		delta = rd_idx - prev_idx;
1055 		if (rd_idx < prev_idx)
1056 			delta += ITS_CMD_QUEUE_SZ;
1057 
1058 		linear_idx += delta;
1059 		if (linear_idx >= to_idx)
1060 			break;
1061 
1062 		count--;
1063 		if (!count) {
1064 			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1065 					   to_idx, linear_idx);
1066 			return -1;
1067 		}
1068 		prev_idx = rd_idx;
1069 		cpu_relax();
1070 		udelay(1);
1071 	}
1072 
1073 	return 0;
1074 }
1075 
1076 /* Warning, macro hell follows */
1077 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
1078 void name(struct its_node *its,						\
1079 	  buildtype builder,						\
1080 	  struct its_cmd_desc *desc)					\
1081 {									\
1082 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
1083 	synctype *sync_obj;						\
1084 	unsigned long flags;						\
1085 	u64 rd_idx;							\
1086 									\
1087 	raw_spin_lock_irqsave(&its->lock, flags);			\
1088 									\
1089 	cmd = its_allocate_entry(its);					\
1090 	if (!cmd) {		/* We're soooooo screewed... */		\
1091 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
1092 		return;							\
1093 	}								\
1094 	sync_obj = builder(its, cmd, desc);				\
1095 	its_flush_cmd(its, cmd);					\
1096 									\
1097 	if (sync_obj) {							\
1098 		sync_cmd = its_allocate_entry(its);			\
1099 		if (!sync_cmd)						\
1100 			goto post;					\
1101 									\
1102 		buildfn(its, sync_cmd, sync_obj);			\
1103 		its_flush_cmd(its, sync_cmd);				\
1104 	}								\
1105 									\
1106 post:									\
1107 	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\
1108 	next_cmd = its_post_commands(its);				\
1109 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
1110 									\
1111 	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\
1112 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
1113 }
1114 
1115 static void its_build_sync_cmd(struct its_node *its,
1116 			       struct its_cmd_block *sync_cmd,
1117 			       struct its_collection *sync_col)
1118 {
1119 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1120 	its_encode_target(sync_cmd, sync_col->target_address);
1121 
1122 	its_fixup_cmd(sync_cmd);
1123 }
1124 
1125 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1126 			     struct its_collection, its_build_sync_cmd)
1127 
1128 static void its_build_vsync_cmd(struct its_node *its,
1129 				struct its_cmd_block *sync_cmd,
1130 				struct its_vpe *sync_vpe)
1131 {
1132 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1133 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1134 
1135 	its_fixup_cmd(sync_cmd);
1136 }
1137 
1138 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1139 			     struct its_vpe, its_build_vsync_cmd)
1140 
1141 static void its_send_int(struct its_device *dev, u32 event_id)
1142 {
1143 	struct its_cmd_desc desc;
1144 
1145 	desc.its_int_cmd.dev = dev;
1146 	desc.its_int_cmd.event_id = event_id;
1147 
1148 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
1149 }
1150 
1151 static void its_send_clear(struct its_device *dev, u32 event_id)
1152 {
1153 	struct its_cmd_desc desc;
1154 
1155 	desc.its_clear_cmd.dev = dev;
1156 	desc.its_clear_cmd.event_id = event_id;
1157 
1158 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1159 }
1160 
1161 static void its_send_inv(struct its_device *dev, u32 event_id)
1162 {
1163 	struct its_cmd_desc desc;
1164 
1165 	desc.its_inv_cmd.dev = dev;
1166 	desc.its_inv_cmd.event_id = event_id;
1167 
1168 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1169 }
1170 
1171 static void its_send_mapd(struct its_device *dev, int valid)
1172 {
1173 	struct its_cmd_desc desc;
1174 
1175 	desc.its_mapd_cmd.dev = dev;
1176 	desc.its_mapd_cmd.valid = !!valid;
1177 
1178 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1179 }
1180 
1181 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1182 			  int valid)
1183 {
1184 	struct its_cmd_desc desc;
1185 
1186 	desc.its_mapc_cmd.col = col;
1187 	desc.its_mapc_cmd.valid = !!valid;
1188 
1189 	its_send_single_command(its, its_build_mapc_cmd, &desc);
1190 }
1191 
1192 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1193 {
1194 	struct its_cmd_desc desc;
1195 
1196 	desc.its_mapti_cmd.dev = dev;
1197 	desc.its_mapti_cmd.phys_id = irq_id;
1198 	desc.its_mapti_cmd.event_id = id;
1199 
1200 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1201 }
1202 
1203 static void its_send_movi(struct its_device *dev,
1204 			  struct its_collection *col, u32 id)
1205 {
1206 	struct its_cmd_desc desc;
1207 
1208 	desc.its_movi_cmd.dev = dev;
1209 	desc.its_movi_cmd.col = col;
1210 	desc.its_movi_cmd.event_id = id;
1211 
1212 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1213 }
1214 
1215 static void its_send_discard(struct its_device *dev, u32 id)
1216 {
1217 	struct its_cmd_desc desc;
1218 
1219 	desc.its_discard_cmd.dev = dev;
1220 	desc.its_discard_cmd.event_id = id;
1221 
1222 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1223 }
1224 
1225 static void its_send_invall(struct its_node *its, struct its_collection *col)
1226 {
1227 	struct its_cmd_desc desc;
1228 
1229 	desc.its_invall_cmd.col = col;
1230 
1231 	its_send_single_command(its, its_build_invall_cmd, &desc);
1232 }
1233 
1234 static void its_send_vmapti(struct its_device *dev, u32 id)
1235 {
1236 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1237 	struct its_cmd_desc desc;
1238 
1239 	desc.its_vmapti_cmd.vpe = map->vpe;
1240 	desc.its_vmapti_cmd.dev = dev;
1241 	desc.its_vmapti_cmd.virt_id = map->vintid;
1242 	desc.its_vmapti_cmd.event_id = id;
1243 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1244 
1245 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1246 }
1247 
1248 static void its_send_vmovi(struct its_device *dev, u32 id)
1249 {
1250 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1251 	struct its_cmd_desc desc;
1252 
1253 	desc.its_vmovi_cmd.vpe = map->vpe;
1254 	desc.its_vmovi_cmd.dev = dev;
1255 	desc.its_vmovi_cmd.event_id = id;
1256 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1257 
1258 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1259 }
1260 
1261 static void its_send_vmapp(struct its_node *its,
1262 			   struct its_vpe *vpe, bool valid)
1263 {
1264 	struct its_cmd_desc desc;
1265 
1266 	desc.its_vmapp_cmd.vpe = vpe;
1267 	desc.its_vmapp_cmd.valid = valid;
1268 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1269 
1270 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1271 }
1272 
1273 static void its_send_vmovp(struct its_vpe *vpe)
1274 {
1275 	struct its_cmd_desc desc = {};
1276 	struct its_node *its;
1277 	unsigned long flags;
1278 	int col_id = vpe->col_idx;
1279 
1280 	desc.its_vmovp_cmd.vpe = vpe;
1281 
1282 	if (!its_list_map) {
1283 		its = list_first_entry(&its_nodes, struct its_node, entry);
1284 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1285 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1286 		return;
1287 	}
1288 
1289 	/*
1290 	 * Yet another marvel of the architecture. If using the
1291 	 * its_list "feature", we need to make sure that all ITSs
1292 	 * receive all VMOVP commands in the same order. The only way
1293 	 * to guarantee this is to make vmovp a serialization point.
1294 	 *
1295 	 * Wall <-- Head.
1296 	 */
1297 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1298 
1299 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1300 	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1301 
1302 	/* Emit VMOVPs */
1303 	list_for_each_entry(its, &its_nodes, entry) {
1304 		if (!is_v4(its))
1305 			continue;
1306 
1307 		if (!require_its_list_vmovp(vpe->its_vm, its))
1308 			continue;
1309 
1310 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1311 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1312 	}
1313 
1314 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1315 }
1316 
1317 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1318 {
1319 	struct its_cmd_desc desc;
1320 
1321 	desc.its_vinvall_cmd.vpe = vpe;
1322 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1323 }
1324 
1325 static void its_send_vinv(struct its_device *dev, u32 event_id)
1326 {
1327 	struct its_cmd_desc desc;
1328 
1329 	/*
1330 	 * There is no real VINV command. This is just a normal INV,
1331 	 * with a VSYNC instead of a SYNC.
1332 	 */
1333 	desc.its_inv_cmd.dev = dev;
1334 	desc.its_inv_cmd.event_id = event_id;
1335 
1336 	its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1337 }
1338 
1339 static void its_send_vint(struct its_device *dev, u32 event_id)
1340 {
1341 	struct its_cmd_desc desc;
1342 
1343 	/*
1344 	 * There is no real VINT command. This is just a normal INT,
1345 	 * with a VSYNC instead of a SYNC.
1346 	 */
1347 	desc.its_int_cmd.dev = dev;
1348 	desc.its_int_cmd.event_id = event_id;
1349 
1350 	its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1351 }
1352 
1353 static void its_send_vclear(struct its_device *dev, u32 event_id)
1354 {
1355 	struct its_cmd_desc desc;
1356 
1357 	/*
1358 	 * There is no real VCLEAR command. This is just a normal CLEAR,
1359 	 * with a VSYNC instead of a SYNC.
1360 	 */
1361 	desc.its_clear_cmd.dev = dev;
1362 	desc.its_clear_cmd.event_id = event_id;
1363 
1364 	its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1365 }
1366 
1367 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1368 {
1369 	struct its_cmd_desc desc;
1370 
1371 	desc.its_invdb_cmd.vpe = vpe;
1372 	its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1373 }
1374 
1375 /*
1376  * irqchip functions - assumes MSI, mostly.
1377  */
1378 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1379 {
1380 	struct its_vlpi_map *map = get_vlpi_map(d);
1381 	irq_hw_number_t hwirq;
1382 	void *va;
1383 	u8 *cfg;
1384 
1385 	if (map) {
1386 		va = page_address(map->vm->vprop_page);
1387 		hwirq = map->vintid;
1388 
1389 		/* Remember the updated property */
1390 		map->properties &= ~clr;
1391 		map->properties |= set | LPI_PROP_GROUP1;
1392 	} else {
1393 		va = gic_rdists->prop_table_va;
1394 		hwirq = d->hwirq;
1395 	}
1396 
1397 	cfg = va + hwirq - 8192;
1398 	*cfg &= ~clr;
1399 	*cfg |= set | LPI_PROP_GROUP1;
1400 
1401 	/*
1402 	 * Make the above write visible to the redistributors.
1403 	 * And yes, we're flushing exactly: One. Single. Byte.
1404 	 * Humpf...
1405 	 */
1406 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1407 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1408 	else
1409 		dsb(ishst);
1410 }
1411 
1412 static void wait_for_syncr(void __iomem *rdbase)
1413 {
1414 	while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1415 		cpu_relax();
1416 }
1417 
1418 static void direct_lpi_inv(struct irq_data *d)
1419 {
1420 	struct its_vlpi_map *map = get_vlpi_map(d);
1421 	void __iomem *rdbase;
1422 	unsigned long flags;
1423 	u64 val;
1424 	int cpu;
1425 
1426 	if (map) {
1427 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1428 
1429 		WARN_ON(!is_v4_1(its_dev->its));
1430 
1431 		val  = GICR_INVLPIR_V;
1432 		val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1433 		val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1434 	} else {
1435 		val = d->hwirq;
1436 	}
1437 
1438 	/* Target the redistributor this LPI is currently routed to */
1439 	cpu = irq_to_cpuid_lock(d, &flags);
1440 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1441 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1442 	gic_write_lpir(val, rdbase + GICR_INVLPIR);
1443 
1444 	wait_for_syncr(rdbase);
1445 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1446 	irq_to_cpuid_unlock(d, flags);
1447 }
1448 
1449 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1450 {
1451 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1452 
1453 	lpi_write_config(d, clr, set);
1454 	if (gic_rdists->has_direct_lpi &&
1455 	    (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1456 		direct_lpi_inv(d);
1457 	else if (!irqd_is_forwarded_to_vcpu(d))
1458 		its_send_inv(its_dev, its_get_event_id(d));
1459 	else
1460 		its_send_vinv(its_dev, its_get_event_id(d));
1461 }
1462 
1463 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1464 {
1465 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1466 	u32 event = its_get_event_id(d);
1467 	struct its_vlpi_map *map;
1468 
1469 	/*
1470 	 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1471 	 * here.
1472 	 */
1473 	if (is_v4_1(its_dev->its))
1474 		return;
1475 
1476 	map = dev_event_to_vlpi_map(its_dev, event);
1477 
1478 	if (map->db_enabled == enable)
1479 		return;
1480 
1481 	map->db_enabled = enable;
1482 
1483 	/*
1484 	 * More fun with the architecture:
1485 	 *
1486 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1487 	 * value or to 1023, depending on the enable bit. But that
1488 	 * would be issueing a mapping for an /existing/ DevID+EventID
1489 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1490 	 * to the /same/ vPE, using this opportunity to adjust the
1491 	 * doorbell. Mouahahahaha. We loves it, Precious.
1492 	 */
1493 	its_send_vmovi(its_dev, event);
1494 }
1495 
1496 static void its_mask_irq(struct irq_data *d)
1497 {
1498 	if (irqd_is_forwarded_to_vcpu(d))
1499 		its_vlpi_set_doorbell(d, false);
1500 
1501 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1502 }
1503 
1504 static void its_unmask_irq(struct irq_data *d)
1505 {
1506 	if (irqd_is_forwarded_to_vcpu(d))
1507 		its_vlpi_set_doorbell(d, true);
1508 
1509 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1510 }
1511 
1512 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1513 			    bool force)
1514 {
1515 	unsigned int cpu;
1516 	const struct cpumask *cpu_mask = cpu_online_mask;
1517 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1518 	struct its_collection *target_col;
1519 	u32 id = its_get_event_id(d);
1520 
1521 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1522 	if (irqd_is_forwarded_to_vcpu(d))
1523 		return -EINVAL;
1524 
1525        /* lpi cannot be routed to a redistributor that is on a foreign node */
1526 	if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1527 		if (its_dev->its->numa_node >= 0) {
1528 			cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1529 			if (!cpumask_intersects(mask_val, cpu_mask))
1530 				return -EINVAL;
1531 		}
1532 	}
1533 
1534 	cpu = cpumask_any_and(mask_val, cpu_mask);
1535 
1536 	if (cpu >= nr_cpu_ids)
1537 		return -EINVAL;
1538 
1539 	/* don't set the affinity when the target cpu is same as current one */
1540 	if (cpu != its_dev->event_map.col_map[id]) {
1541 		target_col = &its_dev->its->collections[cpu];
1542 		its_send_movi(its_dev, target_col, id);
1543 		its_dev->event_map.col_map[id] = cpu;
1544 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1545 	}
1546 
1547 	return IRQ_SET_MASK_OK_DONE;
1548 }
1549 
1550 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1551 {
1552 	struct its_node *its = its_dev->its;
1553 
1554 	return its->phys_base + GITS_TRANSLATER;
1555 }
1556 
1557 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1558 {
1559 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1560 	struct its_node *its;
1561 	u64 addr;
1562 
1563 	its = its_dev->its;
1564 	addr = its->get_msi_base(its_dev);
1565 
1566 	msg->address_lo		= lower_32_bits(addr);
1567 	msg->address_hi		= upper_32_bits(addr);
1568 	msg->data		= its_get_event_id(d);
1569 
1570 	iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1571 }
1572 
1573 static int its_irq_set_irqchip_state(struct irq_data *d,
1574 				     enum irqchip_irq_state which,
1575 				     bool state)
1576 {
1577 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1578 	u32 event = its_get_event_id(d);
1579 
1580 	if (which != IRQCHIP_STATE_PENDING)
1581 		return -EINVAL;
1582 
1583 	if (irqd_is_forwarded_to_vcpu(d)) {
1584 		if (state)
1585 			its_send_vint(its_dev, event);
1586 		else
1587 			its_send_vclear(its_dev, event);
1588 	} else {
1589 		if (state)
1590 			its_send_int(its_dev, event);
1591 		else
1592 			its_send_clear(its_dev, event);
1593 	}
1594 
1595 	return 0;
1596 }
1597 
1598 /*
1599  * Two favourable cases:
1600  *
1601  * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1602  *     for vSGI delivery
1603  *
1604  * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1605  *     and we're better off mapping all VPEs always
1606  *
1607  * If neither (a) nor (b) is true, then we map vPEs on demand.
