1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License version 2 as
4  * published by the Free Software Foundation.
5  */
6 
7 #include <asm/cacheflush.h>
8 #include <asm/pgtable.h>
9 #include <linux/compiler.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/errno.h>
13 #include <linux/interrupt.h>
14 #include <linux/io.h>
15 #include <linux/iommu.h>
16 #include <linux/jiffies.h>
17 #include <linux/list.h>
18 #include <linux/mm.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25 
26 /** MMU register offsets */
27 #define RK_MMU_DTE_ADDR		0x00	/* Directory table address */
28 #define RK_MMU_STATUS		0x04
29 #define RK_MMU_COMMAND		0x08
30 #define RK_MMU_PAGE_FAULT_ADDR	0x0C	/* IOVA of last page fault */
31 #define RK_MMU_ZAP_ONE_LINE	0x10	/* Shootdown one IOTLB entry */
32 #define RK_MMU_INT_RAWSTAT	0x14	/* IRQ status ignoring mask */
33 #define RK_MMU_INT_CLEAR	0x18	/* Acknowledge and re-arm irq */
34 #define RK_MMU_INT_MASK		0x1C	/* IRQ enable */
35 #define RK_MMU_INT_STATUS	0x20	/* IRQ status after masking */
36 #define RK_MMU_AUTO_GATING	0x24
37 
38 #define DTE_ADDR_DUMMY		0xCAFEBABE
39 #define FORCE_RESET_TIMEOUT	100	/* ms */
40 
41 /* RK_MMU_STATUS fields */
42 #define RK_MMU_STATUS_PAGING_ENABLED       BIT(0)
43 #define RK_MMU_STATUS_PAGE_FAULT_ACTIVE    BIT(1)
44 #define RK_MMU_STATUS_STALL_ACTIVE         BIT(2)
45 #define RK_MMU_STATUS_IDLE                 BIT(3)
46 #define RK_MMU_STATUS_REPLAY_BUFFER_EMPTY  BIT(4)
47 #define RK_MMU_STATUS_PAGE_FAULT_IS_WRITE  BIT(5)
48 #define RK_MMU_STATUS_STALL_NOT_ACTIVE     BIT(31)
49 
50 /* RK_MMU_COMMAND command values */
51 #define RK_MMU_CMD_ENABLE_PAGING    0  /* Enable memory translation */
52 #define RK_MMU_CMD_DISABLE_PAGING   1  /* Disable memory translation */
53 #define RK_MMU_CMD_ENABLE_STALL     2  /* Stall paging to allow other cmds */
54 #define RK_MMU_CMD_DISABLE_STALL    3  /* Stop stall re-enables paging */
55 #define RK_MMU_CMD_ZAP_CACHE        4  /* Shoot down entire IOTLB */
56 #define RK_MMU_CMD_PAGE_FAULT_DONE  5  /* Clear page fault */
57 #define RK_MMU_CMD_FORCE_RESET      6  /* Reset all registers */
58 
59 /* RK_MMU_INT_* register fields */
60 #define RK_MMU_IRQ_PAGE_FAULT    0x01  /* page fault */
61 #define RK_MMU_IRQ_BUS_ERROR     0x02  /* bus read error */
62 #define RK_MMU_IRQ_MASK          (RK_MMU_IRQ_PAGE_FAULT | RK_MMU_IRQ_BUS_ERROR)
63 
64 #define NUM_DT_ENTRIES 1024
65 #define NUM_PT_ENTRIES 1024
66 
67 #define SPAGE_ORDER 12
68 #define SPAGE_SIZE (1 << SPAGE_ORDER)
69 
70  /*
71   * Support mapping any size that fits in one page table:
72   *   4 KiB to 4 MiB
73   */
74 #define RK_IOMMU_PGSIZE_BITMAP 0x007ff000
75 
76 #define IOMMU_REG_POLL_COUNT_FAST 1000
77 
78 struct rk_iommu_domain {
79 	struct list_head iommus;
80 	u32 *dt; /* page directory table */
81 	spinlock_t iommus_lock; /* lock for iommus list */
82 	spinlock_t dt_lock; /* lock for modifying page directory table */
83 
84 	struct iommu_domain domain;
85 };
86 
87 struct rk_iommu {
88 	struct device *dev;
89 	void __iomem *base;
90 	int irq;
91 	struct list_head node; /* entry in rk_iommu_domain.iommus */
92 	struct iommu_domain *domain; /* domain to which iommu is attached */
93 };
94 
95 static inline void rk_table_flush(u32 *va, unsigned int count)
96 {
97 	phys_addr_t pa_start = virt_to_phys(va);
98 	phys_addr_t pa_end = virt_to_phys(va + count);
99 	size_t size = pa_end - pa_start;
100 
101 	__cpuc_flush_dcache_area(va, size);
102 	outer_flush_range(pa_start, pa_end);
103 }
104 
105 static struct rk_iommu_domain *to_rk_domain(struct iommu_domain *dom)
106 {
107 	return container_of(dom, struct rk_iommu_domain, domain);
108 }
109 
110 /**
111  * Inspired by _wait_for in intel_drv.h
112  * This is NOT safe for use in interrupt context.
113  *
114  * Note that it's important that we check the condition again after having
115  * timed out, since the timeout could be due to preemption or similar and
116  * we've never had a chance to check the condition before the timeout.
