xref: /openbmc/linux/drivers/iommu/ipmmu-vmsa.c (revision b8d312aa)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * IOMMU API for Renesas VMSA-compatible IPMMU
4  * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
5  *
6  * Copyright (C) 2014 Renesas Electronics Corporation
7  */
8 
9 #include <linux/bitmap.h>
10 #include <linux/delay.h>
11 #include <linux/dma-iommu.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/io-pgtable.h>
19 #include <linux/iommu.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/of_iommu.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/sizes.h>
26 #include <linux/slab.h>
27 #include <linux/sys_soc.h>
28 
29 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
30 #include <asm/dma-iommu.h>
31 #include <asm/pgalloc.h>
32 #else
33 #define arm_iommu_create_mapping(...)	NULL
34 #define arm_iommu_attach_device(...)	-ENODEV
35 #define arm_iommu_release_mapping(...)	do {} while (0)
36 #define arm_iommu_detach_device(...)	do {} while (0)
37 #endif
38 
39 #define IPMMU_CTX_MAX		8U
40 #define IPMMU_CTX_INVALID	-1
41 
42 #define IPMMU_UTLB_MAX		48U
43 
44 struct ipmmu_features {
45 	bool use_ns_alias_offset;
46 	bool has_cache_leaf_nodes;
47 	unsigned int number_of_contexts;
48 	unsigned int num_utlbs;
49 	bool setup_imbuscr;
50 	bool twobit_imttbcr_sl0;
51 	bool reserved_context;
52 };
53 
54 struct ipmmu_vmsa_device {
55 	struct device *dev;
56 	void __iomem *base;
57 	struct iommu_device iommu;
58 	struct ipmmu_vmsa_device *root;
59 	const struct ipmmu_features *features;
60 	unsigned int num_ctx;
61 	spinlock_t lock;			/* Protects ctx and domains[] */
62 	DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
63 	struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
64 	s8 utlb_ctx[IPMMU_UTLB_MAX];
65 
66 	struct iommu_group *group;
67 	struct dma_iommu_mapping *mapping;
68 };
69 
70 struct ipmmu_vmsa_domain {
71 	struct ipmmu_vmsa_device *mmu;
72 	struct iommu_domain io_domain;
73 
74 	struct io_pgtable_cfg cfg;
75 	struct io_pgtable_ops *iop;
76 
77 	unsigned int context_id;
78 	struct mutex mutex;			/* Protects mappings */
79 };
80 
81 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
82 {
83 	return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
84 }
85 
86 static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev)
87 {
88 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
89 
90 	return fwspec ? fwspec->iommu_priv : NULL;
91 }
92 
93 #define TLB_LOOP_TIMEOUT		100	/* 100us */
94 
95 /* -----------------------------------------------------------------------------
96  * Registers Definition
97  */
98 
99 #define IM_NS_ALIAS_OFFSET		0x800
100 
101 #define IM_CTX_SIZE			0x40
102 
103 #define IMCTR				0x0000
104 #define IMCTR_TRE			(1 << 17)
105 #define IMCTR_AFE			(1 << 16)
106 #define IMCTR_RTSEL_MASK		(3 << 4)
107 #define IMCTR_RTSEL_SHIFT		4
108 #define IMCTR_TREN			(1 << 3)
109 #define IMCTR_INTEN			(1 << 2)
110 #define IMCTR_FLUSH			(1 << 1)
111 #define IMCTR_MMUEN			(1 << 0)
112 
113 #define IMCAAR				0x0004
114 
115 #define IMTTBCR				0x0008
116 #define IMTTBCR_EAE			(1 << 31)
117 #define IMTTBCR_PMB			(1 << 30)
118 #define IMTTBCR_SH1_NON_SHAREABLE	(0 << 28)
119 #define IMTTBCR_SH1_OUTER_SHAREABLE	(2 << 28)
120 #define IMTTBCR_SH1_INNER_SHAREABLE	(3 << 28)
121 #define IMTTBCR_SH1_MASK		(3 << 28)
122 #define IMTTBCR_ORGN1_NC		(0 << 26)
123 #define IMTTBCR_ORGN1_WB_WA		(1 << 26)
124 #define IMTTBCR_ORGN1_WT		(2 << 26)
125 #define IMTTBCR_ORGN1_WB		(3 << 26)
126 #define IMTTBCR_ORGN1_MASK		(3 << 26)
127 #define IMTTBCR_IRGN1_NC		(0 << 24)
128 #define IMTTBCR_IRGN1_WB_WA		(1 << 24)
129 #define IMTTBCR_IRGN1_WT		(2 << 24)
130 #define IMTTBCR_IRGN1_WB		(3 << 24)
131 #define IMTTBCR_IRGN1_MASK		(3 << 24)
132 #define IMTTBCR_TSZ1_MASK		(7 << 16)
133 #define IMTTBCR_TSZ1_SHIFT		16
134 #define IMTTBCR_SH0_NON_SHAREABLE	(0 << 12)
135 #define IMTTBCR_SH0_OUTER_SHAREABLE	(2 << 12)
136 #define IMTTBCR_SH0_INNER_SHAREABLE	(3 << 12)
137 #define IMTTBCR_SH0_MASK		(3 << 12)
138 #define IMTTBCR_ORGN0_NC		(0 << 10)
139 #define IMTTBCR_ORGN0_WB_WA		(1 << 10)
140 #define IMTTBCR_ORGN0_WT		(2 << 10)
141 #define IMTTBCR_ORGN0_WB		(3 << 10)
142 #define IMTTBCR_ORGN0_MASK		(3 << 10)
143 #define IMTTBCR_IRGN0_NC		(0 << 8)
