1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * IOMMU API for Rockchip
4  *
5  * Module Authors:	Simon Xue <xxm@rock-chips.com>
6  *			Daniel Kurtz <djkurtz@chromium.org>
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/compiler.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/errno.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/iommu.h>
18 #include <linux/iopoll.h>
19 #include <linux/list.h>
20 #include <linux/mm.h>
21 #include <linux/init.h>
22 #include <linux/of.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 
29 /** MMU register offsets */
30 #define RK_MMU_DTE_ADDR		0x00	/* Directory table address */
31 #define RK_MMU_STATUS		0x04
32 #define RK_MMU_COMMAND		0x08
33 #define RK_MMU_PAGE_FAULT_ADDR	0x0C	/* IOVA of last page fault */
34 #define RK_MMU_ZAP_ONE_LINE	0x10	/* Shootdown one IOTLB entry */
35 #define RK_MMU_INT_RAWSTAT	0x14	/* IRQ status ignoring mask */
36 #define RK_MMU_INT_CLEAR	0x18	/* Acknowledge and re-arm irq */
37 #define RK_MMU_INT_MASK		0x1C	/* IRQ enable */
38 #define RK_MMU_INT_STATUS	0x20	/* IRQ status after masking */
39 #define RK_MMU_AUTO_GATING	0x24
40 
41 #define DTE_ADDR_DUMMY		0xCAFEBABE
42 
43 #define RK_MMU_POLL_PERIOD_US		100
44 #define RK_MMU_FORCE_RESET_TIMEOUT_US	100000
45 #define RK_MMU_POLL_TIMEOUT_US		1000
46 
47 /* RK_MMU_STATUS fields */
48 #define RK_MMU_STATUS_PAGING_ENABLED       BIT(0)
49 #define RK_MMU_STATUS_PAGE_FAULT_ACTIVE    BIT(1)
50 #define RK_MMU_STATUS_STALL_ACTIVE         BIT(2)
51 #define RK_MMU_STATUS_IDLE                 BIT(3)
52 #define RK_MMU_STATUS_REPLAY_BUFFER_EMPTY  BIT(4)
53 #define RK_MMU_STATUS_PAGE_FAULT_IS_WRITE  BIT(5)
54 #define RK_MMU_STATUS_STALL_NOT_ACTIVE     BIT(31)
55 
56 /* RK_MMU_COMMAND command values */
57 #define RK_MMU_CMD_ENABLE_PAGING    0  /* Enable memory translation */
58 #define RK_MMU_CMD_DISABLE_PAGING   1  /* Disable memory translation */
59 #define RK_MMU_CMD_ENABLE_STALL     2  /* Stall paging to allow other cmds */
60 #define RK_MMU_CMD_DISABLE_STALL    3  /* Stop stall re-enables paging */
61 #define RK_MMU_CMD_ZAP_CACHE        4  /* Shoot down entire IOTLB */
62 #define RK_MMU_CMD_PAGE_FAULT_DONE  5  /* Clear page fault */
63 #define RK_MMU_CMD_FORCE_RESET      6  /* Reset all registers */
64 
65 /* RK_MMU_INT_* register fields */
66 #define RK_MMU_IRQ_PAGE_FAULT    0x01  /* page fault */
67 #define RK_MMU_IRQ_BUS_ERROR     0x02  /* bus read error */
68 #define RK_MMU_IRQ_MASK          (RK_MMU_IRQ_PAGE_FAULT | RK_MMU_IRQ_BUS_ERROR)
69 
70 #define NUM_DT_ENTRIES 1024
71 #define NUM_PT_ENTRIES 1024
72 
73 #define SPAGE_ORDER 12
74 #define SPAGE_SIZE (1 << SPAGE_ORDER)
75 
76  /*
77   * Support mapping any size that fits in one page table:
78   *   4 KiB to 4 MiB
79   */
80 #define RK_IOMMU_PGSIZE_BITMAP 0x007ff000
81 
82 struct rk_iommu_domain {
83 	struct list_head iommus;
84 	u32 *dt; /* page directory table */
85 	dma_addr_t dt_dma;
86 	spinlock_t iommus_lock; /* lock for iommus list */
87 	spinlock_t dt_lock; /* lock for modifying page directory table */
88 
89 	struct iommu_domain domain;
90 };
91 
92 /* list of clocks required by IOMMU */
93 static const char * const rk_iommu_clocks[] = {
94 	"aclk", "iface",
95 };
96 
97 struct rk_iommu_ops {
98 	phys_addr_t (*pt_address)(u32 dte);
99 	u32 (*mk_dtentries)(dma_addr_t pt_dma);
100 	u32 (*mk_ptentries)(phys_addr_t page, int prot);
101 	phys_addr_t (*dte_addr_phys)(u32 addr);
102 	u32 (*dma_addr_dte)(dma_addr_t dt_dma);
103 	u64 dma_bit_mask;
104 };
105 
106 struct rk_iommu {
107 	struct device *dev;
108 	void __iomem **bases;
109 	int num_mmu;
110 	int num_irq;
111 	struct clk_bulk_data *clocks;
112 	int num_clocks;
113 	bool reset_disabled;
114 	struct iommu_device iommu;
115 	struct list_head node; /* entry in rk_iommu_domain.iommus */
116 	struct iommu_domain *domain; /* domain to which iommu is attached */
117 	struct iommu_group *group;
118 };
119 
120 struct rk_iommudata {
121 	struct device_link *link; /* runtime PM link from IOMMU to master */
122 	struct rk_iommu *iommu;
123 };
124 
125 static struct device *dma_dev;
126 static const struct rk_iommu_ops *rk_ops;
127 
128 static inline void rk_table_flush(struct rk_iommu_domain *dom, dma_addr_t dma,
129 				  unsigned int count)
130 {
131 	size_t size = count * sizeof(u32); /* count of u32 entry */
132 
133 	dma_sync_single_for_device(dma_dev, dma, size, DMA_TO_DEVICE);
134 }
135 
136 static struct rk_iommu_domain *to_rk_domain(struct iommu_domain *dom)
137 {
138 	return container_of(dom, struct rk_iommu_domain, domain);
139 }
140 
141 /*
142  * The Rockchip rk3288 iommu uses a 2-level page table.
143  * The first level is the "Directory Table" (DT).
144  * The DT consists of 1024 4-byte Directory Table Entries (DTEs), each pointing
145  * to a "Page Table".
146  * The second level is the 1024 Page Tables (PT).
147  * Each PT consists of 1024 4-byte Page Table Entries (PTEs), each pointing to
148  * a 4 KB page of physical memory.
149  *
150  * The DT and each PT fits in a single 4 KB page (4-bytes * 1024 entries).
151  * Each iommu device has a MMU_DTE_ADDR register that contains the physical
152  * address of the start of the DT page.
