1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * IOMMU API for Rockchip 4 * 5 * Module Authors: Simon Xue <xxm@rock-chips.com> 6 * Daniel Kurtz <djkurtz@chromium.org> 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/compiler.h> 11 #include <linux/delay.h> 12 #include <linux/device.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/errno.h> 15 #include <linux/interrupt.h> 16 #include <linux/io.h> 17 #include <linux/iommu.h> 18 #include <linux/iopoll.h> 19 #include <linux/list.h> 20 #include <linux/mm.h> 21 #include <linux/init.h> 22 #include <linux/of.h> 23 #include <linux/of_platform.h> 24 #include <linux/platform_device.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/slab.h> 27 #include <linux/spinlock.h> 28 29 /** MMU register offsets */ 30 #define RK_MMU_DTE_ADDR 0x00 /* Directory table address */ 31 #define RK_MMU_STATUS 0x04 32 #define RK_MMU_COMMAND 0x08 33 #define RK_MMU_PAGE_FAULT_ADDR 0x0C /* IOVA of last page fault */ 34 #define RK_MMU_ZAP_ONE_LINE 0x10 /* Shootdown one IOTLB entry */ 35 #define RK_MMU_INT_RAWSTAT 0x14 /* IRQ status ignoring mask */ 36 #define RK_MMU_INT_CLEAR 0x18 /* Acknowledge and re-arm irq */ 37 #define RK_MMU_INT_MASK 0x1C /* IRQ enable */ 38 #define RK_MMU_INT_STATUS 0x20 /* IRQ status after masking */ 39 #define RK_MMU_AUTO_GATING 0x24 40 41 #define DTE_ADDR_DUMMY 0xCAFEBABE 42 43 #define RK_MMU_POLL_PERIOD_US 100 44 #define RK_MMU_FORCE_RESET_TIMEOUT_US 100000 45 #define RK_MMU_POLL_TIMEOUT_US 1000 46 47 /* RK_MMU_STATUS fields */ 48 #define RK_MMU_STATUS_PAGING_ENABLED BIT(0) 49 #define RK_MMU_STATUS_PAGE_FAULT_ACTIVE BIT(1) 50 #define RK_MMU_STATUS_STALL_ACTIVE BIT(2) 51 #define RK_MMU_STATUS_IDLE BIT(3) 52 #define RK_MMU_STATUS_REPLAY_BUFFER_EMPTY BIT(4) 53 #define RK_MMU_STATUS_PAGE_FAULT_IS_WRITE BIT(5) 54 #define RK_MMU_STATUS_STALL_NOT_ACTIVE BIT(31) 55 56 /* RK_MMU_COMMAND command values */ 57 #define RK_MMU_CMD_ENABLE_PAGING 0 /* Enable memory translation */ 58 #define RK_MMU_CMD_DISABLE_PAGING 1 /* Disable memory translation */ 59 #define RK_MMU_CMD_ENABLE_STALL 2 /* Stall paging to allow other cmds */ 60 #define RK_MMU_CMD_DISABLE_STALL 3 /* Stop stall re-enables paging */ 61 #define RK_MMU_CMD_ZAP_CACHE 4 /* Shoot down entire IOTLB */ 62 #define RK_MMU_CMD_PAGE_FAULT_DONE 5 /* Clear page fault */ 63 #define RK_MMU_CMD_FORCE_RESET 6 /* Reset all registers */ 64 65 /* RK_MMU_INT_* register fields */ 66 #define RK_MMU_IRQ_PAGE_FAULT 0x01 /* page fault */ 67 #define RK_MMU_IRQ_BUS_ERROR 0x02 /* bus read error */ 68 #define RK_MMU_IRQ_MASK (RK_MMU_IRQ_PAGE_FAULT | RK_MMU_IRQ_BUS_ERROR) 69 70 #define NUM_DT_ENTRIES 1024 71 #define NUM_PT_ENTRIES 1024 72 73 #define SPAGE_ORDER 12 74 #define SPAGE_SIZE (1 << SPAGE_ORDER) 75 76 /* 77 * Support mapping any size that fits in one page table: 78 * 4 KiB to 4 MiB 79 */ 80 #define RK_IOMMU_PGSIZE_BITMAP 0x007ff000 81 82 struct rk_iommu_domain { 83 struct list_head iommus; 84 u32 *dt; /* page directory table */ 85 dma_addr_t dt_dma; 86 spinlock_t iommus_lock; /* lock for iommus list */ 87 spinlock_t dt_lock; /* lock for modifying page directory table */ 88 89 struct iommu_domain domain; 90 }; 91 92 /* list of clocks required by IOMMU */ 93 static const char * const rk_iommu_clocks[] = { 94 "aclk", "iface", 95 }; 96 97 struct rk_iommu_ops { 98 phys_addr_t (*pt_address)(u32 dte); 99 u32 (*mk_dtentries)(dma_addr_t pt_dma); 100 u32 (*mk_ptentries)(phys_addr_t page, int prot); 101 u64 dma_bit_mask; 102 gfp_t gfp_flags; 103 }; 104 105 struct rk_iommu { 106 struct device *dev; 107 void __iomem **bases; 108 int num_mmu; 109 int num_irq; 110 struct clk_bulk_data *clocks; 111 int num_clocks; 112 bool reset_disabled; 113 struct iommu_device iommu; 114 struct list_head node; /* entry in rk_iommu_domain.iommus */ 115 struct iommu_domain *domain; /* domain to which iommu is attached */ 116 struct iommu_group *group; 117 }; 118 119 struct rk_iommudata { 120 struct device_link *link; /* runtime PM link from IOMMU to master */ 121 struct rk_iommu *iommu; 122 }; 123 124 static struct device *dma_dev; 125 static const struct rk_iommu_ops *rk_ops; 126 static struct iommu_domain rk_identity_domain; 127 128 static inline void rk_table_flush(struct rk_iommu_domain *dom, dma_addr_t dma, 129 unsigned int count) 130 { 131 size_t size = count * sizeof(u32); /* count of u32 entry */ 132 133 dma_sync_single_for_device(dma_dev, dma, size, DMA_TO_DEVICE); 134 } 135 136 static struct rk_iommu_domain *to_rk_domain(struct iommu_domain *dom) 137 { 138 return container_of(dom, struct rk_iommu_domain, domain); 139 } 140 141 /* 142 * The Rockchip rk3288 iommu uses a 2-level page table. 143 * The first level is the "Directory Table" (DT). 144 * The DT consists of 1024 4-byte Directory Table Entries (DTEs), each pointing 145 * to a "Page Table". 146 * The second level is the 1024 Page Tables (PT). 147 * Each PT consists of 1024 4-byte Page Table Entries (PTEs), each pointing to 148 * a 4 KB page of physical memory. 149 * 150 * The DT and each PT fits in a single 4 KB page (4-bytes * 1024 entries). 