1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * IOMMU API for Rockchip 4 * 5 * Module Authors: Simon Xue <xxm@rock-chips.com> 6 * Daniel Kurtz <djkurtz@chromium.org> 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/compiler.h> 11 #include <linux/delay.h> 12 #include <linux/device.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/errno.h> 15 #include <linux/interrupt.h> 16 #include <linux/io.h> 17 #include <linux/iommu.h> 18 #include <linux/iopoll.h> 19 #include <linux/list.h> 20 #include <linux/mm.h> 21 #include <linux/init.h> 22 #include <linux/of.h> 23 #include <linux/of_platform.h> 24 #include <linux/platform_device.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/slab.h> 27 #include <linux/spinlock.h> 28 29 /** MMU register offsets */ 30 #define RK_MMU_DTE_ADDR 0x00 /* Directory table address */ 31 #define RK_MMU_STATUS 0x04 32 #define RK_MMU_COMMAND 0x08 33 #define RK_MMU_PAGE_FAULT_ADDR 0x0C /* IOVA of last page fault */ 34 #define RK_MMU_ZAP_ONE_LINE 0x10 /* Shootdown one IOTLB entry */ 35 #define RK_MMU_INT_RAWSTAT 0x14 /* IRQ status ignoring mask */ 36 #define RK_MMU_INT_CLEAR 0x18 /* Acknowledge and re-arm irq */ 37 #define RK_MMU_INT_MASK 0x1C /* IRQ enable */ 38 #define RK_MMU_INT_STATUS 0x20 /* IRQ status after masking */ 39 #define RK_MMU_AUTO_GATING 0x24 40 41 #define DTE_ADDR_DUMMY 0xCAFEBABE 42 43 #define RK_MMU_POLL_PERIOD_US 100 44 #define RK_MMU_FORCE_RESET_TIMEOUT_US 100000 45 #define RK_MMU_POLL_TIMEOUT_US 1000 46 47 /* RK_MMU_STATUS fields */ 48 #define RK_MMU_STATUS_PAGING_ENABLED BIT(0) 49 #define RK_MMU_STATUS_PAGE_FAULT_ACTIVE BIT(1) 50 #define RK_MMU_STATUS_STALL_ACTIVE BIT(2) 51 #define RK_MMU_STATUS_IDLE BIT(3) 52 #define RK_MMU_STATUS_REPLAY_BUFFER_EMPTY BIT(4) 53 #define RK_MMU_STATUS_PAGE_FAULT_IS_WRITE BIT(5) 54 #define RK_MMU_STATUS_STALL_NOT_ACTIVE BIT(31) 55 56 /* RK_MMU_COMMAND command values */ 57 #define RK_MMU_CMD_ENABLE_PAGING 0 /* Enable memory translation */ 58 #define RK_MMU_CMD_DISABLE_PAGING 1 /* Disable memory translation */ 59 #define RK_MMU_CMD_ENABLE_STALL 2 /* Stall paging to allow other cmds */ 60 #define RK_MMU_CMD_DISABLE_STALL 3 /* Stop stall re-enables paging */ 61 #define RK_MMU_CMD_ZAP_CACHE 4 /* Shoot down entire IOTLB */ 62 #define RK_MMU_CMD_PAGE_FAULT_DONE 5 /* Clear page fault */ 63 #define RK_MMU_CMD_FORCE_RESET 6 /* Reset all registers */ 64 65 /* RK_MMU_INT_* register fields */ 66 #define RK_MMU_IRQ_PAGE_FAULT 0x01 /* page fault */ 67 #define RK_MMU_IRQ_BUS_ERROR 0x02 /* bus read error */ 68 #define RK_MMU_IRQ_MASK (RK_MMU_IRQ_PAGE_FAULT | RK_MMU_IRQ_BUS_ERROR) 69 70 #define NUM_DT_ENTRIES 1024 71 #define NUM_PT_ENTRIES 1024 72 73 #define SPAGE_ORDER 12 74 #define SPAGE_SIZE (1 << SPAGE_ORDER) 75 76 /* 77 * Support mapping any size that fits in one page table: 78 * 4 KiB to 4 MiB 79 */ 80 #define RK_IOMMU_PGSIZE_BITMAP 0x007ff000 81 82 struct rk_iommu_domain { 83 struct list_head iommus; 84 u32 *dt; /* page directory table */ 85 dma_addr_t dt_dma; 86 spinlock_t iommus_lock; /* lock for iommus list */ 87 spinlock_t dt_lock; /* lock for modifying page directory table */ 88 89 struct iommu_domain domain; 90 }; 91 92 /* list of clocks required by IOMMU */ 93 static const char * const rk_iommu_clocks[] = { 94 "aclk", "iface", 95 }; 96 97 struct rk_iommu_ops { 98 phys_addr_t (*pt_address)(u32 dte); 99 u32 (*mk_dtentries)(dma_addr_t pt_dma); 100 u32 (*mk_ptentries)(phys_addr_t page, int prot); 101 phys_addr_t (*dte_addr_phys)(u32 addr); 102 u32 (*dma_addr_dte)(dma_addr_t dt_dma); 103 u64 dma_bit_mask; 104 }; 105 106 struct rk_iommu { 107 struct device *dev; 108 void __iomem **bases; 109 int num_mmu; 110 int num_irq; 111 struct clk_bulk_data *clocks; 112 int num_clocks; 113 bool reset_disabled; 114 struct iommu_device iommu; 115 struct list_head node; /* entry in rk_iommu_domain.iommus */ 116 struct iommu_domain *domain; /* domain to which iommu is attached */ 117 struct iommu_group *group; 118 }; 119 120 struct rk_iommudata { 121 struct device_link *link; /* runtime PM link from IOMMU to master */ 122 struct rk_iommu *iommu; 123 }; 124 125 static struct device *dma_dev; 126 static const struct rk_iommu_ops *rk_ops; 127 128 static inline void rk_table_flush(struct rk_iommu_domain *dom, dma_addr_t dma, 129 unsigned int count) 130 { 131 size_t size = count * sizeof(u32); /* count of u32 entry */ 132 133 dma_sync_single_for_device(dma_dev, dma, size, DMA_TO_DEVICE); 134 } 135 136 static struct rk_iommu_domain *to_rk_domain(struct iommu_domain *dom) 137 { 138 return container_of(dom, struct rk_iommu_domain, domain); 139 } 140 141 /* 142 * The Rockchip rk3288 iommu uses a 2-level page table. 143 * The first level is the "Directory Table" (DT). 144 * The DT consists of 1024 4-byte Directory Table Entries (DTEs), each pointing 145 * to a "Page Table". 146 * The second level is the 1024 Page Tables (PT). 147 * Each PT consists of 1024 4-byte Page Table Entries (PTEs), each pointing to 148 * a 4 KB page of physical memory. 149 * 150 * The DT and each PT fits in a single 4 KB page (4-bytes * 1024 entries). 