1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Virtio driver for the paravirtualized IOMMU 4 * 5 * Copyright (C) 2019 Arm Limited 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/amba/bus.h> 11 #include <linux/delay.h> 12 #include <linux/dma-iommu.h> 13 #include <linux/freezer.h> 14 #include <linux/interval_tree.h> 15 #include <linux/iommu.h> 16 #include <linux/module.h> 17 #include <linux/of_iommu.h> 18 #include <linux/of_platform.h> 19 #include <linux/pci.h> 20 #include <linux/platform_device.h> 21 #include <linux/virtio.h> 22 #include <linux/virtio_config.h> 23 #include <linux/virtio_ids.h> 24 #include <linux/wait.h> 25 26 #include <uapi/linux/virtio_iommu.h> 27 28 #define MSI_IOVA_BASE 0x8000000 29 #define MSI_IOVA_LENGTH 0x100000 30 31 #define VIOMMU_REQUEST_VQ 0 32 #define VIOMMU_EVENT_VQ 1 33 #define VIOMMU_NR_VQS 2 34 35 struct viommu_dev { 36 struct iommu_device iommu; 37 struct device *dev; 38 struct virtio_device *vdev; 39 40 struct ida domain_ids; 41 42 struct virtqueue *vqs[VIOMMU_NR_VQS]; 43 spinlock_t request_lock; 44 struct list_head requests; 45 void *evts; 46 47 /* Device configuration */ 48 struct iommu_domain_geometry geometry; 49 u64 pgsize_bitmap; 50 u32 first_domain; 51 u32 last_domain; 52 /* Supported MAP flags */ 53 u32 map_flags; 54 u32 probe_size; 55 }; 56 57 struct viommu_mapping { 58 phys_addr_t paddr; 59 struct interval_tree_node iova; 60 u32 flags; 61 }; 62 63 struct viommu_domain { 64 struct iommu_domain domain; 65 struct viommu_dev *viommu; 66 struct mutex mutex; /* protects viommu pointer */ 67 unsigned int id; 68 u32 map_flags; 69 70 spinlock_t mappings_lock; 71 struct rb_root_cached mappings; 72 73 unsigned long nr_endpoints; 74 }; 75 76 struct viommu_endpoint { 77 struct device *dev; 78 struct viommu_dev *viommu; 79 struct viommu_domain *vdomain; 80 struct list_head resv_regions; 81 }; 82 83 struct viommu_request { 84 struct list_head list; 85 void *writeback; 86 unsigned int write_offset; 87 unsigned int len; 88 char buf[]; 89 }; 90 91 #define VIOMMU_FAULT_RESV_MASK 0xffffff00 92 93 struct viommu_event { 94 union { 95 u32 head; 96 struct virtio_iommu_fault fault; 97 }; 98 }; 99 100 #define to_viommu_domain(domain) \ 101 container_of(domain, struct viommu_domain, domain) 102 103 static int viommu_get_req_errno(void *buf, size_t len) 104 { 105 struct virtio_iommu_req_tail *tail = buf + len - sizeof(*tail); 106 107 switch (tail->status) { 108 case VIRTIO_IOMMU_S_OK: 109 return 0; 110 case VIRTIO_IOMMU_S_UNSUPP: 111 return -ENOSYS; 112 case VIRTIO_IOMMU_S_INVAL: 113 return -EINVAL; 114 case VIRTIO_IOMMU_S_RANGE: 115 return -ERANGE; 116 case VIRTIO_IOMMU_S_NOENT: 117 return -ENOENT; 118 case VIRTIO_IOMMU_S_FAULT: 119 return -EFAULT; 120 case VIRTIO_IOMMU_S_NOMEM: 121 return -ENOMEM; 122 case VIRTIO_IOMMU_S_IOERR: 123 case VIRTIO_IOMMU_S_DEVERR: 124 default: 125 return -EIO; 126 } 127 } 128 129 static void viommu_set_req_status(void *buf, size_t len, int status) 130 { 131 struct virtio_iommu_req_tail *tail = buf + len - sizeof(*tail); 132 133 tail->status = status; 134 } 135 136 static off_t viommu_get_write_desc_offset(struct viommu_dev *viommu, 137 struct virtio_iommu_req_head *req, 138 size_t len) 139 { 140 size_t tail_size = sizeof(struct virtio_iommu_req_tail); 141 142 if (req->type == VIRTIO_IOMMU_T_PROBE) 143 return len - viommu->probe_size - tail_size; 144 145 return len - tail_size; 146 } 147 148 /* 149 * __viommu_sync_req - Complete all in-flight requests 150 * 151 * Wait for all added requests to complete. When this function returns, all 152 * requests that were in-flight at the time of the call have completed. 