153  *
154  * The structure of the page table is as follows:
155  *
156  *                   DT
157  * MMU_DTE_ADDR -> +-----+
158  *                 |     |
159  *                 +-----+     PT
160  *                 | DTE | -> +-----+
161  *                 +-----+    |     |     Memory
162  *                 |     |    +-----+     Page
163  *                 |     |    | PTE | -> +-----+
164  *                 +-----+    +-----+    |     |
165  *                            |     |    |     |
166  *                            |     |    |     |
167  *                            +-----+    |     |
168  *                                       |     |
169  *                                       |     |
170  *                                       +-----+
171  */
172 
173 /*
174  * Each DTE has a PT address and a valid bit:
175  * +---------------------+-----------+-+
176  * | PT address          | Reserved  |V|
177  * +---------------------+-----------+-+
178  *  31:12 - PT address (PTs always starts on a 4 KB boundary)
179  *  11: 1 - Reserved
180  *      0 - 1 if PT @ PT address is valid
181  */
182 #define RK_DTE_PT_ADDRESS_MASK    0xfffff000
183 #define RK_DTE_PT_VALID           BIT(0)
184 
185 static inline phys_addr_t rk_dte_pt_address(u32 dte)
186 {
187 	return (phys_addr_t)dte & RK_DTE_PT_ADDRESS_MASK;
188 }
189 
190 /*
191  * In v2:
192  * 31:12 - PT address bit 31:0
193  * 11: 8 - PT address bit 35:32
194  *  7: 4 - PT address bit 39:36
195  *  3: 1 - Reserved
196  *     0 - 1 if PT @ PT address is valid
197  */
198 #define RK_DTE_PT_ADDRESS_MASK_V2 GENMASK_ULL(31, 4)
199 #define DTE_HI_MASK1	GENMASK(11, 8)
200 #define DTE_HI_MASK2	GENMASK(7, 4)
201 #define DTE_HI_SHIFT1	24 /* shift bit 8 to bit 32 */
202 #define DTE_HI_SHIFT2	32 /* shift bit 4 to bit 36 */
203 #define PAGE_DESC_HI_MASK1	GENMASK_ULL(35, 32)
204 #define PAGE_DESC_HI_MASK2	GENMASK_ULL(39, 36)
205 
206 static inline phys_addr_t rk_dte_pt_address_v2(u32 dte)
207 {
208 	u64 dte_v2 = dte;
209 
210 	dte_v2 = ((dte_v2 & DTE_HI_MASK2) << DTE_HI_SHIFT2) |
211 		 ((dte_v2 & DTE_HI_MASK1) << DTE_HI_SHIFT1) |
212 		 (dte_v2 & RK_DTE_PT_ADDRESS_MASK);
213 
214 	return (phys_addr_t)dte_v2;
215 }
216 
217 static inline bool rk_dte_is_pt_valid(u32 dte)
218 {
219 	return dte & RK_DTE_PT_VALID;
220 }
221 
222 static inline u32 rk_mk_dte(dma_addr_t pt_dma)
223 {
224 	return (pt_dma & RK_DTE_PT_ADDRESS_MASK) | RK_DTE_PT_VALID;
225 }
226 
227 static inline u32 rk_mk_dte_v2(dma_addr_t pt_dma)
228 {
229 	pt_dma = (pt_dma & RK_DTE_PT_ADDRESS_MASK) |
230 		 ((pt_dma & PAGE_DESC_HI_MASK1) >> DTE_HI_SHIFT1) |
231 		 (pt_dma & PAGE_DESC_HI_MASK2) >> DTE_HI_SHIFT2;
232 
233 	return (pt_dma & RK_DTE_PT_ADDRESS_MASK_V2) | RK_DTE_PT_VALID;
234 }
235 
236 /*
237  * Each PTE has a Page address, some flags and a valid bit:
238  * +---------------------+---+-------+-+
239  * | Page address        |Rsv| Flags |V|
240  * +---------------------+---+-------+-+
241  *  31:12 - Page address (Pages always start on a 4 KB boundary)
242  *  11: 9 - Reserved
243  *   8: 1 - Flags
244  *      8 - Read allocate - allocate cache space on read misses
245  *      7 - Read cache - enable cache & prefetch of data
246  *      6 - Write buffer - enable delaying writes on their way to memory
247  *      5 - Write allocate - allocate cache space on write misses
248  *      4 - Write cache - different writes can be merged together
249  *      3 - Override cache attributes
250  *          if 1, bits 4-8 control cache attributes
251  *          if 0, the system bus defaults are used
252  *      2 - Writable
253  *      1 - Readable
254  *      0 - 1 if Page @ Page address is valid
255  */
256 #define RK_PTE_PAGE_ADDRESS_MASK  0xfffff000
257 #define RK_PTE_PAGE_FLAGS_MASK    0x000001fe
258 #define RK_PTE_PAGE_WRITABLE      BIT(2)
259 #define RK_PTE_PAGE_READABLE      BIT(1)
260 #define RK_PTE_PAGE_VALID         BIT(0)
261 
262 static inline bool rk_pte_is_page_valid(u32 pte)
263 {
264 	return pte & RK_PTE_PAGE_VALID;
265 }
266 
267 /* TODO: set cache flags per prot IOMMU_CACHE */
268 static u32 rk_mk_pte(phys_addr_t page, int prot)
269 {
270 	u32 flags = 0;
271 	flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0;
272 	flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0;
273 	page &= RK_PTE_PAGE_ADDRESS_MASK;
274 	return page | flags | RK_PTE_PAGE_VALID;
275 }
276 
277 /*
278  * In v2:
279  * 31:12 - Page address bit 31:0
280  *  11:9 - Page address bit 34:32
281  *   8:4 - Page address bit 39:35
282  *     3 - Security
283  *     2 - Readable
284  *     1 - Writable
285  *     0 - 1 if Page @ Page address is valid
286  */
287 #define RK_PTE_PAGE_READABLE_V2      BIT(2)
288 #define RK_PTE_PAGE_WRITABLE_V2      BIT(1)
289 
290 static u32 rk_mk_pte_v2(phys_addr_t page, int prot)
291 {
292 	u32 flags = 0;
293 
294 	flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE_V2 : 0;
295 	flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE_V2 : 0;
296 
297 	return rk_mk_dte_v2(page) | flags;
298 }
299 
300 static u32 rk_mk_pte_invalid(u32 pte)
301 {
302 	return pte & ~RK_PTE_PAGE_VALID;
303 }
304 
305 /*
306  * rk3288 iova (IOMMU Virtual Address) format
307  *  31       22.21       12.11          0
308  * +-----------+-----------+-------------+
309  * | DTE index | PTE index | Page offset |
310  * +-----------+-----------+-------------+
311  *  31:22 - DTE index   - index of DTE in DT
312  *  21:12 - PTE index   - index of PTE in PT @ DTE.pt_address
313  *  11: 0 - Page offset - offset into page @ PTE.page_address
314  */
315 #define RK_IOVA_DTE_MASK    0xffc00000
316 #define RK_IOVA_DTE_SHIFT   22
317 #define RK_IOVA_PTE_MASK    0x003ff000
318 #define RK_IOVA_PTE_SHIFT   12
319 #define RK_IOVA_PAGE_MASK   0x00000fff
320 #define RK_IOVA_PAGE_SHIFT  0
321 
322 static u32 rk_iova_dte_index(dma_addr_t iova)
323 {
324 	return (u32)(iova & RK_IOVA_DTE_MASK) >> RK_IOVA_DTE_SHIFT;
325 }
326 
327 static u32 rk_iova_pte_index(dma_addr_t iova)
328 {
329 	return (u32)(iova & RK_IOVA_PTE_MASK) >> RK_IOVA_PTE_SHIFT;
330 }
331 
332 static u32 rk_iova_page_offset(dma_addr_t iova)
333 {
334 	return (u32)(iova & RK_IOVA_PAGE_MASK) >> RK_IOVA_PAGE_SHIFT;
335 }
336 
337 static u32 rk_iommu_read(void __iomem *base, u32 offset)
338 {
339 	return readl(base + offset);
340 }
341 
342 static void rk_iommu_write(void __iomem *base, u32 offset, u32 value)
343 {
344 	writel(value, base + offset);
345 }
346 
347 static void rk_iommu_command(struct rk_iommu *iommu, u32 command)
348 {
349 	int i;
350 
351 	for (i = 0; i < iommu->num_mmu; i++)
352 		writel(command, iommu->bases[i] + RK_MMU_COMMAND);
353 }
354 
355 static void rk_iommu_base_command(void __iomem *base, u32 command)
356 {
357 	writel(command, base + RK_MMU_COMMAND);
358 }
359 static void rk_iommu_zap_lines(struct rk_iommu *iommu, dma_addr_t iova_start,
360 			       size_t size)
361 {
362 	int i;
363 	dma_addr_t iova_end = iova_start + size;
364 	/*
365 	 * TODO(djkurtz): Figure out when it is more efficient to shootdown the
366 	 * entire iotlb rather than iterate over individual iovas.