151 * Each iommu device has a MMU_DTE_ADDR register that contains the physical 152 * address of the start of the DT page. 153 * 154 * The structure of the page table is as follows: 155 * 156 * DT 157 * MMU_DTE_ADDR -> +-----+ 158 * | | 159 * +-----+ PT 160 * | DTE | -> +-----+ 161 * +-----+ | | Memory 162 * | | +-----+ Page 163 * | | | PTE | -> +-----+ 164 * +-----+ +-----+ | | 165 * | | | | 166 * | | | | 167 * +-----+ | | 168 * | | 169 * | | 170 * +-----+ 171 */ 172 173 /* 174 * Each DTE has a PT address and a valid bit: 175 * +---------------------+-----------+-+ 176 * | PT address | Reserved |V| 177 * +---------------------+-----------+-+ 178 * 31:12 - PT address (PTs always starts on a 4 KB boundary) 179 * 11: 1 - Reserved 180 * 0 - 1 if PT @ PT address is valid 181 */ 182 #define RK_DTE_PT_ADDRESS_MASK 0xfffff000 183 #define RK_DTE_PT_VALID BIT(0) 184 185 static inline phys_addr_t rk_dte_pt_address(u32 dte) 186 { 187 return (phys_addr_t)dte & RK_DTE_PT_ADDRESS_MASK; 188 } 189 190 /* 191 * In v2: 192 * 31:12 - PT address bit 31:0 193 * 11: 8 - PT address bit 35:32 194 * 7: 4 - PT address bit 39:36 195 * 3: 1 - Reserved 196 * 0 - 1 if PT @ PT address is valid 197 */ 198 #define RK_DTE_PT_ADDRESS_MASK_V2 GENMASK_ULL(31, 4) 199 #define DTE_HI_MASK1 GENMASK(11, 8) 200 #define DTE_HI_MASK2 GENMASK(7, 4) 201 #define DTE_HI_SHIFT1 24 /* shift bit 8 to bit 32 */ 202 #define DTE_HI_SHIFT2 32 /* shift bit 4 to bit 36 */ 203 #define PAGE_DESC_HI_MASK1 GENMASK_ULL(35, 32) 204 #define PAGE_DESC_HI_MASK2 GENMASK_ULL(39, 36) 205 206 static inline phys_addr_t rk_dte_pt_address_v2(u32 dte) 207 { 208 u64 dte_v2 = dte; 209 210 dte_v2 = ((dte_v2 & DTE_HI_MASK2) << DTE_HI_SHIFT2) | 211 ((dte_v2 & DTE_HI_MASK1) << DTE_HI_SHIFT1) | 212 (dte_v2 & RK_DTE_PT_ADDRESS_MASK); 213 214 return (phys_addr_t)dte_v2; 215 } 216 217 static inline bool rk_dte_is_pt_valid(u32 dte) 218 { 219 return dte & RK_DTE_PT_VALID; 220 } 221 222 static inline u32 rk_mk_dte(dma_addr_t pt_dma) 223 { 224 return (pt_dma & RK_DTE_PT_ADDRESS_MASK) | RK_DTE_PT_VALID; 225 } 226 227 static inline u32 rk_mk_dte_v2(dma_addr_t pt_dma) 228 { 229 pt_dma = (pt_dma & RK_DTE_PT_ADDRESS_MASK) | 230 ((pt_dma & PAGE_DESC_HI_MASK1) >> DTE_HI_SHIFT1) | 231 (pt_dma & PAGE_DESC_HI_MASK2) >> DTE_HI_SHIFT2; 232 233 return (pt_dma & RK_DTE_PT_ADDRESS_MASK_V2) | RK_DTE_PT_VALID; 234 } 235 236 /* 237 * Each PTE has a Page address, some flags and a valid bit: 238 * +---------------------+---+-------+-+ 239 * | Page address |Rsv| Flags |V| 240 * +---------------------+---+-------+-+ 241 * 31:12 - Page address (Pages always start on a 4 KB boundary) 242 * 11: 9 - Reserved 243 * 8: 1 - Flags 244 * 8 - Read allocate - allocate cache space on read misses 245 * 7 - Read cache - enable cache & prefetch of data 246 * 6 - Write buffer - enable delaying writes on their way to memory 247 * 5 - Write allocate - allocate cache space on write misses 248 * 4 - Write cache - different writes can be merged together 249 * 3 - Override cache attributes 250 * if 1, bits 4-8 control cache attributes 251 * if 0, the system bus defaults are used 252 * 2 - Writable 253 * 1 - Readable 254 * 0 - 1 if Page @ Page address is valid 255 */ 256 #define RK_PTE_PAGE_ADDRESS_MASK 0xfffff000 257 #define RK_PTE_PAGE_FLAGS_MASK 0x000001fe 258 #define RK_PTE_PAGE_WRITABLE BIT(2) 259 #define RK_PTE_PAGE_READABLE BIT(1) 260 #define RK_PTE_PAGE_VALID BIT(0) 261 262 static inline bool rk_pte_is_page_valid(u32 pte) 263 { 264 return pte & RK_PTE_PAGE_VALID; 265 } 266 267 /* TODO: set cache flags per prot IOMMU_CACHE */ 268 static u32 rk_mk_pte(phys_addr_t page, int prot) 269 { 270 u32 flags = 0; 271 flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0; 272 flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0; 273 page &= RK_PTE_PAGE_ADDRESS_MASK; 274 return page | flags | RK_PTE_PAGE_VALID; 275 } 276 277 /* 278 * In v2: 279 * 31:12 - Page address bit 31:0 280 * 11: 8 - Page address bit 35:32 281 * 7: 4 - Page address bit 39:36 282 * 3 - Security 283 * 2 - Writable 284 * 1 - Readable 285 * 0 - 1 if Page @ Page address is valid 286 */ 287 288 static u32 rk_mk_pte_v2(phys_addr_t page, int prot) 289 { 290 u32 flags = 0; 291 292 flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0; 293 flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0; 294 295 return rk_mk_dte_v2(page) | flags; 296 } 297 298 static u32 rk_mk_pte_invalid(u32 pte) 299 { 300 return pte & ~RK_PTE_PAGE_VALID; 301 } 302 303 /* 304 * rk3288 iova (IOMMU Virtual Address) format 305 * 31 22.21 12.11 0 306 * +-----------+-----------+-------------+ 307 * | DTE index | PTE index | Page offset | 308 * +-----------+-----------+-------------+ 309 * 31:22 - DTE index - index of DTE in DT 310 * 21:12 - PTE index - index of PTE in PT @ DTE.pt_address 311 * 11: 0 - Page offset - offset into page @ PTE.page_address 312 */ 313 #define RK_IOVA_DTE_MASK 0xffc00000 314 #define RK_IOVA_DTE_SHIFT 22 315 #define RK_IOVA_PTE_MASK 0x003ff000 316 #define RK_IOVA_PTE_SHIFT 12 317 #define RK_IOVA_PAGE_MASK 0x00000fff 318 #define RK_IOVA_PAGE_SHIFT 0 319 320 static u32 rk_iova_dte_index(dma_addr_t iova) 321 { 322 return (u32)(iova & RK_IOVA_DTE_MASK) >> RK_IOVA_DTE_SHIFT; 323 } 324 325 static u32 rk_iova_pte_index(dma_addr_t iova) 326 { 327 return (u32)(iova & RK_IOVA_PTE_MASK) >> RK_IOVA_PTE_SHIFT; 328 } 329 330 static u32 rk_iova_page_offset(dma_addr_t iova) 331 { 332 return (u32)(iova & RK_IOVA_PAGE_MASK) >> RK_IOVA_PAGE_SHIFT; 333 } 334 335 static u32 rk_iommu_read(void __iomem *base, u32 offset) 336 { 337 return readl(base + offset); 338 } 339 340 static void rk_iommu_write(void __iomem *base, u32 offset, u32 value) 341 { 342 writel(value, base + offset); 343 } 344 345 static void rk_iommu_command(struct rk_iommu *iommu, u32 command) 346 { 347 int i; 348 349 for (i = 0; i < iommu->num_mmu; i++) 350 writel(command, iommu->bases[i] + RK_MMU_COMMAND); 351 } 352 353 static void rk_iommu_base_command(void __iomem *base, u32 command) 354 { 355 writel(command, base + RK_MMU_COMMAND); 356 } 357 static void rk_iommu_zap_lines(struct rk_iommu *iommu, dma_addr_t iova_start, 358 size_t size) 359 { 360 int i; 361 dma_addr_t iova_end = iova_start + size; 362 /* 363 * TODO(djkurtz): Figure out when it is more efficient to shootdown the 364 * entire iotlb rather than iterate over individual iovas. 365 */ 366 for (i = 0; i < iommu->num_mmu; i++) { 367 dma_addr_t iova; 368 369 for (iova = iova_start; iova < iova_end; iova += SPAGE_SIZE) 370 rk_iommu_write(iommu->bases[i], RK_MMU_ZAP_ONE_LINE, iova); 371 } 372 } 373 374 static bool rk_iommu_is_stall_active(struct rk_iommu *iommu) 375 { 376 bool active = true; 377 int i; 378 379 for (i = 0; i < iommu->num_mmu; i++) 380 active &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) & 381 RK_MMU_STATUS_STALL_ACTIVE); 382 383 return active; 384 } 385 386 static bool rk_iommu_is_paging_enabled(struct rk_iommu *iommu) 387 { 388 bool enable = true; 389 int i; 390 391 for (i = 0; i < iommu->num_mmu; i++) 392 enable &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) & 393 RK_MMU_STATUS_PAGING_ENABLED); 394 395 return enable; 396 } 397 398 static bool rk_iommu_is_reset_done(struct rk_iommu *iommu) 399 { 400 bool done = true; 401 int i; 402 403 for (i = 0; i < iommu->num_mmu; i++) 404 done &= rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR) == 0; 405 406 return done; 407 } 408 409 static int rk_iommu_enable_stall(struct rk_iommu *iommu) 410 { 411 int ret, i; 412 bool val; 413 414 if (rk_iommu_is_stall_active(iommu)) 415 return 0; 416 417 /* Stall can only be enabled if paging is enabled */ 418 if (!rk_iommu_is_paging_enabled(iommu)) 419 return 0; 420 421 rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_STALL); 422 423 ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val, 424 val, RK_MMU_POLL_PERIOD_US, 425 RK_MMU_POLL_TIMEOUT_US); 426 if (ret) 427 for (i = 0; i < iommu->num_mmu; i++) 428 dev_err(iommu->dev, "Enable stall request timed out, status: %#08x\n", 429 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS)); 430 431 return ret; 432 } 433 434 static int rk_iommu_disable_stall(struct rk_iommu *iommu) 435 { 436 int ret, i; 437 bool val; 438 439 if (!rk_iommu_is_stall_active(iommu)) 440 return 0; 441 442 rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_STALL); 443 444 ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val, 445 !val, RK_MMU_POLL_PERIOD_US, 446 RK_MMU_POLL_TIMEOUT_US); 447 if (ret) 448 for (i = 0; i < iommu->num_mmu; i++) 449 dev_err(iommu->dev, "Disable stall request timed out, status: %#08x\n", 450 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS)); 451 452 return ret; 453 } 454 455 static int rk_iommu_enable_paging(struct rk_iommu *iommu) 456 { 457 int ret, i; 458 bool val; 459 460 if (rk_iommu_is_paging_enabled(iommu)) 461 return 0; 462 463 rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_PAGING); 464 465 ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val, 466 val, RK_MMU_POLL_PERIOD_US, 467 RK_MMU_POLL_TIMEOUT_US); 468 if (ret) 469 for (i = 0; i < iommu->num_mmu; i++) 470 dev_err(iommu->dev, "Enable paging request timed out, status: %#08x\n", 471 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS)); 472 473 return ret; 474 } 475 476 static int rk_iommu_disable_paging(struct rk_iommu *iommu) 477 { 478 int ret, i; 479 bool val; 480 481 if (!rk_iommu_is_paging_enabled(iommu)) 482 return 0; 483 484 rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_PAGING); 485 486 ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val, 487 !val, RK_MMU_POLL_PERIOD_US, 488 RK_MMU_POLL_TIMEOUT_US); 489 if (ret) 490 for (i = 0; i < iommu->num_mmu; i++) 491 dev_err(iommu->dev, "Disable paging request timed out, status: %#08x\n", 492 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS)); 493 494 return ret; 495 } 496 497 static int rk_iommu_force_reset(struct rk_iommu *iommu) 498 { 499 int ret, i; 500 u32 dte_addr; 501 bool val; 502 503 if (iommu->reset_disabled) 504 return 0; 505 506 /* 507 * Check if register DTE_ADDR is working by writing DTE_ADDR_DUMMY 508 * and verifying that upper 5 (v1) or 7 (v2) nybbles are read back. 509 */ 510 for (i = 0; i < iommu->num_mmu; i++) { 511 dte_addr = rk_ops->pt_address(DTE_ADDR_DUMMY); 512 rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, dte_addr); 513 514 if (dte_addr != rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR)) { 515 dev_err(iommu->dev, "Error during raw reset. MMU_DTE_ADDR is not functioning\n"); 516 return -EFAULT; 517 } 518 } 519 520 