xref: /openbmc/linux/drivers/iommu/rockchip-iommu.c (revision 8631f940b81bf0da3d375fce166d381fa8c47bb2)
1 /*
2  * IOMMU API for Rockchip
3  *
4  * Module Authors:	Simon Xue <xxm@rock-chips.com>
5  *			Daniel Kurtz <djkurtz@chromium.org>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/compiler.h>
14 #include <linux/delay.h>
15 #include <linux/device.h>
16 #include <linux/dma-iommu.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/errno.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/iommu.h>
22 #include <linux/iopoll.h>
23 #include <linux/list.h>
24 #include <linux/mm.h>
25 #include <linux/init.h>
26 #include <linux/of.h>
27 #include <linux/of_iommu.h>
28 #include <linux/of_platform.h>
29 #include <linux/platform_device.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/slab.h>
32 #include <linux/spinlock.h>
33 
34 /** MMU register offsets */
35 #define RK_MMU_DTE_ADDR		0x00	/* Directory table address */
36 #define RK_MMU_STATUS		0x04
37 #define RK_MMU_COMMAND		0x08
38 #define RK_MMU_PAGE_FAULT_ADDR	0x0C	/* IOVA of last page fault */
39 #define RK_MMU_ZAP_ONE_LINE	0x10	/* Shootdown one IOTLB entry */
40 #define RK_MMU_INT_RAWSTAT	0x14	/* IRQ status ignoring mask */
41 #define RK_MMU_INT_CLEAR	0x18	/* Acknowledge and re-arm irq */
42 #define RK_MMU_INT_MASK		0x1C	/* IRQ enable */
43 #define RK_MMU_INT_STATUS	0x20	/* IRQ status after masking */
44 #define RK_MMU_AUTO_GATING	0x24
45 
46 #define DTE_ADDR_DUMMY		0xCAFEBABE
47 
48 #define RK_MMU_POLL_PERIOD_US		100
49 #define RK_MMU_FORCE_RESET_TIMEOUT_US	100000
50 #define RK_MMU_POLL_TIMEOUT_US		1000
51 
52 /* RK_MMU_STATUS fields */
53 #define RK_MMU_STATUS_PAGING_ENABLED       BIT(0)
54 #define RK_MMU_STATUS_PAGE_FAULT_ACTIVE    BIT(1)
55 #define RK_MMU_STATUS_STALL_ACTIVE         BIT(2)
56 #define RK_MMU_STATUS_IDLE                 BIT(3)
57 #define RK_MMU_STATUS_REPLAY_BUFFER_EMPTY  BIT(4)
58 #define RK_MMU_STATUS_PAGE_FAULT_IS_WRITE  BIT(5)
59 #define RK_MMU_STATUS_STALL_NOT_ACTIVE     BIT(31)
60 
61 /* RK_MMU_COMMAND command values */
62 #define RK_MMU_CMD_ENABLE_PAGING    0  /* Enable memory translation */
63 #define RK_MMU_CMD_DISABLE_PAGING   1  /* Disable memory translation */
64 #define RK_MMU_CMD_ENABLE_STALL     2  /* Stall paging to allow other cmds */
65 #define RK_MMU_CMD_DISABLE_STALL    3  /* Stop stall re-enables paging */
66 #define RK_MMU_CMD_ZAP_CACHE        4  /* Shoot down entire IOTLB */
67 #define RK_MMU_CMD_PAGE_FAULT_DONE  5  /* Clear page fault */
68 #define RK_MMU_CMD_FORCE_RESET      6  /* Reset all registers */
69 
70 /* RK_MMU_INT_* register fields */
71 #define RK_MMU_IRQ_PAGE_FAULT    0x01  /* page fault */
72 #define RK_MMU_IRQ_BUS_ERROR     0x02  /* bus read error */
73 #define RK_MMU_IRQ_MASK          (RK_MMU_IRQ_PAGE_FAULT | RK_MMU_IRQ_BUS_ERROR)
74 
75 #define NUM_DT_ENTRIES 1024
76 #define NUM_PT_ENTRIES 1024
77 
78 #define SPAGE_ORDER 12
79 #define SPAGE_SIZE (1 << SPAGE_ORDER)
80 
81  /*
82   * Support mapping any size that fits in one page table:
83   *   4 KiB to 4 MiB
84   */
85 #define RK_IOMMU_PGSIZE_BITMAP 0x007ff000
86 
87 struct rk_iommu_domain {
88 	struct list_head iommus;
89 	u32 *dt; /* page directory table */
90 	dma_addr_t dt_dma;
91 	spinlock_t iommus_lock; /* lock for iommus list */
92 	spinlock_t dt_lock; /* lock for modifying page directory table */
93 
94 	struct iommu_domain domain;
95 };
96 
97 /* list of clocks required by IOMMU */
98 static const char * const rk_iommu_clocks[] = {
99 	"aclk", "iface",
100 };
101 
102 struct rk_iommu {
103 	struct device *dev;
104 	void __iomem **bases;
105 	int num_mmu;
106 	struct clk_bulk_data *clocks;
107 	int num_clocks;
108 	bool reset_disabled;
109 	struct iommu_device iommu;
110 	struct list_head node; /* entry in rk_iommu_domain.iommus */
111 	struct iommu_domain *domain; /* domain to which iommu is attached */
112 	struct iommu_group *group;
113 };
114 
115 struct rk_iommudata {
116 	struct device_link *link; /* runtime PM link from IOMMU to master */
117 	struct rk_iommu *iommu;
118 };
119 
120 static struct device *dma_dev;
121 
122 static inline void rk_table_flush(struct rk_iommu_domain *dom, dma_addr_t dma,
123 				  unsigned int count)
124 {
125 	size_t size = count * sizeof(u32); /* count of u32 entry */
126 
127 	dma_sync_single_for_device(dma_dev, dma, size, DMA_TO_DEVICE);
128 }
129 
130 static struct rk_iommu_domain *to_rk_domain(struct iommu_domain *dom)
131 {
132 	return container_of(dom, struct rk_iommu_domain, domain);
133 }
134 
135 /*
136  * The Rockchip rk3288 iommu uses a 2-level page table.
137  * The first level is the "Directory Table" (DT).
138  * The DT consists of 1024 4-byte Directory Table Entries (DTEs), each pointing
139  * to a "Page Table".
140  * The second level is the 1024 Page Tables (PT).
141  * Each PT consists of 1024 4-byte Page Table Entries (PTEs), each pointing to
142  * a 4 KB page of physical memory.
