1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Virtio driver for the paravirtualized IOMMU 4 * 5 * Copyright (C) 2019 Arm Limited 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/amba/bus.h> 11 #include <linux/delay.h> 12 #include <linux/dma-iommu.h> 13 #include <linux/freezer.h> 14 #include <linux/interval_tree.h> 15 #include <linux/iommu.h> 16 #include <linux/module.h> 17 #include <linux/of_iommu.h> 18 #include <linux/of_platform.h> 19 #include <linux/pci.h> 20 #include <linux/platform_device.h> 21 #include <linux/virtio.h> 22 #include <linux/virtio_config.h> 23 #include <linux/virtio_ids.h> 24 #include <linux/wait.h> 25 26 #include <uapi/linux/virtio_iommu.h> 27 28 #define MSI_IOVA_BASE 0x8000000 29 #define MSI_IOVA_LENGTH 0x100000 30 31 #define VIOMMU_REQUEST_VQ 0 32 #define VIOMMU_EVENT_VQ 1 33 #define VIOMMU_NR_VQS 2 34 35 struct viommu_dev { 36 struct iommu_device iommu; 37 struct device *dev; 38 struct virtio_device *vdev; 39 40 struct ida domain_ids; 41 42 struct virtqueue *vqs[VIOMMU_NR_VQS]; 43 spinlock_t request_lock; 44 struct list_head requests; 45 void *evts; 46 47 /* Device configuration */ 48 struct iommu_domain_geometry geometry; 49 u64 pgsize_bitmap; 50 u32 first_domain; 51 u32 last_domain; 52 /* Supported MAP flags */ 53 u32 map_flags; 54 u32 probe_size; 55 }; 56 57 struct viommu_mapping { 58 phys_addr_t paddr; 59 struct interval_tree_node iova; 60 u32 flags; 61 }; 62 63 struct viommu_domain { 64 struct iommu_domain domain; 65 struct viommu_dev *viommu; 66 struct mutex mutex; /* protects viommu pointer */ 67 unsigned int id; 68 u32 map_flags; 69 70 spinlock_t mappings_lock; 71 struct rb_root_cached mappings; 72 73 unsigned long nr_endpoints; 74 }; 75 76 struct viommu_endpoint { 77 struct device *dev; 78 struct viommu_dev *viommu; 79 struct viommu_domain *vdomain; 80 struct list_head resv_regions; 81 }; 82 83 struct viommu_request { 84 struct list_head list; 85 void *writeback; 86 unsigned int write_offset; 87 unsigned int len; 88 char buf[]; 89 }; 90 91 #define VIOMMU_FAULT_RESV_MASK 0xffffff00 92 93 struct viommu_event { 94 union { 95 u32 head; 96 struct virtio_iommu_fault fault; 97 }; 98 }; 99 100 #define to_viommu_domain(domain) \ 101 container_of(domain, struct viommu_domain, domain) 102 103 static int viommu_get_req_errno(void *buf, size_t len) 104 { 105 struct virtio_iommu_req_tail *tail = buf + len - sizeof(*tail); 106 107 switch (tail->status) { 108 case VIRTIO_IOMMU_S_OK: 109 return 0; 110 case VIRTIO_IOMMU_S_UNSUPP: 111 return -ENOSYS; 112 case VIRTIO_IOMMU_S_INVAL: 113 return -EINVAL; 114 case VIRTIO_IOMMU_S_RANGE: 115 return -ERANGE; 116 case VIRTIO_IOMMU_S_NOENT: 117 return -ENOENT; 118 case VIRTIO_IOMMU_S_FAULT: 119 return -EFAULT; 120 case VIRTIO_IOMMU_S_NOMEM: 121 return -ENOMEM; 122 case VIRTIO_IOMMU_S_IOERR: 123 case VIRTIO_IOMMU_S_DEVERR: 124 default: 125 return -EIO; 126 } 127 } 128 129 static void viommu_set_req_status(void *buf, size_t len, int status) 130 { 131 struct virtio_iommu_req_tail *tail = buf + len - sizeof(*tail); 132 133 tail->status = status; 134 } 135 136 static off_t viommu_get_write_desc_offset(struct viommu_dev *viommu, 137 struct virtio_iommu_req_head *req, 138 size_t len) 139 { 140 size_t tail_size = sizeof(struct virtio_iommu_req_tail); 141 142 if (req->type == VIRTIO_IOMMU_T_PROBE) 143 return len - viommu->probe_size - tail_size; 144 145 return len - tail_size; 146 } 147 148 /* 149 * __viommu_sync_req - Complete all in-flight requests 150 * 151 * Wait for all added requests to complete. When this function returns, all 152 * requests that were in-flight at the time of the call have completed. 