153 */ 154 static int __viommu_sync_req(struct viommu_dev *viommu) 155 { 156 unsigned int len; 157 size_t write_len; 158 struct viommu_request *req; 159 struct virtqueue *vq = viommu->vqs[VIOMMU_REQUEST_VQ]; 160 161 assert_spin_locked(&viommu->request_lock); 162 163 virtqueue_kick(vq); 164 165 while (!list_empty(&viommu->requests)) { 166 len = 0; 167 req = virtqueue_get_buf(vq, &len); 168 if (!req) 169 continue; 170 171 if (!len) 172 viommu_set_req_status(req->buf, req->len, 173 VIRTIO_IOMMU_S_IOERR); 174 175 write_len = req->len - req->write_offset; 176 if (req->writeback && len == write_len) 177 memcpy(req->writeback, req->buf + req->write_offset, 178 write_len); 179 180 list_del(&req->list); 181 kfree(req); 182 } 183 184 return 0; 185 } 186 187 static int viommu_sync_req(struct viommu_dev *viommu) 188 { 189 int ret; 190 unsigned long flags; 191 192 spin_lock_irqsave(&viommu->request_lock, flags); 193 ret = __viommu_sync_req(viommu); 194 if (ret) 195 dev_dbg(viommu->dev, "could not sync requests (%d)\n", ret); 196 spin_unlock_irqrestore(&viommu->request_lock, flags); 197 198 return ret; 199 } 200 201 /* 202 * __viommu_add_request - Add one request to the queue 203 * @buf: pointer to the request buffer 204 * @len: length of the request buffer 205 * @writeback: copy data back to the buffer when the request completes. 206 * 207 * Add a request to the queue. Only synchronize the queue if it's already full. 208 * Otherwise don't kick the queue nor wait for requests to complete. 209 * 210 * When @writeback is true, data written by the device, including the request 211 * status, is copied into @buf after the request completes. This is unsafe if 212 * the caller allocates @buf on stack and drops the lock between add_req() and 213 * sync_req(). 214 * 215 * Return 0 if the request was successfully added to the queue. 216 */ 217 static int __viommu_add_req(struct viommu_dev *viommu, void *buf, size_t len, 218 bool writeback) 219 { 220 int ret; 221 off_t write_offset; 222 struct viommu_request *req; 223 struct scatterlist top_sg, bottom_sg; 224 struct scatterlist *sg[2] = { &top_sg, &bottom_sg }; 225 struct virtqueue *vq = viommu->vqs[VIOMMU_REQUEST_VQ]; 226 227 assert_spin_locked(&viommu->request_lock); 228 229 write_offset = viommu_get_write_desc_offset(viommu, buf, len); 230 if (write_offset <= 0) 231 return -EINVAL; 232 233 req = kzalloc(sizeof(*req) + len, GFP_ATOMIC); 234 if (!req) 235 return -ENOMEM; 236 237 req->len = len; 238 if (writeback) { 239 req->writeback = buf + write_offset; 240 req->write_offset = write_offset; 241 } 242 memcpy(&req->buf, buf, write_offset); 243 244 sg_init_one(&top_sg, req->buf, write_offset); 245 sg_init_one(&bottom_sg, req->buf + write_offset, len - write_offset); 246 247 ret = virtqueue_add_sgs(vq, sg, 1, 1, req, GFP_ATOMIC); 248 if (ret == -ENOSPC) { 249 /* If the queue is full, sync and retry */ 250 if (!__viommu_sync_req(viommu)) 251 ret = virtqueue_add_sgs(vq, sg, 1, 1, req, GFP_ATOMIC); 252 } 253 if (ret) 254 goto err_free; 255 256 list_add_tail(&req->list, &viommu->requests); 257 return 0; 258 259 err_free: 260 kfree(req); 261 return ret; 262 } 263 264 static int viommu_add_req(struct viommu_dev *viommu, void *buf, size_t len) 265 { 266 int ret; 267 unsigned long flags; 268 269 spin_lock_irqsave(&viommu->request_lock, flags); 270 ret = __viommu_add_req(viommu, buf, len, false); 271 if (ret) 272 dev_dbg(viommu->dev, "could not add request: %d\n", ret); 273 spin_unlock_irqrestore(&viommu->request_lock, flags); 274 275 return ret; 276 } 277 278 /* 279 * Send a request and wait for it to complete. Return the request status (as an 280 * errno) 281 */ 282 static int viommu_send_req_sync(struct viommu_dev *viommu, void *buf, 283 size_t len) 284 { 285 int ret; 286 unsigned long flags; 287 288 spin_lock_irqsave(&viommu->request_lock, flags); 289 290 ret = __viommu_add_req(viommu, buf, len, true); 291 if (ret) { 292 dev_dbg(viommu->dev, "could not add request (%d)\n", ret); 293 goto out_unlock; 294 } 295 296 ret = __viommu_sync_req(viommu); 297 if (ret) { 298 dev_dbg(viommu->dev, "could not sync requests (%d)\n", ret); 299 /* Fall-through (get the actual request status) */ 300 } 301 302 ret = viommu_get_req_errno(buf, len); 303 out_unlock: 304 spin_unlock_irqrestore(&viommu->request_lock, flags); 305 return ret; 306 } 307 308 /* 309 * viommu_add_mapping - add a mapping to the internal tree 310 * 311 * On success, return the new mapping. Otherwise return NULL. 312 */ 313 static int viommu_add_mapping(struct viommu_domain *vdomain, unsigned