1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright The Asahi Linux Contributors 4 * 5 * Based on irq-lpc32xx: 6 * Copyright 2015-2016 Vladimir Zapolskiy <vz@mleia.com> 7 * Based on irq-bcm2836: 8 * Copyright 2015 Broadcom 9 */ 10 11 /* 12 * AIC is a fairly simple interrupt controller with the following features: 13 * 14 * - 896 level-triggered hardware IRQs 15 * - Single mask bit per IRQ 16 * - Per-IRQ affinity setting 17 * - Automatic masking on event delivery (auto-ack) 18 * - Software triggering (ORed with hw line) 19 * - 2 per-CPU IPIs (meant as "self" and "other", but they are 20 * interchangeable if not symmetric) 21 * - Automatic prioritization (single event/ack register per CPU, lower IRQs = 22 * higher priority) 23 * - Automatic masking on ack 24 * - Default "this CPU" register view and explicit per-CPU views 25 * 26 * In addition, this driver also handles FIQs, as these are routed to the same 27 * IRQ vector. These are used for Fast IPIs (TODO), the ARMv8 timer IRQs, and 28 * performance counters (TODO). 29 * 30 * Implementation notes: 31 * 32 * - This driver creates two IRQ domains, one for HW IRQs and internal FIQs, 33 * and one for IPIs. 34 * - Since Linux needs more than 2 IPIs, we implement a software IRQ controller 35 * and funnel all IPIs into one per-CPU IPI (the second "self" IPI is unused). 36 * - FIQ hwirq numbers are assigned after true hwirqs, and are per-cpu. 37 * - DT bindings use 3-cell form (like GIC): 38 * - <0 nr flags> - hwirq #nr 39 * - <1 nr flags> - FIQ #nr 40 * - nr=0 Physical HV timer 41 * - nr=1 Virtual HV timer 42 * - nr=2 Physical guest timer 43 * - nr=3 Virtual guest timer 44 */ 45 46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 47 48 #include <linux/bits.h> 49 #include <linux/bitfield.h> 50 #include <linux/cpuhotplug.h> 51 #include <linux/io.h> 52 #include <linux/irqchip.h> 53 #include <linux/irqchip/arm-vgic-info.h> 54 #include <linux/irqdomain.h> 55 #include <linux/limits.h> 56 #include <linux/of_address.h> 57 #include <linux/slab.h> 58 #include <asm/exception.h> 59 #include <asm/sysreg.h> 60 #include <asm/virt.h> 61 62 #include <dt-bindings/interrupt-controller/apple-aic.h> 63 64 /* 65 * AIC registers (MMIO) 66 */ 67 68 #define AIC_INFO 0x0004 69 #define AIC_INFO_NR_HW GENMASK(15, 0) 70 71 #define AIC_CONFIG 0x0010 72 73 #define AIC_WHOAMI 0x2000 74 #define AIC_EVENT 0x2004 75 #define AIC_EVENT_TYPE GENMASK(31, 16) 76 #define AIC_EVENT_NUM GENMASK(15, 0) 77 78 #define AIC_EVENT_TYPE_HW 1 79 #define AIC_EVENT_TYPE_IPI 4 80 #define AIC_EVENT_IPI_OTHER 1 81 #define AIC_EVENT_IPI_SELF 2 82 83 #define AIC_IPI_SEND 0x2008 84 #define AIC_IPI_ACK 0x200c 85 #define AIC_IPI_MASK_SET 0x2024 86 #define AIC_IPI_MASK_CLR 0x2028 87 88 #define AIC_IPI_SEND_CPU(cpu) BIT(cpu) 89 90 #define AIC_IPI_OTHER BIT(0) 91 #define AIC_IPI_SELF BIT(31) 92 93 #define AIC_TARGET_CPU 0x3000 94 #define AIC_SW_SET 0x4000 95 #define AIC_SW_CLR 0x4080 96 #define AIC_MASK_SET 0x4100 97 #define AIC_MASK_CLR 0x4180 98 99 #define AIC_CPU_IPI_SET(cpu) (0x5008 + ((cpu) << 7)) 100 #define AIC_CPU_IPI_CLR(cpu) (0x500c + ((cpu) << 7)) 101 #define AIC_CPU_IPI_MASK_SET(cpu) (0x5024 + ((cpu) << 7)) 102 #define AIC_CPU_IPI_MASK_CLR(cpu) (0x5028 + ((cpu) << 7)) 103 104 #define MASK_REG(x) (4 * ((x) >> 5)) 105 #define