xref: /openbmc/linux/drivers/iommu/ipmmu-vmsa.c (revision c819e2cf)
1 /*
2  * IPMMU VMSA
3  *
4  * Copyright (C) 2014 Renesas Electronics Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  */
10 
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/export.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/iommu.h>
18 #include <linux/module.h>
19 #include <linux/platform_data/ipmmu-vmsa.h>
20 #include <linux/platform_device.h>
21 #include <linux/sizes.h>
22 #include <linux/slab.h>
23 
24 #include <asm/dma-iommu.h>
25 #include <asm/pgalloc.h>
26 
27 struct ipmmu_vmsa_device {
28 	struct device *dev;
29 	void __iomem *base;
30 	struct list_head list;
31 
32 	const struct ipmmu_vmsa_platform_data *pdata;
33 	unsigned int num_utlbs;
34 
35 	struct dma_iommu_mapping *mapping;
36 };
37 
38 struct ipmmu_vmsa_domain {
39 	struct ipmmu_vmsa_device *mmu;
40 	struct iommu_domain *io_domain;
41 
42 	unsigned int context_id;
43 	spinlock_t lock;			/* Protects mappings */
44 	pgd_t *pgd;
45 };
46 
47 struct ipmmu_vmsa_archdata {
48 	struct ipmmu_vmsa_device *mmu;
49 	unsigned int utlb;
50 };
51 
52 static DEFINE_SPINLOCK(ipmmu_devices_lock);
53 static LIST_HEAD(ipmmu_devices);
54 
55 #define TLB_LOOP_TIMEOUT		100	/* 100us */
56 
57 /* -----------------------------------------------------------------------------
58  * Registers Definition
59  */
60 
61 #define IM_CTX_SIZE			0x40
62 
63 #define IMCTR				0x0000
64 #define IMCTR_TRE			(1 << 17)
65 #define IMCTR_AFE			(1 << 16)
66 #define IMCTR_RTSEL_MASK		(3 << 4)
67 #define IMCTR_RTSEL_SHIFT		4
68 #define IMCTR_TREN			(1 << 3)
69 #define IMCTR_INTEN			(1 << 2)
70 #define IMCTR_FLUSH			(1 << 1)
71 #define IMCTR_MMUEN			(1 << 0)
72 
73 #define IMCAAR				0x0004
74 
75 #define IMTTBCR				0x0008
76 #define IMTTBCR_EAE			(1 << 31)
77 #define IMTTBCR_PMB			(1 << 30)
78 #define IMTTBCR_SH1_NON_SHAREABLE	(0 << 28)
79 #define IMTTBCR_SH1_OUTER_SHAREABLE	(2 << 28)
80 #define IMTTBCR_SH1_INNER_SHAREABLE	(3 << 28)
81 #define IMTTBCR_SH1_MASK		(3 << 28)
82 #define IMTTBCR_ORGN1_NC		(0 << 26)
83 #define IMTTBCR_ORGN1_WB_WA		(1 << 26)
84 #define IMTTBCR_ORGN1_WT		(2 << 26)
85 #define IMTTBCR_ORGN1_WB		(3 << 26)
86 #define IMTTBCR_ORGN1_MASK		(3 << 26)
87 #define IMTTBCR_IRGN1_NC		(0 << 24)
88 #define IMTTBCR_IRGN1_WB_WA		(1 << 24)
89 #define IMTTBCR_IRGN1_WT		(2 << 24)
90 #define IMTTBCR_IRGN1_WB		(3 << 24)
91 #define IMTTBCR_IRGN1_MASK		(3 << 24)
92 #define IMTTBCR_TSZ1_MASK		(7 << 16)
93 #define IMTTBCR_TSZ1_SHIFT		16
94 #define IMTTBCR_SH0_NON_SHAREABLE	(0 << 12)
95 #define IMTTBCR_SH0_OUTER_SHAREABLE	(2 << 12)
96 #define IMTTBCR_SH0_INNER_SHAREABLE	(3 << 12)
97 #define IMTTBCR_SH0_MASK		(3 << 12)
98 #define IMTTBCR_ORGN0_NC		(0 << 10)
99 #define IMTTBCR_ORGN0_WB_WA		(1 << 10)
100 #define IMTTBCR_ORGN0_WT		(2 << 10)
101 #define IMTTBCR_ORGN0_WB		(3 << 10)
102 #define IMTTBCR_ORGN0_MASK		(3 << 10)
103 #define IMTTBCR_IRGN0_NC		(0 << 8)
104 #define IMTTBCR_IRGN0_WB_WA		(1 << 8)
105 #define IMTTBCR_IRGN0_WT		(2 << 8)
106 #define IMTTBCR_IRGN0_WB		(3 << 8)
107 #define IMTTBCR_IRGN0_MASK		(3 << 8)
108 #define IMTTBCR_SL0_LVL_2		(0 << 4)
109 #define IMTTBCR_SL0_LVL_1		(1 << 4)
110 #define IMTTBCR_TSZ0_MASK		(7 << 0)
111 #define IMTTBCR_TSZ0_SHIFT		O
112 
113 #define IMBUSCR				0x000c
114 #define IMBUSCR_DVM			(1 << 2)
115 #define IMBUSCR_BUSSEL_SYS		(0 << 0)
116 #define IMBUSCR_BUSSEL_CCI		(1 << 0)
117 #define IMBUSCR_BUSSEL_IMCAAR		(2 << 0)
118 #define IMBUSCR_BUSSEL_CCI_IMCAAR	(3 << 0)
119 #define IMBUSCR_BUSSEL_MASK		(3 << 0)
120 
121 #define IMTTLBR0			0x0010
122 #define IMTTUBR0			0x0014
123 #define IMTTLBR1			0x0018
124 #define IMTTUBR1			0x001c
125 
126 #define IMSTR				0x0020
127 #define IMSTR_ERRLVL_MASK		(3 << 12)
128 #define IMSTR_ERRLVL_SHIFT		12
129 #define IMSTR_ERRCODE_TLB_FORMAT	(1 << 8)
130 #define IMSTR_ERRCODE_ACCESS_PERM	(4 << 8)
131 #define IMSTR_ERRCODE_SECURE_ACCESS	(5 << 8)
132 #define IMSTR_ERRCODE_MASK		(7 << 8)
133 #define IMSTR_MHIT			(1 << 4)
134 #define IMSTR_ABORT			(1 << 2)
135 #define IMSTR_PF			(1 << 1)
136 #define IMSTR_TF			(1 << 0)
137 
138 #define IMMAIR0				0x0028
139 #define IMMAIR1				0x002c
140 #define IMMAIR_ATTR_MASK		0xff
141 #define IMMAIR_ATTR_DEVICE		0x04
142 #define IMMAIR_ATTR_NC			0x44
143 #define IMMAIR_ATTR_WBRWA		0xff
144 #define IMMAIR_ATTR_SHIFT(n)		((n) << 3)
145 #define IMMAIR_ATTR_IDX_NC		0
146 #define IMMAIR_ATTR_IDX_WBRWA		1