367 	 */
368 	for (i = 0; i < iommu->num_mmu; i++) {
369 		dma_addr_t iova;
370 
371 		for (iova = iova_start; iova < iova_end; iova += SPAGE_SIZE)
372 			rk_iommu_write(iommu->bases[i], RK_MMU_ZAP_ONE_LINE, iova);
373 	}
374 }
375 
376 static bool rk_iommu_is_stall_active(struct rk_iommu *iommu)
377 {
378 	bool active = true;
379 	int i;
380 
381 	for (i = 0; i < iommu->num_mmu; i++)
382 		active &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
383 					   RK_MMU_STATUS_STALL_ACTIVE);
384 
385 	return active;
386 }
387 
388 static bool rk_iommu_is_paging_enabled(struct rk_iommu *iommu)
389 {
390 	bool enable = true;
391 	int i;
392 
393 	for (i = 0; i < iommu->num_mmu; i++)
394 		enable &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
395 					   RK_MMU_STATUS_PAGING_ENABLED);
396 
397 	return enable;
398 }
399 
400 static bool rk_iommu_is_reset_done(struct rk_iommu *iommu)
401 {
402 	bool done = true;
403 	int i;
404 
405 	for (i = 0; i < iommu->num_mmu; i++)
406 		done &= rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR) == 0;
407 
408 	return done;
409 }
410 
411 static int rk_iommu_enable_stall(struct rk_iommu *iommu)
412 {
413 	int ret, i;
414 	bool val;
415 
416 	if (rk_iommu_is_stall_active(iommu))
417 		return 0;
418 
419 	/* Stall can only be enabled if paging is enabled */
420 	if (!rk_iommu_is_paging_enabled(iommu))
421 		return 0;
422 
423 	rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_STALL);
424 
425 	ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val,
426 				 val, RK_MMU_POLL_PERIOD_US,
427 				 RK_MMU_POLL_TIMEOUT_US);
428 	if (ret)
429 		for (i = 0; i < iommu->num_mmu; i++)
430 			dev_err(iommu->dev, "Enable stall request timed out, status: %#08x\n",
431 				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
432 
433 	return ret;
434 }
435 
436 static int rk_iommu_disable_stall(struct rk_iommu *iommu)
437 {
438 	int ret, i;
439 	bool val;
440 
441 	if (!rk_iommu_is_stall_active(iommu))
442 		return 0;
443 
444 	rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_STALL);
445 
446 	ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val,
447 				 !val, RK_MMU_POLL_PERIOD_US,
448 				 RK_MMU_POLL_TIMEOUT_US);
449 	if (ret)
450 		for (i = 0; i < iommu->num_mmu; i++)
451 			dev_err(iommu->dev, "Disable stall request timed out, status: %#08x\n",
452 				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
453 
454 	return ret;
455 }
456 
457 static int rk_iommu_enable_paging(struct rk_iommu *iommu)
458 {
459 	int ret, i;
460 	bool val;
461 
462 	if (rk_iommu_is_paging_enabled(iommu))
463 		return 0;
464 
465 	rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_PAGING);
466 
467 	ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val,
468 				 val, RK_MMU_POLL_PERIOD_US,
469 				 RK_MMU_POLL_TIMEOUT_US);
470 	if (ret)
471 		for (i = 0; i < iommu->num_mmu; i++)
472 			dev_err(iommu->dev, "Enable paging request timed out, status: %#08x\n",
473 				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
474 
475 	return ret;
476 }
477 
478 static int rk_iommu_disable_paging(struct rk_iommu *iommu)
479 {
480 	int ret, i;
481 	bool val;
482 
483 	if (!rk_iommu_is_paging_enabled(iommu))
484 		return 0;
485 
486 	rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_PAGING);
487 
488 	ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val,
489 				 !val, RK_MMU_POLL_PERIOD_US,
490 				 RK_MMU_POLL_TIMEOUT_US);
491 	if (ret)
492 		for (i = 0; i < iommu->num_mmu; i++)
493 			dev_err(iommu->dev, "Disable paging request timed out, status: %#08x\n",
494 				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
495 
496 	return ret;
497 }
498 
499 static int rk_iommu_force_reset(struct rk_iommu *iommu)
500 {
501 	int ret, i;
502 	u32 dte_addr;
503 	bool val;
504 
505 	if (iommu->reset_disabled)
506 		return 0;
507 
508 	/*
509 	 * Check if register DTE_ADDR is working by writing DTE_ADDR_DUMMY
510 	 * and verifying that upper 5 nybbles are read back.
