1 /* 2 * IOMMU API for Rockchip 3 * 4 * Module Authors: Simon Xue <xxm@rock-chips.com> 5 * Daniel Kurtz <djkurtz@chromium.org> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #include <linux/clk.h> 13 #include <linux/compiler.h> 14 #include <linux/delay.h> 15 #include <linux/device.h> 16 #include <linux/dma-iommu.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/errno.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/iommu.h> 22 #include <linux/iopoll.h> 23 #include <linux/list.h> 24 #include <linux/mm.h> 25 #include <linux/init.h> 26 #include <linux/of.h> 27 #include <linux/of_iommu.h> 28 #include <linux/of_platform.h> 29 #include <linux/platform_device.h> 30 #include <linux/pm_runtime.h> 31 #include <linux/slab.h> 32 #include <linux/spinlock.h> 33 34 /** MMU register offsets */ 35 #define RK_MMU_DTE_ADDR 0x00 /* Directory table address */ 36 #define RK_MMU_STATUS 0x04 37 #define RK_MMU_COMMAND 0x08 38 #define RK_MMU_PAGE_FAULT_ADDR 0x0C /* IOVA of last page fault */ 39 #define RK_MMU_ZAP_ONE_LINE 0x10 /* Shootdown one IOTLB entry */ 40 #define RK_MMU_INT_RAWSTAT 0x14 /* IRQ status ignoring mask */ 41 #define RK_MMU_INT_CLEAR 0x18 /* Acknowledge and re-arm irq */ 42 #define RK_MMU_INT_MASK 0x1C /* IRQ enable */ 43 #define RK_MMU_INT_STATUS 0x20 /* IRQ status after masking */ 44 #define RK_MMU_AUTO_GATING 0x24 45 46 #define DTE_ADDR_DUMMY 0xCAFEBABE 47 48 #define RK_MMU_POLL_PERIOD_US 100 49 #define RK_MMU_FORCE_RESET_TIMEOUT_US 100000 50 #define RK_MMU_POLL_TIMEOUT_US 1000 51 52 /* RK_MMU_STATUS fields */ 53 #define RK_MMU_STATUS_PAGING_ENABLED BIT(0) 54 #define RK_MMU_STATUS_PAGE_FAULT_ACTIVE BIT(1) 55 #define RK_MMU_STATUS_STALL_ACTIVE BIT(2) 56 #define RK_MMU_STATUS_IDLE BIT(3) 57 #define RK_MMU_STATUS_REPLAY_BUFFER_EMPTY BIT(4) 58 #define RK_MMU_STATUS_PAGE_FAULT_IS_WRITE BIT(5) 59 #define RK_MMU_STATUS_STALL_NOT_ACTIVE BIT(31) 60 61 /* RK_MMU_COMMAND command values */ 62 #define RK_MMU_CMD_ENABLE_PAGING 0 /* Enable memory translation */ 63 #define RK_MMU_CMD_DISABLE_PAGING 1 /* Disable memory translation */ 64 #define RK_MMU_CMD_ENABLE_STALL 2 /* Stall paging to allow other cmds */ 65 #define RK_MMU_CMD_DISABLE_STALL 3 /* Stop stall re-enables paging */ 66 #define RK_MMU_CMD_ZAP_CACHE 4 /* Shoot down entire IOTLB */ 67 #define RK_MMU_CMD_PAGE_FAULT_DONE 5 /* Clear page fault */ 68 #define RK_MMU_CMD_FORCE_RESET 6 /* Reset all registers */ 69 70 /* RK_MMU_INT_* register fields */ 71 #define RK_MMU_IRQ_PAGE_FAULT 0x01 /* page fault */ 72 #define RK_MMU_IRQ_BUS_ERROR 0x02 /* bus read error */ 73 #define RK_MMU_IRQ_MASK (RK_MMU_IRQ_PAGE_FAULT | RK_MMU_IRQ_BUS_ERROR) 74 75 #define NUM_DT_ENTRIES 1024 76 #define NUM_PT_ENTRIES 1024 77 78 #define SPAGE_ORDER 12 79 #define SPAGE_SIZE (1 << SPAGE_ORDER) 80 81 /* 82 * Support mapping any size that fits in one page table: 83 * 4 KiB to 4 MiB 84 */ 85 #define RK_IOMMU_PGSIZE_BITMAP 0x007ff000 86 87 struct rk_iommu_domain { 88 struct list_head iommus; 89 u32 *dt; /* page directory table */ 90 dma_addr_t dt_dma; 91 spinlock_t iommus_lock; /* lock for iommus list */ 92 spinlock_t dt_lock; /* lock for modifying page directory table */ 93 94 struct iommu_domain domain; 95 }; 96 97 /* list of clocks required by IOMMU */ 98 static const char * const rk_iommu_clocks[] = { 99 "aclk", "iface", 100 }; 101 102 struct rk_iommu { 103 struct device *dev; 104 void __iomem **bases; 105 int num_mmu; 106 struct clk_bulk_data *clocks; 107 int num_clocks; 108 bool reset_disabled; 109 struct iommu_device iommu; 110 struct list_head node; /* entry in rk_iommu_domain.iommus */ 111 struct iommu_domain *domain; /* domain to which iommu is attached */ 112 struct iommu_group *group; 113 }; 114 115 struct rk_iommudata { 116 struct device_link *link; /* runtime PM link from IOMMU to master */ 117 struct rk_iommu *iommu; 118 }; 119 120 static struct device *dma_dev; 121 122 static inline void rk_table_flush(struct rk_iommu_domain *dom, dma_addr_t dma, 123 unsigned int count) 124 { 125 size_t size = count * sizeof(u32); /* count of u32 entry */ 126 127 dma_sync_single_for_device(dma_dev, dma, size, DMA_TO_DEVICE); 128 } 129 130 static struct rk_iommu_domain *to_rk_domain(struct iommu_domain *dom) 131 { 132 return container_of(dom, struct rk_iommu_domain, domain); 133 } 134 135 /* 136 * The Rockchip rk3288 iommu uses a 2-level page table. 137 * The first level is the "Directory Table" (DT). 138 * The DT consists of 1024 4-byte Directory Table Entries (DTEs), each pointing 139 * to a "Page Table". 140 * The second level is the 1024 Page Tables (PT). 141 * Each PT consists of 1024 4-byte Page Table Entries (PTEs), each pointing to 142 * a 4 KB page of physical memory. 143 * 144 * The DT and each PT fits in a single 4 KB page (4-bytes * 1024 entries). 