1 /*
2  * Copyright (C) 2013, 2014 ARM Limited, All Rights Reserved.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #include <linux/bitmap.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/log2.h>
23 #include <linux/mm.h>
24 #include <linux/msi.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_pci.h>
29 #include <linux/of_platform.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 
36 #include <asm/cacheflush.h>
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39 
40 #include "irq-gic-common.h"
41 
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
44 
45 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
46 
47 /*
48  * Collection structure - just an ID, and a redistributor address to
49  * ping. We use one per CPU as a bag of interrupts assigned to this
50  * CPU.
51  */
52 struct its_collection {
53 	u64			target_address;
54 	u16			col_id;
55 };
56 
57 /*
58  * The ITS structure - contains most of the infrastructure, with the
59  * top-level MSI domain, the command queue, the collections, and the
60  * list of devices writing to it.
61  */
62 struct its_node {
63 	raw_spinlock_t		lock;
64 	struct list_head	entry;
65 	void __iomem		*base;
66 	unsigned long		phys_base;
67 	struct its_cmd_block	*cmd_base;
68 	struct its_cmd_block	*cmd_write;
69 	struct {
70 		void		*base;
71 		u32		order;
72 	} tables[GITS_BASER_NR_REGS];
73 	struct its_collection	*collections;
74 	struct list_head	its_device_list;
75 	u64			flags;
76 	u32			ite_size;
77 };
78 
79 #define ITS_ITT_ALIGN		SZ_256
80 
81 /* Convert page order to size in bytes */
82 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
83 
84 struct event_lpi_map {
85 	unsigned long		*lpi_map;
86 	u16			*col_map;
87 	irq_hw_number_t		lpi_base;
88 	int			nr_lpis;
89 };
90 
91 /*
92  * The ITS view of a device - belongs to an ITS, a collection, owns an
93  * interrupt translation table, and a list of interrupts.
94  */
95 struct its_device {
96 	struct list_head	entry;
97 	struct its_node		*its;
98 	struct event_lpi_map	event_map;
99 	void			*itt;
100 	u32			nr_ites;
101 	u32			device_id;
102 };
103 
104 static LIST_HEAD(its_nodes);
105 static DEFINE_SPINLOCK(its_lock);
106 static struct rdists *gic_rdists;
107 
108 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
109 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
110 
111 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
112 					       u32 event)
113 {
114 	struct its_node *its = its_dev->its;
115 
116 	return its->collections + its_dev->event_map.col_map[event];
117 }
118 
119 /*
120  * ITS command descriptors - parameters to be encoded in a command
121  * block.
122  */
123 struct its_cmd_desc {
124 	union {
125 		struct {
126 			struct its_device *dev;
127 			u32 event_id;
128 		} its_inv_cmd;
129 
130 		struct {
131 			struct its_device *dev;
132 			u32 event_id;
133 		} its_int_cmd;
134 
135 		struct {
136 			struct its_device *dev;
137 			int valid;
138 		} its_mapd_cmd;
139 
140 		struct {
141 			struct its_collection *col;
142 			int valid;
143 		} its_mapc_cmd;
144 
145 		struct {
146 			struct its_device *dev;
147 			u32 phys_id;
148 			u32 event_id;
149 		} its_mapvi_cmd;
150 
151 		struct {
152 			struct its_device *dev;
153 			struct its_collection *col;
154 			u32 event_id;
155 		} its_movi_cmd;
156 
157 		struct {
158 			struct its_device *dev;
159 			u32 event_id;
160 		} its_discard_cmd;
161 
162 		struct {
163 			struct its_collection *col;
164 		} its_invall_cmd;
165 	};
166 };
167 
168 /*
169  * The ITS command block, which is what the ITS actually parses.
170  */
171 struct its_cmd_block {
172 	u64	raw_cmd[4];
173 };
174 
175 #define ITS_CMD_QUEUE_SZ		SZ_64K
176 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
177 
178 typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *,
179 						    struct its_cmd_desc *);
180 
181 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
182 {
183 	cmd->raw_cmd[0] &= ~0xffUL;
184 	cmd->raw_cmd[0] |= cmd_nr;
185 }
186 
187 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
188 {
189 	cmd->raw_cmd[0] &= BIT_ULL(32) - 1;
190 	cmd->raw_cmd[0] |= ((u64)devid) << 32;
191 }
192 
193 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
194 {
195 	cmd->raw_cmd[1] &= ~0xffffffffUL;
196 	cmd->raw_cmd[1] |= id;
197 }
198 
199 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
200 {
201 	cmd->raw_cmd[1] &= 0xffffffffUL;
202 	cmd->raw_cmd[1] |= ((u64)phys_id) << 32;
203 }
204 
205 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
206 {
207 	cmd->raw_cmd[1] &= ~0x1fUL;
208 	cmd->raw_cmd[1] |= size & 0x1f;
209 }
210 
211 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
212 {
213 	cmd->raw_cmd[2] &= ~0xffffffffffffUL;
214 	cmd->raw_cmd[2] |= itt_addr & 0xffffffffff00UL;
215 }
216 
217 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
218 {
219 	cmd->raw_cmd[2] &= ~(1UL << 63);
220 	cmd->raw_cmd[2] |= ((u64)!!valid) << 63;
221 }
222 
223 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
224 {
225 	cmd->raw_cmd[2] &= ~(0xffffffffUL << 16);
226 	cmd->raw_cmd[2] |= (target_addr & (0xffffffffUL << 16));
227 }
228 
229 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
230 {
231 	cmd->raw_cmd[2] &= ~0xffffUL;
232 	cmd->raw_cmd[2] |= col;
233 }
234 
235 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
236 {
237 	/* Let's fixup BE commands */
238 	cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
239 	cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
240 	cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
241 	cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
242 }
243 
244 static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd,
