1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License version 2 as
4  * published by the Free Software Foundation.
5  */
6 
7 #include <linux/compiler.h>
8 #include <linux/delay.h>
9 #include <linux/device.h>
10 #include <linux/dma-iommu.h>
11 #include <linux/errno.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/iommu.h>
15 #include <linux/jiffies.h>
16 #include <linux/list.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_platform.h>
21 #include <linux/platform_device.h>
22 #include <linux/slab.h>
23 #include <linux/spinlock.h>
24 
25 /** MMU register offsets */
26 #define RK_MMU_DTE_ADDR		0x00	/* Directory table address */
27 #define RK_MMU_STATUS		0x04
28 #define RK_MMU_COMMAND		0x08
29 #define RK_MMU_PAGE_FAULT_ADDR	0x0C	/* IOVA of last page fault */
30 #define RK_MMU_ZAP_ONE_LINE	0x10	/* Shootdown one IOTLB entry */
31 #define RK_MMU_INT_RAWSTAT	0x14	/* IRQ status ignoring mask */
32 #define RK_MMU_INT_CLEAR	0x18	/* Acknowledge and re-arm irq */
33 #define RK_MMU_INT_MASK		0x1C	/* IRQ enable */
34 #define RK_MMU_INT_STATUS	0x20	/* IRQ status after masking */
35 #define RK_MMU_AUTO_GATING	0x24
36 
37 #define DTE_ADDR_DUMMY		0xCAFEBABE
38 #define FORCE_RESET_TIMEOUT	100	/* ms */
39 
40 /* RK_MMU_STATUS fields */
41 #define RK_MMU_STATUS_PAGING_ENABLED       BIT(0)
42 #define RK_MMU_STATUS_PAGE_FAULT_ACTIVE    BIT(1)
43 #define RK_MMU_STATUS_STALL_ACTIVE         BIT(2)
44 #define RK_MMU_STATUS_IDLE                 BIT(3)
45 #define RK_MMU_STATUS_REPLAY_BUFFER_EMPTY  BIT(4)
46 #define RK_MMU_STATUS_PAGE_FAULT_IS_WRITE  BIT(5)
47 #define RK_MMU_STATUS_STALL_NOT_ACTIVE     BIT(31)
48 
49 /* RK_MMU_COMMAND command values */
50 #define RK_MMU_CMD_ENABLE_PAGING    0  /* Enable memory translation */
51 #define RK_MMU_CMD_DISABLE_PAGING   1  /* Disable memory translation */
52 #define RK_MMU_CMD_ENABLE_STALL     2  /* Stall paging to allow other cmds */
53 #define RK_MMU_CMD_DISABLE_STALL    3  /* Stop stall re-enables paging */
54 #define RK_MMU_CMD_ZAP_CACHE        4  /* Shoot down entire IOTLB */
55 #define RK_MMU_CMD_PAGE_FAULT_DONE  5  /* Clear page fault */
56 #define RK_MMU_CMD_FORCE_RESET      6  /* Reset all registers */
57 
58 /* RK_MMU_INT_* register fields */
59 #define RK_MMU_IRQ_PAGE_FAULT    0x01  /* page fault */
60 #define RK_MMU_IRQ_BUS_ERROR     0x02  /* bus read error */
61 #define RK_MMU_IRQ_MASK          (RK_MMU_IRQ_PAGE_FAULT | RK_MMU_IRQ_BUS_ERROR)
62 
63 #define NUM_DT_ENTRIES 1024
64 #define NUM_PT_ENTRIES 1024
65 
66 #define SPAGE_ORDER 12
67 #define SPAGE_SIZE (1 << SPAGE_ORDER)
68 
69  /*
70   * Support mapping any size that fits in one page table:
71   *   4 KiB to 4 MiB
72   */
73 #define RK_IOMMU_PGSIZE_BITMAP 0x007ff000
74 
75 #define IOMMU_REG_POLL_COUNT_FAST 1000
76 
77 struct rk_iommu_domain {
78 	struct list_head iommus;
79 	struct platform_device *pdev;
80 	u32 *dt; /* page directory table */
81 	dma_addr_t dt_dma;
82 	spinlock_t iommus_lock; /* lock for iommus list */
83 	spinlock_t dt_lock; /* lock for modifying page directory table */
84 
85 	struct iommu_domain domain;
86 };
87 
88 struct rk_iommu {
89 	struct device *dev;
90 	void __iomem **bases;
91 	int num_mmu;
92 	int irq;
93 	struct list_head node; /* entry in rk_iommu_domain.iommus */
94 	struct iommu_domain *domain; /* domain to which iommu is attached */
95 };
96 
97 static inline void rk_table_flush(struct rk_iommu_domain *dom, dma_addr_t dma,
98 				  unsigned int count)
99 {
100 	size_t size = count * sizeof(u32); /* count of u32 entry */
101 
102 	dma_sync_single_for_device(&dom->pdev->dev, dma, size, DMA_TO_DEVICE);
103 }
104 
105 static struct rk_iommu_domain *to_rk_domain(struct iommu_domain *dom)
106 {
107 	return container_of(dom, struct rk_iommu_domain, domain);
108 }
109 
110 /**
111  * Inspired by _wait_for in intel_drv.h
112  * This is NOT safe for use in interrupt context.
113  *
114  * Note that it's important that we check the condition again after having
115  * timed out, since the timeout could be due to preemption or similar and
116  * we've never had a chance to check the condition before the timeout.
117  */
118 #define rk_wait_for(COND, MS) ({ \
119 	unsigned long timeout__ = jiffies + msecs_to_jiffies(MS) + 1;	\
120 	int ret__ = 0;							\
121 	while (!(COND)) {						\
122 		if (time_after(jiffies, timeout__)) {			\
123 			ret__ = (COND) ? 0 : -ETIMEDOUT;		\
124 			break;						\
125 		}							\
126 		usleep_range(50, 100);					\
127 	}								\
128 	ret__;								\
129 })
130 
131 /*
132  * The Rockchip rk3288 iommu uses a 2-level page table.