rk_iommu_command(iommu, RK_MMU_CMD_FORCE_RESET); 521 522 ret = readx_poll_timeout(rk_iommu_is_reset_done, iommu, val, 523 val, RK_MMU_FORCE_RESET_TIMEOUT_US, 524 RK_MMU_POLL_TIMEOUT_US); 525 if (ret) { 526 dev_err(iommu->dev, "FORCE_RESET command timed out\n"); 527 return ret; 528 } 529 530 return 0; 531 } 532 533 static void log_iova(struct rk_iommu *iommu, int index, dma_addr_t iova) 534 { 535 void __iomem *base = iommu->bases[index]; 536 u32 dte_index, pte_index, page_offset; 537 u32 mmu_dte_addr; 538 phys_addr_t mmu_dte_addr_phys, dte_addr_phys; 539 u32 *dte_addr; 540 u32 dte; 541 phys_addr_t pte_addr_phys = 0; 542 u32 *pte_addr = NULL; 543 u32 pte = 0; 544 phys_addr_t page_addr_phys = 0; 545 u32 page_flags = 0; 546 547 dte_index = rk_iova_dte_index(iova); 548 pte_index = rk_iova_pte_index(iova); 549 page_offset = rk_iova_page_offset(iova); 550 551 mmu_dte_addr = rk_iommu_read(base, RK_MMU_DTE_ADDR); 552 mmu_dte_addr_phys = rk_ops->pt_address(mmu_dte_addr); 553 554 dte_addr_phys = mmu_dte_addr_phys + (4 * dte_index); 555 dte_addr = phys_to_virt(dte_addr_phys); 556 dte = *dte_addr; 557 558 if (!rk_dte_is_pt_valid(dte)) 559 goto print_it; 560 561 pte_addr_phys = rk_ops->pt_address(dte) + (pte_index * 4); 562 pte_addr = phys_to_virt(pte_addr_phys); 563 pte = *pte_addr; 564 565 if (!rk_pte_is_page_valid(pte)) 566 goto print_it; 567 568 page_addr_phys = rk_ops->pt_address(pte) + page_offset; 569 page_flags = pte & RK_PTE_PAGE_FLAGS_MASK; 570 571 print_it: 572 dev_err(iommu->dev, "iova = %pad: dte_index: %#03x pte_index: %#03x page_offset: %#03x\n", 573 &iova, dte_index, pte_index, page_offset); 574 dev_err(iommu->dev, "mmu_dte_addr: %pa dte@%pa: %#08x valid: %u pte@%pa: %#08x valid: %u page@%pa flags: %#03x\n", 575 &mmu_dte_addr_phys, &dte_addr_phys, dte, 576 rk_dte_is_pt_valid(dte), &pte_addr_phys, pte, 577 rk_pte_is_page_valid(pte), &page_addr_phys, page_flags); 578 } 579 580 static irqreturn_t rk_iommu_irq(int irq, void *dev_id) 581 { 582 struct rk_iommu *iommu = dev_id; 583 u32 status; 584 u32 int_status; 585 dma_addr_t iova; 586 irqreturn_t ret = IRQ_NONE; 587 int i, err; 588 589 err = pm_runtime_get_if_in_use(iommu->dev); 590 if (!err || WARN_ON_ONCE(err < 0)) 591 return ret; 592 593 if (WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks))) 594 goto out; 595 596 for (i = 0; i < iommu->num_mmu; i++) { 597 int_status = rk_iommu_read(iommu->bases[i], RK_MMU_INT_STATUS); 598 if (int_status == 0) 599 continue; 600 601 ret = IRQ_HANDLED; 602 iova = rk_iommu_read(iommu->bases[i], RK_MMU_PAGE_FAULT_ADDR); 603 604 if (int_status & RK_MMU_IRQ_PAGE_FAULT) { 605 int flags; 606 607 status = rk_iommu_read(iommu->bases[i], RK_MMU_STATUS); 608 flags = (status & RK_MMU_STATUS_PAGE_FAULT_IS_WRITE) ? 609 IOMMU_FAULT_WRITE : IOMMU_FAULT_READ; 610 611 dev_err(iommu->dev, "Page fault at %pad of type %s\n", 612 &iova, 613 (flags == IOMMU_FAULT_WRITE) ? "write" : "read"); 614 615 log_iova(iommu, i, iova); 616 617 /* 618 * Report page fault to any installed handlers. 619 * Ignore the return code, though, since we always zap cache 620 * and clear the page fault anyway. 621 */ 622 if (iommu->domain != &rk_identity_domain) 623 report_iommu_fault(iommu->domain, iommu->dev, iova, 624 flags); 625 else 626 dev_err(iommu->dev, "Page fault while iommu not attached to domain?\n"); 627 628 rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE); 629 rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_PAGE_FAULT_DONE); 630 } 631 632 if (int_status & RK_MMU_IRQ_BUS_ERROR) 633 dev_err(iommu->dev, "BUS_ERROR occurred at %pad\n", &iova); 634 635 if (int_status & ~RK_MMU_IRQ_MASK) 636 dev_err(iommu->dev, "unexpected int_status: %#08x\n", 637 int_status); 638 639 rk_iommu_write(iommu->bases[i], RK_MMU_INT_CLEAR, int_status); 640 } 641 642 clk_bulk_disable(iommu->num_clocks, iommu->clocks); 643 644 out: 645 pm_runtime_put(iommu->dev); 646 return ret; 647 } 648 649 static phys_addr_t rk_iommu_iova_to_phys(struct iommu_domain *domain, 650 dma_addr_t iova) 651 { 652 struct rk_iommu_domain *rk_domain = to_rk_domain(domain); 653 unsigned long flags; 654 phys_addr_t pt_phys, phys = 0; 655 u32 dte, pte; 656 u32 *page_table; 657 658 spin_lock_irqsave(&rk_domain->dt_lock, flags); 659 660 dte = rk_domain->dt[rk_iova_dte_index(iova)]; 661 if (!rk_dte_is_pt_valid(dte)) 662 goto out; 663 664 pt_phys = rk_ops->pt_address(dte); 665 page_table = (u32 *)phys_to_virt(pt_phys); 666 pte = page_table[rk_iova_pte_index(iova)]; 667 if (!rk_pte_is_page_valid(pte)) 668 goto out; 669 670 phys = rk_ops->pt_address(pte) + rk_iova_page_offset(iova); 671 out: 672 spin_unlock_irqrestore(&rk_domain->dt_lock, flags); 673 674 return phys; 675 } 676 677 static void rk_iommu_zap_iova(struct rk_iommu_domain *rk_domain, 678 dma_addr_t iova, size_t size) 679 { 680 struct list_head *pos; 681 unsigned long flags; 682 683 /* shootdown these iova from all iommus using this domain */ 684 spin_lock_irqsave(&rk_domain->iommus_lock, flags); 685 list_for_each(pos, &rk_domain->iommus) { 686 struct rk_iommu *iommu; 687 int ret; 688 689 iommu = list_entry(pos, struct rk_iommu, node); 690 691 /* Only zap TLBs of IOMMUs that are powered on. */ 692 ret = pm_runtime_get_if_in_use(iommu->dev); 