MASK_BIT(x) BIT((x) & GENMASK(4, 0)) 106 107 /* 108 * IMP-DEF sysregs that control FIQ sources 109 * Note: sysreg-based IPIs are not supported yet. 110 */ 111 112 /* Core PMC control register */ 113 #define SYS_IMP_APL_PMCR0_EL1 sys_reg(3, 1, 15, 0, 0) 114 #define PMCR0_IMODE GENMASK(10, 8) 115 #define PMCR0_IMODE_OFF 0 116 #define PMCR0_IMODE_PMI 1 117 #define PMCR0_IMODE_AIC 2 118 #define PMCR0_IMODE_HALT 3 119 #define PMCR0_IMODE_FIQ 4 120 #define PMCR0_IACT BIT(11) 121 122 /* IPI request registers */ 123 #define SYS_IMP_APL_IPI_RR_LOCAL_EL1 sys_reg(3, 5, 15, 0, 0) 124 #define SYS_IMP_APL_IPI_RR_GLOBAL_EL1 sys_reg(3, 5, 15, 0, 1) 125 #define IPI_RR_CPU GENMASK(7, 0) 126 /* Cluster only used for the GLOBAL register */ 127 #define IPI_RR_CLUSTER GENMASK(23, 16) 128 #define IPI_RR_TYPE GENMASK(29, 28) 129 #define IPI_RR_IMMEDIATE 0 130 #define IPI_RR_RETRACT 1 131 #define IPI_RR_DEFERRED 2 132 #define IPI_RR_NOWAKE 3 133 134 /* IPI status register */ 135 #define SYS_IMP_APL_IPI_SR_EL1 sys_reg(3, 5, 15, 1, 1) 136 #define IPI_SR_PENDING BIT(0) 137 138 /* Guest timer FIQ enable register */ 139 #define SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2 sys_reg(3, 5, 15, 1, 3) 140 #define VM_TMR_FIQ_ENABLE_V BIT(0) 141 #define VM_TMR_FIQ_ENABLE_P BIT(1) 142 143 /* Deferred IPI countdown register */ 144 #define SYS_IMP_APL_IPI_CR_EL1 sys_reg(3, 5, 15, 3, 1) 145 146 /* Uncore PMC control register */ 147 #define SYS_IMP_APL_UPMCR0_EL1 sys_reg(3, 7, 15, 0, 4) 148 #define UPMCR0_IMODE GENMASK(18, 16) 149 #define UPMCR0_IMODE_OFF 0 150 #define UPMCR0_IMODE_AIC 2 151 #define UPMCR0_IMODE_HALT 3 152 #define UPMCR0_IMODE_FIQ 4 153 154 /* Uncore PMC status register */ 155 #define SYS_IMP_APL_UPMSR_EL1 sys_reg(3, 7, 15, 6, 4) 156 #define UPMSR_IACT BIT(0) 157 158 #define AIC_NR_FIQ 4 159 #define AIC_NR_SWIPI 32 160 161 /* 162 * FIQ hwirq index definitions: FIQ sources use the DT binding defines 163 * directly, except that timers are special. At the irqchip level, the 164 * two timer types are represented by their access method: _EL0 registers 165 * or _EL02 registers. In the DT binding, the timers are represented 166 * by their purpose (HV or guest). This mapping is for when the kernel is 167 * running at EL2 (with VHE). When the kernel is running at EL1, the 168 * mapping differs and aic_irq_domain_translate() performs the remapping. 169 */ 170 171 #define AIC_TMR_EL0_PHYS AIC_TMR_HV_PHYS 172 #define AIC_TMR_EL0_VIRT AIC_TMR_HV_VIRT 173 #define AIC_TMR_EL02_PHYS AIC_TMR_GUEST_PHYS 174 #define AIC_TMR_EL02_VIRT AIC_TMR_GUEST_VIRT 175 176 struct aic_irq_chip { 177 void __iomem *base; 178 struct irq_domain *hw_domain; 179 struct irq_domain *ipi_domain; 180 int nr_hw; 181 }; 182 183 static DEFINE_PER_CPU(uint32_t, aic_fiq_unmasked); 184 185 static DEFINE_PER_CPU(atomic_t, aic_vipi_flag); 186 static DEFINE_PER_CPU(atomic_t, aic_vipi_enable); 187 188 static struct aic_irq_chip *aic_irqc; 189 190 static void aic_handle_ipi(struct pt_regs *regs); 191 192 static u32 aic_ic_read(struct aic_irq_chip *ic, u32 reg) 193 { 194 return readl_relaxed(ic->base + reg); 195 } 196 197 static void aic_ic_write(struct aic_irq_chip *ic, u32 reg, u32 val) 198 { 199 writel_relaxed(val, ic->base + reg); 200 } 201 202 /* 203 * IRQ irqchip 204 */ 205 206 static void aic_irq_mask(struct