1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * IOMMU API for Rockchip 4 * 5 * Module Authors: Simon Xue <xxm@rock-chips.com> 6 * Daniel Kurtz <djkurtz@chromium.org> 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/compiler.h> 11 #include <linux/delay.h> 12 #include <linux/device.h> 13 #include <linux/dma-iommu.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/errno.h> 16 #include <linux/interrupt.h> 17 #include <linux/io.h> 18 #include <linux/iommu.h> 19 #include <linux/iopoll.h> 20 #include <linux/list.h> 21 #include <linux/mm.h> 22 #include <linux/init.h> 23 #include <linux/of.h> 24 #include <linux/of_iommu.h> 25 #include <linux/of_platform.h> 26 #include <linux/platform_device.h> 27 #include <linux/pm_runtime.h> 28 #include <linux/slab.h> 29 #include <linux/spinlock.h> 30 31 /** MMU register offsets */ 32 #define RK_MMU_DTE_ADDR 0x00 /* Directory table address */ 33 #define RK_MMU_STATUS 0x04 34 #define RK_MMU_COMMAND 0x08 35 #define RK_MMU_PAGE_FAULT_ADDR 0x0C /* IOVA of last page fault */ 36 #define RK_MMU_ZAP_ONE_LINE 0x10 /* Shootdown one IOTLB entry */ 37 #define RK_MMU_INT_RAWSTAT 0x14 /* IRQ status ignoring mask */ 38 #define RK_MMU_INT_CLEAR 0x18 /* Acknowledge and re-arm irq */ 39 #define RK_MMU_INT_MASK 0x1C /* IRQ enable */ 40 #define RK_MMU_INT_STATUS 0x20 /* IRQ status after masking */ 41 #define RK_MMU_AUTO_GATING 0x24 42 43 #define DTE_ADDR_DUMMY 0xCAFEBABE 44 45 #define RK_MMU_POLL_PERIOD_US 100 46 #define RK_MMU_FORCE_RESET_TIMEOUT_US 100000 47 #define RK_MMU_POLL_TIMEOUT_US 1000 48 49 /* RK_MMU_STATUS fields */ 50 #define RK_MMU_STATUS_PAGING_ENABLED BIT(0) 51 #define RK_MMU_STATUS_PAGE_FAULT_ACTIVE BIT(1) 52 #define RK_MMU_STATUS_STALL_ACTIVE BIT(2) 53 #define RK_MMU_STATUS_IDLE BIT(3) 54 #define RK_MMU_STATUS_REPLAY_BUFFER_EMPTY BIT(4) 55 #define RK_MMU_STATUS_PAGE_FAULT_IS_WRITE BIT(5) 56 #define RK_MMU_STATUS_STALL_NOT_ACTIVE BIT(31) 57 58 /* RK_MMU_COMMAND command values */ 59 #define RK_MMU_CMD_ENABLE_PAGING 0 /* Enable memory translation */ 60 #define RK_MMU_CMD_DISABLE_PAGING 1 /* Disable memory translation */ 61 #define RK_MMU_CMD_ENABLE_STALL 2 /* Stall paging to allow other cmds */ 62 #define RK_MMU_CMD_DISABLE_STALL 3 /* Stop stall re-enables paging */ 63 #define RK_MMU_CMD_ZAP_CACHE 4 /* Shoot down entire IOTLB */ 64 #define RK_MMU_CMD_PAGE_FAULT_DONE 5 /* Clear page fault */ 65 #define RK_MMU_CMD_FORCE_RESET 6 /* Reset all registers */ 66 67 /* RK_MMU_INT_* register fields */ 68 #define RK_MMU_IRQ_PAGE_FAULT 0x01 /* page fault */ 69 #define RK_MMU_IRQ_BUS_ERROR 0x02 /* bus read error */ 70 #define RK_MMU_IRQ_MASK (RK_MMU_IRQ_PAGE_FAULT | RK_MMU_IRQ_BUS_ERROR) 71 72 #define NUM_DT_ENTRIES 1024 73 #define NUM_PT_ENTRIES 1024 74 75 #define SPAGE_ORDER 12 76 #define SPAGE_SIZE (1 << SPAGE_ORDER) 77 78 /* 79 * Support mapping any size that fits in one page table: 80 * 4 KiB to 4 MiB 81 */ 82 #define RK_IOMMU_PGSIZE_BITMAP 0x007ff000 83 84 struct rk_iommu_domain { 85 struct list_head iommus; 86 u32 *dt; /* page directory table */ 87 dma_addr_t dt_dma; 88 spinlock_t iommus_lock; /* lock for iommus list */ 89 spinlock_t dt_lock; /* lock for modifying page directory table */ 90 91 struct iommu_domain domain; 92 }; 93 94 /* list of clocks required by IOMMU */ 95 static const char * const rk_iommu_clocks[] = { 96 "aclk", "iface", 97 }; 98 99 struct rk_iommu { 100 struct device *dev; 101 void __iomem **bases; 102 int num_mmu; 103 int num_irq; 104 struct clk_bulk_data *clocks; 105 int num_clocks; 106 bool reset_disabled; 107 struct iommu_device iommu; 108 struct list_head node; /* entry in rk_iommu_domain.iommus */ 109 struct iommu_domain *domain; /* domain to which iommu is attached */ 110 struct iommu_group *group; 111 }; 112 113 struct rk_iommudata { 114 struct device_link *link; /* runtime PM link from IOMMU to master */ 115 struct rk_iommu *iommu; 116 }; 117 118 static struct device *dma_dev; 119 120 static inline void rk_table_flush(struct rk_iommu_domain *dom, dma_addr_t dma, 121 unsigned int count) 122 { 123 size_t size = count * sizeof(u32); /* count of u32 entry */ 124 125 dma_sync_single_for_device(dma_dev, dma, size, DMA_TO_DEVICE); 126 } 127 128 static struct rk_iommu_domain *to_rk_domain(struct iommu_domain *dom) 129 { 130 return container_of(dom, struct rk_iommu_domain, domain); 131 } 132 133 /* 134 * The Rockchip rk3288 iommu uses a 2-level page table. 135 * The first level is the "Directory Table" (DT). 136 * The DT consists of 1024 4-byte Directory Table Entries (DTEs), each pointing 137 * to a "Page Table". 138 * The second level is the 1024 Page Tables (PT). 139 * Each PT consists of 1024 4-byte Page Table Entries (PTEs), each pointing to 140 * a 4 KB page of physical memory. 141 * 142 * The DT and each PT fits in a single 4 KB page (4-bytes * 1024 entries). 