145 * Each iommu device has a MMU_DTE_ADDR register that contains the physical 146 * address of the start of the DT page. 147 * 148 * The structure of the page table is as follows: 149 * 150 * DT 151 * MMU_DTE_ADDR -> +-----+ 152 * | | 153 * +-----+ PT 154 * | DTE | -> +-----+ 155 * +-----+ | | Memory 156 * | | +-----+ Page 157 * | | | PTE | -> +-----+ 158 * +-----+ +-----+ | | 159 * | | | | 160 * | | | | 161 * +-----+ | | 162 * | | 163 * | | 164 * +-----+ 165 */ 166 167 /* 168 * Each DTE has a PT address and a valid bit: 169 * +---------------------+-----------+-+ 170 * | PT address | Reserved |V| 171 * +---------------------+-----------+-+ 172 * 31:12 - PT address (PTs always starts on a 4 KB boundary) 173 * 11: 1 - Reserved 174 * 0 - 1 if PT @ PT address is valid 175 */ 176 #define RK_DTE_PT_ADDRESS_MASK 0xfffff000 177 #define RK_DTE_PT_VALID BIT(0) 178 179 static inline phys_addr_t rk_dte_pt_address(u32 dte) 180 { 181 return (phys_addr_t)dte & RK_DTE_PT_ADDRESS_MASK; 182 } 183 184 static inline bool rk_dte_is_pt_valid(u32 dte) 185 { 186 return dte & RK_DTE_PT_VALID; 187 } 188 189 static inline u32 rk_mk_dte(dma_addr_t pt_dma) 190 { 191 return (pt_dma & RK_DTE_PT_ADDRESS_MASK) | RK_DTE_PT_VALID; 192 } 193 194 /* 195 * Each PTE has a Page address, some flags and a valid bit: 196 * +---------------------+---+-------+-+ 197 * | Page address |Rsv| Flags |V| 198 * +---------------------+---+-------+-+ 199 * 31:12 - Page address (Pages always start on a 4 KB boundary) 200 * 11: 9 - Reserved 201 * 8: 1 - Flags 202 * 8 - Read allocate - allocate cache space on read misses 203 * 7 - Read cache - enable cache & prefetch of data 204 * 6 - Write buffer - enable delaying writes on their way to memory 205 * 5 - Write allocate - allocate cache space on write misses 206 * 4 - Write cache - different writes can be merged together 207 * 3 - Override cache attributes 208 * if 1, bits 4-8 control cache attributes 209 * if 0, the system bus defaults are used 210 * 2 - Writable 211 * 1 - Readable 212 * 0 - 1 if Page @ Page address is valid 213 */ 214 #define RK_PTE_PAGE_ADDRESS_MASK 0xfffff000 215 #define RK_PTE_PAGE_FLAGS_MASK 0x000001fe 216 #define RK_PTE_PAGE_WRITABLE BIT(2) 217 #define RK_PTE_PAGE_READABLE BIT(1) 218 #define RK_PTE_PAGE_VALID BIT(0) 219 220 static inline phys_addr_t rk_pte_page_address(u32 pte) 221 { 222 return (phys_addr_t)pte & RK_PTE_PAGE_ADDRESS_MASK; 223 } 224 225 static inline bool rk_pte_is_page_valid(u32 pte) 226 { 227 return pte & RK_PTE_PAGE_VALID; 228 } 229 230 /* TODO: set cache flags per prot IOMMU_CACHE */ 231 static u32 rk_mk_pte(phys_addr_t page, int prot) 232 { 233 u32 flags = 0; 234 flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0; 235 flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0; 236 page &= RK_PTE_PAGE_ADDRESS_MASK; 237 return page | flags | RK_PTE_PAGE_VALID; 238 } 239 240 static u32 rk_mk_pte_invalid(u32 pte) 241 { 242 return pte & ~RK_PTE_PAGE_VALID; 243 } 244 245 /* 246 * rk3288 iova (IOMMU Virtual Address) format 247 * 31 22.21 12.11 0 248 * +-----------+-----------+-------------+ 249 * | DTE index | PTE index | Page offset | 250 * +-----------+-----------+-------------+ 251 * 31:22 - DTE index - index of DTE in DT 252 * 21:12 - PTE index - index of PTE in PT @ DTE.pt_address 253 * 11: 0 - Page offset - offset into page @ PTE.page_address 254 */ 255 #define RK_IOVA_DTE_MASK 0xffc00000 256 #define RK_IOVA_DTE_SHIFT 22 257 #define RK_IOVA_PTE_MASK 0x003ff000 258 #define RK_IOVA_PTE_SHIFT 12 259 #define RK_IOVA_PAGE_MASK 0x00000fff 260 #define RK_IOVA_PAGE_SHIFT 0 261 262 static u32 rk_iova_dte_index(dma_addr_t iova) 263 { 264 return (u32)(iova & RK_IOVA_DTE_MASK) >> RK_IOVA_DTE_SHIFT; 265 } 266 267 static u32 rk_iova_pte_index(dma_addr_t iova) 268 { 269 return (u32)(iova & RK_IOVA_PTE_MASK) >> RK_IOVA_PTE_SHIFT; 270 } 271 272 static u32 rk_iova_page_offset(dma_addr_t iova) 273 { 274 return (u32)(iova & RK_IOVA_PAGE_MASK) >> RK_IOVA_PAGE_SHIFT; 275 } 276 277 static u32 rk_iommu_read(void __iomem *base, u32 offset) 278 { 279 return readl(base + offset); 280 } 281 282 static void rk_iommu_write(void __iomem *base, u32 offset, u32 value) 283 { 284 writel(value, base + offset); 285 } 286 287 static void rk_iommu_command(struct rk_iommu *iommu, u32 command) 288 { 289 int i; 290 291 for (i = 0; i < iommu->num_mmu; i++) 292 writel(command, iommu->bases[i] + RK_MMU_COMMAND); 293 } 294 295 static void rk_iommu_base_command(void __iomem *base, u32 command) 296 { 297 writel(command, base + RK_MMU_COMMAND); 298 } 299 static void rk_iommu_zap_lines(struct rk_iommu *iommu, dma_addr_t iova_start, 300 size_t size) 301 { 302 int i; 303 dma_addr_t iova_end = iova_start + size; 304 /* 305 * TODO(djkurtz): Figure out when it is more efficient to shootdown the 306 * entire iotlb rather than iterate over individual iovas. 