1608  *
1609  */
1610 static bool gic_requires_eager_mapping(void)
1611 {
1612 	if (!its_list_map || gic_rdists->has_rvpeid)
1613 		return true;
1614 
1615 	return false;
1616 }
1617 
1618 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1619 {
1620 	unsigned long flags;
1621 
1622 	if (gic_requires_eager_mapping())
1623 		return;
1624 
1625 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1626 
1627 	/*
1628 	 * If the VM wasn't mapped yet, iterate over the vpes and get
1629 	 * them mapped now.
1630 	 */
1631 	vm->vlpi_count[its->list_nr]++;
1632 
1633 	if (vm->vlpi_count[its->list_nr] == 1) {
1634 		int i;
1635 
1636 		for (i = 0; i < vm->nr_vpes; i++) {
1637 			struct its_vpe *vpe = vm->vpes[i];
1638 			struct irq_data *d = irq_get_irq_data(vpe->irq);
1639 
1640 			/* Map the VPE to the first possible CPU */
1641 			vpe->col_idx = cpumask_first(cpu_online_mask);
1642 			its_send_vmapp(its, vpe, true);
1643 			its_send_vinvall(its, vpe);
1644 			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1645 		}
1646 	}
1647 
1648 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1649 }
1650 
1651 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1652 {
1653 	unsigned long flags;
1654 
1655 	/* Not using the ITS list? Everything is always mapped. */
1656 	if (gic_requires_eager_mapping())
1657 		return;
1658 
1659 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1660 
1661 	if (!--vm->vlpi_count[its->list_nr]) {
1662 		int i;
1663 
1664 		for (i = 0; i < vm->nr_vpes; i++)
1665 			its_send_vmapp(its, vm->vpes[i], false);
1666 	}
1667 
1668 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1669 }
1670 
1671 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1672 {
1673 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1674 	u32 event = its_get_event_id(d);
1675 	int ret = 0;
1676 
1677 	if (!info->map)
1678 		return -EINVAL;
1679 
1680 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1681 
1682 	if (!its_dev->event_map.vm) {
1683 		struct its_vlpi_map *maps;
1684 
1685 		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1686 			       GFP_ATOMIC);
1687 		if (!maps) {
1688 			ret = -ENOMEM;
1689 			goto out;
1690 		}
1691 
1692 		its_dev->event_map.vm = info->map->vm;
1693 		its_dev->event_map.vlpi_maps = maps;
1694 	} else if (its_dev->event_map.vm != info->map->vm) {
1695 		ret = -EINVAL;
1696 		goto out;
1697 	}
1698 
1699 	/* Get our private copy of the mapping information */
1700 	its_dev->event_map.vlpi_maps[event] = *info->map;
1701 
1702 	if (irqd_is_forwarded_to_vcpu(d)) {
1703 		/* Already mapped, move it around */
1704 		its_send_vmovi(its_dev, event);
1705 	} else {
1706 		/* Ensure all the VPEs are mapped on this ITS */
1707 		its_map_vm(its_dev->its, info->map->vm);
1708 
1709 		/*
1710 		 * Flag the interrupt as forwarded so that we can
1711 		 * start poking the virtual property table.
1712 		 */
1713 		irqd_set_forwarded_to_vcpu(d);
1714 
1715 		/* Write out the property to the prop table */
1716 		lpi_write_config(d, 0xff, info->map->properties);
1717 
1718 		/* Drop the physical mapping */
1719 		its_send_discard(its_dev, event);
1720 
1721 		/* and install the virtual one */
1722 		its_send_vmapti(its_dev, event);
1723 
1724 		/* Increment the number of VLPIs */
1725 		its_dev->event_map.nr_vlpis++;
1726 	}
1727 
1728 out:
1729 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1730 	return ret;
1731 }
1732 
1733 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1734 {
1735 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1736 	struct its_vlpi_map *map;
1737 	int ret = 0;
1738 
1739 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1740 
1741 	map = get_vlpi_map(d);
1742 
1743 	if (!its_dev->event_map.vm || !map) {
1744 		ret = -EINVAL;
1745 		goto out;
1746 	}
1747 
1748 	/* Copy our mapping information to the incoming request */
1749 	*info->map = *map;
1750 
1751 out:
1752 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1753 	return ret;
1754 }
1755 
1756 static int its_vlpi_unmap(struct irq_data *d)
1757 {
1758 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1759 	u32 event = its_get_event_id(d);
1760 	int ret = 0;
1761 
1762 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1763 
1764 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1765 		ret = -EINVAL;
1766 		goto out;
1767 	}
1768 
1769 	/* Drop the virtual mapping */
1770 	its_send_discard(its_dev, event);
1771 
1772 	/* and restore the physical one */
1773 	irqd_clr_forwarded_to_vcpu(d);
1774 	its_send_mapti(its_dev, d->hwirq, event);
1775 	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1776 				    LPI_PROP_ENABLED |
1777 				    LPI_PROP_GROUP1));
1778 
1779 	/* Potentially unmap the VM from this ITS */
1780 	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1781 
1782 	/*
1783 	 * Drop the refcount and make the device available again if
1784 	 * this was the last VLPI.
1785 	 */
1786 	if (!--its_dev->event_map.nr_vlpis) {
1787 		its_dev->event_map.vm = NULL;
1788 		kfree(its_dev->event_map.vlpi_maps);
1789 	}
1790 
1791 out:
1792 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1793 	return ret;
1794 }
1795 
1796 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1797 {
1798 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1799 
1800 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1801 		return -EINVAL;
1802 
1803 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1804 		lpi_update_config(d, 0xff, info->config);
1805 	else
1806 		lpi_write_config(d, 0xff, info->config);
1807 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1808 
1809 	return 0;
1810 }
1811 
1812 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1813 {
1814 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1815 	struct its_cmd_info *info = vcpu_info;
1816 
1817 	/* Need a v4 ITS */
1818 	if (!is_v4(its_dev->its))
1819 		return -EINVAL;
1820 
1821 	/* Unmap request? */
1822 	if (!info)
1823 		return its_vlpi_unmap(d);
1824 
1825 	switch (info->cmd_type) {
1826 	case MAP_VLPI:
1827 		return its_vlpi_map(d, info);
1828 
1829 	case GET_VLPI:
1830 		return its_vlpi_get(d, info);
1831 
1832 	case PROP_UPDATE_VLPI:
1833 	case PROP_UPDATE_AND_INV_VLPI:
1834 		return its_vlpi_prop_update(d, info);
1835 
1836 	default:
1837 		return -EINVAL;
1838 	}
1839 }
1840 
1841 static struct irq_chip its_irq_chip = {
1842 	.name			= "ITS",
1843 	.irq_mask		= its_mask_irq,
1844 	.irq_unmask		= its_unmask_irq,
1845 	.irq_eoi		= irq_chip_eoi_parent,
1846 	.irq_set_affinity	= its_set_affinity,
1847 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
1848 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
1849 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
1850 };
1851 
1852 
1853 /*
1854  * How we allocate LPIs:
1855  *
1856  * lpi_range_list contains ranges of LPIs that are to available to
1857  * allocate from. To allocate LPIs, just pick the first range that
1858  * fits the required allocation, and reduce it by the required
1859  * amount. Once empty, remove the range from the list.
1860  *
1861  * To free a range of LPIs, add a free range to the list, sort it and
1862  * merge the result if the new range happens to be adjacent to an
1863  * already free block.
1864  *
1865  * The consequence of the above is that allocation is cost is low, but
1866  * freeing is expensive. We assumes that freeing rarely occurs.
1867  */
1868 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
1869 
1870 static DEFINE_MUTEX(lpi_range_lock);
1871 static LIST_HEAD(lpi_range_list);
1872 
1873 struct lpi_range {
1874 	struct list_head	entry;
1875 	u32			base_id;
1876 	u32			span;
1877 };
1878 
1879 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
1880 {
1881 	struct lpi_range *range;
1882 
1883 	range = kmalloc(sizeof(*range), GFP_KERNEL);
1884 	if (range) {
1885 		range->base_id = base;
1886 		range->span = span;
1887 	}
1888 
1889 	return range;
1890 }
1891 
1892 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
1893 {
1894 	struct lpi_range *range, *tmp;
1895 	int err = -ENOSPC;
1896 
1897 	mutex_lock(&lpi_range_lock);
1898 
1899 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
1900 		if (range->span >= nr_lpis) {
1901 			*base = range->base_id;
1902 			range->base_id += nr_lpis;
1903 			range->span -= nr_lpis;
1904 
1905 			if (range->span == 0) {
1906 				list_del(&range->entry);
1907 				kfree(range);
1908 			}
1909 
1910 			err = 0;
1911 			break;
1912 		}
1913 	}
1914 
1915 	mutex_unlock(&lpi_range_lock);
1916 
1917 	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
1918 	return err;
1919 }
1920 
1921 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
1922 {
1923 	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
1924 		return;
1925 	if (a->base_id + a->span != b->base_id)
1926 		return;
1927 	b->base_id = a->base_id;
1928 	b->span += a->span;
1929 	list_del(&a->entry);
1930 	kfree(a);
1931 }
1932 
1933 static int free_lpi_range(u32 base, u32 nr_lpis)
1934 {
1935 	struct lpi_range *new, *old;
1936 
1937 	new = mk_lpi_range(base, nr_lpis);
1938 	if (!new)
1939 		return -ENOMEM;
1940 
1941 	mutex_lock(&lpi_range_lock);
1942 
1943 	list_for_each_entry_reverse(old, &lpi_range_list, entry) {
1944 		if (old->base_id < base)
1945 			break;
1946 	}
1947 	/*
1948 	 * old is the last element with ->base_id smaller than base,
1949 	 * so new goes right after it. If there are no elements with
1950 	 * ->base_id smaller than base, &old->entry ends up pointing
1951 	 * at the head of the list, and inserting new it the start of
1952 	 * the list is the right thing to do in that case as well.
1953 	 */
1954 	list_add(&new->entry, &old->entry);
1955 	/*
1956 	 * Now check if we can merge with the preceding and/or
1957 	 * following ranges.
1958 	 */
1959 	merge_lpi_ranges(old, new);
1960 	merge_lpi_ranges(new, list_next_entry(new, entry));
1961 
1962 	mutex_unlock(&lpi_range_lock);
1963 	return 0;
1964 }
1965 
1966 static int __init its_lpi_init(u32 id_bits)
1967 {
1968 	u32 lpis = (1UL << id_bits) - 8192;
1969 	u32 numlpis;
1970 	int err;
1971 
1972 	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
1973 
1974 	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
1975 		lpis = numlpis;
1976 		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
1977 			lpis);
1978 	}
1979 
1980 	/*
1981 	 * Initializing the allocator is just the same as freeing the
1982 	 * full range of LPIs.
1983 	 */
1984 	err = free_lpi_range(8192, lpis);
1985 	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
1986 	return err;
1987 }
1988 
1989 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
1990 {
1991 	unsigned long *bitmap = NULL;
1992 	int err = 0;
1993 
1994 	do {
1995 		err = alloc_lpi_range(nr_irqs, base);
1996 		if (!err)
1997 			break;
1998 
1999 		nr_irqs /= 2;
2000 	} while (nr_irqs > 0);
2001 
2002 	if (!nr_irqs)
2003 		err = -ENOSPC;
2004 
2005 	if (err)
2006 		goto out;
2007 
2008 	bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC);
2009 	if (!bitmap)
2010 		goto out;
2011 
2012 	*nr_ids = nr_irqs;
2013 
2014 out:
2015 	if (!bitmap)
2016 		*base = *nr_ids = 0;
2017 
2018 	return bitmap;
2019 }
2020 
2021 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2022 {
2023 	WARN_ON(free_lpi_range(base, nr_ids));
2024 	kfree(bitmap);
2025 }
2026 
2027 static void gic_reset_prop_table(void *va)
2028 {
2029 	/* Priority 0xa0, Group-1, disabled */
2030 	memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2031 
2032 	/* Make sure the GIC will observe the written configuration */
2033 	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2034 }
2035 
2036 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2037 {
2038 	struct page *prop_page;
2039 
2040 	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2041 	if (!prop_page)
2042 		return NULL;
2043 
2044 	gic_reset_prop_table(page_address(prop_page));
2045 
2046 	return prop_page;
2047 }
2048 
2049 static void its_free_prop_table(struct page *prop_page)
2050 {
2051 	free_pages((unsigned long)page_address(prop_page),
2052 		   get_order(LPI_PROPBASE_SZ));
2053 }
2054 
2055 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2056 {
2057 	phys_addr_t start, end, addr_end;
2058 	u64 i;
2059 
2060 	/*
2061 	 * We don't bother checking for a kdump kernel as by
2062 	 * construction, the LPI tables are out of this kernel's
2063 	 * memory map.