147 #define IMMAIR_ATTR_IDX_DEV		2
148 
149 #define IMEAR				0x0030
150 
151 #define IMPCTR				0x0200
152 #define IMPSTR				0x0208
153 #define IMPEAR				0x020c
154 #define IMPMBA(n)			(0x0280 + ((n) * 4))
155 #define IMPMBD(n)			(0x02c0 + ((n) * 4))
156 
157 #define IMUCTR(n)			(0x0300 + ((n) * 16))
158 #define IMUCTR_FIXADDEN			(1 << 31)
159 #define IMUCTR_FIXADD_MASK		(0xff << 16)
160 #define IMUCTR_FIXADD_SHIFT		16
161 #define IMUCTR_TTSEL_MMU(n)		((n) << 4)
162 #define IMUCTR_TTSEL_PMB		(8 << 4)
163 #define IMUCTR_TTSEL_MASK		(15 << 4)
164 #define IMUCTR_FLUSH			(1 << 1)
165 #define IMUCTR_MMUEN			(1 << 0)
166 
167 #define IMUASID(n)			(0x0308 + ((n) * 16))
168 #define IMUASID_ASID8_MASK		(0xff << 8)
169 #define IMUASID_ASID8_SHIFT		8
170 #define IMUASID_ASID0_MASK		(0xff << 0)
171 #define IMUASID_ASID0_SHIFT		0
172 
173 /* -----------------------------------------------------------------------------
174  * Page Table Bits
175  */
176 
177 /*
178  * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory access,
179  * Long-descriptor format" that the NStable bit being set in a table descriptor
180  * will result in the NStable and NS bits of all child entries being ignored and
181  * considered as being set. The IPMMU seems not to comply with this, as it
182  * generates a secure access page fault if any of the NStable and NS bits isn't
183  * set when running in non-secure mode.
184  */
185 #ifndef PMD_NSTABLE
186 #define PMD_NSTABLE			(_AT(pmdval_t, 1) << 63)
187 #endif
188 
189 #define ARM_VMSA_PTE_XN			(((pteval_t)3) << 53)
190 #define ARM_VMSA_PTE_CONT		(((pteval_t)1) << 52)
191 #define ARM_VMSA_PTE_AF			(((pteval_t)1) << 10)
192 #define ARM_VMSA_PTE_SH_NS		(((pteval_t)0) << 8)
193 #define ARM_VMSA_PTE_SH_OS		(((pteval_t)2) << 8)
194 #define ARM_VMSA_PTE_SH_IS		(((pteval_t)3) << 8)
195 #define ARM_VMSA_PTE_SH_MASK		(((pteval_t)3) << 8)
196 #define ARM_VMSA_PTE_NS			(((pteval_t)1) << 5)
197 #define ARM_VMSA_PTE_PAGE		(((pteval_t)3) << 0)
198 
199 /* Stage-1 PTE */
200 #define ARM_VMSA_PTE_nG			(((pteval_t)1) << 11)
201 #define ARM_VMSA_PTE_AP_UNPRIV		(((pteval_t)1) << 6)
202 #define ARM_VMSA_PTE_AP_RDONLY		(((pteval_t)2) << 6)
203 #define ARM_VMSA_PTE_AP_MASK		(((pteval_t)3) << 6)
204 #define ARM_VMSA_PTE_ATTRINDX_MASK	(((pteval_t)3) << 2)
205 #define ARM_VMSA_PTE_ATTRINDX_SHIFT	2
206 
207 #define ARM_VMSA_PTE_ATTRS_MASK \
208 	(ARM_VMSA_PTE_XN | ARM_VMSA_PTE_CONT | ARM_VMSA_PTE_nG | \
209 	 ARM_VMSA_PTE_AF | ARM_VMSA_PTE_SH_MASK | ARM_VMSA_PTE_AP_MASK | \
210 	 ARM_VMSA_PTE_NS | ARM_VMSA_PTE_ATTRINDX_MASK)
211 
212 #define ARM_VMSA_PTE_CONT_ENTRIES	16
213 #define ARM_VMSA_PTE_CONT_SIZE		(PAGE_SIZE * ARM_VMSA_PTE_CONT_ENTRIES)
214 
215 #define IPMMU_PTRS_PER_PTE		512
216 #define IPMMU_PTRS_PER_PMD		512
217 #define IPMMU_PTRS_PER_PGD		4
218 
219 /* -----------------------------------------------------------------------------
220  * Read/Write Access
221  */
222 
223 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
224 {
225 	return ioread32(mmu->base + offset);
226 }
227 
228 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
229 			u32 data)
230 {
231 	iowrite32(data, mmu->base + offset);
232 }
233 
234 static u32 ipmmu_ctx_read(struct ipmmu_vmsa_domain *domain, unsigned int reg)
235 {
236 	return ipmmu_read(domain->mmu, domain->context_id * IM_CTX_SIZE + reg);
237 }
238 
239 static void ipmmu_ctx_write(struct ipmmu_vmsa_domain *domain, unsigned int reg,
240 			    u32 data)
241 {
242 	ipmmu_write(domain->mmu, domain->context_id * IM_CTX_SIZE + reg, data);
243 }
244 
245 /* -----------------------------------------------------------------------------
246  * TLB and microTLB Management
247  */
248 
249 /* Wait for any pending TLB invalidations to complete */
250 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
251 {
252 	unsigned int count = 0;
253 
254 	while (ipmmu_ctx_read(domain, IMCTR) & IMCTR_FLUSH) {
255 		cpu_relax();
256 		if (++count == TLB_LOOP_TIMEOUT) {
257 			dev_err_ratelimited(domain->mmu->dev,
258 			"TLB sync timed out -- MMU may be deadlocked\n");
259 			return;
260 		}
261 		udelay(1);
262 	}
263 }
264 
265 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
266 {
267 	u32 reg;
268 
269 	reg = ipmmu_ctx_read(domain, IMCTR);
270 	reg |= IMCTR_FLUSH;
271 	ipmmu_ctx_write(domain, IMCTR, reg);
272 
273 	ipmmu_tlb_sync(domain);
274 }
275 
276 /*
277  * Enable MMU translation for the microTLB.