307 */ 308 for (i = 0; i < iommu->num_mmu; i++) { 309 dma_addr_t iova; 310 311 for (iova = iova_start; iova < iova_end; iova += SPAGE_SIZE) 312 rk_iommu_write(iommu->bases[i], RK_MMU_ZAP_ONE_LINE, iova); 313 } 314 } 315 316 static bool rk_iommu_is_stall_active(struct rk_iommu *iommu) 317 { 318 bool active = true; 319 int i; 320 321 for (i = 0; i < iommu->num_mmu; i++) 322 active &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) & 323 RK_MMU_STATUS_STALL_ACTIVE); 324 325 return active; 326 } 327 328 static bool rk_iommu_is_paging_enabled(struct rk_iommu *iommu) 329 { 330 bool enable = true; 331 int i; 332 333 for (i = 0; i < iommu->num_mmu; i++) 334 enable &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) & 335 RK_MMU_STATUS_PAGING_ENABLED); 336 337 return enable; 338 } 339 340 static bool rk_iommu_is_reset_done(struct rk_iommu *iommu) 341 { 342 bool done = true; 343 int i; 344 345 for (i = 0; i < iommu->num_mmu; i++) 346 done &= rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR) == 0; 347 348 return done; 349 } 350 351 static int rk_iommu_enable_stall(struct rk_iommu *iommu) 352 { 353 int ret, i; 354 bool val; 355 356 if (rk_iommu_is_stall_active(iommu)) 357 return 0; 358 359 /* Stall can only be enabled if paging is enabled */ 360 if (!rk_iommu_is_paging_enabled(iommu)) 361 return 0; 362 363 rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_STALL); 364 365 ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val, 366 val, RK_MMU_POLL_PERIOD_US, 367 RK_MMU_POLL_TIMEOUT_US); 368 if (ret) 369 for (i = 0; i < iommu->num_mmu; i++) 370 dev_err(iommu->dev, "Enable stall request timed out, status: %#08x\n", 371 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS)); 372 373 return ret; 374 } 375 376 static int rk_iommu_disable_stall(struct rk_iommu *iommu) 377 { 378 int ret, i; 379 bool val; 380 381 if (!rk_iommu_is_stall_active(iommu)) 382 return 0; 383 384 rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_STALL); 385 386 ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val, 387 !val, RK_MMU_POLL_PERIOD_US, 388 RK_MMU_POLL_TIMEOUT_US); 389 if (ret) 390 for (i = 0; i < iommu->num_mmu; i++) 391 dev_err(iommu->dev, "Disable stall request timed out, status: %#08x\n", 392 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS)); 393 394 return ret; 395 } 396 397 static int rk_iommu_enable_paging(struct rk_iommu *iommu) 398 { 399 int ret, i; 400 bool val; 401 402 if (rk_iommu_is_paging_enabled(iommu)) 403 return 0; 404 405 rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_PAGING); 406 407 ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val, 408 val, RK_MMU_POLL_PERIOD_US, 409 RK_MMU_POLL_TIMEOUT_US); 410 if (ret) 411 for (i = 0; i < iommu->num_mmu; i++) 412 dev_err(iommu->dev, "Enable paging request timed out, status: %#08x\n", 413 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS)); 414 415 return ret; 416 } 417 418 static int rk_iommu_disable_paging(struct rk_iommu *iommu) 419 { 420 int ret, i; 421 bool val; 422 423 if (!rk_iommu_is_paging_enabled(iommu)) 424 return 0; 425 426 rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_PAGING); 427 428 ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val, 429 !val, RK_MMU_POLL_PERIOD_US, 430 RK_MMU_POLL_TIMEOUT_US); 431 if (ret) 432 for (i = 0; i < iommu->num_mmu; i++) 433 dev_err(iommu->dev, "Disable paging request timed out, status: %#08x\n", 434 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS)); 435 436 return ret; 437 } 438 439 static int rk_iommu_force_reset(struct rk_iommu *iommu) 440 { 441 int ret, i; 442 u32 dte_addr; 443 bool val; 444 445 if (iommu->reset_disabled) 446 return 0; 447 448 /* 449 * Check if register DTE_ADDR is working by writing DTE_ADDR_DUMMY 450 * and verifying that upper 5 nybbles are read back. 451 */ 452 for (i = 0; i < iommu->num_mmu; i++) { 453 rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, DTE_ADDR_DUMMY); 454 455 dte_addr = rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR); 456 if (dte_addr != (DTE_ADDR_DUMMY & RK_DTE_PT_ADDRESS_MASK)) { 457 dev_err(iommu->dev, "Error during raw reset. MMU_DTE_ADDR is not functioning\n"); 458 return -EFAULT; 459 } 460 } 461 462 rk_iommu_command(iommu, RK_MMU_CMD_FORCE_RESET); 463 464 ret = readx_poll_timeout(rk_iommu_is_reset_done, iommu, val, 465 val, RK_MMU_FORCE_RESET_TIMEOUT_US, 466 RK_MMU_POLL_TIMEOUT_US); 467 if (ret) { 468 dev_err(iommu->dev, "FORCE_RESET command timed out\n"); 469 return ret; 470 } 471 472 return 0; 473 } 474 475 static void log_iova(struct rk_iommu *iommu, int index, dma_addr_t iova) 476 { 477 void __iomem *base = iommu->bases[index]; 478 u32 dte_index, pte_index, page_offset; 479 u32 mmu_dte_addr; 480 phys_addr_t mmu_dte_addr_phys, dte_addr_phys; 481 u32 *dte_addr; 482 u32 dte; 483 phys_addr_t