153 */ 154 static int __viommu_sync_req(struct viommu_dev *viommu) 155 { 156 int ret = 0; 157 unsigned int len; 158 size_t write_len; 159 struct viommu_request *req; 160 struct virtqueue *vq = viommu->vqs[VIOMMU_REQUEST_VQ]; 161 162 assert_spin_locked(&viommu->request_lock); 163 164 virtqueue_kick(vq); 165 166 while (!list_empty(&viommu->requests)) { 167 len = 0; 168 req = virtqueue_get_buf(vq, &len); 169 if (!req) 170 continue; 171 172 if (!len) 173 viommu_set_req_status(req->buf, req->len, 174 VIRTIO_IOMMU_S_IOERR); 175 176 write_len = req->len - req->write_offset; 177 if (req->writeback && len == write_len) 178 memcpy(req->writeback, req->buf + req->write_offset, 179 write_len); 180 181 list_del(&req->list); 182 kfree(req); 183 } 184 185 return ret; 186 } 187 188 static int viommu_sync_req(struct viommu_dev *viommu) 189 { 190 int ret; 191 unsigned long flags; 192 193 spin_lock_irqsave(&viommu->request_lock, flags); 194 ret = __viommu_sync_req(viommu); 195 if (ret) 196 dev_dbg(viommu->dev, "could not sync requests (%d)\n", ret); 197 spin_unlock_irqrestore(&viommu->request_lock, flags); 198 199 return ret; 200 } 201 202 /* 203 * __viommu_add_request - Add one request to the queue 204 * @buf: pointer to the request buffer 205 * @len: length of the request buffer 206 * @writeback: copy data back to the buffer when the request completes. 207 * 208 * Add a request to the queue. Only synchronize the queue if it's already full. 209 * Otherwise don't kick the queue nor wait for requests to complete. 210 * 211 * When @writeback is true, data written by the device, including the request 212 * status, is copied into @buf after the request completes. This is unsafe if 213 * the caller allocates @buf on stack and drops the lock between add_req() and 214 * sync_req(). 215 * 216 * Return 0 if the request was successfully added to the queue. 217 */ 218 static int __viommu_add_req(struct viommu_dev *viommu, void *buf, size_t len, 219 bool writeback) 220 { 221 int ret; 222 off_t write_offset; 223 struct viommu_request *req; 224 struct scatterlist top_sg, bottom_sg; 225 struct scatterlist *sg[2] = { &top_sg, &bottom_sg }; 226 struct virtqueue *vq = viommu->vqs[VIOMMU_REQUEST_VQ]; 227 228 assert_spin_locked(&viommu->request_lock); 229 230 write_offset = viommu_get_write_desc_offset(viommu, buf, len); 231 if (write_offset <= 0) 232 return -EINVAL; 233 234 req = kzalloc(sizeof(*req) + len, GFP_ATOMIC); 235 if (!req) 236 return -ENOMEM; 237 238 req->len = len; 239 if (writeback) { 240 req->writeback = buf + write_offset; 241 req->write_offset = write_offset; 242 } 243 memcpy(&req->buf, buf, write_offset); 244 245 sg_init_one(&top_sg, req->buf, write_offset); 246 sg_init_one(&bottom_sg, req->buf + write_offset, len - write_offset); 247 248 ret = virtqueue_add_sgs(vq, sg, 1, 1, req, GFP_ATOMIC); 249 if (ret == -ENOSPC) { 250 /* If the queue is full, sync and retry */ 251 if (!__viommu_sync_req(viommu)) 252 ret = virtqueue_add_sgs(vq, sg, 1, 1, req, GFP_ATOMIC); 253 } 254 if (ret) 255 goto err_free; 256 257 list_add_tail(&req->list, &viommu->requests); 258 return 0; 259 260 err_free: 261 kfree(req); 262 return ret; 263 } 264 265 static int viommu_add_req(struct viommu_dev *viommu, void *buf, size_t len) 266 { 267 int ret; 268 unsigned long flags; 269 270 spin_lock_irqsave(&viommu->request_lock, flags); 271 ret = __viommu_add_req(viommu, buf, len, false); 272 if (ret) 273 dev_dbg(viommu->dev, "could not add request: %d\n", ret); 274 spin_unlock_irqrestore(&viommu->request_lock, flags); 275 276 return ret; 277 } 278 279 /* 280 * Send a request and wait for it to complete. Return the request status (as an 281 * errno) 282 */ 283 static int viommu_send_req_sync(struct viommu_dev *viommu, void *buf, 284 size_t len) 285 { 286 int ret; 287 unsigned long flags; 288 289 spin_lock_irqsave(&viommu->request_lock, flags); 290 291 ret = __viommu_add_req(viommu, buf, len, true); 292 if (ret) { 293 dev_dbg(viommu->dev, "could not add request (%d)\n", ret); 294 goto out_unlock; 295 } 296 297 ret = __viommu_sync_req(viommu); 298 if (ret) { 299 dev_dbg(viommu->dev, "could not sync requests (%d)\n", ret); 300 /* Fall-through (get the actual request status) */ 301 } 302 303 ret = viommu_get_req_errno(buf, len); 304 out_unlock: 305 spin_unlock_irqrestore(&viommu->request_lock, flags); 306 return ret; 307 } 308 309 /* 310 * viommu_add_mapping - add a mapping to the internal tree 311 * 312 * On success, return the new mapping. Otherwise return NULL. 313 */ 314 static int viommu_add_mapping(struct viommu_domain *vdomain, unsigned long iova, 315 phys_addr_t paddr, size_t size, u32 flags) 316 { 317 unsigned long irqflags; 318 struct viommu_mapping *mapping; 319 320 mapping = kzalloc(sizeof(*mapping), GFP_ATOMIC); 321 if (!mapping) 322 return -ENOMEM; 323 324 mapping->paddr = paddr; 325 mapping->iova.start = iova; 326 mapping->iova.last = iova + size - 1; 327 mapping->flags = flags; 328 329 spin_lock_irqsave(&vdomain->mappings_lock, irqflags); 330 interval_tree_insert(&mapping->iova, &vdomain->mappings); 331 spin_unlock_irqrestore(&vdomain->mappings_lock, irqflags); 332 333 return 0; 334 } 335 336 /* 337 * viommu_del_mappings - remove mappings from the internal tree 338 * 339 * @vdomain: the domain 340 * @iova: start of the range 341 * @size: size of the range. A size of 0 corresponds to the entire address 342 * space. 343 * 344 * On success, returns the number of unmapped bytes (>= size) 345 */ 346 static size_t viommu_del_mappings(struct viommu_domain *vdomain, 347 unsigned long iova, size_t size) 348 { 349 size_t unmapped = 0; 350 unsigned long flags; 351 unsigned long last = iova + size - 1; 352 struct viommu_mapping *mapping = NULL; 353 struct interval_tree_node *node, *next; 354 355 spin_lock_irqsave(&vdomain->mappings_lock, flags); 356 next = interval_tree_iter_first(&vdomain->mappings, iova, last); 357 while (next) { 358 node = next; 359 mapping = container_of(node, struct viommu_mapping, iova); 360 next = interval_tree_iter_next(node, iova, last); 361 362 /* Trying to split a mapping? */ 363 if (mapping->iova.start < iova) 364 break; 365 366 /* 367 * Virtio-iommu doesn't allow UNMAP to split a mapping created 368 * with a single MAP request, so remove the full mapping. 369 */ 370 unmapped += mapping->iova.last - mapping->iova.start + 1; 371 372 interval_tree_remove(node, &vdomain->mappings); 373 kfree(mapping); 374 } 375 spin_unlock_irqrestore(&vdomain->mappings_lock, flags); 376 377 return unmapped; 378 } 379 380 /* 381 * viommu_replay_mappings - re-send MAP requests 382 * 383 * When reattaching a domain that was previously detached from all endpoints, 384 * mappings were deleted from the device. Re-create the mappings available in 385 * the internal tree. 386 */ 387 static int viommu_replay_mappings(struct viommu_domain *vdomain) 388 { 389 int ret = 0; 390 unsigned long flags; 391 struct viommu_mapping *mapping; 392 struct interval_tree_node *node; 393 struct virtio_iommu_req_map map; 394 395 spin_lock_irqsave(&vdomain->mappings_lock, flags); 396 node = interval_tree_iter_first(&vdomain->mappings, 0, -1UL); 397 while (node) { 398 mapping = container_of(node, struct viommu_mapping, iova); 399 map = (struct virtio_iommu_req_map) { 400 .head.type = VIRTIO_IOMMU_T_MAP, 401 .domain = cpu_to_le32(vdomain->id), 402 .virt_start = cpu_to_le64(mapping->iova.start), 403 .virt_end = cpu_to_le64(mapping->iova.last), 404 .phys_start = cpu_to_le64(mapping->paddr), 405 .flags = cpu_to_le32(mapping->flags), 406 }; 407 408 ret = viommu_send_req_sync(vdomain->viommu, &map, sizeof(map)); 409 if (ret) 410 break; 411 412 node = interval_tree_iter_next(node, 0, -1UL); 413 } 414 spin_unlock_irqrestore(&vdomain->mappings_lock, flags); 415 416 return ret; 417 } 418 419 static int viommu_add_resv_mem(struct viommu_endpoint *vdev, 420 struct virtio_iommu_probe_resv_mem *mem, 421 size_t len) 422 { 423 size_t size; 424 u64 start64, end64; 425 phys_addr_t start, end; 426 struct iommu_resv_region *region = NULL; 427 unsigned long prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 428 429 start = start64 = le64_to_cpu(mem->start); 430 end = end64 = le64_to_cpu(mem->end); 431 size = end64 - start64 + 1; 432 433 /* Catch any overflow, including the unlikely end64 - start64 + 1 = 0 */ 434 if (start != start64 || end != end64 || size < end64 - start64) 435 return -EOVERFLOW; 436 437 if (len < sizeof(*mem)) 438 return -EINVAL; 439 440 switch (mem->subtype) { 441 default: 442 dev_warn(vdev->dev, "unknown resv mem subtype 0x%x\n", 443 mem->subtype); 444 /* Fall-through */ 445 case VIRTIO_IOMMU_RESV_MEM_T_RESERVED: 446 region = iommu_alloc_resv_region(start, size, 0, 447 IOMMU_RESV_RESERVED); 448 break; 449 case VIRTIO_IOMMU_RESV_MEM_T_MSI: 450 region = iommu_alloc_resv_region(start, size, prot, 451 IOMMU_RESV_MSI); 452 break; 453 } 454 if (!region) 455 return -ENOMEM; 456 457 list_add(&vdev->resv_regions, ®ion->list); 458 return 0; 459 } 460 461 static int viommu_probe_endpoint(struct viommu_dev *viommu, struct device *dev) 462 { 463 int ret; 464 u16 type, len; 465 size_t cur = 0; 466 size_t probe_len; 467 struct virtio_iommu_req_probe *probe; 468 struct virtio_iommu_probe_property *prop; 469 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 470 struct viommu_endpoint *vdev = fwspec->iommu_priv; 471 472 if (!fwspec->num_ids) 473 return -EINVAL; 474 475 probe_len = sizeof(*probe) + viommu->probe_size + 476 sizeof(struct virtio_iommu_req_tail); 477 probe = kzalloc(probe_len, GFP_KERNEL); 478 if (!probe) 479 return -ENOMEM; 480 481 probe->head.type = VIRTIO_IOMMU_T_PROBE; 482 /* 483 * For now, assume that properties of an endpoint that outputs multiple 484 * IDs are consistent. Only probe the first one. 485 */ 486 probe->endpoint = cpu_to_le32(fwspec->ids[0]); 487 488 ret = viommu_send_req_sync(viommu, probe, probe_len); 489 if (ret) 490 goto out_free; 491 492 prop = (void *)probe->properties; 493 type = le16_to_cpu(prop->type) & VIRTIO_IOMMU_PROBE_T_MASK; 494 495 while (type != VIRTIO_IOMMU_PROBE_T_NONE && 496 cur < viommu->probe_size) { 497 len = le16_to_cpu(prop->length) + sizeof(*prop); 498 499 switch (type) { 500 case VIRTIO_IOMMU_PROBE_T_RESV_MEM: 501 ret = viommu_add_resv_mem(vdev, (void *)prop, len); 502 break; 503 default: 504 dev_err(dev, "unknown viommu prop 0x%x\n", type); 505 } 506 507 if (ret) 508 dev_err(dev, "failed to parse viommu prop 0x%x\n", type); 509 510 cur += len; 511 if (cur >= viommu->probe_size) 512 break; 513 514 prop = (void *)probe->properties + cur; 515 type = le16_to_cpu(prop->type) & VIRTIO_IOMMU_PROBE_T_MASK; 516 } 517 518 out_free: 519 kfree(probe); 520 return ret; 521 } 522 523 static int viommu_fault_handler(struct viommu_dev *viommu, 524 struct virtio_iommu_fault *fault) 525 { 526 char *reason_str; 527 528 u8 reason = fault->reason; 529 u32 flags = le32_to_cpu(fault->flags); 530 u32 endpoint = le32_to_cpu(fault->endpoint); 531 u64 address = le64_to_cpu(fault->address); 532 533 switch (reason) { 534 case VIRTIO_IOMMU_FAULT_R_DOMAIN: 535 reason_str = "domain"; 536 break; 537 case VIRTIO_IOMMU_FAULT_R_MAPPING: 538 reason_str = "page"; 539 break; 540 case VIRTIO_IOMMU_FAULT_R_UNKNOWN: 541 default: 542 reason_str = "unknown"; 543 break; 544 } 545 546 /* TODO: find EP by ID and report_iommu_fault */ 547 if (flags & VIRTIO_IOMMU_FAULT_F_ADDRESS) 548 dev_err_ratelimited(viommu->dev, "%s fault from EP %u at %#llx [%s%s%s]\n", 549 reason_str, endpoint, address, 550 flags & VIRTIO_IOMMU_FAULT_F_READ ? "R" : "", 551 flags & VIRTIO_IOMMU_FAULT_F_WRITE ? "W" : "", 552 flags & VIRTIO_IOMMU_FAULT_F_EXEC ? "X" : ""); 553 else 554 dev_err_ratelimited(viommu->dev, "%s fault from EP %u\n", 555 reason_str, endpoint); 556 return 0; 557 } 558 559 static void viommu_event_handler(struct virtqueue *vq) 560 { 561 int ret; 562 unsigned int len; 563 struct scatterlist sg[1]; 564 struct viommu_event *evt; 565 struct viommu_dev *viommu = vq->vdev->priv; 566 567 while ((evt = virtqueue_get_buf(vq, &len)) != NULL) { 568 if (len > sizeof(*evt)) { 569 dev_err(viommu->dev, 570 "invalid event buffer (len %u != %zu)\n", 571 len, sizeof(*evt)); 572 } else if (!