245 						 struct its_cmd_desc *desc)
246 {
247 	unsigned long itt_addr;
248 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
249 
250 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
251 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
252 
253 	its_encode_cmd(cmd, GITS_CMD_MAPD);
254 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
255 	its_encode_size(cmd, size - 1);
256 	its_encode_itt(cmd, itt_addr);
257 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
258 
259 	its_fixup_cmd(cmd);
260 
261 	return NULL;
262 }
263 
264 static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd,
265 						 struct its_cmd_desc *desc)
266 {
267 	its_encode_cmd(cmd, GITS_CMD_MAPC);
268 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
269 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
270 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
271 
272 	its_fixup_cmd(cmd);
273 
274 	return desc->its_mapc_cmd.col;
275 }
276 
277 static struct its_collection *its_build_mapvi_cmd(struct its_cmd_block *cmd,
278 						  struct its_cmd_desc *desc)
279 {
280 	struct its_collection *col;
281 
282 	col = dev_event_to_col(desc->its_mapvi_cmd.dev,
283 			       desc->its_mapvi_cmd.event_id);
284 
285 	its_encode_cmd(cmd, GITS_CMD_MAPVI);
286 	its_encode_devid(cmd, desc->its_mapvi_cmd.dev->device_id);
287 	its_encode_event_id(cmd, desc->its_mapvi_cmd.event_id);
288 	its_encode_phys_id(cmd, desc->its_mapvi_cmd.phys_id);
289 	its_encode_collection(cmd, col->col_id);
290 
291 	its_fixup_cmd(cmd);
292 
293 	return col;
294 }
295 
296 static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd,
297 						 struct its_cmd_desc *desc)
298 {
299 	struct its_collection *col;
300 
301 	col = dev_event_to_col(desc->its_movi_cmd.dev,
302 			       desc->its_movi_cmd.event_id);
303 
304 	its_encode_cmd(cmd, GITS_CMD_MOVI);
305 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
306 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
307 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
308 
309 	its_fixup_cmd(cmd);
310 
311 	return col;
312 }
313 
314 static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd,
315 						    struct its_cmd_desc *desc)
316 {
317 	struct its_collection *col;
318 
319 	col = dev_event_to_col(desc->its_discard_cmd.dev,
320 			       desc->its_discard_cmd.event_id);
321 
322 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
323 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
324 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
325 
326 	its_fixup_cmd(cmd);
327 
328 	return col;
329 }
330 
331 static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd,
332 						struct its_cmd_desc *desc)
333 {
334 	struct its_collection *col;
335 
336 	col = dev_event_to_col(desc->its_inv_cmd.dev,
337 			       desc->its_inv_cmd.event_id);
338 
339 	its_encode_cmd(cmd, GITS_CMD_INV);
340 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
341 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
342 
343 	its_fixup_cmd(cmd);
344 
345 	return col;
346 }
347 
348 static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd,
349 						   struct its_cmd_desc *desc)
350 {
351 	its_encode_cmd(cmd, GITS_CMD_INVALL);
352 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
353 
354 	its_fixup_cmd(cmd);
355 
356 	return NULL;
357 }
358 
359 static u64 its_cmd_ptr_to_offset(struct its_node *its,
360 				 struct its_cmd_block *ptr)
361 {
362 	return (ptr - its->cmd_base) * sizeof(*ptr);
363 }
364 
365 static int its_queue_full(struct its_node *its)
366 {
367 	int widx;
368 	int ridx;
369 
370 	widx = its->cmd_write - its->cmd_base;
371 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
372 
373 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
374 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
375 		return 1;
376 
377 	return 0;
378 }
379 
380 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
381 {
382 	struct its_cmd_block *cmd;
383 	u32 count = 1000000;	/* 1s! */
384 
385 	while (its_queue_full(its)) {
386 		count--;
387 		if (!count) {
388 			pr_err_ratelimited("ITS queue not draining\n");
389 			return NULL;
390 		}
391 		cpu_relax();
392 		udelay(1);
393 	}
394 
395 	cmd = its->cmd_write++;
396 
397 	/* Handle queue wrapping */
398 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
399 		its->cmd_write = its->cmd_base;
400 
401 	return cmd;
402 }
403 
404 static struct its_cmd_block *its_post_commands(struct its_node *its)
405 {
406 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
407 
408 	writel_relaxed(wr, its->base + GITS_CWRITER);
409 
410 	return its->cmd_write;
411 }
412 
413 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
414 {
415 	/*
416 	 * Make sure the commands written to memory are observable by
417 	 * the ITS.
418 	 */
419 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
420 		__flush_dcache_area(cmd, sizeof(*cmd));
421 	else
422 		dsb(ishst);
423 }
424 
425 static void its_wait_for_range_completion(struct its_node *its,
426 					  struct its_cmd_block *from,
427 					  struct its_cmd_block *to)
428 {
429 	u64 rd_idx, from_idx, to_idx;
430 	u32 count = 1000000;	/* 1s! */
431 
432 	from_idx = its_cmd_ptr_to_offset(its, from);
433 	to_idx = its_cmd_ptr_to_offset(its, to);
434 
435 	while (1) {
436 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
437 		if (rd_idx >= to_idx || rd_idx < from_idx)
438 			break;
439 
440 		count--;
441 		if (!count) {
442 			pr_err_ratelimited("ITS queue timeout\n");
443 			return;
444 		}
445 		cpu_relax();
446 		udelay(1);
447 	}
448 }
449 
450 static void its_send_single_command(struct its_node *its,