133  * The first level is the "Directory Table" (DT).
134  * The DT consists of 1024 4-byte Directory Table Entries (DTEs), each pointing
135  * to a "Page Table".
136  * The second level is the 1024 Page Tables (PT).
137  * Each PT consists of 1024 4-byte Page Table Entries (PTEs), each pointing to
138  * a 4 KB page of physical memory.
139  *
140  * The DT and each PT fits in a single 4 KB page (4-bytes * 1024 entries).
141  * Each iommu device has a MMU_DTE_ADDR register that contains the physical
142  * address of the start of the DT page.
143  *
144  * The structure of the page table is as follows:
145  *
146  *                   DT
147  * MMU_DTE_ADDR -> +-----+
148  *                 |     |
149  *                 +-----+     PT
150  *                 | DTE | -> +-----+
151  *                 +-----+    |     |     Memory
152  *                 |     |    +-----+     Page
153  *                 |     |    | PTE | -> +-----+
154  *                 +-----+    +-----+    |     |
155  *                            |     |    |     |
156  *                            |     |    |     |
157  *                            +-----+    |     |
158  *                                       |     |
159  *                                       |     |
160  *                                       +-----+
161  */
162 
163 /*
164  * Each DTE has a PT address and a valid bit:
165  * +---------------------+-----------+-+
166  * | PT address          | Reserved  |V|
167  * +---------------------+-----------+-+
168  *  31:12 - PT address (PTs always starts on a 4 KB boundary)
169  *  11: 1 - Reserved
170  *      0 - 1 if PT @ PT address is valid
171  */
172 #define RK_DTE_PT_ADDRESS_MASK    0xfffff000
173 #define RK_DTE_PT_VALID           BIT(0)
174 
175 static inline phys_addr_t rk_dte_pt_address(u32 dte)
176 {
177 	return (phys_addr_t)dte & RK_DTE_PT_ADDRESS_MASK;
178 }
179 
180 static inline bool rk_dte_is_pt_valid(u32 dte)
181 {
182 	return dte & RK_DTE_PT_VALID;
183 }
184 
185 static inline u32 rk_mk_dte(dma_addr_t pt_dma)
186 {
187 	return (pt_dma & RK_DTE_PT_ADDRESS_MASK) | RK_DTE_PT_VALID;
188 }
189 
190 /*
191  * Each PTE has a Page address, some flags and a valid bit:
192  * +---------------------+---+-------+-+
193  * | Page address        |Rsv| Flags |V|
194  * +---------------------+---+-------+-+
195  *  31:12 - Page address (Pages always start on a 4 KB boundary)
196  *  11: 9 - Reserved
197  *   8: 1 - Flags
198  *      8 - Read allocate - allocate cache space on read misses
199  *      7 - Read cache - enable cache & prefetch of data
200  *      6 - Write buffer - enable delaying writes on their way to memory
201  *      5 - Write allocate - allocate cache space on write misses
202  *      4 - Write cache - different writes can be merged together
203  *      3 - Override cache attributes
204  *          if 1, bits 4-8 control cache attributes
205  *          if 0, the system bus defaults are used
206  *      2 - Writable
207  *      1 - Readable
208  *      0 - 1 if Page @ Page address is valid
209  */
210 #define RK_PTE_PAGE_ADDRESS_MASK  0xfffff000
211 #define RK_PTE_PAGE_FLAGS_MASK    0x000001fe
212 #define RK_PTE_PAGE_WRITABLE      BIT(2)
213 #define RK_PTE_PAGE_READABLE      BIT(1)
214 #define RK_PTE_PAGE_VALID         BIT(0)
215 
216 static inline phys_addr_t rk_pte_page_address(u32 pte)
217 {
218 	return (phys_addr_t)pte & RK_PTE_PAGE_ADDRESS_MASK;
219 }
220 
221 static inline bool rk_pte_is_page_valid(u32 pte)
222 {
223 	return pte & RK_PTE_PAGE_VALID;
224 }
225 
226 /* TODO: set cache flags per prot IOMMU_CACHE */
227 static u32 rk_mk_pte(phys_addr_t page, int prot)
228 {
229 	u32 flags = 0;
230 	flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0;
231 	flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0;
232 	page &= RK_PTE_PAGE_ADDRESS_MASK;
233 	return page | flags | RK_PTE_PAGE_VALID;
234 }
235 
236 static u32 rk_mk_pte_invalid(u32 pte)
237 {
238 	return pte & ~RK_PTE_PAGE_VALID;
239 }
240 
241 /*
242  * rk3288 iova (IOMMU Virtual Address) format
243  *  31       22.21       12.11          0
244  * +-----------+-----------+-------------+
245  * | DTE index | PTE index | Page offset |
246  * +-----------+-----------+-------------+
247  *  31:22 - DTE index   - index of DTE in DT
248  *  21:12 - PTE index   - index of PTE in PT @ DTE.pt_address
249  *  11: 0 - Page offset - offset into page @ PTE.page_address
250  */
251 #define RK_IOVA_DTE_MASK    0xffc00000
252 #define RK_IOVA_DTE_SHIFT   22
253 #define RK_IOVA_PTE_MASK    0x003ff000
254 #define RK_IOVA_PTE_SHIFT   12
255 #define RK_IOVA_PAGE_MASK   0x00000fff
256 #define RK_IOVA_PAGE_SHIFT  0
257 
258 static u32 rk_iova_dte_index(dma_addr_t iova)
259 {
260 	return (u32)(iova & RK_IOVA_DTE_MASK) >> RK_IOVA_DTE_SHIFT;
261 }
262 
263 static u32 rk_iova_pte_index(dma_addr_t iova)
264 {
265 	return (u32)(iova & RK_IOVA_PTE_MASK) >> RK_IOVA_PTE_SHIFT;
266 }
267 
268 static u32 rk_iova_page_offset(dma_addr_t iova)
269 {
270 	return (u32)(iova & RK_IOVA_PAGE_MASK) >> RK_IOVA_PAGE_SHIFT;
271 }
272 
273 static u32 rk_iommu_read(void __iomem *base, u32 offset)
274 {
275 	return readl(base + offset);
276 }
277 
278 static void rk_iommu_write(void __iomem *base, u32 offset, u32 value)
279 {
280 	writel(value, base + offset);
281 }
282 
283 static void rk_iommu_command(struct rk_iommu *iommu, u32 command)
284 {
285 	int i;
286 
287 	for (i = 0; i < iommu->num_mmu; i++)
288 		writel(command, iommu->bases[i] + RK_MMU_COMMAND);
289 }
290 
291 static void rk_iommu_base_command(void __iomem *base, u32 command)
292 {
293 	writel(command, base + RK_MMU_COMMAND);
294 }
295 static void rk_iommu_zap_lines(struct rk_iommu *iommu, dma_addr_t iova,
296 			       size_t size)
297 {
298 	int i;
299 
300 	dma_addr_t iova_end = iova + size;
301 	/*
302 	 * TODO(djkurtz): Figure out when it is more efficient to shootdown the
303 	 * entire iotlb rather than iterate over individual iovas.