143 * Each iommu device has a MMU_DTE_ADDR register that contains the physical 144 * address of the start of the DT page. 145 * 146 * The structure of the page table is as follows: 147 * 148 * DT 149 * MMU_DTE_ADDR -> +-----+ 150 * | | 151 * +-----+ PT 152 * | DTE | -> +-----+ 153 * +-----+ | | Memory 154 * | | +-----+ Page 155 * | | | PTE | -> +-----+ 156 * +-----+ +-----+ | | 157 * | | | | 158 * | | | | 159 * +-----+ | | 160 * | | 161 * | | 162 * +-----+ 163 */ 164 165 /* 166 * Each DTE has a PT address and a valid bit: 167 * +---------------------+-----------+-+ 168 * | PT address | Reserved |V| 169 * +---------------------+-----------+-+ 170 * 31:12 - PT address (PTs always starts on a 4 KB boundary) 171 * 11: 1 - Reserved 172 * 0 - 1 if PT @ PT address is valid 173 */ 174 #define RK_DTE_PT_ADDRESS_MASK 0xfffff000 175 #define RK_DTE_PT_VALID BIT(0) 176 177 static inline phys_addr_t rk_dte_pt_address(u32 dte) 178 { 179 return (phys_addr_t)dte & RK_DTE_PT_ADDRESS_MASK; 180 } 181 182 static inline bool rk_dte_is_pt_valid(u32 dte) 183 { 184 return dte & RK_DTE_PT_VALID; 185 } 186 187 static inline u32 rk_mk_dte(dma_addr_t pt_dma) 188 { 189 return (pt_dma & RK_DTE_PT_ADDRESS_MASK) | RK_DTE_PT_VALID; 190 } 191 192 /* 193 * Each PTE has a Page address, some flags and a valid bit: 194 * +---------------------+---+-------+-+ 195 * | Page address |Rsv| Flags |V| 196 * +---------------------+---+-------+-+ 197 * 31:12 - Page address (Pages always start on a 4 KB boundary) 198 * 11: 9 - Reserved 199 * 8: 1 - Flags 200 * 8 - Read allocate - allocate cache space on read misses 201 * 7 - Read cache - enable cache & prefetch of data 202 * 6 - Write buffer - enable delaying writes on their way to memory 203 * 5 - Write allocate - allocate cache space on write misses 204 * 4 - Write cache - different writes can be merged together 205 * 3 - Override cache attributes 206 * if 1, bits 4-8 control cache attributes 207 * if 0, the system bus defaults are used 208 * 2 - Writable 209 * 1 - Readable 210 * 0 - 1 if Page @ Page address is valid 211 */ 212 #define RK_PTE_PAGE_ADDRESS_MASK 0xfffff000 213 #define RK_PTE_PAGE_FLAGS_MASK 0x000001fe 214 #define RK_PTE_PAGE_WRITABLE BIT(2) 215 #define RK_PTE_PAGE_READABLE BIT(1) 216 #define RK_PTE_PAGE_VALID BIT(0) 217 218 static inline phys_addr_t rk_pte_page_address(u32 pte) 219 { 220 return (phys_addr_t)pte & RK_PTE_PAGE_ADDRESS_MASK; 221 } 222 223 static inline bool rk_pte_is_page_valid(u32 pte) 224 { 225 return pte & RK_PTE_PAGE_VALID; 226 } 227 228 /* TODO: set cache flags per prot IOMMU_CACHE */ 229 static u32 rk_mk_pte(phys_addr_t page, int prot) 230 { 231 u32 flags = 0; 232 flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0; 233 flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0; 234 page &= RK_PTE_PAGE_ADDRESS_MASK; 235 return page | flags | RK_PTE_PAGE_VALID; 236 } 237 238 static u32 rk_mk_pte_invalid(u32 pte) 239 { 240 return pte & ~RK_PTE_PAGE_VALID; 241 } 242 243 /* 244 * rk3288 iova (IOMMU Virtual Address) format 245 * 31 22.21 12.11 0 246 * +-----------+-----------+-------------+ 247 * | DTE index | PTE index | Page offset | 248 * +-----------+-----------+-------------+ 249 * 31:22 - DTE index - index of DTE in DT 250 * 21:12 - PTE index - index of PTE in PT @ DTE.pt_address 251 * 11: 0 - Page offset - offset into page @ PTE.page_address 252 */ 253 #define RK_IOVA_DTE_MASK 0xffc00000 254 #define RK_IOVA_DTE_SHIFT 22 255 #define RK_IOVA_PTE_MASK 0x003ff000 256 #define RK_IOVA_PTE_SHIFT 12 257 #define RK_IOVA_PAGE_MASK 0x00000fff 258 #define RK_IOVA_PAGE_SHIFT 0 259 260 static u32 rk_iova_dte_index(dma_addr_t iova) 261 { 262 return (u32)(iova & RK_IOVA_DTE_MASK) >> RK_IOVA_DTE_SHIFT; 263 } 264 265 static u32 rk_iova_pte_index(dma_addr_t iova) 266 { 267 return (u32)(iova & RK_IOVA_PTE_MASK) >> RK_IOVA_PTE_SHIFT; 268 } 269 270 static u32 rk_iova_page_offset(dma_addr_t iova) 271 { 272 return (u32)(iova & RK_IOVA_PAGE_MASK) >> RK_IOVA_PAGE_SHIFT; 273 } 274 275 static u32 rk_iommu_read(void __iomem *base, u32 offset) 276 { 277 return readl(base + offset); 278 } 279 280 static void rk_iommu_write(void __iomem *base, u32 offset, u32 value) 281 { 282 writel(value, base + offset); 283 } 284 285 static void rk_iommu_command(struct rk_iommu *iommu, u32 command) 286 { 287 int i; 288 289 for (i = 0; i < iommu->num_mmu; i++) 290 writel(command, iommu->bases[i] + RK_MMU_COMMAND); 291 } 292 293 static void rk_iommu_base_command(void __iomem *base, u32 command) 294 { 295 writel(command, base + RK_MMU_COMMAND); 296 } 297 static void rk_iommu_zap_lines(struct rk_iommu *iommu, dma_addr_t iova_start, 298 size_t size) 299 { 300 int i; 301 dma_addr_t iova_end = iova_start + size; 302 /* 303 * TODO(djkurtz): Figure out when it is more efficient to shootdown the 304 * entire iotlb rather than iterate over individual iovas. 