511 	 */
512 	for (i = 0; i < iommu->num_mmu; i++) {
513 		dte_addr = rk_ops->pt_address(DTE_ADDR_DUMMY);
514 		rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, dte_addr);
515 
516 		if (dte_addr != rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR)) {
517 			dev_err(iommu->dev, "Error during raw reset. MMU_DTE_ADDR is not functioning\n");
518 			return -EFAULT;
519 		}
520 	}
521 
522 	rk_iommu_command(iommu, RK_MMU_CMD_FORCE_RESET);
523 
524 	ret = readx_poll_timeout(rk_iommu_is_reset_done, iommu, val,
525 				 val, RK_MMU_FORCE_RESET_TIMEOUT_US,
526 				 RK_MMU_POLL_TIMEOUT_US);
527 	if (ret) {
528 		dev_err(iommu->dev, "FORCE_RESET command timed out\n");
529 		return ret;
530 	}
531 
532 	return 0;
533 }
534 
535 static inline phys_addr_t rk_dte_addr_phys(u32 addr)
536 {
537 	return (phys_addr_t)addr;
538 }
539 
540 static inline u32 rk_dma_addr_dte(dma_addr_t dt_dma)
541 {
542 	return dt_dma;
543 }
544 
545 #define DT_HI_MASK GENMASK_ULL(39, 32)
546 #define DTE_BASE_HI_MASK GENMASK(11, 4)
547 #define DT_SHIFT   28
548 
549 static inline phys_addr_t rk_dte_addr_phys_v2(u32 addr)
550 {
551 	u64 addr64 = addr;
552 	return (phys_addr_t)(addr64 & RK_DTE_PT_ADDRESS_MASK) |
553 	       ((addr64 & DTE_BASE_HI_MASK) << DT_SHIFT);
554 }
555 
556 static inline u32 rk_dma_addr_dte_v2(dma_addr_t dt_dma)
557 {
558 	return (dt_dma & RK_DTE_PT_ADDRESS_MASK) |
559 	       ((dt_dma & DT_HI_MASK) >> DT_SHIFT);
560 }
561 
562 static void log_iova(struct rk_iommu *iommu, int index, dma_addr_t iova)
563 {
564 	void __iomem *base = iommu->bases[index];
565 	u32 dte_index, pte_index, page_offset;
566 	u32 mmu_dte_addr;
567 	phys_addr_t mmu_dte_addr_phys, dte_addr_phys;
568 	u32 *dte_addr;
569 	u32 dte;
570 	phys_addr_t pte_addr_phys = 0;
571 	u32 *pte_addr = NULL;
572 	u32 pte = 0;
573 	phys_addr_t page_addr_phys = 0;
574 	u32 page_flags = 0;
575 
576 	dte_index = rk_iova_dte_index(iova);
577 	pte_index = rk_iova_pte_index(iova);
578 	page_offset = rk_iova_page_offset(iova);
579 
580 	mmu_dte_addr = rk_iommu_read(base, RK_MMU_DTE_ADDR);
581 	mmu_dte_addr_phys = rk_ops->dte_addr_phys(mmu_dte_addr);
582 
583 	dte_addr_phys = mmu_dte_addr_phys + (4 * dte_index);
584 	dte_addr = phys_to_virt(dte_addr_phys);
585 	dte = *dte_addr;
586 
587 	if (!rk_dte_is_pt_valid(dte))
588 		goto print_it;
589 
590 	pte_addr_phys = rk_ops->pt_address(dte) + (pte_index * 4);
591 	pte_addr = phys_to_virt(pte_addr_phys);
592 	pte = *pte_addr;
593 
594 	if (!rk_pte_is_page_valid(pte))
595 		goto print_it;
596 
597 	page_addr_phys = rk_ops->pt_address(pte) + page_offset;
598 	page_flags = pte & RK_PTE_PAGE_FLAGS_MASK;
599 
600 print_it:
601 	dev_err(iommu->dev, "iova = %pad: dte_index: %#03x pte_index: %#03x page_offset: %#03x\n",
602 		&iova, dte_index, pte_index, page_offset);
603 	dev_err(iommu->dev, "mmu_dte_addr: %pa dte@%pa: %#08x valid: %u pte@%pa: %#08x valid: %u page@%pa flags: %#03x\n",
604 		&mmu_dte_addr_phys, &dte_addr_phys, dte,
605 		rk_dte_is_pt_valid(dte), &pte_addr_phys, pte,
606 		rk_pte_is_page_valid(pte), &page_addr_phys, page_flags);
607 }
608 
609 static irqreturn_t rk_iommu_irq(int irq, void *dev_id)
610 {
611 	struct rk_iommu *iommu = dev_id;
612 	u32 status;
613 	u32 int_status;
614 	dma_addr_t iova;
615 	irqreturn_t ret = IRQ_NONE;
616 	int i, err;
617 
618 	err = pm_runtime_get_if_in_use(iommu->dev);
619 	if (!err || WARN_ON_ONCE(err < 0))
620 		return ret;
621 
622 	if (WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks)))
623 		goto out;
624 
625 	for (i = 0; i < iommu->num_mmu; i++) {
626 		int_status = rk_iommu_read(iommu->bases[i], RK_MMU_INT_STATUS);
627 		if (int_status == 0)
628 			continue;
629 
630 		ret = IRQ_HANDLED;
631 		iova = rk_iommu_read(iommu->bases[i], RK_MMU_PAGE_FAULT_ADDR);
632 
633 		if (int_status & RK_MMU_IRQ_PAGE_FAULT) {
634 			int flags;
635 
636 			status = rk_iommu_read(iommu->bases[i], RK_MMU_STATUS);
637 			flags = (status & RK_MMU_STATUS_PAGE_FAULT_IS_WRITE) ?
638 					IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
639 
640 			dev_err(iommu->dev, "Page fault at %pad of type %s\n",
641 				&iova,
642 				(flags == IOMMU_FAULT_WRITE) ? "write" : "read");
643 
644 			log_iova(iommu, i, iova);
645 
646 			/*
647 			 * Report page fault to any installed handlers.
648 			 * Ignore the return code, though, since we always zap cache
649 			 * and clear the page fault anyway.