pte_addr_phys = 0; 484 u32 *pte_addr = NULL; 485 u32 pte = 0; 486 phys_addr_t page_addr_phys = 0; 487 u32 page_flags = 0; 488 489 dte_index = rk_iova_dte_index(iova); 490 pte_index = rk_iova_pte_index(iova); 491 page_offset = rk_iova_page_offset(iova); 492 493 mmu_dte_addr = rk_iommu_read(base, RK_MMU_DTE_ADDR); 494 mmu_dte_addr_phys = (phys_addr_t)mmu_dte_addr; 495 496 dte_addr_phys = mmu_dte_addr_phys + (4 * dte_index); 497 dte_addr = phys_to_virt(dte_addr_phys); 498 dte = *dte_addr; 499 500 if (!rk_dte_is_pt_valid(dte)) 501 goto print_it; 502 503 pte_addr_phys = rk_dte_pt_address(dte) + (pte_index * 4); 504 pte_addr = phys_to_virt(pte_addr_phys); 505 pte = *pte_addr; 506 507 if (!rk_pte_is_page_valid(pte)) 508 goto print_it; 509 510 page_addr_phys = rk_pte_page_address(pte) + page_offset; 511 page_flags = pte & RK_PTE_PAGE_FLAGS_MASK; 512 513 print_it: 514 dev_err(iommu->dev, "iova = %pad: dte_index: %#03x pte_index: %#03x page_offset: %#03x\n", 515 &iova, dte_index, pte_index, page_offset); 516 dev_err(iommu->dev, "mmu_dte_addr: %pa dte@%pa: %#08x valid: %u pte@%pa: %#08x valid: %u page@%pa flags: %#03x\n", 517 &mmu_dte_addr_phys, &dte_addr_phys, dte, 518 rk_dte_is_pt_valid(dte), &pte_addr_phys, pte, 519 rk_pte_is_page_valid(pte), &page_addr_phys, page_flags); 520 } 521 522 static irqreturn_t rk_iommu_irq(int irq, void *dev_id) 523 { 524 struct rk_iommu *iommu = dev_id; 525 u32 status; 526 u32 int_status; 527 dma_addr_t iova; 528 irqreturn_t ret = IRQ_NONE; 529 int i, err; 530 531 err = pm_runtime_get_if_in_use(iommu->dev); 532 if (WARN_ON_ONCE(err <= 0)) 533 return ret; 534 535 if (WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks))) 536 goto out; 537 538 for (i = 0; i < iommu->num_mmu; i++) { 539 int_status = rk_iommu_read(iommu->bases[i], RK_MMU_INT_STATUS); 540 if (int_status == 0) 541 continue; 542 543 ret = IRQ_HANDLED; 544 iova = rk_iommu_read(iommu->bases[i], RK_MMU_PAGE_FAULT_ADDR); 545 546 if (int_status & RK_MMU_IRQ_PAGE_FAULT) { 547 int flags; 548 549 status = rk_iommu_read(iommu->bases[i], RK_MMU_STATUS); 550 flags = (status & RK_MMU_STATUS_PAGE_FAULT_IS_WRITE) ? 551 IOMMU_FAULT_WRITE : IOMMU_FAULT_READ; 552 553 dev_err(iommu->dev, "Page fault at %pad of type %s\n", 554 &iova, 555 (flags == IOMMU_FAULT_WRITE) ? "write" : "read"); 556 557 log_iova(iommu, i, iova); 558 559 /* 560 * Report page fault to any installed handlers. 561 * Ignore the return code, though, since we always zap cache 562 * and clear the page fault anyway. 563 */ 564 if (iommu->domain) 565 report_iommu_fault(iommu->domain, iommu->dev, iova, 566 flags); 567 else 568 dev_err(iommu->dev, "Page fault while iommu not attached to domain?\n"); 569 570 rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE); 571 rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_PAGE_FAULT_DONE); 572 } 573 574 if (int_status & RK_MMU_IRQ_BUS_ERROR) 575 dev_err(iommu->dev, "BUS_ERROR occurred at %pad\n", &iova); 576 577 if (int_status & ~RK_MMU_IRQ_MASK) 578 dev_err(iommu->dev, "unexpected int_status: %#08x\n", 579 int_status); 580 581 rk_iommu_write(iommu->bases[i], RK_MMU_INT_CLEAR, int_status); 582 } 583 584 clk_bulk_disable(iommu->num_clocks, iommu->clocks); 585 586 out: 587 pm_runtime_put(iommu->dev); 588 return ret; 589 } 590 591 static phys_addr_t rk_iommu_iova_to_phys(struct iommu_domain *domain, 592 dma_addr_t iova) 593 { 594 struct rk_iommu_domain *rk_domain = to_rk_domain(domain); 595 unsigned long flags; 596 phys_addr_t pt_phys, phys = 0; 597 u32 dte, pte; 598 u32 *page_table; 599 600 spin_lock_irqsave(&rk_domain->dt_lock, flags); 601 602 dte = rk_domain->dt[rk_iova_dte_index(iova)]; 603 if (!rk_dte_is_pt_valid(dte)) 604 goto out; 605 606 pt_phys = rk_dte_pt_address(dte); 607 page_table = (u32 *)phys_to_virt(pt_phys); 608 pte = page_table[rk_iova_pte_index(iova)]; 609 if (!rk_pte_is_page_valid(pte)) 610 goto out; 611 612 phys = rk_pte_page_address(pte) + rk_iova_page_offset(iova); 613 out: 614 spin_unlock_irqrestore(&rk_domain->dt_lock, flags); 615 616 return phys; 617 } 618 619 static void rk_iommu_zap_iova(struct rk_iommu_domain *rk_domain, 620 dma_addr_t iova, size_t size) 621 { 622 struct list_head *pos; 623 unsigned long flags; 624 625 /* shootdown these iova from all iommus using this domain */ 626 spin_lock_irqsave(&rk_domain->iommus_lock, flags); 627 list_for_each(pos, &rk_domain->iommus) { 628 struct rk_iommu *iommu; 629 int ret; 630 631 iommu = list_entry(pos, struct rk_iommu, node); 632 633 /* Only zap TLBs of IOMMUs that are powered on. */ 634 ret = pm_runtime_get_if_in_use(iommu->dev); 635 if (WARN_ON_ONCE(ret < 0)) 636 continue; 637 if (ret) { 638 WARN_ON(clk_bulk_enable(iommu->num_clocks, 639 iommu->clocks)); 640 rk_iommu_zap_lines(iommu, iova, size); 641 clk_bulk_disable(iommu->num_clocks, iommu->clocks); 