693 if (WARN_ON_ONCE(ret < 0)) 694 continue; 695 if (ret) { 696 WARN_ON(clk_bulk_enable(iommu->num_clocks, 697 iommu->clocks)); 698 rk_iommu_zap_lines(iommu, iova, size); 699 clk_bulk_disable(iommu->num_clocks, iommu->clocks); 700 pm_runtime_put(iommu->dev); 701 } 702 } 703 spin_unlock_irqrestore(&rk_domain->iommus_lock, flags); 704 } 705 706 static void rk_iommu_zap_iova_first_last(struct rk_iommu_domain *rk_domain, 707 dma_addr_t iova, size_t size) 708 { 709 rk_iommu_zap_iova(rk_domain, iova, SPAGE_SIZE); 710 if (size > SPAGE_SIZE) 711 rk_iommu_zap_iova(rk_domain, iova + size - SPAGE_SIZE, 712 SPAGE_SIZE); 713 } 714 715 static u32 *rk_dte_get_page_table(struct rk_iommu_domain *rk_domain, 716 dma_addr_t iova) 717 { 718 u32 *page_table, *dte_addr; 719 u32 dte_index, dte; 720 phys_addr_t pt_phys; 721 dma_addr_t pt_dma; 722 723 assert_spin_locked(&rk_domain->dt_lock); 724 725 dte_index = rk_iova_dte_index(iova); 726 dte_addr = &rk_domain->dt[dte_index]; 727 dte = *dte_addr; 728 if (rk_dte_is_pt_valid(dte)) 729 goto done; 730 731 page_table = (u32 *)get_zeroed_page(GFP_ATOMIC | rk_ops->gfp_flags); 732 if (!page_table) 733 return ERR_PTR(-ENOMEM); 734 735 pt_dma = dma_map_single(dma_dev, page_table, SPAGE_SIZE, DMA_TO_DEVICE); 736 if (dma_mapping_error(dma_dev, pt_dma)) { 737 dev_err(dma_dev, "DMA mapping error while allocating page table\n"); 738 free_page((unsigned long)page_table); 739 return ERR_PTR(-ENOMEM); 740 } 741 742 dte = rk_ops->mk_dtentries(pt_dma); 743 *dte_addr = dte; 744 745 rk_table_flush(rk_domain, 746 rk_domain->dt_dma + dte_index * sizeof(u32), 1); 747 done: 748 pt_phys = rk_ops->pt_address(dte); 749 return (u32 *)phys_to_virt(pt_phys); 750 } 751 752 static size_t rk_iommu_unmap_iova(struct rk_iommu_domain *rk_domain, 753 u32 *pte_addr, dma_addr_t pte_dma, 754 size_t size) 755 { 756 unsigned int pte_count; 757 unsigned int pte_total = size / SPAGE_SIZE; 758 759 assert_spin_locked(&rk_domain->dt_lock); 760 761 for (pte_count = 0; pte_count < pte_total; pte_count++) { 762 u32 pte = pte_addr[pte_count]; 763 if (!rk_pte_is_page_valid(pte)) 764 break; 765 766 pte_addr[pte_count] = rk_mk_pte_invalid(pte); 767 } 768 769 rk_table_flush(rk_domain, pte_dma, pte_count); 770 771 return pte_count * SPAGE_SIZE; 772 } 773 774 static int rk_iommu_map_iova(struct rk_iommu_domain *rk_domain, u32 *pte_addr, 775 dma_addr_t pte_dma, dma_addr_t iova, 776 phys_addr_t paddr, size_t size, int prot) 777 { 778 unsigned int pte_count; 779 unsigned int pte_total = size / SPAGE_SIZE; 780 phys_addr_t page_phys; 781 782 assert_spin_locked(&rk_domain->dt_lock); 783 784 for (pte_count = 0; pte_count < pte_total; pte_count++) { 785 u32 pte = pte_addr[pte_count]; 786 787 if (rk_pte_is_page_valid(pte)) 788 goto unwind; 789 790 pte_addr[pte_count] = rk_ops->mk_ptentries(paddr, prot); 791 792 paddr += SPAGE_SIZE; 793 } 794 795 rk_table_flush(rk_domain, pte_dma, pte_total); 796 797 /* 798 * Zap the first and last iova to evict from iotlb any previously 799 * mapped cachelines holding stale values for its dte and pte. 800 * We only zap the first and last iova, since only they could have 801 * dte or pte shared with an existing mapping. 802 */ 803 rk_iommu_zap_iova_first_last(rk_domain, iova, size); 804 805 return 0; 806 unwind: 807 /* Unmap the range of iovas that we just mapped */ 808 rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma, 809 pte_count * SPAGE_SIZE); 810 811 iova += pte_count * SPAGE_SIZE; 812 page_phys = rk_ops->pt_address(pte_addr[pte_count]); 813 pr_err("iova: %pad already mapped to %pa cannot remap to phys: %pa prot: %#x\n", 814 &iova, &page_phys, &paddr, prot); 815 816 return -EADDRINUSE; 817 } 818 819 static int rk_iommu_map(struct iommu_domain *domain, unsigned long _iova, 820 phys_addr_t paddr, size_t size, int prot, gfp_t gfp) 821 { 822 struct rk_iommu_domain *rk_domain = to_rk_domain(domain); 823 unsigned long flags; 824 dma_addr_t pte_dma, iova = (dma_addr_t)_iova; 825 u32 *page_table, *pte_addr; 826 u32 dte_index, pte_index; 827 int ret; 828 829 spin_lock_irqsave(&rk_domain->dt_lock, flags); 830 831 /* 832 * pgsize_bitmap specifies iova sizes that fit in one page table 833 * (1024 4-KiB pages = 4 MiB). 834 * So, size will always be 4096 <= size <= 4194304. 835 * Since iommu_map() guarantees that both iova and size will be 836 * aligned, we will always only be mapping from a single dte here. 837 */ 838 page_table = rk_dte_get_page_table(rk_domain, iova); 839 if (IS_ERR(page_table)) { 840 spin_unlock_irqrestore(&rk_domain->dt_lock, flags); 841 return PTR_ERR(page_table); 842 } 843 844 dte_index = rk_domain->dt[rk_iova_dte_index(iova)]; 845 pte_index = rk_iova_pte_index(iova); 846 pte_addr = &page_table[pte_index]; 847 848 pte_dma = rk_ops->pt_address(dte_index) + pte_index * sizeof(u32); 849 ret = rk_iommu_map_iova(rk_domain, pte_addr, pte_dma, iova, 850 paddr, size, prot); 851 852 spin_unlock_irqrestore(&rk_domain->dt_lock, flags); 853 854 return ret; 855 } 856 857 static size_t rk_iommu_unmap(struct iommu_domain *domain, unsigned long _iova, 858 size_t size, struct iommu_iotlb_gather *gather) 859 { 860 struct rk_iommu_domain *rk_domain = to_rk_domain(domain); 861 unsigned long flags; 862 dma_addr_t pte_dma, iova = (dma_addr_t)_iova; 863 phys_addr_t pt_phys; 864 u32 dte; 865 u32 *pte_addr; 866 size_t unmap_size; 867 868 spin_lock_irqsave(&rk_domain->dt_lock, flags); 869 870 /* 871 * pgsize_bitmap specifies iova sizes that fit in one page table 872 * (1024 4-KiB pages = 4 MiB). 