144 #define IMTTBCR_IRGN0_WB_WA		(1 << 8)
145 #define IMTTBCR_IRGN0_WT		(2 << 8)
146 #define IMTTBCR_IRGN0_WB		(3 << 8)
147 #define IMTTBCR_IRGN0_MASK		(3 << 8)
148 #define IMTTBCR_SL0_LVL_2		(0 << 4)
149 #define IMTTBCR_SL0_LVL_1		(1 << 4)
150 #define IMTTBCR_TSZ0_MASK		(7 << 0)
151 #define IMTTBCR_TSZ0_SHIFT		O
152 
153 #define IMTTBCR_SL0_TWOBIT_LVL_3	(0 << 6)
154 #define IMTTBCR_SL0_TWOBIT_LVL_2	(1 << 6)
155 #define IMTTBCR_SL0_TWOBIT_LVL_1	(2 << 6)
156 
157 #define IMBUSCR				0x000c
158 #define IMBUSCR_DVM			(1 << 2)
159 #define IMBUSCR_BUSSEL_SYS		(0 << 0)
160 #define IMBUSCR_BUSSEL_CCI		(1 << 0)
161 #define IMBUSCR_BUSSEL_IMCAAR		(2 << 0)
162 #define IMBUSCR_BUSSEL_CCI_IMCAAR	(3 << 0)
163 #define IMBUSCR_BUSSEL_MASK		(3 << 0)
164 
165 #define IMTTLBR0			0x0010
166 #define IMTTUBR0			0x0014
167 #define IMTTLBR1			0x0018
168 #define IMTTUBR1			0x001c
169 
170 #define IMSTR				0x0020
171 #define IMSTR_ERRLVL_MASK		(3 << 12)
172 #define IMSTR_ERRLVL_SHIFT		12
173 #define IMSTR_ERRCODE_TLB_FORMAT	(1 << 8)
174 #define IMSTR_ERRCODE_ACCESS_PERM	(4 << 8)
175 #define IMSTR_ERRCODE_SECURE_ACCESS	(5 << 8)
176 #define IMSTR_ERRCODE_MASK		(7 << 8)
177 #define IMSTR_MHIT			(1 << 4)
178 #define IMSTR_ABORT			(1 << 2)
179 #define IMSTR_PF			(1 << 1)
180 #define IMSTR_TF			(1 << 0)
181 
182 #define IMMAIR0				0x0028
183 #define IMMAIR1				0x002c
184 #define IMMAIR_ATTR_MASK		0xff
185 #define IMMAIR_ATTR_DEVICE		0x04
186 #define IMMAIR_ATTR_NC			0x44
187 #define IMMAIR_ATTR_WBRWA		0xff
188 #define IMMAIR_ATTR_SHIFT(n)		((n) << 3)
189 #define IMMAIR_ATTR_IDX_NC		0
190 #define IMMAIR_ATTR_IDX_WBRWA		1
191 #define IMMAIR_ATTR_IDX_DEV		2
192 
193 #define IMELAR				0x0030	/* IMEAR on R-Car Gen2 */
194 #define IMEUAR				0x0034	/* R-Car Gen3 only */
195 
196 #define IMPCTR				0x0200
197 #define IMPSTR				0x0208
198 #define IMPEAR				0x020c
199 #define IMPMBA(n)			(0x0280 + ((n) * 4))
200 #define IMPMBD(n)			(0x02c0 + ((n) * 4))
201 
202 #define IMUCTR(n)			((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
203 #define IMUCTR0(n)			(0x0300 + ((n) * 16))
204 #define IMUCTR32(n)			(0x0600 + (((n) - 32) * 16))
205 #define IMUCTR_FIXADDEN			(1 << 31)
206 #define IMUCTR_FIXADD_MASK		(0xff << 16)
207 #define IMUCTR_FIXADD_SHIFT		16
208 #define IMUCTR_TTSEL_MMU(n)		((n) << 4)
209 #define IMUCTR_TTSEL_PMB		(8 << 4)
210 #define IMUCTR_TTSEL_MASK		(15 << 4)
211 #define IMUCTR_FLUSH			(1 << 1)
212 #define IMUCTR_MMUEN			(1 << 0)
213 
214 #define IMUASID(n)			((n) < 32 ? IMUASID0(n) : IMUASID32(n))
215 #define IMUASID0(n)			(0x0308 + ((n) * 16))
216 #define IMUASID32(n)			(0x0608 + (((n) - 32) * 16))
217 #define IMUASID_ASID8_MASK		(0xff << 8)
218 #define IMUASID_ASID8_SHIFT		8
219 #define IMUASID_ASID0_MASK		(0xff << 0)
220 #define IMUASID_ASID0_SHIFT		0
221 
222 /* -----------------------------------------------------------------------------
223  * Root device handling
224  */
225 
226 static struct platform_driver ipmmu_driver;
227 
228 static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu)
229 {
230 	return mmu->root == mmu;
231 }
232 
233 static int __ipmmu_check_device(struct device *dev, void *data)
234 {
235 	struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
236 	struct ipmmu_vmsa_device **rootp = data;
237 
238 	if (ipmmu_is_root(mmu))
239 		*rootp = mmu;
240 
241 	return 0;
242 }
243 
244 static struct ipmmu_vmsa_device *ipmmu_find_root(void)
245 {
246 	struct ipmmu_vmsa_device *root = NULL;
247 
248 	return driver_for_each_device(&ipmmu_driver.driver, NULL, &root,
249 				      __ipmmu_check_device) == 0 ? root : NULL;
250 }
251 
252 /* -----------------------------------------------------------------------------
253  * Read/Write Access
254  */
255 
256 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
257 {
258 	return ioread32(mmu->base + offset);
259 }
260 
261 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
262 			u32 data)
263 {
264 	iowrite32(data, mmu->base + offset);
265 }
266 
267 static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain,
268 			       unsigned int reg)
269 {
270 	return ipmmu_read(domain->mmu->root,
271 			  domain->context_id * IM_CTX_SIZE + reg);
272 }
273 
274 static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain,