642 pm_runtime_put(iommu->dev); 643 } 644 } 645 spin_unlock_irqrestore(&rk_domain->iommus_lock, flags); 646 } 647 648 static void rk_iommu_zap_iova_first_last(struct rk_iommu_domain *rk_domain, 649 dma_addr_t iova, size_t size) 650 { 651 rk_iommu_zap_iova(rk_domain, iova, SPAGE_SIZE); 652 if (size > SPAGE_SIZE) 653 rk_iommu_zap_iova(rk_domain, iova + size - SPAGE_SIZE, 654 SPAGE_SIZE); 655 } 656 657 static u32 *rk_dte_get_page_table(struct rk_iommu_domain *rk_domain, 658 dma_addr_t iova) 659 { 660 u32 *page_table, *dte_addr; 661 u32 dte_index, dte; 662 phys_addr_t pt_phys; 663 dma_addr_t pt_dma; 664 665 assert_spin_locked(&rk_domain->dt_lock); 666 667 dte_index = rk_iova_dte_index(iova); 668 dte_addr = &rk_domain->dt[dte_index]; 669 dte = *dte_addr; 670 if (rk_dte_is_pt_valid(dte)) 671 goto done; 672 673 page_table = (u32 *)get_zeroed_page(GFP_ATOMIC | GFP_DMA32); 674 if (!page_table) 675 return ERR_PTR(-ENOMEM); 676 677 pt_dma = dma_map_single(dma_dev, page_table, SPAGE_SIZE, DMA_TO_DEVICE); 678 if (dma_mapping_error(dma_dev, pt_dma)) { 679 dev_err(dma_dev, "DMA mapping error while allocating page table\n"); 680 free_page((unsigned long)page_table); 681 return ERR_PTR(-ENOMEM); 682 } 683 684 dte = rk_mk_dte(pt_dma); 685 *dte_addr = dte; 686 687 rk_table_flush(rk_domain, pt_dma, NUM_PT_ENTRIES); 688 rk_table_flush(rk_domain, 689 rk_domain->dt_dma + dte_index * sizeof(u32), 1); 690 done: 691 pt_phys = rk_dte_pt_address(dte); 692 return (u32 *)phys_to_virt(pt_phys); 693 } 694 695 static size_t rk_iommu_unmap_iova(struct rk_iommu_domain *rk_domain, 696 u32 *pte_addr, dma_addr_t pte_dma, 697 size_t size) 698 { 699 unsigned int pte_count; 700 unsigned int pte_total = size / SPAGE_SIZE; 701 702 assert_spin_locked(&rk_domain->dt_lock); 703 704 for (pte_count = 0; pte_count < pte_total; pte_count++) { 705 u32 pte = pte_addr[pte_count]; 706 if (!rk_pte_is_page_valid(pte)) 707 break; 708 709 pte_addr[pte_count] = rk_mk_pte_invalid(pte); 710 } 711 712 rk_table_flush(rk_domain, pte_dma, pte_count); 713 714 return pte_count * SPAGE_SIZE; 715 } 716 717 static int rk_iommu_map_iova(struct rk_iommu_domain *rk_domain, u32 *pte_addr, 718 dma_addr_t pte_dma, dma_addr_t iova, 719 phys_addr_t paddr, size_t size, int prot) 720 { 721 unsigned int pte_count; 722 unsigned int pte_total = size / SPAGE_SIZE; 723 phys_addr_t page_phys; 724 725 assert_spin_locked(&rk_domain->dt_lock); 726 727 for (pte_count = 0; pte_count < pte_total; pte_count++) { 728 u32 pte = pte_addr[pte_count]; 729 730 if (rk_pte_is_page_valid(pte)) 731 goto unwind; 732 733 pte_addr[pte_count] = rk_mk_pte(paddr, prot); 734 735 paddr += SPAGE_SIZE; 736 } 737 738 rk_table_flush(rk_domain, pte_dma, pte_total); 739 740 /* 741 * Zap the first and last iova to evict from iotlb any previously 742 * mapped cachelines holding stale values for its dte and pte. 743 * We only zap the first and last iova, since only they could have 744 * dte or pte shared with an existing mapping. 745 */ 746 rk_iommu_zap_iova_first_last(rk_domain, iova, size); 747 748 return 0; 749 unwind: 750 /* Unmap the range of iovas that we just mapped */ 751 rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma, 752 pte_count * SPAGE_SIZE); 753 754 iova += pte_count * SPAGE_SIZE; 755 page_phys = rk_pte_page_address(pte_addr[pte_count]); 756 pr_err("iova: %pad already mapped to %pa cannot remap to phys: %pa prot: %#x\n", 757 &iova, &page_phys, &paddr, prot); 758 759 return -EADDRINUSE; 760 } 761 762 static int rk_iommu_map(struct iommu_domain *domain, unsigned long _iova, 763 phys_addr_t paddr, size_t size, int prot) 764 { 765 struct rk_iommu_domain *rk_domain = to_rk_domain(domain); 766 unsigned long flags; 767 dma_addr_t pte_dma, iova = (dma_addr_t)_iova; 768 u32 *page_table, *pte_addr; 769 u32 dte_index, pte_index; 770 int ret; 771 772 spin_lock_irqsave(&rk_domain->dt_lock, flags); 773 774 /* 775 * pgsize_bitmap specifies iova sizes that fit in one page table 776 * (1024 4-KiB pages = 4 MiB). 777 * So, size will always be 4096 <= size <= 4194304. 778 * Since iommu_map() guarantees that both iova and size will be 779 * aligned, we will always only be mapping from a single dte here. 780 */ 781 page_table = rk_dte_get_page_table(rk_domain, iova); 782 if (IS_ERR(page_table)) { 783 spin_unlock_irqrestore(&rk_domain->dt_lock, flags); 784 return PTR_ERR(page_table); 785 } 786 787 dte_index = rk_domain->dt[rk_iova_dte_index(iova)]; 788 pte_index = rk_iova_pte_index(iova); 789 pte_addr = &page_table[pte_index]; 790 pte_dma = rk_dte_pt_address(dte_index) + pte_index * sizeof(u32); 791 ret = rk_iommu_map_iova(rk_domain, pte_addr, pte_dma, iova, 792 paddr, size, prot); 793 794 spin_unlock_irqrestore(&rk_domain->dt_lock, flags); 795 796 return ret; 797 } 798 799 static size_t rk_iommu_unmap(struct iommu_domain *domain, unsigned long _iova, 800 size_t size) 801 { 802 struct rk_iommu_domain *rk_domain = to_rk_domain(domain); 803 unsigned long flags; 804 dma_addr_t pte_dma, iova = (dma_addr_t)_iova; 805 phys_addr_t pt_phys; 806 u32 dte; 807 u32 *pte_addr; 808 size_t unmap_size; 809 810 spin_lock_irqsave(&rk_domain->dt_lock, flags); 811 812 /* 813 * pgsize_bitmap specifies iova sizes that fit in one page table 814 * (1024 4-KiB pages = 4 MiB). 