143  *
144  * The DT and each PT fits in a single 4 KB page (4-bytes * 1024 entries).
145  * Each iommu device has a MMU_DTE_ADDR register that contains the physical
146  * address of the start of the DT page.
147  *
148  * The structure of the page table is as follows:
149  *
150  *                   DT
151  * MMU_DTE_ADDR -> +-----+
152  *                 |     |
153  *                 +-----+     PT
154  *                 | DTE | -> +-----+
155  *                 +-----+    |     |     Memory
156  *                 |     |    +-----+     Page
157  *                 |     |    | PTE | -> +-----+
158  *                 +-----+    +-----+    |     |
159  *                            |     |    |     |
160  *                            |     |    |     |
161  *                            +-----+    |     |
162  *                                       |     |
163  *                                       |     |
164  *                                       +-----+
165  */
166 
167 /*
168  * Each DTE has a PT address and a valid bit:
169  * +---------------------+-----------+-+
170  * | PT address          | Reserved  |V|
171  * +---------------------+-----------+-+
172  *  31:12 - PT address (PTs always starts on a 4 KB boundary)
173  *  11: 1 - Reserved
174  *      0 - 1 if PT @ PT address is valid
175  */
176 #define RK_DTE_PT_ADDRESS_MASK    0xfffff000
177 #define RK_DTE_PT_VALID           BIT(0)
178 
179 static inline phys_addr_t rk_dte_pt_address(u32 dte)
180 {
181 	return (phys_addr_t)dte & RK_DTE_PT_ADDRESS_MASK;
182 }
183 
184 static inline bool rk_dte_is_pt_valid(u32 dte)
185 {
186 	return dte & RK_DTE_PT_VALID;
187 }
188 
189 static inline u32 rk_mk_dte(dma_addr_t pt_dma)
190 {
191 	return (pt_dma & RK_DTE_PT_ADDRESS_MASK) | RK_DTE_PT_VALID;
192 }
193 
194 /*
195  * Each PTE has a Page address, some flags and a valid bit:
196  * +---------------------+---+-------+-+
197  * | Page address        |Rsv| Flags |V|
198  * +---------------------+---+-------+-+
199  *  31:12 - Page address (Pages always start on a 4 KB boundary)
200  *  11: 9 - Reserved
201  *   8: 1 - Flags
202  *      8 - Read allocate - allocate cache space on read misses
203  *      7 - Read cache - enable cache & prefetch of data
204  *      6 - Write buffer - enable delaying writes on their way to memory
205  *      5 - Write allocate - allocate cache space on write misses
206  *      4 - Write cache - different writes can be merged together
207  *      3 - Override cache attributes
208  *          if 1, bits 4-8 control cache attributes
209  *          if 0, the system bus defaults are used
210  *      2 - Writable
211  *      1 - Readable
212  *      0 - 1 if Page @ Page address is valid
213  */
214 #define RK_PTE_PAGE_ADDRESS_MASK  0xfffff000
215 #define RK_PTE_PAGE_FLAGS_MASK    0x000001fe
216 #define RK_PTE_PAGE_WRITABLE      BIT(2)
217 #define RK_PTE_PAGE_READABLE      BIT(1)
218 #define RK_PTE_PAGE_VALID         BIT(0)
219 
220 static inline phys_addr_t rk_pte_page_address(u32 pte)
221 {
222 	return (phys_addr_t)pte & RK_PTE_PAGE_ADDRESS_MASK;
223 }
224 
225 static inline bool rk_pte_is_page_valid(u32 pte)
226 {
227 	return pte & RK_PTE_PAGE_VALID;
228 }
229 
230 /* TODO: set cache flags per prot IOMMU_CACHE */
231 static u32 rk_mk_pte(phys_addr_t page, int prot)
232 {
233 	u32 flags = 0;
234 	flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0;
235 	flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0;
236 	page &= RK_PTE_PAGE_ADDRESS_MASK;
237 	return page | flags | RK_PTE_PAGE_VALID;
238 }
239 
240 static u32 rk_mk_pte_invalid(u32 pte)
241 {
242 	return pte & ~RK_PTE_PAGE_VALID;
243 }
244 
245 /*
246  * rk3288 iova (IOMMU Virtual Address) format
247  *  31       22.21       12.11          0
248  * +-----------+-----------+-------------+
249  * | DTE index | PTE index | Page offset |
250  * +-----------+-----------+-------------+
251  *  31:22 - DTE index   - index of DTE in DT
252  *  21:12 - PTE index   - index of PTE in PT @ DTE.pt_address
253  *  11: 0 - Page offset - offset into page @ PTE.page_address
254  */
255 #define RK_IOVA_DTE_MASK    0xffc00000
256 #define RK_IOVA_DTE_SHIFT   22
257 #define RK_IOVA_PTE_MASK    0x003ff000
258 #define RK_IOVA_PTE_SHIFT   12
259 #define RK_IOVA_PAGE_MASK   0x00000fff
260 #define RK_IOVA_PAGE_SHIFT  0
261 
262 static u32 rk_iova_dte_index(dma_addr_t iova)
263 {
264 	return (u32)(iova & RK_IOVA_DTE_MASK) >> RK_IOVA_DTE_SHIFT;
265 }
266 
267 static u32 rk_iova_pte_index(dma_addr_t iova)
268 {
269 	return (u32)(iova & RK_IOVA_PTE_MASK) >> RK_IOVA_PTE_SHIFT;
270 }
271 
272 static u32 rk_iova_page_offset(dma_addr_t iova)
273 {
274 	return (u32)(iova & RK_IOVA_PAGE_MASK) >> RK_IOVA_PAGE_SHIFT;
275 }
276 
277 static u32 rk_iommu_read(void __iomem *base, u32 offset)
278 {
279 	return readl(base + offset);
280 }
281 
282 static void rk_iommu_write(void __iomem *base, u32 offset, u32 value)
283 {
284 	writel(value, base + offset);
285 }
286 
287 static void rk_iommu_command(struct rk_iommu *iommu, u32 command)
288 {
289 	int i;
290 
291 	for (i = 0; i < iommu->num_mmu; i++)
292 		writel(command, iommu->bases[i] + RK_MMU_COMMAND);
293 }
294 
295 static void rk_iommu_base_command(void __iomem *base, u32 command)
296 {
297 	writel(command, base + RK_MMU_COMMAND);
298 }
299 static void rk_iommu_zap_lines(struct rk_iommu *iommu, dma_addr_t iova_start,
300 			       size_t size)
301 {
302 	int i;
303 	dma_addr_t iova_end = iova_start + size;
304 	/*
305 	 * TODO(djkurtz): Figure out when it is more efficient to shootdown the
306 	 * entire iotlb rather than iterate over individual iovas.