873 * So, size will always be 4096 <= size <= 4194304. 874 * Since iommu_unmap() guarantees that both iova and size will be 875 * aligned, we will always only be unmapping from a single dte here. 876 */ 877 dte = rk_domain->dt[rk_iova_dte_index(iova)]; 878 /* Just return 0 if iova is unmapped */ 879 if (!rk_dte_is_pt_valid(dte)) { 880 spin_unlock_irqrestore(&rk_domain->dt_lock, flags); 881 return 0; 882 } 883 884 pt_phys = rk_ops->pt_address(dte); 885 pte_addr = (u32 *)phys_to_virt(pt_phys) + rk_iova_pte_index(iova); 886 pte_dma = pt_phys + rk_iova_pte_index(iova) * sizeof(u32); 887 unmap_size = rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma, size); 888 889 spin_unlock_irqrestore(&rk_domain->dt_lock, flags); 890 891 /* Shootdown iotlb entries for iova range that was just unmapped */ 892 rk_iommu_zap_iova(rk_domain, iova, unmap_size); 893 894 return unmap_size; 895 } 896 897 static struct rk_iommu *rk_iommu_from_dev(struct device *dev) 898 { 899 struct rk_iommudata *data = dev_iommu_priv_get(dev); 900 901 return data ? data->iommu : NULL; 902 } 903 904 /* Must be called with iommu powered on and attached */ 905 static void rk_iommu_disable(struct rk_iommu *iommu) 906 { 907 int i; 908 909 /* Ignore error while disabling, just keep going */ 910 WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks)); 911 rk_iommu_enable_stall(iommu); 912 rk_iommu_disable_paging(iommu); 913 for (i = 0; i < iommu->num_mmu; i++) { 914 rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, 0); 915 rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, 0); 916 } 917 rk_iommu_disable_stall(iommu); 918 clk_bulk_disable(iommu->num_clocks, iommu->clocks); 919 } 920 921 /* Must be called with iommu powered on and attached */ 922 static int rk_iommu_enable(struct rk_iommu *iommu) 923 { 924 struct iommu_domain *domain = iommu->domain; 925 struct rk_iommu_domain *rk_domain = to_rk_domain(domain); 926 int ret, i; 927 928 ret = clk_bulk_enable(iommu->num_clocks, iommu->clocks); 929 if (ret) 930 return ret; 931 932 ret = rk_iommu_enable_stall(iommu); 933 if (ret) 934 goto out_disable_clocks; 935 936 ret = rk_iommu_force_reset(iommu); 937 if (ret) 938 goto out_disable_stall; 939 940 for (i = 0; i < iommu->num_mmu; i++) { 941 rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, 942 rk_ops->mk_dtentries(rk_domain->dt_dma)); 943 rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE); 944 rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, RK_MMU_IRQ_MASK); 945 } 946 947 ret = rk_iommu_enable_paging(iommu); 948 949 out_disable_stall: 950 rk_iommu_disable_stall(iommu); 951 out_disable_clocks: 952 clk_bulk_disable(iommu->num_clocks, iommu->clocks); 953 return ret; 954 } 955 956 static int rk_iommu_identity_attach(struct iommu_domain *identity_domain, 957 struct device *dev) 958 { 959 struct rk_iommu *iommu; 960 struct rk_iommu_domain *rk_domain; 961 unsigned long flags; 962 int ret; 963 964 /* Allow 'virtual devices' (eg drm) to detach from domain */ 965 iommu = rk_iommu_from_dev(dev); 966 if (!iommu) 967 return -ENODEV; 968 969 rk_domain = to_rk_domain(iommu->domain); 970 971 dev_dbg(dev, "Detaching from iommu domain\n"); 972 973 if (iommu->domain == identity_domain) 974 return 0; 975 976 iommu->domain = identity_domain; 977 978 spin_lock_irqsave(&rk_domain->iommus_lock, flags); 979 list_del_init(&iommu->node); 980 spin_unlock_irqrestore(&rk_domain->iommus_lock, flags); 981 982 ret = pm_runtime_get_if_in_use(iommu->dev); 983 WARN_ON_ONCE(ret < 0); 984 if (ret > 0) { 985 rk_iommu_disable(iommu); 986 pm_runtime_put(iommu->dev); 987 } 988 989 return 0; 990 } 991 992 static void rk_iommu_identity_free(struct iommu_domain *domain) 993 { 994 } 995 996 static struct iommu_domain_ops rk_identity_ops = { 997 .attach_dev = rk_iommu_identity_attach, 998 .free = rk_iommu_identity_free, 999 }; 1000 1001 static struct iommu_domain rk_identity_domain = { 1002 .type = IOMMU_DOMAIN_IDENTITY, 1003 .ops = &rk_identity_ops, 1004 }; 1005 1006 #ifdef CONFIG_ARM 1007 static void rk_iommu_set_platform_dma(struct device *dev) 1008 { 1009 WARN_ON(rk_iommu_identity_attach(&rk_identity_domain, dev)); 1010 } 1011 #endif 1012 1013 static int rk_iommu_attach_device(struct iommu_domain *domain, 1014 struct device *dev) 1015 { 1016 struct rk_iommu *iommu; 1017 struct rk_iommu_domain *rk_domain = to_rk_domain(domain); 1018 unsigned long flags; 1019 int ret; 1020 1021 /* 1022 * Allow 'virtual devices' (e.g., drm) to attach to domain. 1023 * Such a device does not belong to an iommu group. 