275 				 unsigned int reg, u32 data)
276 {
277 	ipmmu_write(domain->mmu->root,
278 		    domain->context_id * IM_CTX_SIZE + reg, data);
279 }
280 
281 static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain,
282 				unsigned int reg, u32 data)
283 {
284 	if (domain->mmu != domain->mmu->root)
285 		ipmmu_write(domain->mmu,
286 			    domain->context_id * IM_CTX_SIZE + reg, data);
287 
288 	ipmmu_write(domain->mmu->root,
289 		    domain->context_id * IM_CTX_SIZE + reg, data);
290 }
291 
292 /* -----------------------------------------------------------------------------
293  * TLB and microTLB Management
294  */
295 
296 /* Wait for any pending TLB invalidations to complete */
297 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
298 {
299 	unsigned int count = 0;
300 
301 	while (ipmmu_ctx_read_root(domain, IMCTR) & IMCTR_FLUSH) {
302 		cpu_relax();
303 		if (++count == TLB_LOOP_TIMEOUT) {
304 			dev_err_ratelimited(domain->mmu->dev,
305 			"TLB sync timed out -- MMU may be deadlocked\n");
306 			return;
307 		}
308 		udelay(1);
309 	}
310 }
311 
312 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
313 {
314 	u32 reg;
315 
316 	reg = ipmmu_ctx_read_root(domain, IMCTR);
317 	reg |= IMCTR_FLUSH;
318 	ipmmu_ctx_write_all(domain, IMCTR, reg);
319 
320 	ipmmu_tlb_sync(domain);
321 }
322 
323 /*
324  * Enable MMU translation for the microTLB.
325  */
326 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
327 			      unsigned int utlb)
328 {
329 	struct ipmmu_vmsa_device *mmu = domain->mmu;
330 
331 	/*
332 	 * TODO: Reference-count the microTLB as several bus masters can be
333 	 * connected to the same microTLB.
334 	 */
335 
336 	/* TODO: What should we set the ASID to ? */
337 	ipmmu_write(mmu, IMUASID(utlb), 0);
338 	/* TODO: Do we need to flush the microTLB ? */
339 	ipmmu_write(mmu, IMUCTR(utlb),
340 		    IMUCTR_TTSEL_MMU(domain->context_id) | IMUCTR_FLUSH |
341 		    IMUCTR_MMUEN);
342 	mmu->utlb_ctx[utlb] = domain->context_id;
343 }
344 
345 /*
346  * Disable MMU translation for the microTLB.
347  */
348 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
349 			       unsigned int utlb)
350 {
351 	struct ipmmu_vmsa_device *mmu = domain->mmu;
352 
353 	ipmmu_write(mmu, IMUCTR(utlb), 0);
354 	mmu->utlb_ctx[utlb] = IPMMU_CTX_INVALID;
355 }
356 
357 static void ipmmu_tlb_flush_all(void *cookie)
358 {
359 	struct ipmmu_vmsa_domain *domain = cookie;
360 
361 	ipmmu_tlb_invalidate(domain);
362 }
363 
364 static void ipmmu_tlb_add_flush(unsigned long iova, size_t size,
365 				size_t granule, bool leaf, void *cookie)
366 {
367 	/* The hardware doesn't support selective TLB flush. */
368 }
369 
370 static const struct iommu_gather_ops ipmmu_gather_ops = {
371 	.tlb_flush_all = ipmmu_tlb_flush_all,
372 	.tlb_add_flush = ipmmu_tlb_add_flush,
373 	.tlb_sync = ipmmu_tlb_flush_all,
374 };
375 
376 /* -----------------------------------------------------------------------------
377  * Domain/Context Management
378  */
379 
380 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
381 					 struct ipmmu_vmsa_domain *domain)
382 {
383 	unsigned long flags;
384 	int ret;
385 
386 	spin_lock_irqsave(&mmu->lock, flags);
387 
388 	ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx);
389 	if (ret != mmu->num_ctx) {
390 		mmu->domains[ret] = domain;
391 		set_bit(ret, mmu->ctx);
392 	} else
393 		ret = -EBUSY;
394 
395 	spin_unlock_irqrestore(&mmu->lock, flags);
396 
397 	return ret;
398 }
399 
400 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
401 				      unsigned int context_id)
402 {
403 	unsigned long flags;
404 
405 	spin_lock_irqsave(&mmu->lock, flags);
406 
407 	clear_bit(context_id, mmu->ctx);
408 	mmu->domains[context_id] = NULL;
409 
410 	spin_unlock_irqrestore(&mmu->lock, flags);
411 }
412 
413 static void ipmmu_domain_setup_context(struct ipmmu_vmsa_domain *domain)
414 {
415 	u64 ttbr;
416 	u32 tmp;
417 
418 	/* TTBR0 */
419 	ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr[0];
420 	ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr);
421 	ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32);
422 
423 	/*
424 	 * TTBCR
425 	 * We use long descriptors with inner-shareable WBWA tables and allocate
426 	 * the whole 32-bit VA space to TTBR0.