304 	 */
305 	for (i = 0; i < iommu->num_mmu; i++)
306 		for (; iova < iova_end; iova += SPAGE_SIZE)
307 			rk_iommu_write(iommu->bases[i], RK_MMU_ZAP_ONE_LINE, iova);
308 }
309 
310 static bool rk_iommu_is_stall_active(struct rk_iommu *iommu)
311 {
312 	bool active = true;
313 	int i;
314 
315 	for (i = 0; i < iommu->num_mmu; i++)
316 		active &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
317 					   RK_MMU_STATUS_STALL_ACTIVE);
318 
319 	return active;
320 }
321 
322 static bool rk_iommu_is_paging_enabled(struct rk_iommu *iommu)
323 {
324 	bool enable = true;
325 	int i;
326 
327 	for (i = 0; i < iommu->num_mmu; i++)
328 		enable &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
329 					   RK_MMU_STATUS_PAGING_ENABLED);
330 
331 	return enable;
332 }
333 
334 static int rk_iommu_enable_stall(struct rk_iommu *iommu)
335 {
336 	int ret, i;
337 
338 	if (rk_iommu_is_stall_active(iommu))
339 		return 0;
340 
341 	/* Stall can only be enabled if paging is enabled */
342 	if (!rk_iommu_is_paging_enabled(iommu))
343 		return 0;
344 
345 	rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_STALL);
346 
347 	ret = rk_wait_for(rk_iommu_is_stall_active(iommu), 1);
348 	if (ret)
349 		for (i = 0; i < iommu->num_mmu; i++)
350 			dev_err(iommu->dev, "Enable stall request timed out, status: %#08x\n",
351 				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
352 
353 	return ret;
354 }
355 
356 static int rk_iommu_disable_stall(struct rk_iommu *iommu)
357 {
358 	int ret, i;
359 
360 	if (!rk_iommu_is_stall_active(iommu))
361 		return 0;
362 
363 	rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_STALL);
364 
365 	ret = rk_wait_for(!rk_iommu_is_stall_active(iommu), 1);
366 	if (ret)
367 		for (i = 0; i < iommu->num_mmu; i++)
368 			dev_err(iommu->dev, "Disable stall request timed out, status: %#08x\n",
369 				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
370 
371 	return ret;
372 }
373 
374 static int rk_iommu_enable_paging(struct rk_iommu *iommu)
375 {
376 	int ret, i;
377 
378 	if (rk_iommu_is_paging_enabled(iommu))
379 		return 0;
380 
381 	rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_PAGING);
382 
383 	ret = rk_wait_for(rk_iommu_is_paging_enabled(iommu), 1);
384 	if (ret)
385 		for (i = 0; i < iommu->num_mmu; i++)
386 			dev_err(iommu->dev, "Enable paging request timed out, status: %#08x\n",
387 				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
388 
389 	return ret;
390 }
391 
392 static int rk_iommu_disable_paging(struct rk_iommu *iommu)
393 {
394 	int ret, i;
395 
396 	if (!rk_iommu_is_paging_enabled(iommu))
397 		return 0;
398 
399 	rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_PAGING);
400 
401 	ret = rk_wait_for(!rk_iommu_is_paging_enabled(iommu), 1);
402 	if (ret)
403 		for (i = 0; i < iommu->num_mmu; i++)
404 			dev_err(iommu->dev, "Disable paging request timed out, status: %#08x\n",
405 				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
406 
407 	return ret;
408 }
409 
410 static int rk_iommu_force_reset(struct rk_iommu *iommu)
411 {
412 	int ret, i;
413 	u32 dte_addr;
414 
415 	/*
416 	 * Check if register DTE_ADDR is working by writing DTE_ADDR_DUMMY
417 	 * and verifying that upper 5 nybbles are read back.