278  */
279 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
280 			      unsigned int utlb)
281 {
282 	struct ipmmu_vmsa_device *mmu = domain->mmu;
283 
284 	/*
285 	 * TODO: Reference-count the microTLB as several bus masters can be
286 	 * connected to the same microTLB.
287 	 */
288 
289 	/* TODO: What should we set the ASID to ? */
290 	ipmmu_write(mmu, IMUASID(utlb), 0);
291 	/* TODO: Do we need to flush the microTLB ? */
292 	ipmmu_write(mmu, IMUCTR(utlb),
293 		    IMUCTR_TTSEL_MMU(domain->context_id) | IMUCTR_FLUSH |
294 		    IMUCTR_MMUEN);
295 }
296 
297 /*
298  * Disable MMU translation for the microTLB.
299  */
300 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
301 			       unsigned int utlb)
302 {
303 	struct ipmmu_vmsa_device *mmu = domain->mmu;
304 
305 	ipmmu_write(mmu, IMUCTR(utlb), 0);
306 }
307 
308 static void ipmmu_flush_pgtable(struct ipmmu_vmsa_device *mmu, void *addr,
309 				size_t size)
310 {
311 	unsigned long offset = (unsigned long)addr & ~PAGE_MASK;
312 
313 	/*
314 	 * TODO: Add support for coherent walk through CCI with DVM and remove
315 	 * cache handling.
316 	 */
317 	dma_map_page(mmu->dev, virt_to_page(addr), offset, size, DMA_TO_DEVICE);
318 }
319 
320 /* -----------------------------------------------------------------------------
321  * Domain/Context Management
322  */
323 
324 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
325 {
326 	phys_addr_t ttbr;
327 	u32 reg;
328 
329 	/*
330 	 * TODO: When adding support for multiple contexts, find an unused
331 	 * context.
332 	 */
333 	domain->context_id = 0;
334 
335 	/* TTBR0 */
336 	ipmmu_flush_pgtable(domain->mmu, domain->pgd,
337 			    IPMMU_PTRS_PER_PGD * sizeof(*domain->pgd));
338 	ttbr = __pa(domain->pgd);
339 	ipmmu_ctx_write(domain, IMTTLBR0, ttbr);
340 	ipmmu_ctx_write(domain, IMTTUBR0, ttbr >> 32);
341 
342 	/*
343 	 * TTBCR
344 	 * We use long descriptors with inner-shareable WBWA tables and allocate
345 	 * the whole 32-bit VA space to TTBR0.
346 	 */
347 	ipmmu_ctx_write(domain, IMTTBCR, IMTTBCR_EAE |
348 			IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
349 			IMTTBCR_IRGN0_WB_WA | IMTTBCR_SL0_LVL_1);
350 
351 	/*
352 	 * MAIR0
353 	 * We need three attributes only, non-cacheable, write-back read/write
354 	 * allocate and device memory.
355 	 */
356 	reg = (IMMAIR_ATTR_NC << IMMAIR_ATTR_SHIFT(IMMAIR_ATTR_IDX_NC))
357 	    | (IMMAIR_ATTR_WBRWA << IMMAIR_ATTR_SHIFT(IMMAIR_ATTR_IDX_WBRWA))
358 	    | (IMMAIR_ATTR_DEVICE << IMMAIR_ATTR_SHIFT(IMMAIR_ATTR_IDX_DEV));
359 	ipmmu_ctx_write(domain, IMMAIR0, reg);
360 
361 	/* IMBUSCR */
362 	ipmmu_ctx_write(domain, IMBUSCR,
363 			ipmmu_ctx_read(domain, IMBUSCR) &
364 			~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
365 
366 	/*
367 	 * IMSTR
368 	 * Clear all interrupt flags.
369 	 */
370 	ipmmu_ctx_write(domain, IMSTR, ipmmu_ctx_read(domain, IMSTR));
371 
372 	/*
373 	 * IMCTR
374 	 * Enable the MMU and interrupt generation. The long-descriptor
375 	 * translation table format doesn't use TEX remapping. Don't enable AF
376 	 * software management as we have no use for it. Flush the TLB as
377 	 * required when modifying the context registers.
378 	 */
379 	ipmmu_ctx_write(domain, IMCTR, IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
380 
381 	return 0;
382 }
383 
384 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
385 {
386 	/*
387 	 * Disable the context. Flush the TLB as required when modifying the
388 	 * context registers.
389 	 *
390 	 * TODO: Is TLB flush really needed ?
391 	 */
392 	ipmmu_ctx_write(domain, IMCTR, IMCTR_FLUSH);
393 	ipmmu_tlb_sync(domain);
394 }
395 
396 /* -----------------------------------------------------------------------------
397  * Fault Handling
398  */
399 
400 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
401 {
402 	const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
403 	struct ipmmu_vmsa_device *mmu = domain->mmu;
404 	u32 status;
405 	u32 iova;
406 
407 	status = ipmmu_ctx_read(domain, IMSTR);
408 	if (!(status & err_mask))
409 		return IRQ_NONE;
410 
411 	iova = ipmmu_ctx_read(domain, IMEAR);
412 
413 	/*
414 	 * Clear the error status flags. Unlike traditional interrupt flag
415 	 * registers that must be cleared by writing 1, this status register
416 	 * seems to require 0. The error address register must be read before,
417 	 * otherwise its value will be 0.
