1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright The Asahi Linux Contributors 4 * 5 * Based on irq-lpc32xx: 6 * Copyright 2015-2016 Vladimir Zapolskiy <vz@mleia.com> 7 * Based on irq-bcm2836: 8 * Copyright 2015 Broadcom 9 */ 10 11 /* 12 * AIC is a fairly simple interrupt controller with the following features: 13 * 14 * - 896 level-triggered hardware IRQs 15 * - Single mask bit per IRQ 16 * - Per-IRQ affinity setting 17 * - Automatic masking on event delivery (auto-ack) 18 * - Software triggering (ORed with hw line) 19 * - 2 per-CPU IPIs (meant as "self" and "other", but they are 20 * interchangeable if not symmetric) 21 * - Automatic prioritization (single event/ack register per CPU, lower IRQs = 22 * higher priority) 23 * - Automatic masking on ack 24 * - Default "this CPU" register view and explicit per-CPU views 25 * 26 * In addition, this driver also handles FIQs, as these are routed to the same 27 * IRQ vector. These are used for Fast IPIs, the ARMv8 timer IRQs, and 28 * performance counters (TODO). 29 * 30 * Implementation notes: 31 * 32 * - This driver creates two IRQ domains, one for HW IRQs and internal FIQs, 33 * and one for IPIs. 34 * - Since Linux needs more than 2 IPIs, we implement a software IRQ controller 35 * and funnel all IPIs into one per-CPU IPI (the second "self" IPI is unused). 36 * - FIQ hwirq numbers are assigned after true hwirqs, and are per-cpu. 37 * - DT bindings use 3-cell form (like GIC): 38 * - <0 nr flags> - hwirq #nr 39 * - <1 nr flags> - FIQ #nr 40 * - nr=0 Physical HV timer 41 * - nr=1 Virtual HV timer 42 * - nr=2 Physical guest timer 43 * - nr=3 Virtual guest timer 44 */ 45 46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 47 48 #include <linux/bits.h> 49 #include <linux/bitfield.h> 50 #include <linux/cpuhotplug.h> 51 #include <linux/io.h> 52 #include <linux/irqchip.h> 53 #include <linux/irqchip/arm-vgic-info.h> 54 #include <linux/irqdomain.h> 55 #include <linux/jump_label.h> 56 #include <linux/limits.h> 57 #include <linux/of_address.h> 58 #include <linux/slab.h> 59 #include <asm/apple_m1_pmu.h> 60 #include <asm/cputype.h> 61 #include <asm/exception.h> 62 #include <asm/sysreg.h> 63 #include <asm/virt.h> 64 65 #include <dt-bindings/interrupt-controller/apple-aic.h> 66 67 /* 68 * AIC v1 registers (MMIO) 69 */ 70 71 #define AIC_INFO 0x0004 72 #define AIC_INFO_NR_IRQ GENMASK(15, 0) 73 74 #define AIC_CONFIG 0x0010 75 76 #define AIC_WHOAMI 0x2000 77 #define AIC_EVENT 0x2004 78 #define AIC_EVENT_DIE GENMASK(31, 24) 79 #define AIC_EVENT_TYPE GENMASK(23, 16) 80 #define AIC_EVENT_NUM GENMASK(15, 0) 81 82 #define AIC_EVENT_TYPE_FIQ 0 /* Software use */ 83 #define AIC_EVENT_TYPE_IRQ 1 84 #define AIC_EVENT_TYPE_IPI 4 85 #define AIC_EVENT_IPI_OTHER 1 86 #define AIC_EVENT_IPI_SELF 2 87 88 #define AIC_IPI_SEND 0x2008 89 #define AIC_IPI_ACK 0x200c 90 #define AIC_IPI_MASK_SET 0x2024 91 #define AIC_IPI_MASK_CLR 0x2028 92 93 #define AIC_IPI_SEND_CPU(cpu) BIT(cpu) 94 95 #define AIC_IPI_OTHER BIT(0) 96 #define AIC_IPI_SELF BIT(31) 97 98 #define AIC_TARGET_CPU 0x3000 99 100 #define AIC_CPU_IPI_SET(cpu) (0x5008 + ((cpu) << 7)) 101 #define AIC_CPU_IPI_CLR(cpu) (0x500c + ((cpu) << 7)) 102 #define AIC_CPU_IPI_MASK_SET(cpu) (0x5024 + ((cpu) << 7)) 103 #define AIC_CPU_IPI_MASK_CLR(cpu) (0x5028 + ((cpu) << 7)) 104 105 #define AIC_MAX_IRQ 0x400 106 107 /* 108 * AIC v2 registers (MMIO) 109 */ 110 111 #define AIC2_VERSION 0x0000 112 #define AIC2_VERSION_VER GENMASK(7, 0) 113 114 #define AIC2_INFO1 0x0004 115 #define AIC2_INFO1_NR_IRQ GENMASK(15, 0) 116 #define AIC2_INFO1_LAST_DIE GENMASK(27, 24) 117 118 #define AIC2_INFO2 0x0008 119 120 #define AIC2_INFO3 0x000c 121 #define AIC2_INFO3_MAX_IRQ GENMASK(15, 0) 122 #define AIC2_INFO3_MAX_DIE GENMASK(27, 24) 123 124 #define AIC2_RESET 0x0010 125 #define AIC2_RESET_RESET BIT(0) 126 127 #define AIC2_CONFIG 0x0014 128 #define AIC2_CONFIG_ENABLE BIT(0) 129 #define