117  */
118 #define rk_wait_for(COND, MS) ({ \
119 	unsigned long timeout__ = jiffies + msecs_to_jiffies(MS) + 1;	\
120 	int ret__ = 0;							\
121 	while (!(COND)) {						\
122 		if (time_after(jiffies, timeout__)) {			\
123 			ret__ = (COND) ? 0 : -ETIMEDOUT;		\
124 			break;						\
125 		}							\
126 		usleep_range(50, 100);					\
127 	}								\
128 	ret__;								\
129 })
130 
131 /*
132  * The Rockchip rk3288 iommu uses a 2-level page table.
133  * The first level is the "Directory Table" (DT).
134  * The DT consists of 1024 4-byte Directory Table Entries (DTEs), each pointing
135  * to a "Page Table".
136  * The second level is the 1024 Page Tables (PT).
137  * Each PT consists of 1024 4-byte Page Table Entries (PTEs), each pointing to
138  * a 4 KB page of physical memory.
139  *
140  * The DT and each PT fits in a single 4 KB page (4-bytes * 1024 entries).
141  * Each iommu device has a MMU_DTE_ADDR register that contains the physical
142  * address of the start of the DT page.
143  *
144  * The structure of the page table is as follows:
145  *
146  *                   DT
147  * MMU_DTE_ADDR -> +-----+
148  *                 |     |
149  *                 +-----+     PT
150  *                 | DTE | -> +-----+
151  *                 +-----+    |     |     Memory
152  *                 |     |    +-----+     Page
153  *                 |     |    | PTE | -> +-----+
154  *                 +-----+    +-----+    |     |
155  *                            |     |    |     |
156  *                            |     |    |     |
157  *                            +-----+    |     |
158  *                                       |     |
159  *                                       |     |
160  *                                       +-----+
161  */
162 
163 /*
164  * Each DTE has a PT address and a valid bit:
165  * +---------------------+-----------+-+
166  * | PT address          | Reserved  |V|
167  * +---------------------+-----------+-+
168  *  31:12 - PT address (PTs always starts on a 4 KB boundary)
169  *  11: 1 - Reserved
170  *      0 - 1 if PT @ PT address is valid
171  */
172 #define RK_DTE_PT_ADDRESS_MASK    0xfffff000
173 #define RK_DTE_PT_VALID           BIT(0)
174 
175 static inline phys_addr_t rk_dte_pt_address(u32 dte)
176 {
177 	return (phys_addr_t)dte & RK_DTE_PT_ADDRESS_MASK;
178 }
179 
180 static inline bool rk_dte_is_pt_valid(u32 dte)
181 {
182 	return dte & RK_DTE_PT_VALID;
183 }
184 
185 static u32 rk_mk_dte(u32 *pt)
186 {
187 	phys_addr_t pt_phys = virt_to_phys(pt);
188 	return (pt_phys & RK_DTE_PT_ADDRESS_MASK) | RK_DTE_PT_VALID;
189 }
190 
191 /*
192  * Each PTE has a Page address, some flags and a valid bit:
193  * +---------------------+---+-------+-+
194  * | Page address        |Rsv| Flags |V|
195  * +---------------------+---+-------+-+
196  *  31:12 - Page address (Pages always start on a 4 KB boundary)
197  *  11: 9 - Reserved
198  *   8: 1 - Flags
199  *      8 - Read allocate - allocate cache space on read misses
200  *      7 - Read cache - enable cache & prefetch of data
201  *      6 - Write buffer - enable delaying writes on their way to memory
202  *      5 - Write allocate - allocate cache space on write misses
203  *      4 - Write cache - different writes can be merged together
204  *      3 - Override cache attributes
205  *          if 1, bits 4-8 control cache attributes
206  *          if 0, the system bus defaults are used
207  *      2 - Writable
208  *      1 - Readable
209  *      0 - 1 if Page @ Page address is valid
210  */
211 #define RK_PTE_PAGE_ADDRESS_MASK  0xfffff000
212 #define RK_PTE_PAGE_FLAGS_MASK    0x000001fe
213 #define RK_PTE_PAGE_WRITABLE      BIT(2)
214 #define RK_PTE_PAGE_READABLE      BIT(1)
215 #define RK_PTE_PAGE_VALID         BIT(0)
216 
217 static inline phys_addr_t rk_pte_page_address(u32 pte)
218 {
219 	return (phys_addr_t)pte & RK_PTE_PAGE_ADDRESS_MASK;
220 }
221 
222 static inline bool rk_pte_is_page_valid(u32 pte)
223 {
224 	return pte & RK_PTE_PAGE_VALID;
225 }
226 
227 /* TODO: set cache flags per prot IOMMU_CACHE */
228 static u32 rk_mk_pte(phys_addr_t page, int prot)
229 {
230 	u32 flags = 0;
231 	flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0;
232 	flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0;
233 	page &= RK_PTE_PAGE_ADDRESS_MASK;
234 	return page | flags | RK_PTE_PAGE_VALID;
235 }
236 
237 static u32 rk_mk_pte_invalid(u32 pte)
238 {
239 	return pte & ~RK_PTE_PAGE_VALID;