307 	 */
308 	for (i = 0; i < iommu->num_mmu; i++) {
309 		dma_addr_t iova;
310 
311 		for (iova = iova_start; iova < iova_end; iova += SPAGE_SIZE)
312 			rk_iommu_write(iommu->bases[i], RK_MMU_ZAP_ONE_LINE, iova);
313 	}
314 }
315 
316 static bool rk_iommu_is_stall_active(struct rk_iommu *iommu)
317 {
318 	bool active = true;
319 	int i;
320 
321 	for (i = 0; i < iommu->num_mmu; i++)
322 		active &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
323 					   RK_MMU_STATUS_STALL_ACTIVE);
324 
325 	return active;
326 }
327 
328 static bool rk_iommu_is_paging_enabled(struct rk_iommu *iommu)
329 {
330 	bool enable = true;
331 	int i;
332 
333 	for (i = 0; i < iommu->num_mmu; i++)
334 		enable &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
335 					   RK_MMU_STATUS_PAGING_ENABLED);
336 
337 	return enable;
338 }
339 
340 static bool rk_iommu_is_reset_done(struct rk_iommu *iommu)
341 {
342 	bool done = true;
343 	int i;
344 
345 	for (i = 0; i < iommu->num_mmu; i++)
346 		done &= rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR) == 0;
347 
348 	return done;
349 }
350 
351 static int rk_iommu_enable_stall(struct rk_iommu *iommu)
352 {
353 	int ret, i;
354 	bool val;
355 
356 	if (rk_iommu_is_stall_active(iommu))
357 		return 0;
358 
359 	/* Stall can only be enabled if paging is enabled */
360 	if (!rk_iommu_is_paging_enabled(iommu))
361 		return 0;
362 
363 	rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_STALL);
364 
365 	ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val,
366 				 val, RK_MMU_POLL_PERIOD_US,
367 				 RK_MMU_POLL_TIMEOUT_US);
368 	if (ret)
369 		for (i = 0; i < iommu->num_mmu; i++)
370 			dev_err(iommu->dev, "Enable stall request timed out, status: %#08x\n",
371 				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
372 
373 	return ret;
374 }
375 
376 static int rk_iommu_disable_stall(struct rk_iommu *iommu)
377 {
378 	int ret, i;
379 	bool val;
380 
381 	if (!rk_iommu_is_stall_active(iommu))
382 		return 0;
383 
384 	rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_STALL);
385 
386 	ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val,
387 				 !val, RK_MMU_POLL_PERIOD_US,
388 				 RK_MMU_POLL_TIMEOUT_US);
389 	if (ret)
390 		for (i = 0; i < iommu->num_mmu; i++)
391 			dev_err(iommu->dev, "Disable stall request timed out, status: %#08x\n",
392 				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
393 
394 	return ret;
395 }
396 
397 static int rk_iommu_enable_paging(struct rk_iommu *iommu)
398 {
399 	int ret, i;
400 	bool val;
401 
402 	if (rk_iommu_is_paging_enabled(iommu))
403 		return 0;
404 
405 	rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_PAGING);
406 
407 	ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val,
408 				 val, RK_MMU_POLL_PERIOD_US,
409 				 RK_MMU_POLL_TIMEOUT_US);
410 	if (ret)
411 		for (i = 0; i < iommu->num_mmu; i++)
412 			dev_err(iommu->dev, "Enable paging request timed out, status: %#08x\n",
413 				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
414 
415 	return ret;
416 }
417 
418 static int rk_iommu_disable_paging(struct rk_iommu *iommu)
419 {
420 	int ret, i;
421 	bool val;
422 
423 	if (!rk_iommu_is_paging_enabled(iommu))
424 		return 0;
425 
426 	rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_PAGING);
427 
428 	ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val,
429 				 !val, RK_MMU_POLL_PERIOD_US,
430 				 RK_MMU_POLL_TIMEOUT_US);
431 	if (ret)
432 		for (i = 0; i < iommu->num_mmu; i++)
433 			dev_err(iommu->dev, "Disable paging request timed out, status: %#08x\n",
434 				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
435 
436 	return ret;
437 }
438 
439 static int rk_iommu_force_reset(struct rk_iommu *iommu)
440 {
441 	int ret, i;
442 	u32 dte_addr;
443 	bool val;
444 
445 	if (iommu->reset_disabled)
446 		return 0;
447 
448 	/*
449 	 * Check if register DTE_ADDR is working by writing DTE_ADDR_DUMMY
450 	 * and verifying that upper 5 nybbles are read back.