151 * Each iommu device has a MMU_DTE_ADDR register that contains the physical 152 * address of the start of the DT page. 153 * 154 * The structure of the page table is as follows: 155 * 156 * DT 157 * MMU_DTE_ADDR -> +-----+ 158 * | | 159 * +-----+ PT 160 * | DTE | -> +-----+ 161 * +-----+ | | Memory 162 * | | +-----+ Page 163 * | | | PTE | -> +-----+ 164 * +-----+ +-----+ | | 165 * | | | | 166 * | | | | 167 * +-----+ | | 168 * | | 169 * | | 170 * +-----+ 171 */ 172 173 /* 174 * Each DTE has a PT address and a valid bit: 175 * +---------------------+-----------+-+ 176 * | PT address | Reserved |V| 177 * +---------------------+-----------+-+ 178 * 31:12 - PT address (PTs always starts on a 4 KB boundary) 179 * 11: 1 - Reserved 180 * 0 - 1 if PT @ PT address is valid 181 */ 182 #define RK_DTE_PT_ADDRESS_MASK 0xfffff000 183 #define RK_DTE_PT_VALID BIT(0) 184 185 static inline phys_addr_t rk_dte_pt_address(u32 dte) 186 { 187 return (phys_addr_t)dte & RK_DTE_PT_ADDRESS_MASK; 188 } 189 190 /* 191 * In v2: 192 * 31:12 - PT address bit 31:0 193 * 11: 8 - PT address bit 35:32 194 * 7: 4 - PT address bit 39:36 195 * 3: 1 - Reserved 196 * 0 - 1 if PT @ PT address is valid 197 */ 198 #define RK_DTE_PT_ADDRESS_MASK_V2 GENMASK_ULL(31, 4) 199 #define DTE_HI_MASK1 GENMASK(11, 8) 200 #define DTE_HI_MASK2 GENMASK(7, 4) 201 #define DTE_HI_SHIFT1 24 /* shift bit 8 to bit 32 */ 202 #define DTE_HI_SHIFT2 32 /* shift bit 4 to bit 36 */ 203 #define PAGE_DESC_HI_MASK1 GENMASK_ULL(35, 32) 204 #define PAGE_DESC_HI_MASK2 GENMASK_ULL(39, 36) 205 206 static inline phys_addr_t rk_dte_pt_address_v2(u32 dte) 207 { 208 u64 dte_v2 = dte; 209 210 dte_v2 = ((dte_v2 & DTE_HI_MASK2) << DTE_HI_SHIFT2) | 211 ((dte_v2 & DTE_HI_MASK1) << DTE_HI_SHIFT1) | 212 (dte_v2 & RK_DTE_PT_ADDRESS_MASK); 213 214 return (phys_addr_t)dte_v2; 215 } 216 217 static inline bool rk_dte_is_pt_valid(u32 dte) 218 { 219 return dte & RK_DTE_PT_VALID; 220 } 221 222 static inline u32 rk_mk_dte(dma_addr_t pt_dma) 223 { 224 return (pt_dma & RK_DTE_PT_ADDRESS_MASK) | RK_DTE_PT_VALID; 225 } 226 227 static inline u32 rk_mk_dte_v2(dma_addr_t pt_dma) 228 { 229 pt_dma = (pt_dma & RK_DTE_PT_ADDRESS_MASK) | 230 ((pt_dma & PAGE_DESC_HI_MASK1) >> DTE_HI_SHIFT1) | 231 (pt_dma & PAGE_DESC_HI_MASK2) >> DTE_HI_SHIFT2; 232 233 return (pt_dma & RK_DTE_PT_ADDRESS_MASK_V2) | RK_DTE_PT_VALID; 234 } 235 236 /* 237 * Each PTE has a Page address, some flags and a valid bit: 238 * +---------------------+---+-------+-+ 239 * | Page address |Rsv| Flags |V| 240 * +---------------------+---+-------+-+ 241 * 31:12 - Page address (Pages always start on a 4 KB boundary) 242 * 11: 9 - Reserved 243 * 8: 1 - Flags 244 * 8 - Read allocate - allocate cache space on read misses 245 * 7 - Read cache - enable cache & prefetch of data 246 * 6 - Write buffer - enable delaying writes on their way to memory 247 * 5 - Write allocate - allocate cache space on write misses 248 * 4 - Write cache - different writes can be merged together 249 * 3 - Override cache attributes 250 * if 1, bits 4-8 control cache attributes 251 * if 0, the system bus defaults are used 252 * 2 - Writable 253 * 1 - Readable 254 * 0 - 1 if Page @ Page address is valid 255 */ 256 #define RK_PTE_PAGE_ADDRESS_MASK 0xfffff000 257 #define RK_PTE_PAGE_FLAGS_MASK 0x000001fe 258 #define RK_PTE_PAGE_WRITABLE BIT(2) 259 #define RK_PTE_PAGE_READABLE BIT(1) 260 #define RK_PTE_PAGE_VALID BIT(0) 261 262 static inline bool rk_pte_is_page_valid(u32 pte) 263 { 264 return pte & RK_PTE_PAGE_VALID; 265 } 266 267 /* TODO: set cache flags per prot IOMMU_CACHE */ 268 static u32 rk_mk_pte(phys_addr_t page, int prot) 269 { 270 u32 flags = 0; 271 flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0; 272 flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0; 273 page &= RK_PTE_PAGE_ADDRESS_MASK; 274 return page | flags | RK_PTE_PAGE_VALID; 275 } 276 277 /* 278 * In v2: 279 * 31:12 - Page address bit 31:0 280 * 11:9 - Page address bit 34:32 281 * 8:4 - Page address bit 39:35 282 * 3 - Security 283 * 2 - Readable 284 * 1 - Writable 285 * 0 - 1 if Page @ Page address is valid 286 */ 287 #define RK_PTE_PAGE_READABLE_V2 BIT(2) 288 #define RK_PTE_PAGE_WRITABLE_V2 BIT(1) 289 290 static u32 rk_mk_pte_v2(phys_addr_t page, int prot) 291 { 292 u32 flags = 0; 293 294 flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE_V2 : 0; 295 flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE_V2 : 0; 296 297 return rk_mk_dte_v2(page) | flags; 298 } 299 300 static u32 rk_mk_pte_invalid(u32 pte) 301 { 302 return pte & ~RK_PTE_PAGE_VALID; 303 } 304 305 /* 306 * rk3288 iova (IOMMU Virtual Address) format 307 * 31 22.21 12.11 0 308 * +-----------+-----------+-------------+ 309 * | DTE index | PTE index | Page offset | 310 * +-----------+-----------+-------------+ 311 * 31:22 - DTE index - index of DTE in DT 312 * 21:12 - PTE index - index of PTE in PT @ DTE.pt_address 313 * 11: 0 - Page offset - offset into page @ PTE.page_address 314 */ 315 #define RK_IOVA_DTE_MASK 0xffc00000 316 #define RK_IOVA_DTE_SHIFT 22 317 #define RK_IOVA_PTE_MASK 0x003ff000 318 #define RK_IOVA_PTE_SHIFT 12 319 #define RK_IOVA_PAGE_MASK 0x00000fff 320 #define RK_IOVA_PAGE_SHIFT 0 321 322 static u32 rk_iova_dte_index(dma_addr_t iova) 323 { 324 return (u32)(iova & RK_IOVA_DTE_MASK) >> RK_IOVA_DTE_SHIFT; 325 } 326 327 