240 }
241 
242 /*
243  * rk3288 iova (IOMMU Virtual Address) format
244  *  31       22.21       12.11          0
245  * +-----------+-----------+-------------+
246  * | DTE index | PTE index | Page offset |
247  * +-----------+-----------+-------------+
248  *  31:22 - DTE index   - index of DTE in DT
249  *  21:12 - PTE index   - index of PTE in PT @ DTE.pt_address
250  *  11: 0 - Page offset - offset into page @ PTE.page_address
251  */
252 #define RK_IOVA_DTE_MASK    0xffc00000
253 #define RK_IOVA_DTE_SHIFT   22
254 #define RK_IOVA_PTE_MASK    0x003ff000
255 #define RK_IOVA_PTE_SHIFT   12
256 #define RK_IOVA_PAGE_MASK   0x00000fff
257 #define RK_IOVA_PAGE_SHIFT  0
258 
259 static u32 rk_iova_dte_index(dma_addr_t iova)
260 {
261 	return (u32)(iova & RK_IOVA_DTE_MASK) >> RK_IOVA_DTE_SHIFT;
262 }
263 
264 static u32 rk_iova_pte_index(dma_addr_t iova)
265 {
266 	return (u32)(iova & RK_IOVA_PTE_MASK) >> RK_IOVA_PTE_SHIFT;
267 }
268 
269 static u32 rk_iova_page_offset(dma_addr_t iova)
270 {
271 	return (u32)(iova & RK_IOVA_PAGE_MASK) >> RK_IOVA_PAGE_SHIFT;
272 }
273 
274 static u32 rk_iommu_read(struct rk_iommu *iommu, u32 offset)
275 {
276 	return readl(iommu->base + offset);
277 }
278 
279 static void rk_iommu_write(struct rk_iommu *iommu, u32 offset, u32 value)
280 {
281 	writel(value, iommu->base + offset);
282 }
283 
284 static void rk_iommu_command(struct rk_iommu *iommu, u32 command)
285 {
286 	writel(command, iommu->base + RK_MMU_COMMAND);
287 }
288 
289 static void rk_iommu_zap_lines(struct rk_iommu *iommu, dma_addr_t iova,
290 			       size_t size)
291 {
292 	dma_addr_t iova_end = iova + size;
293 	/*
294 	 * TODO(djkurtz): Figure out when it is more efficient to shootdown the
295 	 * entire iotlb rather than iterate over individual iovas.
296 	 */
297 	for (; iova < iova_end; iova += SPAGE_SIZE)
298 		rk_iommu_write(iommu, RK_MMU_ZAP_ONE_LINE, iova);
299 }
300 
301 static bool rk_iommu_is_stall_active(struct rk_iommu *iommu)
302 {
303 	return rk_iommu_read(iommu, RK_MMU_STATUS) & RK_MMU_STATUS_STALL_ACTIVE;
304 }
305 
306 static bool rk_iommu_is_paging_enabled(struct rk_iommu *iommu)
307 {
308 	return rk_iommu_read(iommu, RK_MMU_STATUS) &
309 			     RK_MMU_STATUS_PAGING_ENABLED;
310 }
311 
312 static int rk_iommu_enable_stall(struct rk_iommu *iommu)
313 {
314 	int ret;
315 
316 	if (rk_iommu_is_stall_active(iommu))
317 		return 0;
318 
319 	/* Stall can only be enabled if paging is enabled */
320 	if (!rk_iommu_is_paging_enabled(iommu))
321 		return 0;
322 
323 	rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_STALL);
324 
325 	ret = rk_wait_for(rk_iommu_is_stall_active(iommu), 1);
326 	if (ret)
327 		dev_err(iommu->dev, "Enable stall request timed out, status: %#08x\n",
328 			rk_iommu_read(iommu, RK_MMU_STATUS));
329 
330 	return ret;
331 }
332 
333 static int rk_iommu_disable_stall(struct rk_iommu *iommu)
334 {
335 	int ret;
336 
337 	if (!rk_iommu_is_stall_active(iommu))
338 		return 0;
339 
340 	rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_STALL);
341 
342 	ret = rk_wait_for(!rk_iommu_is_stall_active(iommu), 1);
343 	if (ret)
344 		dev_err(iommu->dev, "Disable stall request timed out, status: %#08x\n",
345 			rk_iommu_read(iommu, RK_MMU_STATUS));
346 
347 	return ret;
348 }
349 
350 static int rk_iommu_enable_paging(struct rk_iommu *iommu)
351 {
352 	int ret;
353 
354 	if (rk_iommu_is_paging_enabled(iommu))
355 		return 0;
356 
357 	rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_PAGING);
358 
359 	ret = rk_wait_for(rk_iommu_is_paging_enabled(iommu), 1);
360 	if (ret)
361 		dev_err(iommu->dev, "Enable paging request timed out, status: %#08x\n",
362 			rk_iommu_read(iommu, RK_MMU_STATUS));
363 
364 	return ret;
365 }
366 
367 static int rk_iommu_disable_paging(struct rk_iommu *iommu)
368 {
369 	int ret;
370 
371 	if (!rk_iommu_is_paging_enabled(iommu))
372 		return 0;
373 
374 	rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_PAGING);
375 
376 	ret = rk_wait_for(!rk_iommu_is_paging_enabled(iommu), 1);
377 	if (ret)
378 		dev_err(iommu->dev, "Disable paging request timed out, status: %#08x\n",
379 			rk_iommu_read(iommu, RK_MMU_STATUS));
380 
381 	return ret;
382 }
383 
384 static int rk_iommu_force_reset(struct rk_iommu *iommu)
385 {
386 	int ret;
387 	u32 dte_addr;
388 
389 	/*
390 	 * Check if register DTE_ADDR is working by writing DTE_ADDR_DUMMY
391 	 * and verifying that upper 5 nybbles are read back.