451 	 */
452 	for (i = 0; i < iommu->num_mmu; i++) {
453 		rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, DTE_ADDR_DUMMY);
454 
455 		dte_addr = rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR);
456 		if (dte_addr != (DTE_ADDR_DUMMY & RK_DTE_PT_ADDRESS_MASK)) {
457 			dev_err(iommu->dev, "Error during raw reset. MMU_DTE_ADDR is not functioning\n");
458 			return -EFAULT;
459 		}
460 	}
461 
462 	rk_iommu_command(iommu, RK_MMU_CMD_FORCE_RESET);
463 
464 	ret = readx_poll_timeout(rk_iommu_is_reset_done, iommu, val,
465 				 val, RK_MMU_FORCE_RESET_TIMEOUT_US,
466 				 RK_MMU_POLL_TIMEOUT_US);
467 	if (ret) {
468 		dev_err(iommu->dev, "FORCE_RESET command timed out\n");
469 		return ret;
470 	}
471 
472 	return 0;
473 }
474 
475 static void log_iova(struct rk_iommu *iommu, int index, dma_addr_t iova)
476 {
477 	void __iomem *base = iommu->bases[index];
478 	u32 dte_index, pte_index, page_offset;
479 	u32 mmu_dte_addr;
480 	phys_addr_t mmu_dte_addr_phys, dte_addr_phys;
481 	u32 *dte_addr;
482 	u32 dte;
483 	phys_addr_t pte_addr_phys = 0;
484 	u32 *pte_addr = NULL;
485 	u32 pte = 0;
486 	phys_addr_t page_addr_phys = 0;
487 	u32 page_flags = 0;
488 
489 	dte_index = rk_iova_dte_index(iova);
490 	pte_index = rk_iova_pte_index(iova);
491 	page_offset = rk_iova_page_offset(iova);
492 
493 	mmu_dte_addr = rk_iommu_read(base, RK_MMU_DTE_ADDR);
494 	mmu_dte_addr_phys = (phys_addr_t)mmu_dte_addr;
495 
496 	dte_addr_phys = mmu_dte_addr_phys + (4 * dte_index);
497 	dte_addr = phys_to_virt(dte_addr_phys);
498 	dte = *dte_addr;
499 
500 	if (!rk_dte_is_pt_valid(dte))
501 		goto print_it;
502 
503 	pte_addr_phys = rk_dte_pt_address(dte) + (pte_index * 4);
504 	pte_addr = phys_to_virt(pte_addr_phys);
505 	pte = *pte_addr;
506 
507 	if (!rk_pte_is_page_valid(pte))
508 		goto print_it;
509 
510 	page_addr_phys = rk_pte_page_address(pte) + page_offset;
511 	page_flags = pte & RK_PTE_PAGE_FLAGS_MASK;
512 
513 print_it:
514 	dev_err(iommu->dev, "iova = %pad: dte_index: %#03x pte_index: %#03x page_offset: %#03x\n",
515 		&iova, dte_index, pte_index, page_offset);
516 	dev_err(iommu->dev, "mmu_dte_addr: %pa dte@%pa: %#08x valid: %u pte@%pa: %#08x valid: %u page@%pa flags: %#03x\n",
517 		&mmu_dte_addr_phys, &dte_addr_phys, dte,
518 		rk_dte_is_pt_valid(dte), &pte_addr_phys, pte,
519 		rk_pte_is_page_valid(pte), &page_addr_phys, page_flags);
520 }
521 
522 static irqreturn_t rk_iommu_irq(int irq, void *dev_id)
523 {
524 	struct rk_iommu *iommu = dev_id;
525 	u32 status;
526 	u32 int_status;
527 	dma_addr_t iova;
528 	irqreturn_t ret = IRQ_NONE;
529 	int i, err;
530 
531 	err = pm_runtime_get_if_in_use(iommu->dev);
532 	if (WARN_ON_ONCE(err <= 0))
533 		return ret;
534 
535 	if (WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks)))
536 		goto out;
537 
538 	for (i = 0; i < iommu->num_mmu; i++) {
539 		int_status = rk_iommu_read(iommu->bases[i], RK_MMU_INT_STATUS);
540 		if (int_status == 0)
541 			continue;
542 
543 		ret = IRQ_HANDLED;
544 		iova = rk_iommu_read(iommu->bases[i], RK_MMU_PAGE_FAULT_ADDR);
545 
546 		if (int_status & RK_MMU_IRQ_PAGE_FAULT) {
547 			int flags;
548 
549 			status = rk_iommu_read(iommu->bases[i], RK_MMU_STATUS);
550 			flags = (status & RK_MMU_STATUS_PAGE_FAULT_IS_WRITE) ?
551 					IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
552 
553 			dev_err(iommu->dev, "Page fault at %pad of type %s\n",
554 				&iova,
555 				(flags == IOMMU_FAULT_WRITE) ? "write" : "read");
556 
557 			log_iova(iommu, i, iova);
558 
559 			/*
560 			 * Report page fault to any installed handlers.
561 			 * Ignore the return code, though, since we always zap cache
562 			 * and clear the page fault anyway.
563 			 */
564 			if (iommu->domain)
565 				report_iommu_fault(iommu->domain, iommu->dev, iova,
566 						   flags);
567 			else
568 				dev_err(iommu->dev, "Page fault while iommu not attached to domain?\n");
569 
570 			rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
571 			rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_PAGE_FAULT_DONE);
572 		}
573 
574 		if (int_status & RK_MMU_IRQ_BUS_ERROR)
575 			dev_err(iommu->dev, "BUS_ERROR occurred at %pad\n", &iova);
576 
577 		if (int_status & ~RK_MMU_IRQ_MASK)
578 			dev_err(iommu->dev, "unexpected int_status: %#08x\n",
579 				int_status);
580 
581 		rk_iommu_write(iommu->bases[i], RK_MMU_INT_CLEAR, int_status);
582 	}
583 
584 	clk_bulk_disable(iommu->num_clocks, iommu->clocks);
585 
586 out:
587 	pm_runtime_put(iommu->dev);
588 	return ret;
589 }
590 
591 static phys_addr_t rk_iommu_iova_to_phys(struct iommu_domain *domain,
592 					 dma_addr_t iova)
593 {
594 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
595 	unsigned long flags;
596 	phys_addr_t pt_phys, phys = 0;
597 	u32 dte, pte;
598 	u32 *page_table;
599 
600 	spin_lock_irqsave(&rk_domain->dt_lock, flags);
601 
602 	dte = rk_domain->dt[rk_iova_dte_index(iova)];
603 	if (!rk_dte_is_pt_valid(dte))
604 		goto out;
605 
606 	pt_phys = rk_dte_pt_address(dte);
607 	page_table = (u32 *)phys_to_virt(pt_phys);
608 	pte = page_table[rk_iova_pte_index(iova)];
609 	if (!rk_pte_is_page_valid(pte))
610 		goto out;
611 
612 	phys = rk_pte_page_address(pte) + rk_iova_page_offset(iova);
613 out:
614 	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
615 
616 	return phys;
617 }
618 
619 static void rk_iommu_zap_iova(struct rk_iommu_domain *rk_domain,
620 			      dma_addr_t iova, size_t size)
621 {
622 	struct list_head *pos;
623 	unsigned long flags;
624 
625 	/* shootdown these iova from all iommus using this domain */
626 	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
627 	list_for_each(pos, &rk_domain->iommus) {
628 		struct rk_iommu *iommu;
629 		int ret;
630 
631 		iommu = list_entry(pos, struct rk_iommu, node);
632 
633 		/* Only zap TLBs of IOMMUs that are powered on. */