AIC2_CONFIG_PREFER_PCPU BIT(28) 130 131 #define AIC2_TIMEOUT 0x0028 132 #define AIC2_CLUSTER_PRIO 0x0030 133 #define AIC2_DELAY_GROUPS 0x0100 134 135 #define AIC2_IRQ_CFG 0x2000 136 137 /* 138 * AIC2 registers are laid out like this, starting at AIC2_IRQ_CFG: 139 * 140 * Repeat for each die: 141 * IRQ_CFG: u32 * MAX_IRQS 142 * SW_SET: u32 * (MAX_IRQS / 32) 143 * SW_CLR: u32 * (MAX_IRQS / 32) 144 * MASK_SET: u32 * (MAX_IRQS / 32) 145 * MASK_CLR: u32 * (MAX_IRQS / 32) 146 * HW_STATE: u32 * (MAX_IRQS / 32) 147 * 148 * This is followed by a set of event registers, each 16K page aligned. 149 * The first one is the AP event register we will use. Unfortunately, 150 * the actual implemented die count is not specified anywhere in the 151 * capability registers, so we have to explicitly specify the event 152 * register as a second reg entry in the device tree to remain 153 * forward-compatible. 154 */ 155 156 #define AIC2_IRQ_CFG_TARGET GENMASK(3, 0) 157 #define AIC2_IRQ_CFG_DELAY_IDX GENMASK(7, 5) 158 159 #define MASK_REG(x) (4 * ((x) >> 5)) 160 #define MASK_BIT(x) BIT((x) & GENMASK(4, 0)) 161 162 /* 163 * IMP-DEF sysregs that control FIQ sources 164 */ 165 166 /* IPI request registers */ 167 #define SYS_IMP_APL_IPI_RR_LOCAL_EL1 sys_reg(3, 5, 15, 0, 0) 168 #define SYS_IMP_APL_IPI_RR_GLOBAL_EL1 sys_reg(3, 5, 15, 0, 1) 169 #define IPI_RR_CPU GENMASK(7, 0) 170 /* Cluster only used for the GLOBAL register */ 171 #define IPI_RR_CLUSTER GENMASK(23, 16) 172 #define IPI_RR_TYPE GENMASK(29, 28) 173 #define IPI_RR_IMMEDIATE 0 174 #define IPI_RR_RETRACT 1 175 #define IPI_RR_DEFERRED 2 176 #define IPI_RR_NOWAKE 3 177 178 /* IPI status register */ 179 #define SYS_IMP_APL_IPI_SR_EL1 sys_reg(3, 5, 15, 1, 1) 180 #define IPI_SR_PENDING BIT(0) 181 182 /* Guest timer FIQ enable register */ 183 #define SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2 sys_reg(3, 5, 15, 1, 3) 184 #define VM_TMR_FIQ_ENABLE_V BIT(0) 185 #define VM_TMR_FIQ_ENABLE_P BIT(1) 186 187 /* Deferred IPI countdown register */ 188 #define SYS_IMP_APL_IPI_CR_EL1 sys_reg(3, 5, 15, 3, 1) 189 190 /* Uncore PMC control register */ 191 #define SYS_IMP_APL_UPMCR0_EL1 sys_reg(3, 7, 15, 0, 4) 192 #define UPMCR0_IMODE GENMASK(18, 16) 193 #define UPMCR0_IMODE_OFF 0 194 #define UPMCR0_IMODE_AIC 2 195 #define UPMCR0_IMODE_HALT 3 196 #define UPMCR0_IMODE_FIQ 4 197 198 /* Uncore PMC status register */ 199 #define SYS_IMP_APL_UPMSR_EL1 sys_reg(3, 7, 15, 6, 4) 200 #define UPMSR_IACT BIT(0) 201 202 /* MPIDR fields */ 203 #define MPIDR_CPU(x) MPIDR_AFFINITY_LEVEL(x, 0) 204 #define MPIDR_CLUSTER(x) MPIDR_AFFINITY_LEVEL(x, 1) 205 206 #define AIC_IRQ_HWIRQ(die, irq) (FIELD_PREP(AIC_EVENT_DIE, die) | \ 207 FIELD_PREP(AIC_EVENT_TYPE, AIC_EVENT_TYPE_IRQ) | \ 208 FIELD_PREP(AIC_EVENT_NUM, irq)) 209 #define AIC_FIQ_HWIRQ(x) (FIELD_PREP(AIC_EVENT_TYPE, AIC_EVENT_TYPE_FIQ) | \ 210 FIELD_PREP(AIC_EVENT_NUM, x)) 211 #define AIC_HWIRQ_IRQ(x) FIELD_GET(AIC_EVENT_NUM, x) 212 #define AIC_HWIRQ_DIE(x) FIELD_GET(AIC_EVENT_DIE, x) 213 #define AIC_NR_SWIPI 32 214 215 /* 216 * FIQ hwirq index definitions: FIQ sources use the DT binding defines 217 * directly, except that timers are special. At the irqchip level, the 218 * two timer types are represented by their access method: _EL0 registers 219 * or _EL02 registers. In the DT binding, the timers are represented 220 * by their purpose (HV or guest). This mapping is for when the kernel is 221 * running at EL2 (with VHE). When the kernel is running at EL1, the 222 * mapping differs and aic_irq_domain_translate() performs the remapping. 