305 */ 306 for (i = 0; i < iommu->num_mmu; i++) { 307 dma_addr_t iova; 308 309 for (iova = iova_start; iova < iova_end; iova += SPAGE_SIZE) 310 rk_iommu_write(iommu->bases[i], RK_MMU_ZAP_ONE_LINE, iova); 311 } 312 } 313 314 static bool rk_iommu_is_stall_active(struct rk_iommu *iommu) 315 { 316 bool active = true; 317 int i; 318 319 for (i = 0; i < iommu->num_mmu; i++) 320 active &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) & 321 RK_MMU_STATUS_STALL_ACTIVE); 322 323 return active; 324 } 325 326 static bool rk_iommu_is_paging_enabled(struct rk_iommu *iommu) 327 { 328 bool enable = true; 329 int i; 330 331 for (i = 0; i < iommu->num_mmu; i++) 332 enable &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) & 333 RK_MMU_STATUS_PAGING_ENABLED); 334 335 return enable; 336 } 337 338 static bool rk_iommu_is_reset_done(struct rk_iommu *iommu) 339 { 340 bool done = true; 341 int i; 342 343 for (i = 0; i < iommu->num_mmu; i++) 344 done &= rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR) == 0; 345 346 return done; 347 } 348 349 static int rk_iommu_enable_stall(struct rk_iommu *iommu) 350 { 351 int ret, i; 352 bool val; 353 354 if (rk_iommu_is_stall_active(iommu)) 355 return 0; 356 357 /* Stall can only be enabled if paging is enabled */ 358 if (!rk_iommu_is_paging_enabled(iommu)) 359 return 0; 360 361 rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_STALL); 362 363 ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val, 364 val, RK_MMU_POLL_PERIOD_US, 365 RK_MMU_POLL_TIMEOUT_US); 366 if (ret) 367 for (i = 0; i < iommu->num_mmu; i++) 368 dev_err(iommu->dev, "Enable stall request timed out, status: %#08x\n", 369 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS)); 370 371 return ret; 372 } 373 374 static int rk_iommu_disable_stall(struct rk_iommu *iommu) 375 { 376 int ret, i; 377 bool val; 378 379 if (!rk_iommu_is_stall_active(iommu)) 380 return 0; 381 382 rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_STALL); 383 384 ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val, 385 !val, RK_MMU_POLL_PERIOD_US, 386 RK_MMU_POLL_TIMEOUT_US); 387 if (ret) 388 for (i = 0; i < iommu->num_mmu; i++) 389 dev_err(iommu->dev, "Disable stall request timed out, status: %#08x\n", 390 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS)); 391 392 return ret; 393 } 394 395 static int rk_iommu_enable_paging(struct rk_iommu *iommu) 396 { 397 int ret, i; 398 bool val; 399 400 if (rk_iommu_is_paging_enabled(iommu)) 401 return 0; 402 403 rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_PAGING); 404 405 ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val, 406 val, RK_MMU_POLL_PERIOD_US, 407 RK_MMU_POLL_TIMEOUT_US); 408 if (ret) 409 for (i = 0; i < iommu->num_mmu; i++) 410 dev_err(iommu->dev, "Enable paging request timed out, status: %#08x\n", 411 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS)); 412 413 return ret; 414 } 415 416 static int rk_iommu_disable_paging(struct rk_iommu *iommu) 417 { 418 int ret, i; 419 bool val; 420 421 if (!rk_iommu_is_paging_enabled(iommu)) 422 return 0; 423 424 rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_PAGING); 425 426 ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val, 427 !val, RK_MMU_POLL_PERIOD_US, 428 RK_MMU_POLL_TIMEOUT_US); 429 if (ret) 430 for (i = 0; i < iommu->num_mmu; i++) 431 dev_err(iommu->dev, "Disable paging request timed out, status: %#08x\n", 432 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS)); 433 434 return ret; 435 } 436 437 static int rk_iommu_force_reset(struct rk_iommu *iommu) 438 { 439 int ret, i; 440 u32 dte_addr; 441 bool val; 442 443 if (iommu->reset_disabled) 444 return 0; 445 446 /* 447 * Check if register DTE_ADDR is working by writing DTE_ADDR_DUMMY 448 * and verifying that upper 5 nybbles are read back. 449 */ 450 for (i = 0; i < iommu->num_mmu; i++) { 451 rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, DTE_ADDR_DUMMY); 452 453 dte_addr = rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR); 454 if (dte_addr != (DTE_ADDR_DUMMY & RK_DTE_PT_ADDRESS_MASK)) { 455 dev_err(iommu->dev, "Error during raw reset. MMU_DTE_ADDR is not functioning\n"); 456 return -EFAULT; 457 } 458 } 459 460 rk_iommu_command(iommu, RK_MMU_CMD_FORCE_RESET); 461 462 ret = readx_poll_timeout(rk_iommu_is_reset_done, iommu, val, 463 val, RK_MMU_FORCE_RESET_TIMEOUT_US, 464 RK_MMU_POLL_TIMEOUT_US); 465 if (ret) { 466 dev_err(iommu->dev, "FORCE_RESET command timed out\n"); 467 return ret; 468 } 469 470 return 0; 471 } 472 473 static void log_iova(struct rk_iommu *iommu, int index, dma_addr_t iova) 474 { 475 void __iomem *base = iommu->bases[index]; 476 u32 dte_index, pte_index, page_offset; 477 u32 mmu_dte_addr; 478 phys_addr_t mmu_dte_addr_phys, dte_addr_phys; 