xref: /openbmc/linux/drivers/iommu/ipmmu-vmsa.c (revision b206011bf05069797df1f4c5ce639398728978e2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * IOMMU API for Renesas VMSA-compatible IPMMU
4  * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
5  *
6  * Copyright (C) 2014-2020 Renesas Electronics Corporation
7  */
8 
9 #include <linux/bitmap.h>
10 #include <linux/delay.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/err.h>
13 #include <linux/export.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/iopoll.h>
18 #include <linux/io-pgtable.h>
19 #include <linux/iommu.h>
20 #include <linux/of.h>
21 #include <linux/of_platform.h>
22 #include <linux/pci.h>
23 #include <linux/platform_device.h>
24 #include <linux/sizes.h>
25 #include <linux/slab.h>
26 #include <linux/sys_soc.h>
27 
28 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
29 #include <asm/dma-iommu.h>
30 #else
31 #define arm_iommu_create_mapping(...)	NULL
32 #define arm_iommu_attach_device(...)	-ENODEV
33 #define arm_iommu_release_mapping(...)	do {} while (0)
34 #endif
35 
36 #define IPMMU_CTX_MAX		16U
37 #define IPMMU_CTX_INVALID	-1
38 
39 #define IPMMU_UTLB_MAX		64U
40 
41 struct ipmmu_features {
42 	bool use_ns_alias_offset;
43 	bool has_cache_leaf_nodes;
44 	unsigned int number_of_contexts;
45 	unsigned int num_utlbs;
46 	bool setup_imbuscr;
47 	bool twobit_imttbcr_sl0;
48 	bool reserved_context;
49 	bool cache_snoop;
50 	unsigned int ctx_offset_base;
51 	unsigned int ctx_offset_stride;
52 	unsigned int utlb_offset_base;
53 };
54 
55 struct ipmmu_vmsa_device {
56 	struct device *dev;
57 	void __iomem *base;
58 	struct iommu_device iommu;
59 	struct ipmmu_vmsa_device *root;
60 	const struct ipmmu_features *features;
61 	unsigned int num_ctx;
62 	spinlock_t lock;			/* Protects ctx and domains[] */
63 	DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
64 	struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
65 	s8 utlb_ctx[IPMMU_UTLB_MAX];
66 
67 	struct iommu_group *group;
68 	struct dma_iommu_mapping *mapping;
69 };
70 
71 struct ipmmu_vmsa_domain {
72 	struct ipmmu_vmsa_device *mmu;
73 	struct iommu_domain io_domain;
74 
75 	struct io_pgtable_cfg cfg;
76 	struct io_pgtable_ops *iop;
77 
78 	unsigned int context_id;
79 	struct mutex mutex;			/* Protects mappings */
80 };
81 
82 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
83 {
84 	return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
85 }
86 
87 static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev)
88 {
89 	return dev_iommu_priv_get(dev);
90 }
91 
92 #define TLB_LOOP_TIMEOUT		100	/* 100us */
93 
94 /* -----------------------------------------------------------------------------
95  * Registers Definition
96  */
97 
98 #define IM_NS_ALIAS_OFFSET		0x800
99 
100 /* MMU "context" registers */
101 #define IMCTR				0x0000		/* R-Car Gen2/3 */
102 #define IMCTR_INTEN			(1 << 2)	/* R-Car Gen2/3 */
103 #define IMCTR_FLUSH			(1 << 1)	/* R-Car Gen2/3 */
104 #define IMCTR_MMUEN			(1 << 0)	/* R-Car Gen2/3 */
105 
106 #define IMTTBCR				0x0008		/* R-Car Gen2/3 */
107 #define IMTTBCR_EAE			(1 << 31)	/* R-Car Gen2/3 */
108 #define IMTTBCR_SH0_INNER_SHAREABLE	(3 << 12)	/* R-Car Gen2 only */
109 #define IMTTBCR_ORGN0_WB_WA		(1 << 10)	/* R-Car Gen2 only */
110 #define IMTTBCR_IRGN0_WB_WA		(1 << 8)	/* R-Car Gen2 only */
111 #define IMTTBCR_SL0_TWOBIT_LVL_1	(2 << 6)	/* R-Car Gen3 only */
112 #define IMTTBCR_SL0_LVL_1		(1 << 4)	/* R-Car Gen2 only */
113 
114 #define IMBUSCR				0x000c		/* R-Car Gen2 only */
115 #define IMBUSCR_DVM			(1 << 2)	/* R-Car Gen2 only */
116 #define IMBUSCR_BUSSEL_MASK		(3 << 0)	/* R-Car Gen2 only */
117 
118 #define IMTTLBR0			0x0010		/* R-Car Gen2/3 */
119 #define IMTTUBR0			0x0014		/* R-Car Gen2/3 */
120 