650 			 */
651 			if (iommu->domain)
652 				report_iommu_fault(iommu->domain, iommu->dev, iova,
653 						   flags);
654 			else
655 				dev_err(iommu->dev, "Page fault while iommu not attached to domain?\n");
656 
657 			rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
658 			rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_PAGE_FAULT_DONE);
659 		}
660 
661 		if (int_status & RK_MMU_IRQ_BUS_ERROR)
662 			dev_err(iommu->dev, "BUS_ERROR occurred at %pad\n", &iova);
663 
664 		if (int_status & ~RK_MMU_IRQ_MASK)
665 			dev_err(iommu->dev, "unexpected int_status: %#08x\n",
666 				int_status);
667 
668 		rk_iommu_write(iommu->bases[i], RK_MMU_INT_CLEAR, int_status);
669 	}
670 
671 	clk_bulk_disable(iommu->num_clocks, iommu->clocks);
672 
673 out:
674 	pm_runtime_put(iommu->dev);
675 	return ret;
676 }
677 
678 static phys_addr_t rk_iommu_iova_to_phys(struct iommu_domain *domain,
679 					 dma_addr_t iova)
680 {
681 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
682 	unsigned long flags;
683 	phys_addr_t pt_phys, phys = 0;
684 	u32 dte, pte;
685 	u32 *page_table;
686 
687 	spin_lock_irqsave(&rk_domain->dt_lock, flags);
688 
689 	dte = rk_domain->dt[rk_iova_dte_index(iova)];
690 	if (!rk_dte_is_pt_valid(dte))
691 		goto out;
692 
693 	pt_phys = rk_ops->pt_address(dte);
694 	page_table = (u32 *)phys_to_virt(pt_phys);
695 	pte = page_table[rk_iova_pte_index(iova)];
696 	if (!rk_pte_is_page_valid(pte))
697 		goto out;
698 
699 	phys = rk_ops->pt_address(pte) + rk_iova_page_offset(iova);
700 out:
701 	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
702 
703 	return phys;
704 }
705 
706 static void rk_iommu_zap_iova(struct rk_iommu_domain *rk_domain,
707 			      dma_addr_t iova, size_t size)
708 {
709 	struct list_head *pos;
710 	unsigned long flags;
711 
712 	/* shootdown these iova from all iommus using this domain */
713 	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
714 	list_for_each(pos, &rk_domain->iommus) {
715 		struct rk_iommu *iommu;
716 		int ret;
717 
718 		iommu = list_entry(pos, struct rk_iommu, node);
719 
720 		/* Only zap TLBs of IOMMUs that are powered on. */
721 		ret = pm_runtime_get_if_in_use(iommu->dev);
722 		if (WARN_ON_ONCE(ret < 0))
723 			continue;
724 		if (ret) {
725 			WARN_ON(clk_bulk_enable(iommu->num_clocks,
726 						iommu->clocks));
727 			rk_iommu_zap_lines(iommu, iova, size);
728 			clk_bulk_disable(iommu->num_clocks, iommu->clocks);
729 			pm_runtime_put(iommu->dev);
730 		}
731 	}
732 	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
733 }
734 
735 static void rk_iommu_zap_iova_first_last(struct rk_iommu_domain *rk_domain,
736 					 dma_addr_t iova, size_t size)
737 {
738 	rk_iommu_zap_iova(rk_domain, iova, SPAGE_SIZE);
739 	if (size > SPAGE_SIZE)
740 		rk_iommu_zap_iova(rk_domain, iova + size - SPAGE_SIZE,
741 					SPAGE_SIZE);
742 }
743 
744 static u32 *rk_dte_get_page_table(struct rk_iommu_domain *rk_domain,
745 				  dma_addr_t iova)
746 {
747 	u32 *page_table, *dte_addr;
748 	u32 dte_index, dte;
749 	phys_addr_t pt_phys;
750 	dma_addr_t pt_dma;
751 
752 	assert_spin_locked(&rk_domain->dt_lock);
753 
754 	dte_index = rk_iova_dte_index(iova);
755 	dte_addr = &rk_domain->dt[dte_index];
756 	dte = *dte_addr;
757 	if (rk_dte_is_pt_valid(dte))
758 		goto done;
759 
760 	page_table = (u32 *)get_zeroed_page(GFP_ATOMIC | GFP_DMA32);
761 	if (!page_table)
762 		return ERR_PTR(-ENOMEM);
763 
764 	pt_dma = dma_map_single(dma_dev, page_table, SPAGE_SIZE, DMA_TO_DEVICE);
765 	if (dma_mapping_error(dma_dev, pt_dma)) {
766 		dev_err(dma_dev, "DMA mapping error while allocating page table\n");
767 		free_page((unsigned long)page_table);
768 		return ERR_PTR(-ENOMEM);
769 	}
770 
771 	dte = rk_ops->mk_dtentries(pt_dma);
772 	*dte_addr = dte;
773 
774 	rk_table_flush(rk_domain,
775 		       rk_domain->dt_dma + dte_index * sizeof(u32), 1);
776 done:
777 	pt_phys = rk_ops->pt_address(dte);
778 	return (u32 *)phys_to_virt(pt_phys);
779 }
780 
781 static size_t rk_iommu_unmap_iova(struct rk_iommu_domain *rk_domain,
782 				  u32 *pte_addr, dma_addr_t pte_dma,
783 				  size_t size)
784 {
785 	unsigned int pte_count;
786 	unsigned int pte_total = size / SPAGE_SIZE;
787 
788 	assert_spin_locked(&rk_domain->dt_lock);
789 
790 	for (pte_count = 0; pte_count < pte_total; pte_count++) {
791 		u32 pte = pte_addr[pte_count];
792 		if (!rk_pte_is_page_valid(pte))
793 			break;
794 
795 		pte_addr[pte_count] = rk_mk_pte_invalid(pte);
796 	}
797 
798 	rk_table_flush(rk_domain, pte_dma, pte_count);
799 
800 	return pte_count * SPAGE_SIZE;
801 }
802 
803 static int rk_iommu_map_iova(struct rk_iommu_domain *rk_domain, u32 *pte_addr,
804 			     dma_addr_t pte_dma, dma_addr_t iova,
805 			     phys_addr_t paddr, size_t size, int prot)
806 {
807 	unsigned int pte_count;
808 	unsigned int pte_total = size / SPAGE_SIZE;
809 	phys_addr_t page_phys;
810 
811 	assert_spin_locked(&rk_domain->dt_lock);
812 
813 	for (pte_count = 0; pte_count < pte_total; pte_count++) {
814 		u32 pte = pte_addr[pte_count];
815 
816 		if (rk_pte_is_page_valid(pte))
817 			goto unwind;
818 
819 		pte_addr[pte_count] = rk_ops->mk_ptentries(paddr, prot);
820 
821 		paddr += SPAGE_SIZE;
822 	}
823 
824 	rk_table_flush(rk_domain, pte_dma, pte_total);
825 
826 	/*
827 	 * Zap the first and last iova to evict from iotlb any previously
828 	 * mapped cachelines holding stale values for its dte and pte.
829 	 * We only zap the first and last iova, since only they could have
830 	 * dte or pte shared with an existing mapping.
831 	 */
832 	rk_iommu_zap_iova_first_last(rk_domain, iova, size);
833 
834 	return 0;
835 unwind:
836 	/* Unmap the range of iovas that we just mapped */
837 	rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma,
838 			    pte_count * SPAGE_SIZE);
839 
840 	iova += pte_count * SPAGE_SIZE;
841 	page_phys = rk_ops->pt_address(pte_addr[pte_count]);
842 	pr_err("iova: %pad already mapped to %pa cannot remap to phys: %pa prot: %#x\n",
843 	       &iova, &page_phys, &paddr, prot);
844 
845 	return -EADDRINUSE;
846 }
847 
848 static int rk_iommu_map(struct iommu_domain *domain, unsigned long _iova,
849 			phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
850 {
851 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
852 	unsigned long flags;
853 	dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
854 	u32 *page_table, *pte_addr;
855 	u32 dte_index, pte_index;
856 	int ret;
857 
858 	spin_lock_irqsave(&rk_domain->dt_lock, flags);
859 
860 	/*
861 	 * pgsize_bitmap specifies iova sizes that fit in one page table
862 	 * (1024 4-KiB pages = 4 MiB).
863 	 * So, size will always be 4096 <= size <= 4194304.
864 	 * Since iommu_map() guarantees that both iova and size will be
865 	 * aligned, we will always only be mapping from a single dte here.