634 		ret = pm_runtime_get_if_in_use(iommu->dev);
635 		if (WARN_ON_ONCE(ret < 0))
636 			continue;
637 		if (ret) {
638 			WARN_ON(clk_bulk_enable(iommu->num_clocks,
639 						iommu->clocks));
640 			rk_iommu_zap_lines(iommu, iova, size);
641 			clk_bulk_disable(iommu->num_clocks, iommu->clocks);
642 			pm_runtime_put(iommu->dev);
643 		}
644 	}
645 	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
646 }
647 
648 static void rk_iommu_zap_iova_first_last(struct rk_iommu_domain *rk_domain,
649 					 dma_addr_t iova, size_t size)
650 {
651 	rk_iommu_zap_iova(rk_domain, iova, SPAGE_SIZE);
652 	if (size > SPAGE_SIZE)
653 		rk_iommu_zap_iova(rk_domain, iova + size - SPAGE_SIZE,
654 					SPAGE_SIZE);
655 }
656 
657 static u32 *rk_dte_get_page_table(struct rk_iommu_domain *rk_domain,
658 				  dma_addr_t iova)
659 {
660 	u32 *page_table, *dte_addr;
661 	u32 dte_index, dte;
662 	phys_addr_t pt_phys;
663 	dma_addr_t pt_dma;
664 
665 	assert_spin_locked(&rk_domain->dt_lock);
666 
667 	dte_index = rk_iova_dte_index(iova);
668 	dte_addr = &rk_domain->dt[dte_index];
669 	dte = *dte_addr;
670 	if (rk_dte_is_pt_valid(dte))
671 		goto done;
672 
673 	page_table = (u32 *)get_zeroed_page(GFP_ATOMIC | GFP_DMA32);
674 	if (!page_table)
675 		return ERR_PTR(-ENOMEM);
676 
677 	pt_dma = dma_map_single(dma_dev, page_table, SPAGE_SIZE, DMA_TO_DEVICE);
678 	if (dma_mapping_error(dma_dev, pt_dma)) {
679 		dev_err(dma_dev, "DMA mapping error while allocating page table\n");
680 		free_page((unsigned long)page_table);
681 		return ERR_PTR(-ENOMEM);
682 	}
683 
684 	dte = rk_mk_dte(pt_dma);
685 	*dte_addr = dte;
686 
687 	rk_table_flush(rk_domain, pt_dma, NUM_PT_ENTRIES);
688 	rk_table_flush(rk_domain,
689 		       rk_domain->dt_dma + dte_index * sizeof(u32), 1);
690 done:
691 	pt_phys = rk_dte_pt_address(dte);
692 	return (u32 *)phys_to_virt(pt_phys);
693 }
694 
695 static size_t rk_iommu_unmap_iova(struct rk_iommu_domain *rk_domain,
696 				  u32 *pte_addr, dma_addr_t pte_dma,
697 				  size_t size)
698 {
699 	unsigned int pte_count;
700 	unsigned int pte_total = size / SPAGE_SIZE;
701 
702 	assert_spin_locked(&rk_domain->dt_lock);
703 
704 	for (pte_count = 0; pte_count < pte_total; pte_count++) {
705 		u32 pte = pte_addr[pte_count];
706 		if (!rk_pte_is_page_valid(pte))
707 			break;
708 
709 		pte_addr[pte_count] = rk_mk_pte_invalid(pte);
710 	}
711 
712 	rk_table_flush(rk_domain, pte_dma, pte_count);
713 
714 	return pte_count * SPAGE_SIZE;
715 }
716 
717 static int rk_iommu_map_iova(struct rk_iommu_domain *rk_domain, u32 *pte_addr,
718 			     dma_addr_t pte_dma, dma_addr_t iova,
719 			     phys_addr_t paddr, size_t size, int prot)
720 {
721 	unsigned int pte_count;
722 	unsigned int pte_total = size / SPAGE_SIZE;
723 	phys_addr_t page_phys;
724 
725 	assert_spin_locked(&rk_domain->dt_lock);
726 
727 	for (pte_count = 0; pte_count < pte_total; pte_count++) {
728 		u32 pte = pte_addr[pte_count];
729 
730 		if (rk_pte_is_page_valid(pte))
731 			goto unwind;
732 
733 		pte_addr[pte_count] = rk_mk_pte(paddr, prot);
734 
735 		paddr += SPAGE_SIZE;
736 	}
737 
738 	rk_table_flush(rk_domain, pte_dma, pte_total);
739 
740 	/*
741 	 * Zap the first and last iova to evict from iotlb any previously
742 	 * mapped cachelines holding stale values for its dte and pte.
743 	 * We only zap the first and last iova, since only they could have
744 	 * dte or pte shared with an existing mapping.
745 	 */
746 	rk_iommu_zap_iova_first_last(rk_domain, iova, size);
747 
748 	return 0;
749 unwind:
750 	/* Unmap the range of iovas that we just mapped */
751 	rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma,
752 			    pte_count * SPAGE_SIZE);
753 
754 	iova += pte_count * SPAGE_SIZE;
755 	page_phys = rk_pte_page_address(pte_addr[pte_count]);
756 	pr_err("iova: %pad already mapped to %pa cannot remap to phys: %pa prot: %#x\n",
757 	       &iova, &page_phys, &paddr, prot);
758 
759 	return -EADDRINUSE;
760 }
761 
762 static int rk_iommu_map(struct iommu_domain *domain, unsigned long _iova,
763 			phys_addr_t paddr, size_t size, int prot)
764 {
765 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
766 	unsigned long flags;
767 	dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
768 	u32 *page_table, *pte_addr;
769 	u32 dte_index, pte_index;
770 	int ret;
771 
772 	spin_lock_irqsave(&rk_domain->dt_lock, flags);
773 
774 	/*
775 	 * pgsize_bitmap specifies iova sizes that fit in one page table
776 	 * (1024 4-KiB pages = 4 MiB).
777 	 * So, size will always be 4096 <= size <= 4194304.
778 	 * Since iommu_map() guarantees that both iova and size will be
779 	 * aligned, we will always only be mapping from a single dte here.
780 	 */
781 	page_table = rk_dte_get_page_table(rk_domain, iova);
782 	if (IS_ERR(page_table)) {
783 		spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
784 		return PTR_ERR(page_table);
785 	}
786 
787 	dte_index = rk_domain->dt[rk_iova_dte_index(iova)];
788 	pte_index = rk_iova_pte_index(iova);
789 	pte_addr = &page_table[pte_index];
790 	pte_dma = rk_dte_pt_address(dte_index) + pte_index * sizeof(u32);
791 	ret = rk_iommu_map_iova(rk_domain, pte_addr, pte_dma, iova,
792 				paddr, size, prot);
793 
794 	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
795 
796 	return ret;
797 }
798 
799 static size_t rk_iommu_unmap(struct iommu_domain *domain, unsigned long _iova,
800 			     size_t size)
801 {
802 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
803 	unsigned long flags;
804 	dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
805 	phys_addr_t pt_phys;
806 	u32 dte;
807 	u32 *pte_addr;
808 	size_t unmap_size;
809 
810 	spin_lock_irqsave(&rk_domain->dt_lock, flags);
811 
812 	/*
813 	 * pgsize_bitmap specifies iova sizes that fit in one page table
814 	 * (1024 4-KiB pages = 4 MiB).