irq_data *d) 207 { 208 struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d); 209 210 aic_ic_write(ic, AIC_MASK_SET + MASK_REG(irqd_to_hwirq(d)), 211 MASK_BIT(irqd_to_hwirq(d))); 212 } 213 214 static void aic_irq_unmask(struct irq_data *d) 215 { 216 struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d); 217 218 aic_ic_write(ic, AIC_MASK_CLR + MASK_REG(d->hwirq), 219 MASK_BIT(irqd_to_hwirq(d))); 220 } 221 222 static void aic_irq_eoi(struct irq_data *d) 223 { 224 /* 225 * Reading the interrupt reason automatically acknowledges and masks 226 * the IRQ, so we just unmask it here if needed. 227 */ 228 if (!irqd_irq_masked(d)) 229 aic_irq_unmask(d); 230 } 231 232 static void __exception_irq_entry aic_handle_irq(struct pt_regs *regs) 233 { 234 struct aic_irq_chip *ic = aic_irqc; 235 u32 event, type, irq; 236 237 do { 238 /* 239 * We cannot use a relaxed read here, as reads from DMA buffers 240 * need to be ordered after the IRQ fires. 241 */ 242 event = readl(ic->base + AIC_EVENT); 243 type = FIELD_GET(AIC_EVENT_TYPE, event); 244 irq = FIELD_GET(AIC_EVENT_NUM, event); 245 246 if (type == AIC_EVENT_TYPE_HW) 247 generic_handle_domain_irq(aic_irqc->hw_domain, irq); 248 else if (type == AIC_EVENT_TYPE_IPI && irq == 1) 249 aic_handle_ipi(regs); 250 else if (event != 0) 251 pr_err_ratelimited("Unknown IRQ event %d, %d\n", type, irq); 252 } while (event); 253 254 /* 255 * vGIC maintenance interrupts end up here too, so we need to check 256 * for them separately. This should never trigger if KVM is working 257 * properly, because it will have already taken care of clearing it 258 * on guest exit before this handler runs. 259 */ 260 if (is_kernel_in_hyp_mode() && (read_sysreg_s(SYS_ICH_HCR_EL2) & ICH_HCR_EN) && 261 read_sysreg_s(SYS_ICH_MISR_EL2) != 0) { 262 pr_err_ratelimited("vGIC IRQ fired and not handled by KVM, disabling.\n"); 263 sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0); 264 } 265 } 266 267 static int aic_irq_set_affinity(struct irq_data *d, 268 const struct cpumask *mask_val, bool force) 269 { 270 irq_hw_number_t hwirq = irqd_to_hwirq(d); 271 struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d); 272 int cpu; 273 274 if (force) 275 cpu = cpumask_first(mask_val); 276 else 277 cpu = cpumask_any_and(mask_val, cpu_online_mask); 278 279 aic_ic_write(ic, AIC_TARGET_CPU + hwirq * 4, BIT(cpu)); 280 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 281 282 return IRQ_SET_MASK_OK; 283 } 284 285 static int aic_irq_set_type(struct irq_data *d, unsigned int type) 286 { 287 /* 288 * Some IRQs (e.g. MSIs) implicitly have edge semantics, and we don't 289 * have a way to find out the type of any given IRQ, so just allow both. 290 */ 291 return (type == IRQ_TYPE_LEVEL_HIGH || type == IRQ_TYPE_EDGE_RISING) ? 0 : -EINVAL; 292 } 293 294 static struct irq_chip aic_chip = { 295 .name = "AIC", 296 .irq_mask = aic_irq_mask, 297 .irq_unmask = aic_irq_unmask, 298 .irq_eoi = aic_irq_eoi, 299 .irq_set_affinity = aic_irq_set_affinity, 300 .irq_set_type = aic_irq_set_type, 301 }; 302 303 /* 304 * FIQ irqchip 305 */ 306 307 static unsigned long aic_fiq_get_idx(struct irq_data *d) 308 { 309 struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d); 310 311 return irqd_to_hwirq(d) - ic->nr_hw; 312 } 313 314 static void