427 	 */
428 	if (domain->mmu->features->twobit_imttbcr_sl0)
429 		tmp = IMTTBCR_SL0_TWOBIT_LVL_1;
430 	else
431 		tmp = IMTTBCR_SL0_LVL_1;
432 
433 	ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE |
434 			     IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
435 			     IMTTBCR_IRGN0_WB_WA | tmp);
436 
437 	/* MAIR0 */
438 	ipmmu_ctx_write_root(domain, IMMAIR0,
439 			     domain->cfg.arm_lpae_s1_cfg.mair[0]);
440 
441 	/* IMBUSCR */
442 	if (domain->mmu->features->setup_imbuscr)
443 		ipmmu_ctx_write_root(domain, IMBUSCR,
444 				     ipmmu_ctx_read_root(domain, IMBUSCR) &
445 				     ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
446 
447 	/*
448 	 * IMSTR
449 	 * Clear all interrupt flags.
450 	 */
451 	ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR));
452 
453 	/*
454 	 * IMCTR
455 	 * Enable the MMU and interrupt generation. The long-descriptor
456 	 * translation table format doesn't use TEX remapping. Don't enable AF
457 	 * software management as we have no use for it. Flush the TLB as
458 	 * required when modifying the context registers.
459 	 */
460 	ipmmu_ctx_write_all(domain, IMCTR,
461 			    IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
462 }
463 
464 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
465 {
466 	int ret;
467 
468 	/*
469 	 * Allocate the page table operations.
470 	 *
471 	 * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
472 	 * access, Long-descriptor format" that the NStable bit being set in a
473 	 * table descriptor will result in the NStable and NS bits of all child
474 	 * entries being ignored and considered as being set. The IPMMU seems
475 	 * not to comply with this, as it generates a secure access page fault
476 	 * if any of the NStable and NS bits isn't set when running in
477 	 * non-secure mode.
478 	 */
479 	domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
480 	domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
481 	domain->cfg.ias = 32;
482 	domain->cfg.oas = 40;
483 	domain->cfg.tlb = &ipmmu_gather_ops;
484 	domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
485 	domain->io_domain.geometry.force_aperture = true;
486 	/*
487 	 * TODO: Add support for coherent walk through CCI with DVM and remove
488 	 * cache handling. For now, delegate it to the io-pgtable code.
489 	 */
490 	domain->cfg.coherent_walk = false;
491 	domain->cfg.iommu_dev = domain->mmu->root->dev;
492 
493 	/*
494 	 * Find an unused context.
495 	 */
496 	ret = ipmmu_domain_allocate_context(domain->mmu->root, domain);
497 	if (ret < 0)
498 		return ret;
499 
500 	domain->context_id = ret;
501 
502 	domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
503 					   domain);
504 	if (!domain->iop) {
505 		ipmmu_domain_free_context(domain->mmu->root,
506 					  domain->context_id);
507 		return -EINVAL;
508 	}
509 
510 	ipmmu_domain_setup_context(domain);
511 	return 0;
512 }
513 
514 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
515 {
516 	if (!domain->mmu)
517 		return;
518 
519 	/*
520 	 * Disable the context. Flush the TLB as required when modifying the
521 	 * context registers.
522 	 *
523 	 * TODO: Is TLB flush really needed ?
524 	 */
525 	ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH);
526 	ipmmu_tlb_sync(domain);
527 	ipmmu_domain_free_context(domain->mmu->root, domain->context_id);
528 }
529 
530 /* -----------------------------------------------------------------------------
531  * Fault Handling
532  */
533 
534 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
535 {
536 	const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
537 	struct ipmmu_vmsa_device *mmu = domain->mmu;
538 	unsigned long iova;
539 	u32 status;
540 
541 	status = ipmmu_ctx_read_root(domain, IMSTR);
542 	if (!(status & err_mask))
543 		return IRQ_NONE;
544 
545 	iova = ipmmu_ctx_read_root(domain, IMELAR);
546 	if (IS_ENABLED(CONFIG_64BIT))
547 		iova |= (u64)ipmmu_ctx_read_root(domain, IMEUAR) << 32;
548 
549 	/*
550 	 * Clear the error status flags. Unlike traditional interrupt flag
551 	 * registers that must be cleared by writing 1, this status register
552 	 * seems to require 0. The error address register must be read before,
553 	 * otherwise its value will be 0.
554 	 */
555 	ipmmu_ctx_write_root(domain, IMSTR, 0);
556 
557 	/* Log fatal errors. */
558 	if (status & IMSTR_MHIT)
559 		dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%lx\n",
560 				    iova);
561 	if (status & IMSTR_ABORT)
562 		dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%lx\n",
563 				    iova);
564 
565 	if (!(status & (IMSTR_PF | IMSTR_TF)))
566 		return IRQ_NONE;
567 
568 	/*
569 	 * Try to handle page faults and translation faults.
570 	 *
571 	 * TODO: We need to look up the faulty device based on the I/O VA. Use
572 	 * the IOMMU device for now.
573 	 */
574 	if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
575 		return IRQ_HANDLED;
576 
577 	dev_err_ratelimited(mmu->dev,
578 			    "Unhandled fault: status 0x%08x iova 0x%lx\n",
579 			    status, iova);
580 
581 	return IRQ_HANDLED;
582 }
583 
584 static irqreturn_t ipmmu_irq(int irq, void *dev)
585 {
586 	struct ipmmu_vmsa_device *mmu = dev;
587 	irqreturn_t status = IRQ_NONE;
588 	unsigned int i;
589 	unsigned long flags;
590 
591 	spin_lock_irqsave(&mmu->lock, flags);
592 
593 	/*
594 	 * Check interrupts for all active contexts.