121 #define IMSTR				0x0020		/* R-Car Gen2/3 */
122 #define IMSTR_MHIT			(1 << 4)	/* R-Car Gen2/3 */
123 #define IMSTR_ABORT			(1 << 2)	/* R-Car Gen2/3 */
124 #define IMSTR_PF			(1 << 1)	/* R-Car Gen2/3 */
125 #define IMSTR_TF			(1 << 0)	/* R-Car Gen2/3 */
126 
127 #define IMMAIR0				0x0028		/* R-Car Gen2/3 */
128 
129 #define IMELAR				0x0030		/* R-Car Gen2/3, IMEAR on R-Car Gen2 */
130 #define IMEUAR				0x0034		/* R-Car Gen3 only */
131 
132 /* uTLB registers */
133 #define IMUCTR(n)			((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
134 #define IMUCTR0(n)			(0x0300 + ((n) * 16))		/* R-Car Gen2/3 */
135 #define IMUCTR32(n)			(0x0600 + (((n) - 32) * 16))	/* R-Car Gen3 only */
136 #define IMUCTR_TTSEL_MMU(n)		((n) << 4)	/* R-Car Gen2/3 */
137 #define IMUCTR_FLUSH			(1 << 1)	/* R-Car Gen2/3 */
138 #define IMUCTR_MMUEN			(1 << 0)	/* R-Car Gen2/3 */
139 
140 #define IMUASID(n)			((n) < 32 ? IMUASID0(n) : IMUASID32(n))
141 #define IMUASID0(n)			(0x0308 + ((n) * 16))		/* R-Car Gen2/3 */
142 #define IMUASID32(n)			(0x0608 + (((n) - 32) * 16))	/* R-Car Gen3 only */
143 
144 /* -----------------------------------------------------------------------------
145  * Root device handling
146  */
147 
148 static struct platform_driver ipmmu_driver;
149 
150 static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu)
151 {
152 	return mmu->root == mmu;
153 }
154 
155 static int __ipmmu_check_device(struct device *dev, void *data)
156 {
157 	struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
158 	struct ipmmu_vmsa_device **rootp = data;
159 
160 	if (ipmmu_is_root(mmu))
161 		*rootp = mmu;
162 
163 	return 0;
164 }
165 
166 static struct ipmmu_vmsa_device *ipmmu_find_root(void)
167 {
168 	struct ipmmu_vmsa_device *root = NULL;
169 
170 	return driver_for_each_device(&ipmmu_driver.driver, NULL, &root,
171 				      __ipmmu_check_device) == 0 ? root : NULL;
172 }
173 
174 /* -----------------------------------------------------------------------------
175  * Read/Write Access
176  */
177 
178 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
179 {
180 	return ioread32(mmu->base + offset);
181 }
182 
183 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
184 			u32 data)
185 {
186 	iowrite32(data, mmu->base + offset);
187 }
188 
189 static unsigned int ipmmu_ctx_reg(struct ipmmu_vmsa_device *mmu,
190 				  unsigned int context_id, unsigned int reg)
191 {
192 	unsigned int base = mmu->features->ctx_offset_base;
193 
194 	if (context_id > 7)
195 		base += 0x800 - 8 * 0x40;
196 
197 	return base + context_id * mmu->features->ctx_offset_stride + reg;
198 }
199 
200 static u32 ipmmu_ctx_read(struct ipmmu_vmsa_device *mmu,
201 			  unsigned int context_id, unsigned int reg)
202 {
203 	return ipmmu_read(mmu, ipmmu_ctx_reg(mmu, context_id, reg));
204 }
205 
206 static void ipmmu_ctx_write(struct ipmmu_vmsa_device *mmu,
207 			    unsigned int context_id, unsigned int reg, u32 data)
208 {
209 	ipmmu_write(mmu, ipmmu_ctx_reg(mmu, context_id, reg), data);
210 }
211 
212 static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain,
213 			       unsigned int reg)
214 {
215 	return ipmmu_ctx_read(domain->mmu->root, domain->context_id, reg);
216 }
217 
218 static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain,
219 				 unsigned int reg, u32 data)
220 {
221 	ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
222 }
223 
224 static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain,
225 				unsigned int reg, u32 data)
226 {
227 	if (domain->mmu != domain->mmu->root)
228 		ipmmu_ctx_write(domain->mmu, domain->context_id, reg, data);
229 
230 	ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
231 }
232 
233 static u32 ipmmu_utlb_reg(struct ipmmu_vmsa_device *mmu, unsigned int reg)
234 {