418 	 */
419 	ipmmu_ctx_write(domain, IMSTR, 0);
420 
421 	/* Log fatal errors. */
422 	if (status & IMSTR_MHIT)
423 		dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%08x\n",
424 				    iova);
425 	if (status & IMSTR_ABORT)
426 		dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%08x\n",
427 				    iova);
428 
429 	if (!(status & (IMSTR_PF | IMSTR_TF)))
430 		return IRQ_NONE;
431 
432 	/*
433 	 * Try to handle page faults and translation faults.
434 	 *
435 	 * TODO: We need to look up the faulty device based on the I/O VA. Use
436 	 * the IOMMU device for now.
437 	 */
438 	if (!report_iommu_fault(domain->io_domain, mmu->dev, iova, 0))
439 		return IRQ_HANDLED;
440 
441 	dev_err_ratelimited(mmu->dev,
442 			    "Unhandled fault: status 0x%08x iova 0x%08x\n",
443 			    status, iova);
444 
445 	return IRQ_HANDLED;
446 }
447 
448 static irqreturn_t ipmmu_irq(int irq, void *dev)
449 {
450 	struct ipmmu_vmsa_device *mmu = dev;
451 	struct iommu_domain *io_domain;
452 	struct ipmmu_vmsa_domain *domain;
453 
454 	if (!mmu->mapping)
455 		return IRQ_NONE;
456 
457 	io_domain = mmu->mapping->domain;
458 	domain = io_domain->priv;
459 
460 	return ipmmu_domain_irq(domain);
461 }
462 
463 /* -----------------------------------------------------------------------------
464  * Page Table Management
465  */
466 
467 #define pud_pgtable(pud) pfn_to_page(__phys_to_pfn(pud_val(pud) & PHYS_MASK))
468 
469 static void ipmmu_free_ptes(pmd_t *pmd)
470 {
471 	pgtable_t table = pmd_pgtable(*pmd);
472 	__free_page(table);
473 }
474 
475 static void ipmmu_free_pmds(pud_t *pud)
476 {
477 	pmd_t *pmd = pmd_offset(pud, 0);
478 	pgtable_t table;
479 	unsigned int i;
480 
481 	for (i = 0; i < IPMMU_PTRS_PER_PMD; ++i) {
482 		if (!pmd_table(*pmd))
483 			continue;
484 
485 		ipmmu_free_ptes(pmd);
486 		pmd++;
487 	}
488 
489 	table = pud_pgtable(*pud);
490 	__free_page(table);
491 }
492 
493 static void ipmmu_free_pgtables(struct ipmmu_vmsa_domain *domain)
494 {
495 	pgd_t *pgd, *pgd_base = domain->pgd;
496 	unsigned int i;
497 
498 	/*
499 	 * Recursively free the page tables for this domain. We don't care about
500 	 * speculative TLB filling, because the TLB will be nuked next time this
501 	 * context bank is re-allocated and no devices currently map to these
502 	 * tables.
503 	 */
504 	pgd = pgd_base;
505 	for (i = 0; i < IPMMU_PTRS_PER_PGD; ++i) {
506 		if (pgd_none(*pgd))
507 			continue;
508 		ipmmu_free_pmds((pud_t *)pgd);
509 		pgd++;
510 	}
511 
512 	kfree(pgd_base);
513 }
514 
515 /*
516  * We can't use the (pgd|pud|pmd|pte)_populate or the set_(pgd|pud|pmd|pte)
517  * functions as they would flush the CPU TLB.
518  */
519 
520 static pte_t *ipmmu_alloc_pte(struct ipmmu_vmsa_device *mmu, pmd_t *pmd,
521 			      unsigned long iova)
522 {
523 	pte_t *pte;
524 
525 	if (!pmd_none(*pmd))
526 		return pte_offset_kernel(pmd, iova);
527 
528 	pte = (pte_t *)get_zeroed_page(GFP_ATOMIC);
529 	if (!pte)
530 		return NULL;
531 
532 	ipmmu_flush_pgtable(mmu, pte, PAGE_SIZE);
533 	*pmd = __pmd(__pa(pte) | PMD_NSTABLE | PMD_TYPE_TABLE);
534 	ipmmu_flush_pgtable(mmu, pmd, sizeof(*pmd));
535 
536 	return pte + pte_index(iova);
537 }
538 
539 static pmd_t *ipmmu_alloc_pmd(struct ipmmu_vmsa_device *mmu, pgd_t *pgd,
540 			      unsigned long iova)
541 {
542 	pud_t *pud = (pud_t *)pgd;
543 	pmd_t *pmd;
544 
545 	if (!pud_none(*pud))
546 		return pmd_offset(pud, iova);
547 
548 	pmd = (pmd_t *)get_zeroed_page(GFP_ATOMIC);
549 	if (!pmd)
550 		return NULL;
551 
552 	ipmmu_flush_pgtable(mmu, pmd, PAGE_SIZE);
553 	*pud = __pud(__pa(pmd) | PMD_NSTABLE | PMD_TYPE_TABLE);
554 	ipmmu_flush_pgtable(mmu, pud, sizeof(*pud));
555 
556 	return pmd + pmd_index(iova);
557 }
558 
559 static u64 ipmmu_page_prot(unsigned int prot, u64 type)
560 {
561 	u64 pgprot = ARM_VMSA_PTE_nG | ARM_VMSA_PTE_AF
562 		   | ARM_VMSA_PTE_SH_IS | ARM_VMSA_PTE_AP_UNPRIV
563 		   | ARM_VMSA_PTE_NS | type;
564 
565 	if (!(prot & IOMMU_WRITE) && (prot & IOMMU_READ))
566 		pgprot |= ARM_VMSA_PTE_AP_RDONLY;
567 
568 	if (prot & IOMMU_CACHE)
569 		pgprot |= IMMAIR_ATTR_IDX_WBRWA << ARM_VMSA_PTE_ATTRINDX_SHIFT;
570 
571 	if (prot & IOMMU_NOEXEC)
572 		pgprot |= ARM_VMSA_PTE_XN;
573 	else if (!(prot & (IOMMU_READ | IOMMU_WRITE)))
574 		/* If no access create a faulting entry to avoid TLB fills. */
575 		pgprot &= ~ARM_VMSA_PTE_PAGE;
576 
577 	return pgprot;
578 }
579 
580 static int ipmmu_alloc_init_pte(struct ipmmu_vmsa_device *mmu, pmd_t *pmd,
581 				unsigned long iova, unsigned long pfn,
582 				size_t size, int prot)
583 {
584 	pteval_t pteval = ipmmu_page_prot(prot, ARM_VMSA_PTE_PAGE);
585 	unsigned int num_ptes = 1;
586 	pte_t *pte, *start;
587 	unsigned int i;
588 
589 	pte = ipmmu_alloc_pte(mmu, pmd, iova);
590 	if (!pte)
591 		return -ENOMEM;
592 
593 	start = pte;
594 
595 	/*
596 	 * Install the page table entries. We can be called both for a single
597 	 * page or for a block of 16 physically contiguous pages. In the latter
598 	 * case set the PTE contiguous hint.