long iova, 314 phys_addr_t paddr, size_t size, u32 flags) 315 { 316 unsigned long irqflags; 317 struct viommu_mapping *mapping; 318 319 mapping = kzalloc(sizeof(*mapping), GFP_ATOMIC); 320 if (!mapping) 321 return -ENOMEM; 322 323 mapping->paddr = paddr; 324 mapping->iova.start = iova; 325 mapping->iova.last = iova + size - 1; 326 mapping->flags = flags; 327 328 spin_lock_irqsave(&vdomain->mappings_lock, irqflags); 329 interval_tree_insert(&mapping->iova, &vdomain->mappings); 330 spin_unlock_irqrestore(&vdomain->mappings_lock, irqflags); 331 332 return 0; 333 } 334 335 /* 336 * viommu_del_mappings - remove mappings from the internal tree 337 * 338 * @vdomain: the domain 339 * @iova: start of the range 340 * @size: size of the range. A size of 0 corresponds to the entire address 341 * space. 342 * 343 * On success, returns the number of unmapped bytes (>= size) 344 */ 345 static size_t viommu_del_mappings(struct viommu_domain *vdomain, 346 unsigned long iova, size_t size) 347 { 348 size_t unmapped = 0; 349 unsigned long flags; 350 unsigned long last = iova + size - 1; 351 struct viommu_mapping *mapping = NULL; 352 struct interval_tree_node *node, *next; 353 354 spin_lock_irqsave(&vdomain->mappings_lock, flags); 355 next = interval_tree_iter_first(&vdomain->mappings, iova, last); 356 while (next) { 357 node = next; 358 mapping = container_of(node, struct viommu_mapping, iova); 359 next = interval_tree_iter_next(node, iova, last); 360 361 /* Trying to split a mapping? */ 362 if (mapping->iova.start < iova) 363 break; 364 365 /* 366 * Virtio-iommu doesn't allow UNMAP to split a mapping created 367 * with a single MAP request, so remove the full mapping. 368 */ 369 unmapped += mapping->iova.last - mapping->iova.start + 1; 370 371 interval_tree_remove(node, &vdomain->mappings); 372 kfree(mapping); 373 } 374 spin_unlock_irqrestore(&vdomain->mappings_lock, flags); 375 376 return unmapped; 377 } 378 379 /* 380 * viommu_replay_mappings - re-send MAP requests 381 * 382 * When reattaching a domain that was previously detached from all endpoints, 383 * mappings were deleted from the device. Re-create the mappings available in 384 * the internal tree. 385 */ 386 static int viommu_replay_mappings(struct viommu_domain *vdomain) 387 { 388 int ret = 0; 389 unsigned long flags; 390 struct viommu_mapping *mapping; 391 struct interval_tree_node *node; 392 struct virtio_iommu_req_map map; 393 394 spin_lock_irqsave(&vdomain->mappings_lock, flags); 395 node = interval_tree_iter_first(&vdomain->mappings, 0, -1UL); 396 while (node) { 397 mapping = container_of(node, struct viommu_mapping, iova); 398 map = (struct virtio_iommu_req_map) { 399 .head.type = VIRTIO_IOMMU_T_MAP, 400 .domain = cpu_to_le32(vdomain->id), 401 .virt_start = cpu_to_le64(mapping->iova.start), 402 .virt_end = cpu_to_le64(mapping->iova.last), 403 .phys_start = cpu_to_le64(mapping->paddr), 404 .flags = cpu_to_le32(mapping->flags), 405 }; 406 407 ret = viommu_send_req_sync(vdomain->viommu, &map, sizeof(map)); 408 if (ret) 409 break; 410 411 node = interval_tree_iter_next(node, 0, -1UL); 412 } 413 spin_unlock_irqrestore(&vdomain->mappings_lock, flags); 414 415 return ret; 416 } 417 418 static int viommu_add_resv_mem(struct viommu_endpoint *vdev, 419 struct virtio_iommu_probe_resv_mem *mem, 420 size_t len) 421 { 422 size_t size; 423 u64 start64, end64; 424 phys_addr_t start, end; 425 struct iommu_resv_region *region = NULL; 426 unsigned long prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 427 428 start = start64 = le64_to_cpu(mem->start); 429 end = end64 = le64_to_cpu(mem->end); 430 size = end64 - start64 + 1; 431 432 /* Catch any overflow, including the unlikely end64 - start64 + 1 = 0 */ 433 if (start != start64 || end != end64 || size < end64 - start64) 434 return -EOVERFLOW; 435 436 if (len < sizeof(*mem)) 437 return -EINVAL; 438 439 switch (mem->subtype) { 440 default: 441 dev_warn(vdev->dev, "unknown resv mem subtype 0x%x\n", 442 mem->subtype); 443 /* Fall-through */ 444 case VIRTIO_IOMMU_RESV_MEM_T_RESERVED: 445 region = iommu_alloc_resv_region(start, size, 