aic_fiq_set_mask(struct irq_data *d) 315 { 316 /* Only the guest timers have real mask bits, unfortunately. */ 317 switch (aic_fiq_get_idx(d)) { 318 case AIC_TMR_EL02_PHYS: 319 sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_P, 0); 320 isb(); 321 break; 322 case AIC_TMR_EL02_VIRT: 323 sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_V, 0); 324 isb(); 325 break; 326 default: 327 break; 328 } 329 } 330 331 static void aic_fiq_clear_mask(struct irq_data *d) 332 { 333 switch (aic_fiq_get_idx(d)) { 334 case AIC_TMR_EL02_PHYS: 335 sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_P); 336 isb(); 337 break; 338 case AIC_TMR_EL02_VIRT: 339 sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_V); 340 isb(); 341 break; 342 default: 343 break; 344 } 345 } 346 347 static void aic_fiq_mask(struct irq_data *d) 348 { 349 aic_fiq_set_mask(d); 350 __this_cpu_and(aic_fiq_unmasked, ~BIT(aic_fiq_get_idx(d))); 351 } 352 353 static void aic_fiq_unmask(struct irq_data *d) 354 { 355 aic_fiq_clear_mask(d); 356 __this_cpu_or(aic_fiq_unmasked, BIT(aic_fiq_get_idx(d))); 357 } 358 359 static void aic_fiq_eoi(struct irq_data *d) 360 { 361 /* We mask to ack (where we can), so we need to unmask at EOI. */ 362 if (__this_cpu_read(aic_fiq_unmasked) & BIT(aic_fiq_get_idx(d))) 363 aic_fiq_clear_mask(d); 364 } 365 366 #define TIMER_FIRING(x) \ 367 (((x) & (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_MASK | \ 368 ARCH_TIMER_CTRL_IT_STAT)) == \ 369 (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_STAT)) 370 371 static void __exception_irq_entry aic_handle_fiq(struct pt_regs *regs) 372 { 373 /* 374 * It would be really nice if we had a system register that lets us get 375 * the FIQ source state without having to peek down into sources... 376 * but such a register does not seem to exist. 377 * 378 * So, we have these potential sources to test for: 379 * - Fast IPIs (not yet used) 380 * - The 4 timers (CNTP, CNTV for each of HV and guest) 381 * - Per-core PMCs (not yet supported) 382 * - Per-cluster uncore PMCs (not yet supported) 383 * 384 * Since not dealing with any of these results in a FIQ storm, 385 * we check for everything here, even things we don't support yet. 386 */ 387 388 if (read_sysreg_s(SYS_IMP_APL_IPI_SR_EL1) & IPI_SR_PENDING) { 389 pr_err_ratelimited("Fast IPI fired. Acking.\n"); 390 write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1); 391 } 392 393 if (TIMER_FIRING(read_sysreg(cntp_ctl_el0))) 394 generic_handle_domain_irq(aic_irqc->hw_domain, 395 aic_irqc->nr_hw + AIC_TMR_EL0_PHYS); 396 397 if (TIMER_FIRING(read_sysreg(cntv_ctl_el0))) 398 generic_handle_domain_irq(aic_irqc->hw_domain, 399 aic_irqc->nr_hw + AIC_TMR_EL0_VIRT); 400 401 if (is_kernel_in_hyp_mode()) { 402 uint64_t enabled = read_sysreg_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2); 403 404 if ((enabled & VM_TMR_FIQ_ENABLE_P) && 405 TIMER_FIRING(read_sysreg_s(SYS_CNTP_CTL_EL02))) 406 generic_handle_domain_irq(aic_irqc->hw_domain, 407 aic_irqc->nr_hw + AIC_TMR_EL02_PHYS); 408 409 if ((enabled & VM_TMR_FIQ_ENABLE_V) && 410 TIMER_FIRING(read_sysreg_s(SYS_CNTV_CTL_EL02))) 411 generic_handle_domain_irq(aic_irqc->hw_domain, 412 aic_irqc->nr_hw + AIC_TMR_EL02_VIRT); 413 } 414 415 if ((read_sysreg_s(SYS_IMP_APL_PMCR0_EL1) & (PMCR0_IMODE | PMCR0_IACT)) == 416 (FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_FIQ) | PMCR0_IACT)) { 417 /* 418 * Not supported yet, let's figure out how to handle this when 419 * we implement these proprietary performance counters. For now, 420 * just mask it and move on. 421 */ 422 pr_err_ratelimited("PMC FIQ fired. Masking.