418 	 */
419 	for (i = 0; i < iommu->num_mmu; i++) {
420 		rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, DTE_ADDR_DUMMY);
421 
422 		dte_addr = rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR);
423 		if (dte_addr != (DTE_ADDR_DUMMY & RK_DTE_PT_ADDRESS_MASK)) {
424 			dev_err(iommu->dev, "Error during raw reset. MMU_DTE_ADDR is not functioning\n");
425 			return -EFAULT;
426 		}
427 	}
428 
429 	rk_iommu_command(iommu, RK_MMU_CMD_FORCE_RESET);
430 
431 	for (i = 0; i < iommu->num_mmu; i++) {
432 		ret = rk_wait_for(rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR) == 0x00000000,
433 				  FORCE_RESET_TIMEOUT);
434 		if (ret) {
435 			dev_err(iommu->dev, "FORCE_RESET command timed out\n");
436 			return ret;
437 		}
438 	}
439 
440 	return 0;
441 }
442 
443 static void log_iova(struct rk_iommu *iommu, int index, dma_addr_t iova)
444 {
445 	void __iomem *base = iommu->bases[index];
446 	u32 dte_index, pte_index, page_offset;
447 	u32 mmu_dte_addr;
448 	phys_addr_t mmu_dte_addr_phys, dte_addr_phys;
449 	u32 *dte_addr;
450 	u32 dte;
451 	phys_addr_t pte_addr_phys = 0;
452 	u32 *pte_addr = NULL;
453 	u32 pte = 0;
454 	phys_addr_t page_addr_phys = 0;
455 	u32 page_flags = 0;
456 
457 	dte_index = rk_iova_dte_index(iova);
458 	pte_index = rk_iova_pte_index(iova);
459 	page_offset = rk_iova_page_offset(iova);
460 
461 	mmu_dte_addr = rk_iommu_read(base, RK_MMU_DTE_ADDR);
462 	mmu_dte_addr_phys = (phys_addr_t)mmu_dte_addr;
463 
464 	dte_addr_phys = mmu_dte_addr_phys + (4 * dte_index);
465 	dte_addr = phys_to_virt(dte_addr_phys);
466 	dte = *dte_addr;
467 
468 	if (!rk_dte_is_pt_valid(dte))
469 		goto print_it;
470 
471 	pte_addr_phys = rk_dte_pt_address(dte) + (pte_index * 4);
472 	pte_addr = phys_to_virt(pte_addr_phys);
473 	pte = *pte_addr;
474 
475 	if (!rk_pte_is_page_valid(pte))
476 		goto print_it;
477 
478 	page_addr_phys = rk_pte_page_address(pte) + page_offset;
479 	page_flags = pte & RK_PTE_PAGE_FLAGS_MASK;
480 
481 print_it:
482 	dev_err(iommu->dev, "iova = %pad: dte_index: %#03x pte_index: %#03x page_offset: %#03x\n",
483 		&iova, dte_index, pte_index, page_offset);
484 	dev_err(iommu->dev, "mmu_dte_addr: %pa dte@%pa: %#08x valid: %u pte@%pa: %#08x valid: %u page@%pa flags: %#03x\n",
485 		&mmu_dte_addr_phys, &dte_addr_phys, dte,
486 		rk_dte_is_pt_valid(dte), &pte_addr_phys, pte,
487 		rk_pte_is_page_valid(pte), &page_addr_phys, page_flags);
488 }
489 
490 static irqreturn_t rk_iommu_irq(int irq, void *dev_id)
491 {
492 	struct rk_iommu *iommu = dev_id;
493 	u32 status;
494 	u32 int_status;
495 	dma_addr_t iova;
496 	irqreturn_t ret = IRQ_NONE;
497 	int i;
498 
499 	for (i = 0; i < iommu->num_mmu; i++) {
500 		int_status = rk_iommu_read(iommu->bases[i], RK_MMU_INT_STATUS);
501 		if (int_status == 0)
502 			continue;
503 
504 		ret = IRQ_HANDLED;
505 		iova = rk_iommu_read(iommu->bases[i], RK_MMU_PAGE_FAULT_ADDR);
506 
507 		if (int_status & RK_MMU_IRQ_PAGE_FAULT) {
508 			int flags;
509 
510 			status = rk_iommu_read(iommu->bases[i], RK_MMU_STATUS);
511 			flags = (status & RK_MMU_STATUS_PAGE_FAULT_IS_WRITE) ?
512 					IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
513 
514 			dev_err(iommu->dev, "Page fault at %pad of type %s\n",
515 				&iova,
516 				(flags == IOMMU_FAULT_WRITE) ? "write" : "read");
517 
518 			log_iova(iommu, i, iova);
519 
520 			/*
521 			 * Report page fault to any installed handlers.
522 			 * Ignore the return code, though, since we always zap cache
523 			 * and clear the page fault anyway.
524 			 */
525 			if (iommu->domain)
526 				report_iommu_fault(iommu->domain, iommu->dev, iova,
527 						   flags);
528 			else
529 				dev_err(iommu->dev, "Page fault while iommu not attached to domain?\n");
530 
531 			rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
532 			rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_PAGE_FAULT_DONE);
533 		}
534 
535 		if (int_status & RK_MMU_IRQ_BUS_ERROR)
536 			dev_err(iommu->dev, "BUS_ERROR occurred at %pad\n", &iova);
537 
538 		if (int_status & ~RK_MMU_IRQ_MASK)
539 			dev_err(iommu->dev, "unexpected int_status: %#08x\n",
540 				int_status);
541 
542 		rk_iommu_write(iommu->bases[i], RK_MMU_INT_CLEAR, int_status);
543 	}
544 
545 	return ret;
546 }
547 
548 static phys_addr_t rk_iommu_iova_to_phys(struct iommu_domain *domain,
549 					 dma_addr_t iova)
550 {
551 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
552 	unsigned long flags;
553 	phys_addr_t pt_phys, phys = 0;
554 	u32 dte, pte;
555 	u32 *page_table;
556 
557 	spin_lock_irqsave(&rk_domain->dt_lock, flags);
558 
559 	dte = rk_domain->dt[rk_iova_dte_index(iova)];
560 	if (!rk_dte_is_pt_valid(dte))
561 		goto out;
562 
563 	pt_phys = rk_dte_pt_address(dte);
564 	page_table = (u32 *)phys_to_virt(pt_phys);
565 	pte = page_table[rk_iova_pte_index(iova)];
566 	if (!rk_pte_is_page_valid(pte))
567 		goto out;
568 
569 	phys = rk_pte_page_address(pte) + rk_iova_page_offset(iova);
570 out:
571 	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
572 
573 	return phys;
574 }
575 
576 static void rk_iommu_zap_iova(struct rk_iommu_domain *rk_domain,
577 			      dma_addr_t iova, size_t size)
578 {
579 	struct list_head *pos;
580 	unsigned long flags;
581 
582 	/* shootdown these iova from all iommus using this domain */
583 	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
584 	list_for_each(pos, &rk_domain->iommus) {
585 		struct rk_iommu *iommu;
586 		iommu = list_entry(pos, struct rk_iommu, node);
587 		rk_iommu_zap_lines(iommu, iova, size);
588 	}
589 	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
590 }
591 
592 static void rk_iommu_zap_iova_first_last(struct rk_iommu_domain *rk_domain,
593 					 dma_addr_t iova, size_t size)
594 {
595 	rk_iommu_zap_iova(rk_domain, iova, SPAGE_SIZE);
596 	if (size > SPAGE_SIZE)
597 		rk_iommu_zap_iova(rk_domain, iova + size - SPAGE_SIZE,
598 					SPAGE_SIZE);
599 }
600 
601 static u32 *rk_dte_get_page_table(struct rk_iommu_domain *rk_domain,
602 				  dma_addr_t iova)
603 {
604 	struct device *dev = &rk_domain->pdev->dev;
605 	u32 *page_table, *dte_addr;
606 	u32 dte_index, dte;
607 	phys_addr_t pt_phys;
608 	dma_addr_t pt_dma;
609 
610 	assert_spin_locked(&rk_domain->dt_lock);
611 
612 	dte_index = rk_iova_dte_index(iova);
613 	dte_addr = &rk_domain->dt[dte_index];
614 	dte = *dte_addr;
615 	if (rk_dte_is_pt_valid(dte))
616 		goto done;
617 
618 	page_table = (u32 *)get_zeroed_page(GFP_ATOMIC | GFP_DMA32);
619 	if (!page_table)
620 		return ERR_PTR(-ENOMEM);
621 
622 	pt_dma = dma_map_single(dev, page_table, SPAGE_SIZE, DMA_TO_DEVICE);
623 	if (dma_mapping_error(dev, pt_dma)) {
624 		dev_err(dev, "DMA mapping error while allocating page table\n");
625 		free_page((unsigned long)page_table);
626 		return ERR_PTR(-ENOMEM);
627 	}
628 
629 	dte = rk_mk_dte(pt_dma);
630 	*dte_addr = dte;
631 
632 	rk_table_flush(rk_domain, pt_dma, NUM_PT_ENTRIES);
633 	rk_table_flush(rk_domain,
634 		       rk_domain->dt_dma + dte_index * sizeof(u32), 1);
635 done:
636 	pt_phys = rk_dte_pt_address(dte);
637 	return (u32 *)phys_to_virt(pt_phys);
638 }
639 
640 static size_t rk_iommu_unmap_iova(struct rk_iommu_domain *rk_domain,
641 				  u32 *pte_addr, dma_addr_t pte_dma,
642 				  size_t size)
643 {
644 	unsigned int pte_count;
645 	unsigned int pte_total = size / SPAGE_SIZE;
646 
647 	assert_spin_locked(&rk_domain->dt_lock);
648 
649 	for (pte_count = 0; pte_count < pte_total; pte_count++) {
650 		u32 pte = pte_addr[pte_count];
651 		if (!rk_pte_is_page_valid(pte))
652 			break;
653 
654 		pte_addr[pte_count] = rk_mk_pte_invalid(pte);
655 	}
656 
657 	rk_table_flush(rk_domain, pte_dma, pte_count);
658 
659 	return pte_count * SPAGE_SIZE;
660 }
661 
662 static int rk_iommu_map_iova(struct rk_iommu_domain *rk_domain, u32 *pte_addr,
663 			     dma_addr_t pte_dma, dma_addr_t iova,
664 			     phys_addr_t paddr, size_t size, int prot)
665 {
666 	unsigned int pte_count;
667 	unsigned int pte_total = size / SPAGE_SIZE;
668 	phys_addr_t page_phys;
669 
670 	assert_spin_locked(&rk_domain->dt_lock);
671 
672 	for (pte_count = 0; pte_count < pte_total; pte_count++) {
673 		u32 pte = pte_addr[pte_count];
674 
675 		if (rk_pte_is_page_valid(pte))
676 			goto unwind;
677 
678 		pte_addr[pte_count] = rk_mk_pte(paddr, prot);
679 
680 		paddr += SPAGE_SIZE;
681 	}
682 
683 	rk_table_flush(rk_domain, pte_dma, pte_total);
684 
685 	/*
686 	 * Zap the first and last iova to evict from iotlb any previously
687 	 * mapped cachelines holding stale values for its dte and pte.
688 	 * We only zap the first and last iova, since only they could have
689 	 * dte or pte shared with an existing mapping.
690 	 */
691 	rk_iommu_zap_iova_first_last(rk_domain, iova, size);
692 
693 	return 0;
694 unwind:
695 	/* Unmap the range of iovas that we just mapped */
696 	rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma,
697 			    pte_count * SPAGE_SIZE);
698 
699 	iova += pte_count * SPAGE_SIZE;
700 	page_phys = rk_pte_page_address(pte_addr[pte_count]);
701 	pr_err("iova: %pad already mapped to %pa cannot remap to phys: %pa prot: %#x\n",
702 	       &iova, &page_phys, &paddr, prot);
703 
704 	return -EADDRINUSE;
705 }
706 
707 static int rk_iommu_map(struct iommu_domain *domain, unsigned long _iova,
708 			phys_addr_t paddr, size_t size, int prot)
709 {
710 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
711 	unsigned long flags;
712 	dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
713 	u32 *page_table, *pte_addr;
714 	u32 dte_index, pte_index;
715 	int ret;
716 
717 	spin_lock_irqsave(&rk_domain->dt_lock, flags);
718 
719 	/*
720 	 * pgsize_bitmap specifies iova sizes that fit in one page table
721 	 * (1024 4-KiB pages = 4 MiB).
722 	 * So, size will always be 4096 <= size <= 4194304.
723 	 * Since iommu_map() guarantees that both iova and size will be
724 	 * aligned, we will always only be mapping from a single dte here.