0, 446 IOMMU_RESV_RESERVED); 447 break; 448 case VIRTIO_IOMMU_RESV_MEM_T_MSI: 449 region = iommu_alloc_resv_region(start, size, prot, 450 IOMMU_RESV_MSI); 451 break; 452 } 453 if (!region) 454 return -ENOMEM; 455 456 list_add(&vdev->resv_regions, ®ion->list); 457 return 0; 458 } 459 460 static int viommu_probe_endpoint(struct viommu_dev *viommu, struct device *dev) 461 { 462 int ret; 463 u16 type, len; 464 size_t cur = 0; 465 size_t probe_len; 466 struct virtio_iommu_req_probe *probe; 467 struct virtio_iommu_probe_property *prop; 468 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 469 struct viommu_endpoint *vdev = fwspec->iommu_priv; 470 471 if (!fwspec->num_ids) 472 return -EINVAL; 473 474 probe_len = sizeof(*probe) + viommu->probe_size + 475 sizeof(struct virtio_iommu_req_tail); 476 probe = kzalloc(probe_len, GFP_KERNEL); 477 if (!probe) 478 return -ENOMEM; 479 480 probe->head.type = VIRTIO_IOMMU_T_PROBE; 481 /* 482 * For now, assume that properties of an endpoint that outputs multiple 483 * IDs are consistent. Only probe the first one. 484 */ 485 probe->endpoint = cpu_to_le32(fwspec->ids[0]); 486 487 ret = viommu_send_req_sync(viommu, probe, probe_len); 488 if (ret) 489 goto out_free; 490 491 prop = (void *)probe->properties; 492 type = le16_to_cpu(prop->type) & VIRTIO_IOMMU_PROBE_T_MASK; 493 494 while (type != VIRTIO_IOMMU_PROBE_T_NONE && 495 cur < viommu->probe_size) { 496 len = le16_to_cpu(prop->length) + sizeof(*prop); 497 498 switch (type) { 499 case VIRTIO_IOMMU_PROBE_T_RESV_MEM: 500 ret = viommu_add_resv_mem(vdev, (void *)prop, len); 501 break; 502 default: 503 dev_err(dev, "unknown viommu prop 0x%x\n", type); 504 } 505 506 if (ret) 507 dev_err(dev, "failed to parse viommu prop 0x%x\n", type); 508 509 cur += len; 510 if (cur >= viommu->probe_size) 511 break; 512 513 prop = (void *)probe->properties + cur; 514 type = le16_to_cpu(prop->type) & VIRTIO_IOMMU_PROBE_T_MASK; 515 } 516 517 out_free: 518 kfree(probe); 519 return ret; 520 } 521 522 static int viommu_fault_handler(struct viommu_dev *viommu, 523 struct virtio_iommu_fault *fault) 524 { 525 char *reason_str; 526 527 u8 reason = fault->reason; 528 u32 flags = le32_to_cpu(fault->flags); 529 u32 endpoint = le32_to_cpu(fault->endpoint); 530 u64 address = le64_to_cpu(fault->address); 531 532 switch (reason) { 533 case VIRTIO_IOMMU_FAULT_R_DOMAIN: 534 reason_str = "domain"; 535 break; 536 case VIRTIO_IOMMU_FAULT_R_MAPPING: 537 reason_str = "page"; 538 break; 539 case VIRTIO_IOMMU_FAULT_R_UNKNOWN: 540 default: 541 reason_str = "unknown"; 542 break; 543 } 544 545 /* TODO: find EP by ID and report_iommu_fault */ 546 if (flags & VIRTIO_IOMMU_FAULT_F_ADDRESS) 547 dev_err_ratelimited(viommu->dev, "%s fault from EP %u at %#llx [%s%s%s]\n", 548 reason_str, endpoint, address, 549 flags & VIRTIO_IOMMU_FAULT_F_READ ? "R" : "", 550 flags & VIRTIO_IOMMU_FAULT_F_WRITE ? "W" : "", 551 flags & VIRTIO_IOMMU_FAULT_F_EXEC ? "X" : ""); 552 else 553 dev_err_ratelimited(viommu->dev, "%s fault from EP %u\n", 554 reason_str, endpoint); 555 return 0; 556 } 557 558 static void viommu_event_handler(struct virtqueue *vq) 559 { 560 int ret; 561 unsigned int len; 562 struct scatterlist sg[1]; 563 struct viommu_event *evt; 564 struct viommu_dev *viommu = vq->vdev->priv; 565 566 while ((evt = virtqueue_get_buf(vq, &len)) != NULL) { 567 if (len > sizeof(*evt)) { 568 dev_err(viommu->dev, 569 "invalid event buffer (len %u != %zu)\n", 570 len, sizeof(*evt)); 571 } else if (!