static u32 rk_iova_pte_index(dma_addr_t iova) 328 { 329 return (u32)(iova & RK_IOVA_PTE_MASK) >> RK_IOVA_PTE_SHIFT; 330 } 331 332 static u32 rk_iova_page_offset(dma_addr_t iova) 333 { 334 return (u32)(iova & RK_IOVA_PAGE_MASK) >> RK_IOVA_PAGE_SHIFT; 335 } 336 337 static u32 rk_iommu_read(void __iomem *base, u32 offset) 338 { 339 return readl(base + offset); 340 } 341 342 static void rk_iommu_write(void __iomem *base, u32 offset, u32 value) 343 { 344 writel(value, base + offset); 345 } 346 347 static void rk_iommu_command(struct rk_iommu *iommu, u32 command) 348 { 349 int i; 350 351 for (i = 0; i < iommu->num_mmu; i++) 352 writel(command, iommu->bases[i] + RK_MMU_COMMAND); 353 } 354 355 static void rk_iommu_base_command(void __iomem *base, u32 command) 356 { 357 writel(command, base + RK_MMU_COMMAND); 358 } 359 static void rk_iommu_zap_lines(struct rk_iommu *iommu, dma_addr_t iova_start, 360 size_t size) 361 { 362 int i; 363 dma_addr_t iova_end = iova_start + size; 364 /* 365 * TODO(djkurtz): Figure out when it is more efficient to shootdown the 366 * entire iotlb rather than iterate over individual iovas. 367 */ 368 for (i = 0; i < iommu->num_mmu; i++) { 369 dma_addr_t iova; 370 371 for (iova = iova_start; iova < iova_end; iova += SPAGE_SIZE) 372 rk_iommu_write(iommu->bases[i], RK_MMU_ZAP_ONE_LINE, iova); 373 } 374 } 375 376 static bool rk_iommu_is_stall_active(struct rk_iommu *iommu) 377 { 378 bool active = true; 379 int i; 380 381 for (i = 0; i < iommu->num_mmu; i++) 382 active &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) & 383 RK_MMU_STATUS_STALL_ACTIVE); 384 385 return active; 386 } 387 388 static bool rk_iommu_is_paging_enabled(struct rk_iommu *iommu) 389 { 390 bool enable = true; 391 int i; 392 393 for (i = 0; i < iommu->num_mmu; i++) 394 enable &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) & 395 RK_MMU_STATUS_PAGING_ENABLED); 396 397 return enable; 398 } 399 400 static bool rk_iommu_is_reset_done(struct rk_iommu *iommu) 401 { 402 bool done = true; 403 int i; 404 405 for (i = 0; i < iommu->num_mmu; i++) 406 done &= rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR) == 0; 407 408 return done; 409 } 410 411 static int rk_iommu_enable_stall(struct rk_iommu *iommu) 412 { 413 int ret, i; 414 bool val; 415 416 if (rk_iommu_is_stall_active(iommu)) 417 return 0; 418 419 /* Stall can only be enabled if paging is enabled */ 420 if (!rk_iommu_is_paging_enabled(iommu)) 421 return 0; 422 423 rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_STALL); 424 425 ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val, 426 val, RK_MMU_POLL_PERIOD_US, 427 RK_MMU_POLL_TIMEOUT_US); 428 if (ret) 429 for (i = 0; i < iommu->num_mmu; i++) 430 dev_err(iommu->dev, "Enable stall request timed out, status: %#08x\n", 431 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS)); 432 433 return ret; 434 } 435 436 static int rk_iommu_disable_stall(struct rk_iommu *iommu) 437 { 438 int ret, i; 439 bool val; 440 441 if (!rk_iommu_is_stall_active(iommu)) 442 return 0; 443 444 rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_STALL); 445 446 ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val, 447 !val, RK_MMU_POLL_PERIOD_US, 448 RK_MMU_POLL_TIMEOUT_US); 449 if (ret) 450 for (i = 0; i < iommu->num_mmu; i++) 451 dev_err(iommu->dev, "Disable stall request timed out, status: %#08x\n", 452 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS)); 453 454 return ret; 455 } 456 457 static int rk_iommu_enable_paging(struct rk_iommu *iommu) 458 { 459 int ret, i; 460 bool val; 461 462 if (rk_iommu_is_paging_enabled(iommu)) 463 return 0; 464 465 rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_PAGING); 466 467 ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val, 468 val, RK_MMU_POLL_PERIOD_US, 469 RK_MMU_POLL_TIMEOUT_US); 470 if (ret) 471 for (i = 0; i < iommu->num_mmu; i++) 472 dev_err(iommu->dev, "Enable paging request timed out, status: %#08x\n", 473 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS)); 474 475 return ret; 476 } 477 478 static int rk_iommu_disable_paging(struct rk_iommu *iommu) 479 { 480 int ret, i; 481 bool val; 482 483 if (!rk_iommu_is_paging_enabled(iommu)) 484 return 0; 485 486 rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_PAGING); 487 488 ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val, 489 !val, RK_MMU_POLL_PERIOD_US, 490 RK_MMU_POLL_TIMEOUT_US); 491 if (ret) 492 for (i = 0; i < iommu->num_mmu; i++) 493 dev_err(iommu->dev, "Disable paging request timed out, status: %#08x\n", 494 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS)); 495 496 return ret; 497 } 498 499 static int rk_iommu_force_reset(struct rk_iommu *iommu) 500 { 501 int ret, i; 502 u32 dte_addr; 503 bool val; 504 505 if (iommu->reset_disabled) 506 return 0; 507 508 /* 509 * Check if register DTE_ADDR is working by writing DTE_ADDR_DUMMY 510 * and verifying that upper 5 nybbles are read back. 511 */ 512 for (i = 0; i < iommu->num_mmu; i++) { 513 dte_addr = rk_ops->pt_address(DTE_ADDR_DUMMY); 514 rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, dte_addr); 515 516 if (dte_addr != rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR)) { 517 dev_err(iommu->dev, "Error