223 */ 224 enum fiq_hwirq { 225 /* Must be ordered as in apple-aic.h */ 226 AIC_TMR_EL0_PHYS = AIC_TMR_HV_PHYS, 227 AIC_TMR_EL0_VIRT = AIC_TMR_HV_VIRT, 228 AIC_TMR_EL02_PHYS = AIC_TMR_GUEST_PHYS, 229 AIC_TMR_EL02_VIRT = AIC_TMR_GUEST_VIRT, 230 AIC_CPU_PMU_Effi = AIC_CPU_PMU_E, 231 AIC_CPU_PMU_Perf = AIC_CPU_PMU_P, 232 /* No need for this to be discovered from DT */ 233 AIC_VGIC_MI, 234 AIC_NR_FIQ 235 }; 236 237 static DEFINE_STATIC_KEY_TRUE(use_fast_ipi); 238 239 struct aic_info { 240 int version; 241 242 /* Register offsets */ 243 u32 event; 244 u32 target_cpu; 245 u32 irq_cfg; 246 u32 sw_set; 247 u32 sw_clr; 248 u32 mask_set; 249 u32 mask_clr; 250 251 u32 die_stride; 252 253 /* Features */ 254 bool fast_ipi; 255 }; 256 257 static const struct aic_info aic1_info __initconst = { 258 .version = 1, 259 260 .event = AIC_EVENT, 261 .target_cpu = AIC_TARGET_CPU, 262 }; 263 264 static const struct aic_info aic1_fipi_info __initconst = { 265 .version = 1, 266 267 .event = AIC_EVENT, 268 .target_cpu = AIC_TARGET_CPU, 269 270 .fast_ipi = true, 271 }; 272 273 static const struct aic_info aic2_info __initconst = { 274 .version = 2, 275 276 .irq_cfg = AIC2_IRQ_CFG, 277 278 .fast_ipi = true, 279 }; 280 281 static const struct of_device_id aic_info_match[] = { 282 { 283 .compatible = "apple,t8103-aic", 284 .data = &aic1_fipi_info, 285 }, 286 { 287 .compatible = "apple,aic", 288 .data = &aic1_info, 289 }, 290 { 291 .compatible = "apple,aic2", 292 .data = &aic2_info, 293 }, 294 {} 295 }; 296 297 struct aic_irq_chip { 298 void __iomem *base; 299 void __iomem *event; 300 struct irq_domain *hw_domain; 301 struct { 302 cpumask_t aff; 303 } *fiq_aff[AIC_NR_FIQ]; 304 305 int nr_irq; 306 int max_irq; 307 int nr_die; 308 int max_die; 309 310 struct aic_info info; 311 }; 312 313 static DEFINE_PER_CPU(uint32_t, aic_fiq_unmasked); 314 315 static struct aic_irq_chip *aic_irqc; 316 317 static void aic_handle_ipi(struct pt_regs *regs); 318 319 static u32 aic_ic_read(struct aic_irq_chip *ic, u32 reg) 320 { 321 return readl_relaxed(ic->base + reg); 322 } 323 324 static void aic_ic_write(struct aic_irq_chip *ic, u32 reg, u32 val) 325 { 326 writel_relaxed(val, ic->base + reg); 327 } 328 329 /* 330 * IRQ irqchip 331 */ 332 333 static void aic_irq_mask(struct irq_data *d) 334 { 335 irq_hw_number_t hwirq = irqd_to_hwirq(d); 336 struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d); 337 338 u32 off = AIC_HWIRQ_DIE(hwirq) * ic->info.die_stride; 339 u32 irq = AIC_HWIRQ_IRQ(hwirq); 340 341 aic_ic_write(ic, ic->info.mask_set + off + MASK_REG(irq), MASK_BIT(irq)); 342 } 343 344 static void aic_irq_unmask(struct irq_data *d) 345 { 346 irq_hw_number_t hwirq = irqd_to_hwirq(d); 347 struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d); 348 349 u32 off = AIC_HWIRQ_DIE(hwirq) * ic->info.die_stride; 350 u32 irq = AIC_HWIRQ_IRQ(hwirq); 351 352 aic_ic_write(ic, ic->info.mask_clr + off + MASK_REG(irq), MASK_BIT(irq)); 353 } 354 355 static void aic_irq_eoi(struct irq_data *d) 356 { 357 /* 358 * Reading the interrupt reason automatically acknowledges and masks 359 * the IRQ, so we just unmask it here if needed. 360 */ 361 if (!irqd_irq_masked(d)) 362 aic_irq_unmask(d); 363 } 364 365 static void __exception_irq_entry aic_handle_irq(struct pt_regs *regs) 366 { 367 struct aic_irq_chip *ic = aic_irqc; 368 u32 event, type, irq; 369 370 do { 371 /* 372 * We cannot use a relaxed read here, as reads from DMA buffers 373 * need to be ordered after the IRQ fires. 374 */ 375 event = readl(ic->event + ic->info.event); 376 type = FIELD_GET(AIC_EVENT_TYPE, event); 377 irq = FIELD_GET(AIC_EVENT_NUM, event); 378 379 if (type == AIC_EVENT_TYPE_IRQ) 380 generic_handle_domain_irq(aic_irqc->hw_domain, event); 381 else if (type == AIC_EVENT_TYPE_IPI && irq == 1) 382 aic_handle_ipi(regs); 383 else if (event != 0) 384 pr_err_ratelimited("Unknown IRQ event %d, %d\n", type, irq); 385 } while (event); 386 387 /* 388 * vGIC maintenance interrupts end up here too, so we need to check 389 * for them separately. It should however only trigger when NV is 390 * in use, and be cleared when coming back from the handler. 