599 	 */
600 	if (size == SZ_64K) {
601 		pteval |= ARM_VMSA_PTE_CONT;
602 		num_ptes = ARM_VMSA_PTE_CONT_ENTRIES;
603 	}
604 
605 	for (i = num_ptes; i; --i)
606 		*pte++ = pfn_pte(pfn++, __pgprot(pteval));
607 
608 	ipmmu_flush_pgtable(mmu, start, sizeof(*pte) * num_ptes);
609 
610 	return 0;
611 }
612 
613 static int ipmmu_alloc_init_pmd(struct ipmmu_vmsa_device *mmu, pmd_t *pmd,
614 				unsigned long iova, unsigned long pfn,
615 				int prot)
616 {
617 	pmdval_t pmdval = ipmmu_page_prot(prot, PMD_TYPE_SECT);
618 
619 	*pmd = pfn_pmd(pfn, __pgprot(pmdval));
620 	ipmmu_flush_pgtable(mmu, pmd, sizeof(*pmd));
621 
622 	return 0;
623 }
624 
625 static int ipmmu_create_mapping(struct ipmmu_vmsa_domain *domain,
626 				unsigned long iova, phys_addr_t paddr,
627 				size_t size, int prot)
628 {
629 	struct ipmmu_vmsa_device *mmu = domain->mmu;
630 	pgd_t *pgd = domain->pgd;
631 	unsigned long flags;
632 	unsigned long pfn;
633 	pmd_t *pmd;
634 	int ret;
635 
636 	if (!pgd)
637 		return -EINVAL;
638 
639 	if (size & ~PAGE_MASK)
640 		return -EINVAL;
641 
642 	if (paddr & ~((1ULL << 40) - 1))
643 		return -ERANGE;
644 
645 	pfn = __phys_to_pfn(paddr);
646 	pgd += pgd_index(iova);
647 
648 	/* Update the page tables. */
649 	spin_lock_irqsave(&domain->lock, flags);
650 
651 	pmd = ipmmu_alloc_pmd(mmu, pgd, iova);
652 	if (!pmd) {
653 		ret = -ENOMEM;
654 		goto done;
655 	}
656 
657 	switch (size) {
658 	case SZ_2M:
659 		ret = ipmmu_alloc_init_pmd(mmu, pmd, iova, pfn, prot);
660 		break;
661 	case SZ_64K:
662 	case SZ_4K:
663 		ret = ipmmu_alloc_init_pte(mmu, pmd, iova, pfn, size, prot);
664 		break;
665 	default:
666 		ret = -EINVAL;
667 		break;
668 	}
669 
670 done:
671 	spin_unlock_irqrestore(&domain->lock, flags);
672 
673 	if (!ret)
674 		ipmmu_tlb_invalidate(domain);
675 
676 	return ret;
677 }
678 
679 static void ipmmu_clear_pud(struct ipmmu_vmsa_device *mmu, pud_t *pud)
680 {
681 	/* Free the page table. */
682 	pgtable_t table = pud_pgtable(*pud);
683 	__free_page(table);
684 
685 	/* Clear the PUD. */
686 	*pud = __pud(0);
687 	ipmmu_flush_pgtable(mmu, pud, sizeof(*pud));
688 }
689 
690 static void ipmmu_clear_pmd(struct ipmmu_vmsa_device *mmu, pud_t *pud,
691 			    pmd_t *pmd)
692 {
693 	unsigned int i;
694 
695 	/* Free the page table. */
696 	if (pmd_table(*pmd)) {
697 		pgtable_t table = pmd_pgtable(*pmd);
698 		__free_page(table);
699 	}
700 
701 	/* Clear the PMD. */
702 	*pmd = __pmd(0);
703 	ipmmu_flush_pgtable(mmu, pmd, sizeof(*pmd));
704 
705 	/* Check whether the PUD is still needed. */
706 	pmd = pmd_offset(pud, 0);
707 	for (i = 0; i < IPMMU_PTRS_PER_PMD; ++i) {
708 		if (!pmd_none(pmd[i]))
709 			return;
710 	}
711 
712 	/* Clear the parent PUD. */
713 	ipmmu_clear_pud(mmu, pud);
714 }
715 
716 static void ipmmu_clear_pte(struct ipmmu_vmsa_device *mmu, pud_t *pud,
717 			    pmd_t *pmd, pte_t *pte, unsigned int num_ptes)
718 {
719 	unsigned int i;
720 
721 	/* Clear the PTE. */
722 	for (i = num_ptes; i; --i)
723 		pte[i-1] = __pte(0);
724 
725 	ipmmu_flush_pgtable(mmu, pte, sizeof(*pte) * num_ptes);
726 
727 	/* Check whether the PMD is still needed. */
728 	pte = pte_offset_kernel(pmd, 0);
729 	for (i = 0; i < IPMMU_PTRS_PER_PTE; ++i) {
730 		if (!pte_none(pte[i]))
731 			return;
732 	}
733 
734 	/* Clear the parent PMD. */
735 	ipmmu_clear_pmd(mmu, pud, pmd);
736 }
737 
738 static int ipmmu_split_pmd(struct ipmmu_vmsa_device *mmu, pmd_t *pmd)
739 {
740 	pte_t *pte, *start;
741 	pteval_t pteval;
742 	unsigned long pfn;
743 	unsigned int i;
744 
745 	pte = (pte_t *)get_zeroed_page(GFP_ATOMIC);
746 	if (!pte)
747 		return -ENOMEM;
748 