(evt->head & VIOMMU_FAULT_RESV_MASK)) { 572 viommu_fault_handler(viommu, &evt->fault); 573 } 574 575 sg_init_one(sg, evt, sizeof(*evt)); 576 ret = virtqueue_add_inbuf(vq, sg, 1, evt, GFP_ATOMIC); 577 if (ret) 578 dev_err(viommu->dev, "could not add event buffer\n"); 579 } 580 581 virtqueue_kick(vq); 582 } 583 584 /* IOMMU API */ 585 586 static struct iommu_domain *viommu_domain_alloc(unsigned type) 587 { 588 struct viommu_domain *vdomain; 589 590 if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA) 591 return NULL; 592 593 vdomain = kzalloc(sizeof(*vdomain), GFP_KERNEL); 594 if (!vdomain) 595 return NULL; 596 597 mutex_init(&vdomain->mutex); 598 spin_lock_init(&vdomain->mappings_lock); 599 vdomain->mappings = RB_ROOT_CACHED; 600 601 if (type == IOMMU_DOMAIN_DMA && 602 iommu_get_dma_cookie(&vdomain->domain)) { 603 kfree(vdomain); 604 return NULL; 605 } 606 607 return &vdomain->domain; 608 } 609 610 static int viommu_domain_finalise(struct viommu_dev *viommu, 611 struct iommu_domain *domain) 612 { 613 int ret; 614 struct viommu_domain *vdomain = to_viommu_domain(domain); 615 616 vdomain->viommu = viommu; 617 vdomain->map_flags = viommu->map_flags; 618 619 domain->pgsize_bitmap = viommu->pgsize_bitmap; 620 domain->geometry = viommu->geometry; 621 622 ret = ida_alloc_range(&viommu->domain_ids, viommu->first_domain, 623 viommu->last_domain, GFP_KERNEL); 624 if (ret >= 0) 625 vdomain->id = (unsigned int)ret; 626 627 return ret > 0 ? 0 : ret; 628 } 629 630 static void viommu_domain_free(struct iommu_domain *domain) 631 { 632 struct viommu_domain *vdomain = to_viommu_domain(domain); 633 634 iommu_put_dma_cookie(domain); 635 636 /* Free all remaining mappings (size 2^64) */ 637 viommu_del_mappings(vdomain, 0, 0); 638 639 if (vdomain->viommu) 640 ida_free(&vdomain->viommu->domain_ids, vdomain->id); 641 642 kfree(vdomain); 643 } 644 645 static int viommu_attach_dev(struct iommu_domain *domain, struct device *dev) 646 { 647 int i; 648 int ret = 0; 649 struct virtio_iommu_req_attach req; 650 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 651 struct viommu_endpoint *vdev = fwspec->iommu_priv; 652 struct viommu_domain *vdomain = to_viommu_domain(domain); 653 654 mutex_lock(&vdomain->mutex); 655 if (!vdomain->viommu) { 656 /* 657 * Properly initialize the domain now that we know which viommu 658 * owns it. 659 */ 660 ret = viommu_domain_finalise(vdev->viommu, domain); 661 } else if (vdomain->viommu != vdev->viommu) { 662 dev_err(dev, "cannot attach to foreign vIOMMU\n"); 663 ret = -EXDEV; 664 } 665 mutex_unlock(&vdomain->mutex); 666 667 if (ret) 668 return ret; 669 670 /* 671 * In the virtio-iommu device, when attaching the endpoint to a new 672 * domain, it is detached from the old one and, if as as a result the 673 * old domain isn't attached to any endpoint, all mappings are removed 674 * from the old domain and it is freed. 675 * 676 * In the driver the old domain still exists, and its mappings will be 677 * recreated if it gets reattached to an endpoint. Otherwise it will be 678 * freed explicitly. 679 * 680 * vdev->vdomain is protected by group->mutex 681 */ 682 if (vdev->vdomain) 683 vdev->vdomain->nr_endpoints--; 684 685 req = (struct virtio_iommu_req_attach) { 686 .head.type = VIRTIO_IOMMU_T_ATTACH, 687 .domain = cpu_to_le32(vdomain->id), 688 }; 689 690 for (i = 0; i < fwspec->num_ids; i++) { 691 req.endpoint = cpu_to_le32(fwspec->ids[i]); 692 693 ret = viommu_send_req_sync(vdomain->viommu, &req, sizeof(req)); 694 if (ret) 695 return ret; 696 } 697 698 if (!vdomain->nr_endpoints) { 699 /* 700 * This endpoint is the first to be attached to the domain. 701 * Replay existing mappings (e.g. SW MSI). 702 */ 703 ret = viommu_replay_mappings(vdomain); 704 if (ret) 705 return ret; 706 } 707 708 vdomain->nr_endpoints++; 709 vdev->vdomain = vdomain; 710 711 return 0; 712 } 713 714 static int viommu_map(struct iommu_domain *domain, unsigned long iova, 715 phys_addr_t paddr, size_t size, int prot, gfp_t gfp) 716 { 717 int ret; 718 u32 flags; 719 struct virtio_iommu_req_map map; 720 struct viommu_domain *vdomain = to_viommu_domain(domain); 721 722 flags = (prot & IOMMU_READ ? VIRTIO_IOMMU_MAP_F_READ : 0) | 723 (prot & IOMMU_WRITE ? VIRTIO_IOMMU_MAP_F_WRITE : 0) | 724 (prot & IOMMU_MMIO ? VIRTIO_IOMMU_MAP_F_MMIO : 0); 725 726 if (flags & ~vdomain->map_flags) 727 return -EINVAL; 728 729 ret = viommu_add_mapping(vdomain, iova, paddr, size, flags); 730 if (ret) 731 return ret; 732 733 map = (struct virtio_iommu_req_map) { 734 .head.type = VIRTIO_IOMMU_T_MAP, 735 .domain = cpu_to_le32(vdomain->id), 736 .virt_start = cpu_to_le64(iova), 737 .phys_start = cpu_to_le64(paddr), 738 .virt_end = cpu_to_le64(iova + size - 1), 739 .flags = cpu_to_le32(flags), 740 }; 741 742 if (!vdomain->nr_endpoints) 743 return 0; 744 745 ret = viommu_send_req_sync(vdomain->viommu, &map, sizeof(map)); 746 if (ret) 747 viommu_del_mappings(vdomain, iova, size); 748 749 return ret; 750 } 751 752 static size_t viommu_unmap(struct iommu_domain *domain, unsigned long iova, 753 size_t size, struct iommu_iotlb_gather *gather) 754 { 755 int ret = 0; 756 size_t unmapped; 757 struct virtio_iommu_req_unmap unmap; 758 struct viommu_domain *vdomain = to_viommu_domain(domain); 759 760 unmapped = viommu_del_mappings(vdomain, iova, size); 761 if (unmapped < size) 762 return 0; 763 764 /* Device already removed all mappings after detach. */ 765 if (!vdomain->nr_endpoints) 766 return unmapped; 767 768 unmap = (struct virtio_iommu_req_unmap) { 769 .head.type = VIRTIO_IOMMU_T_UNMAP, 770 .domain = cpu_to_le32(vdomain->id), 771 .virt_start = cpu_to_le64(iova), 772 .virt_end = cpu_to_le64(iova + unmapped - 1), 773 }; 774 775 ret = viommu_add_req(vdomain->viommu, &unmap, sizeof(unmap)); 776 return ret ? 0 : unmapped; 777 } 778 779 static phys_addr_t viommu_iova_to_phys(struct iommu_domain *domain, 780 dma_addr_t iova) 781 { 782 u64 paddr = 0; 783 unsigned long flags; 784 struct viommu_mapping *mapping; 785 struct interval_tree_node *node; 786 struct viommu_domain *vdomain = to_viommu_domain(domain); 787 788 spin_lock_irqsave(&vdomain->mappings_lock, flags); 789 node = interval_tree_iter_first(&vdomain->mappings, iova, iova); 790 if (node) { 791 mapping = container_of(node, struct viommu_mapping, iova); 792 paddr = mapping->paddr + (iova - mapping->iova.start); 793 } 794 spin_unlock_irqrestore(&vdomain->mappings_lock, flags); 795 796 return paddr; 797 } 798 799 static void viommu_iotlb_sync(struct iommu_domain *domain, 800 struct iommu_iotlb_gather *gather) 801 { 802 struct viommu_domain *vdomain = to_viommu_domain(domain); 803 804 viommu_sync_req(vdomain->viommu); 805 } 806 807 static void viommu_get_resv_regions(struct device *dev, struct list_head *head) 808 { 809 struct iommu_resv_region *entry, *new_entry, *msi = NULL; 810 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 811 struct viommu_endpoint *vdev = fwspec->iommu_priv; 812 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 813 814 list_for_each_entry(entry, &vdev->resv_regions, list) { 815 if (entry->type == IOMMU_RESV_MSI) 816 msi = entry; 817 818 new_entry = kmemdup(entry, sizeof(*entry), GFP_KERNEL); 819 if (!new_entry) 820 return; 821 list_add_tail(&new_entry->list, head); 822 } 823 824 /* 825 * If the device didn't register any bypass MSI window, add a 826 * software-mapped region. 827 */ 828 if (!msi) { 829 msi = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH, 830 prot, IOMMU_RESV_SW_MSI); 831 if (!msi) 832 return; 833 834 list_add_tail(&msi->list, head); 835 } 836 837 iommu_dma_get_resv_regions(dev, head); 838 } 839 840 static void viommu_put_resv_regions(struct device *dev, struct list_head *head) 841 { 842 struct iommu_resv_region *entry, *next; 843 844 list_for_each_entry_safe(entry, next, head, list) 845 kfree(entry); 846 } 847 848 static struct iommu_ops viommu_ops; 849 static struct virtio_driver virtio_iommu_drv; 850 851 static int viommu_match_node(struct device *dev, const void *data) 852 { 853 return dev->parent->fwnode == data; 854 } 855 856 static struct viommu_dev *viommu_get_by_fwnode(struct fwnode_handle *fwnode) 857 { 858 struct device *dev = driver_find_device(&virtio_iommu_drv.driver, NULL, 859 fwnode, viommu_match_node); 860 put_device(dev); 861 862 return dev ? dev_to_virtio(dev)->priv : NULL; 863 } 864 865 static int viommu_add_device(struct device *dev) 866 { 867 int ret; 868 struct iommu_group *group; 869 struct viommu_endpoint *vdev; 870 struct viommu_dev *viommu = NULL; 871 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 872 873 if (!fwspec || fwspec->ops != &viommu_ops) 874 return -ENODEV; 875 876 viommu = viommu_get_by_fwnode(fwspec->iommu_fwnode); 877 if (!viommu) 878 return -ENODEV; 879 880 vdev = kzalloc(sizeof(*vdev), GFP_KERNEL); 881 if (!vdev) 882 return -ENOMEM; 883 884 vdev->dev = dev; 885 vdev->viommu = viommu; 886 INIT_LIST_HEAD(&vdev->resv_regions); 887 fwspec->iommu_priv = vdev; 888 889 if (viommu->probe_size) { 890 /* Get additional information for this endpoint */ 891 ret = viommu_probe_endpoint(viommu, dev); 892 if (ret) 893 goto err_free_dev; 894 } 895 896 ret = iommu_device_link(&viommu->iommu, dev); 897 if (ret) 898 goto err_free_dev; 899 900 /* 901 * Last step creates a default domain and attaches to it. Everything 902 * must be ready. 