866 	 */
867 	page_table = rk_dte_get_page_table(rk_domain, iova);
868 	if (IS_ERR(page_table)) {
869 		spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
870 		return PTR_ERR(page_table);
871 	}
872 
873 	dte_index = rk_domain->dt[rk_iova_dte_index(iova)];
874 	pte_index = rk_iova_pte_index(iova);
875 	pte_addr = &page_table[pte_index];
876 
877 	pte_dma = rk_ops->pt_address(dte_index) + pte_index * sizeof(u32);
878 	ret = rk_iommu_map_iova(rk_domain, pte_addr, pte_dma, iova,
879 				paddr, size, prot);
880 
881 	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
882 
883 	return ret;
884 }
885 
886 static size_t rk_iommu_unmap(struct iommu_domain *domain, unsigned long _iova,
887 			     size_t size, struct iommu_iotlb_gather *gather)
888 {
889 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
890 	unsigned long flags;
891 	dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
892 	phys_addr_t pt_phys;
893 	u32 dte;
894 	u32 *pte_addr;
895 	size_t unmap_size;
896 
897 	spin_lock_irqsave(&rk_domain->dt_lock, flags);
898 
899 	/*
900 	 * pgsize_bitmap specifies iova sizes that fit in one page table
901 	 * (1024 4-KiB pages = 4 MiB).
902 	 * So, size will always be 4096 <= size <= 4194304.
903 	 * Since iommu_unmap() guarantees that both iova and size will be
904 	 * aligned, we will always only be unmapping from a single dte here.
905 	 */
906 	dte = rk_domain->dt[rk_iova_dte_index(iova)];
907 	/* Just return 0 if iova is unmapped */
908 	if (!rk_dte_is_pt_valid(dte)) {
909 		spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
910 		return 0;
911 	}
912 
913 	pt_phys = rk_ops->pt_address(dte);
914 	pte_addr = (u32 *)phys_to_virt(pt_phys) + rk_iova_pte_index(iova);
915 	pte_dma = pt_phys + rk_iova_pte_index(iova) * sizeof(u32);
916 	unmap_size = rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma, size);
917 
918 	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
919 
920 	/* Shootdown iotlb entries for iova range that was just unmapped */
921 	rk_iommu_zap_iova(rk_domain, iova, unmap_size);
922 
923 	return unmap_size;
924 }
925 
926 static struct rk_iommu *rk_iommu_from_dev(struct device *dev)
927 {
928 	struct rk_iommudata *data = dev_iommu_priv_get(dev);
929 
930 	return data ? data->iommu : NULL;
931 }
932 
933 /* Must be called with iommu powered on and attached */
934 static void rk_iommu_disable(struct rk_iommu *iommu)
935 {
936 	int i;
937 
938 	/* Ignore error while disabling, just keep going */
939 	WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks));
940 	rk_iommu_enable_stall(iommu);
941 	rk_iommu_disable_paging(iommu);
942 	for (i = 0; i < iommu->num_mmu; i++) {
943 		rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, 0);
944 		rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, 0);
945 	}
946 	rk_iommu_disable_stall(iommu);
947 	clk_bulk_disable(iommu->num_clocks, iommu->clocks);
948 }
949 
950 /* Must be called with iommu powered on and attached */
951 static int rk_iommu_enable(struct rk_iommu *iommu)
952 {
953 	struct iommu_domain *domain = iommu->domain;
954 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
955 	int ret, i;
956 
957 	ret = clk_bulk_enable(iommu->num_clocks, iommu->clocks);
958 	if (ret)
959 		return ret;
960 
961 	ret = rk_iommu_enable_stall(iommu);
962 	if (ret)
963 		goto out_disable_clocks;
964 
965 	ret = rk_iommu_force_reset(iommu);
966 	if (ret)
967 		goto out_disable_stall;
968 
969 	for (i = 0; i < iommu->num_mmu; i++) {
970 		rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR,
971 			       rk_ops->dma_addr_dte(rk_domain->dt_dma));
972 		rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
973 		rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, RK_MMU_IRQ_MASK);
974 	}
975 
976 	ret = rk_iommu_enable_paging(iommu);
977 
978 out_disable_stall:
979 	rk_iommu_disable_stall(iommu);
980 out_disable_clocks:
981 	clk_bulk_disable(iommu->num_clocks, iommu->clocks);
982 	return ret;
983 }
984 
985 static void rk_iommu_detach_device(struct iommu_domain *domain,
986 				   struct device *dev)
987 {
988 	struct rk_iommu *iommu;
989 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
990 	unsigned long flags;
991 	int ret;
992 
993 	/* Allow 'virtual devices' (eg drm) to detach from domain */
994 	iommu = rk_iommu_from_dev(dev);
995 	if (!iommu)
996 		return;
997 
998 	dev_dbg(dev, "Detaching from iommu domain\n");
999 
1000 	/* iommu already detached */
1001 	if (iommu->domain != domain)
1002 		return;
1003 
1004 	iommu->domain = NULL;
1005 
1006 	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
1007 	list_del_init(&iommu->node);
1008 	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
1009 
1010 	ret = pm_runtime_get_if_in_use(iommu->dev);
1011 	WARN_ON_ONCE(ret < 0);
1012 	if (ret > 0) {
1013 		rk_iommu_disable(iommu);
1014 		pm_runtime_put(iommu->dev);
1015 	}
1016 }
1017 
1018 static int rk_iommu_attach_device(struct iommu_domain *domain,
1019 		struct device *dev)
1020 {
1021 	struct rk_iommu *iommu;
1022 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
1023 	unsigned long flags;
1024 	int ret;
1025 
1026 	/*
1027 	 * Allow 'virtual devices' (e.g., drm) to attach to domain.
1028 	 * Such a device does not belong to an iommu group.
1029 	 */
1030 	iommu = rk_iommu_from_dev(dev);
1031 	if (!iommu)
1032 		return 0;
1033 
1034 	dev_dbg(dev, "Attaching to iommu domain\n");
1035 
1036 	/* iommu already attached */
1037 	if (iommu->domain == domain)
1038 		return 0;
1039 
1040 	if (iommu->domain)
1041 		rk_iommu_detach_device(iommu->domain, dev);
1042 
1043 	iommu->domain = domain;
1044 
1045 	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
1046 	list_add_tail(&iommu->node, &rk_domain->iommus);
1047 	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
1048 
1049 	ret = pm_runtime_get_if_in_use(iommu->dev);
1050 	if (!ret || WARN_ON_ONCE(ret < 0))
1051 		return 0;
1052 
1053 	ret = rk_iommu_enable(iommu);
1054 	if (ret)
1055 		rk_iommu_detach_device(iommu->domain, dev);
1056 
1057 	pm_runtime_put(iommu->dev);
1058 
1059 	return ret;
1060 }
1061 
1062 static struct iommu_domain *rk_iommu_domain_alloc(unsigned type)
1063 {
1064 	struct rk_iommu_domain *rk_domain;
1065 
1066 	if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1067 		return NULL;
1068 
1069 	if (!dma_dev)
1070 		return NULL;
1071 
1072 	rk_domain = kzalloc(sizeof(*rk_domain), GFP_KERNEL);
1073 	if (!rk_domain)
1074 		return NULL;
1075 
1076 	/*
1077 	 * rk32xx iommus use a 2 level pagetable.