815 	 * So, size will always be 4096 <= size <= 4194304.
816 	 * Since iommu_unmap() guarantees that both iova and size will be
817 	 * aligned, we will always only be unmapping from a single dte here.
818 	 */
819 	dte = rk_domain->dt[rk_iova_dte_index(iova)];
820 	/* Just return 0 if iova is unmapped */
821 	if (!rk_dte_is_pt_valid(dte)) {
822 		spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
823 		return 0;
824 	}
825 
826 	pt_phys = rk_dte_pt_address(dte);
827 	pte_addr = (u32 *)phys_to_virt(pt_phys) + rk_iova_pte_index(iova);
828 	pte_dma = pt_phys + rk_iova_pte_index(iova) * sizeof(u32);
829 	unmap_size = rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma, size);
830 
831 	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
832 
833 	/* Shootdown iotlb entries for iova range that was just unmapped */
834 	rk_iommu_zap_iova(rk_domain, iova, unmap_size);
835 
836 	return unmap_size;
837 }
838 
839 static struct rk_iommu *rk_iommu_from_dev(struct device *dev)
840 {
841 	struct rk_iommudata *data = dev->archdata.iommu;
842 
843 	return data ? data->iommu : NULL;
844 }
845 
846 /* Must be called with iommu powered on and attached */
847 static void rk_iommu_disable(struct rk_iommu *iommu)
848 {
849 	int i;
850 
851 	/* Ignore error while disabling, just keep going */
852 	WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks));
853 	rk_iommu_enable_stall(iommu);
854 	rk_iommu_disable_paging(iommu);
855 	for (i = 0; i < iommu->num_mmu; i++) {
856 		rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, 0);
857 		rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, 0);
858 	}
859 	rk_iommu_disable_stall(iommu);
860 	clk_bulk_disable(iommu->num_clocks, iommu->clocks);
861 }
862 
863 /* Must be called with iommu powered on and attached */
864 static int rk_iommu_enable(struct rk_iommu *iommu)
865 {
866 	struct iommu_domain *domain = iommu->domain;
867 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
868 	int ret, i;
869 
870 	ret = clk_bulk_enable(iommu->num_clocks, iommu->clocks);
871 	if (ret)
872 		return ret;
873 
874 	ret = rk_iommu_enable_stall(iommu);
875 	if (ret)
876 		goto out_disable_clocks;
877 
878 	ret = rk_iommu_force_reset(iommu);
879 	if (ret)
880 		goto out_disable_stall;
881 
882 	for (i = 0; i < iommu->num_mmu; i++) {
883 		rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR,
884 			       rk_domain->dt_dma);
885 		rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
886 		rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, RK_MMU_IRQ_MASK);
887 	}
888 
889 	ret = rk_iommu_enable_paging(iommu);
890 
891 out_disable_stall:
892 	rk_iommu_disable_stall(iommu);
893 out_disable_clocks:
894 	clk_bulk_disable(iommu->num_clocks, iommu->clocks);
895 	return ret;
896 }
897 
898 static void rk_iommu_detach_device(struct iommu_domain *domain,
899 				   struct device *dev)
900 {
901 	struct rk_iommu *iommu;
902 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
903 	unsigned long flags;
904 	int ret;
905 
906 	/* Allow 'virtual devices' (eg drm) to detach from domain */
907 	iommu = rk_iommu_from_dev(dev);
908 	if (!iommu)
909 		return;
910 
911 	dev_dbg(dev, "Detaching from iommu domain\n");
912 
913 	/* iommu already detached */
914 	if (iommu->domain != domain)
915 		return;
916 
917 	iommu->domain = NULL;
918 
919 	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
920 	list_del_init(&iommu->node);
921 	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
922 
923 	ret = pm_runtime_get_if_in_use(iommu->dev);
924 	WARN_ON_ONCE(ret < 0);
925 	if (ret > 0) {
926 		rk_iommu_disable(iommu);
927 		pm_runtime_put(iommu->dev);
928 	}
929 }
930 
931 static int rk_iommu_attach_device(struct iommu_domain *domain,
932 		struct device *dev)
933 {
934 	struct rk_iommu *iommu;
935 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
936 	unsigned long flags;
937 	int ret;
938 
939 	/*
940 	 * Allow 'virtual devices' (e.g., drm) to attach to domain.
941 	 * Such a device does not belong to an iommu group.
942 	 */
943 	iommu = rk_iommu_from_dev(dev);
944 	if (!iommu)
945 		return 0;
946 
947 	dev_dbg(dev, "Attaching to iommu domain\n");
948 
949 	/* iommu already attached */
950 	if (iommu->domain == domain)
951 		return 0;
952 
953 	if (iommu->domain)
954 		rk_iommu_detach_device(iommu->domain, dev);
955 
956 	iommu->domain = domain;
957 
958 	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
959 	list_add_tail(&iommu->node, &rk_domain->iommus);
960 	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
961 
962 	ret = pm_runtime_get_if_in_use(iommu->dev);
963 	if (!ret || WARN_ON_ONCE(ret < 0))
964 		return 0;
965 
966 	ret = rk_iommu_enable(iommu);
967 	if (ret)
968 		rk_iommu_detach_device(iommu->domain, dev);
969 
970 	pm_runtime_put(iommu->dev);
971 
972 	return ret;
973 }
974 
975 static struct iommu_domain *rk_iommu_domain_alloc(unsigned type)
976 {
977 	struct rk_iommu_domain *rk_domain;
978 
979 	if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
980 		return NULL;
981 
982 	if (!dma_dev)
983 		return NULL;
984 
985 	rk_domain = devm_kzalloc(dma_dev, sizeof(*rk_domain), GFP_KERNEL);
986 	if (!rk_domain)
987 		return NULL;
988 
989 	if (type == IOMMU_DOMAIN_DMA &&
990 	    iommu_get_dma_cookie(&rk_domain->domain))
991 		return NULL;
992 
993 	/*
994 	 * rk32xx iommus use a 2 level pagetable.