479 u32 *dte_addr; 480 u32 dte; 481 phys_addr_t pte_addr_phys = 0; 482 u32 *pte_addr = NULL; 483 u32 pte = 0; 484 phys_addr_t page_addr_phys = 0; 485 u32 page_flags = 0; 486 487 dte_index = rk_iova_dte_index(iova); 488 pte_index = rk_iova_pte_index(iova); 489 page_offset = rk_iova_page_offset(iova); 490 491 mmu_dte_addr = rk_iommu_read(base, RK_MMU_DTE_ADDR); 492 mmu_dte_addr_phys = (phys_addr_t)mmu_dte_addr; 493 494 dte_addr_phys = mmu_dte_addr_phys + (4 * dte_index); 495 dte_addr = phys_to_virt(dte_addr_phys); 496 dte = *dte_addr; 497 498 if (!rk_dte_is_pt_valid(dte)) 499 goto print_it; 500 501 pte_addr_phys = rk_dte_pt_address(dte) + (pte_index * 4); 502 pte_addr = phys_to_virt(pte_addr_phys); 503 pte = *pte_addr; 504 505 if (!rk_pte_is_page_valid(pte)) 506 goto print_it; 507 508 page_addr_phys = rk_pte_page_address(pte) + page_offset; 509 page_flags = pte & RK_PTE_PAGE_FLAGS_MASK; 510 511 print_it: 512 dev_err(iommu->dev, "iova = %pad: dte_index: %#03x pte_index: %#03x page_offset: %#03x\n", 513 &iova, dte_index, pte_index, page_offset); 514 dev_err(iommu->dev, "mmu_dte_addr: %pa dte@%pa: %#08x valid: %u pte@%pa: %#08x valid: %u page@%pa flags: %#03x\n", 515 &mmu_dte_addr_phys, &dte_addr_phys, dte, 516 rk_dte_is_pt_valid(dte), &pte_addr_phys, pte, 517 rk_pte_is_page_valid(pte), &page_addr_phys, page_flags); 518 } 519 520 static irqreturn_t rk_iommu_irq(int irq, void *dev_id) 521 { 522 struct rk_iommu *iommu = dev_id; 523 u32 status; 524 u32 int_status; 525 dma_addr_t iova; 526 irqreturn_t ret = IRQ_NONE; 527 int i, err; 528 529 err = pm_runtime_get_if_in_use(iommu->dev); 530 if (!err || WARN_ON_ONCE(err < 0)) 531 return ret; 532 533 if (WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks))) 534 goto out; 535 536 for (i = 0; i < iommu->num_mmu; i++) { 537 int_status = rk_iommu_read(iommu->bases[i], RK_MMU_INT_STATUS); 538 if (int_status == 0) 539 continue; 540 541 ret = IRQ_HANDLED; 542 iova = rk_iommu_read(iommu->bases[i], RK_MMU_PAGE_FAULT_ADDR); 543 544 if (int_status & RK_MMU_IRQ_PAGE_FAULT) { 545 int flags; 546 547 status = rk_iommu_read(iommu->bases[i], RK_MMU_STATUS); 548 flags = (status & RK_MMU_STATUS_PAGE_FAULT_IS_WRITE) ? 549 IOMMU_FAULT_WRITE : IOMMU_FAULT_READ; 550 551 dev_err(iommu->dev, "Page fault at %pad of type %s\n", 552 &iova, 553 (flags == IOMMU_FAULT_WRITE) ? "write" : "read"); 554 555 log_iova(iommu, i, iova); 556 557 /* 558 * Report page fault to any installed handlers. 559 * Ignore the return code, though, since we always zap cache 560 * and clear the page fault anyway. 561 */ 562 if (iommu->domain) 563 report_iommu_fault(iommu->domain, iommu->dev, iova, 564 flags); 565 else 566 dev_err(iommu->dev, "Page fault while iommu not attached to domain?\n"); 567 568 rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE); 569 rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_PAGE_FAULT_DONE); 570 } 571 572 if (int_status & RK_MMU_IRQ_BUS_ERROR) 573 dev_err(iommu->dev, "BUS_ERROR occurred at %pad\n", &iova); 574 575 if (int_status & ~RK_MMU_IRQ_MASK) 576 dev_err(iommu->dev, "unexpected int_status: %#08x\n", 577 int_status); 578 579 rk_iommu_write(iommu->bases[i], RK_MMU_INT_CLEAR, int_status); 580 } 581 582 clk_bulk_disable(iommu->num_clocks, iommu->clocks); 583 584 out: 585 pm_runtime_put(iommu->dev); 586 return ret; 587 } 588 589 static phys_addr_t rk_iommu_iova_to_phys(struct iommu_domain *domain, 590 dma_addr_t iova) 591 { 592 struct rk_iommu_domain *rk_domain = to_rk_domain(domain); 593 unsigned long flags; 594 phys_addr_t pt_phys, phys = 0; 595 u32 dte, pte; 596 u32 *page_table; 597 598 spin_lock_irqsave(&rk_domain->dt_lock, flags); 599 600 dte = rk_domain->dt[rk_iova_dte_index(iova)]; 601 if (!rk_dte_is_pt_valid(dte)) 602 goto out; 603 604 pt_phys = rk_dte_pt_address(dte); 605 page_table = (u32 *)phys_to_virt(pt_phys); 606 pte = page_table[rk_iova_pte_index(iova)]; 607 if (!rk_pte_is_page_valid(pte)) 608 goto out; 609 610 phys = rk_pte_page_address(pte) + rk_iova_page_offset(iova); 611 out: 612 spin_unlock_irqrestore(&rk_domain->dt_lock, flags); 613 614 return phys; 615 } 616 617 static void rk_iommu_zap_iova(struct rk_iommu_domain *rk_domain, 618 dma_addr_t iova, size_t size) 619 { 620 struct list_head *pos; 621 unsigned long flags; 622 623 /* shootdown these iova from all iommus using this domain */ 624 spin_lock_irqsave(&rk_domain->iommus_lock, flags); 625 list_for_each(pos, &rk_domain->iommus) { 626 struct rk_iommu *iommu; 627 int ret; 628 629 iommu = list_entry(pos, struct rk_iommu, node); 630 631 /* Only zap TLBs of IOMMUs that are powered on. */ 632 ret = pm_runtime_get_if_in_use(iommu->dev); 633 if (WARN_ON_ONCE(ret < 0)) 634 continue; 635 if (ret) { 636 WARN_ON(clk_bulk_enable(iommu->num_clocks, 637 iommu->clocks)); 638 