815 * So, size will always be 4096 <= size <= 4194304. 816 * Since iommu_unmap() guarantees that both iova and size will be 817 * aligned, we will always only be unmapping from a single dte here. 818 */ 819 dte = rk_domain->dt[rk_iova_dte_index(iova)]; 820 /* Just return 0 if iova is unmapped */ 821 if (!rk_dte_is_pt_valid(dte)) { 822 spin_unlock_irqrestore(&rk_domain->dt_lock, flags); 823 return 0; 824 } 825 826 pt_phys = rk_dte_pt_address(dte); 827 pte_addr = (u32 *)phys_to_virt(pt_phys) + rk_iova_pte_index(iova); 828 pte_dma = pt_phys + rk_iova_pte_index(iova) * sizeof(u32); 829 unmap_size = rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma, size); 830 831 spin_unlock_irqrestore(&rk_domain->dt_lock, flags); 832 833 /* Shootdown iotlb entries for iova range that was just unmapped */ 834 rk_iommu_zap_iova(rk_domain, iova, unmap_size); 835 836 return unmap_size; 837 } 838 839 static struct rk_iommu *rk_iommu_from_dev(struct device *dev) 840 { 841 struct rk_iommudata *data = dev->archdata.iommu; 842 843 return data ? data->iommu : NULL; 844 } 845 846 /* Must be called with iommu powered on and attached */ 847 static void rk_iommu_disable(struct rk_iommu *iommu) 848 { 849 int i; 850 851 /* Ignore error while disabling, just keep going */ 852 WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks)); 853 rk_iommu_enable_stall(iommu); 854 rk_iommu_disable_paging(iommu); 855 for (i = 0; i < iommu->num_mmu; i++) { 856 rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, 0); 857 rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, 0); 858 } 859 rk_iommu_disable_stall(iommu); 860 clk_bulk_disable(iommu->num_clocks, iommu->clocks); 861 } 862 863 /* Must be called with iommu powered on and attached */ 864 static int rk_iommu_enable(struct rk_iommu *iommu) 865 { 866 struct iommu_domain *domain = iommu->domain; 867 struct rk_iommu_domain *rk_domain = to_rk_domain(domain); 868 int ret, i; 869 870 ret = clk_bulk_enable(iommu->num_clocks, iommu->clocks); 871 if (ret) 872 return ret; 873 874 ret = rk_iommu_enable_stall(iommu); 875 if (ret) 876 goto out_disable_clocks; 877 878 ret = rk_iommu_force_reset(iommu); 879 if (ret) 880 goto out_disable_stall; 881 882 for (i = 0; i < iommu->num_mmu; i++) { 883 rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, 884 rk_domain->dt_dma); 885 rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE); 886 rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, RK_MMU_IRQ_MASK); 887 } 888 889 ret = rk_iommu_enable_paging(iommu); 890 891 out_disable_stall: 892 rk_iommu_disable_stall(iommu); 893 out_disable_clocks: 894 clk_bulk_disable(iommu->num_clocks, iommu->clocks); 895 return ret; 896 } 897 898 static void rk_iommu_detach_device(struct iommu_domain *domain, 899 struct device *dev) 900 { 901 struct rk_iommu *iommu; 902 struct rk_iommu_domain *rk_domain = to_rk_domain(domain); 903 unsigned long flags; 904 int ret; 905 906 /* Allow 'virtual devices' (eg drm) to detach from domain */ 907 iommu = rk_iommu_from_dev(dev); 908 if (!iommu) 909 return; 910 911 dev_dbg(dev, "Detaching from iommu domain\n"); 912 913 /* iommu already detached */ 914 if (iommu->domain != domain) 915 return; 916 917 iommu->domain = NULL; 918 919 spin_lock_irqsave(&rk_domain->iommus_lock, flags); 920 list_del_init(&iommu->node); 921 spin_unlock_irqrestore(&rk_domain->iommus_lock, flags); 922 923 ret = pm_runtime_get_if_in_use(iommu->dev); 924 WARN_ON_ONCE(ret < 0); 925 if (ret > 0) { 926 rk_iommu_disable(iommu); 927 pm_runtime_put(iommu->dev); 928 } 929 } 930 931 static int rk_iommu_attach_device(struct iommu_domain *domain, 932 struct device *dev) 933 { 934 struct rk_iommu *iommu; 935 struct rk_iommu_domain *rk_domain = to_rk_domain(domain); 936 unsigned long flags; 937 int ret; 938 939 /* 940 * Allow 'virtual devices' (e.g., drm) to attach to domain. 941 * Such a device does not belong to an iommu group. 