1078 	 * Each level1 (dt) and level2 (pt) table has 1024 4-byte entries.
1079 	 * Allocate one 4 KiB page for each table.
1080 	 */
1081 	rk_domain->dt = (u32 *)get_zeroed_page(GFP_KERNEL | GFP_DMA32);
1082 	if (!rk_domain->dt)
1083 		goto err_free_domain;
1084 
1085 	rk_domain->dt_dma = dma_map_single(dma_dev, rk_domain->dt,
1086 					   SPAGE_SIZE, DMA_TO_DEVICE);
1087 	if (dma_mapping_error(dma_dev, rk_domain->dt_dma)) {
1088 		dev_err(dma_dev, "DMA map error for DT\n");
1089 		goto err_free_dt;
1090 	}
1091 
1092 	spin_lock_init(&rk_domain->iommus_lock);
1093 	spin_lock_init(&rk_domain->dt_lock);
1094 	INIT_LIST_HEAD(&rk_domain->iommus);
1095 
1096 	rk_domain->domain.geometry.aperture_start = 0;
1097 	rk_domain->domain.geometry.aperture_end   = DMA_BIT_MASK(32);
1098 	rk_domain->domain.geometry.force_aperture = true;
1099 
1100 	return &rk_domain->domain;
1101 
1102 err_free_dt:
1103 	free_page((unsigned long)rk_domain->dt);
1104 err_free_domain:
1105 	kfree(rk_domain);
1106 
1107 	return NULL;
1108 }
1109 
1110 static void rk_iommu_domain_free(struct iommu_domain *domain)
1111 {
1112 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
1113 	int i;
1114 
1115 	WARN_ON(!list_empty(&rk_domain->iommus));
1116 
1117 	for (i = 0; i < NUM_DT_ENTRIES; i++) {
1118 		u32 dte = rk_domain->dt[i];
1119 		if (rk_dte_is_pt_valid(dte)) {
1120 			phys_addr_t pt_phys = rk_ops->pt_address(dte);
1121 			u32 *page_table = phys_to_virt(pt_phys);
1122 			dma_unmap_single(dma_dev, pt_phys,
1123 					 SPAGE_SIZE, DMA_TO_DEVICE);
1124 			free_page((unsigned long)page_table);
1125 		}
1126 	}
1127 
1128 	dma_unmap_single(dma_dev, rk_domain->dt_dma,
1129 			 SPAGE_SIZE, DMA_TO_DEVICE);
1130 	free_page((unsigned long)rk_domain->dt);
1131 
1132 	kfree(rk_domain);
1133 }
1134 
1135 static struct iommu_device *rk_iommu_probe_device(struct device *dev)
1136 {
1137 	struct rk_iommudata *data;
1138 	struct rk_iommu *iommu;
1139 
1140 	data = dev_iommu_priv_get(dev);
1141 	if (!data)
1142 		return ERR_PTR(-ENODEV);
1143 
1144 	iommu = rk_iommu_from_dev(dev);
1145 
1146 	data->link = device_link_add(dev, iommu->dev,
1147 				     DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME);
1148 
1149 	return &iommu->iommu;
1150 }
1151 
1152 static void rk_iommu_release_device(struct device *dev)
1153 {
1154 	struct rk_iommudata *data = dev_iommu_priv_get(dev);
1155 
1156 	device_link_del(data->link);
1157 }
1158 
1159 static struct iommu_group *rk_iommu_device_group(struct device *dev)
1160 {
1161 	struct rk_iommu *iommu;
1162 
1163 	iommu = rk_iommu_from_dev(dev);
1164 
1165 	return iommu_group_ref_get(iommu->group);
1166 }
1167 
1168 static int rk_iommu_of_xlate(struct device *dev,
1169 			     struct of_phandle_args *args)
1170 {
1171 	struct platform_device *iommu_dev;
1172 	struct rk_iommudata *data;
1173 
1174 	data = devm_kzalloc(dma_dev, sizeof(*data), GFP_KERNEL);
1175 	if (!data)
1176 		return -ENOMEM;
1177 
1178 	iommu_dev = of_find_device_by_node(args->np);
1179 
1180 	data->iommu = platform_get_drvdata(iommu_dev);
1181 	dev_iommu_priv_set(dev, data);
1182 
1183 	platform_device_put(iommu_dev);
1184 
1185 	return 0;
1186 }
1187 
1188 static const struct iommu_ops rk_iommu_ops = {
1189 	.domain_alloc = rk_iommu_domain_alloc,
1190 	.probe_device = rk_iommu_probe_device,
1191 	.release_device = rk_iommu_release_device,
1192 	.device_group = rk_iommu_device_group,
1193 	.pgsize_bitmap = RK_IOMMU_PGSIZE_BITMAP,
1194 	.of_xlate = rk_iommu_of_xlate,
1195 	.default_domain_ops = &(const struct iommu_domain_ops) {
1196 		.attach_dev	= rk_iommu_attach_device,
1197 		.detach_dev	= rk_iommu_detach_device,
1198 		.map		= rk_iommu_map,
1199 		.unmap		= rk_iommu_unmap,
1200 		.iova_to_phys	= rk_iommu_iova_to_phys,
1201 		.free		= rk_iommu_domain_free,
1202 	}
1203 };
1204 
1205 static int rk_iommu_probe(struct platform_device *pdev)
1206 {
1207 	struct device *dev = &pdev->dev;
1208 	struct rk_iommu *iommu;
1209 	struct resource *res;
1210 	const struct rk_iommu_ops *ops;
1211 	int num_res = pdev->num_resources;
1212 	int err, i;
1213 
1214 	iommu = devm_kzalloc(dev, sizeof(*iommu), GFP_KERNEL);
1215 	if (!iommu)
1216 		return -ENOMEM;
1217 
1218 	platform_set_drvdata(pdev, iommu);
1219 	iommu->dev = dev;
1220 	iommu->num_mmu = 0;
1221 
1222 	ops = of_device_get_match_data(dev);
1223 	if (!rk_ops)
1224 		rk_ops = ops;
1225 
1226 	/*
1227 	 * That should not happen unless different versions of the
1228 	 * hardware block are embedded the same SoC
1229 	 */
1230 	if (WARN_ON(rk_ops != ops))
1231 		return -EINVAL;
1232 
1233 	iommu->bases = devm_kcalloc(dev, num_res, sizeof(*iommu->bases),
1234 				    GFP_KERNEL);
1235 	if (!iommu->bases)
1236 		return -ENOMEM;
1237 
1238 	for (i = 0; i < num_res; i++) {
1239 		res = platform_get_resource(pdev, IORESOURCE_MEM, i);
1240 		if (!res)
1241 			continue;
1242 		iommu->bases[i] = devm_ioremap_resource(&pdev->dev, res);
1243 		if (IS_ERR(iommu->bases[i]))
1244 			continue;
1245 		iommu->num_mmu++;
1246 	}
1247 	if (iommu->num_mmu == 0)
1248 		return PTR_ERR(iommu->bases[0]);
1249 
1250 	iommu->num_irq = platform_irq_count(pdev);
1251 	if (iommu->num_irq < 0)
1252 		return iommu->num_irq;
1253 
1254 	iommu->reset_disabled = device_property_read_bool(dev,
1255 					"rockchip,disable-mmu-reset");
1256 
1257 	iommu->num_clocks = ARRAY_SIZE(rk_iommu_clocks);
1258 	iommu->clocks = devm_kcalloc(iommu->dev, iommu->num_clocks,
1259 				     sizeof(*iommu->clocks), GFP_KERNEL);
1260 	if (!iommu->clocks)
1261 		return -ENOMEM;
1262 
1263 	for (i = 0; i < iommu->num_clocks; ++i)
1264 		iommu->clocks[i].id = rk_iommu_clocks[i];
1265 
1266 	/*
1267 	 * iommu clocks should be present for all new devices and devicetrees
1268 	 * but there are older devicetrees without clocks out in the wild.