1024 */ 1025 iommu = rk_iommu_from_dev(dev); 1026 if (!iommu) 1027 return 0; 1028 1029 dev_dbg(dev, "Attaching to iommu domain\n"); 1030 1031 /* iommu already attached */ 1032 if (iommu->domain == domain) 1033 return 0; 1034 1035 ret = rk_iommu_identity_attach(&rk_identity_domain, dev); 1036 if (ret) 1037 return ret; 1038 1039 iommu->domain = domain; 1040 1041 spin_lock_irqsave(&rk_domain->iommus_lock, flags); 1042 list_add_tail(&iommu->node, &rk_domain->iommus); 1043 spin_unlock_irqrestore(&rk_domain->iommus_lock, flags); 1044 1045 ret = pm_runtime_get_if_in_use(iommu->dev); 1046 if (!ret || WARN_ON_ONCE(ret < 0)) 1047 return 0; 1048 1049 ret = rk_iommu_enable(iommu); 1050 if (ret) 1051 WARN_ON(rk_iommu_identity_attach(&rk_identity_domain, dev)); 1052 1053 pm_runtime_put(iommu->dev); 1054 1055 return ret; 1056 } 1057 1058 static struct iommu_domain *rk_iommu_domain_alloc(unsigned type) 1059 { 1060 struct rk_iommu_domain *rk_domain; 1061 1062 if (type == IOMMU_DOMAIN_IDENTITY) 1063 return &rk_identity_domain; 1064 1065 if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA) 1066 return NULL; 1067 1068 if (!dma_dev) 1069 return NULL; 1070 1071 rk_domain = kzalloc(sizeof(*rk_domain), GFP_KERNEL); 1072 if (!rk_domain) 1073 return NULL; 1074 1075 /* 1076 * rk32xx iommus use a 2 level pagetable. 1077 * Each level1 (dt) and level2 (pt) table has 1024 4-byte entries. 1078 * Allocate one 4 KiB page for each table. 1079 */ 1080 rk_domain->dt = (u32 *)get_zeroed_page(GFP_KERNEL | rk_ops->gfp_flags); 1081 if (!rk_domain->dt) 1082 goto err_free_domain; 1083 1084 rk_domain->dt_dma = dma_map_single(dma_dev, rk_domain->dt, 1085 SPAGE_SIZE, DMA_TO_DEVICE); 1086 if (dma_mapping_error(dma_dev, rk_domain->dt_dma)) { 1087 dev_err(dma_dev, "DMA map error for DT\n"); 1088 goto err_free_dt; 1089 } 1090 1091 spin_lock_init(&rk_domain->iommus_lock); 1092 spin_lock_init(&rk_domain->dt_lock); 1093 INIT_LIST_HEAD(&rk_domain->iommus); 1094 1095 rk_domain->domain.geometry.aperture_start = 0; 1096 rk_domain->domain.geometry.aperture_end = DMA_BIT_MASK(32); 1097 rk_domain->domain.geometry.force_aperture = true; 1098 1099 return &rk_domain->domain; 1100 1101 err_free_dt: 1102 free_page((unsigned long)rk_domain->dt); 1103 err_free_domain: 1104 kfree(rk_domain); 1105 1106 return NULL; 1107 } 1108 1109 static void rk_iommu_domain_free(struct iommu_domain *domain) 1110 { 1111 struct rk_iommu_domain *rk_domain = to_rk_domain(domain); 1112 int i; 1113 1114 WARN_ON(!list_empty(&rk_domain->iommus)); 1115 1116 for (i = 0; i < NUM_DT_ENTRIES; i++) { 1117 u32 dte = rk_domain->dt[i]; 1118 if (rk_dte_is_pt_valid(dte)) { 1119 phys_addr_t pt_phys = rk_ops->pt_address(dte); 1120 u32 *page_table = phys_to_virt(pt_phys); 1121 dma_unmap_single(dma_dev, pt_phys, 1122 SPAGE_SIZE, DMA_TO_DEVICE); 1123 free_page((unsigned long)page_table); 1124 } 1125 } 1126 1127 dma_unmap_single(dma_dev, rk_domain->dt_dma, 1128 SPAGE_SIZE, DMA_TO_DEVICE); 1129 free_page((unsigned long)rk_domain->dt); 1130 1131 kfree(rk_domain); 1132 } 1133 1134 static struct iommu_device *rk_iommu_probe_device(struct device *dev) 1135 { 1136 struct rk_iommudata *data; 1137 struct rk_iommu *iommu; 1138 1139 data = dev_iommu_priv_get(dev); 1140 if (!data) 1141 return ERR_PTR(-ENODEV); 1142 1143 iommu = rk_iommu_from_dev(dev); 1144 1145 data->link = device_link_add(dev, iommu->dev, 1146 DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME); 1147 1148 return &iommu->iommu; 1149 } 1150 1151 static void rk_iommu_release_device(struct device *dev) 1152 { 1153 struct rk_iommudata *data = dev_iommu_priv_get(dev); 1154 1155 device_link_del(data->link); 1156 } 1157 1158 static struct iommu_group *rk_iommu_device_group(struct device *dev) 1159 { 1160 struct rk_iommu *iommu; 1161 1162 iommu = rk_iommu_from_dev(dev); 1163 1164 return iommu_group_ref_get(iommu->group); 1165 } 1166 1167 static int rk_iommu_of_xlate(struct device *dev, 1168 struct of_phandle_args *args) 1169 { 1170 struct platform_device *iommu_dev; 1171 struct rk_iommudata *data; 1172 1173 data = devm_kzalloc(dma_dev, sizeof(*data), GFP_KERNEL); 1174 if (!data) 1175 return -ENOMEM; 1176 1177 iommu_dev = of_find_device_by_node(args->np); 1178 1179 data->iommu = platform_get_drvdata(iommu_dev); 1180 data->iommu->domain = &rk_identity_domain; 1181 dev_iommu_priv_set(dev, data); 1182 1183 platform_device_put(iommu_dev); 1184 1185 return 0; 1186 } 1187 1188 static const struct iommu_ops rk_iommu_ops = { 1189 .domain_alloc = rk_iommu_domain_alloc, 1190 .probe_device = rk_iommu_probe_device, 1191 .release_device = rk_iommu_release_device, 1192 .device_group = rk_iommu_device_group, 1193 #ifdef CONFIG_ARM 1194 .set_platform_dma_ops = rk_iommu_set_platform_dma, 1195 #endif 1196 .pgsize_bitmap = RK_IOMMU_PGSIZE_BITMAP, 1197 .of_xlate = rk_iommu_of_xlate, 1198 .default_domain_ops = &(const struct iommu_domain_ops) { 1199 .attach_dev = rk_iommu_attach_device, 1200 .map = rk_iommu_map, 1201 .unmap = rk_iommu_unmap, 1202 .iova_to_phys = rk_iommu_iova_to_phys, 1203 .free = rk_iommu_domain_free, 1204 } 1205 }; 1206 1207 static int rk_iommu_probe(struct platform_device *pdev) 1208 { 1209 struct device *dev = &pdev->dev; 1210 struct rk_iommu *iommu; 1211 struct resource *res; 1212 const struct rk_iommu_ops *ops; 1213 int num_res = pdev->num_resources; 1214 int err, i; 1215 1216 iommu = devm_kzalloc(dev, sizeof(*iommu), GFP_KERNEL); 1217 if (!iommu) 1218 return -ENOMEM; 1219 1220 platform_set_drvdata(pdev, iommu); 1221 iommu->dev = dev; 1222 iommu->num_mmu = 0; 1223 1224 ops = of_device_get_match_data(dev); 1225 