235 	return mmu->features->utlb_offset_base + reg;
236 }
237 
238 static void ipmmu_imuasid_write(struct ipmmu_vmsa_device *mmu,
239 				unsigned int utlb, u32 data)
240 {
241 	ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUASID(utlb)), data);
242 }
243 
244 static void ipmmu_imuctr_write(struct ipmmu_vmsa_device *mmu,
245 			       unsigned int utlb, u32 data)
246 {
247 	ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUCTR(utlb)), data);
248 }
249 
250 /* -----------------------------------------------------------------------------
251  * TLB and microTLB Management
252  */
253 
254 /* Wait for any pending TLB invalidations to complete */
255 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
256 {
257 	u32 val;
258 
259 	if (read_poll_timeout_atomic(ipmmu_ctx_read_root, val,
260 				     !(val & IMCTR_FLUSH), 1, TLB_LOOP_TIMEOUT,
261 				     false, domain, IMCTR))
262 		dev_err_ratelimited(domain->mmu->dev,
263 			"TLB sync timed out -- MMU may be deadlocked\n");
264 }
265 
266 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
267 {
268 	u32 reg;
269 
270 	reg = ipmmu_ctx_read_root(domain, IMCTR);
271 	reg |= IMCTR_FLUSH;
272 	ipmmu_ctx_write_all(domain, IMCTR, reg);
273 
274 	ipmmu_tlb_sync(domain);
275 }
276 
277 /*
278  * Enable MMU translation for the microTLB.
279  */
280 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
281 			      unsigned int utlb)
282 {
283 	struct ipmmu_vmsa_device *mmu = domain->mmu;
284 
285 	/*
286 	 * TODO: Reference-count the microTLB as several bus masters can be
287 	 * connected to the same microTLB.
288 	 */
289 
290 	/* TODO: What should we set the ASID to ? */
291 	ipmmu_imuasid_write(mmu, utlb, 0);
292 	/* TODO: Do we need to flush the microTLB ? */
293 	ipmmu_imuctr_write(mmu, utlb, IMUCTR_TTSEL_MMU(domain->context_id) |
294 				      IMUCTR_FLUSH | IMUCTR_MMUEN);
295 	mmu->utlb_ctx[utlb] = domain->context_id;
296 }
297 
298 static void ipmmu_tlb_flush_all(void *cookie)
299 {
300 	struct ipmmu_vmsa_domain *domain = cookie;
301 
302 	ipmmu_tlb_invalidate(domain);
303 }
304 
305 static void ipmmu_tlb_flush(unsigned long iova, size_t size,
306 				size_t granule, void *cookie)
307 {
308 	ipmmu_tlb_flush_all(cookie);
309 }
310 
311 static const struct iommu_flush_ops ipmmu_flush_ops = {
312 	.tlb_flush_all = ipmmu_tlb_flush_all,
313 	.tlb_flush_walk = ipmmu_tlb_flush,
314 };
315 
316 /* -----------------------------------------------------------------------------
317  * Domain/Context Management
318  */
319 
320 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
321 					 struct ipmmu_vmsa_domain *domain)
322 {
323 	unsigned long flags;
324 	int ret;
325 
326 	spin_lock_irqsave(&mmu->lock, flags);
327 
328 	ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx);
329 	if (ret != mmu->num_ctx) {
330 		mmu->domains[ret] = domain;
331 		set_bit(ret, mmu->ctx);
332 	} else
333 		ret = -EBUSY;
334 
335 	spin_unlock_irqrestore(&mmu->lock, flags);
336 
337 	return ret;
338 }
339 
340 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
341 				      unsigned int context_id)
342 {
343 	unsigned long flags;
344 
345 	spin_lock_irqsave(&mmu->lock, flags);
346 
347 	clear_bit(context_id, mmu->ctx);
348 	mmu->domains[context_id] = NULL;
349 
350 	spin_unlock_irqrestore(&mmu->lock, flags);
351 }
352 
353 static void ipmmu_domain_setup_context(struct ipmmu_vmsa_domain *domain)
354 {
355 	u64 ttbr;
356 	u32 tmp;
357 
358 	/* TTBR0 */
359 	ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr;
360 	ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr);
361 	ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32);
362 
363 	/*
364 	 * TTBCR
365 	 * We use long descriptors and allocate the whole 32-bit VA space to
366 	 * TTBR0.