2064 	 */
2065 	if (is_kdump_kernel())
2066 		return true;
2067 
2068 	addr_end = addr + size - 1;
2069 
2070 	for_each_reserved_mem_region(i, &start, &end) {
2071 		if (addr >= start && addr_end <= end)
2072 			return true;
2073 	}
2074 
2075 	/* Not found, not a good sign... */
2076 	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2077 		&addr, &addr_end);
2078 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2079 	return false;
2080 }
2081 
2082 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2083 {
2084 	if (efi_enabled(EFI_CONFIG_TABLES))
2085 		return efi_mem_reserve_persistent(addr, size);
2086 
2087 	return 0;
2088 }
2089 
2090 static int __init its_setup_lpi_prop_table(void)
2091 {
2092 	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2093 		u64 val;
2094 
2095 		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2096 		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2097 
2098 		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2099 		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2100 						     LPI_PROPBASE_SZ,
2101 						     MEMREMAP_WB);
2102 		gic_reset_prop_table(gic_rdists->prop_table_va);
2103 	} else {
2104 		struct page *page;
2105 
2106 		lpi_id_bits = min_t(u32,
2107 				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2108 				    ITS_MAX_LPI_NRBITS);
2109 		page = its_allocate_prop_table(GFP_NOWAIT);
2110 		if (!page) {
2111 			pr_err("Failed to allocate PROPBASE\n");
2112 			return -ENOMEM;
2113 		}
2114 
2115 		gic_rdists->prop_table_pa = page_to_phys(page);
2116 		gic_rdists->prop_table_va = page_address(page);
2117 		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2118 					  LPI_PROPBASE_SZ));
2119 	}
2120 
2121 	pr_info("GICv3: using LPI property table @%pa\n",
2122 		&gic_rdists->prop_table_pa);
2123 
2124 	return its_lpi_init(lpi_id_bits);
2125 }
2126 
2127 static const char *its_base_type_string[] = {
2128 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
2129 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
2130 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
2131 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
2132 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
2133 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
2134 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
2135 };
2136 
2137 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2138 {
2139 	u32 idx = baser - its->tables;
2140 
2141 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2142 }
2143 
2144 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2145 			    u64 val)
2146 {
2147 	u32 idx = baser - its->tables;
2148 
2149 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2150 	baser->val = its_read_baser(its, baser);
2151 }
2152 
2153 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2154 			   u64 cache, u64 shr, u32 order, bool indirect)
2155 {
2156 	u64 val = its_read_baser(its, baser);
2157 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
2158 	u64 type = GITS_BASER_TYPE(val);
2159 	u64 baser_phys, tmp;
2160 	u32 alloc_pages, psz;
2161 	struct page *page;
2162 	void *base;
2163 
2164 	psz = baser->psz;
2165 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2166 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
2167 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2168 			&its->phys_base, its_base_type_string[type],
2169 			alloc_pages, GITS_BASER_PAGES_MAX);
2170 		alloc_pages = GITS_BASER_PAGES_MAX;
2171 		order = get_order(GITS_BASER_PAGES_MAX * psz);
2172 	}
2173 
2174 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2175 	if (!page)
2176 		return -ENOMEM;
2177 
2178 	base = (void *)page_address(page);
2179 	baser_phys = virt_to_phys(base);
2180 
2181 	/* Check if the physical address of the memory is above 48bits */
2182 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2183 
2184 		/* 52bit PA is supported only when PageSize=64K */
2185 		if (psz != SZ_64K) {
2186 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2187 			free_pages((unsigned long)base, order);
2188 			return -ENXIO;
2189 		}
2190 
2191 		/* Convert 52bit PA to 48bit field */
2192 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2193 	}
2194 
2195 retry_baser:
2196 	val = (baser_phys					 |
2197 		(type << GITS_BASER_TYPE_SHIFT)			 |
2198 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
2199 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
2200 		cache						 |
2201 		shr						 |
2202 		GITS_BASER_VALID);
2203 
2204 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
2205 
2206 	switch (psz) {
2207 	case SZ_4K:
2208 		val |= GITS_BASER_PAGE_SIZE_4K;
2209 		break;
2210 	case SZ_16K:
2211 		val |= GITS_BASER_PAGE_SIZE_16K;
2212 		break;
2213 	case SZ_64K:
2214 		val |= GITS_BASER_PAGE_SIZE_64K;
2215 		break;
2216 	}
2217 
2218 	its_write_baser(its, baser, val);
2219 	tmp = baser->val;
2220 
2221 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2222 		/*
2223 		 * Shareability didn't stick. Just use
2224 		 * whatever the read reported, which is likely
2225 		 * to be the only thing this redistributor
2226 		 * supports. If that's zero, make it
2227 		 * non-cacheable as well.
2228 		 */
2229 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2230 		if (!shr) {
2231 			cache = GITS_BASER_nC;
2232 			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2233 		}
2234 		goto retry_baser;
2235 	}
2236 
2237 	if (val != tmp) {
2238 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2239 		       &its->phys_base, its_base_type_string[type],
2240 		       val, tmp);
2241 		free_pages((unsigned long)base, order);
2242 		return -ENXIO;
2243 	}
2244 
2245 	baser->order = order;
2246 	baser->base = base;
2247 	baser->psz = psz;
2248 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2249 
2250 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2251 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2252 		its_base_type_string[type],
2253 		(unsigned long)virt_to_phys(base),
2254 		indirect ? "indirect" : "flat", (int)esz,
2255 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2256 
2257 	return 0;
2258 }
2259 
2260 static bool its_parse_indirect_baser(struct its_node *its,
2261 				     struct its_baser *baser,
2262 				     u32 *order, u32 ids)
2263 {
2264 	u64 tmp = its_read_baser(its, baser);
2265 	u64 type = GITS_BASER_TYPE(tmp);
2266 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2267 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2268 	u32 new_order = *order;
2269 	u32 psz = baser->psz;
2270 	bool indirect = false;
2271 
2272 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
2273 	if ((esz << ids) > (psz * 2)) {
2274 		/*
2275 		 * Find out whether hw supports a single or two-level table by
2276 		 * table by reading bit at offset '62' after writing '1' to it.
2277 		 */
2278 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2279 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
2280 
2281 		if (indirect) {
2282 			/*
2283 			 * The size of the lvl2 table is equal to ITS page size
2284 			 * which is 'psz'. For computing lvl1 table size,
2285 			 * subtract ID bits that sparse lvl2 table from 'ids'
2286 			 * which is reported by ITS hardware times lvl1 table
2287 			 * entry size.
2288 			 */
2289 			ids -= ilog2(psz / (int)esz);
2290 			esz = GITS_LVL1_ENTRY_SIZE;
2291 		}
2292 	}
2293 
2294 	/*
2295 	 * Allocate as many entries as required to fit the
2296 	 * range of device IDs that the ITS can grok... The ID
2297 	 * space being incredibly sparse, this results in a
2298 	 * massive waste of memory if two-level device table
2299 	 * feature is not supported by hardware.
2300 	 */
2301 	new_order = max_t(u32, get_order(esz << ids), new_order);
2302 	if (new_order >= MAX_ORDER) {
2303 		new_order = MAX_ORDER - 1;
2304 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2305 		pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2306 			&its->phys_base, its_base_type_string[type],
2307 			device_ids(its), ids);
2308 	}
2309 
2310 	*order = new_order;
2311 
2312 	return indirect;
2313 }
2314 
2315 static u32 compute_common_aff(u64 val)
2316 {
2317 	u32 aff, clpiaff;
2318 
2319 	aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2320 	clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2321 
2322 	return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2323 }
2324 
2325 static u32 compute_its_aff(struct its_node *its)
2326 {
2327 	u64 val;
2328 	u32 svpet;
2329 
2330 	/*
2331 	 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2332 	 * the resulting affinity. We then use that to see if this match
2333 	 * our own affinity.
2334 	 */
2335 	svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2336 	val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2337 	val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2338 	return compute_common_aff(val);
2339 }
2340 
2341 static struct its_node *find_sibling_its(struct its_node *cur_its)
2342 {
2343 	struct its_node *its;
2344 	u32 aff;
2345 
2346 	if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2347 		return NULL;
2348 
2349 	aff = compute_its_aff(cur_its);
2350 
2351 	list_for_each_entry(its, &its_nodes, entry) {
2352 		u64 baser;
2353 
2354 		if (!is_v4_1(its) || its == cur_its)
2355 			continue;
2356 
2357 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2358 			continue;
2359 
2360 		if (aff != compute_its_aff(its))
2361 			continue;
2362 
2363 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2364 		baser = its->tables[2].val;
2365 		if (!(baser & GITS_BASER_VALID))
2366 			continue;
2367 
2368 		return its;
2369 	}
2370 
2371 	return NULL;
2372 }
2373 
2374 static void its_free_tables(struct its_node *its)
2375 {
2376 	int i;
2377 
2378 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2379 		if (its->tables[i].base) {
2380 			free_pages((unsigned long)its->tables[i].base,
2381 				   its->tables[i].order);
2382 			its->tables[i].base = NULL;
2383 		}
2384 	}
2385 }
2386 
2387 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2388 {
2389 	u64 psz = SZ_64K;
2390 
2391 	while (psz) {
2392 		u64 val, gpsz;
2393 
2394 		val = its_read_baser(its, baser);
2395 		val &= ~GITS_BASER_PAGE_SIZE_MASK;
2396 
2397 		switch (psz) {
2398 		case SZ_64K:
2399 			gpsz = GITS_BASER_PAGE_SIZE_64K;
2400 			break;
2401 		case SZ_16K:
2402 			gpsz = GITS_BASER_PAGE_SIZE_16K;
2403 			break;
2404 		case SZ_4K:
2405 		default:
2406 			gpsz = GITS_BASER_PAGE_SIZE_4K;
2407 			break;
2408 		}
2409 
2410 		gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2411 
2412 		val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2413 		its_write_baser(its, baser, val);
2414 
2415 		if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2416 			break;
2417 
2418 		switch (psz) {
2419 		case SZ_64K:
2420 			psz = SZ_16K;
2421 			break;
2422 		case SZ_16K:
2423 			psz = SZ_4K;
2424 			break;
2425 		case SZ_4K:
2426 		default:
2427 			return -1;
2428 		}
2429 	}
2430 
2431 	baser->psz = psz;
2432 	return 0;
2433 }
2434 
2435 static int its_alloc_tables(struct its_node *its)
2436 {
2437 	u64 shr = GITS_BASER_InnerShareable;
2438 	u64 cache = GITS_BASER_RaWaWb;
2439 	int err, i;
2440 
2441 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2442 		/* erratum 24313: ignore memory access type */
2443 		cache = GITS_BASER_nCnB;
2444 
2445 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2446 		struct its_baser *baser = its->tables + i;
2447 		u64 val = its_read_baser(its, baser);
2448 		u64 type = GITS_BASER_TYPE(val);
2449 		bool indirect = false;
2450 		u32 order;
2451 
2452 		if (type == GITS_BASER_TYPE_NONE)
2453 			continue;
2454 
2455 		if (its_probe_baser_psz(its, baser)) {
2456 			its_free_tables(its);
2457 			return -ENXIO;
2458 		}
2459 
2460 		order = get_order(baser->psz);
2461 
2462 		switch (type) {
2463 		case GITS_BASER_TYPE_DEVICE:
2464 			indirect = its_parse_indirect_baser(its, baser, &order,
2465 							    device_ids(its));
2466 			break;
2467 
2468 		case GITS_BASER_TYPE_VCPU:
2469 			if (is_v4_1(its)) {
2470 				struct its_node *sibling;
2471 
2472 				WARN_ON(i != 2);
2473 				if ((sibling = find_sibling_its(its))) {
2474 					*baser = sibling->tables[2];
2475 					its_write_baser(its, baser, baser->val);
2476 					continue;
2477 				}
2478 			}
2479 
2480 			indirect = its_parse_indirect_baser(its, baser, &order,
2481 							    ITS_MAX_VPEID_BITS);
2482 			break;
2483 		}
2484 
2485 		err = its_setup_baser(its, baser, cache, shr, order, indirect);
2486 		if (err < 0) {
2487 			its_free_tables(its);
2488 			return err;
2489 		}
2490 
2491 		/* Update settings which will be used for next BASERn */
2492 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2493 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2494 	}
2495 
2496 	return 0;
2497 }
2498 
2499 static u64 inherit_vpe_l1_table_from_its(void)
2500 {
2501 	struct its_node *its;
2502 	u64 val;
2503 	u32 aff;
2504 
2505 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2506 	aff = compute_common_aff(val);
2507 
2508 	list_for_each_entry(its, &its_nodes, entry) {
2509 		u64 baser, addr;
2510 
2511 		if (!is_v4_1(its))
2512 			continue;
2513 
2514 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2515 			continue;
2516 
2517 		if (aff != compute_its_aff(its))
2518 			continue;
2519 
2520 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2521 		baser = its->tables[2].val;
2522 		if (!(baser & GITS_BASER_VALID))
2523 			continue;
2524 
2525 		/* We have a winner! */
2526 		gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2527 
2528 		val  = GICR_VPROPBASER_4_1_VALID;
2529 		if (baser & GITS_BASER_INDIRECT)
2530 			val |= GICR_VPROPBASER_4_1_INDIRECT;
2531 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2532 				  FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2533 		switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2534 		case GIC_PAGE_SIZE_64K:
2535 			addr = GITS_BASER_ADDR_48_to_52(baser);
2536 			break;
2537 		default:
2538 			addr = baser & GENMASK_ULL(47, 12);
2539 			break;
2540 		}
2541 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2542 		val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2543 				  FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2544 		val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2545 				  FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2546 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2547 
2548 		return val;
2549 	}
2550 
2551 	return 0;
2552 }
2553 
2554 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2555 {
2556 	u32 aff;
2557 	u64 val;
2558 	int cpu;
2559 
2560 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2561 	aff = compute_common_aff(val);
2562 
2563 	for_each_possible_cpu(cpu) {
2564 		void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2565 
2566 		if (!base || cpu == smp_processor_id())
2567 			continue;
2568 
2569 		val = gic_read_typer(base + GICR_TYPER);
2570 		if (aff != compute_common_aff(val))
2571 			continue;
2572 
2573 		/*
2574 		 * At this point, we have a victim. This particular CPU
2575 		 * has already booted, and has an affinity that matches
2576 		 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2577 		 * Make sure we don't write the Z bit in that case.
2578 		 */
2579 		val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2580 		val &= ~GICR_VPROPBASER_4_1_Z;
2581 
2582 		gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2583 		*mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2584 
2585 		return val;
2586 	}
2587 
2588 	return 0;
2589 }
2590 
2591 static bool allocate_vpe_l2_table(int cpu, u32 id)
2592 {
2593 	void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2594 	unsigned int psz, esz, idx, npg, gpsz;
2595 	u64 val;
2596 	struct page *page;
2597 	__le64 *table;
2598 
2599 	if (!gic_rdists->has_rvpeid)
2600 		return true;
2601 
2602 	/* Skip non-present CPUs */
2603 	if (!base)
2604 		return true;
2605 
2606 	val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2607 
2608 	esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2609 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2610 	npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2611 
2612 	switch (gpsz) {
2613 	default:
2614 		WARN_ON(1);
2615 		/* fall through */
2616 	case GIC_PAGE_SIZE_4K:
2617 		psz = SZ_4K;
2618 		break;
2619 	case GIC_PAGE_SIZE_16K:
2620 		psz = SZ_16K;
2621 		break;
2622 	case GIC_PAGE_SIZE_64K:
2623 		psz = SZ_64K;
2624 		break;
2625 	}
2626 
2627 	/* Don't allow vpe_id that exceeds single, flat table limit */
2628 	if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2629 		return (id < (npg * psz / (esz * SZ_8)));
2630 
2631 	/* Compute 1st level table index & check if that exceeds table limit */
2632 	idx = id >> ilog2(psz / (esz * SZ_8));
2633 	if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2634 		return false;
2635 
2636 	table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2637 
2638 	/* Allocate memory for 2nd level table */
2639 	if (!table[idx]) {
2640 		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2641 		if (!page)
2642 			return false;
2643 
2644 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2645 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2646 			gic_flush_dcache_to_poc(page_address(page), psz);
2647 
2648 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2649 
2650 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2651 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2652 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2653 
2654 		/* Ensure updated table contents are visible to RD hardware */
2655 		dsb(sy);
2656 	}
2657 
2658 	return true;
2659 }
2660 
2661 static int allocate_vpe_l1_table(void)
2662 {
2663 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2664 	u64 val, gpsz, npg, pa;
2665 	unsigned int psz = SZ_64K;
2666 	unsigned int np, epp, esz;
2667 	struct page *page;
2668 
2669 	if (!gic_rdists->has_rvpeid)
2670 		return 0;
2671 
2672 	/*
2673 	 * if VPENDBASER.Valid is set, disable any previously programmed
2674 	 * VPE by setting PendingLast while clearing Valid. This has the
2675 	 * effect of making sure no doorbell will be generated and we can
2676 	 * then safely clear VPROPBASER.Valid.
2677 	 */
2678 	if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2679 		gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2680 				      vlpi_base + GICR_VPENDBASER);
2681 
2682 	/*
2683 	 * If we can inherit the configuration from another RD, let's do
2684 	 * so. Otherwise, we have to go through the allocation process. We
2685 	 * assume that all RDs have the exact same requirements, as
2686 	 * nothing will work otherwise.