(evt->head & VIOMMU_FAULT_RESV_MASK)) { 573 viommu_fault_handler(viommu, &evt->fault); 574 } 575 576 sg_init_one(sg, evt, sizeof(*evt)); 577 ret = virtqueue_add_inbuf(vq, sg, 1, evt, GFP_ATOMIC); 578 if (ret) 579 dev_err(viommu->dev, "could not add event buffer\n"); 580 } 581 582 virtqueue_kick(vq); 583 } 584 585 /* IOMMU API */ 586 587 static struct iommu_domain *viommu_domain_alloc(unsigned type) 588 { 589 struct viommu_domain *vdomain; 590 591 if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA) 592 return NULL; 593 594 vdomain = kzalloc(sizeof(*vdomain), GFP_KERNEL); 595 if (!vdomain) 596 return NULL; 597 598 mutex_init(&vdomain->mutex); 599 spin_lock_init(&vdomain->mappings_lock); 600 vdomain->mappings = RB_ROOT_CACHED; 601 602 if (type == IOMMU_DOMAIN_DMA && 603 iommu_get_dma_cookie(&vdomain->domain)) { 604 kfree(vdomain); 605 return NULL; 606 } 607 608 return &vdomain->domain; 609 } 610 611 static int viommu_domain_finalise(struct viommu_dev *viommu, 612 struct iommu_domain *domain) 613 { 614 int ret; 615 struct viommu_domain *vdomain = to_viommu_domain(domain); 616 617 vdomain->viommu = viommu; 618 vdomain->map_flags = viommu->map_flags; 619 620 domain->pgsize_bitmap = viommu->pgsize_bitmap; 621 domain->geometry = viommu->geometry; 622 623 ret = ida_alloc_range(&viommu->domain_ids, viommu->first_domain, 624 viommu->last_domain, GFP_KERNEL); 625 if (ret >= 0) 626 vdomain->id = (unsigned int)ret; 627 628 return ret > 0 ? 0 : ret; 629 } 630 631 static void viommu_domain_free(struct iommu_domain *domain) 632 { 633 struct viommu_domain *vdomain = to_viommu_domain(domain); 634 635 iommu_put_dma_cookie(domain); 636 637 /* Free all remaining mappings (size 2^64) */ 638 viommu_del_mappings(vdomain, 0, 0); 639 640 if (vdomain->viommu) 641 ida_free(&vdomain->viommu->domain_ids, vdomain->id); 642 643 kfree(vdomain); 644 } 645 646 static int viommu_attach_dev(struct iommu_domain *domain, struct device *dev) 647 { 648 int i; 649 int ret = 0; 650 struct virtio_iommu_req_attach req; 651 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 652 struct viommu_endpoint *vdev = fwspec->iommu_priv; 653 struct viommu_domain *vdomain = to_viommu_domain(domain); 654 655 mutex_lock(&vdomain->mutex); 656 if (!vdomain->viommu) { 657 /* 658 * Properly initialize the domain now that we know which viommu 659 * owns it. 660 */ 661 ret = viommu_domain_finalise(vdev->viommu, domain); 662 } else if (vdomain->viommu != vdev->viommu) { 663 dev_err(dev, "cannot attach to foreign vIOMMU\n"); 664 ret = -EXDEV; 665 } 666 mutex_unlock(&vdomain->mutex); 667 668 if (ret) 669 return ret; 670 671 /* 672 * In the virtio-iommu device, when attaching the endpoint to a new 673 * domain, it is detached from the old one and, if as as a result the 674 * old domain isn't attached to any endpoint, all mappings are removed 675 * from the old domain and it is freed. 676 * 677 * In the driver the old domain still exists, and its mappings will be 678 * recreated if it gets reattached to an endpoint. Otherwise it will be 679 * freed explicitly. 680 * 681 * vdev->vdomain is protected by group->mutex 682 */ 683 if (vdev->vdomain) 684 vdev->vdomain->nr_endpoints--; 685 686 req = (struct virtio_iommu_req_attach) { 687 .head.type = VIRTIO_IOMMU_T_ATTACH, 688 .domain = cpu_to_le32(vdomain->id), 689 }; 690 691 for (i = 0; i < fwspec->num_ids; i++) { 692 req.endpoint = cpu_to_le32(fwspec->ids[i]); 693 694 ret = viommu_send_req_sync(vdomain->viommu, &req, sizeof(req)); 695 if (ret) 696 return ret; 697 } 698 699 if (!vdomain->nr_endpoints) { 700 /* 701 * This endpoint is the first to be attached to the domain. 702 * Replay existing mappings (e.g. SW MSI). 703 */ 704 ret = viommu_replay_mappings(vdomain); 705 if (ret) 706 return ret; 707 } 708 709 vdomain->nr_endpoints++; 710 vdev->vdomain = vdomain; 711 712 return 0; 713 } 714 715 static int viommu_map(struct iommu_domain *domain, unsigned long iova, 716 phys_addr_t paddr, size_t size, int prot) 717 { 718 int ret; 719 u32 flags; 720 struct virtio_iommu_req_map map; 721 struct viommu_domain *vdomain = to_viommu_domain(domain); 722 723 flags = (prot & IOMMU_READ ? VIRTIO_IOMMU_MAP_F_READ : 0) | 724 (prot & IOMMU_WRITE ? VIRTIO_IOMMU_MAP_F_WRITE : 0) | 725 (prot & IOMMU_MMIO ? VIRTIO_IOMMU_MAP_F_MMIO : 0); 726 727 if (flags & ~vdomain->map_flags) 728 return -EINVAL; 729 730 ret = viommu_add_mapping(vdomain, iova, paddr, size, flags); 731 if (ret) 732 return ret; 733 734 map = (struct virtio_iommu_req_map) { 735 .head.type = VIRTIO_IOMMU_T_MAP, 736 .domain = cpu_to_le32(vdomain->id), 737 .virt_start = cpu_to_le64(iova), 738 .phys_start = cpu_to_le64(paddr), 739 .virt_end = cpu_to_le64(iova + size - 1), 740 .flags = cpu_to_le32(flags), 741 }; 742 743 if (!vdomain->nr_endpoints) 744 return 0; 745 746 ret = viommu_send_req_sync(vdomain->viommu, &map, sizeof(map)); 747 if (ret) 748 viommu_del_mappings(vdomain, iova, size); 749 750 return ret; 751 } 752 753 static size_t viommu_unmap(struct iommu_domain *domain, unsigned long iova, 754 size_t size, struct iommu_iotlb_gather *gather) 755 { 756 int ret = 0; 757 size_t unmapped; 758 struct virtio_iommu_req_unmap unmap; 759 struct viommu_domain *vdomain = to_viommu_domain(domain); 760 761 unmapped = viommu_del_mappings(vdomain, iova, size); 762 if (unmapped < size) 763 return 0; 764 765 /* Device already removed all mappings after detach. */ 766 if (!vdomain->nr_endpoints) 767 return unmapped; 768 769 unmap = (struct virtio_iommu_req_unmap) { 770 .head.type = VIRTIO_IOMMU_T_UNMAP, 771 .domain = cpu_to_le32(vdomain->id), 772 .virt_start = cpu_to_le64(iova), 773 .virt_end = cpu_to_le64(iova + unmapped - 1), 774 }; 775 776 ret = viommu_add_req(vdomain->viommu, &unmap, sizeof(unmap)); 777 return ret ? 0 : unmapped; 778 } 779 780 static phys_addr_t viommu_iova_to_phys(struct iommu_domain *domain, 781 dma_addr_t iova) 782 { 783 u64 paddr = 0; 784 unsigned long flags; 785 struct viommu_mapping *mapping; 786 struct interval_tree_node *node; 787 struct viommu_domain *vdomain = to_viommu_domain(domain); 788 789 spin_lock_irqsave(&vdomain->mappings_lock, flags); 790 node = interval_tree_iter_first(&vdomain->mappings, iova, iova); 791 if (node) { 792 mapping = container_of(node, struct viommu_mapping, iova); 793 paddr = mapping->paddr + (iova - mapping->iova.start); 794 } 795 spin_unlock_irqrestore(&vdomain->mappings_lock, flags); 796 797 return paddr; 798 } 799 800 static void viommu_iotlb_sync(struct iommu_domain *domain, 801 struct iommu_iotlb_gather *gather) 802 { 803 struct viommu_domain *vdomain = to_viommu_domain(domain); 804 805 viommu_sync_req(vdomain->viommu); 806 } 807 808 static void viommu_get_resv_regions(struct device *dev, struct list_head *head) 809 { 810 struct iommu_resv_region *entry, *new_entry, *msi = NULL; 811 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 812 struct viommu_endpoint *vdev = fwspec->iommu_priv; 813 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 814 815 list_for_each_entry(entry, &vdev->resv_regions, list) { 816 if (entry->type == IOMMU_RESV_MSI) 817 msi = entry; 818 819 new_entry = kmemdup(entry, sizeof(*entry), GFP_KERNEL); 820 if (!new_entry) 821 return; 822 list_add_tail(&new_entry->list, head); 823 } 824 825 /* 826 * If the device didn't register any bypass MSI window, add a 827 * software-mapped region. 828 */ 829 if (!msi) { 830 msi = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH, 831 prot, IOMMU_RESV_SW_MSI); 832 if (!msi) 833 return; 834 835 list_add_tail(&msi->list, head); 836 } 837 838 iommu_dma_get_resv_regions(dev, head); 839 } 840 841 static void viommu_put_resv_regions(struct device *dev, struct list_head *head) 842 { 843 struct iommu_resv_region *entry, *next; 844 845 list_for_each_entry_safe(entry, next, head, list) 846 kfree(entry); 847 } 848 849 static struct iommu_ops viommu_ops; 850 static struct virtio_driver virtio_iommu_drv; 851 852 static int viommu_match_node(struct device *dev, const void *data) 853 { 854 return dev->parent->fwnode == data; 855 } 856 857 static struct viommu_dev *viommu_get_by_fwnode(struct fwnode_handle *fwnode) 858 { 859 struct device *dev = driver_find_device(&virtio_iommu_drv.driver, NULL, 860 fwnode, viommu_match_node); 861 put_device(dev); 862 863 return dev ? dev_to_virtio(dev)->priv : NULL; 864 } 865 866 static int viommu_add_device(struct device *dev) 867 { 868 int ret; 869 struct iommu_group *group; 870 struct viommu_endpoint *vdev; 871 struct viommu_dev *viommu = NULL; 872 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 873 874 if (!fwspec || fwspec->ops != &viommu_ops) 875 return -ENODEV; 876 877 viommu = viommu_get_by_fwnode(fwspec->iommu_fwnode); 878 if (!viommu) 879 return -ENODEV; 880 881 vdev = kzalloc(sizeof(*vdev), GFP_KERNEL); 882 if (!vdev) 883 return -ENOMEM; 884 885 vdev->dev = dev; 886 vdev->viommu = viommu; 887 INIT_LIST_HEAD(&vdev->resv_regions); 888 fwspec->iommu_priv = vdev; 889 890 if (viommu->probe_size) { 891 /* Get additional information for this endpoint */ 892 ret = viommu_probe_endpoint(viommu, dev); 893 if (ret) 894 goto err_free_dev; 895 } 896 897 ret = iommu_device_link(&viommu->iommu, dev); 898 if (ret) 899 goto err_free_dev; 900 901 /* 902 * Last step creates a default domain and attaches to it. Everything 903 * must be ready. 