995 	 * Each level1 (dt) and level2 (pt) table has 1024 4-byte entries.
996 	 * Allocate one 4 KiB page for each table.
997 	 */
998 	rk_domain->dt = (u32 *)get_zeroed_page(GFP_KERNEL | GFP_DMA32);
999 	if (!rk_domain->dt)
1000 		goto err_put_cookie;
1001 
1002 	rk_domain->dt_dma = dma_map_single(dma_dev, rk_domain->dt,
1003 					   SPAGE_SIZE, DMA_TO_DEVICE);
1004 	if (dma_mapping_error(dma_dev, rk_domain->dt_dma)) {
1005 		dev_err(dma_dev, "DMA map error for DT\n");
1006 		goto err_free_dt;
1007 	}
1008 
1009 	rk_table_flush(rk_domain, rk_domain->dt_dma, NUM_DT_ENTRIES);
1010 
1011 	spin_lock_init(&rk_domain->iommus_lock);
1012 	spin_lock_init(&rk_domain->dt_lock);
1013 	INIT_LIST_HEAD(&rk_domain->iommus);
1014 
1015 	rk_domain->domain.geometry.aperture_start = 0;
1016 	rk_domain->domain.geometry.aperture_end   = DMA_BIT_MASK(32);
1017 	rk_domain->domain.geometry.force_aperture = true;
1018 
1019 	return &rk_domain->domain;
1020 
1021 err_free_dt:
1022 	free_page((unsigned long)rk_domain->dt);
1023 err_put_cookie:
1024 	if (type == IOMMU_DOMAIN_DMA)
1025 		iommu_put_dma_cookie(&rk_domain->domain);
1026 
1027 	return NULL;
1028 }
1029 
1030 static void rk_iommu_domain_free(struct iommu_domain *domain)
1031 {
1032 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
1033 	int i;
1034 
1035 	WARN_ON(!list_empty(&rk_domain->iommus));
1036 
1037 	for (i = 0; i < NUM_DT_ENTRIES; i++) {
1038 		u32 dte = rk_domain->dt[i];
1039 		if (rk_dte_is_pt_valid(dte)) {
1040 			phys_addr_t pt_phys = rk_dte_pt_address(dte);
1041 			u32 *page_table = phys_to_virt(pt_phys);
1042 			dma_unmap_single(dma_dev, pt_phys,
1043 					 SPAGE_SIZE, DMA_TO_DEVICE);
1044 			free_page((unsigned long)page_table);
1045 		}
1046 	}
1047 
1048 	dma_unmap_single(dma_dev, rk_domain->dt_dma,
1049 			 SPAGE_SIZE, DMA_TO_DEVICE);
1050 	free_page((unsigned long)rk_domain->dt);
1051 
1052 	if (domain->type == IOMMU_DOMAIN_DMA)
1053 		iommu_put_dma_cookie(&rk_domain->domain);
1054 }
1055 
1056 static int rk_iommu_add_device(struct device *dev)
1057 {
1058 	struct iommu_group *group;
1059 	struct rk_iommu *iommu;
1060 	struct rk_iommudata *data;
1061 
1062 	data = dev->archdata.iommu;
1063 	if (!data)
1064 		return -ENODEV;
1065 
1066 	iommu = rk_iommu_from_dev(dev);
1067 
1068 	group = iommu_group_get_for_dev(dev);
1069 	if (IS_ERR(group))
1070 		return PTR_ERR(group);
1071 	iommu_group_put(group);
1072 
1073 	iommu_device_link(&iommu->iommu, dev);
1074 	data->link = device_link_add(dev, iommu->dev, DL_FLAG_PM_RUNTIME);
1075 
1076 	return 0;
1077 }
1078 
1079 static void rk_iommu_remove_device(struct device *dev)
1080 {
1081 	struct rk_iommu *iommu;
1082 	struct rk_iommudata *data = dev->archdata.iommu;
1083 
1084 	iommu = rk_iommu_from_dev(dev);
1085 
1086 	device_link_del(data->link);
1087 	iommu_device_unlink(&iommu->iommu, dev);
1088 	iommu_group_remove_device(dev);
1089 }
1090 
1091 static struct iommu_group *rk_iommu_device_group(struct device *dev)
1092 {
1093 	struct rk_iommu *iommu;
1094 
1095 	iommu = rk_iommu_from_dev(dev);
1096 
1097 	return iommu_group_ref_get(iommu->group);
1098 }
1099 
1100 static int rk_iommu_of_xlate(struct device *dev,
1101 			     struct of_phandle_args *args)
1102 {
1103 	struct platform_device *iommu_dev;
1104 	struct rk_iommudata *data;
1105 
1106 	data = devm_kzalloc(dma_dev, sizeof(*data), GFP_KERNEL);
1107 	if (!data)
1108 		return -ENOMEM;
1109 
1110 	iommu_dev = of_find_device_by_node(args->np);
1111 
1112 	data->iommu = platform_get_drvdata(iommu_dev);
1113 	dev->archdata.iommu = data;
1114 
1115 	platform_device_put(iommu_dev);
1116 
1117 	return 0;
1118 }
1119 
1120 static const struct iommu_ops rk_iommu_ops = {
1121 	.domain_alloc = rk_iommu_domain_alloc,
1122 	.domain_free = rk_iommu_domain_free,
1123 	.attach_dev = rk_iommu_attach_device,
1124 	.detach_dev = rk_iommu_detach_device,
1125 	.map = rk_iommu_map,
1126 	.unmap = rk_iommu_unmap,
1127 	.add_device = rk_iommu_add_device,
1128 	.remove_device = rk_iommu_remove_device,
1129 	.iova_to_phys = rk_iommu_iova_to_phys,
1130 	.device_group = rk_iommu_device_group,
1131 	.pgsize_bitmap = RK_IOMMU_PGSIZE_BITMAP,
1132 	.of_xlate = rk_iommu_of_xlate,
1133 };
1134 
1135 static int rk_iommu_probe(struct platform_device *pdev)
1136 {
1137 	struct device *dev = &pdev->dev;
1138 	struct rk_iommu *iommu;
1139 	struct resource *res;
1140 	int num_res = pdev->num_resources;
1141 	int err, i, irq;
1142 
1143 	iommu = devm_kzalloc(dev, sizeof(*iommu), GFP_KERNEL);
1144 	if (!iommu)
1145 		return -ENOMEM;
1146 
1147 	platform_set_drvdata(pdev, iommu);
1148 	iommu->dev = dev;
1149 	iommu->num_mmu = 0;
1150 
1151 	iommu->bases = devm_kcalloc(dev, num_res, sizeof(*iommu->bases),
1152 				    GFP_KERNEL);
1153 	if (!iommu->bases)
1154 		return -ENOMEM;
1155 
1156 	for (i = 0; i < num_res; i++) {
1157 		res = platform_get_resource(pdev, IORESOURCE_MEM, i);
1158 		if (!res)
1159 			continue;
1160 		iommu->bases[i] = devm_ioremap_resource(&pdev->dev, res);
1161 		if (IS_ERR(iommu->bases[i]))
1162 			continue;
1163 		iommu->num_mmu++;
1164 	}
1165 	if (iommu->num_mmu == 0)
1166 		return PTR_ERR(iommu->bases[0]);
1167 
1168 	iommu->reset_disabled = device_property_read_bool(dev,
1169 					"rockchip,disable-mmu-reset");
1170 
1171 	iommu->num_clocks = ARRAY_SIZE(rk_iommu_clocks);
1172 	iommu->clocks = devm_kcalloc(iommu->dev, iommu->num_clocks,
1173 				     sizeof(*iommu->clocks), GFP_KERNEL);
1174 	if (!iommu->clocks)
1175 		return -ENOMEM;
1176 
1177 	for (i = 0; i < iommu->num_clocks; ++i)
1178 		iommu->clocks[i].id = rk_iommu_clocks[i];
1179 
1180 	/*
1181 	 * iommu clocks should be present for all new devices and devicetrees
1182 	 * but there are older devicetrees without clocks out in the wild.