rk_iommu_zap_lines(iommu, iova, size); 639 clk_bulk_disable(iommu->num_clocks, iommu->clocks); 640 pm_runtime_put(iommu->dev); 641 } 642 } 643 spin_unlock_irqrestore(&rk_domain->iommus_lock, flags); 644 } 645 646 static void rk_iommu_zap_iova_first_last(struct rk_iommu_domain *rk_domain, 647 dma_addr_t iova, size_t size) 648 { 649 rk_iommu_zap_iova(rk_domain, iova, SPAGE_SIZE); 650 if (size > SPAGE_SIZE) 651 rk_iommu_zap_iova(rk_domain, iova + size - SPAGE_SIZE, 652 SPAGE_SIZE); 653 } 654 655 static u32 *rk_dte_get_page_table(struct rk_iommu_domain *rk_domain, 656 dma_addr_t iova) 657 { 658 u32 *page_table, *dte_addr; 659 u32 dte_index, dte; 660 phys_addr_t pt_phys; 661 dma_addr_t pt_dma; 662 663 assert_spin_locked(&rk_domain->dt_lock); 664 665 dte_index = rk_iova_dte_index(iova); 666 dte_addr = &rk_domain->dt[dte_index]; 667 dte = *dte_addr; 668 if (rk_dte_is_pt_valid(dte)) 669 goto done; 670 671 page_table = (u32 *)get_zeroed_page(GFP_ATOMIC | GFP_DMA32); 672 if (!page_table) 673 return ERR_PTR(-ENOMEM); 674 675 pt_dma = dma_map_single(dma_dev, page_table, SPAGE_SIZE, DMA_TO_DEVICE); 676 if (dma_mapping_error(dma_dev, pt_dma)) { 677 dev_err(dma_dev, "DMA mapping error while allocating page table\n"); 678 free_page((unsigned long)page_table); 679 return ERR_PTR(-ENOMEM); 680 } 681 682 dte = rk_mk_dte(pt_dma); 683 *dte_addr = dte; 684 685 rk_table_flush(rk_domain, pt_dma, NUM_PT_ENTRIES); 686 rk_table_flush(rk_domain, 687 rk_domain->dt_dma + dte_index * sizeof(u32), 1); 688 done: 689 pt_phys = rk_dte_pt_address(dte); 690 return (u32 *)phys_to_virt(pt_phys); 691 } 692 693 static size_t rk_iommu_unmap_iova(struct rk_iommu_domain *rk_domain, 694 u32 *pte_addr, dma_addr_t pte_dma, 695 size_t size) 696 { 697 unsigned int pte_count; 698 unsigned int pte_total = size / SPAGE_SIZE; 699 700 assert_spin_locked(&rk_domain->dt_lock); 701 702 for (pte_count = 0; pte_count < pte_total; pte_count++) { 703 u32 pte = pte_addr[pte_count]; 704 if (!rk_pte_is_page_valid(pte)) 705 break; 706 707 pte_addr[pte_count] = rk_mk_pte_invalid(pte); 708 } 709 710 rk_table_flush(rk_domain, pte_dma, pte_count); 711 712 return pte_count * SPAGE_SIZE; 713 } 714 715 static int rk_iommu_map_iova(struct rk_iommu_domain *rk_domain, u32 *pte_addr, 716 dma_addr_t pte_dma, dma_addr_t iova, 717 phys_addr_t paddr, size_t size, int prot) 718 { 719 unsigned int pte_count; 720 unsigned int pte_total = size / SPAGE_SIZE; 721 phys_addr_t page_phys; 722 723 assert_spin_locked(&rk_domain->dt_lock); 724 725 for (pte_count = 0; pte_count < pte_total; pte_count++) { 726 u32 pte = pte_addr[pte_count]; 727 728 if (rk_pte_is_page_valid(pte)) 729 goto unwind; 730 731 pte_addr[pte_count] = rk_mk_pte(paddr, prot); 732 733 paddr += SPAGE_SIZE; 734 } 735 736 rk_table_flush(rk_domain, pte_dma, pte_total); 737 738 /* 739 * Zap the first and last iova to evict from iotlb any previously 740 * mapped cachelines holding stale values for its dte and pte. 741 * We only zap the first and last iova, since only they could have 742 * dte or pte shared with an existing mapping. 743 */ 744 rk_iommu_zap_iova_first_last(rk_domain, iova, size); 745 746 return 0; 747 unwind: 748 /* Unmap the range of iovas that we just mapped */ 749 rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma, 750 pte_count * SPAGE_SIZE); 751 752 iova += pte_count * SPAGE_SIZE; 753 page_phys = rk_pte_page_address(pte_addr[pte_count]); 754 pr_err("iova: %pad already mapped to %pa cannot remap to phys: %pa prot: %#x\n", 755 &iova, &page_phys, &paddr, prot); 756 757 return -EADDRINUSE; 758 } 759 760 static int rk_iommu_map(struct iommu_domain *domain, unsigned long _iova, 761 phys_addr_t paddr, size_t size, int prot, gfp_t gfp) 762 { 763 struct rk_iommu_domain *rk_domain = to_rk_domain(domain); 764 unsigned long flags; 765 dma_addr_t pte_dma, iova = (dma_addr_t)_iova; 766 u32 *page_table, *pte_addr; 767 u32 dte_index, pte_index; 768 int ret; 769 770 spin_lock_irqsave(&rk_domain->dt_lock, flags); 771 772 /* 773 * pgsize_bitmap specifies iova sizes that fit in one page table 774 * (1024 4-KiB pages = 4 MiB). 775 * So, size will always be 4096 <= size <= 4194304. 776 * Since iommu_map() guarantees that both iova and size will be 777 * aligned, we will always only be mapping from a single dte here. 778 */ 779 page_table = rk_dte_get_page_table(rk_domain, iova); 780 if (IS_ERR(page_table)) { 781 spin_unlock_irqrestore(&rk_domain->dt_lock, flags); 782 return PTR_ERR(page_table); 783 } 784 785 dte_index = rk_domain->dt[rk_iova_dte_index(iova)]; 786 pte_index = rk_iova_pte_index(iova); 787 pte_addr = &page_table[pte_index]; 788 pte_dma = rk_dte_pt_address(dte_index) + pte_index * sizeof(u32); 789 ret = rk_iommu_map_iova(rk_domain, pte_addr, pte_dma, iova, 790 paddr, size, prot); 791 792 spin_unlock_irqrestore(&rk_domain->dt_lock, flags); 793 794 return ret; 795 } 796 797 static size_t rk_iommu_unmap(struct iommu_domain *domain, unsigned long _iova, 798 size_t size, struct iommu_iotlb_gather *gather) 799 { 800 struct rk_iommu_domain *rk_domain = to_rk_domain(domain); 801 unsigned long flags; 802 dma_addr_t pte_dma, iova = (dma_addr_t)_iova; 803 phys_addr_t pt_phys; 804 u32 dte; 805 u32 *pte_addr; 806 size_t unmap_size; 807 808 spin_lock_irqsave(&rk_domain->dt_lock, flags); 809 810 /* 811 * pgsize_bitmap specifies iova sizes that fit in one page table 812 * (1024 4-KiB pages = 4 MiB). 