595 	 */
596 	for (i = 0; i < mmu->num_ctx; i++) {
597 		if (!mmu->domains[i])
598 			continue;
599 		if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
600 			status = IRQ_HANDLED;
601 	}
602 
603 	spin_unlock_irqrestore(&mmu->lock, flags);
604 
605 	return status;
606 }
607 
608 /* -----------------------------------------------------------------------------
609  * IOMMU Operations
610  */
611 
612 static struct iommu_domain *__ipmmu_domain_alloc(unsigned type)
613 {
614 	struct ipmmu_vmsa_domain *domain;
615 
616 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
617 	if (!domain)
618 		return NULL;
619 
620 	mutex_init(&domain->mutex);
621 
622 	return &domain->io_domain;
623 }
624 
625 static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
626 {
627 	struct iommu_domain *io_domain = NULL;
628 
629 	switch (type) {
630 	case IOMMU_DOMAIN_UNMANAGED:
631 		io_domain = __ipmmu_domain_alloc(type);
632 		break;
633 
634 	case IOMMU_DOMAIN_DMA:
635 		io_domain = __ipmmu_domain_alloc(type);
636 		if (io_domain && iommu_get_dma_cookie(io_domain)) {
637 			kfree(io_domain);
638 			io_domain = NULL;
639 		}
640 		break;
641 	}
642 
643 	return io_domain;
644 }
645 
646 static void ipmmu_domain_free(struct iommu_domain *io_domain)
647 {
648 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
649 
650 	/*
651 	 * Free the domain resources. We assume that all devices have already
652 	 * been detached.
653 	 */
654 	iommu_put_dma_cookie(io_domain);
655 	ipmmu_domain_destroy_context(domain);
656 	free_io_pgtable_ops(domain->iop);
657 	kfree(domain);
658 }
659 
660 static int ipmmu_attach_device(struct iommu_domain *io_domain,
661 			       struct device *dev)
662 {
663 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
664 	struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
665 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
666 	unsigned int i;
667 	int ret = 0;
668 
669 	if (!mmu) {
670 		dev_err(dev, "Cannot attach to IPMMU\n");
671 		return -ENXIO;
672 	}
673 
674 	mutex_lock(&domain->mutex);
675 
676 	if (!domain->mmu) {
677 		/* The domain hasn't been used yet, initialize it. */
678 		domain->mmu = mmu;
679 		ret = ipmmu_domain_init_context(domain);
680 		if (ret < 0) {
681 			dev_err(dev, "Unable to initialize IPMMU context\n");
682 			domain->mmu = NULL;
683 		} else {
684 			dev_info(dev, "Using IPMMU context %u\n",
685 				 domain->context_id);
686 		}
687 	} else if (domain->mmu != mmu) {
688 		/*
689 		 * Something is wrong, we can't attach two devices using
690 		 * different IOMMUs to the same domain.
691 		 */
692 		dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
693 			dev_name(mmu->dev), dev_name(domain->mmu->dev));
694 		ret = -EINVAL;
695 	} else
696 		dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
697 
698 	mutex_unlock(&domain->mutex);
699 
700 	if (ret < 0)
701 		return ret;
702 
703 	for (i = 0; i < fwspec->num_ids; ++i)
704 		ipmmu_utlb_enable(domain, fwspec->ids[i]);
705 
706 	return 0;
707 }
708 
709 static void ipmmu_detach_device(struct iommu_domain *io_domain,
710 				struct device *dev)
711 {
712 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
713 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
714 	unsigned int i;
715 
716 	for (i = 0; i < fwspec->num_ids; ++i)
717 		ipmmu_utlb_disable(domain, fwspec->ids[i]);
718 
719 	/*
720 	 * TODO: Optimize by disabling the context when no device is attached.
721 	 */
722 }
723 
724 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
725 		     phys_addr_t paddr, size_t size, int prot)
726 {
727 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
728 
729 	if (!domain)
730 		return -ENODEV;
731 
732 	return domain->iop->map(domain->iop, iova, paddr, size, prot);
733 }
734 
735 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
736 			  size_t size)
737 {
738 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
739 
740 	return domain->iop->unmap(domain->iop, iova, size);
741 }
742 
743 static void ipmmu_iotlb_sync(struct iommu_domain *io_domain)
744 {
745 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
746 
747 	if (domain->mmu)
748 		ipmmu_tlb_flush_all(domain);
749 }
750 
751 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
752 				      dma_addr_t iova)
753 {
754 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
755 
756 	/* TODO: Is locking needed ? */
757 
758 	return domain->iop->iova_to_phys(domain->iop, iova);
759 }
760 
761 static int ipmmu_init_platform_device(struct device *dev,
762 				      struct of_phandle_args *args)
763 {
764 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
765 	struct platform_device *ipmmu_pdev;
766 
767 	ipmmu_pdev = of_find_device_by_node(args->np);
768 	if (!ipmmu_pdev)
769 		return -ENODEV;
770 
771 	fwspec->iommu_priv = platform_get_drvdata(ipmmu_pdev);
772 
773 	return 0;
774 }
775 
776 static const struct soc_device_attribute soc_rcar_gen3[] = {
777 	{ .soc_id = "r8a774a1", },
778 	{ .soc_id = "r8a774c0", },
779 	{ .soc_id = "r8a7795", },
780 	{ .soc_id = "r8a7796", },
781 	{ .soc_id = "r8a77965", },
782 	{ .soc_id = "r8a77970", },
783 	{ .soc_id = "r8a77990", },
784 	{ .soc_id = "r8a77995", },
785 	{ /* sentinel */ }
786 };
787 
788 static const struct soc_device_attribute soc_rcar_gen3_whitelist[] = {
789 	{ .soc_id = "r8a774c0", },
790 	{ .soc_id = "r8a7795", .revision = "ES3.*" },
791 	{ .soc_id = "r8a77965", },
792 	{ .soc_id = "r8a77990", },
793 	{ .soc_id = "r8a77995", },
794 	{ /* sentinel */ }
795 };
796 
797 static const char * const rcar_gen3_slave_whitelist[] = {
798 };
799 
800 static bool ipmmu_slave_whitelist(struct device *dev)
801 {
802 	unsigned int i;
803 
804 	/*
805 	 * For R-Car Gen3 use a white list to opt-in slave devices.