during raw reset. MMU_DTE_ADDR is not functioning\n"); 518 return -EFAULT; 519 } 520 } 521 522 rk_iommu_command(iommu, RK_MMU_CMD_FORCE_RESET); 523 524 ret = readx_poll_timeout(rk_iommu_is_reset_done, iommu, val, 525 val, RK_MMU_FORCE_RESET_TIMEOUT_US, 526 RK_MMU_POLL_TIMEOUT_US); 527 if (ret) { 528 dev_err(iommu->dev, "FORCE_RESET command timed out\n"); 529 return ret; 530 } 531 532 return 0; 533 } 534 535 static inline phys_addr_t rk_dte_addr_phys(u32 addr) 536 { 537 return (phys_addr_t)addr; 538 } 539 540 static inline u32 rk_dma_addr_dte(dma_addr_t dt_dma) 541 { 542 return dt_dma; 543 } 544 545 #define DT_HI_MASK GENMASK_ULL(39, 32) 546 #define DTE_BASE_HI_MASK GENMASK(11, 4) 547 #define DT_SHIFT 28 548 549 static inline phys_addr_t rk_dte_addr_phys_v2(u32 addr) 550 { 551 u64 addr64 = addr; 552 return (phys_addr_t)(addr64 & RK_DTE_PT_ADDRESS_MASK) | 553 ((addr64 & DTE_BASE_HI_MASK) << DT_SHIFT); 554 } 555 556 static inline u32 rk_dma_addr_dte_v2(dma_addr_t dt_dma) 557 { 558 return (dt_dma & RK_DTE_PT_ADDRESS_MASK) | 559 ((dt_dma & DT_HI_MASK) >> DT_SHIFT); 560 } 561 562 static void log_iova(struct rk_iommu *iommu, int index, dma_addr_t iova) 563 { 564 void __iomem *base = iommu->bases[index]; 565 u32 dte_index, pte_index, page_offset; 566 u32 mmu_dte_addr; 567 phys_addr_t mmu_dte_addr_phys, dte_addr_phys; 568 u32 *dte_addr; 569 u32 dte; 570 phys_addr_t pte_addr_phys = 0; 571 u32 *pte_addr = NULL; 572 u32 pte = 0; 573 phys_addr_t page_addr_phys = 0; 574 u32 page_flags = 0; 575 576 dte_index = rk_iova_dte_index(iova); 577 pte_index = rk_iova_pte_index(iova); 578 page_offset = rk_iova_page_offset(iova); 579 580 mmu_dte_addr = rk_iommu_read(base, RK_MMU_DTE_ADDR); 581 mmu_dte_addr_phys = rk_ops->dte_addr_phys(mmu_dte_addr); 582 583 dte_addr_phys = mmu_dte_addr_phys + (4 * dte_index); 584 dte_addr = phys_to_virt(dte_addr_phys); 585 dte = *dte_addr; 586 587 if (!rk_dte_is_pt_valid(dte)) 588 goto print_it; 589 590 pte_addr_phys = rk_ops->pt_address(dte) + (pte_index * 4); 591 pte_addr = phys_to_virt(pte_addr_phys); 592 pte = *pte_addr; 593 594 if (!rk_pte_is_page_valid(pte)) 595 goto print_it; 596 597 page_addr_phys = rk_ops->pt_address(pte) + page_offset; 598 page_flags = pte & RK_PTE_PAGE_FLAGS_MASK; 599 600 print_it: 601 dev_err(iommu->dev, "iova = %pad: dte_index: %#03x pte_index: %#03x page_offset: %#03x\n", 602 &iova, dte_index, pte_index, page_offset); 603 dev_err(iommu->dev, "mmu_dte_addr: %pa dte@%pa: %#08x valid: %u pte@%pa: %#08x valid: %u page@%pa flags: %#03x\n", 604 &mmu_dte_addr_phys, &dte_addr_phys, dte, 605 rk_dte_is_pt_valid(dte), &pte_addr_phys, pte, 606 rk_pte_is_page_valid(pte), &page_addr_phys, page_flags); 607 } 608 609 static irqreturn_t rk_iommu_irq(int irq, void *dev_id) 610 { 611 struct rk_iommu *iommu = dev_id; 612 u32 status; 613 u32 int_status; 614 dma_addr_t iova; 615 irqreturn_t ret = IRQ_NONE; 616 int i, err; 617 618 err = pm_runtime_get_if_in_use(iommu->dev); 619 if (!err || WARN_ON_ONCE(err < 0)) 620 return ret; 621 622 if (WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks))) 623 goto out; 624 625 for (i = 0; i < iommu->num_mmu; i++) { 626 int_status = rk_iommu_read(iommu->bases[i], RK_MMU_INT_STATUS); 627 if (int_status == 0) 628 continue; 629 630 ret = IRQ_HANDLED; 631 iova = rk_iommu_read(iommu->bases[i], RK_MMU_PAGE_FAULT_ADDR); 632 633 if (int_status & RK_MMU_IRQ_PAGE_FAULT) { 634 int flags; 635 636 status = rk_iommu_read(iommu->bases[i], RK_MMU_STATUS); 637 flags = (status & RK_MMU_STATUS_PAGE_FAULT_IS_WRITE) ? 638 IOMMU_FAULT_WRITE : IOMMU_FAULT_READ; 639 640 dev_err(iommu->dev, "Page fault at %pad of type %s\n", 641 &iova, 642 (flags == IOMMU_FAULT_WRITE) ? "write" : "read"); 643 644 log_iova(iommu, i, iova); 645 646 /* 647 * Report page fault to any installed handlers. 648 * Ignore the return code, though, since we always zap cache 649 * and clear the page fault anyway. 650 */ 651 if (iommu->domain) 652 report_iommu_fault(iommu->domain, iommu->dev, iova, 653 flags); 654 else 655 dev_err(iommu->dev, "Page fault while iommu not attached to domain?\n"); 656 657 rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE); 658 rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_PAGE_FAULT_DONE); 659 } 660 661 if (int_status & RK_MMU_IRQ_BUS_ERROR) 662 dev_err(iommu->dev, "BUS_ERROR occurred at %pad\n", &iova); 663 664 if (int_status & ~RK_MMU_IRQ_MASK) 665 dev_err(iommu->dev, "unexpected int_status: %#08x\n", 666 int_status); 667 668 rk_iommu_write(iommu->bases[i], RK_MMU_INT_CLEAR, int_status); 669 } 670 671 clk_bulk_disable(iommu->num_clocks, iommu->clocks); 672 673 out: 674 pm_runtime_put(iommu->dev); 675 return ret; 676 } 677 678 static phys_addr_t rk_iommu_iova_to_phys(struct iommu_domain *domain, 679 dma_addr_t iova) 680 { 681 struct rk_iommu_domain *rk_domain = to_rk_domain(domain); 682 unsigned long flags; 683 phys_addr_t pt_phys, phys = 0; 684 u32 dte, pte; 685 u32 *page_table; 686 687 spin_lock_irqsave(&rk_domain->dt_lock, flags); 688 689 dte = rk_domain->dt[rk_iova_dte_index(iova)]; 690 if (!rk_dte_is_pt_valid(dte)) 691 goto out; 692 693 pt_phys = rk_ops->pt_address(dte); 694 page_table = (u32 *)phys_to_virt(pt_phys); 695 pte = page_table[rk_iova_pte_index(iova)]; 696 if (!rk_pte_is_page_valid(pte)) 697 goto out; 698 699 phys = rk_ops->pt_address(pte) + rk_iova_page_offset(iova); 700 out: 701 spin_unlock_irqrestore(&rk_domain->dt_lock, flags); 702 703 return phys; 704 } 705 706 static void rk_iommu_zap_iova(struct rk_iommu_domain *rk_domain, 707 dma_addr_t iova, size_t size) 708 { 709 struct list_head *pos; 710 unsigned long flags; 711 712 /* shootdown these iova from all iommus using this domain */ 713 spin_lock_irqsave(&rk_domain->iommus_lock, flags); 714 list_for_each(pos, &rk_domain->iommus) { 715 struct rk_iommu *iommu; 716 int ret; 717 718 iommu = list_entry(pos, struct rk_iommu, node); 719 720 /* Only zap TLBs of IOMMUs that are powered on. */ 721 ret = pm_runtime_get_if_in_use(iommu->dev); 722 if (WARN_ON_ONCE(ret < 0)) 723 continue; 724 if (ret) { 725 WARN_ON(clk_bulk_enable(iommu->num_clocks, 726 iommu->clocks)); 727 rk_iommu_zap_lines(iommu, iova, size); 728 clk_bulk_disable(iommu->num_clocks, iommu->clocks); 729 pm_runtime_put(iommu->dev); 730 } 731 } 732 spin_unlock_irqrestore(&rk_domain->iommus_lock, flags); 733 } 734 735 static void rk_iommu_zap_iova_first_last(struct rk_iommu_domain *rk_domain, 736 dma_addr_t iova, size_t size) 737 { 738 rk_iommu_zap_iova(rk_domain, iova, SPAGE_SIZE); 739 if (size > SPAGE_SIZE) 740 rk_iommu_zap_iova(rk_domain, iova + size - SPAGE_SIZE, 741 SPAGE_SIZE); 742 } 743 744 static u32 *rk_dte_get_page_table(struct rk_iommu_domain *rk_domain, 745 dma_addr_t iova) 746 { 747 u32 *page_table, *dte_addr; 748 u32 dte_index, dte; 749 phys_addr_t pt_phys; 750 dma_addr_t pt_dma; 751 752 assert_spin_locked(&rk_domain->dt_lock); 753 754 dte_index = rk_iova_dte_index(iova); 755 dte_addr = &rk_domain->dt[dte_index]; 756 dte = *dte_addr; 757 if (rk_dte_is_pt_valid(dte)) 758 goto done; 759 760 page_table = (u32 *)get_zeroed_page(GFP_ATOMIC | GFP_DMA32); 761 if (!page_table) 762 return ERR_PTR(-ENOMEM); 763 764 pt_dma = dma_map_single(dma_dev, page_table, SPAGE_SIZE, DMA_TO_DEVICE); 765 if (dma_mapping_error(dma_dev, pt_dma)) { 766 dev_err(dma_dev, "DMA mapping error while allocating page table\n"); 767 free_page((unsigned long)page_table); 768 return ERR_PTR(-ENOMEM); 769 } 770 771 dte = rk_ops->mk_dtentries(pt_dma); 772 *dte_addr = dte; 773 774 rk_table_flush(rk_domain, 775 rk_domain->dt_dma + dte_index * sizeof(u32), 1); 776 done: 777 pt_phys = rk_ops->pt_address(dte); 778 return (u32 *)phys_to_virt(pt_phys); 779 } 780 781 static size_t rk_iommu_unmap_iova(struct rk_iommu_domain *rk_domain, 782 u32 *pte_addr, dma_addr_t pte_dma, 783 size_t size) 784 { 785 unsigned int pte_count; 786 unsigned int pte_total = size / SPAGE_SIZE; 787 788 assert_spin_locked(&rk_domain->dt_lock); 789 790 for (pte_count = 0; pte_count < pte_total; pte_count++) { 791 u32 pte = pte_addr[pte_count]; 792 if (!rk_pte_is_page_valid(pte)) 793 break; 794 795 pte_addr[pte_count] = rk_mk_pte_invalid(pte); 796 } 797 798 rk_table_flush(rk_domain, pte_dma, pte_count); 799 800 return pte_count * SPAGE_SIZE; 801 } 802 803 static int rk_iommu_map_iova(struct rk_iommu_domain *rk_domain, u32 *pte_addr, 804 dma_addr_t pte_dma, dma_addr_t iova, 805 phys_addr_t paddr, size_t size, int prot) 806 { 807 unsigned int pte_count; 808 unsigned int pte_total = size / SPAGE_SIZE; 809 phys_addr_t page_phys; 810 811 assert_spin_locked(&rk_domain->dt_lock); 812 813 for (pte_count = 0; pte_count < pte_total; pte_count++) { 814 u32 pte = pte_addr[pte_count]; 815 816 if (rk_pte_is_page_valid(pte)) 817 goto unwind; 818 819 pte_addr[pte_count] = rk_ops->mk_ptentries(paddr, prot); 820 821 paddr += SPAGE_SIZE; 822 } 823 824 rk_table_flush(rk_domain, pte_dma, pte_total); 825 826 /* 827 * Zap the first and last iova to evict from iotlb any previously 828 * mapped cachelines holding stale values for its dte and pte. 829 * We only zap the first and last iova, since only they could have 830 * dte or pte shared with an existing mapping. 831 */ 832 rk_iommu_zap_iova_first_last(rk_domain, iova, size); 833 834 return 0; 835 unwind: 836 /* Unmap the range of iovas that we just mapped */ 837 rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma, 838 pte_count * SPAGE_SIZE); 839 840 iova += pte_count * SPAGE_SIZE; 841 page_phys = rk_ops->pt_address(pte_addr[pte_count]); 842 pr_err("iova: %pad already mapped to %pa cannot remap to phys: %pa prot: %#x\n", 843 &iova, &page_phys, &paddr, prot); 844 845 return -EADDRINUSE; 846 } 847 848 static int rk_iommu_map(struct iommu_domain *domain, unsigned long _iova, 849 phys_addr_t paddr, size_t size, int prot, gfp_t gfp) 850 { 851 struct rk_iommu_domain *rk_domain = to_rk_domain(domain); 852 unsigned long flags; 853 dma_addr_t pte_dma, iova = (dma_addr_t)_iova; 854 u32 *page_table, *pte_addr; 855 u32 dte_index, pte_index; 856 int ret; 857 858 spin_lock_irqsave(&rk_domain->dt_lock, flags); 859 860 /* 861 * pgsize_bitmap specifies iova sizes that fit in one page table 862 * (1024 4-KiB pages = 4 MiB). 863 * So, size will always be 4096 <= size <= 4194304. 