725 	 */
726 	page_table = rk_dte_get_page_table(rk_domain, iova);
727 	if (IS_ERR(page_table)) {
728 		spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
729 		return PTR_ERR(page_table);
730 	}
731 
732 	dte_index = rk_domain->dt[rk_iova_dte_index(iova)];
733 	pte_index = rk_iova_pte_index(iova);
734 	pte_addr = &page_table[pte_index];
735 	pte_dma = rk_dte_pt_address(dte_index) + pte_index * sizeof(u32);
736 	ret = rk_iommu_map_iova(rk_domain, pte_addr, pte_dma, iova,
737 				paddr, size, prot);
738 
739 	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
740 
741 	return ret;
742 }
743 
744 static size_t rk_iommu_unmap(struct iommu_domain *domain, unsigned long _iova,
745 			     size_t size)
746 {
747 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
748 	unsigned long flags;
749 	dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
750 	phys_addr_t pt_phys;
751 	u32 dte;
752 	u32 *pte_addr;
753 	size_t unmap_size;
754 
755 	spin_lock_irqsave(&rk_domain->dt_lock, flags);
756 
757 	/*
758 	 * pgsize_bitmap specifies iova sizes that fit in one page table
759 	 * (1024 4-KiB pages = 4 MiB).
760 	 * So, size will always be 4096 <= size <= 4194304.
761 	 * Since iommu_unmap() guarantees that both iova and size will be
762 	 * aligned, we will always only be unmapping from a single dte here.
763 	 */
764 	dte = rk_domain->dt[rk_iova_dte_index(iova)];
765 	/* Just return 0 if iova is unmapped */
766 	if (!rk_dte_is_pt_valid(dte)) {
767 		spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
768 		return 0;
769 	}
770 
771 	pt_phys = rk_dte_pt_address(dte);
772 	pte_addr = (u32 *)phys_to_virt(pt_phys) + rk_iova_pte_index(iova);
773 	pte_dma = pt_phys + rk_iova_pte_index(iova) * sizeof(u32);
774 	unmap_size = rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma, size);
775 
776 	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
777 
778 	/* Shootdown iotlb entries for iova range that was just unmapped */
779 	rk_iommu_zap_iova(rk_domain, iova, unmap_size);
780 
781 	return unmap_size;
782 }
783 
784 static struct rk_iommu *rk_iommu_from_dev(struct device *dev)
785 {
786 	struct iommu_group *group;
787 	struct device *iommu_dev;
788 	struct rk_iommu *rk_iommu;
789 
790 	group = iommu_group_get(dev);
791 	if (!group)
792 		return NULL;
793 	iommu_dev = iommu_group_get_iommudata(group);
794 	rk_iommu = dev_get_drvdata(iommu_dev);
795 	iommu_group_put(group);
796 
797 	return rk_iommu;
798 }
799 
800 static int rk_iommu_attach_device(struct iommu_domain *domain,
801 				  struct device *dev)
802 {
803 	struct rk_iommu *iommu;
804 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
805 	unsigned long flags;
806 	int ret, i;
807 
808 	/*
809 	 * Allow 'virtual devices' (e.g., drm) to attach to domain.
810 	 * Such a device does not belong to an iommu group.
811 	 */
812 	iommu = rk_iommu_from_dev(dev);
813 	if (!iommu)
814 		return 0;
815 
816 	ret = rk_iommu_enable_stall(iommu);
817 	if (ret)
818 		return ret;
819 
820 	ret = rk_iommu_force_reset(iommu);
821 	if (ret)
822 		return ret;
823 
824 	iommu->domain = domain;
825 
826 	ret = devm_request_irq(iommu->dev, iommu->irq, rk_iommu_irq,
827 			       IRQF_SHARED, dev_name(dev), iommu);
828 	if (ret)
829 		return ret;
830 
831 	for (i = 0; i < iommu->num_mmu; i++) {
832 		rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR,
833 			       rk_domain->dt_dma);
834 		rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
835 		rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, RK_MMU_IRQ_MASK);
836 	}
837 
838 	ret = rk_iommu_enable_paging(iommu);
839 	if (ret)
840 		return ret;
841 
842 	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
843 	list_add_tail(&iommu->node, &rk_domain->iommus);
844 	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
845 
846 	dev_dbg(dev, "Attached to iommu domain\n");
847 
848 	rk_iommu_disable_stall(iommu);
849 
850 	return 0;
851 }
852 
853 static void rk_iommu_detach_device(struct iommu_domain *domain,
854 				   struct device *dev)
855 {
856 	struct rk_iommu *iommu;
857 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
858 	unsigned long flags;
859 	int i;
860 
861 	/* Allow 'virtual devices' (eg drm) to detach from domain */
862 	iommu = rk_iommu_from_dev(dev);
863 	if (!iommu)
864 		return;
865 
866 	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
867 	list_del_init(&iommu->node);
868 	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
869 
870 	/* Ignore error while disabling, just keep going */
871 	rk_iommu_enable_stall(iommu);
872 	rk_iommu_disable_paging(iommu);
873 	for (i = 0; i < iommu->num_mmu; i++) {
874 		rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, 0);
875 		rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, 0);
876 	}
877 	rk_iommu_disable_stall(iommu);
878 
879 	devm_free_irq(iommu->dev, iommu->irq, iommu);
880 
881 	iommu->domain = NULL;
882 
883 	dev_dbg(dev, "Detached from iommu domain\n");
884 }
885 
886 static struct iommu_domain *rk_iommu_domain_alloc(unsigned type)
887 {
888 	struct rk_iommu_domain *rk_domain;
889 	struct platform_device *pdev;
890 	struct device *iommu_dev;
891 
892 	if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
893 		return NULL;
894 
895 	/* Register a pdev per domain, so DMA API can base on this *dev
896 	 * even some virtual master doesn't have an iommu slave
897 	 */
898 	pdev = platform_device_register_simple("rk_iommu_domain",
899 					       PLATFORM_DEVID_AUTO, NULL, 0);
900 	if (IS_ERR(pdev))
901 		return NULL;
902 
903 	rk_domain = devm_kzalloc(&pdev->dev, sizeof(*rk_domain), GFP_KERNEL);
904 	if (!rk_domain)
905 		goto err_unreg_pdev;
906 
907 	rk_domain->pdev = pdev;
908 
909 	if (type == IOMMU_DOMAIN_DMA &&
910 	    iommu_get_dma_cookie(&rk_domain->domain))
911 		goto err_unreg_pdev;
912 
913 	/*
914 	 * rk32xx iommus use a 2 level pagetable.