392 	 */
393 	rk_iommu_write(iommu, RK_MMU_DTE_ADDR, DTE_ADDR_DUMMY);
394 
395 	dte_addr = rk_iommu_read(iommu, RK_MMU_DTE_ADDR);
396 	if (dte_addr != (DTE_ADDR_DUMMY & RK_DTE_PT_ADDRESS_MASK)) {
397 		dev_err(iommu->dev, "Error during raw reset. MMU_DTE_ADDR is not functioning\n");
398 		return -EFAULT;
399 	}
400 
401 	rk_iommu_command(iommu, RK_MMU_CMD_FORCE_RESET);
402 
403 	ret = rk_wait_for(rk_iommu_read(iommu, RK_MMU_DTE_ADDR) == 0x00000000,
404 			  FORCE_RESET_TIMEOUT);
405 	if (ret)
406 		dev_err(iommu->dev, "FORCE_RESET command timed out\n");
407 
408 	return ret;
409 }
410 
411 static void log_iova(struct rk_iommu *iommu, dma_addr_t iova)
412 {
413 	u32 dte_index, pte_index, page_offset;
414 	u32 mmu_dte_addr;
415 	phys_addr_t mmu_dte_addr_phys, dte_addr_phys;
416 	u32 *dte_addr;
417 	u32 dte;
418 	phys_addr_t pte_addr_phys = 0;
419 	u32 *pte_addr = NULL;
420 	u32 pte = 0;
421 	phys_addr_t page_addr_phys = 0;
422 	u32 page_flags = 0;
423 
424 	dte_index = rk_iova_dte_index(iova);
425 	pte_index = rk_iova_pte_index(iova);
426 	page_offset = rk_iova_page_offset(iova);
427 
428 	mmu_dte_addr = rk_iommu_read(iommu, RK_MMU_DTE_ADDR);
429 	mmu_dte_addr_phys = (phys_addr_t)mmu_dte_addr;
430 
431 	dte_addr_phys = mmu_dte_addr_phys + (4 * dte_index);
432 	dte_addr = phys_to_virt(dte_addr_phys);
433 	dte = *dte_addr;
434 
435 	if (!rk_dte_is_pt_valid(dte))
436 		goto print_it;
437 
438 	pte_addr_phys = rk_dte_pt_address(dte) + (pte_index * 4);
439 	pte_addr = phys_to_virt(pte_addr_phys);
440 	pte = *pte_addr;
441 
442 	if (!rk_pte_is_page_valid(pte))
443 		goto print_it;
444 
445 	page_addr_phys = rk_pte_page_address(pte) + page_offset;
446 	page_flags = pte & RK_PTE_PAGE_FLAGS_MASK;
447 
448 print_it:
449 	dev_err(iommu->dev, "iova = %pad: dte_index: %#03x pte_index: %#03x page_offset: %#03x\n",
450 		&iova, dte_index, pte_index, page_offset);
451 	dev_err(iommu->dev, "mmu_dte_addr: %pa dte@%pa: %#08x valid: %u pte@%pa: %#08x valid: %u page@%pa flags: %#03x\n",
452 		&mmu_dte_addr_phys, &dte_addr_phys, dte,
453 		rk_dte_is_pt_valid(dte), &pte_addr_phys, pte,
454 		rk_pte_is_page_valid(pte), &page_addr_phys, page_flags);
455 }
456 
457 static irqreturn_t rk_iommu_irq(int irq, void *dev_id)
458 {
459 	struct rk_iommu *iommu = dev_id;
460 	u32 status;
461 	u32 int_status;
462 	dma_addr_t iova;
463 
464 	int_status = rk_iommu_read(iommu, RK_MMU_INT_STATUS);
465 	if (int_status == 0)
466 		return IRQ_NONE;
467 
468 	iova = rk_iommu_read(iommu, RK_MMU_PAGE_FAULT_ADDR);
469 
470 	if (int_status & RK_MMU_IRQ_PAGE_FAULT) {
471 		int flags;
472 
473 		status = rk_iommu_read(iommu, RK_MMU_STATUS);
474 		flags = (status & RK_MMU_STATUS_PAGE_FAULT_IS_WRITE) ?
475 				IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
476 
477 		dev_err(iommu->dev, "Page fault at %pad of type %s\n",
478 			&iova,
479 			(flags == IOMMU_FAULT_WRITE) ? "write" : "read");
480 
481 		log_iova(iommu, iova);
482 
483 		/*
484 		 * Report page fault to any installed handlers.
485 		 * Ignore the return code, though, since we always zap cache
486 		 * and clear the page fault anyway.