2687 	 */
2688 	val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2689 	if (val & GICR_VPROPBASER_4_1_VALID)
2690 		goto out;
2691 
2692 	gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_KERNEL);
2693 	if (!gic_data_rdist()->vpe_table_mask)
2694 		return -ENOMEM;
2695 
2696 	val = inherit_vpe_l1_table_from_its();
2697 	if (val & GICR_VPROPBASER_4_1_VALID)
2698 		goto out;
2699 
2700 	/* First probe the page size */
2701 	val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2702 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2703 	val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2704 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2705 	esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2706 
2707 	switch (gpsz) {
2708 	default:
2709 		gpsz = GIC_PAGE_SIZE_4K;
2710 		/* fall through */
2711 	case GIC_PAGE_SIZE_4K:
2712 		psz = SZ_4K;
2713 		break;
2714 	case GIC_PAGE_SIZE_16K:
2715 		psz = SZ_16K;
2716 		break;
2717 	case GIC_PAGE_SIZE_64K:
2718 		psz = SZ_64K;
2719 		break;
2720 	}
2721 
2722 	/*
2723 	 * Start populating the register from scratch, including RO fields
2724 	 * (which we want to print in debug cases...)
2725 	 */
2726 	val = 0;
2727 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2728 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2729 
2730 	/* How many entries per GIC page? */
2731 	esz++;
2732 	epp = psz / (esz * SZ_8);
2733 
2734 	/*
2735 	 * If we need more than just a single L1 page, flag the table
2736 	 * as indirect and compute the number of required L1 pages.
2737 	 */
2738 	if (epp < ITS_MAX_VPEID) {
2739 		int nl2;
2740 
2741 		val |= GICR_VPROPBASER_4_1_INDIRECT;
2742 
2743 		/* Number of L2 pages required to cover the VPEID space */
2744 		nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2745 
2746 		/* Number of L1 pages to point to the L2 pages */
2747 		npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2748 	} else {
2749 		npg = 1;
2750 	}
2751 
2752 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2753 
2754 	/* Right, that's the number of CPU pages we need for L1 */
2755 	np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2756 
2757 	pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2758 		 np, npg, psz, epp, esz);
2759 	page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(np * PAGE_SIZE));
2760 	if (!page)
2761 		return -ENOMEM;
2762 
2763 	gic_data_rdist()->vpe_l1_base = page_address(page);
2764 	pa = virt_to_phys(page_address(page));
2765 	WARN_ON(!IS_ALIGNED(pa, psz));
2766 
2767 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2768 	val |= GICR_VPROPBASER_RaWb;
2769 	val |= GICR_VPROPBASER_InnerShareable;
2770 	val |= GICR_VPROPBASER_4_1_Z;
2771 	val |= GICR_VPROPBASER_4_1_VALID;
2772 
2773 out:
2774 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2775 	cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2776 
2777 	pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2778 		 smp_processor_id(), val,
2779 		 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2780 
2781 	return 0;
2782 }
2783 
2784 static int its_alloc_collections(struct its_node *its)
2785 {
2786 	int i;
2787 
2788 	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2789 				   GFP_KERNEL);
2790 	if (!its->collections)
2791 		return -ENOMEM;
2792 
2793 	for (i = 0; i < nr_cpu_ids; i++)
2794 		its->collections[i].target_address = ~0ULL;
2795 
2796 	return 0;
2797 }
2798 
2799 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2800 {
2801 	struct page *pend_page;
2802 
2803 	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2804 				get_order(LPI_PENDBASE_SZ));
2805 	if (!pend_page)
2806 		return NULL;
2807 
2808 	/* Make sure the GIC will observe the zero-ed page */
2809 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2810 
2811 	return pend_page;
2812 }
2813 
2814 static void its_free_pending_table(struct page *pt)
2815 {
2816 	free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2817 }
2818 
2819 /*
2820  * Booting with kdump and LPIs enabled is generally fine. Any other
2821  * case is wrong in the absence of firmware/EFI support.
2822  */
2823 static bool enabled_lpis_allowed(void)
2824 {
2825 	phys_addr_t addr;
2826 	u64 val;
2827 
2828 	/* Check whether the property table is in a reserved region */
2829 	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2830 	addr = val & GENMASK_ULL(51, 12);
2831 
2832 	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2833 }
2834 
2835 static int __init allocate_lpi_tables(void)
2836 {
2837 	u64 val;
2838 	int err, cpu;
2839 
2840 	/*
2841 	 * If LPIs are enabled while we run this from the boot CPU,
2842 	 * flag the RD tables as pre-allocated if the stars do align.
2843 	 */
2844 	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2845 	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2846 		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2847 				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2848 		pr_info("GICv3: Using preallocated redistributor tables\n");
2849 	}
2850 
2851 	err = its_setup_lpi_prop_table();
2852 	if (err)
2853 		return err;
2854 
2855 	/*
2856 	 * We allocate all the pending tables anyway, as we may have a
2857 	 * mix of RDs that have had LPIs enabled, and some that
2858 	 * don't. We'll free the unused ones as each CPU comes online.
2859 	 */
2860 	for_each_possible_cpu(cpu) {
2861 		struct page *pend_page;
2862 
2863 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
2864 		if (!pend_page) {
2865 			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
2866 			return -ENOMEM;
2867 		}
2868 
2869 		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
2870 	}
2871 
2872 	return 0;
2873 }
2874 
2875 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
2876 {
2877 	u32 count = 1000000;	/* 1s! */
2878 	bool clean;
2879 	u64 val;
2880 
2881 	val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2882 	val &= ~GICR_VPENDBASER_Valid;
2883 	val &= ~clr;
2884 	val |= set;
2885 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2886 
2887 	do {
2888 		val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2889 		clean = !(val & GICR_VPENDBASER_Dirty);
2890 		if (!clean) {
2891 			count--;
2892 			cpu_relax();
2893 			udelay(1);
2894 		}
2895 	} while (!clean && count);
2896 
2897 	if (unlikely(val & GICR_VPENDBASER_Dirty)) {
2898 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
2899 		val |= GICR_VPENDBASER_PendingLast;
2900 	}
2901 
2902 	return val;
2903 }
2904 
2905 static void its_cpu_init_lpis(void)
2906 {
2907 	void __iomem *rbase = gic_data_rdist_rd_base();
2908 	struct page *pend_page;
2909 	phys_addr_t paddr;
2910 	u64 val, tmp;
2911 
2912 	if (gic_data_rdist()->lpi_enabled)
2913 		return;
2914 
2915 	val = readl_relaxed(rbase + GICR_CTLR);
2916 	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
2917 	    (val & GICR_CTLR_ENABLE_LPIS)) {
2918 		/*
2919 		 * Check that we get the same property table on all
2920 		 * RDs. If we don't, this is hopeless.
2921 		 */
2922 		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
2923 		paddr &= GENMASK_ULL(51, 12);
2924 		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
2925 			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2926 
2927 		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2928 		paddr &= GENMASK_ULL(51, 16);
2929 
2930 		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
2931 		its_free_pending_table(gic_data_rdist()->pend_page);
2932 		gic_data_rdist()->pend_page = NULL;
2933 
2934 		goto out;
2935 	}
2936 
2937 	pend_page = gic_data_rdist()->pend_page;
2938 	paddr = page_to_phys(pend_page);
2939 	WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
2940 
2941 	/* set PROPBASE */
2942 	val = (gic_rdists->prop_table_pa |
2943 	       GICR_PROPBASER_InnerShareable |
2944 	       GICR_PROPBASER_RaWaWb |
2945 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
2946 
2947 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2948 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
2949 
2950 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
2951 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
2952 			/*
2953 			 * The HW reports non-shareable, we must
2954 			 * remove the cacheability attributes as
2955 			 * well.
2956 			 */
2957 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
2958 				 GICR_PROPBASER_CACHEABILITY_MASK);
2959 			val |= GICR_PROPBASER_nC;
2960 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2961 		}
2962 		pr_info_once("GIC: using cache flushing for LPI property table\n");
2963 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
2964 	}
2965 
2966 	/* set PENDBASE */
2967 	val = (page_to_phys(pend_page) |
2968 	       GICR_PENDBASER_InnerShareable |
2969 	       GICR_PENDBASER_RaWaWb);
2970 
2971 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2972 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2973 
2974 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
2975 		/*
2976 		 * The HW reports non-shareable, we must remove the
2977 		 * cacheability attributes as well.
2978 		 */
2979 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
2980 			 GICR_PENDBASER_CACHEABILITY_MASK);
2981 		val |= GICR_PENDBASER_nC;
2982 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2983 	}
2984 
2985 	/* Enable LPIs */
2986 	val = readl_relaxed(rbase + GICR_CTLR);
2987 	val |= GICR_CTLR_ENABLE_LPIS;
2988 	writel_relaxed(val, rbase + GICR_CTLR);
2989 
2990 	if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
2991 		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2992 
2993 		/*
2994 		 * It's possible for CPU to receive VLPIs before it is
2995 		 * sheduled as a vPE, especially for the first CPU, and the
2996 		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
2997 		 * as out of range and dropped by GIC.
2998 		 * So we initialize IDbits to known value to avoid VLPI drop.
2999 		 */
3000 		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3001 		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3002 			smp_processor_id(), val);
3003 		gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3004 
3005 		/*
3006 		 * Also clear Valid bit of GICR_VPENDBASER, in case some
3007 		 * ancient programming gets left in and has possibility of
3008 		 * corrupting memory.
3009 		 */
3010 		val = its_clear_vpend_valid(vlpi_base, 0, 0);
3011 	}
3012 
3013 	if (allocate_vpe_l1_table()) {
3014 		/*
3015 		 * If the allocation has failed, we're in massive trouble.
3016 		 * Disable direct injection, and pray that no VM was
3017 		 * already running...
3018 		 */
3019 		gic_rdists->has_rvpeid = false;
3020 		gic_rdists->has_vlpis = false;
3021 	}
3022 
3023 	/* Make sure the GIC has seen the above */
3024 	dsb(sy);
3025 out:
3026 	gic_data_rdist()->lpi_enabled = true;
3027 	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3028 		smp_processor_id(),
3029 		gic_data_rdist()->pend_page ? "allocated" : "reserved",
3030 		&paddr);
3031 }
3032 
3033 static void its_cpu_init_collection(struct its_node *its)
3034 {
3035 	int cpu = smp_processor_id();
3036 	u64 target;
3037 
3038 	/* avoid cross node collections and its mapping */
3039 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3040 		struct device_node *cpu_node;
3041 
3042 		cpu_node = of_get_cpu_node(cpu, NULL);
3043 		if (its->numa_node != NUMA_NO_NODE &&
3044 			its->numa_node != of_node_to_nid(cpu_node))
3045 			return;
3046 	}
3047 
3048 	/*
3049 	 * We now have to bind each collection to its target
3050 	 * redistributor.
3051 	 */
3052 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3053 		/*
3054 		 * This ITS wants the physical address of the
3055 		 * redistributor.
3056 		 */
3057 		target = gic_data_rdist()->phys_base;
3058 	} else {
3059 		/* This ITS wants a linear CPU number. */
3060 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3061 		target = GICR_TYPER_CPU_NUMBER(target) << 16;
3062 	}
3063 
3064 	/* Perform collection mapping */
3065 	its->collections[cpu].target_address = target;
3066 	its->collections[cpu].col_id = cpu;
3067 
3068 	its_send_mapc(its, &its->collections[cpu], 1);
3069 	its_send_invall(its, &its->collections[cpu]);
3070 }
3071 
3072 static void its_cpu_init_collections(void)
3073 {
3074 	struct its_node *its;
3075 
3076 	raw_spin_lock(&its_lock);
3077 
3078 	list_for_each_entry(its, &its_nodes, entry)
3079 		its_cpu_init_collection(its);
3080 
3081 	raw_spin_unlock(&its_lock);
3082 }
3083 
3084 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3085 {
3086 	struct its_device *its_dev = NULL, *tmp;
3087 	unsigned long flags;
3088 
3089 	raw_spin_lock_irqsave(&its->lock, flags);
3090 
3091 	list_for_each_entry(tmp, &its->its_device_list, entry) {
3092 		if (tmp->device_id == dev_id) {
3093 			its_dev = tmp;
3094 			break;
3095 		}
3096 	}
3097 
3098 	raw_spin_unlock_irqrestore(&its->lock, flags);
3099 
3100 	return its_dev;
3101 }
3102 
3103 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3104 {
3105 	int i;
3106 
3107 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3108 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
3109 			return &its->tables[i];
3110 	}
3111 
3112 	return NULL;
3113 }
3114 
3115 static bool its_alloc_table_entry(struct its_node *its,
3116 				  struct its_baser *baser, u32 id)
3117 {
3118 	struct page *page;
3119 	u32 esz, idx;
3120 	__le64 *table;
3121 
3122 	/* Don't allow device id that exceeds single, flat table limit */
3123 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
3124 	if (!(baser->val & GITS_BASER_INDIRECT))
3125 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3126 
3127 	/* Compute 1st level table index & check if that exceeds table limit */
3128 	idx = id >> ilog2(baser->psz / esz);
3129 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3130 		return false;
3131 
3132 	table = baser->base;
3133 
3134 	/* Allocate memory for 2nd level table */
3135 	if (!table[idx]) {
3136 		page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3137 					get_order(baser->psz));
3138 		if (!page)
3139 			return false;
3140 
3141 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
3142 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3143 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
3144 
3145 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3146 
3147 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3148 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3149 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3150 
3151 		/* Ensure updated table contents are visible to ITS hardware */
3152 		dsb(sy);
3153 	}
3154 
3155 	return true;
3156 }
3157 
3158 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3159 {
3160 	struct its_baser *baser;
3161 
3162 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3163 
3164 	/* Don't allow device id that exceeds ITS hardware limit */
3165 	if (!baser)
3166 		return (ilog2(dev_id) < device_ids(its));
3167 
3168 	return its_alloc_table_entry(its, baser, dev_id);
3169 }
3170 
3171 static bool its_alloc_vpe_table(u32 vpe_id)
3172 {
3173 	struct its_node *its;
3174 	int cpu;
3175 
3176 	/*
3177 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3178 	 * could try and only do it on ITSs corresponding to devices
3179 	 * that have interrupts targeted at this VPE, but the
3180 	 * complexity becomes crazy (and you have tons of memory
3181 	 * anyway, right?).
3182 	 */
3183 	list_for_each_entry(its, &its_nodes, entry) {
3184 		struct its_baser *baser;
3185 
3186 		if (!is_v4(its))
3187 			continue;
3188 
3189 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3190 		if (!baser)
3191 			return false;
3192 
3193 		if (!its_alloc_table_entry(its, baser, vpe_id))
3194 			return false;
3195 	}
3196 
3197 	/* Non v4.1? No need to iterate RDs and go back early. */
3198 	if (!gic_rdists->has_rvpeid)
3199 		return true;
3200 
3201 	/*
3202 	 * Make sure the L2 tables are allocated for all copies of
3203 	 * the L1 table on *all* v4.1 RDs.
3204 	 */
3205 	for_each_possible_cpu(cpu) {
3206 		if (!allocate_vpe_l2_table(cpu, vpe_id))
3207 			return false;
3208 	}
3209 
3210 	return true;
3211 }
3212 
3213 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3214 					    int nvecs, bool alloc_lpis)
3215 {
3216 	struct its_device *dev;
3217 	unsigned long *lpi_map = NULL;
3218 	unsigned long flags;
3219 	u16 *col_map = NULL;
3220 	void *itt;
3221 	int lpi_base;
3222 	int nr_lpis;
3223 	int nr_ites;
3224 	int sz;
3225 
3226 	if (!its_alloc_device_table(its, dev_id))
3227 		return NULL;
3228 
3229 	if (WARN_ON(!is_power_of_2(nvecs)))
3230 		nvecs = roundup_pow_of_two(nvecs);
3231 
3232 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3233 	/*
3234 	 * Even if the device wants a single LPI, the ITT must be
3235 	 * sized as a power of two (and you need at least one bit...).