915 	 * Each level1 (dt) and level2 (pt) table has 1024 4-byte entries.
916 	 * Allocate one 4 KiB page for each table.
917 	 */
918 	rk_domain->dt = (u32 *)get_zeroed_page(GFP_KERNEL | GFP_DMA32);
919 	if (!rk_domain->dt)
920 		goto err_put_cookie;
921 
922 	iommu_dev = &pdev->dev;
923 	rk_domain->dt_dma = dma_map_single(iommu_dev, rk_domain->dt,
924 					   SPAGE_SIZE, DMA_TO_DEVICE);
925 	if (dma_mapping_error(iommu_dev, rk_domain->dt_dma)) {
926 		dev_err(iommu_dev, "DMA map error for DT\n");
927 		goto err_free_dt;
928 	}
929 
930 	rk_table_flush(rk_domain, rk_domain->dt_dma, NUM_DT_ENTRIES);
931 
932 	spin_lock_init(&rk_domain->iommus_lock);
933 	spin_lock_init(&rk_domain->dt_lock);
934 	INIT_LIST_HEAD(&rk_domain->iommus);
935 
936 	rk_domain->domain.geometry.aperture_start = 0;
937 	rk_domain->domain.geometry.aperture_end   = DMA_BIT_MASK(32);
938 	rk_domain->domain.geometry.force_aperture = true;
939 
940 	return &rk_domain->domain;
941 
942 err_free_dt:
943 	free_page((unsigned long)rk_domain->dt);
944 err_put_cookie:
945 	if (type == IOMMU_DOMAIN_DMA)
946 		iommu_put_dma_cookie(&rk_domain->domain);
947 err_unreg_pdev:
948 	platform_device_unregister(pdev);
949 
950 	return NULL;
951 }
952 
953 static void rk_iommu_domain_free(struct iommu_domain *domain)
954 {
955 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
956 	int i;
957 
958 	WARN_ON(!list_empty(&rk_domain->iommus));
959 
960 	for (i = 0; i < NUM_DT_ENTRIES; i++) {
961 		u32 dte = rk_domain->dt[i];
962 		if (rk_dte_is_pt_valid(dte)) {
963 			phys_addr_t pt_phys = rk_dte_pt_address(dte);
964 			u32 *page_table = phys_to_virt(pt_phys);
965 			dma_unmap_single(&rk_domain->pdev->dev, pt_phys,
966 					 SPAGE_SIZE, DMA_TO_DEVICE);
967 			free_page((unsigned long)page_table);
968 		}
969 	}
970 
971 	dma_unmap_single(&rk_domain->pdev->dev, rk_domain->dt_dma,
972 			 SPAGE_SIZE, DMA_TO_DEVICE);
973 	free_page((unsigned long)rk_domain->dt);
974 
975 	if (domain->type == IOMMU_DOMAIN_DMA)
976 		iommu_put_dma_cookie(&rk_domain->domain);
977 
978 	platform_device_unregister(rk_domain->pdev);
979 }
980 
981 static bool rk_iommu_is_dev_iommu_master(struct device *dev)
982 {
983 	struct device_node *np = dev->of_node;
984 	int ret;
985 
986 	/*
987 	 * An iommu master has an iommus property containing a list of phandles
988 	 * to iommu nodes, each with an #iommu-cells property with value 0.
989 	 */
990 	ret = of_count_phandle_with_args(np, "iommus", "#iommu-cells");
991 	return (ret > 0);
992 }
993 
994 static int rk_iommu_group_set_iommudata(struct iommu_group *group,
995 					struct device *dev)
996 {
997 	struct device_node *np = dev->of_node;
998 	struct platform_device *pd;
999 	int ret;
1000 	struct of_phandle_args args;
1001 
1002 	/*
1003 	 * An iommu master has an iommus property containing a list of phandles
1004 	 * to iommu nodes, each with an #iommu-cells property with value 0.
1005 	 */
1006 	ret = of_parse_phandle_with_args(np, "iommus", "#iommu-cells", 0,
1007 					 &args);
1008 	if (ret) {
1009 		dev_err(dev, "of_parse_phandle_with_args(%s) => %d\n",
1010 			np->full_name, ret);
1011 		return ret;
1012 	}
1013 	if (args.args_count != 0) {
1014 		dev_err(dev, "incorrect number of iommu params found for %s (found %d, expected 0)\n",
1015 			args.np->full_name, args.args_count);
1016 		return -EINVAL;
1017 	}
1018 
1019 	pd = of_find_device_by_node(args.np);
1020 	of_node_put(args.np);
1021 	if (!pd) {
1022 		dev_err(dev, "iommu %s not found\n", args.np->full_name);
1023 		return -EPROBE_DEFER;
1024 	}
1025 
1026 	/* TODO(djkurtz): handle multiple slave iommus for a single master */
1027 	iommu_group_set_iommudata(group, &pd->dev, NULL);
1028 
1029 	return 0;
1030 }
1031 
1032 static int rk_iommu_add_device(struct device *dev)
1033 {
1034 	struct iommu_group *group;
1035 	int ret;
1036 
1037 	if (!rk_iommu_is_dev_iommu_master(dev))
1038 		return -ENODEV;
1039 
1040 	group = iommu_group_get(dev);
1041 	if (!group) {
1042 		group = iommu_group_alloc();
1043 		if (IS_ERR(group)) {
1044 			dev_err(dev, "Failed to allocate IOMMU group\n");
1045 			return PTR_ERR(group);
1046 		}
1047 	}
1048 
1049 	ret = iommu_group_add_device(group, dev);
1050 	if (ret)
1051 		goto err_put_group;
1052 
1053 	ret = rk_iommu_group_set_iommudata(group, dev);
1054 	if (ret)
1055 		goto err_remove_device;
1056 