487 		 */
488 		if (iommu->domain)
489 			report_iommu_fault(iommu->domain, iommu->dev, iova,
490 					   flags);
491 		else
492 			dev_err(iommu->dev, "Page fault while iommu not attached to domain?\n");
493 
494 		rk_iommu_command(iommu, RK_MMU_CMD_ZAP_CACHE);
495 		rk_iommu_command(iommu, RK_MMU_CMD_PAGE_FAULT_DONE);
496 	}
497 
498 	if (int_status & RK_MMU_IRQ_BUS_ERROR)
499 		dev_err(iommu->dev, "BUS_ERROR occurred at %pad\n", &iova);
500 
501 	if (int_status & ~RK_MMU_IRQ_MASK)
502 		dev_err(iommu->dev, "unexpected int_status: %#08x\n",
503 			int_status);
504 
505 	rk_iommu_write(iommu, RK_MMU_INT_CLEAR, int_status);
506 
507 	return IRQ_HANDLED;
508 }
509 
510 static phys_addr_t rk_iommu_iova_to_phys(struct iommu_domain *domain,
511 					 dma_addr_t iova)
512 {
513 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
514 	unsigned long flags;
515 	phys_addr_t pt_phys, phys = 0;
516 	u32 dte, pte;
517 	u32 *page_table;
518 
519 	spin_lock_irqsave(&rk_domain->dt_lock, flags);
520 
521 	dte = rk_domain->dt[rk_iova_dte_index(iova)];
522 	if (!rk_dte_is_pt_valid(dte))
523 		goto out;
524 
525 	pt_phys = rk_dte_pt_address(dte);
526 	page_table = (u32 *)phys_to_virt(pt_phys);
527 	pte = page_table[rk_iova_pte_index(iova)];
528 	if (!rk_pte_is_page_valid(pte))
529 		goto out;
530 
531 	phys = rk_pte_page_address(pte) + rk_iova_page_offset(iova);
532 out:
533 	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
534 
535 	return phys;
536 }
537 
538 static void rk_iommu_zap_iova(struct rk_iommu_domain *rk_domain,
539 			      dma_addr_t iova, size_t size)
540 {
541 	struct list_head *pos;
542 	unsigned long flags;
543 
544 	/* shootdown these iova from all iommus using this domain */
545 	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
546 	list_for_each(pos, &rk_domain->iommus) {
547 		struct rk_iommu *iommu;
548 		iommu = list_entry(pos, struct rk_iommu, node);
549 		rk_iommu_zap_lines(iommu, iova, size);
550 	}
551 	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
552 }
553 
554 static u32 *rk_dte_get_page_table(struct rk_iommu_domain *rk_domain,
555 				  dma_addr_t iova)
556 {
557 	u32 *page_table, *dte_addr;
558 	u32 dte;
559 	phys_addr_t pt_phys;
560 
561 	assert_spin_locked(&rk_domain->dt_lock);
562 
563 	dte_addr = &rk_domain->dt[rk_iova_dte_index(iova)];
564 	dte = *dte_addr;
565 	if (rk_dte_is_pt_valid(dte))
566 		goto done;
567 
568 	page_table = (u32 *)get_zeroed_page(GFP_ATOMIC | GFP_DMA32);
569 	if (!page_table)
570 		return ERR_PTR(-ENOMEM);
571 
572 	dte = rk_mk_dte(page_table);
573 	*dte_addr = dte;
574 
575 	rk_table_flush(page_table, NUM_PT_ENTRIES);
576 	rk_table_flush(dte_addr, 1);
577 
578 	/*
579 	 * Zap the first iova of newly allocated page table so iommu evicts
580 	 * old cached value of new dte from the iotlb.
581 	 */
582 	rk_iommu_zap_iova(rk_domain, iova, SPAGE_SIZE);
583 
584 done:
585 	pt_phys = rk_dte_pt_address(dte);
586 	return (u32 *)phys_to_virt(pt_phys);
587 }
588 
589 static size_t rk_iommu_unmap_iova(struct rk_iommu_domain *rk_domain,
590 				  u32 *pte_addr, dma_addr_t iova, size_t size)
591 {
592 	unsigned int pte_count;
593 	unsigned int pte_total = size / SPAGE_SIZE;
594 
595 	assert_spin_locked(&rk_domain->dt_lock);
596 
597 	for (pte_count = 0; pte_count < pte_total; pte_count++) {
598 		u32 pte = pte_addr[pte_count];
599 		if (!rk_pte_is_page_valid(pte))
600 			break;
601 
602 		pte_addr[pte_count] = rk_mk_pte_invalid(pte);
603 	}
604 
605 	rk_table_flush(pte_addr, pte_count);
606 
607 	return pte_count * SPAGE_SIZE;
608 }
609 
610 static int rk_iommu_map_iova(struct rk_iommu_domain *rk_domain, u32 *pte_addr,
611 			     dma_addr_t iova, phys_addr_t paddr, size_t size,
612 			     int prot)
613 {
614 	unsigned int pte_count;
615 	unsigned int pte_total = size / SPAGE_SIZE;
616 	phys_addr_t page_phys;
617 
618 	assert_spin_locked(&rk_domain->dt_lock);
619 
620 	for (pte_count = 0; pte_count < pte_total; pte_count++) {
621 		u32 pte = pte_addr[pte_count];
622 
623 		if (rk_pte_is_page_valid(pte))
624 			goto unwind;
625 
626 		pte_addr[pte_count] = rk_mk_pte(paddr, prot);
627 
628 		paddr += SPAGE_SIZE;
629 	}
630 
631 	rk_table_flush(pte_addr, pte_count);
632 
633 	return 0;
634 unwind:
635 	/* Unmap the range of iovas that we just mapped */
636 	rk_iommu_unmap_iova(rk_domain, pte_addr, iova, pte_count * SPAGE_SIZE);
637 
638 	iova += pte_count * SPAGE_SIZE;
639 	page_phys = rk_pte_page_address(pte_addr[pte_count]);
640 	pr_err("iova: %pad already mapped to %pa cannot remap to phys: %pa prot: %#x\n",
641 	       &iova, &page_phys, &paddr, prot);
642 
643 	return -EADDRINUSE;
644 }
645 
646 static int rk_iommu_map(struct iommu_domain *domain, unsigned long _iova,
647 			phys_addr_t paddr, size_t size, int prot)
648 {
649 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
650 	unsigned long flags;
651 	dma_addr_t iova = (dma_addr_t)_iova;
652 	u32 *page_table, *pte_addr;
653 	int ret;
654 
655 	spin_lock_irqsave(&rk_domain->dt_lock, flags);
656 
657 	/*
658 	 * pgsize_bitmap specifies iova sizes that fit in one page table
659 	 * (1024 4-KiB pages = 4 MiB).