3236 	 */
3237 	nr_ites = max(2, nvecs);
3238 	sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3239 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3240 	itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3241 	if (alloc_lpis) {
3242 		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3243 		if (lpi_map)
3244 			col_map = kcalloc(nr_lpis, sizeof(*col_map),
3245 					  GFP_KERNEL);
3246 	} else {
3247 		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3248 		nr_lpis = 0;
3249 		lpi_base = 0;
3250 	}
3251 
3252 	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
3253 		kfree(dev);
3254 		kfree(itt);
3255 		kfree(lpi_map);
3256 		kfree(col_map);
3257 		return NULL;
3258 	}
3259 
3260 	gic_flush_dcache_to_poc(itt, sz);
3261 
3262 	dev->its = its;
3263 	dev->itt = itt;
3264 	dev->nr_ites = nr_ites;
3265 	dev->event_map.lpi_map = lpi_map;
3266 	dev->event_map.col_map = col_map;
3267 	dev->event_map.lpi_base = lpi_base;
3268 	dev->event_map.nr_lpis = nr_lpis;
3269 	raw_spin_lock_init(&dev->event_map.vlpi_lock);
3270 	dev->device_id = dev_id;
3271 	INIT_LIST_HEAD(&dev->entry);
3272 
3273 	raw_spin_lock_irqsave(&its->lock, flags);
3274 	list_add(&dev->entry, &its->its_device_list);
3275 	raw_spin_unlock_irqrestore(&its->lock, flags);
3276 
3277 	/* Map device to its ITT */
3278 	its_send_mapd(dev, 1);
3279 
3280 	return dev;
3281 }
3282 
3283 static void its_free_device(struct its_device *its_dev)
3284 {
3285 	unsigned long flags;
3286 
3287 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3288 	list_del(&its_dev->entry);
3289 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3290 	kfree(its_dev->event_map.col_map);
3291 	kfree(its_dev->itt);
3292 	kfree(its_dev);
3293 }
3294 
3295 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3296 {
3297 	int idx;
3298 
3299 	/* Find a free LPI region in lpi_map and allocate them. */
3300 	idx = bitmap_find_free_region(dev->event_map.lpi_map,
3301 				      dev->event_map.nr_lpis,
3302 				      get_count_order(nvecs));
3303 	if (idx < 0)
3304 		return -ENOSPC;
3305 
3306 	*hwirq = dev->event_map.lpi_base + idx;
3307 
3308 	return 0;
3309 }
3310 
3311 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3312 			   int nvec, msi_alloc_info_t *info)
3313 {
3314 	struct its_node *its;
3315 	struct its_device *its_dev;
3316 	struct msi_domain_info *msi_info;
3317 	u32 dev_id;
3318 	int err = 0;
3319 
3320 	/*
3321 	 * We ignore "dev" entirely, and rely on the dev_id that has
3322 	 * been passed via the scratchpad. This limits this domain's
3323 	 * usefulness to upper layers that definitely know that they
3324 	 * are built on top of the ITS.
3325 	 */
3326 	dev_id = info->scratchpad[0].ul;
3327 
3328 	msi_info = msi_get_domain_info(domain);
3329 	its = msi_info->data;
3330 
3331 	if (!gic_rdists->has_direct_lpi &&
3332 	    vpe_proxy.dev &&
3333 	    vpe_proxy.dev->its == its &&
3334 	    dev_id == vpe_proxy.dev->device_id) {
3335 		/* Bad luck. Get yourself a better implementation */
3336 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3337 			  dev_id);
3338 		return -EINVAL;
3339 	}
3340 
3341 	mutex_lock(&its->dev_alloc_lock);
3342 	its_dev = its_find_device(its, dev_id);
3343 	if (its_dev) {
3344 		/*
3345 		 * We already have seen this ID, probably through
3346 		 * another alias (PCI bridge of some sort). No need to
3347 		 * create the device.
3348 		 */
3349 		its_dev->shared = true;
3350 		pr_debug("Reusing ITT for devID %x\n", dev_id);
3351 		goto out;
3352 	}
3353 
3354 	its_dev = its_create_device(its, dev_id, nvec, true);
3355 	if (!its_dev) {
3356 		err = -ENOMEM;
3357 		goto out;
3358 	}
3359 
3360 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3361 out:
3362 	mutex_unlock(&its->dev_alloc_lock);
3363 	info->scratchpad[0].ptr = its_dev;
3364 	return err;
3365 }
3366 
3367 static struct msi_domain_ops its_msi_domain_ops = {
3368 	.msi_prepare	= its_msi_prepare,
3369 };
3370 
3371 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3372 				    unsigned int virq,
3373 				    irq_hw_number_t hwirq)
3374 {
3375 	struct irq_fwspec fwspec;
3376 
3377 	if (irq_domain_get_of_node(domain->parent)) {
3378 		fwspec.fwnode = domain->parent->fwnode;
3379 		fwspec.param_count = 3;
3380 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3381 		fwspec.param[1] = hwirq;
3382 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3383 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3384 		fwspec.fwnode = domain->parent->fwnode;
3385 		fwspec.param_count = 2;
3386 		fwspec.param[0] = hwirq;
3387 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3388 	} else {
3389 		return -EINVAL;
3390 	}
3391 
3392 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3393 }
3394 
3395 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3396 				unsigned int nr_irqs, void *args)
3397 {
3398 	msi_alloc_info_t *info = args;
3399 	struct its_device *its_dev = info->scratchpad[0].ptr;
3400 	struct its_node *its = its_dev->its;
3401 	irq_hw_number_t hwirq;
3402 	int err;
3403 	int i;
3404 
3405 	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3406 	if (err)
3407 		return err;
3408 
3409 	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3410 	if (err)
3411 		return err;
3412 
3413 	for (i = 0; i < nr_irqs; i++) {
3414 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3415 		if (err)
3416 			return err;
3417 
3418 		irq_domain_set_hwirq_and_chip(domain, virq + i,
3419 					      hwirq + i, &its_irq_chip, its_dev);
3420 		irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i)));
3421 		pr_debug("ID:%d pID:%d vID:%d\n",
3422 			 (int)(hwirq + i - its_dev->event_map.lpi_base),
3423 			 (int)(hwirq + i), virq + i);
3424 	}
3425 
3426 	return 0;
3427 }
3428 
3429 static int its_irq_domain_activate(struct irq_domain *domain,
3430 				   struct irq_data *d, bool reserve)
3431 {
3432 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3433 	u32 event = its_get_event_id(d);
3434 	const struct cpumask *cpu_mask = cpu_online_mask;
3435 	int cpu;
3436 
3437 	/* get the cpu_mask of local node */
3438 	if (its_dev->its->numa_node >= 0)
3439 		cpu_mask = cpumask_of_node(its_dev->its->numa_node);
3440 
3441 	/* Bind the LPI to the first possible CPU */
3442 	cpu = cpumask_first_and(cpu_mask, cpu_online_mask);
3443 	if (cpu >= nr_cpu_ids) {
3444 		if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)
3445 			return -EINVAL;
3446 
3447 		cpu = cpumask_first(cpu_online_mask);
3448 	}
3449 
3450 	its_dev->event_map.col_map[event] = cpu;
3451 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3452 
3453 	/* Map the GIC IRQ and event to the device */
3454 	its_send_mapti(its_dev, d->hwirq, event);
3455 	return 0;
3456 }
3457 
3458 static void its_irq_domain_deactivate(struct irq_domain *domain,
3459 				      struct irq_data *d)
3460 {
3461 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3462 	u32 event = its_get_event_id(d);
3463 
3464 	/* Stop the delivery of interrupts */
3465 	its_send_discard(its_dev, event);
3466 }
3467 
3468 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3469 				unsigned int nr_irqs)
3470 {
3471 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3472 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3473 	struct its_node *its = its_dev->its;
3474 	int i;
3475 
3476 	bitmap_release_region(its_dev->event_map.lpi_map,
3477 			      its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3478 			      get_count_order(nr_irqs));
3479 
3480 	for (i = 0; i < nr_irqs; i++) {
3481 		struct irq_data *data = irq_domain_get_irq_data(domain,
3482 								virq + i);
3483 		/* Nuke the entry in the domain */
3484 		irq_domain_reset_irq_data(data);
3485 	}
3486 
3487 	mutex_lock(&its->dev_alloc_lock);
3488 
3489 	/*
3490 	 * If all interrupts have been freed, start mopping the
3491 	 * floor. This is conditionned on the device not being shared.
3492 	 */
3493 	if (!its_dev->shared &&
3494 	    bitmap_empty(its_dev->event_map.lpi_map,
3495 			 its_dev->event_map.nr_lpis)) {
3496 		its_lpi_free(its_dev->event_map.lpi_map,
3497 			     its_dev->event_map.lpi_base,
3498 			     its_dev->event_map.nr_lpis);
3499 
3500 		/* Unmap device/itt */
3501 		its_send_mapd(its_dev, 0);
3502 		its_free_device(its_dev);
3503 	}
3504 
3505 	mutex_unlock(&its->dev_alloc_lock);
3506 
3507 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3508 }
3509 
3510 static const struct irq_domain_ops its_domain_ops = {
3511 	.alloc			= its_irq_domain_alloc,
3512 	.free			= its_irq_domain_free,
3513 	.activate		= its_irq_domain_activate,
3514 	.deactivate		= its_irq_domain_deactivate,
3515 };
3516 
3517 /*
3518  * This is insane.
3519  *
3520  * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3521  * likely), the only way to perform an invalidate is to use a fake
3522  * device to issue an INV command, implying that the LPI has first
3523  * been mapped to some event on that device. Since this is not exactly
3524  * cheap, we try to keep that mapping around as long as possible, and
3525  * only issue an UNMAP if we're short on available slots.
3526  *
3527  * Broken by design(tm).
3528  *
3529  * GICv4.1, on the other hand, mandates that we're able to invalidate
3530  * by writing to a MMIO register. It doesn't implement the whole of
3531  * DirectLPI, but that's good enough. And most of the time, we don't
3532  * even have to invalidate anything, as the redistributor can be told
3533  * whether to generate a doorbell or not (we thus leave it enabled,
3534  * always).
3535  */
3536 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3537 {
3538 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3539 	if (gic_rdists->has_rvpeid)
3540 		return;
3541 
3542 	/* Already unmapped? */
3543 	if (vpe->vpe_proxy_event == -1)
3544 		return;
3545 
3546 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3547 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3548 
3549 	/*
3550 	 * We don't track empty slots at all, so let's move the
3551 	 * next_victim pointer if we can quickly reuse that slot
3552 	 * instead of nuking an existing entry. Not clear that this is
3553 	 * always a win though, and this might just generate a ripple
3554 	 * effect... Let's just hope VPEs don't migrate too often.
3555 	 */
3556 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3557 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
3558 
3559 	vpe->vpe_proxy_event = -1;
3560 }
3561 
3562 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3563 {
3564 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3565 	if (gic_rdists->has_rvpeid)
3566 		return;
3567 
3568 	if (!gic_rdists->has_direct_lpi) {
3569 		unsigned long flags;
3570 
3571 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3572 		its_vpe_db_proxy_unmap_locked(vpe);
3573 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3574 	}
3575 }
3576 
3577 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3578 {
3579 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3580 	if (gic_rdists->has_rvpeid)
3581 		return;
3582 
3583 	/* Already mapped? */
3584 	if (vpe->vpe_proxy_event != -1)
3585 		return;
3586 
3587 	/* This slot was already allocated. Kick the other VPE out. */
3588 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3589 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3590 
3591 	/* Map the new VPE instead */
3592 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3593 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
3594 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3595 
3596 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3597 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3598 }
3599 
3600 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3601 {
3602 	unsigned long flags;
3603 	struct its_collection *target_col;
3604 
3605 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3606 	if (gic_rdists->has_rvpeid)
3607 		return;
3608 
3609 	if (gic_rdists->has_direct_lpi) {
3610 		void __iomem *rdbase;
3611 
3612 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3613 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3614 		wait_for_syncr(rdbase);
3615 
3616 		return;
3617 	}
3618 
3619 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3620 
3621 	its_vpe_db_proxy_map_locked(vpe);
3622 
3623 	target_col = &vpe_proxy.dev->its->collections[to];
3624 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3625 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3626 
3627 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3628 }
3629 
3630 static int its_vpe_set_affinity(struct irq_data *d,
3631 				const struct cpumask *mask_val,
3632 				bool force)
3633 {
3634 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3635 	int from, cpu = cpumask_first(mask_val);
3636 	unsigned long flags;
3637 
3638 	/*
3639 	 * Changing affinity is mega expensive, so let's be as lazy as
3640 	 * we can and only do it if we really have to. Also, if mapped
3641 	 * into the proxy device, we need to move the doorbell
3642 	 * interrupt to its new location.
3643 	 *
3644 	 * Another thing is that changing the affinity of a vPE affects
3645 	 * *other interrupts* such as all the vLPIs that are routed to
3646 	 * this vPE. This means that the irq_desc lock is not enough to
3647 	 * protect us, and that we must ensure nobody samples vpe->col_idx
3648 	 * during the update, hence the lock below which must also be
3649 	 * taken on any vLPI handling path that evaluates vpe->col_idx.
3650 	 */
3651 	from = vpe_to_cpuid_lock(vpe, &flags);
3652 	if (from == cpu)
3653 		goto out;
3654 
3655 	vpe->col_idx = cpu;
3656 
3657 	/*
3658 	 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD
3659 	 * is sharing its VPE table with the current one.
3660 	 */
3661 	if (gic_data_rdist_cpu(cpu)->vpe_table_mask &&
3662 	    cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask))
3663 		goto out;
3664 
3665 	its_send_vmovp(vpe);
3666 	its_vpe_db_proxy_move(vpe, from, cpu);
3667 
3668 out:
3669 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3670 	vpe_to_cpuid_unlock(vpe, flags);
3671 
3672 	return IRQ_SET_MASK_OK_DONE;
3673 }
3674 
3675 static void its_vpe_schedule(struct its_vpe *vpe)
3676 {
3677 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3678 	u64 val;
3679 
3680 	/* Schedule the VPE */
3681 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3682 		GENMASK_ULL(51, 12);
3683 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3684 	val |= GICR_VPROPBASER_RaWb;
3685 	val |= GICR_VPROPBASER_InnerShareable;
3686 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3687 
3688 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
3689 		GENMASK_ULL(51, 16);
3690 	val |= GICR_VPENDBASER_RaWaWb;
3691 	val |= GICR_VPENDBASER_InnerShareable;
3692 	/*
3693 	 * There is no good way of finding out if the pending table is
3694 	 * empty as we can race against the doorbell interrupt very
3695 	 * easily. So in the end, vpe->pending_last is only an
3696 	 * indication that the vcpu has something pending, not one
3697 	 * that the pending table is empty. A good implementation
3698 	 * would be able to read its coarse map pretty quickly anyway,
3699 	 * making this a tolerable issue.
3700 	 */
3701 	val |= GICR_VPENDBASER_PendingLast;
3702 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3703 	val |= GICR_VPENDBASER_Valid;
3704 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3705 }
3706 
3707 static void its_vpe_deschedule(struct its_vpe *vpe)
3708 {
3709 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3710 	u64 val;
3711 
3712 	val = its_clear_vpend_valid(vlpi_base, 0, 0);
3713 
3714 	vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3715 	vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3716 }
3717 
3718 static void its_vpe_invall(struct its_vpe *vpe)
3719 {
3720 	struct its_node *its;
3721 
3722 	list_for_each_entry(its, &its_nodes, entry) {
3723 		if (!is_v4(its))
3724 			continue;
3725 
3726 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3727 			continue;
3728 
3729 		/*
3730 		 * Sending a VINVALL to a single ITS is enough, as all
3731 		 * we need is to reach the redistributors.