\n"); 423 sysreg_clear_set_s(SYS_IMP_APL_PMCR0_EL1, PMCR0_IMODE | PMCR0_IACT, 424 FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_OFF)); 425 } 426 427 if (FIELD_GET(UPMCR0_IMODE, read_sysreg_s(SYS_IMP_APL_UPMCR0_EL1)) == UPMCR0_IMODE_FIQ && 428 (read_sysreg_s(SYS_IMP_APL_UPMSR_EL1) & UPMSR_IACT)) { 429 /* Same story with uncore PMCs */ 430 pr_err_ratelimited("Uncore PMC FIQ fired. Masking.\n"); 431 sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE, 432 FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF)); 433 } 434 } 435 436 static int aic_fiq_set_type(struct irq_data *d, unsigned int type) 437 { 438 return (type == IRQ_TYPE_LEVEL_HIGH) ? 0 : -EINVAL; 439 } 440 441 static struct irq_chip fiq_chip = { 442 .name = "AIC-FIQ", 443 .irq_mask = aic_fiq_mask, 444 .irq_unmask = aic_fiq_unmask, 445 .irq_ack = aic_fiq_set_mask, 446 .irq_eoi = aic_fiq_eoi, 447 .irq_set_type = aic_fiq_set_type, 448 }; 449 450 /* 451 * Main IRQ domain 452 */ 453 454 static int aic_irq_domain_map(struct irq_domain *id, unsigned int irq, 455 irq_hw_number_t hw) 456 { 457 struct aic_irq_chip *ic = id->host_data; 458 459 if (hw < ic->nr_hw) { 460 irq_domain_set_info(id, irq, hw, &aic_chip, id->host_data, 461 handle_fasteoi_irq, NULL, NULL); 462 irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(irq))); 463 } else { 464 irq_set_percpu_devid(irq); 465 irq_domain_set_info(id, irq, hw, &fiq_chip, id->host_data, 466 handle_percpu_devid_irq, NULL, NULL); 467 } 468 469 return 0; 470 } 471 472 static int aic_irq_domain_translate(struct irq_domain *id, 473 struct irq_fwspec *fwspec, 474 unsigned long *hwirq, 475 unsigned int *type) 476 { 477 struct aic_irq_chip *ic = id->host_data; 478 479 if (fwspec->param_count != 3 || !is_of_node(fwspec->fwnode)) 480 return -EINVAL; 481 482 switch (fwspec->param[0]) { 483 case AIC_IRQ: 484 if (fwspec->param[1] >= ic->nr_hw) 485 return -EINVAL; 486 *hwirq = fwspec->param[1]; 487 break; 488 case AIC_FIQ: 489 if (fwspec->param[1] >= AIC_NR_FIQ) 490 return -EINVAL; 491 *hwirq = ic->nr_hw + fwspec->param[1]; 492 493 /* 494 * In EL1 the non-redirected registers are the guest's, 495 * not EL2's, so remap the hwirqs to match. 496 */ 497 if (!is_kernel_in_hyp_mode()) { 498 switch (fwspec->param[1]) { 499 case AIC_TMR_GUEST_PHYS: 500 *hwirq = ic->nr_hw + AIC_TMR_EL0_PHYS; 501 break; 502 case AIC_TMR_GUEST_VIRT: 503 *hwirq = ic->nr_hw + AIC_TMR_EL0_VIRT; 504 break; 505 case AIC_TMR_HV_PHYS: 506 case AIC_TMR_HV_VIRT: 507 return -ENOENT; 508 default: 509 break; 510 } 511 } 512 break; 513 default: 514 return -EINVAL; 515 } 516 517 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK; 518 519 return 0; 520 } 521 522 static int aic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 523 unsigned int nr_irqs, void *arg) 524 { 525 unsigned int type = IRQ_TYPE_NONE; 526 struct irq_fwspec *fwspec = arg; 527 irq_hw_number_t hwirq; 528 int i, ret; 529 530 ret = aic_irq_domain_translate(domain, fwspec, &hwirq, &type); 531 if (ret) 532 return