813 * So, size will always be 4096 <= size <= 4194304. 814 * Since iommu_unmap() guarantees that both iova and size will be 815 * aligned, we will always only be unmapping from a single dte here. 816 */ 817 dte = rk_domain->dt[rk_iova_dte_index(iova)]; 818 /* Just return 0 if iova is unmapped */ 819 if (!rk_dte_is_pt_valid(dte)) { 820 spin_unlock_irqrestore(&rk_domain->dt_lock, flags); 821 return 0; 822 } 823 824 pt_phys = rk_dte_pt_address(dte); 825 pte_addr = (u32 *)phys_to_virt(pt_phys) + rk_iova_pte_index(iova); 826 pte_dma = pt_phys + rk_iova_pte_index(iova) * sizeof(u32); 827 unmap_size = rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma, size); 828 829 spin_unlock_irqrestore(&rk_domain->dt_lock, flags); 830 831 /* Shootdown iotlb entries for iova range that was just unmapped */ 832 rk_iommu_zap_iova(rk_domain, iova, unmap_size); 833 834 return unmap_size; 835 } 836 837 static struct rk_iommu *rk_iommu_from_dev(struct device *dev) 838 { 839 struct rk_iommudata *data = dev_iommu_priv_get(dev); 840 841 return data ? data->iommu : NULL; 842 } 843 844 /* Must be called with iommu powered on and attached */ 845 static void rk_iommu_disable(struct rk_iommu *iommu) 846 { 847 int i; 848 849 /* Ignore error while disabling, just keep going */ 850 WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks)); 851 rk_iommu_enable_stall(iommu); 852 rk_iommu_disable_paging(iommu); 853 for (i = 0; i < iommu->num_mmu; i++) { 854 rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, 0); 855 rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, 0); 856 } 857 rk_iommu_disable_stall(iommu); 858 clk_bulk_disable(iommu->num_clocks, iommu->clocks); 859 } 860 861 /* Must be called with iommu powered on and attached */ 862 static int rk_iommu_enable(struct rk_iommu *iommu) 863 { 864 struct iommu_domain *domain = iommu->domain; 865 struct rk_iommu_domain *rk_domain = to_rk_domain(domain); 866 int ret, i; 867 868 ret = clk_bulk_enable(iommu->num_clocks, iommu->clocks); 869 if (ret) 870 return ret; 871 872 ret = rk_iommu_enable_stall(iommu); 873 if (ret) 874 goto out_disable_clocks; 875 876 ret = rk_iommu_force_reset(iommu); 877 if (ret) 878 goto out_disable_stall; 879 880 for (i = 0; i < iommu->num_mmu; i++) { 881 rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, 882 rk_domain->dt_dma); 883 rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE); 884 rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, RK_MMU_IRQ_MASK); 885 } 886 887 ret = rk_iommu_enable_paging(iommu); 888 889 out_disable_stall: 890 rk_iommu_disable_stall(iommu); 891 out_disable_clocks: 892 clk_bulk_disable(iommu->num_clocks, iommu->clocks); 893 return ret; 894 } 895 896 static void rk_iommu_detach_device(struct iommu_domain *domain, 897 struct device *dev) 898 { 899 struct rk_iommu *iommu; 900 struct rk_iommu_domain *rk_domain = to_rk_domain(domain); 901 unsigned long flags; 902 int ret; 903 904 /* Allow 'virtual devices' (eg drm) to detach from domain */ 905 iommu = rk_iommu_from_dev(dev); 906 if (!iommu) 907 return; 908 909 dev_dbg(dev, "Detaching from iommu domain\n"); 910 911 /* iommu already detached */ 912 if (iommu->domain != domain) 913 return; 914 915 iommu->domain = NULL; 916 917 spin_lock_irqsave(&rk_domain->iommus_lock, flags); 918 list_del_init(&iommu->node); 919 spin_unlock_irqrestore(&rk_domain->iommus_lock, flags); 920 921 ret = pm_runtime_get_if_in_use(iommu->dev); 922 WARN_ON_ONCE(ret < 0); 923 if (ret > 0) { 924 rk_iommu_disable(iommu); 925 pm_runtime_put(iommu->dev); 926 } 927 } 928 929 static int rk_iommu_attach_device(struct iommu_domain *domain, 930 struct device *dev) 931 { 932 struct rk_iommu *iommu; 933 struct rk_iommu_domain *rk_domain = to_rk_domain(domain); 934 unsigned long flags; 935 int ret; 936 937 /* 938 * Allow 'virtual devices' (e.g., drm) to attach to domain. 939 * Such a device does not belong to an iommu group. 