660 	 * So, size will always be 4096 <= size <= 4194304.
661 	 * Since iommu_map() guarantees that both iova and size will be
662 	 * aligned, we will always only be mapping from a single dte here.
663 	 */
664 	page_table = rk_dte_get_page_table(rk_domain, iova);
665 	if (IS_ERR(page_table)) {
666 		spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
667 		return PTR_ERR(page_table);
668 	}
669 
670 	pte_addr = &page_table[rk_iova_pte_index(iova)];
671 	ret = rk_iommu_map_iova(rk_domain, pte_addr, iova, paddr, size, prot);
672 	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
673 
674 	return ret;
675 }
676 
677 static size_t rk_iommu_unmap(struct iommu_domain *domain, unsigned long _iova,
678 			     size_t size)
679 {
680 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
681 	unsigned long flags;
682 	dma_addr_t iova = (dma_addr_t)_iova;
683 	phys_addr_t pt_phys;
684 	u32 dte;
685 	u32 *pte_addr;
686 	size_t unmap_size;
687 
688 	spin_lock_irqsave(&rk_domain->dt_lock, flags);
689 
690 	/*
691 	 * pgsize_bitmap specifies iova sizes that fit in one page table
692 	 * (1024 4-KiB pages = 4 MiB).
693 	 * So, size will always be 4096 <= size <= 4194304.
694 	 * Since iommu_unmap() guarantees that both iova and size will be
695 	 * aligned, we will always only be unmapping from a single dte here.
696 	 */
697 	dte = rk_domain->dt[rk_iova_dte_index(iova)];
698 	/* Just return 0 if iova is unmapped */
699 	if (!rk_dte_is_pt_valid(dte)) {
700 		spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
701 		return 0;
702 	}
703 
704 	pt_phys = rk_dte_pt_address(dte);
705 	pte_addr = (u32 *)phys_to_virt(pt_phys) + rk_iova_pte_index(iova);
706 	unmap_size = rk_iommu_unmap_iova(rk_domain, pte_addr, iova, size);
707 
708 	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
709 
710 	/* Shootdown iotlb entries for iova range that was just unmapped */
711 	rk_iommu_zap_iova(rk_domain, iova, unmap_size);
712 
713 	return unmap_size;
714 }
715 
716 static struct rk_iommu *rk_iommu_from_dev(struct device *dev)
717 {
718 	struct iommu_group *group;
719 	struct device *iommu_dev;
720 	struct rk_iommu *rk_iommu;
721 
722 	group = iommu_group_get(dev);
723 	if (!group)
724 		return NULL;
725 	iommu_dev = iommu_group_get_iommudata(group);
726 	rk_iommu = dev_get_drvdata(iommu_dev);
727 	iommu_group_put(group);
728 
729 	return rk_iommu;
730 }
731 
732 static int rk_iommu_attach_device(struct iommu_domain *domain,
733 				  struct device *dev)
734 {
735 	struct rk_iommu *iommu;
736 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
737 	unsigned long flags;
738 	int ret;
739 	phys_addr_t dte_addr;
740 
741 	/*
742 	 * Allow 'virtual devices' (e.g., drm) to attach to domain.
743 	 * Such a device does not belong to an iommu group.