ret; 533 534 for (i = 0; i < nr_irqs; i++) { 535 ret = aic_irq_domain_map(domain, virq + i, hwirq + i); 536 if (ret) 537 return ret; 538 } 539 540 return 0; 541 } 542 543 static void aic_irq_domain_free(struct irq_domain *domain, unsigned int virq, 544 unsigned int nr_irqs) 545 { 546 int i; 547 548 for (i = 0; i < nr_irqs; i++) { 549 struct irq_data *d = irq_domain_get_irq_data(domain, virq + i); 550 551 irq_set_handler(virq + i, NULL); 552 irq_domain_reset_irq_data(d); 553 } 554 } 555 556 static const struct irq_domain_ops aic_irq_domain_ops = { 557 .translate = aic_irq_domain_translate, 558 .alloc = aic_irq_domain_alloc, 559 .free = aic_irq_domain_free, 560 }; 561 562 /* 563 * IPI irqchip 564 */ 565 566 static void aic_ipi_mask(struct irq_data *d) 567 { 568 u32 irq_bit = BIT(irqd_to_hwirq(d)); 569 570 /* No specific ordering requirements needed here. */ 571 atomic_andnot(irq_bit, this_cpu_ptr(&aic_vipi_enable)); 572 } 573 574 static void aic_ipi_unmask(struct irq_data *d) 575 { 576 struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d); 577 u32 irq_bit = BIT(irqd_to_hwirq(d)); 578 579 atomic_or(irq_bit, this_cpu_ptr(&aic_vipi_enable)); 580 581 /* 582 * The atomic_or() above must complete before the atomic_read() 583 * below to avoid racing aic_ipi_send_mask(). 584 */ 585 smp_mb__after_atomic(); 586 587 /* 588 * If a pending vIPI was unmasked, raise a HW IPI to ourselves. 589 * No barriers needed here since this is a self-IPI. 590 */ 591 if (atomic_read(this_cpu_ptr(&aic_vipi_flag)) & irq_bit) 592 aic_ic_write(ic, AIC_IPI_SEND, AIC_IPI_SEND_CPU(smp_processor_id())); 593 } 594 595 static void aic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask) 596 { 597 struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d); 598 u32 irq_bit = BIT(irqd_to_hwirq(d)); 599 u32 send = 0; 600 int cpu; 601 unsigned long pending; 602 603 for_each_cpu(cpu, mask) { 604 /* 605 * This sequence is the mirror of the one in aic_ipi_unmask(); 606 * see the comment there. Additionally, release semantics 607 * ensure that the vIPI flag set is ordered after any shared 608 * memory accesses that precede it. This therefore also pairs 609 * with the atomic_fetch_andnot in aic_handle_ipi(). 610 */ 611 pending = atomic_fetch_or_release(irq_bit, per_cpu_ptr(&aic_vipi_flag, cpu)); 612 613 /* 614 * The atomic_fetch_or_release() above must complete before the 615 * atomic_read() below to avoid racing aic_ipi_unmask(). 616 */ 617 smp_mb__after_atomic(); 618 619 if (!(pending & irq_bit) && 620 (atomic_read(per_cpu_ptr(&aic_vipi_enable, cpu)) & irq_bit)) 621 send |= AIC_IPI_SEND_CPU(cpu); 622 } 623 624 /* 625 * The flag writes must complete before the physical IPI is issued 626 * to another CPU. This is implied by the control dependency on 627 * the result of atomic_read_acquire() above, which is itself 628 * already ordered after the vIPI flag write. 629 */ 630 if (send) 631 aic_ic_write(ic, AIC_IPI_SEND, send); 632 } 633 634 static struct irq_chip ipi_chip = { 635 .name = "AIC-IPI", 636 .irq_mask = aic_ipi_mask, 637 .irq_unmask = aic_ipi_unmask, 638 .ipi_send_mask = aic_ipi_send_mask, 639 }; 640 641 /* 642 * IPI IRQ domain 643 */ 644 645 static void aic_handle_ipi(struct pt_regs *regs) 646 { 647 int i; 648 unsigned long enabled, firing; 649 650 /* 651 * Ack the IPI. We need to order this after the AIC event read, but 652 * that is enforced by normal MMIO ordering guarantees. 