749 	/* Copy the PMD attributes. */
750 	pteval = (pmd_val(*pmd) & ARM_VMSA_PTE_ATTRS_MASK)
751 	       | ARM_VMSA_PTE_CONT | ARM_VMSA_PTE_PAGE;
752 
753 	pfn = pmd_pfn(*pmd);
754 	start = pte;
755 
756 	for (i = IPMMU_PTRS_PER_PTE; i; --i)
757 		*pte++ = pfn_pte(pfn++, __pgprot(pteval));
758 
759 	ipmmu_flush_pgtable(mmu, start, PAGE_SIZE);
760 	*pmd = __pmd(__pa(start) | PMD_NSTABLE | PMD_TYPE_TABLE);
761 	ipmmu_flush_pgtable(mmu, pmd, sizeof(*pmd));
762 
763 	return 0;
764 }
765 
766 static void ipmmu_split_pte(struct ipmmu_vmsa_device *mmu, pte_t *pte)
767 {
768 	unsigned int i;
769 
770 	for (i = ARM_VMSA_PTE_CONT_ENTRIES; i; --i)
771 		pte[i-1] = __pte(pte_val(*pte) & ~ARM_VMSA_PTE_CONT);
772 
773 	ipmmu_flush_pgtable(mmu, pte, sizeof(*pte) * ARM_VMSA_PTE_CONT_ENTRIES);
774 }
775 
776 static int ipmmu_clear_mapping(struct ipmmu_vmsa_domain *domain,
777 			       unsigned long iova, size_t size)
778 {
779 	struct ipmmu_vmsa_device *mmu = domain->mmu;
780 	unsigned long flags;
781 	pgd_t *pgd = domain->pgd;
782 	pud_t *pud;
783 	pmd_t *pmd;
784 	pte_t *pte;
785 	int ret = 0;
786 
787 	if (!pgd)
788 		return -EINVAL;
789 
790 	if (size & ~PAGE_MASK)
791 		return -EINVAL;
792 
793 	pgd += pgd_index(iova);
794 	pud = (pud_t *)pgd;
795 
796 	spin_lock_irqsave(&domain->lock, flags);
797 
798 	/* If there's no PUD or PMD we're done. */
799 	if (pud_none(*pud))
800 		goto done;
801 
802 	pmd = pmd_offset(pud, iova);
803 	if (pmd_none(*pmd))
804 		goto done;
805 
806 	/*
807 	 * When freeing a 2MB block just clear the PMD. In the unlikely case the
808 	 * block is mapped as individual pages this will free the corresponding
809 	 * PTE page table.
810 	 */
811 	if (size == SZ_2M) {
812 		ipmmu_clear_pmd(mmu, pud, pmd);
813 		goto done;
814 	}
815 
816 	/*
817 	 * If the PMD has been mapped as a section remap it as pages to allow
818 	 * freeing individual pages.
819 	 */
820 	if (pmd_sect(*pmd))
821 		ipmmu_split_pmd(mmu, pmd);
822 
823 	pte = pte_offset_kernel(pmd, iova);
824 
825 	/*
826 	 * When freeing a 64kB block just clear the PTE entries. We don't have
827 	 * to care about the contiguous hint of the surrounding entries.
828 	 */
829 	if (size == SZ_64K) {
830 		ipmmu_clear_pte(mmu, pud, pmd, pte, ARM_VMSA_PTE_CONT_ENTRIES);
831 		goto done;
832 	}
833 
834 	/*
835 	 * If the PTE has been mapped with the contiguous hint set remap it and
836 	 * its surrounding PTEs to allow unmapping a single page.
837 	 */
838 	if (pte_val(*pte) & ARM_VMSA_PTE_CONT)
839 		ipmmu_split_pte(mmu, pte);
840 
841 	/* Clear the PTE. */
842 	ipmmu_clear_pte(mmu, pud, pmd, pte, 1);
843 
844 done:
845 	spin_unlock_irqrestore(&domain->lock, flags);
846 
847 	if (ret)
848 		ipmmu_tlb_invalidate(domain);
849 
850 	return 0;
851 }
852 
853 /* -----------------------------------------------------------------------------
854  * IOMMU Operations
855  */
856 
857 static int ipmmu_domain_init(struct iommu_domain *io_domain)
858 {
859 	struct ipmmu_vmsa_domain *domain;
860 
861 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
862 	if (!domain)
863 		return -ENOMEM;
864 
865 	spin_lock_init(&domain->lock);
866 
867 	domain->pgd = kzalloc(IPMMU_PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
868 	if (!domain->pgd) {
869 		kfree(domain);
870 		return -ENOMEM;
871 	}
872 
873 	io_domain->priv = domain;
874 	domain->io_domain = io_domain;
875 
876 	return 0;
877 }
878 
879 static void ipmmu_domain_destroy(struct iommu_domain *io_domain)
880 {
881 	struct ipmmu_vmsa_domain *domain = io_domain->priv;
882 
883 	/*
884 	 * Free the domain resources. We assume that all devices have already
885 	 * been detached.