864 * Since iommu_map() guarantees that both iova and size will be 865 * aligned, we will always only be mapping from a single dte here. 866 */ 867 page_table = rk_dte_get_page_table(rk_domain, iova); 868 if (IS_ERR(page_table)) { 869 spin_unlock_irqrestore(&rk_domain->dt_lock, flags); 870 return PTR_ERR(page_table); 871 } 872 873 dte_index = rk_domain->dt[rk_iova_dte_index(iova)]; 874 pte_index = rk_iova_pte_index(iova); 875 pte_addr = &page_table[pte_index]; 876 877 pte_dma = rk_ops->pt_address(dte_index) + pte_index * sizeof(u32); 878 ret = rk_iommu_map_iova(rk_domain, pte_addr, pte_dma, iova, 879 paddr, size, prot); 880 881 spin_unlock_irqrestore(&rk_domain->dt_lock, flags); 882 883 return ret; 884 } 885 886 static size_t rk_iommu_unmap(struct iommu_domain *domain, unsigned long _iova, 887 size_t size, struct iommu_iotlb_gather *gather) 888 { 889 struct rk_iommu_domain *rk_domain = to_rk_domain(domain); 890 unsigned long flags; 891 dma_addr_t pte_dma, iova = (dma_addr_t)_iova; 892 phys_addr_t pt_phys; 893 u32 dte; 894 u32 *pte_addr; 895 size_t unmap_size; 896 897 spin_lock_irqsave(&rk_domain->dt_lock, flags); 898 899 /* 900 * pgsize_bitmap specifies iova sizes that fit in one page table 901 * (1024 4-KiB pages = 4 MiB). 902 * So, size will always be 4096 <= size <= 4194304. 903 * Since iommu_unmap() guarantees that both iova and size will be 904 * aligned, we will always only be unmapping from a single dte here. 905 */ 906 dte = rk_domain->dt[rk_iova_dte_index(iova)]; 907 /* Just return 0 if iova is unmapped */ 908 if (!rk_dte_is_pt_valid(dte)) { 909 spin_unlock_irqrestore(&rk_domain->dt_lock, flags); 910 return 0; 911 } 912 913 pt_phys = rk_ops->pt_address(dte); 914 pte_addr = (u32 *)phys_to_virt(pt_phys) + rk_iova_pte_index(iova); 915 pte_dma = pt_phys + rk_iova_pte_index(iova) * sizeof(u32); 916 unmap_size = rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma, size); 917 918 spin_unlock_irqrestore(&rk_domain->dt_lock, flags); 919 920 /* Shootdown iotlb entries for iova range that was just unmapped */ 921 rk_iommu_zap_iova(rk_domain, iova, unmap_size); 922 923 return unmap_size; 924 } 925 926 static struct rk_iommu *rk_iommu_from_dev(struct device *dev) 927 { 928 struct rk_iommudata *data = dev_iommu_priv_get(dev); 929 930 return data ? data->iommu : NULL; 931 } 932 933 /* Must be called with iommu powered on and attached */ 934 static void rk_iommu_disable(struct rk_iommu *iommu) 935 { 936 int i; 937 938 /* Ignore error while disabling, just keep going */ 939 WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks)); 940 rk_iommu_enable_stall(iommu); 941 rk_iommu_disable_paging(iommu); 942 for (i = 0; i < iommu->num_mmu; i++) { 943 rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, 0); 944 rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, 0); 945 } 946 rk_iommu_disable_stall(iommu); 947 clk_bulk_disable(iommu->num_clocks, iommu->clocks); 948 } 949 950 /* Must be called with iommu powered on and attached */ 951 static int rk_iommu_enable(struct rk_iommu *iommu) 952 { 953 struct iommu_domain *domain = iommu->domain; 954 struct rk_iommu_domain *rk_domain = to_rk_domain(domain); 955 int ret, i; 956 957 ret = clk_bulk_enable(iommu->num_clocks, iommu->clocks); 958 if (ret) 959 return ret; 960 961 ret = rk_iommu_enable_stall(iommu); 962 if (ret) 963 goto out_disable_clocks; 964 965 ret = rk_iommu_force_reset(iommu); 966 if (ret) 967 goto out_disable_stall; 968 969 for (i = 0; i < iommu->num_mmu; i++) { 970 rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, 971 rk_ops->dma_addr_dte(rk_domain->dt_dma)); 972 rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE); 973 rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, RK_MMU_IRQ_MASK); 974 } 975 976 ret = rk_iommu_enable_paging(iommu); 977 978 out_disable_stall: 979 rk_iommu_disable_stall(iommu); 980 out_disable_clocks: 981 clk_bulk_disable(iommu->num_clocks, iommu->clocks); 982 return ret; 983 } 984 985 static void rk_iommu_detach_device(struct iommu_domain *domain, 986 struct device *dev) 987 { 988 struct rk_iommu *iommu; 989 struct rk_iommu_domain *rk_domain = to_rk_domain(domain); 990 unsigned long flags; 991 int ret; 992 993 /* Allow 'virtual devices' (eg drm) to detach from domain */ 994 iommu = rk_iommu_from_dev(dev); 995 if (!iommu) 996 return; 997 998 dev_dbg(dev, "Detaching from iommu domain\n"); 999 1000 /* iommu already detached */ 1001 if (iommu->domain != domain) 1002 return; 1003 1004 iommu->domain = NULL; 1005 1006 spin_lock_irqsave(&rk_domain->iommus_lock, flags); 1007 list_del_init(&iommu->node); 1008 spin_unlock_irqrestore(&rk_domain->iommus_lock, flags); 1009 1010 ret = pm_runtime_get_if_in_use(iommu->dev); 1011 WARN_ON_ONCE(ret < 0); 1012 if (ret > 0) { 1013 rk_iommu_disable(iommu); 1014 pm_runtime_put(iommu->dev); 1015 } 1016 } 1017 1018 static int rk_iommu_attach_device(struct iommu_domain *domain, 1019 struct device *dev) 1020 { 1021 struct rk_iommu *iommu; 1022 struct rk_iommu_domain *rk_domain = to_rk_domain(domain); 1023 unsigned long flags; 1024 int ret; 1025 1026 /* 1027 * Allow 'virtual devices' (e.g., drm) to attach to domain. 1028 * Such a device does not belong to an iommu group. 