903 */ 904 group = iommu_group_get_for_dev(dev); 905 if (IS_ERR(group)) { 906 ret = PTR_ERR(group); 907 goto err_unlink_dev; 908 } 909 910 iommu_group_put(group); 911 912 return PTR_ERR_OR_ZERO(group); 913 914 err_unlink_dev: 915 iommu_device_unlink(&viommu->iommu, dev); 916 err_free_dev: 917 viommu_put_resv_regions(dev, &vdev->resv_regions); 918 kfree(vdev); 919 920 return ret; 921 } 922 923 static void viommu_remove_device(struct device *dev) 924 { 925 struct viommu_endpoint *vdev; 926 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 927 928 if (!fwspec || fwspec->ops != &viommu_ops) 929 return; 930 931 vdev = fwspec->iommu_priv; 932 933 iommu_group_remove_device(dev); 934 iommu_device_unlink(&vdev->viommu->iommu, dev); 935 viommu_put_resv_regions(dev, &vdev->resv_regions); 936 kfree(vdev); 937 } 938 939 static struct iommu_group *viommu_device_group(struct device *dev) 940 { 941 if (dev_is_pci(dev)) 942 return pci_device_group(dev); 943 else 944 return generic_device_group(dev); 945 } 946 947 static int viommu_of_xlate(struct device *dev, struct of_phandle_args *args) 948 { 949 return iommu_fwspec_add_ids(dev, args->args, 1); 950 } 951 952 static struct iommu_ops viommu_ops = { 953 .domain_alloc = viommu_domain_alloc, 954 .domain_free = viommu_domain_free, 955 .attach_dev = viommu_attach_dev, 956 .map = viommu_map, 957 .unmap = viommu_unmap, 958 .iova_to_phys = viommu_iova_to_phys, 959 .iotlb_sync = viommu_iotlb_sync, 960 .add_device = viommu_add_device, 961 .remove_device = viommu_remove_device, 962 .device_group = viommu_device_group, 963 .get_resv_regions = viommu_get_resv_regions, 964 .put_resv_regions = viommu_put_resv_regions, 965 .of_xlate = viommu_of_xlate, 966 }; 967 968 static int viommu_init_vqs(struct viommu_dev *viommu) 969 { 970 struct virtio_device *vdev = dev_to_virtio(viommu->dev); 971 const char *names[] = { "request", "event" }; 972 vq_callback_t *callbacks[] = { 973 NULL, /* No async requests */ 974 viommu_event_handler, 975 }; 976 977 return virtio_find_vqs(vdev, VIOMMU_NR_VQS, viommu->vqs, callbacks, 978 names, NULL); 979 } 980 981 static int viommu_fill_evtq(struct viommu_dev *viommu) 982 { 983 int i, ret; 984 struct scatterlist sg[1]; 985 struct viommu_event *evts; 986 struct virtqueue *vq = viommu->vqs[VIOMMU_EVENT_VQ]; 987 size_t nr_evts = vq->num_free; 988 989 viommu->evts = evts = devm_kmalloc_array(viommu->dev, nr_evts, 990 sizeof(*evts), GFP_KERNEL); 991 if (!evts) 992 return -ENOMEM; 993 994 for (i = 0; i < nr_evts; i++) { 995 sg_init_one(sg, &evts[i], sizeof(*evts)); 996 ret = virtqueue_add_inbuf(vq, sg, 1, &evts[i], GFP_KERNEL); 997 if (ret) 998 return ret; 999 } 1000 1001 return 0; 1002 } 1003 1004 static int viommu_probe(struct virtio_device *vdev) 1005 { 1006 struct device *parent_dev = vdev->dev.parent; 1007 struct viommu_dev *viommu = NULL; 1008 struct device *dev = &vdev->dev; 1009 u64 input_start = 0; 1010 u64 input_end = -1UL; 1011 int ret; 1012 1013 if (!virtio_has_feature(vdev, VIRTIO_F_VERSION_1) || 1014 !virtio_has_feature(vdev, VIRTIO_IOMMU_F_MAP_UNMAP)) 1015 return -ENODEV; 1016 1017 viommu = devm_kzalloc(dev, sizeof(*viommu), GFP_KERNEL); 1018 if (!viommu) 1019 return -ENOMEM; 1020 1021 spin_lock_init(&viommu->request_lock); 1022 ida_init(&viommu->domain_ids); 1023 viommu->dev = dev; 1024 viommu->vdev = vdev; 1025 INIT_LIST_HEAD(&viommu->requests); 1026 1027 ret = viommu_init_vqs(viommu); 1028 if (ret) 1029 return ret; 1030 1031 virtio_cread(vdev, struct virtio_iommu_config, page_size_mask, 1032 &viommu->pgsize_bitmap); 1033 1034 if (!viommu->pgsize_bitmap) { 1035 ret = -EINVAL; 1036 goto err_free_vqs; 1037 } 1038 1039 viommu->map_flags = VIRTIO_IOMMU_MAP_F_READ | VIRTIO_IOMMU_MAP_F_WRITE; 1040 viommu->last_domain = ~0U; 1041 1042 /* Optional features */ 1043 virtio_cread_feature(vdev, VIRTIO_IOMMU_F_INPUT_RANGE, 1044 struct virtio_iommu_config, input_range.start, 1045 &input_start); 1046 1047 virtio_cread_feature(vdev, VIRTIO_IOMMU_F_INPUT_RANGE, 1048 struct virtio_iommu_config, input_range.end, 1049 &input_end); 1050 1051 virtio_cread_feature(vdev, VIRTIO_IOMMU_F_DOMAIN_RANGE, 1052 struct virtio_iommu_config, domain_range.start, 1053 &viommu->first_domain); 1054 1055 virtio_cread_feature(vdev, VIRTIO_IOMMU_F_DOMAIN_RANGE, 1056 struct virtio_iommu_config, domain_range.end, 1057 &viommu->last_domain); 1058 1059 virtio_cread_feature(vdev, VIRTIO_IOMMU_F_PROBE, 1060 struct virtio_iommu_config, probe_size, 1061 &viommu->probe_size); 1062 1063 viommu->geometry = (struct iommu_domain_geometry) { 1064 .aperture_start = input_start, 1065 .aperture_end = input_end, 1066 .force_aperture = true, 1067 }; 1068 1069 if (virtio_has_feature(vdev, VIRTIO_IOMMU_F_MMIO)) 1070 viommu->map_flags |= VIRTIO_IOMMU_MAP_F_MMIO; 1071 1072 viommu_ops.pgsize_bitmap = viommu->pgsize_bitmap; 1073 1074 virtio_device_ready(vdev); 1075 1076 /* Populate the event queue with buffers */ 1077 ret = viommu_fill_evtq(viommu); 1078 if (ret) 1079 goto err_free_vqs; 1080 1081 ret = iommu_device_sysfs_add(&viommu->iommu, dev, NULL, "%s", 1082 virtio_bus_name(vdev)); 1083 if (ret) 1084 goto err_free_vqs; 1085 1086 iommu_device_set_ops(&viommu->iommu, &viommu_ops); 1087 iommu_device_set_fwnode(&viommu->iommu, parent_dev->fwnode); 1088 1089 iommu_device_register(&viommu->iommu); 1090 1091 #ifdef CONFIG_PCI 1092 if (pci_bus_type.iommu_ops != &viommu_ops) { 1093 pci_request_acs(); 1094 ret = bus_set_iommu(&pci_bus_type, &viommu_ops); 1095 if (ret) 1096 goto err_unregister; 1097 } 1098 #endif 1099 #ifdef CONFIG_ARM_AMBA 1100 if (amba_bustype.iommu_ops != &viommu_ops) { 1101 ret = bus_set_iommu(&amba_bustype, &viommu_ops); 1102 if (ret) 1103 goto err_unregister; 1104 } 1105 #endif 1106 if (platform_bus_type.iommu_ops != &viommu_ops) { 1107 ret = bus_set_iommu(&platform_bus_type, &viommu_ops); 1108 if (ret) 1109 goto err_unregister; 1110 } 1111 1112 vdev->priv = viommu; 1113 1114 dev_info(dev, "input address: %u bits\n", 1115 order_base_2(viommu->geometry.aperture_end)); 1116 dev_info(dev, "page mask: %#llx\n", viommu->pgsize_bitmap); 1117 1118 return 0; 1119 1120 err_unregister: 1121 iommu_device_sysfs_remove(&viommu->iommu); 1122 iommu_device_unregister(&viommu->iommu); 1123 err_free_vqs: 1124 vdev->config->del_vqs(vdev); 1125 1126 return ret; 1127 } 1128 1129 static void viommu_remove(struct virtio_device *vdev) 1130 { 1131 struct viommu_dev *viommu = vdev->priv; 1132 1133 iommu_device_sysfs_remove(&viommu->iommu); 1134 iommu_device_unregister(&viommu->iommu); 1135 1136 /* Stop all virtqueues */ 1137 vdev->config->reset(vdev); 1138 vdev->config->del_vqs(vdev); 1139 1140 dev_info(&vdev->dev, "device removed\n"); 1141 } 1142 1143 static void viommu_config_changed(struct virtio_device *vdev) 1144 { 1145 dev_warn(&vdev->dev, "config changed\n"); 1146 } 1147 1148 static unsigned int features[] = { 1149 VIRTIO_IOMMU_F_MAP_UNMAP, 1150 VIRTIO_IOMMU_F_INPUT_RANGE, 1151 VIRTIO_IOMMU_F_DOMAIN_RANGE, 1152 VIRTIO_IOMMU_F_PROBE, 1153 VIRTIO_IOMMU_F_MMIO, 1154 }; 1155 1156 static struct virtio_device_id id_table[] = { 1157 { VIRTIO_ID_IOMMU, VIRTIO_DEV_ANY_ID }, 1158 { 0 }, 1159 }; 1160 1161 static struct virtio_driver virtio_iommu_drv = { 1162 .driver.name = KBUILD_MODNAME, 1163 .driver.owner = THIS_MODULE, 1164 .id_table = id_table, 1165 .feature_table = features, 1166 .feature_table_size = ARRAY_SIZE(features), 1167 .probe = viommu_probe, 1168 .remove = viommu_remove, 1169 .config_changed = viommu_config_changed, 1170 }; 1171 1172 module_virtio_driver(virtio_iommu_drv); 1173 1174 MODULE_DESCRIPTION("Virtio IOMMU driver"); 1175 MODULE_AUTHOR("Jean-Philippe Brucker <jean-philippe.brucker@arm.com>"); 1176 MODULE_LICENSE("GPL v2"); 1177