940 */ 941 iommu = rk_iommu_from_dev(dev); 942 if (!iommu) 943 return 0; 944 945 dev_dbg(dev, "Attaching to iommu domain\n"); 946 947 /* iommu already attached */ 948 if (iommu->domain == domain) 949 return 0; 950 951 if (iommu->domain) 952 rk_iommu_detach_device(iommu->domain, dev); 953 954 iommu->domain = domain; 955 956 spin_lock_irqsave(&rk_domain->iommus_lock, flags); 957 list_add_tail(&iommu->node, &rk_domain->iommus); 958 spin_unlock_irqrestore(&rk_domain->iommus_lock, flags); 959 960 ret = pm_runtime_get_if_in_use(iommu->dev); 961 if (!ret || WARN_ON_ONCE(ret < 0)) 962 return 0; 963 964 ret = rk_iommu_enable(iommu); 965 if (ret) 966 rk_iommu_detach_device(iommu->domain, dev); 967 968 pm_runtime_put(iommu->dev); 969 970 return ret; 971 } 972 973 static struct iommu_domain *rk_iommu_domain_alloc(unsigned type) 974 { 975 struct rk_iommu_domain *rk_domain; 976 977 if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA) 978 return NULL; 979 980 if (!dma_dev) 981 return NULL; 982 983 rk_domain = kzalloc(sizeof(*rk_domain), GFP_KERNEL); 984 if (!rk_domain) 985 return NULL; 986 987 if (type == IOMMU_DOMAIN_DMA && 988 iommu_get_dma_cookie(&rk_domain->domain)) 989 goto err_free_domain; 990 991 /* 992 * rk32xx iommus use a 2 level pagetable. 993 * Each level1 (dt) and level2 (pt) table has 1024 4-byte entries. 994 * Allocate one 4 KiB page for each table. 995 */ 996 rk_domain->dt = (u32 *)get_zeroed_page(GFP_KERNEL | GFP_DMA32); 997 if (!rk_domain->dt) 998 goto err_put_cookie; 999 1000 rk_domain->dt_dma = dma_map_single(dma_dev, rk_domain->dt, 1001 SPAGE_SIZE, DMA_TO_DEVICE); 1002 if (dma_mapping_error(dma_dev, rk_domain->dt_dma)) { 1003 dev_err(dma_dev, "DMA map error for DT\n"); 1004 goto err_free_dt; 1005 } 1006 1007 rk_table_flush(rk_domain, rk_domain->dt_dma, NUM_DT_ENTRIES); 1008 1009 spin_lock_init(&rk_domain->iommus_lock); 1010 spin_lock_init(&rk_domain->dt_lock); 1011 INIT_LIST_HEAD(&rk_domain->iommus); 1012 1013 rk_domain->domain.geometry.aperture_start = 0; 1014 rk_domain->domain.geometry.aperture_end = DMA_BIT_MASK(32); 1015 rk_domain->domain.geometry.force_aperture = true; 1016 1017 return &rk_domain->domain; 1018 1019 err_free_dt: 1020 free_page((unsigned long)rk_domain->dt); 1021 err_put_cookie: 1022 if (type == IOMMU_DOMAIN_DMA) 1023 iommu_put_dma_cookie(&rk_domain->domain); 1024 err_free_domain: 1025 kfree(rk_domain); 1026 1027 return NULL; 1028 } 1029 1030 static void rk_iommu_domain_free(struct iommu_domain *domain) 1031 { 1032 struct rk_iommu_domain *rk_domain = to_rk_domain(domain); 1033 int i; 1034 1035 WARN_ON(!list_empty(&rk_domain->iommus)); 1036 1037 for (i = 0; i < NUM_DT_ENTRIES; i++) { 1038 u32 dte = rk_domain->dt[i]; 1039 if (rk_dte_is_pt_valid(dte)) { 1040 phys_addr_t pt_phys = rk_dte_pt_address(dte); 1041 u32 *page_table = phys_to_virt(pt_phys); 1042 dma_unmap_single(dma_dev, pt_phys, 1043 SPAGE_SIZE, DMA_TO_DEVICE); 1044 free_page((unsigned long)page_table); 1045 } 1046 } 1047 1048 dma_unmap_single(dma_dev, rk_domain->dt_dma, 1049 SPAGE_SIZE, DMA_TO_DEVICE); 1050 free_page((unsigned long)rk_domain->dt); 1051 1052 if (domain->type == IOMMU_DOMAIN_DMA) 1053 iommu_put_dma_cookie(&rk_domain->domain); 1054 kfree(rk_domain); 1055 } 1056 1057 static struct iommu_device *rk_iommu_probe_device(struct device *dev) 1058 { 1059 struct rk_iommudata *data; 1060 struct rk_iommu *iommu; 1061 1062 data = dev_iommu_priv_get(dev); 1063 if (!data) 1064 return ERR_PTR(-ENODEV); 1065 1066 iommu = rk_iommu_from_dev(dev); 1067 1068 data->link = device_link_add(dev, iommu->dev, 1069 DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME); 1070 1071 return &iommu->iommu; 1072 } 1073 1074 static void rk_iommu_release_device(struct device *dev) 1075 { 1076 struct rk_iommudata *data = dev_iommu_priv_get(dev); 1077 1078 device_link_del(data->link); 1079 } 1080 1081 static struct iommu_group *rk_iommu_device_group(struct device *dev) 1082 { 1083 struct rk_iommu *iommu; 1084 1085 iommu = rk_iommu_from_dev(dev); 1086 1087 return iommu_group_ref_get(iommu->group); 1088 } 1089 1090 static int rk_iommu_of_xlate(struct device *dev, 1091 struct of_phandle_args *args) 1092 { 1093 struct platform_device *iommu_dev; 1094 struct rk_iommudata *data; 1095 1096 data = devm_kzalloc(dma_dev, sizeof(*data), GFP_KERNEL); 1097 if (!data) 1098 return -ENOMEM; 1099 1100 iommu_dev = of_find_device_by_node(args->np); 1101 1102 data->iommu = platform_get_drvdata(iommu_dev); 1103 dev_iommu_priv_set(dev, data); 1104 1105 platform_device_put(iommu_dev); 1106 1107 return 0; 1108 } 1109 1110 static const struct iommu_ops rk_iommu_ops = { 1111 .domain_alloc = rk_iommu_domain_alloc, 1112 .domain_free = rk_iommu_domain_free, 1113 .attach_dev = rk_iommu_attach_device, 1114 .detach_dev = rk_iommu_detach_device, 1115 .map = rk_iommu_map, 1116 .unmap = rk_iommu_unmap, 1117 .probe_device = rk_iommu_probe_device, 1118 .release_device = rk_iommu_release_device, 1119 .iova_to_phys = rk_iommu_iova_to_phys, 1120 .device_group = rk_iommu_device_group, 1121 .pgsize_bitmap = RK_IOMMU_PGSIZE_BITMAP, 1122 .of_xlate = rk_iommu_of_xlate, 1123 }; 1124 1125 static