653 */ 654 aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_OTHER); 655 656 /* 657 * The mask read does not need to be ordered. Only we can change 658 * our own mask anyway, so no races are possible here, as long as 659 * we are properly in the interrupt handler (which is covered by 660 * the barrier that is part of the top-level AIC handler's readl()). 661 */ 662 enabled = atomic_read(this_cpu_ptr(&aic_vipi_enable)); 663 664 /* 665 * Clear the IPIs we are about to handle. This pairs with the 666 * atomic_fetch_or_release() in aic_ipi_send_mask(), and needs to be 667 * ordered after the aic_ic_write() above (to avoid dropping vIPIs) and 668 * before IPI handling code (to avoid races handling vIPIs before they 669 * are signaled). The former is taken care of by the release semantics 670 * of the write portion, while the latter is taken care of by the 671 * acquire semantics of the read portion. 672 */ 673 firing = atomic_fetch_andnot(enabled, this_cpu_ptr(&aic_vipi_flag)) & enabled; 674 675 for_each_set_bit(i, &firing, AIC_NR_SWIPI) 676 generic_handle_domain_irq(aic_irqc->ipi_domain, i); 677 678 /* 679 * No ordering needed here; at worst this just changes the timing of 680 * when the next IPI will be delivered. 681 */ 682 aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER); 683 } 684 685 static int aic_ipi_alloc(struct irq_domain *d, unsigned int virq, 686 unsigned int nr_irqs, void *args) 687 { 688 int i; 689 690 for (i = 0; i < nr_irqs; i++) { 691 irq_set_percpu_devid(virq + i); 692 irq_domain_set_info(d, virq + i, i, &ipi_chip, d->host_data, 693 handle_percpu_devid_irq, NULL, NULL); 694 } 695 696 return 0; 697 } 698 699 static void aic_ipi_free(struct irq_domain *d, unsigned int virq, unsigned int nr_irqs) 700 { 701 /* Not freeing IPIs */ 702 } 703 704 static const struct irq_domain_ops aic_ipi_domain_ops = { 705 .alloc = aic_ipi_alloc, 706 .free = aic_ipi_free, 707 }; 708 709 static int __init aic_init_smp(struct aic_irq_chip *irqc, struct device_node *node) 710 { 711 struct irq_domain *ipi_domain; 712 int base_ipi; 713 714 ipi_domain = irq_domain_create_linear(irqc->hw_domain->fwnode, AIC_NR_SWIPI, 715 &aic_ipi_domain_ops, irqc); 716 if (WARN_ON(!ipi_domain)) 717 return -ENODEV; 718 719 ipi_domain->flags |= IRQ_DOMAIN_FLAG_IPI_SINGLE; 720 irq_domain_update_bus_token(ipi_domain, DOMAIN_BUS_IPI); 721 722 base_ipi = __irq_domain_alloc_irqs(ipi_domain, -1, AIC_NR_SWIPI, 723 NUMA_NO_NODE, NULL, false, NULL); 724 725 if (WARN_ON(!base_ipi)) { 726 irq_domain_remove(ipi_domain); 727 return -ENODEV; 728 } 729 730 set_smp_ipi_range(base_ipi, AIC_NR_SWIPI); 731 732 irqc->ipi_domain = ipi_domain; 733 734 return 0; 735 } 736 737 static int aic_init_cpu(unsigned int cpu) 738 { 739 /* Mask all hard-wired per-CPU IRQ/FIQ sources */ 740 741 /* Pending Fast IPI FIQs */ 742 write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1); 743 744 /* Timer FIQs */ 745 sysreg_clear_set(cntp_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK); 746 sysreg_clear_set(cntv_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK); 747 748 /* EL2-only (VHE mode) IRQ sources */ 749 if (is_kernel_in_hyp_mode()) { 750 /* Guest timers */ 751 sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 752 VM_TMR_FIQ_ENABLE_V | VM_TMR_FIQ_ENABLE_P, 0); 753 754 /* vGIC maintenance IRQ */ 755 sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0); 756 } 757 758 /* PMC FIQ */ 759 sysreg_clear_set_s(SYS_IMP_APL_PMCR0_EL1, PMCR0_IMODE | PMCR0_IACT, 760 FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_OFF)); 761 762 /* Uncore PMC FIQ */ 763 sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE, 764 FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF)); 765 766 /* Commit all of the above */ 767 isb(); 768 769 /* 770 * Make sure the kernel's idea of logical CPU order is the same as AIC's 771 * If we ever end up with a mismatch here, we will have to introduce 772 * a mapping table similar to what other irqchip drivers do. 773 */ 774 WARN_ON(aic_ic_read(aic_irqc, AIC_WHOAMI) != smp_processor_id()); 775 776 /* 777 * Always keep IPIs unmasked at the hardware level (except auto-masking 778 * by AIC during processing). We manage masks at the vIPI level. 779 */ 780 aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_SELF | AIC_IPI_OTHER); 781 aic_ic_write(aic_irqc, AIC_IPI_MASK_SET, AIC_IPI_SELF); 782 aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER); 783 784 /* Initialize the local mask state */ 785 __this_cpu_write(aic_fiq_unmasked, 0); 786 787 return 0; 788 } 789 790 static struct gic_kvm_info vgic_info __initdata = { 791 .type = GIC_V3, 792 .no_maint_irq_mask = true, 793 .no_hw_deactivation = true, 794 }; 795 796 static int __init aic_of_ic_init(struct device_node *node, struct device_node *parent) 797 { 798 int i; 799 void __iomem *regs; 800 u32 info; 801 struct aic_irq_chip *irqc; 802 803 regs = of_iomap(node, 0); 804 if (WARN_ON(!regs)) 805 return -EIO; 806 807 irqc = kzalloc(sizeof(*irqc), GFP_KERNEL); 808 if (!irqc) 809 return -ENOMEM; 810 811 aic_irqc = irqc; 812 irqc->base = regs; 813 814 info = aic_ic_read(irqc, AIC_INFO); 815 irqc->nr_hw = FIELD_GET(AIC_INFO_NR_HW, info); 816 817 irqc->hw_domain = irq_domain_create_linear(of_node_to_fwnode(node), 818 irqc->nr_hw + AIC_NR_FIQ, 819 &aic_irq_domain_ops, irqc); 820 if (WARN_ON(!irqc->hw_domain)) { 821 iounmap(irqc->base); 822 kfree(irqc); 823 return -ENODEV; 824 } 825 826 irq_domain_update_bus_token(irqc->hw_domain, DOMAIN_BUS_WIRED); 827 828 if (aic_init_smp(irqc, node)) { 829 irq_domain_remove(irqc->hw_domain); 830 iounmap(irqc->base); 831 kfree(irqc); 832 return -ENODEV; 833 } 834 835 set_handle_irq(aic_handle_irq); 836 set_handle_fiq(aic_handle_fiq); 837 838 for (i = 0; i < BITS_TO_U32(irqc->nr_hw); i++) 839 aic_ic_write(irqc, AIC_MASK_SET + i * 4, U32_MAX); 840 for (i = 0; i < BITS_TO_U32(irqc->nr_hw); i++) 841 aic_ic_write(irqc, AIC_SW_CLR + i * 4, U32_MAX); 842 for (i = 0; i < irqc->nr_hw; i++) 843 aic_ic_write(irqc, AIC_TARGET_CPU + i * 4, 1); 844 845 if (!is_kernel_in_hyp_mode()) 846 pr_info("Kernel running in EL1, mapping interrupts"); 847 848 cpuhp_setup_state(CPUHP_AP_IRQ_APPLE_AIC_STARTING, 849 "irqchip/apple-aic/ipi:starting", 850 aic_init_cpu, NULL); 851 852 vgic_set_kvm_info(&vgic_info); 853 854 pr_info("Initialized with %d IRQs, %d FIQs, %d vIPIs\n", 855 irqc->nr_hw, AIC_NR_FIQ, AIC_NR_SWIPI); 856 857 return 0; 858 } 859 860 IRQCHIP_DECLARE(apple_m1_aic, "apple,aic", aic_of_ic_init); 861