3732 		 */
3733 		its_send_vinvall(its, vpe);
3734 		return;
3735 	}
3736 }
3737 
3738 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3739 {
3740 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3741 	struct its_cmd_info *info = vcpu_info;
3742 
3743 	switch (info->cmd_type) {
3744 	case SCHEDULE_VPE:
3745 		its_vpe_schedule(vpe);
3746 		return 0;
3747 
3748 	case DESCHEDULE_VPE:
3749 		its_vpe_deschedule(vpe);
3750 		return 0;
3751 
3752 	case INVALL_VPE:
3753 		its_vpe_invall(vpe);
3754 		return 0;
3755 
3756 	default:
3757 		return -EINVAL;
3758 	}
3759 }
3760 
3761 static void its_vpe_send_cmd(struct its_vpe *vpe,
3762 			     void (*cmd)(struct its_device *, u32))
3763 {
3764 	unsigned long flags;
3765 
3766 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3767 
3768 	its_vpe_db_proxy_map_locked(vpe);
3769 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3770 
3771 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3772 }
3773 
3774 static void its_vpe_send_inv(struct irq_data *d)
3775 {
3776 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3777 
3778 	if (gic_rdists->has_direct_lpi) {
3779 		void __iomem *rdbase;
3780 
3781 		/* Target the redistributor this VPE is currently known on */
3782 		raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3783 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3784 		gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR);
3785 		wait_for_syncr(rdbase);
3786 		raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3787 	} else {
3788 		its_vpe_send_cmd(vpe, its_send_inv);
3789 	}
3790 }
3791 
3792 static void its_vpe_mask_irq(struct irq_data *d)
3793 {
3794 	/*
3795 	 * We need to unmask the LPI, which is described by the parent
3796 	 * irq_data. Instead of calling into the parent (which won't
3797 	 * exactly do the right thing, let's simply use the
3798 	 * parent_data pointer. Yes, I'm naughty.
3799 	 */
3800 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3801 	its_vpe_send_inv(d);
3802 }
3803 
3804 static void its_vpe_unmask_irq(struct irq_data *d)
3805 {
3806 	/* Same hack as above... */
3807 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
3808 	its_vpe_send_inv(d);
3809 }
3810 
3811 static int its_vpe_set_irqchip_state(struct irq_data *d,
3812 				     enum irqchip_irq_state which,
3813 				     bool state)
3814 {
3815 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3816 
3817 	if (which != IRQCHIP_STATE_PENDING)
3818 		return -EINVAL;
3819 
3820 	if (gic_rdists->has_direct_lpi) {
3821 		void __iomem *rdbase;
3822 
3823 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3824 		if (state) {
3825 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
3826 		} else {
3827 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3828 			wait_for_syncr(rdbase);
3829 		}
3830 	} else {
3831 		if (state)
3832 			its_vpe_send_cmd(vpe, its_send_int);
3833 		else
3834 			its_vpe_send_cmd(vpe, its_send_clear);
3835 	}
3836 
3837 	return 0;
3838 }
3839 
3840 static int its_vpe_retrigger(struct irq_data *d)
3841 {
3842 	return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
3843 }
3844 
3845 static struct irq_chip its_vpe_irq_chip = {
3846 	.name			= "GICv4-vpe",
3847 	.irq_mask		= its_vpe_mask_irq,
3848 	.irq_unmask		= its_vpe_unmask_irq,
3849 	.irq_eoi		= irq_chip_eoi_parent,
3850 	.irq_set_affinity	= its_vpe_set_affinity,
3851 	.irq_retrigger		= its_vpe_retrigger,
3852 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
3853 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
3854 };
3855 
3856 static struct its_node *find_4_1_its(void)
3857 {
3858 	static struct its_node *its = NULL;
3859 
3860 	if (!its) {
3861 		list_for_each_entry(its, &its_nodes, entry) {
3862 			if (is_v4_1(its))
3863 				return its;
3864 		}
3865 
3866 		/* Oops? */
3867 		its = NULL;
3868 	}
3869 
3870 	return its;
3871 }
3872 
3873 static void its_vpe_4_1_send_inv(struct irq_data *d)
3874 {
3875 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3876 	struct its_node *its;
3877 
3878 	/*
3879 	 * GICv4.1 wants doorbells to be invalidated using the
3880 	 * INVDB command in order to be broadcast to all RDs. Send
3881 	 * it to the first valid ITS, and let the HW do its magic.
3882 	 */
3883 	its = find_4_1_its();
3884 	if (its)
3885 		its_send_invdb(its, vpe);
3886 }
3887 
3888 static void its_vpe_4_1_mask_irq(struct irq_data *d)
3889 {
3890 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3891 	its_vpe_4_1_send_inv(d);
3892 }
3893 
3894 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
3895 {
3896 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
3897 	its_vpe_4_1_send_inv(d);
3898 }
3899 
3900 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
3901 				 struct its_cmd_info *info)
3902 {
3903 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3904 	u64 val = 0;
3905 
3906 	/* Schedule the VPE */
3907 	val |= GICR_VPENDBASER_Valid;
3908 	val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
3909 	val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
3910 	val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
3911 
3912 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3913 }
3914 
3915 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
3916 				   struct its_cmd_info *info)
3917 {
3918 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3919 	u64 val;
3920 
3921 	if (info->req_db) {
3922 		/*
3923 		 * vPE is going to block: make the vPE non-resident with
3924 		 * PendingLast clear and DB set. The GIC guarantees that if
3925 		 * we read-back PendingLast clear, then a doorbell will be
3926 		 * delivered when an interrupt comes.
3927 		 */
3928 		val = its_clear_vpend_valid(vlpi_base,
3929 					    GICR_VPENDBASER_PendingLast,
3930 					    GICR_VPENDBASER_4_1_DB);
3931 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3932 	} else {
3933 		/*
3934 		 * We're not blocking, so just make the vPE non-resident
3935 		 * with PendingLast set, indicating that we'll be back.
3936 		 */
3937 		val = its_clear_vpend_valid(vlpi_base,
3938 					    0,
3939 					    GICR_VPENDBASER_PendingLast);
3940 		vpe->pending_last = true;
3941 	}
3942 }
3943 
3944 static void its_vpe_4_1_invall(struct its_vpe *vpe)
3945 {
3946 	void __iomem *rdbase;
3947 	u64 val;
3948 
3949 	val  = GICR_INVALLR_V;
3950 	val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
3951 
3952 	/* Target the redistributor this vPE is currently known on */
3953 	raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3954 	rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3955 	gic_write_lpir(val, rdbase + GICR_INVALLR);
3956 
3957 	wait_for_syncr(rdbase);
3958 	raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3959 }
3960 
3961 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3962 {
3963 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3964 	struct its_cmd_info *info = vcpu_info;
3965 
3966 	switch (info->cmd_type) {
3967 	case SCHEDULE_VPE:
3968 		its_vpe_4_1_schedule(vpe, info);
3969 		return 0;
3970 
3971 	case DESCHEDULE_VPE:
3972 		its_vpe_4_1_deschedule(vpe, info);
3973 		return 0;
3974 
3975 	case INVALL_VPE:
3976 		its_vpe_4_1_invall(vpe);
3977 		return 0;
3978 
3979 	default:
3980 		return -EINVAL;
3981 	}
3982 }
3983 
3984 static struct irq_chip its_vpe_4_1_irq_chip = {
3985 	.name			= "GICv4.1-vpe",
3986 	.irq_mask		= its_vpe_4_1_mask_irq,
3987 	.irq_unmask		= its_vpe_4_1_unmask_irq,
3988 	.irq_eoi		= irq_chip_eoi_parent,
3989 	.irq_set_affinity	= its_vpe_set_affinity,
3990 	.irq_set_vcpu_affinity	= its_vpe_4_1_set_vcpu_affinity,
3991 };
3992 
3993 static void its_configure_sgi(struct irq_data *d, bool clear)
3994 {
3995 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3996 	struct its_cmd_desc desc;
3997 
3998 	desc.its_vsgi_cmd.vpe = vpe;
3999 	desc.its_vsgi_cmd.sgi = d->hwirq;
4000 	desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4001 	desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4002 	desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4003 	desc.its_vsgi_cmd.clear = clear;
4004 
4005 	/*
4006 	 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4007 	 * destination VPE is mapped there. Since we map them eagerly at
4008 	 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4009 	 */
4010 	its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4011 }
4012 
4013 static void its_sgi_mask_irq(struct irq_data *d)
4014 {
4015 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4016 
4017 	vpe->sgi_config[d->hwirq].enabled = false;
4018 	its_configure_sgi(d, false);
4019 }
4020 
4021 static void its_sgi_unmask_irq(struct irq_data *d)
4022 {
4023 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4024 
4025 	vpe->sgi_config[d->hwirq].enabled = true;
4026 	its_configure_sgi(d, false);
4027 }
4028 
4029 static int its_sgi_set_affinity(struct irq_data *d,
4030 				const struct cpumask *mask_val,
4031 				bool force)
4032 {
4033 	/*
4034 	 * There is no notion of affinity for virtual SGIs, at least
4035 	 * not on the host (since they can only be targetting a vPE).
4036 	 * Tell the kernel we've done whatever it asked for.
4037 	 */
4038 	return IRQ_SET_MASK_OK;
4039 }
4040 
4041 static int its_sgi_set_irqchip_state(struct irq_data *d,
4042 				     enum irqchip_irq_state which,
4043 				     bool state)
4044 {
4045 	if (which != IRQCHIP_STATE_PENDING)
4046 		return -EINVAL;
4047 
4048 	if (state) {
4049 		struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4050 		struct its_node *its = find_4_1_its();
4051 		u64 val;
4052 
4053 		val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4054 		val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4055 		writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4056 	} else {
4057 		its_configure_sgi(d, true);
4058 	}
4059 
4060 	return 0;
4061 }
4062 
4063 static int its_sgi_get_irqchip_state(struct irq_data *d,
4064 				     enum irqchip_irq_state which, bool *val)
4065 {
4066 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4067 	void __iomem *base;
4068 	unsigned long flags;
4069 	u32 count = 1000000;	/* 1s! */
4070 	u32 status;
4071 	int cpu;
4072 
4073 	if (which != IRQCHIP_STATE_PENDING)
4074 		return -EINVAL;
4075 
4076 	/*
4077 	 * Locking galore! We can race against two different events:
4078 	 *
4079 	 * - Concurent vPE affinity change: we must make sure it cannot
4080 	 *   happen, or we'll talk to the wrong redistributor. This is
4081 	 *   identical to what happens with vLPIs.
4082 	 *
4083 	 * - Concurrent VSGIPENDR access: As it involves accessing two
4084 	 *   MMIO registers, this must be made atomic one way or another.
4085 	 */
4086 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4087 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4088 	base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4089 	writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4090 	do {
4091 		status = readl_relaxed(base + GICR_VSGIPENDR);
4092 		if (!(status & GICR_VSGIPENDR_BUSY))
4093 			goto out;
4094 
4095 		count--;
4096 		if (!count) {
4097 			pr_err_ratelimited("Unable to get SGI status\n");
4098 			goto out;
4099 		}
4100 		cpu_relax();
4101 		udelay(1);
4102 	} while (count);
4103 
4104 out:
4105 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4106 	vpe_to_cpuid_unlock(vpe, flags);
4107 
4108 	if (!count)
4109 		return -ENXIO;
4110 
4111 	*val = !!(status & (1 << d->hwirq));
4112 
4113 	return 0;
4114 }
4115 
4116 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4117 {
4118 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4119 	struct its_cmd_info *info = vcpu_info;
4120 
4121 	switch (info->cmd_type) {
4122 	case PROP_UPDATE_VSGI:
4123 		vpe->sgi_config[d->hwirq].priority = info->priority;
4124 		vpe->sgi_config[d->hwirq].group = info->group;
4125 		its_configure_sgi(d, false);
4126 		return 0;
4127 
4128 	default:
4129 		return -EINVAL;
4130 	}
4131 }
4132 
4133 static struct irq_chip its_sgi_irq_chip = {
4134 	.name			= "GICv4.1-sgi",
4135 	.irq_mask		= its_sgi_mask_irq,
4136 	.irq_unmask		= its_sgi_unmask_irq,
4137 	.irq_set_affinity	= its_sgi_set_affinity,
4138 	.irq_set_irqchip_state	= its_sgi_set_irqchip_state,
4139 	.irq_get_irqchip_state	= its_sgi_get_irqchip_state,
4140 	.irq_set_vcpu_affinity	= its_sgi_set_vcpu_affinity,
4141 };
4142 
4143 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4144 				    unsigned int virq, unsigned int nr_irqs,
4145 				    void *args)
4146 {
4147 	struct its_vpe *vpe = args;
4148 	int i;
4149 
4150 	/* Yes, we do want 16 SGIs */
4151 	WARN_ON(nr_irqs != 16);
4152 
4153 	for (i = 0; i < 16; i++) {
4154 		vpe->sgi_config[i].priority = 0;
4155 		vpe->sgi_config[i].enabled = false;
4156 		vpe->sgi_config[i].group = false;
4157 
4158 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4159 					      &its_sgi_irq_chip, vpe);
4160 		irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4161 	}
4162 
4163 	return 0;
4164 }
4165 
4166 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4167 				    unsigned int virq,
4168 				    unsigned int nr_irqs)
4169 {
4170 	/* Nothing to do */
4171 }
4172 
4173 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4174 				       struct irq_data *d, bool reserve)
4175 {
4176 	/* Write out the initial SGI configuration */
4177 	its_configure_sgi(d, false);
4178 	return 0;
4179 }
4180 
4181 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4182 					  struct irq_data *d)
4183 {
4184 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4185 
4186 	/*
4187 	 * The VSGI command is awkward:
4188 	 *
4189 	 * - To change the configuration, CLEAR must be set to false,
4190 	 *   leaving the pending bit unchanged.
4191 	 * - To clear the pending bit, CLEAR must be set to true, leaving
4192 	 *   the configuration unchanged.
4193 	 *
4194 	 * You just can't do both at once, hence the two commands below.