451 				    its_cmd_builder_t builder,
452 				    struct its_cmd_desc *desc)
453 {
454 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;
455 	struct its_collection *sync_col;
456 	unsigned long flags;
457 
458 	raw_spin_lock_irqsave(&its->lock, flags);
459 
460 	cmd = its_allocate_entry(its);
461 	if (!cmd) {		/* We're soooooo screewed... */
462 		pr_err_ratelimited("ITS can't allocate, dropping command\n");
463 		raw_spin_unlock_irqrestore(&its->lock, flags);
464 		return;
465 	}
466 	sync_col = builder(cmd, desc);
467 	its_flush_cmd(its, cmd);
468 
469 	if (sync_col) {
470 		sync_cmd = its_allocate_entry(its);
471 		if (!sync_cmd) {
472 			pr_err_ratelimited("ITS can't SYNC, skipping\n");
473 			goto post;
474 		}
475 		its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
476 		its_encode_target(sync_cmd, sync_col->target_address);
477 		its_fixup_cmd(sync_cmd);
478 		its_flush_cmd(its, sync_cmd);
479 	}
480 
481 post:
482 	next_cmd = its_post_commands(its);
483 	raw_spin_unlock_irqrestore(&its->lock, flags);
484 
485 	its_wait_for_range_completion(its, cmd, next_cmd);
486 }
487 
488 static void its_send_inv(struct its_device *dev, u32 event_id)
489 {
490 	struct its_cmd_desc desc;
491 
492 	desc.its_inv_cmd.dev = dev;
493 	desc.its_inv_cmd.event_id = event_id;
494 
495 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
496 }
497 
498 static void its_send_mapd(struct its_device *dev, int valid)
499 {
500 	struct its_cmd_desc desc;
501 
502 	desc.its_mapd_cmd.dev = dev;
503 	desc.its_mapd_cmd.valid = !!valid;
504 
505 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
506 }
507 
508 static void its_send_mapc(struct its_node *its, struct its_collection *col,
509 			  int valid)
510 {
511 	struct its_cmd_desc desc;
512 
513 	desc.its_mapc_cmd.col = col;
514 	desc.its_mapc_cmd.valid = !!valid;
515 
516 	its_send_single_command(its, its_build_mapc_cmd, &desc);
517 }
518 
519 static void its_send_mapvi(struct its_device *dev, u32 irq_id, u32 id)
520 {
521 	struct its_cmd_desc desc;
522 
523 	desc.its_mapvi_cmd.dev = dev;
524 	desc.its_mapvi_cmd.phys_id = irq_id;
525 	desc.its_mapvi_cmd.event_id = id;
526 
527 	its_send_single_command(dev->its, its_build_mapvi_cmd, &desc);
528 }
529 
530 static void its_send_movi(struct its_device *dev,
531 			  struct its_collection *col, u32 id)
532 {
533 	struct its_cmd_desc desc;
534 
535 	desc.its_movi_cmd.dev = dev;
536 	desc.its_movi_cmd.col = col;
537 	desc.its_movi_cmd.event_id = id;
538 
539 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
540 }
541 
542 static void its_send_discard(struct its_device *dev, u32 id)
543 {
544 	struct its_cmd_desc desc;
545 
546 	desc.its_discard_cmd.dev = dev;
547 	desc.its_discard_cmd.event_id = id;
548 
549 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
550 }
551 
552 static void its_send_invall(struct its_node *its, struct its_collection *col)
553 {
554 	struct its_cmd_desc desc;
555 
556 	desc.its_invall_cmd.col = col;
557 
558 	its_send_single_command(its, its_build_invall_cmd, &desc);
559 }
560 
561 /*
562  * irqchip functions - assumes MSI, mostly.
563  */
564 
565 static inline u32 its_get_event_id(struct irq_data *d)
566 {
567 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
568 	return d->hwirq - its_dev->event_map.lpi_base;
569 }
570 
571 static void lpi_set_config(struct irq_data *d, bool enable)
572 {
573 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
574 	irq_hw_number_t hwirq = d->hwirq;
575 	u32 id = its_get_event_id(d);
576 	u8 *cfg = page_address(gic_rdists->prop_page) + hwirq - 8192;
577 
578 	if (enable)
579 		*cfg |= LPI_PROP_ENABLED;
580 	else
581 		*cfg &= ~LPI_PROP_ENABLED;
582 
583 	/*
584 	 * Make the above write visible to the redistributors.
585 	 * And yes, we're flushing exactly: One. Single. Byte.
586 	 * Humpf...
587 	 */
588 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
589 		__flush_dcache_area(cfg, sizeof(*cfg));
590 	else
591 		dsb(ishst);
592 	its_send_inv(its_dev, id);
593 }
594 
595 static void its_mask_irq(struct irq_data *d)
596 {
597 	lpi_set_config(d, false);
598 }
599 
600 static void its_unmask_irq(struct irq_data *d)
601 {
602 	lpi_set_config(d, true);
603 }
604 
605 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
606 			    bool force)
607 {
608 	unsigned int cpu = cpumask_any_and(mask_val, cpu_online_mask);
609 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
610 	struct its_collection *target_col;
611 	u32 id = its_get_event_id(d);
612 
613 	if (cpu >= nr_cpu_ids)
614 		return -EINVAL;
615 
616 	target_col = &its_dev->its->collections[cpu];
617 	its_send_movi(its_dev, target_col, id);
618 	its_dev->event_map.col_map[id] = cpu;
619 
620 	return IRQ_SET_MASK_OK_DONE;
621 }
622 
623 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
624 {
625 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
626 	struct its_node *its;
627 	u64 addr;
628 
629 	its = its_dev->its;
630 	addr = its->phys_base + GITS_TRANSLATER;
631 
632 	msg->address_lo		= addr & ((1UL << 32) - 1);
633 	msg->address_hi		= addr >> 32;
634 	msg->data		= its_get_event_id(d);
635 }
636 
637 static struct irq_chip its_irq_chip = {
638 	.name			= "ITS",
639 	.irq_mask		= its_mask_irq,
640 	.irq_unmask		= its_unmask_irq,
641 	.irq_eoi		= irq_chip_eoi_parent,
642 	.irq_set_affinity	= its_set_affinity,
643 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
644 };
645 
646 /*
647  * How we allocate LPIs:
648  *
649  * The GIC has id_bits bits for interrupt identifiers. From there, we
650  * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
651  * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
652  * bits to the right.