806 	 * For Other SoCs, this returns true anyway.
807 	 */
808 	if (!soc_device_match(soc_rcar_gen3))
809 		return true;
810 
811 	/* Check whether this R-Car Gen3 can use the IPMMU correctly or not */
812 	if (!soc_device_match(soc_rcar_gen3_whitelist))
813 		return false;
814 
815 	/* Check whether this slave device can work with the IPMMU */
816 	for (i = 0; i < ARRAY_SIZE(rcar_gen3_slave_whitelist); i++) {
817 		if (!strcmp(dev_name(dev), rcar_gen3_slave_whitelist[i]))
818 			return true;
819 	}
820 
821 	/* Otherwise, do not allow use of IPMMU */
822 	return false;
823 }
824 
825 static int ipmmu_of_xlate(struct device *dev,
826 			  struct of_phandle_args *spec)
827 {
828 	if (!ipmmu_slave_whitelist(dev))
829 		return -ENODEV;
830 
831 	iommu_fwspec_add_ids(dev, spec->args, 1);
832 
833 	/* Initialize once - xlate() will call multiple times */
834 	if (to_ipmmu(dev))
835 		return 0;
836 
837 	return ipmmu_init_platform_device(dev, spec);
838 }
839 
840 static int ipmmu_init_arm_mapping(struct device *dev)
841 {
842 	struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
843 	struct iommu_group *group;
844 	int ret;
845 
846 	/* Create a device group and add the device to it. */
847 	group = iommu_group_alloc();
848 	if (IS_ERR(group)) {
849 		dev_err(dev, "Failed to allocate IOMMU group\n");
850 		return PTR_ERR(group);
851 	}
852 
853 	ret = iommu_group_add_device(group, dev);
854 	iommu_group_put(group);
855 
856 	if (ret < 0) {
857 		dev_err(dev, "Failed to add device to IPMMU group\n");
858 		return ret;
859 	}
860 
861 	/*
862 	 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
863 	 * VAs. This will allocate a corresponding IOMMU domain.
864 	 *
865 	 * TODO:
866 	 * - Create one mapping per context (TLB).
867 	 * - Make the mapping size configurable ? We currently use a 2GB mapping
868 	 *   at a 1GB offset to ensure that NULL VAs will fault.
869 	 */
870 	if (!mmu->mapping) {
871 		struct dma_iommu_mapping *mapping;
872 
873 		mapping = arm_iommu_create_mapping(&platform_bus_type,
874 						   SZ_1G, SZ_2G);
875 		if (IS_ERR(mapping)) {
876 			dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
877 			ret = PTR_ERR(mapping);
878 			goto error;
879 		}
880 
881 		mmu->mapping = mapping;
882 	}
883 
884 	/* Attach the ARM VA mapping to the device. */
885 	ret = arm_iommu_attach_device(dev, mmu->mapping);
886 	if (ret < 0) {
887 		dev_err(dev, "Failed to attach device to VA mapping\n");
888 		goto error;
889 	}
890 
891 	return 0;
892 
893 error:
894 	iommu_group_remove_device(dev);
895 	if (mmu->mapping)
896 		arm_iommu_release_mapping(mmu->mapping);
897 
898 	return ret;
899 }
900 
901 static int ipmmu_add_device(struct device *dev)
902 {
903 	struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
904 	struct iommu_group *group;
905 	int ret;
906 
907 	/*
908 	 * Only let through devices that have been verified in xlate()
909 	 */
910 	if (!mmu)
911 		return -ENODEV;
912 
913 	if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA)) {
914 		ret = ipmmu_init_arm_mapping(dev);
915 		if (ret)
916 			return ret;
917 	} else {
918 		group = iommu_group_get_for_dev(dev);
919 		if (IS_ERR(group))
920 			return PTR_ERR(group);
921 
922 		iommu_group_put(group);
923 	}
924 
925 	iommu_device_link(&mmu->iommu, dev);
926 	return 0;
927 }
928 
929 static void ipmmu_remove_device(struct device *dev)
930 {
931 	struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
932 
933 	iommu_device_unlink(&mmu->iommu, dev);
934 	arm_iommu_detach_device(dev);
935 	iommu_group_remove_device(dev);
936 }
937 
938 static struct iommu_group *ipmmu_find_group(struct device *dev)
939 {
940 	struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
941 	struct iommu_group *group;
942 
943 	if (mmu->group)
944 		return iommu_group_ref_get(mmu->group);
945 
946 	group = iommu_group_alloc();
947 	if (!IS_ERR(group))
948 		mmu->group = group;
949 
950 	return group;
951 }
952 
953 static const struct iommu_ops ipmmu_ops = {
954 	.domain_alloc = ipmmu_domain_alloc,