904 */ 905 group = iommu_group_get_for_dev(dev); 906 if (IS_ERR(group)) { 907 ret = PTR_ERR(group); 908 goto err_unlink_dev; 909 } 910 911 iommu_group_put(group); 912 913 return PTR_ERR_OR_ZERO(group); 914 915 err_unlink_dev: 916 iommu_device_unlink(&viommu->iommu, dev); 917 err_free_dev: 918 viommu_put_resv_regions(dev, &vdev->resv_regions); 919 kfree(vdev); 920 921 return ret; 922 } 923 924 static void viommu_remove_device(struct device *dev) 925 { 926 struct viommu_endpoint *vdev; 927 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 928 929 if (!fwspec || fwspec->ops != &viommu_ops) 930 return; 931 932 vdev = fwspec->iommu_priv; 933 934 iommu_group_remove_device(dev); 935 iommu_device_unlink(&vdev->viommu->iommu, dev); 936 viommu_put_resv_regions(dev, &vdev->resv_regions); 937 kfree(vdev); 938 } 939 940 static struct iommu_group *viommu_device_group(struct device *dev) 941 { 942 if (dev_is_pci(dev)) 943 return pci_device_group(dev); 944 else 945 return generic_device_group(dev); 946 } 947 948 static int viommu_of_xlate(struct device *dev, struct of_phandle_args *args) 949 { 950 return iommu_fwspec_add_ids(dev, args->args, 1); 951 } 952 953 static struct iommu_ops viommu_ops = { 954 .domain_alloc = viommu_domain_alloc, 955 .domain_free = viommu_domain_free, 956 .attach_dev = viommu_attach_dev, 957 .map = viommu_map, 958 .unmap = viommu_unmap, 959 .iova_to_phys = viommu_iova_to_phys, 960 .iotlb_sync = viommu_iotlb_sync, 961 .add_device = viommu_add_device, 962 .remove_device = viommu_remove_device, 963 .device_group = viommu_device_group, 964 .get_resv_regions = viommu_get_resv_regions, 965 .put_resv_regions = viommu_put_resv_regions, 966 .of_xlate = viommu_of_xlate, 967 }; 968 969 static int viommu_init_vqs(struct viommu_dev *viommu) 970 { 971 struct virtio_device *vdev = dev_to_virtio(viommu->dev); 972 const char *names[] = { "request", "event" }; 973 vq_callback_t *callbacks[] = { 974 NULL, /* No async requests */ 975 viommu_event_handler, 976 }; 977 978 return virtio_find_vqs(vdev, VIOMMU_NR_VQS, viommu->vqs, callbacks, 979 names, NULL); 980 } 981 982 static int viommu_fill_evtq(struct viommu_dev *viommu) 983 { 984 int i, ret; 985 struct scatterlist sg[1]; 986 struct viommu_event *evts; 987 struct virtqueue *vq = viommu->vqs[VIOMMU_EVENT_VQ]; 988 size_t nr_evts = vq->num_free; 989 990 viommu->evts = evts = devm_kmalloc_array(viommu->dev, nr_evts, 991 sizeof(*evts), GFP_KERNEL); 992 if (!evts) 993 return -ENOMEM; 994 995 for (i = 0; i < nr_evts; i++) { 996 sg_init_one(sg, &evts[i], sizeof(*evts)); 997 ret = virtqueue_add_inbuf(vq, sg, 1, &evts[i], GFP_KERNEL); 998 if (ret) 999 return ret; 1000 } 1001 1002 return 0; 1003 } 1004 1005 static int viommu_probe(struct virtio_device *vdev) 1006 { 1007 struct device *parent_dev = vdev->dev.parent; 1008 struct viommu_dev *viommu = NULL; 1009 struct device *dev = &vdev->dev; 1010 u64 input_start = 0; 1011 u64 input_end = -1UL; 1012 int ret; 1013 1014 if (!virtio_has_feature(vdev, VIRTIO_F_VERSION_1) || 1015 !virtio_has_feature(vdev, VIRTIO_IOMMU_F_MAP_UNMAP)) 1016 return -ENODEV; 1017 1018 viommu = devm_kzalloc(dev, sizeof(*viommu), GFP_KERNEL); 1019 if (!viommu) 1020 return -ENOMEM; 1021 1022 spin_lock_init(&viommu->request_lock); 1023 ida_init(&viommu->domain_ids); 1024 viommu->dev = dev; 1025 viommu->vdev = vdev; 1026 INIT_LIST_HEAD(&viommu->requests); 1027 1028 ret = viommu_init_vqs(viommu); 1029 if (ret) 1030 return ret; 1031 1032 virtio_cread(vdev, struct virtio_iommu_config, page_size_mask, 1033 &viommu->pgsize_bitmap); 1034 1035 if (!viommu->pgsize_bitmap) { 1036 