391 */ 392 if (is_kernel_in_hyp_mode() && 393 (read_sysreg_s(SYS_ICH_HCR_EL2) & ICH_HCR_EN) && 394 read_sysreg_s(SYS_ICH_MISR_EL2) != 0) { 395 generic_handle_domain_irq(aic_irqc->hw_domain, 396 AIC_FIQ_HWIRQ(AIC_VGIC_MI)); 397 398 if (unlikely((read_sysreg_s(SYS_ICH_HCR_EL2) & ICH_HCR_EN) && 399 read_sysreg_s(SYS_ICH_MISR_EL2))) { 400 pr_err_ratelimited("vGIC IRQ fired and not handled by KVM, disabling.\n"); 401 sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0); 402 } 403 } 404 } 405 406 static int aic_irq_set_affinity(struct irq_data *d, 407 const struct cpumask *mask_val, bool force) 408 { 409 irq_hw_number_t hwirq = irqd_to_hwirq(d); 410 struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d); 411 int cpu; 412 413 BUG_ON(!ic->info.target_cpu); 414 415 if (force) 416 cpu = cpumask_first(mask_val); 417 else 418 cpu = cpumask_any_and(mask_val, cpu_online_mask); 419 420 aic_ic_write(ic, ic->info.target_cpu + AIC_HWIRQ_IRQ(hwirq) * 4, BIT(cpu)); 421 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 422 423 return IRQ_SET_MASK_OK; 424 } 425 426 static int aic_irq_set_type(struct irq_data *d, unsigned int type) 427 { 428 /* 429 * Some IRQs (e.g. MSIs) implicitly have edge semantics, and we don't 430 * have a way to find out the type of any given IRQ, so just allow both. 431 */ 432 return (type == IRQ_TYPE_LEVEL_HIGH || type == IRQ_TYPE_EDGE_RISING) ? 0 : -EINVAL; 433 } 434 435 static struct irq_chip aic_chip = { 436 .name = "AIC", 437 .irq_mask = aic_irq_mask, 438 .irq_unmask = aic_irq_unmask, 439 .irq_eoi = aic_irq_eoi, 440 .irq_set_affinity = aic_irq_set_affinity, 441 .irq_set_type = aic_irq_set_type, 442 }; 443 444 static struct irq_chip aic2_chip = { 445 .name = "AIC2", 446 .irq_mask = aic_irq_mask, 447 .irq_unmask = aic_irq_unmask, 448 .irq_eoi = aic_irq_eoi, 449 .irq_set_type = aic_irq_set_type, 450 }; 451 452 /* 453 * FIQ irqchip 454 */ 455 456 static unsigned long aic_fiq_get_idx(struct irq_data *d) 457 { 458 return AIC_HWIRQ_IRQ(irqd_to_hwirq(d)); 459 } 460 461 static void aic_fiq_set_mask(struct irq_data *d) 462 { 463 /* Only the guest timers have real mask bits, unfortunately. */ 464 switch (aic_fiq_get_idx(d)) { 465 case AIC_TMR_EL02_PHYS: 466 sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_P, 0); 467 isb(); 468 break; 469 case AIC_TMR_EL02_VIRT: 470 sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_V, 0); 471 isb(); 472 break; 473 default: 474 break; 475 } 476 } 477 478 static void aic_fiq_clear_mask(struct irq_data *d) 479 { 480 switch (aic_fiq_get_idx(d)) { 481 case AIC_TMR_EL02_PHYS: 482 sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_P); 483 isb(); 484 break; 485 case AIC_TMR_EL02_VIRT: 486 sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_V); 487 isb(); 488 break; 489 default: 490 break; 491 } 492 } 493 494 static void aic_fiq_mask(struct irq_data *d) 495 { 496 aic_fiq_set_mask(d); 497 __this_cpu_and(aic_fiq_unmasked, ~BIT(aic_fiq_get_idx(d))); 498 } 499 500 static void aic_fiq_unmask(struct irq_data *d) 501 { 502 aic_fiq_clear_mask(d); 503 __this_cpu_or(aic_fiq_unmasked, BIT(aic_fiq_get_idx(d))); 504 } 505 506 static void aic_fiq_eoi(struct irq_data *d) 507 { 508 /* We mask to ack (where we can), so we need to unmask at EOI. */ 509 if (__this_cpu_read(aic_fiq_unmasked) & BIT(aic_fiq_get_idx(d))) 510 aic_fiq_clear_mask(d); 511 } 512 513 #define TIMER_FIRING(x) \ 514 (((x) & (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_MASK | \ 515 ARCH_TIMER_CTRL_IT_STAT)) == \ 516 (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_STAT)) 517 518 static void __exception_irq_entry aic_handle_fiq(struct pt_regs *regs) 519 { 520 /* 521 * It would be really nice if we had a system register that lets us get 522 * the FIQ source state without having to peek down into sources... 523 * but such a register does not seem to exist. 