1029 */ 1030 iommu = rk_iommu_from_dev(dev); 1031 if (!iommu) 1032 return 0; 1033 1034 dev_dbg(dev, "Attaching to iommu domain\n"); 1035 1036 /* iommu already attached */ 1037 if (iommu->domain == domain) 1038 return 0; 1039 1040 if (iommu->domain) 1041 rk_iommu_detach_device(iommu->domain, dev); 1042 1043 iommu->domain = domain; 1044 1045 spin_lock_irqsave(&rk_domain->iommus_lock, flags); 1046 list_add_tail(&iommu->node, &rk_domain->iommus); 1047 spin_unlock_irqrestore(&rk_domain->iommus_lock, flags); 1048 1049 ret = pm_runtime_get_if_in_use(iommu->dev); 1050 if (!ret || WARN_ON_ONCE(ret < 0)) 1051 return 0; 1052 1053 ret = rk_iommu_enable(iommu); 1054 if (ret) 1055 rk_iommu_detach_device(iommu->domain, dev); 1056 1057 pm_runtime_put(iommu->dev); 1058 1059 return ret; 1060 } 1061 1062 static struct iommu_domain *rk_iommu_domain_alloc(unsigned type) 1063 { 1064 struct rk_iommu_domain *rk_domain; 1065 1066 if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA) 1067 return NULL; 1068 1069 if (!dma_dev) 1070 return NULL; 1071 1072 rk_domain = kzalloc(sizeof(*rk_domain), GFP_KERNEL); 1073 if (!rk_domain) 1074 return NULL; 1075 1076 /* 1077 * rk32xx iommus use a 2 level pagetable. 1078 * Each level1 (dt) and level2 (pt) table has 1024 4-byte entries. 1079 * Allocate one 4 KiB page for each table. 1080 */ 1081 rk_domain->dt = (u32 *)get_zeroed_page(GFP_KERNEL | GFP_DMA32); 1082 if (!rk_domain->dt) 1083 goto err_free_domain; 1084 1085 rk_domain->dt_dma = dma_map_single(dma_dev, rk_domain->dt, 1086 SPAGE_SIZE, DMA_TO_DEVICE); 1087 if (dma_mapping_error(dma_dev, rk_domain->dt_dma)) { 1088 dev_err(dma_dev, "DMA map error for DT\n"); 1089 goto err_free_dt; 1090 } 1091 1092 spin_lock_init(&rk_domain->iommus_lock); 1093 spin_lock_init(&rk_domain->dt_lock); 1094 INIT_LIST_HEAD(&rk_domain->iommus); 1095 1096 rk_domain->domain.geometry.aperture_start = 0; 1097 rk_domain->domain.geometry.aperture_end = DMA_BIT_MASK(32); 1098 rk_domain->domain.geometry.force_aperture = true; 1099 1100 return &rk_domain->domain; 1101 1102 err_free_dt: 1103 free_page((unsigned long)rk_domain->dt); 1104 err_free_domain: 1105 kfree(rk_domain); 1106 1107 return NULL; 1108 } 1109 1110 static void rk_iommu_domain_free(struct iommu_domain *domain) 1111 { 1112 struct rk_iommu_domain *rk_domain = to_rk_domain(domain); 1113 int i; 1114 1115 WARN_ON(!list_empty(&rk_domain->iommus)); 1116 1117 for (i = 0; i < NUM_DT_ENTRIES; i++) { 1118 u32 dte = rk_domain->dt[i]; 1119 if (rk_dte_is_pt_valid(dte)) { 1120 phys_addr_t pt_phys = rk_ops->pt_address(dte); 1121 u32 *page_table = phys_to_virt(pt_phys); 1122 dma_unmap_single(dma_dev, pt_phys, 1123 SPAGE_SIZE, DMA_TO_DEVICE); 1124 free_page((unsigned long)page_table); 1125 } 1126 } 1127 1128 dma_unmap_single(dma_dev, rk_domain->dt_dma, 1129 SPAGE_SIZE, DMA_TO_DEVICE); 1130 free_page((unsigned long)rk_domain->dt); 1131 1132 kfree(rk_domain); 1133 } 1134 1135 static struct iommu_device *rk_iommu_probe_device(struct device *dev) 1136 { 1137 struct rk_iommudata *data; 1138 struct rk_iommu *iommu; 1139 1140 data = dev_iommu_priv_get(dev); 1141 if (!data) 1142 return ERR_PTR(-ENODEV); 1143 1144 iommu = rk_iommu_from_dev(dev); 1145 1146 data->link = device_link_add(dev, iommu->dev, 1147 DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME); 1148 1149 return &iommu->iommu; 1150 } 1151 1152 static void rk_iommu_release_device(struct device *dev) 1153 { 1154 struct rk_iommudata *data = dev_iommu_priv_get(dev); 1155 1156 device_link_del(data->link); 1157 } 1158 1159 static struct iommu_group *rk_iommu_device_group(struct device *dev) 1160 { 1161 struct rk_iommu *iommu; 1162 1163 iommu = rk_iommu_from_dev(dev); 1164 1165 return iommu_group_ref_get(iommu->group); 1166 } 1167 1168 static int rk_iommu_of_xlate(struct device *dev, 1169 struct of_phandle_args *args) 1170 { 1171 struct platform_device *iommu_dev; 1172 struct rk_iommudata *data; 1173 1174 data = devm_kzalloc(dma_dev, sizeof(*data), GFP_KERNEL); 1175 if (!data) 1176 return -ENOMEM; 1177 1178 iommu_dev = of_find_device_by_node(args->np); 1179 1180 data->iommu = platform_get_drvdata(iommu_dev); 1181 dev_iommu_priv_set(dev, data); 1182 1183 platform_device_put(iommu_dev); 1184 1185 return 0; 1186 } 1187 1188 static const struct iommu_ops rk_iommu_ops = { 1189 .domain_alloc = rk_iommu_domain_alloc, 1190 .probe_device = rk_iommu_probe_device, 1191 .release_device = rk_iommu_release_device, 1192 .device_group = rk_iommu_device_group, 1193 .pgsize_bitmap = RK_IOMMU_PGSIZE_BITMAP, 1194 .of_xlate = rk_iommu_of_xlate, 1195 .default_domain_ops = &(const struct iommu_domain_ops) { 1196 .attach_dev = rk_iommu_attach_device, 1197 .detach_dev = rk_iommu_detach_device, 1198 .map = rk_iommu_map, 1199 .unmap = rk_iommu_unmap, 1200 .iova_to_phys = rk_iommu_iova_to_phys, 1201 .free = rk_iommu_domain_free, 1202 } 1203 }; 1204 1205 static int rk_iommu_probe(struct platform_device *pdev) 1206 { 1207 struct device *dev = &pdev->dev; 1208 struct rk_iommu *iommu; 1209 struct resource *res; 1210 const struct rk_iommu_ops *ops; 1211 int num_res = pdev->num_resources; 1212 int err, i; 1213 1214 iommu = devm_kzalloc(dev, sizeof(*iommu), GFP_KERNEL); 1215 if (!iommu) 1216 return -ENOMEM; 1217 1218 platform_set_drvdata(pdev, iommu); 1219 iommu->dev = dev; 1220 iommu->num_mmu = 0; 1221 1222 ops = of_device_get_match_data(dev); 1223 if (!rk_ops) 1224 rk_ops = ops; 