744 	 */
745 	iommu = rk_iommu_from_dev(dev);
746 	if (!iommu)
747 		return 0;
748 
749 	ret = rk_iommu_enable_stall(iommu);
750 	if (ret)
751 		return ret;
752 
753 	ret = rk_iommu_force_reset(iommu);
754 	if (ret)
755 		return ret;
756 
757 	iommu->domain = domain;
758 
759 	ret = devm_request_irq(dev, iommu->irq, rk_iommu_irq,
760 			       IRQF_SHARED, dev_name(dev), iommu);
761 	if (ret)
762 		return ret;
763 
764 	dte_addr = virt_to_phys(rk_domain->dt);
765 	rk_iommu_write(iommu, RK_MMU_DTE_ADDR, dte_addr);
766 	rk_iommu_command(iommu, RK_MMU_CMD_ZAP_CACHE);
767 	rk_iommu_write(iommu, RK_MMU_INT_MASK, RK_MMU_IRQ_MASK);
768 
769 	ret = rk_iommu_enable_paging(iommu);
770 	if (ret)
771 		return ret;
772 
773 	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
774 	list_add_tail(&iommu->node, &rk_domain->iommus);
775 	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
776 
777 	dev_info(dev, "Attached to iommu domain\n");
778 
779 	rk_iommu_disable_stall(iommu);
780 
781 	return 0;
782 }
783 
784 static void rk_iommu_detach_device(struct iommu_domain *domain,
785 				   struct device *dev)
786 {
787 	struct rk_iommu *iommu;
788 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
789 	unsigned long flags;
790 
791 	/* Allow 'virtual devices' (eg drm) to detach from domain */
792 	iommu = rk_iommu_from_dev(dev);
793 	if (!iommu)
794 		return;
795 
796 	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
797 	list_del_init(&iommu->node);
798 	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
799 
800 	/* Ignore error while disabling, just keep going */
801 	rk_iommu_enable_stall(iommu);
802 	rk_iommu_disable_paging(iommu);
803 	rk_iommu_write(iommu, RK_MMU_INT_MASK, 0);
804 	rk_iommu_write(iommu, RK_MMU_DTE_ADDR, 0);
805 	rk_iommu_disable_stall(iommu);
806 
807 	devm_free_irq(dev, iommu->irq, iommu);
808 
809 	iommu->domain = NULL;
810 
811 	dev_info(dev, "Detached from iommu domain\n");
812 }
813 
814 static struct iommu_domain *rk_iommu_domain_alloc(unsigned type)
815 {
816 	struct rk_iommu_domain *rk_domain;
817 
818 	if (type != IOMMU_DOMAIN_UNMANAGED)
819 		return NULL;
820 
821 	rk_domain = kzalloc(sizeof(*rk_domain), GFP_KERNEL);
822 	if (!rk_domain)
823 		return NULL;
824 
825 	/*
826 	 * rk32xx iommus use a 2 level pagetable.
827 	 * Each level1 (dt) and level2 (pt) table has 1024 4-byte entries.
828 	 * Allocate one 4 KiB page for each table.
829 	 */
830 	rk_domain->dt = (u32 *)get_zeroed_page(GFP_KERNEL | GFP_DMA32);
831 	if (!rk_domain->dt)
832 		goto err_dt;
833 
834 	rk_table_flush(rk_domain->dt, NUM_DT_ENTRIES);
835 
836 	spin_lock_init(&rk_domain->iommus_lock);
837 	spin_lock_init(&rk_domain->dt_lock);
838 	INIT_LIST_HEAD(&rk_domain->iommus);
839 
840 	return &rk_domain->domain;
841 
842 err_dt:
843 	kfree(rk_domain);
844 	return NULL;
845 }
846 
847 static void rk_iommu_domain_free(struct iommu_domain *domain)
848 {
849 	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
850 	int i;
851 
852 	WARN_ON(!list_empty(&rk_domain->iommus));
853 
854 	for (i = 0; i < NUM_DT_ENTRIES; i++) {
855 		u32 dte = rk_domain->dt[i];
856 		if (rk_dte_is_pt_valid(dte)) {
857 			phys_addr_t pt_phys = rk_dte_pt_address(dte);
858 			u32 *page_table = phys_to_virt(pt_phys);
859 			free_page((unsigned long)page_table);
860 		}
861 	}
862 
863 	free_page((unsigned long)rk_domain->dt);
864 	kfree(rk_domain);
865 }
866 
867 static bool rk_iommu_is_dev_iommu_master(struct device *dev)
868 {
869 	struct device_node *np = dev->of_node;
870 	int ret;
871 
872 	/*
873 	 * An iommu master has an iommus property containing a list of phandles
874 	 * to iommu nodes, each with an #iommu-cells property with value 0.
875 	 */
876 	ret = of_count_phandle_with_args(np, "iommus", "#iommu-cells");
877 	return (ret > 0);
878 }
879 
880 static int rk_iommu_group_set_iommudata(struct iommu_group *group,
881 					struct device *dev)
882 {
883 	struct device_node *np = dev->of_node;
884 	struct platform_device *pd;
885 	int ret;
886 	struct of_phandle_args args;
887 
888 	/*
889 	 * An iommu master has an iommus property containing a list of phandles
890 	 * to iommu nodes, each with an #iommu-cells property with value 0.