653  *
654  * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
655  */
656 #define IRQS_PER_CHUNK_SHIFT	5
657 #define IRQS_PER_CHUNK		(1 << IRQS_PER_CHUNK_SHIFT)
658 
659 static unsigned long *lpi_bitmap;
660 static u32 lpi_chunks;
661 static DEFINE_SPINLOCK(lpi_lock);
662 
663 static int its_lpi_to_chunk(int lpi)
664 {
665 	return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
666 }
667 
668 static int its_chunk_to_lpi(int chunk)
669 {
670 	return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
671 }
672 
673 static int __init its_lpi_init(u32 id_bits)
674 {
675 	lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
676 
677 	lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
678 			     GFP_KERNEL);
679 	if (!lpi_bitmap) {
680 		lpi_chunks = 0;
681 		return -ENOMEM;
682 	}
683 
684 	pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
685 	return 0;
686 }
687 
688 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
689 {
690 	unsigned long *bitmap = NULL;
691 	int chunk_id;
692 	int nr_chunks;
693 	int i;
694 
695 	nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
696 
697 	spin_lock(&lpi_lock);
698 
699 	do {
700 		chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
701 						      0, nr_chunks, 0);
702 		if (chunk_id < lpi_chunks)
703 			break;
704 
705 		nr_chunks--;
706 	} while (nr_chunks > 0);
707 
708 	if (!nr_chunks)
709 		goto out;
710 
711 	bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
712 			 GFP_ATOMIC);
713 	if (!bitmap)
714 		goto out;
715 
716 	for (i = 0; i < nr_chunks; i++)
717 		set_bit(chunk_id + i, lpi_bitmap);
718 
719 	*base = its_chunk_to_lpi(chunk_id);
720 	*nr_ids = nr_chunks * IRQS_PER_CHUNK;
721 
722 out:
723 	spin_unlock(&lpi_lock);
724 
725 	if (!bitmap)
726 		*base = *nr_ids = 0;
727 
728 	return bitmap;
729 }
730 
731 static void its_lpi_free(struct event_lpi_map *map)
732 {
733 	int base = map->lpi_base;
734 	int nr_ids = map->nr_lpis;
735 	int lpi;
736 
737 	spin_lock(&lpi_lock);
738 
739 	for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
740 		int chunk = its_lpi_to_chunk(lpi);
741 		BUG_ON(chunk > lpi_chunks);
742 		if (test_bit(chunk, lpi_bitmap)) {
743 			clear_bit(chunk, lpi_bitmap);
744 		} else {
745 			pr_err("Bad LPI chunk %d\n", chunk);
746 		}
747 	}
748 
749 	spin_unlock(&lpi_lock);
750 
751 	kfree(map->lpi_map);
752 	kfree(map->col_map);
753 }
754 
755 /*
756  * We allocate 64kB for PROPBASE. That gives us at most 64K LPIs to
757  * deal with (one configuration byte per interrupt). PENDBASE has to
758  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
759  */
760 #define LPI_PROPBASE_SZ		SZ_64K
761 #define LPI_PENDBASE_SZ		(LPI_PROPBASE_SZ / 8 + SZ_1K)
762 
763 /*
764  * This is how many bits of ID we need, including the useless ones.
765  */
766 #define LPI_NRBITS		ilog2(LPI_PROPBASE_SZ + SZ_8K)
767 
768 #define LPI_PROP_DEFAULT_PRIO	0xa0
769 
770 static int __init its_alloc_lpi_tables(void)
771 {
772 	phys_addr_t paddr;
773 
774 	gic_rdists->prop_page = alloc_pages(GFP_NOWAIT,
775 					   get_order(LPI_PROPBASE_SZ));
776 	if (!gic_rdists->prop_page) {
777 		pr_err("Failed to allocate PROPBASE\n");
778 		return -ENOMEM;
779 	}
780 
781 	paddr = page_to_phys(gic_rdists->prop_page);
782 	pr_info("GIC: using LPI property table @%pa\n", &paddr);
783 
784 	/* Priority 0xa0, Group-1, disabled */
785 	memset(page_address(gic_rdists->prop_page),
786 	       LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
787 	       LPI_PROPBASE_SZ);
788 
789 	/* Make sure the GIC will observe the written configuration */
790 	__flush_dcache_area(page_address(gic_rdists->prop_page), LPI_PROPBASE_SZ);
791 
792 	return 0;
793 }
794 
795 static const char *its_base_type_string[] = {
796 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
797 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
798 	[GITS_BASER_TYPE_CPU]		= "Physical CPUs",
799 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
800 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
801 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
802 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
803 };
804 
805 static void its_free_tables(struct its_node *its)
806 {
807 	int i;
808 
809 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
810 		if (its->tables[i].base) {
811 			free_pages((unsigned long)its->tables[i].base,
812 				   its->tables[i].order);
813 			its->tables[i].base = NULL;
814 		}
815 	}
816 }
817 
818 static int its_alloc_tables(const char *node_name, struct its_node *its)
819 {
820 	int err;
821 	int i;
822 	int psz = SZ_64K;
823 	u64 shr = GITS_BASER_InnerShareable;
824 	u64 cache;
825 	u64 typer;
826 	u32 ids;
827 
828 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) {
829 		/*
830 		 * erratum 22375: only alloc 8MB table size
831 		 * erratum 24313: ignore memory access type
832 		 */
833 		cache	= 0;
834 		ids	= 0x14;			/* 20 bits, 8MB */
835 	} else {
836 		cache	= GITS_BASER_WaWb;
837 		typer	= readq_relaxed(its->base + GITS_TYPER);
838 		ids	= GITS_TYPER_DEVBITS(typer);
839 	}
840 
841 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
842 		u64 val = readq_relaxed(its->base + GITS_BASER + i * 8);
843 		u64 type = GITS_BASER_TYPE(val);
844 		u64 entry_size = GITS_BASER_ENTRY_SIZE(val);
845 		int order = get_order(psz);
846 		int alloc_pages;
847 		u64 tmp;
848 		void *base;
849 
850 		if (type == GITS_BASER_TYPE_NONE)
851 			continue;
852 
853 		/*
854 		 * Allocate as many entries as required to fit the
855 		 * range of device IDs that the ITS can grok... The ID
856 		 * space being incredibly sparse, this results in a
857 		 * massive waste of memory.
858 		 *
859 		 * For other tables, only allocate a single page.
860 		 */
861 		if (type == GITS_BASER_TYPE_DEVICE) {
862 			/*
863 			 * 'order' was initialized earlier to the default page
864 			 * granule of the the ITS.  We can't have an allocation
865 			 * smaller than that.  If the requested allocation
866 			 * is smaller, round up to the default page granule.