1269 	 * So clocks as optional for the time being.
1270 	 */
1271 	err = devm_clk_bulk_get(iommu->dev, iommu->num_clocks, iommu->clocks);
1272 	if (err == -ENOENT)
1273 		iommu->num_clocks = 0;
1274 	else if (err)
1275 		return err;
1276 
1277 	err = clk_bulk_prepare(iommu->num_clocks, iommu->clocks);
1278 	if (err)
1279 		return err;
1280 
1281 	iommu->group = iommu_group_alloc();
1282 	if (IS_ERR(iommu->group)) {
1283 		err = PTR_ERR(iommu->group);
1284 		goto err_unprepare_clocks;
1285 	}
1286 
1287 	err = iommu_device_sysfs_add(&iommu->iommu, dev, NULL, dev_name(dev));
1288 	if (err)
1289 		goto err_put_group;
1290 
1291 	err = iommu_device_register(&iommu->iommu, &rk_iommu_ops, dev);
1292 	if (err)
1293 		goto err_remove_sysfs;
1294 
1295 	/*
1296 	 * Use the first registered IOMMU device for domain to use with DMA
1297 	 * API, since a domain might not physically correspond to a single
1298 	 * IOMMU device..
1299 	 */
1300 	if (!dma_dev)
1301 		dma_dev = &pdev->dev;
1302 
1303 	pm_runtime_enable(dev);
1304 
1305 	for (i = 0; i < iommu->num_irq; i++) {
1306 		int irq = platform_get_irq(pdev, i);
1307 
1308 		if (irq < 0)
1309 			return irq;
1310 
1311 		err = devm_request_irq(iommu->dev, irq, rk_iommu_irq,
1312 				       IRQF_SHARED, dev_name(dev), iommu);
1313 		if (err) {
1314 			pm_runtime_disable(dev);
1315 			goto err_remove_sysfs;
1316 		}
1317 	}
1318 
1319 	dma_set_mask_and_coherent(dev, rk_ops->dma_bit_mask);
1320 
1321 	return 0;
1322 err_remove_sysfs:
1323 	iommu_device_sysfs_remove(&iommu->iommu);
1324 err_put_group:
1325 	iommu_group_put(iommu->group);
1326 err_unprepare_clocks:
1327 	clk_bulk_unprepare(iommu->num_clocks, iommu->clocks);
1328 	return err;
1329 }
1330 
1331 static void rk_iommu_shutdown(struct platform_device *pdev)
1332 {
1333 	struct rk_iommu *iommu = platform_get_drvdata(pdev);
1334 	int i;
1335 
1336 	for (i = 0; i < iommu->num_irq; i++) {
1337 		int irq = platform_get_irq(pdev, i);
1338 
1339 		devm_free_irq(iommu->dev, irq, iommu);
1340 	}
1341 
1342 	pm_runtime_force_suspend(&pdev->dev);
1343 }
1344 
1345 static int __maybe_unused rk_iommu_suspend(struct device *dev)
1346 {
1347 	struct rk_iommu *iommu = dev_get_drvdata(dev);
1348 
1349 	if (!iommu->domain)
1350 		return 0;
1351 
1352 	rk_iommu_disable(iommu);
1353 	return 0;
1354 }
1355 
1356 static int __maybe_unused rk_iommu_resume(struct device *dev)
1357 {
1358 	struct rk_iommu *iommu = dev_get_drvdata(dev);
1359 
1360 	if (!iommu->domain)
1361 		return 0;
1362 
1363 	return rk_iommu_enable(iommu);
1364 }
1365 
1366 static const struct dev_pm_ops rk_iommu_pm_ops = {
1367 	SET_RUNTIME_PM_OPS(rk_iommu_suspend, rk_iommu_resume, NULL)
1368 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1369 				pm_runtime_force_resume)
1370 };
1371 
1372 static struct rk_iommu_ops iommu_data_ops_v1 = {
1373 	.pt_address = &rk_dte_pt_address,
1374 	.mk_dtentries = &rk_mk_dte,
1375 	.mk_ptentries = &rk_mk_pte,
1376 	.dte_addr_phys = &rk_dte_addr_phys,
1377 	.dma_addr_dte = &rk_dma_addr_dte,
1378 	.dma_bit_mask = DMA_BIT_MASK(32),
1379 };
1380 
1381 static struct rk_iommu_ops iommu_data_ops_v2 = {
1382 	.pt_address = &rk_dte_pt_address_v2,
1383 	.mk_dtentries = &rk_mk_dte_v2,
1384 	.mk_ptentries = &rk_mk_pte_v2,
1385 	.dte_addr_phys = &rk_dte_addr_phys_v2,
1386 	.dma_addr_dte = &rk_dma_addr_dte_v2,
1387 	.dma_bit_mask = DMA_BIT_MASK(40),
1388 };
1389 
1390 static const struct of_device_id rk_iommu_dt_ids[] = {
1391 	{	.compatible = "rockchip,iommu",
1392 		.data = &iommu_data_ops_v1,
1393 	},
1394 	{	.compatible = "rockchip,rk3568-iommu",
1395 		.data = &iommu_data_ops_v2,
1396 	},
1397 	{ /* sentinel */ }
1398 };
1399 
1400 static struct platform_driver rk_iommu_driver = {
1401 	.probe = rk_iommu_probe,
1402 	.shutdown = rk_iommu_shutdown,
1403 	.driver = {
1404 		   .name = "rk_iommu",
1405 		   .of_match_table = rk_iommu_dt_ids,
1406 		   .pm = &rk_iommu_pm_ops,
1407 		   .suppress_bind_attrs = true,
1408 	},
1409 };
1410 builtin_platform_driver(rk_iommu_driver);
1411