if (!rk_ops) 1226 rk_ops = ops; 1227 1228 /* 1229 * That should not happen unless different versions of the 1230 * hardware block are embedded the same SoC 1231 */ 1232 if (WARN_ON(rk_ops != ops)) 1233 return -EINVAL; 1234 1235 iommu->bases = devm_kcalloc(dev, num_res, sizeof(*iommu->bases), 1236 GFP_KERNEL); 1237 if (!iommu->bases) 1238 return -ENOMEM; 1239 1240 for (i = 0; i < num_res; i++) { 1241 res = platform_get_resource(pdev, IORESOURCE_MEM, i); 1242 if (!res) 1243 continue; 1244 iommu->bases[i] = devm_ioremap_resource(&pdev->dev, res); 1245 if (IS_ERR(iommu->bases[i])) 1246 continue; 1247 iommu->num_mmu++; 1248 } 1249 if (iommu->num_mmu == 0) 1250 return PTR_ERR(iommu->bases[0]); 1251 1252 iommu->num_irq = platform_irq_count(pdev); 1253 if (iommu->num_irq < 0) 1254 return iommu->num_irq; 1255 1256 iommu->reset_disabled = device_property_read_bool(dev, 1257 "rockchip,disable-mmu-reset"); 1258 1259 iommu->num_clocks = ARRAY_SIZE(rk_iommu_clocks); 1260 iommu->clocks = devm_kcalloc(iommu->dev, iommu->num_clocks, 1261 sizeof(*iommu->clocks), GFP_KERNEL); 1262 if (!iommu->clocks) 1263 return -ENOMEM; 1264 1265 for (i = 0; i < iommu->num_clocks; ++i) 1266 iommu->clocks[i].id = rk_iommu_clocks[i]; 1267 1268 /* 1269 * iommu clocks should be present for all new devices and devicetrees 1270 * but there are older devicetrees without clocks out in the wild. 1271 * So clocks as optional for the time being. 1272 */ 1273 err = devm_clk_bulk_get(iommu->dev, iommu->num_clocks, iommu->clocks); 1274 if (err == -ENOENT) 1275 iommu->num_clocks = 0; 1276 else if (err) 1277 return err; 1278 1279 err = clk_bulk_prepare(iommu->num_clocks, iommu->clocks); 1280 if (err) 1281 return err; 1282 1283 iommu->group = iommu_group_alloc(); 1284 if (IS_ERR(iommu->group)) { 1285 err = PTR_ERR(iommu->group); 1286 goto err_unprepare_clocks; 1287 } 1288 1289 err = iommu_device_sysfs_add(&iommu->iommu, dev, NULL, dev_name(dev)); 1290 if (err) 1291 goto err_put_group; 1292 1293 err = iommu_device_register(&iommu->iommu, &rk_iommu_ops, dev); 1294 if (err) 1295 goto err_remove_sysfs; 1296 1297 /* 1298 * Use the first registered IOMMU device for domain to use with DMA 1299 * API, since a domain might not physically correspond to a single 1300 * IOMMU device.. 1301 */ 1302 if (!dma_dev) 1303 dma_dev = &pdev->dev; 1304 1305 pm_runtime_enable(dev); 1306 1307 for (i = 0; i < iommu->num_irq; i++) { 1308 int irq = platform_get_irq(pdev, i); 1309 1310 if (irq < 0) { 1311 err = irq; 1312 goto err_pm_disable; 1313 } 1314 1315 err = devm_request_irq(iommu->dev, irq, rk_iommu_irq, 1316 IRQF_SHARED, dev_name(dev), iommu); 1317 if (err) 1318 goto err_pm_disable; 1319 } 1320 1321 dma_set_mask_and_coherent(dev, rk_ops->dma_bit_mask); 1322 1323 return 0; 1324 err_pm_disable: 1325 pm_runtime_disable(dev); 1326 err_remove_sysfs: 1327 iommu_device_sysfs_remove(&iommu->iommu); 1328 err_put_group: 1329 iommu_group_put(iommu->group); 1330 err_unprepare_clocks: 1331 clk_bulk_unprepare(iommu->num_clocks, iommu->clocks); 1332 return err; 1333 } 1334 1335 static void rk_iommu_shutdown(struct platform_device *pdev) 1336 { 1337 struct rk_iommu *iommu = platform_get_drvdata(pdev); 1338 int i; 1339 1340 for (i = 0; i < iommu->num_irq; i++) { 1341 int irq = platform_get_irq(pdev, i); 1342 1343 devm_free_irq(iommu->dev, irq, iommu); 1344 } 1345 1346 pm_runtime_force_suspend(&pdev->dev); 1347 } 1348 1349 static int __maybe_unused rk_iommu_suspend(struct device *dev) 1350 { 1351 struct rk_iommu *iommu = dev_get_drvdata(dev); 1352 1353 if (iommu->domain == &rk_identity_domain) 1354 return 0; 1355 1356 rk_iommu_disable(iommu); 1357 return 0; 1358 } 1359 1360 static int __maybe_unused rk_iommu_resume(struct device *dev) 1361 { 1362 struct rk_iommu *iommu = dev_get_drvdata(dev); 1363 1364 if (iommu->domain == &rk_identity_domain) 1365 return 0; 1366 1367 return rk_iommu_enable(iommu); 1368 } 1369 1370 static const struct dev_pm_ops rk_iommu_pm_ops = { 1371 SET_RUNTIME_PM_OPS(rk_iommu_suspend, rk_iommu_resume, NULL) 1372 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 1373 pm_runtime_force_resume) 1374 }; 1375 1376 static struct rk_iommu_ops iommu_data_ops_v1 = { 1377 .pt_address = &rk_dte_pt_address, 1378 .mk_dtentries = &rk_mk_dte, 1379 .mk_ptentries = &rk_mk_pte, 1380 .dma_bit_mask = DMA_BIT_MASK(32), 1381 .gfp_flags = GFP_DMA32, 1382 }; 1383 1384 static struct rk_iommu_ops iommu_data_ops_v2 = { 1385 .pt_address = &rk_dte_pt_address_v2, 1386 .mk_dtentries = &rk_mk_dte_v2, 1387 .mk_ptentries = &rk_mk_pte_v2, 1388 .dma_bit_mask = DMA_BIT_MASK(40), 1389 .gfp_flags = 0, 1390 }; 1391 1392 static const struct of_device_id rk_iommu_dt_ids[] = { 1393 { .compatible = "rockchip,iommu", 1394 .data = &iommu_data_ops_v1, 1395 }, 1396 { .compatible = "rockchip,rk3568-iommu", 1397 .data = &iommu_data_ops_v2, 1398 }, 1399 { /* sentinel */ } 1400 }; 1401 1402 static struct platform_driver rk_iommu_driver = { 1403 .probe = rk_iommu_probe, 1404 .shutdown = rk_iommu_shutdown, 1405 .driver = { 1406 .name = "rk_iommu", 1407 .of_match_table = rk_iommu_dt_ids, 1408 .pm = &rk_iommu_pm_ops, 1409 .suppress_bind_attrs = true, 1410 }, 1411 }; 1412 builtin_platform_driver(rk_iommu_driver); 1413