867 			 */
868 			order = max(get_order((1UL << ids) * entry_size),
869 				    order);
870 			if (order >= MAX_ORDER) {
871 				order = MAX_ORDER - 1;
872 				pr_warn("%s: Device Table too large, reduce its page order to %u\n",
873 					node_name, order);
874 			}
875 		}
876 
877 retry_alloc_baser:
878 		alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
879 		if (alloc_pages > GITS_BASER_PAGES_MAX) {
880 			alloc_pages = GITS_BASER_PAGES_MAX;
881 			order = get_order(GITS_BASER_PAGES_MAX * psz);
882 			pr_warn("%s: Device Table too large, reduce its page order to %u (%u pages)\n",
883 				node_name, order, alloc_pages);
884 		}
885 
886 		base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
887 		if (!base) {
888 			err = -ENOMEM;
889 			goto out_free;
890 		}
891 
892 		its->tables[i].base = base;
893 		its->tables[i].order = order;
894 
895 retry_baser:
896 		val = (virt_to_phys(base) 				 |
897 		       (type << GITS_BASER_TYPE_SHIFT)			 |
898 		       ((entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
899 		       cache						 |
900 		       shr						 |
901 		       GITS_BASER_VALID);
902 
903 		switch (psz) {
904 		case SZ_4K:
905 			val |= GITS_BASER_PAGE_SIZE_4K;
906 			break;
907 		case SZ_16K:
908 			val |= GITS_BASER_PAGE_SIZE_16K;
909 			break;
910 		case SZ_64K:
911 			val |= GITS_BASER_PAGE_SIZE_64K;
912 			break;
913 		}
914 
915 		val |= alloc_pages - 1;
916 
917 		writeq_relaxed(val, its->base + GITS_BASER + i * 8);
918 		tmp = readq_relaxed(its->base + GITS_BASER + i * 8);
919 
920 		if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
921 			/*
922 			 * Shareability didn't stick. Just use
923 			 * whatever the read reported, which is likely
924 			 * to be the only thing this redistributor
925 			 * supports. If that's zero, make it
926 			 * non-cacheable as well.
927 			 */
928 			shr = tmp & GITS_BASER_SHAREABILITY_MASK;
929 			if (!shr) {
930 				cache = GITS_BASER_nC;
931 				__flush_dcache_area(base, PAGE_ORDER_TO_SIZE(order));
932 			}
933 			goto retry_baser;
934 		}
935 
936 		if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
937 			/*
938 			 * Page size didn't stick. Let's try a smaller
939 			 * size and retry. If we reach 4K, then
940 			 * something is horribly wrong...
941 			 */
942 			free_pages((unsigned long)base, order);
943 			its->tables[i].base = NULL;
944 
945 			switch (psz) {
946 			case SZ_16K:
947 				psz = SZ_4K;
948 				goto retry_alloc_baser;
949 			case SZ_64K:
950 				psz = SZ_16K;
951 				goto retry_alloc_baser;
952 			}
953 		}
954 
955 		if (val != tmp) {
956 			pr_err("ITS: %s: GITS_BASER%d doesn't stick: %lx %lx\n",
957 			       node_name, i,
958 			       (unsigned long) val, (unsigned long) tmp);
959 			err = -ENXIO;
960 			goto out_free;
961 		}
962 
963 		pr_info("ITS: allocated %d %s @%lx (psz %dK, shr %d)\n",
964 			(int)(PAGE_ORDER_TO_SIZE(order) / entry_size),
965 			its_base_type_string[type],
966 			(unsigned long)virt_to_phys(base),
967 			psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
968 	}
969 
970 	return 0;
971 
972 out_free:
973 	its_free_tables(its);
974 
975 	return err;
976 }
977 
978 static int its_alloc_collections(struct its_node *its)
979 {
980 	its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
981 				   GFP_KERNEL);
982 	if (!its->collections)
983 		return -ENOMEM;
984 
985 	return 0;
986 }
987 
988 static void its_cpu_init_lpis(void)
989 {
990 	void __iomem *rbase = gic_data_rdist_rd_base();
991 	struct page *pend_page;
992 	u64 val, tmp;
993 
994 	/* If we didn't allocate the pending table yet, do it now */
995 	pend_page = gic_data_rdist()->pend_page;
996 	if (!pend_page) {
997 		phys_addr_t paddr;
998 		/*
999 		 * The pending pages have to be at least 64kB aligned,
1000 		 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1001 		 */
1002 		pend_page = alloc_pages(GFP_NOWAIT | __GFP_ZERO,
1003 					get_order(max(LPI_PENDBASE_SZ, SZ_64K)));
1004 		if (!pend_page) {
1005 			pr_err("Failed to allocate PENDBASE for CPU%d\n",
1006 			       smp_processor_id());
1007 			return;
1008 		}
1009 
1010 		/* Make sure the GIC will observe the zero-ed page */
1011 		__flush_dcache_area(page_address(pend_page), LPI_PENDBASE_SZ);
1012 
1013 		paddr = page_to_phys(pend_page);
1014 		pr_info("CPU%d: using LPI pending table @%pa\n",
1015 			smp_processor_id(), &paddr);
1016 		gic_data_rdist()->pend_page = pend_page;
1017 	}
1018 
1019 	/* Disable LPIs */
1020 	val = readl_relaxed(rbase + GICR_CTLR);
1021 	val &= ~GICR_CTLR_ENABLE_LPIS;
1022 	writel_relaxed(val, rbase + GICR_CTLR);
1023 
1024 	/*
1025 	 * Make sure any change to the table is observable by the GIC.
1026 	 */
1027 	dsb(sy);
1028 
1029 	/* set PROPBASE */
1030 	val = (page_to_phys(gic_rdists->prop_page) |
1031 	       GICR_PROPBASER_InnerShareable |
1032 	       GICR_PROPBASER_WaWb |
1033 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1034 
1035 	writeq_relaxed(val, rbase + GICR_PROPBASER);
1036 	tmp = readq_relaxed(rbase + GICR_PROPBASER);
1037 
1038 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1039 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1040 			/*
1041 			 * The HW reports non-shareable, we must
1042 			 * remove the cacheability attributes as
1043 			 * well.
1044 			 */
1045 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1046 				 GICR_PROPBASER_CACHEABILITY_MASK);
1047 			val |= GICR_PROPBASER_nC;
1048 			writeq_relaxed(val, rbase + GICR_PROPBASER);
1049 		}
1050 		pr_info_once("GIC: using cache flushing for LPI property table\n");
1051 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1052 	}
1053 
1054 	/* set PENDBASE */
1055 	val = (page_to_phys(pend_page) |
1056 	       GICR_PENDBASER_InnerShareable |
1057 	       GICR_PENDBASER_WaWb);
1058 
1059 	writeq_relaxed(val, rbase + GICR_PENDBASER);
1060 	tmp = readq_relaxed(rbase + GICR_PENDBASER);
1061 
1062 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1063 		/*
1064 		 * The HW reports non-shareable, we must remove the
1065 		 * cacheability attributes as well.