1183 	 * So clocks as optional for the time being.
1184 	 */
1185 	err = devm_clk_bulk_get(iommu->dev, iommu->num_clocks, iommu->clocks);
1186 	if (err == -ENOENT)
1187 		iommu->num_clocks = 0;
1188 	else if (err)
1189 		return err;
1190 
1191 	err = clk_bulk_prepare(iommu->num_clocks, iommu->clocks);
1192 	if (err)
1193 		return err;
1194 
1195 	iommu->group = iommu_group_alloc();
1196 	if (IS_ERR(iommu->group)) {
1197 		err = PTR_ERR(iommu->group);
1198 		goto err_unprepare_clocks;
1199 	}
1200 
1201 	err = iommu_device_sysfs_add(&iommu->iommu, dev, NULL, dev_name(dev));
1202 	if (err)
1203 		goto err_put_group;
1204 
1205 	iommu_device_set_ops(&iommu->iommu, &rk_iommu_ops);
1206 	iommu_device_set_fwnode(&iommu->iommu, &dev->of_node->fwnode);
1207 
1208 	err = iommu_device_register(&iommu->iommu);
1209 	if (err)
1210 		goto err_remove_sysfs;
1211 
1212 	/*
1213 	 * Use the first registered IOMMU device for domain to use with DMA
1214 	 * API, since a domain might not physically correspond to a single
1215 	 * IOMMU device..
1216 	 */
1217 	if (!dma_dev)
1218 		dma_dev = &pdev->dev;
1219 
1220 	bus_set_iommu(&platform_bus_type, &rk_iommu_ops);
1221 
1222 	pm_runtime_enable(dev);
1223 
1224 	i = 0;
1225 	while ((irq = platform_get_irq(pdev, i++)) != -ENXIO) {
1226 		if (irq < 0)
1227 			return irq;
1228 
1229 		err = devm_request_irq(iommu->dev, irq, rk_iommu_irq,
1230 				       IRQF_SHARED, dev_name(dev), iommu);
1231 		if (err) {
1232 			pm_runtime_disable(dev);
1233 			goto err_remove_sysfs;
1234 		}
1235 	}
1236 
1237 	return 0;
1238 err_remove_sysfs:
1239 	iommu_device_sysfs_remove(&iommu->iommu);
1240 err_put_group:
1241 	iommu_group_put(iommu->group);
1242 err_unprepare_clocks:
1243 	clk_bulk_unprepare(iommu->num_clocks, iommu->clocks);
1244 	return err;
1245 }
1246 
1247 static void rk_iommu_shutdown(struct platform_device *pdev)
1248 {
1249 	struct rk_iommu *iommu = platform_get_drvdata(pdev);
1250 	int i = 0, irq;
1251 
1252 	while ((irq = platform_get_irq(pdev, i++)) != -ENXIO)
1253 		devm_free_irq(iommu->dev, irq, iommu);
1254 
1255 	pm_runtime_force_suspend(&pdev->dev);
1256 }
1257 
1258 static int __maybe_unused rk_iommu_suspend(struct device *dev)
1259 {
1260 	struct rk_iommu *iommu = dev_get_drvdata(dev);
1261 
1262 	if (!iommu->domain)
1263 		return 0;
1264 
1265 	rk_iommu_disable(iommu);
1266 	return 0;
1267 }
1268 
1269 static int __maybe_unused rk_iommu_resume(struct device *dev)
1270 {
1271 	struct rk_iommu *iommu = dev_get_drvdata(dev);
1272 
1273 	if (!iommu->domain)
1274 		return 0;
1275 
1276 	return rk_iommu_enable(iommu);
1277 }
1278 
1279 static const struct dev_pm_ops rk_iommu_pm_ops = {
1280 	SET_RUNTIME_PM_OPS(rk_iommu_suspend, rk_iommu_resume, NULL)
1281 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1282 				pm_runtime_force_resume)
1283 };
1284 
1285 static const struct of_device_id rk_iommu_dt_ids[] = {
1286 	{ .compatible = "rockchip,iommu" },
1287 	{ /* sentinel */ }
1288 };
1289 
1290 static struct platform_driver rk_iommu_driver = {
1291 	.probe = rk_iommu_probe,
1292 	.shutdown = rk_iommu_shutdown,
1293 	.driver = {
1294 		   .name = "rk_iommu",
1295 		   .of_match_table = rk_iommu_dt_ids,
1296 		   .pm = &rk_iommu_pm_ops,
1297 		   .suppress_bind_attrs = true,
1298 	},
1299 };
1300 
1301 static int __init rk_iommu_init(void)
1302 {
1303 	return platform_driver_register(&rk_iommu_driver);
1304 }
1305 subsys_initcall(rk_iommu_init);
1306