942 */ 943 iommu = rk_iommu_from_dev(dev); 944 if (!iommu) 945 return 0; 946 947 dev_dbg(dev, "Attaching to iommu domain\n"); 948 949 /* iommu already attached */ 950 if (iommu->domain == domain) 951 return 0; 952 953 if (iommu->domain) 954 rk_iommu_detach_device(iommu->domain, dev); 955 956 iommu->domain = domain; 957 958 spin_lock_irqsave(&rk_domain->iommus_lock, flags); 959 list_add_tail(&iommu->node, &rk_domain->iommus); 960 spin_unlock_irqrestore(&rk_domain->iommus_lock, flags); 961 962 ret = pm_runtime_get_if_in_use(iommu->dev); 963 if (!ret || WARN_ON_ONCE(ret < 0)) 964 return 0; 965 966 ret = rk_iommu_enable(iommu); 967 if (ret) 968 rk_iommu_detach_device(iommu->domain, dev); 969 970 pm_runtime_put(iommu->dev); 971 972 return ret; 973 } 974 975 static struct iommu_domain *rk_iommu_domain_alloc(unsigned type) 976 { 977 struct rk_iommu_domain *rk_domain; 978 979 if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA) 980 return NULL; 981 982 if (!dma_dev) 983 return NULL; 984 985 rk_domain = devm_kzalloc(dma_dev, sizeof(*rk_domain), GFP_KERNEL); 986 if (!rk_domain) 987 return NULL; 988 989 if (type == IOMMU_DOMAIN_DMA && 990 iommu_get_dma_cookie(&rk_domain->domain)) 991 return NULL; 992 993 /* 994 * rk32xx iommus use a 2 level pagetable. 995 * Each level1 (dt) and level2 (pt) table has 1024 4-byte entries. 996 * Allocate one 4 KiB page for each table. 997 */ 998 rk_domain->dt = (u32 *)get_zeroed_page(GFP_KERNEL | GFP_DMA32); 999 if (!rk_domain->dt) 1000 goto err_put_cookie; 1001 1002 rk_domain->dt_dma = dma_map_single(dma_dev, rk_domain->dt, 1003 SPAGE_SIZE, DMA_TO_DEVICE); 1004 if (dma_mapping_error(dma_dev, rk_domain->dt_dma)) { 1005 dev_err(dma_dev, "DMA map error for DT\n"); 1006 goto err_free_dt; 1007 } 1008 1009 rk_table_flush(rk_domain, rk_domain->dt_dma, NUM_DT_ENTRIES); 1010 1011 spin_lock_init(&rk_domain->iommus_lock); 1012 spin_lock_init(&rk_domain->dt_lock); 1013 INIT_LIST_HEAD(&rk_domain->iommus); 1014 1015 rk_domain->domain.geometry.aperture_start = 0; 1016 rk_domain->domain.geometry.aperture_end = DMA_BIT_MASK(32); 1017 rk_domain->domain.geometry.force_aperture = true; 1018 1019 return &rk_domain->domain; 1020 1021 err_free_dt: 1022 free_page((unsigned long)rk_domain->dt); 1023 err_put_cookie: 1024 if (type == IOMMU_DOMAIN_DMA) 1025 iommu_put_dma_cookie(&rk_domain->domain); 1026 1027 return NULL; 1028 } 1029 1030 static void rk_iommu_domain_free(struct iommu_domain *domain) 1031 { 1032 struct rk_iommu_domain *rk_domain = to_rk_domain(domain); 1033 int i; 1034 1035 WARN_ON(!list_empty(&rk_domain->iommus)); 1036 1037 for (i = 0; i < NUM_DT_ENTRIES; i++) { 1038 u32 dte = rk_domain->dt[i]; 1039 if (rk_dte_is_pt_valid(dte)) { 1040 phys_addr_t pt_phys = rk_dte_pt_address(dte); 1041 u32 *page_table = phys_to_virt(pt_phys); 1042 dma_unmap_single(dma_dev, pt_phys, 1043 SPAGE_SIZE, DMA_TO_DEVICE); 1044 free_page((unsigned long)page_table); 1045 } 1046 } 1047 1048 dma_unmap_single(dma_dev, rk_domain->dt_dma, 1049 SPAGE_SIZE, DMA_TO_DEVICE); 1050 free_page((unsigned long)rk_domain->dt); 1051 1052 if (domain->type == IOMMU_DOMAIN_DMA) 1053 iommu_put_dma_cookie(&rk_domain->domain); 1054 } 1055 1056 static int rk_iommu_add_device(struct device *dev) 1057 { 1058 struct iommu_group *group; 1059 struct rk_iommu *iommu; 1060 struct rk_iommudata *data; 1061 1062 data = dev->archdata.iommu; 1063 if (!data) 1064 return -ENODEV; 1065 1066 iommu = rk_iommu_from_dev(dev); 1067 1068 group = iommu_group_get_for_dev(dev); 1069 if (IS_ERR(group)) 1070 return PTR_ERR(group); 1071 iommu_group_put(group); 1072 1073 iommu_device_link(&iommu->iommu, dev); 1074 data->link = device_link_add(dev, iommu->dev, DL_FLAG_PM_RUNTIME); 1075 1076 return 0; 1077 } 1078 1079 static void rk_iommu_remove_device(struct device *dev) 1080 { 1081 struct rk_iommu *iommu; 1082 struct rk_iommudata *data = dev->archdata.iommu; 1083 1084 iommu = rk_iommu_from_dev(dev); 1085 1086 device_link_del(data->link); 1087 iommu_device_unlink(&iommu->iommu, dev); 1088 iommu_group_remove_device(dev); 1089 } 1090 1091 static struct iommu_group *rk_iommu_device_group(struct device *dev) 1092 { 1093 struct rk_iommu *iommu; 1094 1095 iommu = rk_iommu_from_dev(dev); 1096 1097 return iommu_group_ref_get(iommu->group); 1098 } 1099 1100 static int rk_iommu_of_xlate(struct device *dev, 1101 struct of_phandle_args *args) 1102 { 1103 struct platform_device *iommu_dev; 1104 struct rk_iommudata *data; 1105 1106 data = devm_kzalloc(dma_dev, sizeof(*data), GFP_KERNEL); 1107 if (!data) 1108 return -ENOMEM; 1109 1110 iommu_dev = of_find_device_by_node(args->np); 1111 1112 data->iommu = platform_get_drvdata(iommu_dev); 1113 dev->archdata.iommu = data; 1114 1115 platform_device_put(iommu_dev); 1116 1117 return 0; 1118 } 1119 1120 static const struct iommu_ops rk_iommu_ops = { 1121 .domain_alloc = rk_iommu_domain_alloc, 1122 .domain_free = rk_iommu_domain_free, 1123 .attach_dev = rk_iommu_attach_device, 1124 .detach_dev = rk_iommu_detach_device, 1125 .map = rk_iommu_map, 1126 .unmap = rk_iommu_unmap, 1127 .add_device = rk_iommu_add_device, 1128 .remove_device = rk_iommu_remove_device, 1129 .iova_to_phys = rk_iommu_iova_to_phys, 1130 .device_group = rk_iommu_device_group, 1131 .pgsize_bitmap = RK_IOMMU_PGSIZE_BITMAP, 1132 .of_xlate = rk_iommu_of_xlate, 1133 }; 1134 1135 static int rk_iommu_probe(struct platform_device *pdev) 1136 { 1137 struct device *dev = &pdev->dev; 1138 struct rk_iommu *iommu; 1139 struct resource *res; 1140 int num_res = pdev->num_resources; 1141 int err, i, irq; 1142 1143 iommu = devm_kzalloc(dev, sizeof(*iommu), GFP_KERNEL); 1144 if (!iommu) 1145 return -ENOMEM; 1146 1147 platform_set_drvdata(pdev, iommu); 1148 iommu->dev = dev; 1149 iommu->num_mmu = 0; 1150 1151 iommu->bases = devm_kcalloc(dev, num_res, sizeof(*iommu->bases), 1152 GFP_KERNEL); 1153 if (!iommu->bases) 1154 return -ENOMEM; 1155 1156 for (i = 0; i < num_res; i++) { 1157 res = platform_get_resource(pdev, IORESOURCE_MEM, i); 1158 if (!res) 1159 continue; 1160 iommu->bases[i] = devm_ioremap_resource(&pdev->dev, res); 1161 if (IS_ERR(iommu->bases[i])) 1162 continue; 1163 iommu->num_mmu++; 1164 } 1165 if (iommu->num_mmu == 0) 1166 return PTR_ERR(iommu->bases[0]); 1167 1168 iommu->reset_disabled = device_property_read_bool(dev, 1169 "rockchip,disable-mmu-reset"); 1170 1171 iommu->num_clocks = ARRAY_SIZE(rk_iommu_clocks); 1172 iommu->clocks = devm_kcalloc(iommu->dev, iommu->num_clocks, 1173 sizeof(*iommu->clocks), GFP_KERNEL); 1174 if (!iommu->clocks) 1175 return -ENOMEM; 1176 1177 for (i = 0; i < iommu->num_clocks; ++i) 1178 iommu->clocks[i].id = rk_iommu_clocks[i]; 1179 1180 /* 1181 * iommu clocks should be present for all new devices and devicetrees 1182 * but there are older devicetrees without clocks out in the wild. 1183 * So clocks as optional for the time being. 1184 */ 1185 err = devm_clk_bulk_get(iommu->dev, iommu->num_clocks, iommu->clocks); 1186 if (err == -ENOENT) 1187 iommu->num_clocks = 0; 1188 else if (err) 1189 return err; 1190 1191 err = clk_bulk_prepare(iommu->num_clocks, iommu->clocks); 1192 if (err) 1193 return err; 1194 1195 iommu->group = iommu_group_alloc(); 1196 if (IS_ERR(iommu->group)) { 1197 err = PTR_ERR(iommu->group); 1198 goto err_unprepare_clocks; 1199 } 1200 1201 err = iommu_device_sysfs_add(&iommu->iommu, dev, NULL, dev_name(dev)); 1202 if (err) 1203 goto err_put_group; 1204 1205 iommu_device_set_ops(&iommu->iommu, &rk_iommu_ops); 1206 iommu_device_set_fwnode(&iommu->iommu, &dev->of_node->fwnode); 1207 1208 err = iommu_device_register(&iommu->iommu); 1209 if (err) 1210 goto err_remove_sysfs; 1211 1212 /* 1213 * Use the first registered IOMMU device for domain to use with DMA 1214 * API, since a domain might not physically correspond to a single 1215 * IOMMU device.. 1216 */ 1217 if (!dma_dev) 1218 dma_dev = &pdev->dev; 1219 1220 bus_set_iommu(&platform_bus_type, &rk_iommu_ops); 1221 1222 pm_runtime_enable(dev); 1223 1224 i = 0; 1225 while ((irq = platform_get_irq(pdev, i++)) != -ENXIO) { 1226 if (irq < 0) 1227 return irq; 1228 1229 err = devm_request_irq(iommu->dev, irq, rk_iommu_irq, 1230 IRQF_SHARED, dev_name(dev), iommu); 1231 if (err) { 1232 pm_runtime_disable(dev); 1233 goto err_remove_sysfs; 1234 } 1235 } 1236 1237 return 0; 1238 err_remove_sysfs: 1239 iommu_device_sysfs_remove(&iommu->iommu); 1240 err_put_group: 1241 iommu_group_put(iommu->group); 1242 err_unprepare_clocks: 1243 clk_bulk_unprepare(iommu->num_clocks, iommu->clocks); 1244 return err; 1245 } 1246 1247 static void rk_iommu_shutdown(struct platform_device *pdev) 1248 { 1249 struct rk_iommu *iommu = platform_get_drvdata(pdev); 1250 int i = 0, irq; 1251 1252 while ((irq = platform_get_irq(pdev, i++)) != -ENXIO) 1253 devm_free_irq(iommu->dev, irq, iommu); 1254 1255 pm_runtime_force_suspend(&pdev->dev); 1256 } 1257 1258 static int __maybe_unused rk_iommu_suspend(struct device *dev) 1259 { 1260 struct rk_iommu *iommu = dev_get_drvdata(dev); 1261 1262 if (!iommu->domain) 1263 return 0; 1264 1265 rk_iommu_disable(iommu); 1266 return 0; 1267 } 1268 1269 static int __maybe_unused rk_iommu_resume(struct device *dev) 1270 { 1271 struct rk_iommu *iommu = dev_get_drvdata(dev); 1272 1273 if (!iommu->domain) 1274 return 0; 1275 1276 return rk_iommu_enable(iommu); 1277 } 1278 1279 static const struct dev_pm_ops rk_iommu_pm_ops = { 1280 SET_RUNTIME_PM_OPS(rk_iommu_suspend, rk_iommu_resume, NULL) 1281 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 1282 pm_runtime_force_resume) 1283 }; 1284 1285 static const struct of_device_id rk_iommu_dt_ids[] = { 1286 { .compatible = "rockchip,iommu" }, 1287 { /* sentinel */ } 1288 }; 1289 1290 static struct platform_driver rk_iommu_driver = { 1291 .probe = rk_iommu_probe, 1292 .shutdown = rk_iommu_shutdown, 1293 .driver = { 1294 .name = "rk_iommu", 1295 .of_match_table = rk_iommu_dt_ids, 1296 .pm = &rk_iommu_pm_ops, 1297 .suppress_bind_attrs = true, 1298 }, 1299 }; 1300 1301 static int __init rk_iommu_init(void) 1302 { 1303 return platform_driver_register(&rk_iommu_driver); 1304 } 1305 subsys_initcall(rk_iommu_init); 1306