367 	 */
368 	if (domain->mmu->features->twobit_imttbcr_sl0)
369 		tmp = IMTTBCR_SL0_TWOBIT_LVL_1;
370 	else
371 		tmp = IMTTBCR_SL0_LVL_1;
372 
373 	if (domain->mmu->features->cache_snoop)
374 		tmp |= IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
375 		       IMTTBCR_IRGN0_WB_WA;
376 
377 	ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE | tmp);
378 
379 	/* MAIR0 */
380 	ipmmu_ctx_write_root(domain, IMMAIR0,
381 			     domain->cfg.arm_lpae_s1_cfg.mair);
382 
383 	/* IMBUSCR */
384 	if (domain->mmu->features->setup_imbuscr)
385 		ipmmu_ctx_write_root(domain, IMBUSCR,
386 				     ipmmu_ctx_read_root(domain, IMBUSCR) &
387 				     ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
388 
389 	/*
390 	 * IMSTR
391 	 * Clear all interrupt flags.
392 	 */
393 	ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR));
394 
395 	/*
396 	 * IMCTR
397 	 * Enable the MMU and interrupt generation. The long-descriptor
398 	 * translation table format doesn't use TEX remapping. Don't enable AF
399 	 * software management as we have no use for it. Flush the TLB as
400 	 * required when modifying the context registers.
401 	 */
402 	ipmmu_ctx_write_all(domain, IMCTR,
403 			    IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
404 }
405 
406 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
407 {
408 	int ret;
409 
410 	/*
411 	 * Allocate the page table operations.
412 	 *
413 	 * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
414 	 * access, Long-descriptor format" that the NStable bit being set in a
415 	 * table descriptor will result in the NStable and NS bits of all child
416 	 * entries being ignored and considered as being set. The IPMMU seems
417 	 * not to comply with this, as it generates a secure access page fault
418 	 * if any of the NStable and NS bits isn't set when running in
419 	 * non-secure mode.
420 	 */
421 	domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
422 	domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
423 	domain->cfg.ias = 32;
424 	domain->cfg.oas = 40;
425 	domain->cfg.tlb = &ipmmu_flush_ops;
426 	domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
427 	domain->io_domain.geometry.force_aperture = true;
428 	/*
429 	 * TODO: Add support for coherent walk through CCI with DVM and remove
430 	 * cache handling. For now, delegate it to the io-pgtable code.
431 	 */
432 	domain->cfg.coherent_walk = false;
433 	domain->cfg.iommu_dev = domain->mmu->root->dev;
434 
435 	/*
436 	 * Find an unused context.
437 	 */
438 	ret = ipmmu_domain_allocate_context(domain->mmu->root, domain);
439 	if (ret < 0)
440 		return ret;
441 
442 	domain->context_id = ret;
443 
444 	domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
445 					   domain);
446 	if (!domain->iop) {
447 		ipmmu_domain_free_context(domain->mmu->root,
448 					  domain->context_id);
449 		return -EINVAL;
450 	}
451 
452 	ipmmu_domain_setup_context(domain);
453 	return 0;
454 }
455 
456 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
457 {
458 	if (!domain->mmu)
459 		return;
460 
461 	/*
462 	 * Disable the context. Flush the TLB as required when modifying the
463 	 * context registers.
464 	 *
465 	 * TODO: Is TLB flush really needed ?
466 	 */
467 	ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH);
468 	ipmmu_tlb_sync(domain);
469 	ipmmu_domain_free_context(domain->mmu->root, domain->context_id);
470 }
471 
472 /* -----------------------------------------------------------------------------
473  * Fault Handling
474  */
475 
476 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
477 {
478 	const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
479 	struct ipmmu_vmsa_device *mmu = domain->mmu;
480 	unsigned long iova;
481 	u32 status;
482 
483 	status = ipmmu_ctx_read_root(domain, IMSTR);
484 	if (!(status & err_mask))
485 		return IRQ_NONE;
486 
487 	iova = ipmmu_ctx_read_root(domain, IMELAR);
488 	if (IS_ENABLED(CONFIG_64BIT))
489 		iova |= (u64)ipmmu_ctx_read_root(domain, IMEUAR) << 32;
490 
491 	/*
492 	 * Clear the error status flags. Unlike traditional interrupt flag
493 	 * registers that must be cleared by writing 1, this status register
494 	 * seems to require 0. The error address register must be read before,
495 	 * otherwise its value will be 0.
496 	 */
497 	ipmmu_ctx_write_root(domain, IMSTR, 0);
498 
499 	/* Log fatal errors. */
500 	if (status & IMSTR_MHIT)
501 		dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%lx\n",
502 				    iova);
503 	if (status & IMSTR_ABORT)
504 		dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%lx\n",
505 				    iova);
506 
507 	if (!(status & (IMSTR_PF | IMSTR_TF)))
508 		return IRQ_NONE;
509 
510 	/*
511 	 * Try to handle page faults and translation faults.