524 * 525 * So, we have these potential sources to test for: 526 * - Fast IPIs (not yet used) 527 * - The 4 timers (CNTP, CNTV for each of HV and guest) 528 * - Per-core PMCs (not yet supported) 529 * - Per-cluster uncore PMCs (not yet supported) 530 * 531 * Since not dealing with any of these results in a FIQ storm, 532 * we check for everything here, even things we don't support yet. 533 */ 534 535 if (read_sysreg_s(SYS_IMP_APL_IPI_SR_EL1) & IPI_SR_PENDING) { 536 if (static_branch_likely(&use_fast_ipi)) { 537 aic_handle_ipi(regs); 538 } else { 539 pr_err_ratelimited("Fast IPI fired. Acking.\n"); 540 write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1); 541 } 542 } 543 544 if (TIMER_FIRING(read_sysreg(cntp_ctl_el0))) 545 generic_handle_domain_irq(aic_irqc->hw_domain, 546 AIC_FIQ_HWIRQ(AIC_TMR_EL0_PHYS)); 547 548 if (TIMER_FIRING(read_sysreg(cntv_ctl_el0))) 549 generic_handle_domain_irq(aic_irqc->hw_domain, 550 AIC_FIQ_HWIRQ(AIC_TMR_EL0_VIRT)); 551 552 if (is_kernel_in_hyp_mode()) { 553 uint64_t enabled = read_sysreg_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2); 554 555 if ((enabled & VM_TMR_FIQ_ENABLE_P) && 556 TIMER_FIRING(read_sysreg_s(SYS_CNTP_CTL_EL02))) 557 generic_handle_domain_irq(aic_irqc->hw_domain, 558 AIC_FIQ_HWIRQ(AIC_TMR_EL02_PHYS)); 559 560 if ((enabled & VM_TMR_FIQ_ENABLE_V) && 561 TIMER_FIRING(read_sysreg_s(SYS_CNTV_CTL_EL02))) 562 generic_handle_domain_irq(aic_irqc->hw_domain, 563 AIC_FIQ_HWIRQ(AIC_TMR_EL02_VIRT)); 564 } 565 566 if (read_sysreg_s(SYS_IMP_APL_PMCR0_EL1) & PMCR0_IACT) { 567 int irq; 568 if (cpumask_test_cpu(smp_processor_id(), 569 &aic_irqc->fiq_aff[AIC_CPU_PMU_P]->aff)) 570 irq = AIC_CPU_PMU_P; 571 else 572 irq = AIC_CPU_PMU_E; 573 generic_handle_domain_irq(aic_irqc->hw_domain, 574 AIC_FIQ_HWIRQ(irq)); 575 } 576 577 if (FIELD_GET(UPMCR0_IMODE, read_sysreg_s(SYS_IMP_APL_UPMCR0_EL1)) == UPMCR0_IMODE_FIQ && 578 (read_sysreg_s(SYS_IMP_APL_UPMSR_EL1) & UPMSR_IACT)) { 579 /* Same story with uncore PMCs */ 580 pr_err_ratelimited("Uncore PMC FIQ fired. Masking.\n"); 581 sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE, 582 FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF)); 583 } 584 } 585 586 static int aic_fiq_set_type(struct irq_data *d, unsigned int type) 587 { 588 return (type == IRQ_TYPE_LEVEL_HIGH) ? 0 : -EINVAL; 589 } 590 591 static struct irq_chip fiq_chip = { 592 .name = "AIC-FIQ", 593 .irq_mask = aic_fiq_mask, 594 .irq_unmask = aic_fiq_unmask, 595 .irq_ack = aic_fiq_set_mask, 596 .irq_eoi = aic_fiq_eoi, 597 .irq_set_type = aic_fiq_set_type, 598 }; 599 600 /* 601 * Main IRQ domain 602 */ 603 604 static int aic_irq_domain_map(struct irq_domain *id, unsigned int irq, 605 irq_hw_number_t hw) 606 { 607 struct aic_irq_chip *ic = id->host_data; 608 u32 type = FIELD_GET(AIC_EVENT_TYPE, hw); 609 struct irq_chip *chip = &aic_chip; 610 611 if (ic->info.version == 2) 612 chip = &aic2_chip; 613 614 if (type == AIC_EVENT_TYPE_IRQ) { 615 irq_domain_set_info(id, irq, hw, chip, id->host_data, 616 handle_fasteoi_irq, NULL, NULL); 617 irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(irq))); 618 } else { 619 int fiq = FIELD_GET(AIC_EVENT_NUM, hw); 620 621 switch (fiq) { 622 case AIC_CPU_PMU_P: 623 case AIC_CPU_PMU_E: 624 irq_set_percpu_devid_partition(irq, &ic->fiq_aff[fiq]->aff); 625 break; 626 default: 627 irq_set_percpu_devid(irq); 628 break; 629 } 630 631 irq_domain_set_info(id, irq, hw, &fiq_chip, id->host_data, 632 handle_percpu_devid_irq, NULL, NULL); 633 } 634 635 return 0; 636 } 637 638 static int aic_irq_domain_translate(struct irq_domain *id, 639 struct irq_fwspec *fwspec, 640 unsigned long *hwirq, 641 unsigned int *type) 642 { 643 struct aic_irq_chip *ic = id->host_data; 644 u32 *args; 645 u32 die = 0; 646 647 if (fwspec->param_count < 3 || fwspec->param_count > 4 || 648 !is_of_node(fwspec->fwnode)) 649 return -EINVAL; 650 651 args = &fwspec->param[1]; 652 653 if (fwspec->param_count == 4) { 654 die = args[0]; 655 args++; 656 } 657 658 switch (fwspec->param[0]) { 659 case AIC_IRQ: 660 if (die >= ic->nr_die) 661 return -EINVAL; 662 if (args[0] >= ic->nr_irq) 663 return -EINVAL; 664 *hwirq = AIC_IRQ_HWIRQ(die, args[0]); 665 break; 666 case AIC_FIQ: 667 if (die != 0) 668 return -EINVAL; 669 if (args[0] >= AIC_NR_FIQ) 670 return -EINVAL; 671 *hwirq = AIC_FIQ_HWIRQ(args[0]); 672 673 /* 674 * In EL1 the non-redirected registers are the guest's, 675 * not EL2's, so remap the hwirqs to match. 