1066 		 */
1067 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1068 			 GICR_PENDBASER_CACHEABILITY_MASK);
1069 		val |= GICR_PENDBASER_nC;
1070 		writeq_relaxed(val, rbase + GICR_PENDBASER);
1071 	}
1072 
1073 	/* Enable LPIs */
1074 	val = readl_relaxed(rbase + GICR_CTLR);
1075 	val |= GICR_CTLR_ENABLE_LPIS;
1076 	writel_relaxed(val, rbase + GICR_CTLR);
1077 
1078 	/* Make sure the GIC has seen the above */
1079 	dsb(sy);
1080 }
1081 
1082 static void its_cpu_init_collection(void)
1083 {
1084 	struct its_node *its;
1085 	int cpu;
1086 
1087 	spin_lock(&its_lock);
1088 	cpu = smp_processor_id();
1089 
1090 	list_for_each_entry(its, &its_nodes, entry) {
1091 		u64 target;
1092 
1093 		/*
1094 		 * We now have to bind each collection to its target
1095 		 * redistributor.
1096 		 */
1097 		if (readq_relaxed(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1098 			/*
1099 			 * This ITS wants the physical address of the
1100 			 * redistributor.
1101 			 */
1102 			target = gic_data_rdist()->phys_base;
1103 		} else {
1104 			/*
1105 			 * This ITS wants a linear CPU number.
1106 			 */
1107 			target = readq_relaxed(gic_data_rdist_rd_base() + GICR_TYPER);
1108 			target = GICR_TYPER_CPU_NUMBER(target) << 16;
1109 		}
1110 
1111 		/* Perform collection mapping */
1112 		its->collections[cpu].target_address = target;
1113 		its->collections[cpu].col_id = cpu;
1114 
1115 		its_send_mapc(its, &its->collections[cpu], 1);
1116 		its_send_invall(its, &its->collections[cpu]);
1117 	}
1118 
1119 	spin_unlock(&its_lock);
1120 }
1121 
1122 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1123 {
1124 	struct its_device *its_dev = NULL, *tmp;
1125 	unsigned long flags;
1126 
1127 	raw_spin_lock_irqsave(&its->lock, flags);
1128 
1129 	list_for_each_entry(tmp, &its->its_device_list, entry) {
1130 		if (tmp->device_id == dev_id) {
1131 			its_dev = tmp;
1132 			break;
1133 		}
1134 	}
1135 
1136 	raw_spin_unlock_irqrestore(&its->lock, flags);
1137 
1138 	return its_dev;
1139 }
1140 
1141 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
1142 					    int nvecs)
1143 {
1144 	struct its_device *dev;
1145 	unsigned long *lpi_map;
1146 	unsigned long flags;
1147 	u16 *col_map = NULL;
1148 	void *itt;
1149 	int lpi_base;
1150 	int nr_lpis;
1151 	int nr_ites;
1152 	int sz;
1153 
1154 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1155 	/*
1156 	 * At least one bit of EventID is being used, hence a minimum
1157 	 * of two entries. No, the architecture doesn't let you
1158 	 * express an ITT with a single entry.
1159 	 */
1160 	nr_ites = max(2UL, roundup_pow_of_two(nvecs));
1161 	sz = nr_ites * its->ite_size;
1162 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
1163 	itt = kzalloc(sz, GFP_KERNEL);
1164 	lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
1165 	if (lpi_map)
1166 		col_map = kzalloc(sizeof(*col_map) * nr_lpis, GFP_KERNEL);
1167 
1168 	if (!dev || !itt || !lpi_map || !col_map) {
1169 		kfree(dev);
1170 		kfree(itt);
1171 		kfree(lpi_map);
1172 		kfree(col_map);
1173 		return NULL;
1174 	}
1175 
1176 	__flush_dcache_area(itt, sz);
1177 
1178 	dev->its = its;
1179 	dev->itt = itt;
1180 	dev->nr_ites = nr_ites;
1181 	dev->event_map.lpi_map = lpi_map;
1182 	dev->event_map.col_map = col_map;
1183 	dev->event_map.lpi_base = lpi_base;
1184 	dev->event_map.nr_lpis = nr_lpis;
1185 	dev->device_id = dev_id;
1186 	INIT_LIST_HEAD(&dev->entry);
1187 
1188 	raw_spin_lock_irqsave(&its->lock, flags);
1189 	list_add(&dev->entry, &its->its_device_list);
1190 	raw_spin_unlock_irqrestore(&its->lock, flags);
1191 
1192 	/* Map device to its ITT */
1193 	its_send_mapd(dev, 1);
1194 
1195 	return dev;
1196 }
1197 
1198 static void its_free_device(struct its_device *its_dev)
1199 {
1200 	unsigned long flags;
1201 
1202 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
1203 	list_del(&its_dev->entry);
1204 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
1205 	kfree(its_dev->itt);
1206 	kfree(its_dev);
1207 }
1208 
1209 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
1210 {
1211 	int idx;
1212 
1213 	idx = find_first_zero_bit(dev->event_map.lpi_map,
1214 				  dev->event_map.nr_lpis);
1215 	if (idx == dev->event_map.nr_lpis)
1216 		return -ENOSPC;
1217 
1218 	*hwirq = dev->event_map.lpi_base + idx;
1219 	set_bit(idx, dev->event_map.lpi_map);
1220 
1221 	return 0;
1222 }
1223 
1224 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
1225 			   int nvec, msi_alloc_info_t *info)
1226 {
1227 	struct its_node *its;
1228 	struct its_device *its_dev;
1229 	struct msi_domain_info *msi_info;
1230 	u32 dev_id;
1231 
1232 	/*
1233 	 * We ignore "dev" entierely, and rely on the dev_id that has
1234 	 * been passed via the scratchpad. This limits this domain's
1235 	 * usefulness to upper layers that definitely know that they
1236 	 * are built on top of the ITS.
1237 	 */
1238 	dev_id = info->scratchpad[0].ul;
1239 
1240 	msi_info = msi_get_domain_info(domain);
1241 	its = msi_info->data;
1242 
1243 	its_dev = its_find_device(its, dev_id);
1244 	if (its_dev) {
1245 		/*
1246 		 * We already have seen this ID, probably through
1247 		 * another alias (PCI bridge of some sort). No need to
1248 		 * create the device.