886 	 */
887 	ipmmu_domain_destroy_context(domain);
888 	ipmmu_free_pgtables(domain);
889 	kfree(domain);
890 }
891 
892 static int ipmmu_attach_device(struct iommu_domain *io_domain,
893 			       struct device *dev)
894 {
895 	struct ipmmu_vmsa_archdata *archdata = dev->archdata.iommu;
896 	struct ipmmu_vmsa_device *mmu = archdata->mmu;
897 	struct ipmmu_vmsa_domain *domain = io_domain->priv;
898 	unsigned long flags;
899 	int ret = 0;
900 
901 	if (!mmu) {
902 		dev_err(dev, "Cannot attach to IPMMU\n");
903 		return -ENXIO;
904 	}
905 
906 	spin_lock_irqsave(&domain->lock, flags);
907 
908 	if (!domain->mmu) {
909 		/* The domain hasn't been used yet, initialize it. */
910 		domain->mmu = mmu;
911 		ret = ipmmu_domain_init_context(domain);
912 	} else if (domain->mmu != mmu) {
913 		/*
914 		 * Something is wrong, we can't attach two devices using
915 		 * different IOMMUs to the same domain.
916 		 */
917 		dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
918 			dev_name(mmu->dev), dev_name(domain->mmu->dev));
919 		ret = -EINVAL;
920 	}
921 
922 	spin_unlock_irqrestore(&domain->lock, flags);
923 
924 	if (ret < 0)
925 		return ret;
926 
927 	ipmmu_utlb_enable(domain, archdata->utlb);
928 
929 	return 0;
930 }
931 
932 static void ipmmu_detach_device(struct iommu_domain *io_domain,
933 				struct device *dev)
934 {
935 	struct ipmmu_vmsa_archdata *archdata = dev->archdata.iommu;
936 	struct ipmmu_vmsa_domain *domain = io_domain->priv;
937 
938 	ipmmu_utlb_disable(domain, archdata->utlb);
939 
940 	/*
941 	 * TODO: Optimize by disabling the context when no device is attached.
942 	 */
943 }
944 
945 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
946 		     phys_addr_t paddr, size_t size, int prot)
947 {
948 	struct ipmmu_vmsa_domain *domain = io_domain->priv;
949 
950 	if (!domain)
951 		return -ENODEV;
952 
953 	return ipmmu_create_mapping(domain, iova, paddr, size, prot);
954 }
955 
956 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
957 			  size_t size)
958 {
959 	struct ipmmu_vmsa_domain *domain = io_domain->priv;
960 	int ret;
961 
962 	ret = ipmmu_clear_mapping(domain, iova, size);
963 	return ret ? 0 : size;
964 }
965 
966 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
967 				      dma_addr_t iova)
968 {
969 	struct ipmmu_vmsa_domain *domain = io_domain->priv;
970 	pgd_t pgd;
971 	pud_t pud;
972 	pmd_t pmd;
973 	pte_t pte;
974 
975 	/* TODO: Is locking needed ? */
976 
977 	if (!domain->pgd)
978 		return 0;
979 
980 	pgd = *(domain->pgd + pgd_index(iova));
981 	if (pgd_none(pgd))
982 		return 0;
983 
984 	pud = *pud_offset(&pgd, iova);
985 	if (pud_none(pud))
986 		return 0;
987 
988 	pmd = *pmd_offset(&pud, iova);
989 	if (pmd_none(pmd))
990 		return 0;
991 
992 	if (pmd_sect(pmd))
993 		return __pfn_to_phys(pmd_pfn(pmd)) | (iova & ~PMD_MASK);
994 
995 	pte = *(pmd_page_vaddr(pmd) + pte_index(iova));
996 	if (pte_none(pte))
997 		return 0;
998 
999 	return __pfn_to_phys(pte_pfn(pte)) | (iova & ~PAGE_MASK);
1000 }
1001 
1002 static int ipmmu_find_utlb(struct ipmmu_vmsa_device *mmu, struct device *dev)
1003 {
1004 	const struct ipmmu_vmsa_master *master = mmu->pdata->masters;
1005 	const char *devname = dev_name(dev);
1006 	unsigned int i;
1007 
1008 	for (i = 0; i < mmu->pdata->num_masters; ++i, ++master) {
1009 		if (strcmp(master->name, devname) == 0)
1010 			return master->utlb;
1011 	}
1012 
1013 	return -1;
1014 }
1015 
1016 static int ipmmu_add_device(struct device *dev)
1017 {
1018 	struct ipmmu_vmsa_archdata *archdata;
1019 	struct ipmmu_vmsa_device *mmu;
1020 	struct iommu_group *group;
1021 	int utlb = -1;
1022 	int ret;
1023 
1024 	if (dev->archdata.iommu) {
1025 		dev_warn(dev, "IOMMU driver already assigned to device %s\n",
1026 			 dev_name(dev));
1027 		return -EINVAL;
1028 	}
1029 
1030 	/* Find the master corresponding to the device. */
1031 	spin_lock(&ipmmu_devices_lock);
1032 
1033 	list_for_each_entry(mmu, &ipmmu_devices, list) {
1034 		utlb = ipmmu_find_utlb(mmu, dev);
1035 		if (utlb >= 0) {
1036 			/*
1037 			 * TODO Take a reference to the MMU to protect
1038 			 * against device removal.
1039 			 */
1040 			break;
1041 		}
1042 	}
1043 
1044 	spin_unlock(&ipmmu_devices_lock);
1045 
1046 	if (utlb < 0)
1047 		return -ENODEV;
1048 
1049 	if (utlb >= mmu->num_utlbs)
1050 		return -EINVAL;
1051 
1052 	/* Create a device group and add the device to it. */
1053 	group = iommu_group_alloc();
1054 	if (IS_ERR(group)) {
1055 		dev_err(dev, "Failed to allocate IOMMU group\n");
1056 		return PTR_ERR(group);
1057 	}
1058 
1059 	ret = iommu_group_add_device(group, dev);
1060 	iommu_group_put(group);
1061 
1062 	if (ret < 0) {
1063 		dev_err(dev, "Failed to add device to IPMMU group\n");
1064 		return ret;
1065 	}
1066 
1067 	archdata = kzalloc(sizeof(*archdata), GFP_KERNEL);
1068 	if (!archdata) {
1069 		ret = -ENOMEM;
1070 		goto error;
1071 	}
1072 
1073 	archdata->mmu = mmu;
1074 	archdata->utlb = utlb;
1075 	dev->archdata.iommu = archdata;
1076 
1077 	/*
1078 	 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
1079 	 * VAs. This will allocate a corresponding IOMMU domain.