int rk_iommu_probe(struct platform_device *pdev) 1126 { 1127 struct device *dev = &pdev->dev; 1128 struct rk_iommu *iommu; 1129 struct resource *res; 1130 int num_res = pdev->num_resources; 1131 int err, i; 1132 1133 iommu = devm_kzalloc(dev, sizeof(*iommu), GFP_KERNEL); 1134 if (!iommu) 1135 return -ENOMEM; 1136 1137 platform_set_drvdata(pdev, iommu); 1138 iommu->dev = dev; 1139 iommu->num_mmu = 0; 1140 1141 iommu->bases = devm_kcalloc(dev, num_res, sizeof(*iommu->bases), 1142 GFP_KERNEL); 1143 if (!iommu->bases) 1144 return -ENOMEM; 1145 1146 for (i = 0; i < num_res; i++) { 1147 res = platform_get_resource(pdev, IORESOURCE_MEM, i); 1148 if (!res) 1149 continue; 1150 iommu->bases[i] = devm_ioremap_resource(&pdev->dev, res); 1151 if (IS_ERR(iommu->bases[i])) 1152 continue; 1153 iommu->num_mmu++; 1154 } 1155 if (iommu->num_mmu == 0) 1156 return PTR_ERR(iommu->bases[0]); 1157 1158 iommu->num_irq = platform_irq_count(pdev); 1159 if (iommu->num_irq < 0) 1160 return iommu->num_irq; 1161 1162 iommu->reset_disabled = device_property_read_bool(dev, 1163 "rockchip,disable-mmu-reset"); 1164 1165 iommu->num_clocks = ARRAY_SIZE(rk_iommu_clocks); 1166 iommu->clocks = devm_kcalloc(iommu->dev, iommu->num_clocks, 1167 sizeof(*iommu->clocks), GFP_KERNEL); 1168 if (!iommu->clocks) 1169 return -ENOMEM; 1170 1171 for (i = 0; i < iommu->num_clocks; ++i) 1172 iommu->clocks[i].id = rk_iommu_clocks[i]; 1173 1174 /* 1175 * iommu clocks should be present for all new devices and devicetrees 1176 * but there are older devicetrees without clocks out in the wild. 1177 * So clocks as optional for the time being. 1178 */ 1179 err = devm_clk_bulk_get(iommu->dev, iommu->num_clocks, iommu->clocks); 1180 if (err == -ENOENT) 1181 iommu->num_clocks = 0; 1182 else if (err) 1183 return err; 1184 1185 err = clk_bulk_prepare(iommu->num_clocks, iommu->clocks); 1186 if (err) 1187 return err; 1188 1189 iommu->group = iommu_group_alloc(); 1190 if (IS_ERR(iommu->group)) { 1191 err = PTR_ERR(iommu->group); 1192 goto err_unprepare_clocks; 1193 } 1194 1195 err = iommu_device_sysfs_add(&iommu->iommu, dev, NULL, dev_name(dev)); 1196 if (err) 1197 goto err_put_group; 1198 1199 err = iommu_device_register(&iommu->iommu, &rk_iommu_ops, dev); 1200 if (err) 1201 goto err_remove_sysfs; 1202 1203 /* 1204 * Use the first registered IOMMU device for domain to use with DMA 1205 * API, since a domain might not physically correspond to a single 1206 * IOMMU device.. 1207 */ 1208 if (!dma_dev) 1209 dma_dev = &pdev->dev; 1210 1211 bus_set_iommu(&platform_bus_type, &rk_iommu_ops); 1212 1213 pm_runtime_enable(dev); 1214 1215 for (i = 0; i < iommu->num_irq; i++) { 1216 int irq = platform_get_irq(pdev, i); 1217 1218 if (irq < 0) 1219 return irq; 1220 1221 err = devm_request_irq(iommu->dev, irq, rk_iommu_irq, 1222 IRQF_SHARED, dev_name(dev), iommu); 1223 if (err) { 1224 pm_runtime_disable(dev); 1225 goto err_remove_sysfs; 1226 } 1227 } 1228 1229 return 0; 1230 err_remove_sysfs: 1231 iommu_device_sysfs_remove(&iommu->iommu); 1232 err_put_group: 1233 iommu_group_put(iommu->group); 1234 err_unprepare_clocks: 1235 clk_bulk_unprepare(iommu->num_clocks, iommu->clocks); 1236 return err; 1237 } 1238 1239 static void rk_iommu_shutdown(struct platform_device *pdev) 1240 { 1241 struct rk_iommu *iommu = platform_get_drvdata(pdev); 1242 int i; 1243 1244 for (i = 0; i < iommu->num_irq; i++) { 1245 int irq = platform_get_irq(pdev, i); 1246 1247 devm_free_irq(iommu->dev, irq, iommu); 1248 } 1249 1250 pm_runtime_force_suspend(&pdev->dev); 1251 } 1252 1253 static int __maybe_unused rk_iommu_suspend(struct device *dev) 1254 { 1255 struct rk_iommu *iommu = dev_get_drvdata(dev); 1256 1257 if (!iommu->domain) 1258 return 0; 1259 1260 rk_iommu_disable(iommu); 1261 return 0; 1262 } 1263 1264 static int __maybe_unused rk_iommu_resume(struct device *dev) 1265 { 1266 struct rk_iommu *iommu = dev_get_drvdata(dev); 1267 1268 if (!iommu->domain) 1269 return 0; 1270 1271 return rk_iommu_enable(iommu); 1272 } 1273 1274 static const struct dev_pm_ops rk_iommu_pm_ops = { 1275 SET_RUNTIME_PM_OPS(rk_iommu_suspend, rk_iommu_resume, NULL) 1276 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 1277 pm_runtime_force_resume) 1278 }; 1279 1280 static const struct of_device_id rk_iommu_dt_ids[] = { 1281 { .compatible = "rockchip,iommu" }, 1282 { /* sentinel */ } 1283 }; 1284 1285 static struct platform_driver rk_iommu_driver = { 1286 .probe = rk_iommu_probe, 1287 .shutdown = rk_iommu_shutdown, 1288 .driver = { 1289 .name = "rk_iommu", 1290 .of_match_table = rk_iommu_dt_ids, 1291 .pm = &rk_iommu_pm_ops, 1292 .suppress_bind_attrs = true, 1293 }, 1294 }; 1295 1296 static int __init rk_iommu_init(void) 1297 { 1298 return platform_driver_register(&rk_iommu_driver); 1299 } 1300 subsys_initcall(rk_iommu_init); 1301