1249 		 */
1250 		pr_debug("Reusing ITT for devID %x\n", dev_id);
1251 		goto out;
1252 	}
1253 
1254 	its_dev = its_create_device(its, dev_id, nvec);
1255 	if (!its_dev)
1256 		return -ENOMEM;
1257 
1258 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
1259 out:
1260 	info->scratchpad[0].ptr = its_dev;
1261 	return 0;
1262 }
1263 
1264 static struct msi_domain_ops its_msi_domain_ops = {
1265 	.msi_prepare	= its_msi_prepare,
1266 };
1267 
1268 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
1269 				    unsigned int virq,
1270 				    irq_hw_number_t hwirq)
1271 {
1272 	struct irq_fwspec fwspec;
1273 
1274 	if (irq_domain_get_of_node(domain->parent)) {
1275 		fwspec.fwnode = domain->parent->fwnode;
1276 		fwspec.param_count = 3;
1277 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
1278 		fwspec.param[1] = hwirq;
1279 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
1280 	} else {
1281 		return -EINVAL;
1282 	}
1283 
1284 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
1285 }
1286 
1287 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1288 				unsigned int nr_irqs, void *args)
1289 {
1290 	msi_alloc_info_t *info = args;
1291 	struct its_device *its_dev = info->scratchpad[0].ptr;
1292 	irq_hw_number_t hwirq;
1293 	int err;
1294 	int i;
1295 
1296 	for (i = 0; i < nr_irqs; i++) {
1297 		err = its_alloc_device_irq(its_dev, &hwirq);
1298 		if (err)
1299 			return err;
1300 
1301 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
1302 		if (err)
1303 			return err;
1304 
1305 		irq_domain_set_hwirq_and_chip(domain, virq + i,
1306 					      hwirq, &its_irq_chip, its_dev);
1307 		pr_debug("ID:%d pID:%d vID:%d\n",
1308 			 (int)(hwirq - its_dev->event_map.lpi_base),
1309 			 (int) hwirq, virq + i);
1310 	}
1311 
1312 	return 0;
1313 }
1314 
1315 static void its_irq_domain_activate(struct irq_domain *domain,
1316 				    struct irq_data *d)
1317 {
1318 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1319 	u32 event = its_get_event_id(d);
1320 
1321 	/* Bind the LPI to the first possible CPU */
1322 	its_dev->event_map.col_map[event] = cpumask_first(cpu_online_mask);
1323 
1324 	/* Map the GIC IRQ and event to the device */
1325 	its_send_mapvi(its_dev, d->hwirq, event);
1326 }
1327 
1328 static void its_irq_domain_deactivate(struct irq_domain *domain,
1329 				      struct irq_data *d)
1330 {
1331 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1332 	u32 event = its_get_event_id(d);
1333 
1334 	/* Stop the delivery of interrupts */
1335 	its_send_discard(its_dev, event);
1336 }
1337 
1338 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1339 				unsigned int nr_irqs)
1340 {
1341 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
1342 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1343 	int i;
1344 
1345 	for (i = 0; i < nr_irqs; i++) {
1346 		struct irq_data *data = irq_domain_get_irq_data(domain,
1347 								virq + i);
1348 		u32 event = its_get_event_id(data);
1349 
1350 		/* Mark interrupt index as unused */
1351 		clear_bit(event, its_dev->event_map.lpi_map);
1352 
1353 		/* Nuke the entry in the domain */
1354 		irq_domain_reset_irq_data(data);
1355 	}
1356 
1357 	/* If all interrupts have been freed, start mopping the floor */
1358 	if (bitmap_empty(its_dev->event_map.lpi_map,
1359 			 its_dev->event_map.nr_lpis)) {
1360 		its_lpi_free(&its_dev->event_map);
1361 
1362 		/* Unmap device/itt */
1363 		its_send_mapd(its_dev, 0);
1364 		its_free_device(its_dev);
1365 	}
1366 
1367 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
1368 }
1369 
1370 static const struct irq_domain_ops its_domain_ops = {
1371 	.alloc			= its_irq_domain_alloc,
1372 	.free			= its_irq_domain_free,
1373 	.activate		= its_irq_domain_activate,
1374 	.deactivate		= its_irq_domain_deactivate,
1375 };
1376 
1377 static int its_force_quiescent(void __iomem *base)
1378 {
1379 	u32 count = 1000000;	/* 1s */
1380 	u32 val;
1381 
1382 	val = readl_relaxed(base + GITS_CTLR);
1383 	if (val & GITS_CTLR_QUIESCENT)
1384 		return 0;
1385 
1386 	/* Disable the generation of all interrupts to this ITS */
1387 	val &= ~GITS_CTLR_ENABLE;
1388 	writel_relaxed(val, base + GITS_CTLR);
1389 
1390 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
1391 	while (1) {
1392 		val = readl_relaxed(base + GITS_CTLR);
1393 		if (val & GITS_CTLR_QUIESCENT)
1394 			return 0;
1395 
1396 		count--;
1397 		if (!count)
1398 			return -EBUSY;
1399 
1400 		cpu_relax();
1401 		udelay(1);
1402 	}
1403 }
1404 
1405 static void __maybe_unused its_enable_quirk_cavium_22375(void *data)
1406 {
1407 	struct its_node *its = data;
1408 
1409 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
1410 }
1411 
1412 static const struct gic_quirk its_quirks[] = {
1413 #ifdef CONFIG_CAVIUM_ERRATUM_22375
1414 	{
1415 		.desc	= "ITS: Cavium errata 22375, 24313",
1416 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
1417 		.mask	= 0xffff0fff,
1418 		.init	= its_enable_quirk_cavium_22375,
1419 	},
1420 #endif
1421 	{
1422 	}
1423 };
1424 
1425 static void its_enable_quirks(struct its_node *its)
1426 {
1427 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
1428 