955 	.domain_free = ipmmu_domain_free,
956 	.attach_dev = ipmmu_attach_device,
957 	.detach_dev = ipmmu_detach_device,
958 	.map = ipmmu_map,
959 	.unmap = ipmmu_unmap,
960 	.flush_iotlb_all = ipmmu_iotlb_sync,
961 	.iotlb_sync = ipmmu_iotlb_sync,
962 	.iova_to_phys = ipmmu_iova_to_phys,
963 	.add_device = ipmmu_add_device,
964 	.remove_device = ipmmu_remove_device,
965 	.device_group = ipmmu_find_group,
966 	.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
967 	.of_xlate = ipmmu_of_xlate,
968 };
969 
970 /* -----------------------------------------------------------------------------
971  * Probe/remove and init
972  */
973 
974 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
975 {
976 	unsigned int i;
977 
978 	/* Disable all contexts. */
979 	for (i = 0; i < mmu->num_ctx; ++i)
980 		ipmmu_write(mmu, i * IM_CTX_SIZE + IMCTR, 0);
981 }
982 
983 static const struct ipmmu_features ipmmu_features_default = {
984 	.use_ns_alias_offset = true,
985 	.has_cache_leaf_nodes = false,
986 	.number_of_contexts = 1, /* software only tested with one context */
987 	.num_utlbs = 32,
988 	.setup_imbuscr = true,
989 	.twobit_imttbcr_sl0 = false,
990 	.reserved_context = false,
991 };
992 
993 static const struct ipmmu_features ipmmu_features_rcar_gen3 = {
994 	.use_ns_alias_offset = false,
995 	.has_cache_leaf_nodes = true,
996 	.number_of_contexts = 8,
997 	.num_utlbs = 48,
998 	.setup_imbuscr = false,
999 	.twobit_imttbcr_sl0 = true,
1000 	.reserved_context = true,
1001 };
1002 
1003 static const struct of_device_id ipmmu_of_ids[] = {
1004 	{
1005 		.compatible = "renesas,ipmmu-vmsa",
1006 		.data = &ipmmu_features_default,
1007 	}, {
1008 		.compatible = "renesas,ipmmu-r8a774a1",
1009 		.data = &ipmmu_features_rcar_gen3,
1010 	}, {
1011 		.compatible = "renesas,ipmmu-r8a774c0",
1012 		.data = &ipmmu_features_rcar_gen3,
1013 	}, {
1014 		.compatible = "renesas,ipmmu-r8a7795",
1015 		.data = &ipmmu_features_rcar_gen3,
1016 	}, {
1017 		.compatible = "renesas,ipmmu-r8a7796",
1018 		.data = &ipmmu_features_rcar_gen3,
1019 	}, {
1020 		.compatible = "renesas,ipmmu-r8a77965",
1021 		.data = &ipmmu_features_rcar_gen3,
1022 	}, {
1023 		.compatible = "renesas,ipmmu-r8a77970",
1024 		.data = &ipmmu_features_rcar_gen3,
1025 	}, {
1026 		.compatible = "renesas,ipmmu-r8a77990",
1027 		.data = &ipmmu_features_rcar_gen3,
1028 	}, {
1029 		.compatible = "renesas,ipmmu-r8a77995",
1030 		.data = &ipmmu_features_rcar_gen3,
1031 	}, {
1032 		/* Terminator */
1033 	},
1034 };
1035 
1036 static int ipmmu_probe(struct platform_device *pdev)
1037 {
1038 	struct ipmmu_vmsa_device *mmu;
1039 	struct resource *res;
1040 	int irq;
1041 	int ret;
1042 
1043 	mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
1044 	if (!mmu) {
1045 		dev_err(&pdev->dev, "cannot allocate device data\n");
1046 		return -ENOMEM;
1047 	}
1048 
1049 	mmu->dev = &pdev->dev;
1050 	spin_lock_init(&mmu->lock);
1051 	bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
1052 	mmu->features = of_device_get_match_data(&pdev->dev);
1053 	memset(mmu->utlb_ctx, IPMMU_CTX_INVALID, mmu->features->num_utlbs);
1054 	dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
1055 
1056 	/* Map I/O memory and request IRQ. */
1057 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1058 	mmu->base = devm_ioremap_resource(&pdev->dev, res);
1059 	if (IS_ERR(mmu->base))
1060 		return PTR_ERR(mmu->base);
1061 
1062 	/*
1063 	 * The IPMMU has two register banks, for secure and non-secure modes.
1064 	 * The bank mapped at the beginning of the IPMMU address space
1065 	 * corresponds to the running mode of the CPU. When running in secure
1066 	 * mode the non-secure register bank is also available at an offset.
1067 	 *
1068 	 * Secure mode operation isn't clearly documented and is thus currently
1069 	 * not implemented in the driver. Furthermore, preliminary tests of
1070 	 * non-secure operation with the main register bank were not successful.
1071 	 * Offset the registers base unconditionally to point to the non-secure
1072 	 * alias space for now.