676 */ 677 if (!is_kernel_in_hyp_mode()) { 678 switch (args[0]) { 679 case AIC_TMR_GUEST_PHYS: 680 *hwirq = AIC_FIQ_HWIRQ(AIC_TMR_EL0_PHYS); 681 break; 682 case AIC_TMR_GUEST_VIRT: 683 *hwirq = AIC_FIQ_HWIRQ(AIC_TMR_EL0_VIRT); 684 break; 685 case AIC_TMR_HV_PHYS: 686 case AIC_TMR_HV_VIRT: 687 return -ENOENT; 688 default: 689 break; 690 } 691 } 692 break; 693 default: 694 return -EINVAL; 695 } 696 697 *type = args[1] & IRQ_TYPE_SENSE_MASK; 698 699 return 0; 700 } 701 702 static int aic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 703 unsigned int nr_irqs, void *arg) 704 { 705 unsigned int type = IRQ_TYPE_NONE; 706 struct irq_fwspec *fwspec = arg; 707 irq_hw_number_t hwirq; 708 int i, ret; 709 710 ret = aic_irq_domain_translate(domain, fwspec, &hwirq, &type); 711 if (ret) 712 return ret; 713 714 for (i = 0; i < nr_irqs; i++) { 715 ret = aic_irq_domain_map(domain, virq + i, hwirq + i); 716 if (ret) 717 return ret; 718 } 719 720 return 0; 721 } 722 723 static void aic_irq_domain_free(struct irq_domain *domain, unsigned int virq, 724 unsigned int nr_irqs) 725 { 726 int i; 727 728 for (i = 0; i < nr_irqs; i++) { 729 struct irq_data *d = irq_domain_get_irq_data(domain, virq + i); 730 731 irq_set_handler(virq + i, NULL); 732 irq_domain_reset_irq_data(d); 733 } 734 } 735 736 static const struct irq_domain_ops aic_irq_domain_ops = { 737 .translate = aic_irq_domain_translate, 738 .alloc = aic_irq_domain_alloc, 739 .free = aic_irq_domain_free, 740 }; 741 742 /* 743 * IPI irqchip 744 */ 745 746 static void aic_ipi_send_fast(int cpu) 747 { 748 u64 mpidr = cpu_logical_map(cpu); 749 u64 my_mpidr = read_cpuid_mpidr(); 750 u64 cluster = MPIDR_CLUSTER(mpidr); 751 u64 idx = MPIDR_CPU(mpidr); 752 753 if (MPIDR_CLUSTER(my_mpidr) == cluster) 754 write_sysreg_s(FIELD_PREP(IPI_RR_CPU, idx), 755 SYS_IMP_APL_IPI_RR_LOCAL_EL1); 756 else 757 write_sysreg_s(FIELD_PREP(IPI_RR_CPU, idx) | FIELD_PREP(IPI_RR_CLUSTER, cluster), 758 SYS_IMP_APL_IPI_RR_GLOBAL_EL1); 759 isb(); 760 } 761 762 static void aic_handle_ipi(struct pt_regs *regs) 763 { 764 /* 765 * Ack the IPI. We need to order this after the AIC event read, but 766 * that is enforced by normal MMIO ordering guarantees. 767 * 768 * For the Fast IPI case, this needs to be ordered before the vIPI 769 * handling below, so we need to isb(); 770 */ 771 if (static_branch_likely(&use_fast_ipi)) { 772 write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1); 773 isb(); 774 } else { 775 aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_OTHER); 776 } 777 778 ipi_mux_process(); 779 780 /* 781 * No ordering needed here; at worst this just changes the timing of 782 * when the next IPI will be delivered. 783 */ 784 if (!static_branch_likely(&use_fast_ipi)) 785 aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER); 786 } 787 788 static void aic_ipi_send_single(unsigned int cpu) 789 { 790 if (static_branch_likely(&use_fast_ipi)) 791 aic_ipi_send_fast(cpu); 792 else 793 aic_ic_write(aic_irqc, AIC_IPI_SEND, AIC_IPI_SEND_CPU(cpu)); 794 } 795 796 static int __init aic_init_smp(struct aic_irq_chip *irqc, struct device_node *node) 797 { 798 int base_ipi; 799 800 base_ipi = ipi_mux_create(AIC_NR_SWIPI, aic_ipi_send_single); 801 if (WARN_ON(base_ipi <= 0)) 802 return -ENODEV; 803 804 set_smp_ipi_range(base_ipi, AIC_NR_SWIPI); 805 806 return 0; 807 } 808 809 static int aic_init_cpu(unsigned int cpu) 810 { 811 /* Mask all hard-wired per-CPU IRQ/FIQ sources */ 812 813 /* Pending Fast IPI FIQs */ 814 write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1); 