1429 	gic_enable_quirks(iidr, its_quirks, its);
1430 }
1431 
1432 static int __init its_probe(struct device_node *node,
1433 			    struct irq_domain *parent)
1434 {
1435 	struct resource res;
1436 	struct its_node *its;
1437 	void __iomem *its_base;
1438 	struct irq_domain *inner_domain;
1439 	u32 val;
1440 	u64 baser, tmp;
1441 	int err;
1442 
1443 	err = of_address_to_resource(node, 0, &res);
1444 	if (err) {
1445 		pr_warn("%s: no regs?\n", node->full_name);
1446 		return -ENXIO;
1447 	}
1448 
1449 	its_base = ioremap(res.start, resource_size(&res));
1450 	if (!its_base) {
1451 		pr_warn("%s: unable to map registers\n", node->full_name);
1452 		return -ENOMEM;
1453 	}
1454 
1455 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
1456 	if (val != 0x30 && val != 0x40) {
1457 		pr_warn("%s: no ITS detected, giving up\n", node->full_name);
1458 		err = -ENODEV;
1459 		goto out_unmap;
1460 	}
1461 
1462 	err = its_force_quiescent(its_base);
1463 	if (err) {
1464 		pr_warn("%s: failed to quiesce, giving up\n",
1465 			node->full_name);
1466 		goto out_unmap;
1467 	}
1468 
1469 	pr_info("ITS: %s\n", node->full_name);
1470 
1471 	its = kzalloc(sizeof(*its), GFP_KERNEL);
1472 	if (!its) {
1473 		err = -ENOMEM;
1474 		goto out_unmap;
1475 	}
1476 
1477 	raw_spin_lock_init(&its->lock);
1478 	INIT_LIST_HEAD(&its->entry);
1479 	INIT_LIST_HEAD(&its->its_device_list);
1480 	its->base = its_base;
1481 	its->phys_base = res.start;
1482 	its->ite_size = ((readl_relaxed(its_base + GITS_TYPER) >> 4) & 0xf) + 1;
1483 
1484 	its->cmd_base = kzalloc(ITS_CMD_QUEUE_SZ, GFP_KERNEL);
1485 	if (!its->cmd_base) {
1486 		err = -ENOMEM;
1487 		goto out_free_its;
1488 	}
1489 	its->cmd_write = its->cmd_base;
1490 
1491 	its_enable_quirks(its);
1492 
1493 	err = its_alloc_tables(node->full_name, its);
1494 	if (err)
1495 		goto out_free_cmd;
1496 
1497 	err = its_alloc_collections(its);
1498 	if (err)
1499 		goto out_free_tables;
1500 
1501 	baser = (virt_to_phys(its->cmd_base)	|
1502 		 GITS_CBASER_WaWb		|
1503 		 GITS_CBASER_InnerShareable	|
1504 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
1505 		 GITS_CBASER_VALID);
1506 
1507 	writeq_relaxed(baser, its->base + GITS_CBASER);
1508 	tmp = readq_relaxed(its->base + GITS_CBASER);
1509 
1510 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
1511 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
1512 			/*
1513 			 * The HW reports non-shareable, we must
1514 			 * remove the cacheability attributes as
1515 			 * well.
1516 			 */
1517 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
1518 				   GITS_CBASER_CACHEABILITY_MASK);
1519 			baser |= GITS_CBASER_nC;
1520 			writeq_relaxed(baser, its->base + GITS_CBASER);
1521 		}
1522 		pr_info("ITS: using cache flushing for cmd queue\n");
1523 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
1524 	}
1525 
1526 	writeq_relaxed(0, its->base + GITS_CWRITER);
1527 	writel_relaxed(GITS_CTLR_ENABLE, its->base + GITS_CTLR);
1528 
1529 	if (of_property_read_bool(node, "msi-controller")) {
1530 		struct msi_domain_info *info;
1531 
1532 		info = kzalloc(sizeof(*info), GFP_KERNEL);
1533 		if (!info) {
1534 			err = -ENOMEM;
1535 			goto out_free_tables;
1536 		}
1537 
1538 		inner_domain = irq_domain_add_tree(node, &its_domain_ops, its);
1539 		if (!inner_domain) {
1540 			err = -ENOMEM;
1541 			kfree(info);
1542 			goto out_free_tables;
1543 		}
1544 
1545 		inner_domain->parent = parent;
1546 		inner_domain->bus_token = DOMAIN_BUS_NEXUS;
1547 		info->ops = &its_msi_domain_ops;
1548 		info->data = its;
1549 		inner_domain->host_data = info;
1550 	}
1551 
1552 	spin_lock(&its_lock);
1553 	list_add(&its->entry, &its_nodes);
1554 	spin_unlock(&its_lock);
1555 
1556 	return 0;
1557 
1558 out_free_tables:
1559 	its_free_tables(its);
1560 out_free_cmd:
1561 	kfree(its->cmd_base);
1562 out_free_its:
1563 	kfree(its);
1564 out_unmap:
1565 	iounmap(its_base);
1566 	pr_err("ITS: failed probing %s (%d)\n", node->full_name, err);
1567 	return err;
1568 }
1569 
1570 static bool gic_rdists_supports_plpis(void)
1571 {
1572 	return !!(readl_relaxed(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
1573 }
1574 
1575 int its_cpu_init(void)
1576 {
1577 	if (!list_empty(&its_nodes)) {
1578 		if (!gic_rdists_supports_plpis()) {
1579 			pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
1580 			return -ENXIO;
1581 		}
1582 		its_cpu_init_lpis();
1583 		its_cpu_init_collection();
1584 	}
1585 
1586 	return 0;
1587 }
1588 
1589 static struct of_device_id its_device_id[] = {
1590 	{	.compatible	= "arm,gic-v3-its",	},
1591 	{},
1592 };
1593 
1594 int __init its_init(struct device_node *node, struct rdists *rdists,
1595 	     struct irq_domain *parent_domain)
1596 {
1597 	struct device_node *np;
1598 
1599 	for (np = of_find_matching_node(node, its_device_id); np;
1600 	     np = of_find_matching_node(np, its_device_id)) {
1601 		its_probe(np, parent_domain);
1602 	}
1603 
1604 	if (list_empty(&its_nodes)) {
1605 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
1606 		return -ENXIO;
1607 	}
1608 
1609 	gic_rdists = rdists;
1610 	its_alloc_lpi_tables();
1611 	its_lpi_init(rdists->id_bits);
1612 
1613 	return 0;
1614 }
1615