ret = -EINVAL; 1037 goto err_free_vqs; 1038 } 1039 1040 viommu->map_flags = VIRTIO_IOMMU_MAP_F_READ | VIRTIO_IOMMU_MAP_F_WRITE; 1041 viommu->last_domain = ~0U; 1042 1043 /* Optional features */ 1044 virtio_cread_feature(vdev, VIRTIO_IOMMU_F_INPUT_RANGE, 1045 struct virtio_iommu_config, input_range.start, 1046 &input_start); 1047 1048 virtio_cread_feature(vdev, VIRTIO_IOMMU_F_INPUT_RANGE, 1049 struct virtio_iommu_config, input_range.end, 1050 &input_end); 1051 1052 virtio_cread_feature(vdev, VIRTIO_IOMMU_F_DOMAIN_RANGE, 1053 struct virtio_iommu_config, domain_range.start, 1054 &viommu->first_domain); 1055 1056 virtio_cread_feature(vdev, VIRTIO_IOMMU_F_DOMAIN_RANGE, 1057 struct virtio_iommu_config, domain_range.end, 1058 &viommu->last_domain); 1059 1060 virtio_cread_feature(vdev, VIRTIO_IOMMU_F_PROBE, 1061 struct virtio_iommu_config, probe_size, 1062 &viommu->probe_size); 1063 1064 viommu->geometry = (struct iommu_domain_geometry) { 1065 .aperture_start = input_start, 1066 .aperture_end = input_end, 1067 .force_aperture = true, 1068 }; 1069 1070 if (virtio_has_feature(vdev, VIRTIO_IOMMU_F_MMIO)) 1071 viommu->map_flags |= VIRTIO_IOMMU_MAP_F_MMIO; 1072 1073 viommu_ops.pgsize_bitmap = viommu->pgsize_bitmap; 1074 1075 virtio_device_ready(vdev); 1076 1077 /* Populate the event queue with buffers */ 1078 ret = viommu_fill_evtq(viommu); 1079 if (ret) 1080 goto err_free_vqs; 1081 1082 ret = iommu_device_sysfs_add(&viommu->iommu, dev, NULL, "%s", 1083 virtio_bus_name(vdev)); 1084 if (ret) 1085 goto err_free_vqs; 1086 1087 iommu_device_set_ops(&viommu->iommu, &viommu_ops); 1088 iommu_device_set_fwnode(&viommu->iommu, parent_dev->fwnode); 1089 1090 iommu_device_register(&viommu->iommu); 1091 1092 #ifdef CONFIG_PCI 1093 if (pci_bus_type.iommu_ops != &viommu_ops) { 1094 pci_request_acs(); 1095 ret = bus_set_iommu(&pci_bus_type, &viommu_ops); 1096 if (ret) 1097 goto err_unregister; 1098 } 1099 #endif 1100 #ifdef CONFIG_ARM_AMBA 1101 if (amba_bustype.iommu_ops != &viommu_ops) { 1102 ret = bus_set_iommu(&amba_bustype, &viommu_ops); 1103 if (ret) 1104 goto err_unregister; 1105 } 1106 #endif 1107 if (platform_bus_type.iommu_ops != &viommu_ops) { 1108 ret = bus_set_iommu(&platform_bus_type, &viommu_ops); 1109 if (ret) 1110 goto err_unregister; 1111 } 1112 1113 vdev->priv = viommu; 1114 1115 dev_info(dev, "input address: %u bits\n", 1116 order_base_2(viommu->geometry.aperture_end)); 1117 dev_info(dev, "page mask: %#llx\n", viommu->pgsize_bitmap); 1118 1119 return 0; 1120 1121 err_unregister: 1122 iommu_device_sysfs_remove(&viommu->iommu); 1123 iommu_device_unregister(&viommu->iommu); 1124 err_free_vqs: 1125 vdev->config->del_vqs(vdev); 1126 1127 return ret; 1128 } 1129 1130 static void viommu_remove(struct virtio_device *vdev) 1131 { 1132 struct viommu_dev *viommu = vdev->priv; 1133 1134 iommu_device_sysfs_remove(&viommu->iommu); 1135 iommu_device_unregister(&viommu->iommu); 1136 1137 /* Stop all virtqueues */ 1138 vdev->config->reset(vdev); 1139 vdev->config->del_vqs(vdev); 1140 1141 dev_info(&vdev->dev, "device removed\n"); 1142 } 1143 1144 static void viommu_config_changed(struct virtio_device *vdev) 1145 { 1146 dev_warn(&vdev->dev, "config changed\n"); 1147 } 1148 1149 static unsigned int features[] = { 1150 VIRTIO_IOMMU_F_MAP_UNMAP, 1151 VIRTIO_IOMMU_F_INPUT_RANGE, 1152 VIRTIO_IOMMU_F_DOMAIN_RANGE, 1153 VIRTIO_IOMMU_F_PROBE, 1154 VIRTIO_IOMMU_F_MMIO, 1155 }; 1156 1157 static struct virtio_device_id id_table[] = { 1158 { VIRTIO_ID_IOMMU, VIRTIO_DEV_ANY_ID }, 1159 { 0 }, 1160 }; 1161 1162 static struct virtio_driver virtio_iommu_drv = { 1163 .driver.name = KBUILD_MODNAME, 1164 .driver.owner = THIS_MODULE, 1165 .id_table = id_table, 1166 .feature_table = features, 1167 .feature_table_size = ARRAY_SIZE(features), 1168 .probe = viommu_probe, 1169 .remove = viommu_remove, 1170 .config_changed = viommu_config_changed, 1171 }; 1172 1173 module_virtio_driver(virtio_iommu_drv); 1174 1175 MODULE_DESCRIPTION("Virtio IOMMU driver"); 1176 MODULE_AUTHOR("Jean-Philippe Brucker <jean-philippe.brucker@arm.com>"); 1177 MODULE_LICENSE("GPL v2"); 1178