1057 	iommu_group_put(group);
1058 
1059 	return 0;
1060 
1061 err_remove_device:
1062 	iommu_group_remove_device(dev);
1063 err_put_group:
1064 	iommu_group_put(group);
1065 	return ret;
1066 }
1067 
1068 static void rk_iommu_remove_device(struct device *dev)
1069 {
1070 	if (!rk_iommu_is_dev_iommu_master(dev))
1071 		return;
1072 
1073 	iommu_group_remove_device(dev);
1074 }
1075 
1076 static const struct iommu_ops rk_iommu_ops = {
1077 	.domain_alloc = rk_iommu_domain_alloc,
1078 	.domain_free = rk_iommu_domain_free,
1079 	.attach_dev = rk_iommu_attach_device,
1080 	.detach_dev = rk_iommu_detach_device,
1081 	.map = rk_iommu_map,
1082 	.unmap = rk_iommu_unmap,
1083 	.map_sg = default_iommu_map_sg,
1084 	.add_device = rk_iommu_add_device,
1085 	.remove_device = rk_iommu_remove_device,
1086 	.iova_to_phys = rk_iommu_iova_to_phys,
1087 	.pgsize_bitmap = RK_IOMMU_PGSIZE_BITMAP,
1088 };
1089 
1090 static int rk_iommu_domain_probe(struct platform_device *pdev)
1091 {
1092 	struct device *dev = &pdev->dev;
1093 
1094 	dev->dma_parms = devm_kzalloc(dev, sizeof(*dev->dma_parms), GFP_KERNEL);
1095 	if (!dev->dma_parms)
1096 		return -ENOMEM;
1097 
1098 	/* Set dma_ops for dev, otherwise it would be dummy_dma_ops */
1099 	arch_setup_dma_ops(dev, 0, DMA_BIT_MASK(32), NULL, false);
1100 
1101 	dma_set_max_seg_size(dev, DMA_BIT_MASK(32));
1102 	dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(32));
1103 
1104 	return 0;
1105 }
1106 
1107 static struct platform_driver rk_iommu_domain_driver = {
1108 	.probe = rk_iommu_domain_probe,
1109 	.driver = {
1110 		   .name = "rk_iommu_domain",
1111 	},
1112 };
1113 
1114 static int rk_iommu_probe(struct platform_device *pdev)
1115 {
1116 	struct device *dev = &pdev->dev;
1117 	struct rk_iommu *iommu;
1118 	struct resource *res;
1119 	int num_res = pdev->num_resources;
1120 	int i;
1121 
1122 	iommu = devm_kzalloc(dev, sizeof(*iommu), GFP_KERNEL);
1123 	if (!iommu)
1124 		return -ENOMEM;
1125 
1126 	platform_set_drvdata(pdev, iommu);
1127 	iommu->dev = dev;
1128 	iommu->num_mmu = 0;
1129 
1130 	iommu->bases = devm_kzalloc(dev, sizeof(*iommu->bases) * num_res,
1131 				    GFP_KERNEL);
1132 	if (!iommu->bases)
1133 		return -ENOMEM;
1134 
1135 	for (i = 0; i < num_res; i++) {
1136 		res = platform_get_resource(pdev, IORESOURCE_MEM, i);
1137 		if (!res)
1138 			continue;
1139 		iommu->bases[i] = devm_ioremap_resource(&pdev->dev, res);
1140 		if (IS_ERR(iommu->bases[i]))
1141 			continue;
1142 		iommu->num_mmu++;
1143 	}
1144 	if (iommu->num_mmu == 0)
1145 		return PTR_ERR(iommu->bases[0]);
1146 
1147 	iommu->irq = platform_get_irq(pdev, 0);
1148 	if (iommu->irq < 0) {
1149 		dev_err(dev, "Failed to get IRQ, %d\n", iommu->irq);
1150 		return -ENXIO;
1151 	}
1152 
1153 	return 0;
1154 }
1155 
1156 static int rk_iommu_remove(struct platform_device *pdev)
1157 {
1158 	return 0;
1159 }
1160 
1161 static const struct of_device_id rk_iommu_dt_ids[] = {
1162 	{ .compatible = "rockchip,iommu" },
1163 	{ /* sentinel */ }
1164 };
1165 MODULE_DEVICE_TABLE(of, rk_iommu_dt_ids);
1166 
1167 static struct platform_driver rk_iommu_driver = {
1168 	.probe = rk_iommu_probe,
1169 	.remove = rk_iommu_remove,
1170 	.driver = {
1171 		   .name = "rk_iommu",
1172 		   .of_match_table = rk_iommu_dt_ids,
1173 	},
1174 };
1175 
1176 static int __init rk_iommu_init(void)
1177 {
1178 	struct device_node *np;
1179 	int ret;
1180 
1181 	np = of_find_matching_node(NULL, rk_iommu_dt_ids);
1182 	if (!np)
1183 		return 0;
1184 
1185 	of_node_put(np);
1186 
1187 	ret = bus_set_iommu(&platform_bus_type, &rk_iommu_ops);
1188 	if (ret)
1189 		return ret;
1190 
1191 	ret = platform_driver_register(&rk_iommu_domain_driver);
1192 	if (ret)
1193 		return ret;
1194 
1195 	ret = platform_driver_register(&rk_iommu_driver);
1196 	if (ret)
1197 		platform_driver_unregister(&rk_iommu_domain_driver);
1198 	return ret;
1199 }
1200 static void __exit rk_iommu_exit(void)
1201 {
1202 	platform_driver_unregister(&rk_iommu_driver);
1203 	platform_driver_unregister(&rk_iommu_domain_driver);
1204 }
1205 
1206 subsys_initcall(rk_iommu_init);
1207 module_exit(rk_iommu_exit);
1208 
1209 MODULE_DESCRIPTION("IOMMU API for Rockchip");
1210 MODULE_AUTHOR("Simon Xue <xxm@rock-chips.com> and Daniel Kurtz <djkurtz@chromium.org>");
1211 MODULE_ALIAS("platform:rockchip-iommu");
1212 MODULE_LICENSE("GPL v2");
1213