1225 1226 /* 1227 * That should not happen unless different versions of the 1228 * hardware block are embedded the same SoC 1229 */ 1230 if (WARN_ON(rk_ops != ops)) 1231 return -EINVAL; 1232 1233 iommu->bases = devm_kcalloc(dev, num_res, sizeof(*iommu->bases), 1234 GFP_KERNEL); 1235 if (!iommu->bases) 1236 return -ENOMEM; 1237 1238 for (i = 0; i < num_res; i++) { 1239 res = platform_get_resource(pdev, IORESOURCE_MEM, i); 1240 if (!res) 1241 continue; 1242 iommu->bases[i] = devm_ioremap_resource(&pdev->dev, res); 1243 if (IS_ERR(iommu->bases[i])) 1244 continue; 1245 iommu->num_mmu++; 1246 } 1247 if (iommu->num_mmu == 0) 1248 return PTR_ERR(iommu->bases[0]); 1249 1250 iommu->num_irq = platform_irq_count(pdev); 1251 if (iommu->num_irq < 0) 1252 return iommu->num_irq; 1253 1254 iommu->reset_disabled = device_property_read_bool(dev, 1255 "rockchip,disable-mmu-reset"); 1256 1257 iommu->num_clocks = ARRAY_SIZE(rk_iommu_clocks); 1258 iommu->clocks = devm_kcalloc(iommu->dev, iommu->num_clocks, 1259 sizeof(*iommu->clocks), GFP_KERNEL); 1260 if (!iommu->clocks) 1261 return -ENOMEM; 1262 1263 for (i = 0; i < iommu->num_clocks; ++i) 1264 iommu->clocks[i].id = rk_iommu_clocks[i]; 1265 1266 /* 1267 * iommu clocks should be present for all new devices and devicetrees 1268 * but there are older devicetrees without clocks out in the wild. 1269 * So clocks as optional for the time being. 1270 */ 1271 err = devm_clk_bulk_get(iommu->dev, iommu->num_clocks, iommu->clocks); 1272 if (err == -ENOENT) 1273 iommu->num_clocks = 0; 1274 else if (err) 1275 return err; 1276 1277 err = clk_bulk_prepare(iommu->num_clocks, iommu->clocks); 1278 if (err) 1279 return err; 1280 1281 iommu->group = iommu_group_alloc(); 1282 if (IS_ERR(iommu->group)) { 1283 err = PTR_ERR(iommu->group); 1284 goto err_unprepare_clocks; 1285 } 1286 1287 err = iommu_device_sysfs_add(&iommu->iommu, dev, NULL, dev_name(dev)); 1288 if (err) 1289 goto err_put_group; 1290 1291 err = iommu_device_register(&iommu->iommu, &rk_iommu_ops, dev); 1292 if (err) 1293 goto err_remove_sysfs; 1294 1295 /* 1296 * Use the first registered IOMMU device for domain to use with DMA 1297 * API, since a domain might not physically correspond to a single 1298 * IOMMU device.. 1299 */ 1300 if (!dma_dev) 1301 dma_dev = &pdev->dev; 1302 1303 pm_runtime_enable(dev); 1304 1305 for (i = 0; i < iommu->num_irq; i++) { 1306 int irq = platform_get_irq(pdev, i); 1307 1308 if (irq < 0) 1309 return irq; 1310 1311 err = devm_request_irq(iommu->dev, irq, rk_iommu_irq, 1312 IRQF_SHARED, dev_name(dev), iommu); 1313 if (err) { 1314 pm_runtime_disable(dev); 1315 goto err_remove_sysfs; 1316 } 1317 } 1318 1319 dma_set_mask_and_coherent(dev, rk_ops->dma_bit_mask); 1320 1321 return 0; 1322 err_remove_sysfs: 1323 iommu_device_sysfs_remove(&iommu->iommu); 1324 err_put_group: 1325 iommu_group_put(iommu->group); 1326 err_unprepare_clocks: 1327 clk_bulk_unprepare(iommu->num_clocks, iommu->clocks); 1328 return err; 1329 } 1330 1331 static void rk_iommu_shutdown(struct platform_device *pdev) 1332 { 1333 struct rk_iommu *iommu = platform_get_drvdata(pdev); 1334 int i; 1335 1336 for (i = 0; i < iommu->num_irq; i++) { 1337 int irq = platform_get_irq(pdev, i); 1338 1339 devm_free_irq(iommu->dev, irq, iommu); 1340 } 1341 1342 pm_runtime_force_suspend(&pdev->dev); 1343 } 1344 1345 static int __maybe_unused rk_iommu_suspend(struct device *dev) 1346 { 1347 struct rk_iommu *iommu = dev_get_drvdata(dev); 1348 1349 if (!iommu->domain) 1350 return 0; 1351 1352 rk_iommu_disable(iommu); 1353 return 0; 1354 } 1355 1356 static int __maybe_unused rk_iommu_resume(struct device *dev) 1357 { 1358 struct rk_iommu *iommu = dev_get_drvdata(dev); 1359 1360 if (!iommu->domain) 1361 return 0; 1362 1363 return rk_iommu_enable(iommu); 1364 } 1365 1366 static const struct dev_pm_ops rk_iommu_pm_ops = { 1367 SET_RUNTIME_PM_OPS(rk_iommu_suspend, rk_iommu_resume, NULL) 1368 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 1369 pm_runtime_force_resume) 1370 }; 1371 1372 static struct rk_iommu_ops iommu_data_ops_v1 = { 1373 .pt_address = &rk_dte_pt_address, 1374 .mk_dtentries = &rk_mk_dte, 1375 .mk_ptentries = &rk_mk_pte, 1376 .dte_addr_phys = &rk_dte_addr_phys, 1377 .dma_addr_dte = &rk_dma_addr_dte, 1378 .dma_bit_mask = DMA_BIT_MASK(32), 1379 }; 1380 1381 static struct rk_iommu_ops iommu_data_ops_v2 = { 1382 .pt_address = &rk_dte_pt_address_v2, 1383 .mk_dtentries = &rk_mk_dte_v2, 1384 .mk_ptentries = &rk_mk_pte_v2, 1385 .dte_addr_phys = &rk_dte_addr_phys_v2, 1386 .dma_addr_dte = &rk_dma_addr_dte_v2, 1387 .dma_bit_mask = DMA_BIT_MASK(40), 1388 }; 1389 1390 static const struct of_device_id rk_iommu_dt_ids[] = { 1391 { .compatible = "rockchip,iommu", 1392 .data = &iommu_data_ops_v1, 1393 }, 1394 { .compatible = "rockchip,rk3568-iommu", 1395 .data = &iommu_data_ops_v2, 1396 }, 1397 { /* sentinel */ } 1398 }; 1399 1400 static struct platform_driver rk_iommu_driver = { 1401 .probe = rk_iommu_probe, 1402 .shutdown = rk_iommu_shutdown, 1403 .driver = { 1404 .name = "rk_iommu", 1405 .of_match_table = rk_iommu_dt_ids, 1406 .pm = &rk_iommu_pm_ops, 1407 .suppress_bind_attrs = true, 1408 }, 1409 }; 1410 builtin_platform_driver(rk_iommu_driver); 1411