891 	 */
892 	ret = of_parse_phandle_with_args(np, "iommus", "#iommu-cells", 0,
893 					 &args);
894 	if (ret) {
895 		dev_err(dev, "of_parse_phandle_with_args(%s) => %d\n",
896 			np->full_name, ret);
897 		return ret;
898 	}
899 	if (args.args_count != 0) {
900 		dev_err(dev, "incorrect number of iommu params found for %s (found %d, expected 0)\n",
901 			args.np->full_name, args.args_count);
902 		return -EINVAL;
903 	}
904 
905 	pd = of_find_device_by_node(args.np);
906 	of_node_put(args.np);
907 	if (!pd) {
908 		dev_err(dev, "iommu %s not found\n", args.np->full_name);
909 		return -EPROBE_DEFER;
910 	}
911 
912 	/* TODO(djkurtz): handle multiple slave iommus for a single master */
913 	iommu_group_set_iommudata(group, &pd->dev, NULL);
914 
915 	return 0;
916 }
917 
918 static int rk_iommu_add_device(struct device *dev)
919 {
920 	struct iommu_group *group;
921 	int ret;
922 
923 	if (!rk_iommu_is_dev_iommu_master(dev))
924 		return -ENODEV;
925 
926 	group = iommu_group_get(dev);
927 	if (!group) {
928 		group = iommu_group_alloc();
929 		if (IS_ERR(group)) {
930 			dev_err(dev, "Failed to allocate IOMMU group\n");
931 			return PTR_ERR(group);
932 		}
933 	}
934 
935 	ret = iommu_group_add_device(group, dev);
936 	if (ret)
937 		goto err_put_group;
938 
939 	ret = rk_iommu_group_set_iommudata(group, dev);
940 	if (ret)
941 		goto err_remove_device;
942 
943 	iommu_group_put(group);
944 
945 	return 0;
946 
947 err_remove_device:
948 	iommu_group_remove_device(dev);
949 err_put_group:
950 	iommu_group_put(group);
951 	return ret;
952 }
953 
954 static void rk_iommu_remove_device(struct device *dev)
955 {
956 	if (!rk_iommu_is_dev_iommu_master(dev))
957 		return;
958 
959 	iommu_group_remove_device(dev);
960 }
961 
962 static const struct iommu_ops rk_iommu_ops = {
963 	.domain_alloc = rk_iommu_domain_alloc,
964 	.domain_free = rk_iommu_domain_free,
965 	.attach_dev = rk_iommu_attach_device,
966 	.detach_dev = rk_iommu_detach_device,
967 	.map = rk_iommu_map,
968 	.unmap = rk_iommu_unmap,
969 	.add_device = rk_iommu_add_device,
970 	.remove_device = rk_iommu_remove_device,
971 	.iova_to_phys = rk_iommu_iova_to_phys,
972 	.pgsize_bitmap = RK_IOMMU_PGSIZE_BITMAP,
973 };
974 
975 static int rk_iommu_probe(struct platform_device *pdev)
976 {
977 	struct device *dev = &pdev->dev;
978 	struct rk_iommu *iommu;
979 	struct resource *res;
980 
981 	iommu = devm_kzalloc(dev, sizeof(*iommu), GFP_KERNEL);
982 	if (!iommu)
983 		return -ENOMEM;
984 
985 	platform_set_drvdata(pdev, iommu);
986 	iommu->dev = dev;
987 
988 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
989 	iommu->base = devm_ioremap_resource(&pdev->dev, res);
990 	if (IS_ERR(iommu->base))
991 		return PTR_ERR(iommu->base);
992 
993 	iommu->irq = platform_get_irq(pdev, 0);
994 	if (iommu->irq < 0) {
995 		dev_err(dev, "Failed to get IRQ, %d\n", iommu->irq);
996 		return -ENXIO;
997 	}
998 
999 	return 0;
1000 }
1001 
1002 static int rk_iommu_remove(struct platform_device *pdev)
1003 {
1004 	return 0;
1005 }
1006 
1007 #ifdef CONFIG_OF
1008 static const struct of_device_id rk_iommu_dt_ids[] = {
1009 	{ .compatible = "rockchip,iommu" },
1010 	{ /* sentinel */ }
1011 };
1012 MODULE_DEVICE_TABLE(of, rk_iommu_dt_ids);
1013 #endif
1014 
1015 static struct platform_driver rk_iommu_driver = {
1016 	.probe = rk_iommu_probe,
1017 	.remove = rk_iommu_remove,
1018 	.driver = {
1019 		   .name = "rk_iommu",
1020 		   .of_match_table = of_match_ptr(rk_iommu_dt_ids),
1021 	},
1022 };
1023 
1024 static int __init rk_iommu_init(void)
1025 {
1026 	struct device_node *np;
1027 	int ret;
1028 
1029 	np = of_find_matching_node(NULL, rk_iommu_dt_ids);
1030 	if (!np)
1031 		return 0;
1032 
1033 	of_node_put(np);
1034 
1035 	ret = bus_set_iommu(&platform_bus_type, &rk_iommu_ops);
1036 	if (ret)
1037 		return ret;
1038 
1039 	return platform_driver_register(&rk_iommu_driver);
1040 }
1041 static void __exit rk_iommu_exit(void)
1042 {
1043 	platform_driver_unregister(&rk_iommu_driver);
1044 }
1045 
1046 subsys_initcall(rk_iommu_init);
1047 module_exit(rk_iommu_exit);
1048 
1049 MODULE_DESCRIPTION("IOMMU API for Rockchip");
1050 MODULE_AUTHOR("Simon Xue <xxm@rock-chips.com> and Daniel Kurtz <djkurtz@chromium.org>");
1051 MODULE_ALIAS("platform:rockchip-iommu");
1052 MODULE_LICENSE("GPL v2");
1053