4195 	 */
4196 	vpe->sgi_config[d->hwirq].enabled = false;
4197 	its_configure_sgi(d, false);
4198 	its_configure_sgi(d, true);
4199 }
4200 
4201 static const struct irq_domain_ops its_sgi_domain_ops = {
4202 	.alloc		= its_sgi_irq_domain_alloc,
4203 	.free		= its_sgi_irq_domain_free,
4204 	.activate	= its_sgi_irq_domain_activate,
4205 	.deactivate	= its_sgi_irq_domain_deactivate,
4206 };
4207 
4208 static int its_vpe_id_alloc(void)
4209 {
4210 	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4211 }
4212 
4213 static void its_vpe_id_free(u16 id)
4214 {
4215 	ida_simple_remove(&its_vpeid_ida, id);
4216 }
4217 
4218 static int its_vpe_init(struct its_vpe *vpe)
4219 {
4220 	struct page *vpt_page;
4221 	int vpe_id;
4222 
4223 	/* Allocate vpe_id */
4224 	vpe_id = its_vpe_id_alloc();
4225 	if (vpe_id < 0)
4226 		return vpe_id;
4227 
4228 	/* Allocate VPT */
4229 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
4230 	if (!vpt_page) {
4231 		its_vpe_id_free(vpe_id);
4232 		return -ENOMEM;
4233 	}
4234 
4235 	if (!its_alloc_vpe_table(vpe_id)) {
4236 		its_vpe_id_free(vpe_id);
4237 		its_free_pending_table(vpt_page);
4238 		return -ENOMEM;
4239 	}
4240 
4241 	raw_spin_lock_init(&vpe->vpe_lock);
4242 	vpe->vpe_id = vpe_id;
4243 	vpe->vpt_page = vpt_page;
4244 	if (gic_rdists->has_rvpeid)
4245 		atomic_set(&vpe->vmapp_count, 0);
4246 	else
4247 		vpe->vpe_proxy_event = -1;
4248 
4249 	return 0;
4250 }
4251 
4252 static void its_vpe_teardown(struct its_vpe *vpe)
4253 {
4254 	its_vpe_db_proxy_unmap(vpe);
4255 	its_vpe_id_free(vpe->vpe_id);
4256 	its_free_pending_table(vpe->vpt_page);
4257 }
4258 
4259 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4260 				    unsigned int virq,
4261 				    unsigned int nr_irqs)
4262 {
4263 	struct its_vm *vm = domain->host_data;
4264 	int i;
4265 
4266 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4267 
4268 	for (i = 0; i < nr_irqs; i++) {
4269 		struct irq_data *data = irq_domain_get_irq_data(domain,
4270 								virq + i);
4271 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4272 
4273 		BUG_ON(vm != vpe->its_vm);
4274 
4275 		clear_bit(data->hwirq, vm->db_bitmap);
4276 		its_vpe_teardown(vpe);
4277 		irq_domain_reset_irq_data(data);
4278 	}
4279 
4280 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4281 		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4282 		its_free_prop_table(vm->vprop_page);
4283 	}
4284 }
4285 
4286 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4287 				    unsigned int nr_irqs, void *args)
4288 {
4289 	struct irq_chip *irqchip = &its_vpe_irq_chip;
4290 	struct its_vm *vm = args;
4291 	unsigned long *bitmap;
4292 	struct page *vprop_page;
4293 	int base, nr_ids, i, err = 0;
4294 
4295 	BUG_ON(!vm);
4296 
4297 	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4298 	if (!bitmap)
4299 		return -ENOMEM;
4300 
4301 	if (nr_ids < nr_irqs) {
4302 		its_lpi_free(bitmap, base, nr_ids);
4303 		return -ENOMEM;
4304 	}
4305 
4306 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
4307 	if (!vprop_page) {
4308 		its_lpi_free(bitmap, base, nr_ids);
4309 		return -ENOMEM;
4310 	}
4311 
4312 	vm->db_bitmap = bitmap;
4313 	vm->db_lpi_base = base;
4314 	vm->nr_db_lpis = nr_ids;
4315 	vm->vprop_page = vprop_page;
4316 
4317 	if (gic_rdists->has_rvpeid)
4318 		irqchip = &its_vpe_4_1_irq_chip;
4319 
4320 	for (i = 0; i < nr_irqs; i++) {
4321 		vm->vpes[i]->vpe_db_lpi = base + i;
4322 		err = its_vpe_init(vm->vpes[i]);
4323 		if (err)
4324 			break;
4325 		err = its_irq_gic_domain_alloc(domain, virq + i,
4326 					       vm->vpes[i]->vpe_db_lpi);
4327 		if (err)
4328 			break;
4329 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4330 					      irqchip, vm->vpes[i]);
4331 		set_bit(i, bitmap);
4332 	}
4333 
4334 	if (err) {
4335 		if (i > 0)
4336 			its_vpe_irq_domain_free(domain, virq, i - 1);
4337 
4338 		its_lpi_free(bitmap, base, nr_ids);
4339 		its_free_prop_table(vprop_page);
4340 	}
4341 
4342 	return err;
4343 }
4344 
4345 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4346 				       struct irq_data *d, bool reserve)
4347 {
4348 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4349 	struct its_node *its;
4350 
4351 	/*
4352 	 * If we use the list map, we issue VMAPP on demand... Unless
4353 	 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4354 	 * so that VSGIs can work.
4355 	 */
4356 	if (!gic_requires_eager_mapping())
4357 		return 0;
4358 
4359 	/* Map the VPE to the first possible CPU */
4360 	vpe->col_idx = cpumask_first(cpu_online_mask);
4361 
4362 	list_for_each_entry(its, &its_nodes, entry) {
4363 		if (!is_v4(its))
4364 			continue;
4365 
4366 		its_send_vmapp(its, vpe, true);
4367 		its_send_vinvall(its, vpe);
4368 	}
4369 
4370 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4371 
4372 	return 0;
4373 }
4374 
4375 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4376 					  struct irq_data *d)
4377 {
4378 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4379 	struct its_node *its;
4380 
4381 	/*
4382 	 * If we use the list map on GICv4.0, we unmap the VPE once no
4383 	 * VLPIs are associated with the VM.
4384 	 */
4385 	if (!gic_requires_eager_mapping())
4386 		return;
4387 
4388 	list_for_each_entry(its, &its_nodes, entry) {
4389 		if (!is_v4(its))
4390 			continue;
4391 
4392 		its_send_vmapp(its, vpe, false);
4393 	}
4394 }
4395 
4396 static const struct irq_domain_ops its_vpe_domain_ops = {
4397 	.alloc			= its_vpe_irq_domain_alloc,
4398 	.free			= its_vpe_irq_domain_free,
4399 	.activate		= its_vpe_irq_domain_activate,
4400 	.deactivate		= its_vpe_irq_domain_deactivate,
4401 };
4402 
4403 static int its_force_quiescent(void __iomem *base)
4404 {
4405 	u32 count = 1000000;	/* 1s */
4406 	u32 val;
4407 
4408 	val = readl_relaxed(base + GITS_CTLR);
4409 	/*
4410 	 * GIC architecture specification requires the ITS to be both
4411 	 * disabled and quiescent for writes to GITS_BASER<n> or
4412 	 * GITS_CBASER to not have UNPREDICTABLE results.
4413 	 */
4414 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4415 		return 0;
4416 
4417 	/* Disable the generation of all interrupts to this ITS */
4418 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4419 	writel_relaxed(val, base + GITS_CTLR);
4420 
4421 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
4422 	while (1) {
4423 		val = readl_relaxed(base + GITS_CTLR);
4424 		if (val & GITS_CTLR_QUIESCENT)
4425 			return 0;
4426 
4427 		count--;
4428 		if (!count)
4429 			return -EBUSY;
4430 
4431 		cpu_relax();
4432 		udelay(1);
4433 	}
4434 }
4435 
4436 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4437 {
4438 	struct its_node *its = data;
4439 
4440 	/* erratum 22375: only alloc 8MB table size (20 bits) */
4441 	its->typer &= ~GITS_TYPER_DEVBITS;
4442 	its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4443 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4444 
4445 	return true;
4446 }
4447 
4448 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4449 {
4450 	struct its_node *its = data;
4451 
4452 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4453 
4454 	return true;
4455 }
4456 
4457 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4458 {
4459 	struct its_node *its = data;
4460 
4461 	/* On QDF2400, the size of the ITE is 16Bytes */
4462 	its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4463 	its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4464 
4465 	return true;
4466 }
4467 
4468 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4469 {
4470 	struct its_node *its = its_dev->its;
4471 
4472 	/*
4473 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4474 	 * which maps 32-bit writes targeted at a separate window of
4475 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4476 	 * with device ID taken from bits [device_id_bits + 1:2] of
4477 	 * the window offset.
4478 	 */
4479 	return its->pre_its_base + (its_dev->device_id << 2);
4480 }
4481 
4482 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4483 {
4484 	struct its_node *its = data;
4485 	u32 pre_its_window[2];
4486 	u32 ids;
4487 
4488 	if (!fwnode_property_read_u32_array(its->fwnode_handle,
4489 					   "socionext,synquacer-pre-its",
4490 					   pre_its_window,
4491 					   ARRAY_SIZE(pre_its_window))) {
4492 
4493 		its->pre_its_base = pre_its_window[0];
4494 		its->get_msi_base = its_irq_get_msi_base_pre_its;
4495 
4496 		ids = ilog2(pre_its_window[1]) - 2;
4497 		if (device_ids(its) > ids) {
4498 			its->typer &= ~GITS_TYPER_DEVBITS;
4499 			its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4500 		}
4501 
4502 		/* the pre-ITS breaks isolation, so disable MSI remapping */
4503 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
4504 		return true;
4505 	}
4506 	return false;
4507 }
4508 
4509 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4510 {
4511 	struct its_node *its = data;
4512 
4513 	/*
4514 	 * Hip07 insists on using the wrong address for the VLPI
4515 	 * page. Trick it into doing the right thing...
4516 	 */
4517 	its->vlpi_redist_offset = SZ_128K;
4518 	return true;
4519 }
4520 
4521 static const struct gic_quirk its_quirks[] = {
4522 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4523 	{
4524 		.desc	= "ITS: Cavium errata 22375, 24313",
4525 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4526 		.mask	= 0xffff0fff,
4527 		.init	= its_enable_quirk_cavium_22375,
4528 	},
4529 #endif
4530 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4531 	{
4532 		.desc	= "ITS: Cavium erratum 23144",
4533 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4534 		.mask	= 0xffff0fff,
4535 		.init	= its_enable_quirk_cavium_23144,
4536 	},
4537 #endif
4538 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4539 	{
4540 		.desc	= "ITS: QDF2400 erratum 0065",
4541 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
4542 		.mask	= 0xffffffff,
4543 		.init	= its_enable_quirk_qdf2400_e0065,
4544 	},
4545 #endif
4546 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4547 	{
4548 		/*
4549 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4550 		 * implementation, but with a 'pre-ITS' added that requires
4551 		 * special handling in software.
4552 		 */
4553 		.desc	= "ITS: Socionext Synquacer pre-ITS",
4554 		.iidr	= 0x0001143b,
4555 		.mask	= 0xffffffff,
4556 		.init	= its_enable_quirk_socionext_synquacer,
4557 	},
4558 #endif
4559 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4560 	{
4561 		.desc	= "ITS: Hip07 erratum 161600802",
4562 		.iidr	= 0x00000004,
4563 		.mask	= 0xffffffff,
4564 		.init	= its_enable_quirk_hip07_161600802,
4565 	},
4566 #endif
4567 	{
4568 	}
4569 };
4570 
4571 static void its_enable_quirks(struct its_node *its)
4572 {
4573 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4574 
4575 	gic_enable_quirks(iidr, its_quirks, its);
4576 }
4577 
4578 static int its_save_disable(void)
4579 {
4580 	struct its_node *its;
4581 	int err = 0;
4582 
4583 	raw_spin_lock(&its_lock);
4584 	list_for_each_entry(its, &its_nodes, entry) {
4585 		void __iomem *base;
4586 
4587 		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
4588 			continue;
4589 
4590 		base = its->base;
4591 		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4592 		err = its_force_quiescent(base);
4593 		if (err) {
4594 			pr_err("ITS@%pa: failed to quiesce: %d\n",
4595 			       &its->phys_base, err);
4596 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4597 			goto err;
4598 		}
4599 
4600 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4601 	}
4602 
4603 err:
4604 	if (err) {
4605 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4606 			void __iomem *base;
4607 
4608 			if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
4609 				continue;
4610 
4611 			base = its->base;
4612 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4613 		}
4614 	}
4615 	raw_spin_unlock(&its_lock);
4616 
4617 	return err;
4618 }
4619 
4620 static void its_restore_enable(void)
4621 {
4622 	struct its_node *its;
4623 	int ret;
4624 
4625 	raw_spin_lock(&its_lock);
4626 	list_for_each_entry(its, &its_nodes, entry) {
4627 		void __iomem *base;
4628 		int i;
4629 
4630 		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
4631 			continue;
4632 
4633 		base = its->base;
4634 
4635 		/*
4636 		 * Make sure that the ITS is disabled. If it fails to quiesce,
4637 		 * don't restore it since writing to CBASER or BASER<n>
4638 		 * registers is undefined according to the GIC v3 ITS
4639 		 * Specification.
4640 		 */
4641 		ret = its_force_quiescent(base);
4642 		if (ret) {
4643 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4644 			       &its->phys_base, ret);
4645 			continue;
4646 		}
4647 
4648 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4649 
4650 		/*
4651 		 * Writing CBASER resets CREADR to 0, so make CWRITER and
4652 		 * cmd_write line up with it.
4653 		 */
4654 		its->cmd_write = its->cmd_base;
4655 		gits_write_cwriter(0, base + GITS_CWRITER);
4656 
4657 		/* Restore GITS_BASER from the value cache. */
4658 		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4659 			struct its_baser *baser = &its->tables[i];
4660 
4661 			if (!(baser->val & GITS_BASER_VALID))
4662 				continue;
4663 
4664 			its_write_baser(its, baser, baser->val);
4665 		}
4666 		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4667 
4668 		/*
4669 		 * Reinit the collection if it's stored in the ITS. This is
4670 		 * indicated by the col_id being less than the HCC field.
4671 		 * CID < HCC as specified in the GIC v3 Documentation.
4672 		 */
4673 		if (its->collections[smp_processor_id()].col_id <
4674 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4675 			its_cpu_init_collection(its);
4676 	}
4677 	raw_spin_unlock(&its_lock);
4678 }
4679 
4680 static struct syscore_ops its_syscore_ops = {
4681 	.suspend = its_save_disable,
4682 	.resume = its_restore_enable,
4683 };
4684 
4685 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
4686 {
4687 	struct irq_domain *inner_domain;
4688 	struct msi_domain_info *info;
4689 
4690 	info = kzalloc(sizeof(*info), GFP_KERNEL);
4691 	if (!info)
4692 		return -ENOMEM;
4693 
4694 	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
4695 	if (!inner_domain) {
4696 		kfree(info);
4697 		return -ENOMEM;
4698 	}
4699 
4700 	inner_domain->parent = its_parent;
4701 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4702 	inner_domain->flags |= its->msi_domain_flags;
4703 	info->ops = &its_msi_domain_ops;
4704 	info->data = its;
4705 	inner_domain->host_data = info;
4706 
4707 	return 0;
4708 }
4709 
4710 static int its_init_vpe_domain(void)
4711 {
4712 	struct its_node *its;
4713 	u32 devid;
4714 	int entries;
4715 
4716 	if (gic_rdists->has_direct_lpi) {
4717 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4718 		return 0;
4719 	}
4720 
4721 	/* Any ITS will do, even if not v4 */
4722 	its = list_first_entry(&its_nodes, struct its_node, entry);
4723 
4724 	entries = roundup_pow_of_two(nr_cpu_ids);
4725 	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
4726 				 GFP_KERNEL);
4727 	if (!vpe_proxy.vpes) {
4728 		pr_err("ITS: Can't allocate GICv4 proxy device array\n");
4729 		return -ENOMEM;
4730 	}
4731 
4732 	/* Use the last possible DevID */
4733 	devid = GENMASK(device_ids(its) - 1, 0);
4734 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
4735 	if (!vpe_proxy.dev) {
4736 		kfree(vpe_proxy.vpes);
4737 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
4738 		return -ENOMEM;
4739 	}
4740 
4741 	BUG_ON(entries > vpe_proxy.dev->nr_ites);
4742 
4743 	raw_spin_lock_init(&vpe_proxy.lock);
4744 	vpe_proxy.next_victim = 0;
4745 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
4746 		devid, vpe_proxy.dev->nr_ites);
4747 
4748 	return 0;
4749 }
4750 
4751 static int __init its_compute_its_list_map(struct resource *res,
4752 					   void __iomem *its_base)
4753 {
4754 	int its_number;
4755 	u32 ctlr;
4756 
4757 	/*
4758 	 * This is assumed to be done early enough that we're
4759 	 * guaranteed to be single-threaded, hence no
4760 	 * locking. Should this change, we should address
4761 	 * this.