1080 	 *
1081 	 * TODO:
1082 	 * - Create one mapping per context (TLB).
1083 	 * - Make the mapping size configurable ? We currently use a 2GB mapping
1084 	 *   at a 1GB offset to ensure that NULL VAs will fault.
1085 	 */
1086 	if (!mmu->mapping) {
1087 		struct dma_iommu_mapping *mapping;
1088 
1089 		mapping = arm_iommu_create_mapping(&platform_bus_type,
1090 						   SZ_1G, SZ_2G);
1091 		if (IS_ERR(mapping)) {
1092 			dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
1093 			return PTR_ERR(mapping);
1094 		}
1095 
1096 		mmu->mapping = mapping;
1097 	}
1098 
1099 	/* Attach the ARM VA mapping to the device. */
1100 	ret = arm_iommu_attach_device(dev, mmu->mapping);
1101 	if (ret < 0) {
1102 		dev_err(dev, "Failed to attach device to VA mapping\n");
1103 		goto error;
1104 	}
1105 
1106 	return 0;
1107 
1108 error:
1109 	kfree(dev->archdata.iommu);
1110 	dev->archdata.iommu = NULL;
1111 	iommu_group_remove_device(dev);
1112 	return ret;
1113 }
1114 
1115 static void ipmmu_remove_device(struct device *dev)
1116 {
1117 	arm_iommu_detach_device(dev);
1118 	iommu_group_remove_device(dev);
1119 	kfree(dev->archdata.iommu);
1120 	dev->archdata.iommu = NULL;
1121 }
1122 
1123 static const struct iommu_ops ipmmu_ops = {
1124 	.domain_init = ipmmu_domain_init,
1125 	.domain_destroy = ipmmu_domain_destroy,
1126 	.attach_dev = ipmmu_attach_device,
1127 	.detach_dev = ipmmu_detach_device,
1128 	.map = ipmmu_map,
1129 	.unmap = ipmmu_unmap,
1130 	.map_sg = default_iommu_map_sg,
1131 	.iova_to_phys = ipmmu_iova_to_phys,
1132 	.add_device = ipmmu_add_device,
1133 	.remove_device = ipmmu_remove_device,
1134 	.pgsize_bitmap = SZ_2M | SZ_64K | SZ_4K,
1135 };
1136 
1137 /* -----------------------------------------------------------------------------
1138  * Probe/remove and init
1139  */
1140 
1141 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
1142 {
1143 	unsigned int i;
1144 
1145 	/* Disable all contexts. */
1146 	for (i = 0; i < 4; ++i)
1147 		ipmmu_write(mmu, i * IM_CTX_SIZE + IMCTR, 0);
1148 }
1149 
1150 static int ipmmu_probe(struct platform_device *pdev)
1151 {
1152 	struct ipmmu_vmsa_device *mmu;
1153 	struct resource *res;
1154 	int irq;
1155 	int ret;
1156 
1157 	if (!pdev->dev.platform_data) {
1158 		dev_err(&pdev->dev, "missing platform data\n");
1159 		return -EINVAL;
1160 	}
1161 
1162 	mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
1163 	if (!mmu) {
1164 		dev_err(&pdev->dev, "cannot allocate device data\n");
1165 		return -ENOMEM;
1166 	}
1167 
1168 	mmu->dev = &pdev->dev;
1169 	mmu->pdata = pdev->dev.platform_data;
1170 	mmu->num_utlbs = 32;
1171 
1172 	/* Map I/O memory and request IRQ. */
1173 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1174 	mmu->base = devm_ioremap_resource(&pdev->dev, res);
1175 	if (IS_ERR(mmu->base))
1176 		return PTR_ERR(mmu->base);
1177 
1178 	irq = platform_get_irq(pdev, 0);
1179 	if (irq < 0) {
1180 		dev_err(&pdev->dev, "no IRQ found\n");
1181 		return irq;
1182 	}
1183 
1184 	ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1185 			       dev_name(&pdev->dev), mmu);
1186 	if (ret < 0) {
1187 		dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1188 		return ret;
1189 	}
1190 
1191 	ipmmu_device_reset(mmu);
1192 
1193 	/*
1194 	 * We can't create the ARM mapping here as it requires the bus to have
1195 	 * an IOMMU, which only happens when bus_set_iommu() is called in
1196 	 * ipmmu_init() after the probe function returns.
1197 	 */
1198 
1199 	spin_lock(&ipmmu_devices_lock);
1200 	list_add(&mmu->list, &ipmmu_devices);
1201 	spin_unlock(&ipmmu_devices_lock);
1202 
1203 	platform_set_drvdata(pdev, mmu);
1204 
1205 	return 0;
1206 }
1207 
1208 static int ipmmu_remove(struct platform_device *pdev)
1209 {
1210 	struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1211 
1212 	spin_lock(&ipmmu_devices_lock);
1213 	list_del(&mmu->list);
1214 	spin_unlock(&ipmmu_devices_lock);
1215 
1216 	arm_iommu_release_mapping(mmu->mapping);
1217 
1218 	ipmmu_device_reset(mmu);
1219 
1220 	return 0;
1221 }
1222 
1223 static struct platform_driver ipmmu_driver = {
1224 	.driver = {
1225 		.name = "ipmmu-vmsa",
1226 	},
1227 	.probe = ipmmu_probe,
1228 	.remove	= ipmmu_remove,
1229 };
1230 
1231 static int __init ipmmu_init(void)
1232 {
1233 	int ret;
1234 
1235 	ret = platform_driver_register(&ipmmu_driver);
1236 	if (ret < 0)
1237 		return ret;
1238 
1239 	if (!iommu_present(&platform_bus_type))
1240 		bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1241 
1242 	return 0;
1243 }
1244 
1245 static void __exit ipmmu_exit(void)
1246 {
1247 	return platform_driver_unregister(&ipmmu_driver);
1248 }
1249 
1250 subsys_initcall(ipmmu_init);
1251 module_exit(ipmmu_exit);
1252 
1253 MODULE_DESCRIPTION("IOMMU API for Renesas VMSA-compatible IPMMU");
1254 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
1255 MODULE_LICENSE("GPL v2");
1256