815 816 /* Timer FIQs */ 817 sysreg_clear_set(cntp_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK); 818 sysreg_clear_set(cntv_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK); 819 820 /* EL2-only (VHE mode) IRQ sources */ 821 if (is_kernel_in_hyp_mode()) { 822 /* Guest timers */ 823 sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 824 VM_TMR_FIQ_ENABLE_V | VM_TMR_FIQ_ENABLE_P, 0); 825 826 /* vGIC maintenance IRQ */ 827 sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0); 828 } 829 830 /* PMC FIQ */ 831 sysreg_clear_set_s(SYS_IMP_APL_PMCR0_EL1, PMCR0_IMODE | PMCR0_IACT, 832 FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_OFF)); 833 834 /* Uncore PMC FIQ */ 835 sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE, 836 FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF)); 837 838 /* Commit all of the above */ 839 isb(); 840 841 if (aic_irqc->info.version == 1) { 842 /* 843 * Make sure the kernel's idea of logical CPU order is the same as AIC's 844 * If we ever end up with a mismatch here, we will have to introduce 845 * a mapping table similar to what other irqchip drivers do. 846 */ 847 WARN_ON(aic_ic_read(aic_irqc, AIC_WHOAMI) != smp_processor_id()); 848 849 /* 850 * Always keep IPIs unmasked at the hardware level (except auto-masking 851 * by AIC during processing). We manage masks at the vIPI level. 852 * These registers only exist on AICv1, AICv2 always uses fast IPIs. 853 */ 854 aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_SELF | AIC_IPI_OTHER); 855 if (static_branch_likely(&use_fast_ipi)) { 856 aic_ic_write(aic_irqc, AIC_IPI_MASK_SET, AIC_IPI_SELF | AIC_IPI_OTHER); 857 } else { 858 aic_ic_write(aic_irqc, AIC_IPI_MASK_SET, AIC_IPI_SELF); 859 aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER); 860 } 861 } 862 863 /* Initialize the local mask state */ 864 __this_cpu_write(aic_fiq_unmasked, 0); 865 866 return 0; 867 } 868 869 static struct gic_kvm_info vgic_info __initdata = { 870 .type = GIC_V3, 871 .no_maint_irq_mask = true, 872 .no_hw_deactivation = true, 873 }; 874 875 static void build_fiq_affinity(struct aic_irq_chip *ic, struct device_node *aff) 876 { 877 int i, n; 878 u32 fiq; 879 880 if (of_property_read_u32(aff, "apple,fiq-index", &fiq) || 881 WARN_ON(fiq >= AIC_NR_FIQ) || ic->fiq_aff[fiq]) 882 return; 883 884 n = of_property_count_elems_of_size(aff, "cpus", sizeof(u32)); 885 if (WARN_ON(n < 0)) 886 return; 887 888 ic->fiq_aff[fiq] = kzalloc(sizeof(*ic->fiq_aff[fiq]), GFP_KERNEL); 889 if (!ic->fiq_aff[fiq]) 890 return; 891 892 for (i = 0; i < n; i++) { 893 struct device_node *cpu_node; 894 u32 cpu_phandle; 895 int cpu; 896 897 if (of_property_read_u32_index(aff, "cpus", i, &cpu_phandle)) 898 continue; 899 900 cpu_node = of_find_node_by_phandle(cpu_phandle); 901 if (WARN_ON(!cpu_node)) 902 continue; 903 904 cpu = of_cpu_node_to_id(cpu_node); 905 of_node_put(cpu_node); 906 if (WARN_ON(cpu < 0)) 907 continue; 908 909 cpumask_set_cpu(cpu, &ic->fiq_aff[fiq]->aff); 910 } 911 } 912 913 static int __init aic_of_ic_init(struct device_node *node, struct device_node *parent) 914 { 915 int i, die; 916 u32 off, start_off; 917 void __iomem *regs; 918 struct aic_irq_chip *irqc; 919 struct device_node *affs; 920 const struct of_device_id *match; 921 922 regs = of_iomap(node, 0); 923 if (WARN_ON(!regs)) 924 return -EIO; 925 926 irqc = kzalloc(sizeof(*irqc), GFP_KERNEL); 927 if (!irqc) { 928 iounmap(regs); 929 return -ENOMEM; 930 } 931 932 irqc->base = regs; 933 934 match = of_match_node(aic_info_match, node); 935 if (!match) 936 goto err_unmap; 937 938 irqc->info = *(struct aic_info *)match->data; 939 940 aic_irqc = irqc; 941 942 switch (irqc->info.version) { 943 case 1: { 944 u32 info; 945 946 info = aic_ic_read(irqc, AIC_INFO); 947 irqc->nr_irq = FIELD_GET(AIC_INFO_NR_IRQ, info); 948 irqc->max_irq = AIC_MAX_IRQ; 949 irqc->nr_die = irqc->max_die = 1; 950 951 off = start_off = irqc->info.target_cpu; 952 off += sizeof(u32) * irqc->max_irq; /* TARGET_CPU */ 953 954 irqc->event = irqc->base; 955 956 break; 957 } 958 case 2: { 959 u32 info1, info3; 960 961 info1 = aic_ic_read(irqc, AIC2_INFO1); 962 info3 = aic_ic_read(irqc, AIC2_INFO3); 963 964 irqc->nr_irq = FIELD_GET(AIC2_INFO1_NR_IRQ, info1); 965 irqc->max_irq = FIELD_GET(AIC2_INFO3_MAX_IRQ, info3); 966 irqc->nr_die = FIELD_GET(AIC2_INFO1_LAST_DIE, info1) + 1; 967 irqc->max_die = FIELD_GET(AIC2_INFO3_MAX_DIE, info3); 968 969 off = start_off = irqc->info.irq_cfg; 970 off += sizeof(u32) * irqc->max_irq; /* IRQ_CFG */ 971 972 irqc->event = of_iomap(node, 1); 973 if (WARN_ON(!irqc->event)) 974 goto err_unmap; 975 976 break; 977 } 978 } 979 980 irqc->info.sw_set = off; 981 off += sizeof(u32) * (irqc->max_irq >> 5); /* SW_SET */ 982 irqc->info.sw_clr = off; 983 off += sizeof(u32) * (irqc->max_irq >> 5); /* SW_CLR */ 984 irqc->info.mask_set = off; 985 off += sizeof(u32) * (irqc->max_irq >> 5); /* MASK_SET */ 986 irqc->info.mask_clr = off; 987 off += sizeof(u32) * (irqc->max_irq >> 5); /* MASK_CLR */ 988 off += sizeof(u32) * (irqc->max_irq >> 5); /* HW_STATE */ 989 990 if (irqc->info.fast_ipi) 991 static_branch_enable(&use_fast_ipi); 992 else 993 static_branch_disable(&use_fast_ipi); 994 995 irqc->info.die_stride = off - start_off; 996 997 irqc->hw_domain = irq_domain_create_tree(of_node_to_fwnode(node), 998 &aic_irq_domain_ops, irqc); 999 if (WARN_ON(!irqc->hw_domain)) 1000 goto err_unmap; 1001 1002 irq_domain_update_bus_token(irqc->hw_domain, DOMAIN_BUS_WIRED); 1003 1004 if (aic_init_smp(irqc, node)) 1005 goto err_remove_domain; 1006 1007 affs = of_get_child_by_name(node, "affinities"); 1008 if (affs) { 1009 struct device_node *chld; 1010 1011 for_each_child_of_node(affs, chld) 1012 build_fiq_affinity(irqc, chld); 1013 } 1014 of_node_put(affs); 1015 1016 set_handle_irq(aic_handle_irq); 1017 set_handle_fiq(aic_handle_fiq); 1018 1019 off = 0; 1020 for (die = 0; die < irqc->nr_die; die++) { 1021 for (i = 0; i < BITS_TO_U32(irqc->nr_irq); i++) 1022 aic_ic_write(irqc, irqc->info.mask_set + off + i * 4, U32_MAX); 1023 for (i = 0; i < BITS_TO_U32(irqc->nr_irq); i++) 1024 aic_ic_write(irqc, irqc->info.sw_clr + off + i * 4, U32_MAX); 1025 if (irqc->info.target_cpu) 1026 for (i = 0; i < irqc->nr_irq; i++) 1027 aic_ic_write(irqc, irqc->info.target_cpu + off + i * 4, 1); 1028 off += irqc->info.die_stride; 1029 } 1030 1031 if (irqc->info.version == 2) { 1032 u32 config = aic_ic_read(irqc, AIC2_CONFIG); 1033 1034 config |= AIC2_CONFIG_ENABLE; 1035 aic_ic_write(irqc, AIC2_CONFIG, config); 1036 } 1037 1038 if (!is_kernel_in_hyp_mode()) 1039 pr_info("Kernel running in EL1, mapping interrupts"); 1040 1041 if (static_branch_likely(&use_fast_ipi)) 1042 pr_info("Using Fast IPIs"); 1043 1044 cpuhp_setup_state(CPUHP_AP_IRQ_APPLE_AIC_STARTING, 1045 "irqchip/apple-aic/ipi:starting", 1046 aic_init_cpu, NULL); 1047 1048 if (is_kernel_in_hyp_mode()) { 1049 struct irq_fwspec mi = { 1050 .fwnode = of_node_to_fwnode(node), 1051 .param_count = 3, 1052 .param = { 1053 [0] = AIC_FIQ, /* This is a lie */ 1054 [1] = AIC_VGIC_MI, 1055 [2] = IRQ_TYPE_LEVEL_HIGH, 1056 }, 1057 }; 1058 1059 vgic_info.maint_irq = irq_create_fwspec_mapping(&mi); 1060 WARN_ON(!vgic_info.maint_irq); 1061 } 1062 1063 vgic_set_kvm_info(&vgic_info); 1064 1065 pr_info("Initialized with %d/%d IRQs * %d/%d die(s), %d FIQs, %d vIPIs", 1066 irqc->nr_irq, irqc->max_irq, irqc->nr_die, irqc->max_die, AIC_NR_FIQ, AIC_NR_SWIPI); 1067 1068 return 0; 1069 1070 err_remove_domain: 1071 irq_domain_remove(irqc->hw_domain); 1072 err_unmap: 1073 if (irqc->event && irqc->event != irqc->base) 1074 iounmap(irqc->event); 1075 iounmap(irqc->base); 1076 kfree(irqc); 1077 return -ENODEV; 1078 } 1079 1080 IRQCHIP_DECLARE(apple_aic, "apple,aic", aic_of_ic_init); 1081 IRQCHIP_DECLARE(apple_aic2, "apple,aic2", aic_of_ic_init); 1082