1073 	 */
1074 	if (mmu->features->use_ns_alias_offset)
1075 		mmu->base += IM_NS_ALIAS_OFFSET;
1076 
1077 	mmu->num_ctx = min(IPMMU_CTX_MAX, mmu->features->number_of_contexts);
1078 
1079 	irq = platform_get_irq(pdev, 0);
1080 
1081 	/*
1082 	 * Determine if this IPMMU instance is a root device by checking for
1083 	 * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
1084 	 */
1085 	if (!mmu->features->has_cache_leaf_nodes ||
1086 	    !of_find_property(pdev->dev.of_node, "renesas,ipmmu-main", NULL))
1087 		mmu->root = mmu;
1088 	else
1089 		mmu->root = ipmmu_find_root();
1090 
1091 	/*
1092 	 * Wait until the root device has been registered for sure.
1093 	 */
1094 	if (!mmu->root)
1095 		return -EPROBE_DEFER;
1096 
1097 	/* Root devices have mandatory IRQs */
1098 	if (ipmmu_is_root(mmu)) {
1099 		if (irq < 0) {
1100 			dev_err(&pdev->dev, "no IRQ found\n");
1101 			return irq;
1102 		}
1103 
1104 		ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1105 				       dev_name(&pdev->dev), mmu);
1106 		if (ret < 0) {
1107 			dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1108 			return ret;
1109 		}
1110 
1111 		ipmmu_device_reset(mmu);
1112 
1113 		if (mmu->features->reserved_context) {
1114 			dev_info(&pdev->dev, "IPMMU context 0 is reserved\n");
1115 			set_bit(0, mmu->ctx);
1116 		}
1117 	}
1118 
1119 	/*
1120 	 * Register the IPMMU to the IOMMU subsystem in the following cases:
1121 	 * - R-Car Gen2 IPMMU (all devices registered)
1122 	 * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1123 	 */
1124 	if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) {
1125 		ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL,
1126 					     dev_name(&pdev->dev));
1127 		if (ret)
1128 			return ret;
1129 
1130 		iommu_device_set_ops(&mmu->iommu, &ipmmu_ops);
1131 		iommu_device_set_fwnode(&mmu->iommu,
1132 					&pdev->dev.of_node->fwnode);
1133 
1134 		ret = iommu_device_register(&mmu->iommu);
1135 		if (ret)
1136 			return ret;
1137 
1138 #if defined(CONFIG_IOMMU_DMA)
1139 		if (!iommu_present(&platform_bus_type))
1140 			bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1141 #endif
1142 	}
1143 
1144 	/*
1145 	 * We can't create the ARM mapping here as it requires the bus to have
1146 	 * an IOMMU, which only happens when bus_set_iommu() is called in
1147 	 * ipmmu_init() after the probe function returns.
1148 	 */
1149 
1150 	platform_set_drvdata(pdev, mmu);
1151 
1152 	return 0;
1153 }
1154 
1155 static int ipmmu_remove(struct platform_device *pdev)
1156 {
1157 	struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1158 
1159 	iommu_device_sysfs_remove(&mmu->iommu);
1160 	iommu_device_unregister(&mmu->iommu);
1161 
1162 	arm_iommu_release_mapping(mmu->mapping);
1163 
1164 	ipmmu_device_reset(mmu);
1165 
1166 	return 0;
1167 }
1168 
1169 #ifdef CONFIG_PM_SLEEP
1170 static int ipmmu_resume_noirq(struct device *dev)
1171 {
1172 	struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
1173 	unsigned int i;
1174 
1175 	/* Reset root MMU and restore contexts */
1176 	if (ipmmu_is_root(mmu)) {
1177 		ipmmu_device_reset(mmu);
1178 
1179 		for (i = 0; i < mmu->num_ctx; i++) {
1180 			if (!mmu->domains[i])
1181 				continue;
1182 
1183 			ipmmu_domain_setup_context(mmu->domains[i]);
1184 		}
1185 	}
1186 
1187 	/* Re-enable active micro-TLBs */
1188 	for (i = 0; i < mmu->features->num_utlbs; i++) {
1189 		if (mmu->utlb_ctx[i] == IPMMU_CTX_INVALID)
1190 			continue;
1191 
1192 		ipmmu_utlb_enable(mmu->root->domains[mmu->utlb_ctx[i]], i);
1193 	}
1194 
1195 	return 0;
1196 }
1197 
1198 static const struct dev_pm_ops ipmmu_pm  = {
1199 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(NULL, ipmmu_resume_noirq)
1200 };
1201 #define DEV_PM_OPS	&ipmmu_pm
1202 #else
1203 #define DEV_PM_OPS	NULL
1204 #endif /* CONFIG_PM_SLEEP */
1205 
1206 static struct platform_driver ipmmu_driver = {
1207 	.driver = {
1208 		.name = "ipmmu-vmsa",
1209 		.of_match_table = of_match_ptr(ipmmu_of_ids),
1210 		.pm = DEV_PM_OPS,
1211 	},
1212 	.probe = ipmmu_probe,
1213 	.remove	= ipmmu_remove,
1214 };
1215 
1216 static int __init ipmmu_init(void)
1217 {
1218 	struct device_node *np;
1219 	static bool setup_done;
1220 	int ret;
1221 
1222 	if (setup_done)
1223 		return 0;
1224 
1225 	np = of_find_matching_node(NULL, ipmmu_of_ids);
1226 	if (!np)
1227 		return 0;
1228 
1229 	of_node_put(np);
1230 
1231 	ret = platform_driver_register(&ipmmu_driver);
1232 	if (ret < 0)
1233 		return ret;
1234 
1235 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
1236 	if (!iommu_present(&platform_bus_type))
1237 		bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1238 #endif
1239 
1240 	setup_done = true;
1241 	return 0;
1242 }
1243 subsys_initcall(ipmmu_init);
1244