4762 	 */
4763 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
4764 	if (its_number >= GICv4_ITS_LIST_MAX) {
4765 		pr_err("ITS@%pa: No ITSList entry available!\n",
4766 		       &res->start);
4767 		return -EINVAL;
4768 	}
4769 
4770 	ctlr = readl_relaxed(its_base + GITS_CTLR);
4771 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
4772 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
4773 	writel_relaxed(ctlr, its_base + GITS_CTLR);
4774 	ctlr = readl_relaxed(its_base + GITS_CTLR);
4775 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
4776 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
4777 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
4778 	}
4779 
4780 	if (test_and_set_bit(its_number, &its_list_map)) {
4781 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
4782 		       &res->start, its_number);
4783 		return -EINVAL;
4784 	}
4785 
4786 	return its_number;
4787 }
4788 
4789 static int __init its_probe_one(struct resource *res,
4790 				struct fwnode_handle *handle, int numa_node)
4791 {
4792 	struct its_node *its;
4793 	void __iomem *its_base;
4794 	u32 val, ctlr;
4795 	u64 baser, tmp, typer;
4796 	struct page *page;
4797 	int err;
4798 
4799 	its_base = ioremap(res->start, SZ_64K);
4800 	if (!its_base) {
4801 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4802 		return -ENOMEM;
4803 	}
4804 
4805 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4806 	if (val != 0x30 && val != 0x40) {
4807 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4808 		err = -ENODEV;
4809 		goto out_unmap;
4810 	}
4811 
4812 	err = its_force_quiescent(its_base);
4813 	if (err) {
4814 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4815 		goto out_unmap;
4816 	}
4817 
4818 	pr_info("ITS %pR\n", res);
4819 
4820 	its = kzalloc(sizeof(*its), GFP_KERNEL);
4821 	if (!its) {
4822 		err = -ENOMEM;
4823 		goto out_unmap;
4824 	}
4825 
4826 	raw_spin_lock_init(&its->lock);
4827 	mutex_init(&its->dev_alloc_lock);
4828 	INIT_LIST_HEAD(&its->entry);
4829 	INIT_LIST_HEAD(&its->its_device_list);
4830 	typer = gic_read_typer(its_base + GITS_TYPER);
4831 	its->typer = typer;
4832 	its->base = its_base;
4833 	its->phys_base = res->start;
4834 	if (is_v4(its)) {
4835 		if (!(typer & GITS_TYPER_VMOVP)) {
4836 			err = its_compute_its_list_map(res, its_base);
4837 			if (err < 0)
4838 				goto out_free_its;
4839 
4840 			its->list_nr = err;
4841 
4842 			pr_info("ITS@%pa: Using ITS number %d\n",
4843 				&res->start, err);
4844 		} else {
4845 			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
4846 		}
4847 
4848 		if (is_v4_1(its)) {
4849 			u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer);
4850 
4851 			its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K);
4852 			if (!its->sgir_base) {
4853 				err = -ENOMEM;
4854 				goto out_free_its;
4855 			}
4856 
4857 			its->mpidr = readl_relaxed(its_base + GITS_MPIDR);
4858 
4859 			pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
4860 				&res->start, its->mpidr, svpet);
4861 		}
4862 	}
4863 
4864 	its->numa_node = numa_node;
4865 
4866 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
4867 				get_order(ITS_CMD_QUEUE_SZ));
4868 	if (!page) {
4869 		err = -ENOMEM;
4870 		goto out_unmap_sgir;
4871 	}
4872 	its->cmd_base = (void *)page_address(page);
4873 	its->cmd_write = its->cmd_base;
4874 	its->fwnode_handle = handle;
4875 	its->get_msi_base = its_irq_get_msi_base;
4876 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
4877 
4878 	its_enable_quirks(its);
4879 
4880 	err = its_alloc_tables(its);
4881 	if (err)
4882 		goto out_free_cmd;
4883 
4884 	err = its_alloc_collections(its);
4885 	if (err)
4886 		goto out_free_tables;
4887 
4888 	baser = (virt_to_phys(its->cmd_base)	|
4889 		 GITS_CBASER_RaWaWb		|
4890 		 GITS_CBASER_InnerShareable	|
4891 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
4892 		 GITS_CBASER_VALID);
4893 
4894 	gits_write_cbaser(baser, its->base + GITS_CBASER);
4895 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
4896 
4897 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
4898 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
4899 			/*
4900 			 * The HW reports non-shareable, we must
4901 			 * remove the cacheability attributes as
4902 			 * well.
4903 			 */
4904 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
4905 				   GITS_CBASER_CACHEABILITY_MASK);
4906 			baser |= GITS_CBASER_nC;
4907 			gits_write_cbaser(baser, its->base + GITS_CBASER);
4908 		}
4909 		pr_info("ITS: using cache flushing for cmd queue\n");
4910 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
4911 	}
4912 
4913 	gits_write_cwriter(0, its->base + GITS_CWRITER);
4914 	ctlr = readl_relaxed(its->base + GITS_CTLR);
4915 	ctlr |= GITS_CTLR_ENABLE;
4916 	if (is_v4(its))
4917 		ctlr |= GITS_CTLR_ImDe;
4918 	writel_relaxed(ctlr, its->base + GITS_CTLR);
4919 
4920 	if (GITS_TYPER_HCC(typer))
4921 		its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE;
4922 
4923 	err = its_init_domain(handle, its);
4924 	if (err)
4925 		goto out_free_tables;
4926 
4927 	raw_spin_lock(&its_lock);
4928 	list_add(&its->entry, &its_nodes);
4929 	raw_spin_unlock(&its_lock);
4930 
4931 	return 0;
4932 
4933 out_free_tables:
4934 	its_free_tables(its);
4935 out_free_cmd:
4936 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
4937 out_unmap_sgir:
4938 	if (its->sgir_base)
4939 		iounmap(its->sgir_base);
4940 out_free_its:
4941 	kfree(its);
4942 out_unmap:
4943 	iounmap(its_base);
4944 	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
4945 	return err;
4946 }
4947 
4948 static bool gic_rdists_supports_plpis(void)
4949 {
4950 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
4951 }
4952 
4953 static int redist_disable_lpis(void)
4954 {
4955 	void __iomem *rbase = gic_data_rdist_rd_base();
4956 	u64 timeout = USEC_PER_SEC;
4957 	u64 val;
4958 
4959 	if (!gic_rdists_supports_plpis()) {
4960 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
4961 		return -ENXIO;
4962 	}
4963 
4964 	val = readl_relaxed(rbase + GICR_CTLR);
4965 	if (!(val & GICR_CTLR_ENABLE_LPIS))
4966 		return 0;
4967 
4968 	/*
4969 	 * If coming via a CPU hotplug event, we don't need to disable
4970 	 * LPIs before trying to re-enable them. They are already
4971 	 * configured and all is well in the world.
4972 	 *
4973 	 * If running with preallocated tables, there is nothing to do.
4974 	 */
4975 	if (gic_data_rdist()->lpi_enabled ||
4976 	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
4977 		return 0;
4978 
4979 	/*
4980 	 * From that point on, we only try to do some damage control.
4981 	 */
4982 	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
4983 		smp_processor_id());
4984 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
4985 
4986 	/* Disable LPIs */
4987 	val &= ~GICR_CTLR_ENABLE_LPIS;
4988 	writel_relaxed(val, rbase + GICR_CTLR);
4989 
4990 	/* Make sure any change to GICR_CTLR is observable by the GIC */
4991 	dsb(sy);
4992 
4993 	/*
4994 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
4995 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
4996 	 * Error out if we time out waiting for RWP to clear.
4997 	 */
4998 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
4999 		if (!timeout) {
5000 			pr_err("CPU%d: Timeout while disabling LPIs\n",
5001 			       smp_processor_id());
5002 			return -ETIMEDOUT;
5003 		}
5004 		udelay(1);
5005 		timeout--;
5006 	}
5007 
5008 	/*
5009 	 * After it has been written to 1, it is IMPLEMENTATION
5010 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5011 	 * cleared to 0. Error out if clearing the bit failed.
5012 	 */
5013 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5014 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5015 		return -EBUSY;
5016 	}
5017 
5018 	return 0;
5019 }
5020 
5021 int its_cpu_init(void)
5022 {
5023 	if (!list_empty(&its_nodes)) {
5024 		int ret;
5025 
5026 		ret = redist_disable_lpis();
5027 		if (ret)
5028 			return ret;
5029 
5030 		its_cpu_init_lpis();
5031 		its_cpu_init_collections();
5032 	}
5033 
5034 	return 0;
5035 }
5036 
5037 static const struct of_device_id its_device_id[] = {
5038 	{	.compatible	= "arm,gic-v3-its",	},
5039 	{},
5040 };
5041 
5042 static int __init its_of_probe(struct device_node *node)
5043 {
5044 	struct device_node *np;
5045 	struct resource res;
5046 
5047 	for (np = of_find_matching_node(node, its_device_id); np;
5048 	     np = of_find_matching_node(np, its_device_id)) {
5049 		if (!of_device_is_available(np))
5050 			continue;
5051 		if (!of_property_read_bool(np, "msi-controller")) {
5052 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5053 				np);
5054 			continue;
5055 		}
5056 
5057 		if (of_address_to_resource(np, 0, &res)) {
5058 			pr_warn("%pOF: no regs?\n", np);
5059 			continue;
5060 		}
5061 
5062 		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
5063 	}
5064 	return 0;
5065 }
5066 
5067 #ifdef CONFIG_ACPI
5068 
5069 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5070 
5071 #ifdef CONFIG_ACPI_NUMA
5072 struct its_srat_map {
5073 	/* numa node id */
5074 	u32	numa_node;
5075 	/* GIC ITS ID */
5076 	u32	its_id;
5077 };
5078 
5079 static struct its_srat_map *its_srat_maps __initdata;
5080 static int its_in_srat __initdata;
5081 
5082 static int __init acpi_get_its_numa_node(u32 its_id)
5083 {
5084 	int i;
5085 
5086 	for (i = 0; i < its_in_srat; i++) {
5087 		if (its_id == its_srat_maps[i].its_id)
5088 			return its_srat_maps[i].numa_node;
5089 	}
5090 	return NUMA_NO_NODE;
5091 }
5092 
5093 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5094 					  const unsigned long end)
5095 {
5096 	return 0;
5097 }
5098 
5099 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5100 			 const unsigned long end)
5101 {
5102 	int node;
5103 	struct acpi_srat_gic_its_affinity *its_affinity;
5104 
5105 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5106 	if (!its_affinity)
5107 		return -EINVAL;
5108 
5109 	if (its_affinity->header.length < sizeof(*its_affinity)) {
5110 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5111 			its_affinity->header.length);
5112 		return -EINVAL;
5113 	}
5114 
5115 	node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
5116 
5117 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5118 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5119 		return 0;
5120 	}
5121 
5122 	its_srat_maps[its_in_srat].numa_node = node;
5123 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5124 	its_in_srat++;
5125 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5126 		its_affinity->proximity_domain, its_affinity->its_id, node);
5127 
5128 	return 0;
5129 }
5130 
5131 static void __init acpi_table_parse_srat_its(void)
5132 {
5133 	int count;
5134 
5135 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5136 			sizeof(struct acpi_table_srat),
5137 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5138 			gic_acpi_match_srat_its, 0);
5139 	if (count <= 0)
5140 		return;
5141 
5142 	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5143 				      GFP_KERNEL);
5144 	if (!its_srat_maps) {
5145 		pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
5146 		return;
5147 	}
5148 
5149 	acpi_table_parse_entries(ACPI_SIG_SRAT,
5150 			sizeof(struct acpi_table_srat),
5151 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5152 			gic_acpi_parse_srat_its, 0);
5153 }
5154 
5155 /* free the its_srat_maps after ITS probing */
5156 static void __init acpi_its_srat_maps_free(void)
5157 {
5158 	kfree(its_srat_maps);
5159 }
5160 #else
5161 static void __init acpi_table_parse_srat_its(void)	{ }
5162 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5163 static void __init acpi_its_srat_maps_free(void) { }
5164 #endif
5165 
5166 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5167 					  const unsigned long end)
5168 {
5169 	struct acpi_madt_generic_translator *its_entry;
5170 	struct fwnode_handle *dom_handle;
5171 	struct resource res;
5172 	int err;
5173 
5174 	its_entry = (struct acpi_madt_generic_translator *)header;
5175 	memset(&res, 0, sizeof(res));
5176 	res.start = its_entry->base_address;
5177 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5178 	res.flags = IORESOURCE_MEM;
5179 
5180 	dom_handle = irq_domain_alloc_fwnode(&res.start);
5181 	if (!dom_handle) {
5182 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5183 		       &res.start);
5184 		return -ENOMEM;
5185 	}
5186 
5187 	err = iort_register_domain_token(its_entry->translation_id, res.start,
5188 					 dom_handle);
5189 	if (err) {
5190 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5191 		       &res.start, its_entry->translation_id);
5192 		goto dom_err;
5193 	}
5194 
5195 	err = its_probe_one(&res, dom_handle,
5196 			acpi_get_its_numa_node(its_entry->translation_id));
5197 	if (!err)
5198 		return 0;
5199 
5200 	iort_deregister_domain_token(its_entry->translation_id);
5201 dom_err:
5202 	irq_domain_free_fwnode(dom_handle);
5203 	return err;
5204 }
5205 
5206 static void __init its_acpi_probe(void)
5207 {
5208 	acpi_table_parse_srat_its();
5209 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5210 			      gic_acpi_parse_madt_its, 0);
5211 	acpi_its_srat_maps_free();
5212 }
5213 #else
5214 static void __init its_acpi_probe(void) { }
5215 #endif
5216 
5217 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5218 		    struct irq_domain *parent_domain)
5219 {
5220 	struct device_node *of_node;
5221 	struct its_node *its;
5222 	bool has_v4 = false;
5223 	bool has_v4_1 = false;
5224 	int err;
5225 
5226 	gic_rdists = rdists;
5227 
5228 	its_parent = parent_domain;
5229 	of_node = to_of_node(handle);
5230 	if (of_node)
5231 		its_of_probe(of_node);
5232 	else
5233 		its_acpi_probe();
5234 
5235 	if (list_empty(&its_nodes)) {
5236 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
5237 		return -ENXIO;
5238 	}
5239 
5240 	err = allocate_lpi_tables();
5241 	if (err)
5242 		return err;
5243 
5244 	list_for_each_entry(its, &its_nodes, entry) {
5245 		has_v4 |= is_v4(its);
5246 		has_v4_1 |= is_v4_1(its);
5247 	}
5248 
5249 	/* Don't bother with inconsistent systems */
5250 	if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5251 		rdists->has_rvpeid = false;
5252 
5253 	if (has_v4 & rdists->has_vlpis) {
5254 		const struct irq_domain_ops *sgi_ops;
5255 
5256 		if (has_v4_1)
5257 			sgi_ops = &its_sgi_domain_ops;
5258 		else
5259 			sgi_ops = NULL;
5260 
5261 		if (its_init_vpe_domain() ||
5262 		    its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5263 			rdists->has_vlpis = false;
5264 			pr_err("ITS: Disabling GICv4 support\n");
5265 		}
5266 	}
5267 
5268 	register_syscore_ops(&its_syscore_ops);
5269 
5270 	return 0;
5271 }
5272