512 	 *
513 	 * TODO: We need to look up the faulty device based on the I/O VA. Use
514 	 * the IOMMU device for now.
515 	 */
516 	if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
517 		return IRQ_HANDLED;
518 
519 	dev_err_ratelimited(mmu->dev,
520 			    "Unhandled fault: status 0x%08x iova 0x%lx\n",
521 			    status, iova);
522 
523 	return IRQ_HANDLED;
524 }
525 
526 static irqreturn_t ipmmu_irq(int irq, void *dev)
527 {
528 	struct ipmmu_vmsa_device *mmu = dev;
529 	irqreturn_t status = IRQ_NONE;
530 	unsigned int i;
531 	unsigned long flags;
532 
533 	spin_lock_irqsave(&mmu->lock, flags);
534 
535 	/*
536 	 * Check interrupts for all active contexts.
537 	 */
538 	for (i = 0; i < mmu->num_ctx; i++) {
539 		if (!mmu->domains[i])
540 			continue;
541 		if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
542 			status = IRQ_HANDLED;
543 	}
544 
545 	spin_unlock_irqrestore(&mmu->lock, flags);
546 
547 	return status;
548 }
549 
550 /* -----------------------------------------------------------------------------
551  * IOMMU Operations
552  */
553 
554 static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
555 {
556 	struct ipmmu_vmsa_domain *domain;
557 
558 	if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
559 		return NULL;
560 
561 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
562 	if (!domain)
563 		return NULL;
564 
565 	mutex_init(&domain->mutex);
566 
567 	return &domain->io_domain;
568 }
569 
570 static void ipmmu_domain_free(struct iommu_domain *io_domain)
571 {
572 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
573 
574 	/*
575 	 * Free the domain resources. We assume that all devices have already
576 	 * been detached.
577 	 */
578 	ipmmu_domain_destroy_context(domain);
579 	free_io_pgtable_ops(domain->iop);
580 	kfree(domain);
581 }
582 
583 static int ipmmu_attach_device(struct iommu_domain *io_domain,
584 			       struct device *dev)
585 {
586 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
587 	struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
588 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
589 	unsigned int i;
590 	int ret = 0;
591 
592 	if (!mmu) {
593 		dev_err(dev, "Cannot attach to IPMMU\n");
594 		return -ENXIO;
595 	}
596 
597 	mutex_lock(&domain->mutex);
598 
599 	if (!domain->mmu) {
600 		/* The domain hasn't been used yet, initialize it. */
601 		domain->mmu = mmu;
602 		ret = ipmmu_domain_init_context(domain);
603 		if (ret < 0) {
604 			dev_err(dev, "Unable to initialize IPMMU context\n");
605 			domain->mmu = NULL;
606 		} else {
607 			dev_info(dev, "Using IPMMU context %u\n",
608 				 domain->context_id);
609 		}
610 	} else if (domain->mmu != mmu) {
611 		/*
612 		 * Something is wrong, we can't attach two devices using
613 		 * different IOMMUs to the same domain.
614 		 */
615 		ret = -EINVAL;
616 	} else
617 		dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
618 
619 	mutex_unlock(&domain->mutex);
620 
621 	if (ret < 0)
622 		return ret;
623 
624 	for (i = 0; i < fwspec->num_ids; ++i)
625 		ipmmu_utlb_enable(domain, fwspec->ids[i]);
626 
627 	return 0;
628 }
629 
630 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
631 		     phys_addr_t paddr, size_t pgsize, size_t pgcount,
632 		     int prot, gfp_t gfp, size_t *mapped)
633 {
634 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
635 
636 	return domain->iop->map_pages(domain->iop, iova, paddr, pgsize, pgcount,
637 				      prot, gfp, mapped);
638 }
639 
640 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
641 			  size_t pgsize, size_t pgcount,
642 			  struct iommu_iotlb_gather *gather)
643 {
644 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
645 
646 	return domain->iop->unmap_pages(domain->iop, iova, pgsize, pgcount, gather);
647 }
648 
649 static void ipmmu_flush_iotlb_all(struct iommu_domain *io_domain)
650 {
651 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
652 
653 	if (domain->mmu)
654 		ipmmu_tlb_flush_all(domain);
655 }
656 
657 static void ipmmu_iotlb_sync(struct iommu_domain *io_domain,
658 			     struct iommu_iotlb_gather *gather)
659 {
660 	ipmmu_flush_iotlb_all(io_domain);
661 }
662 
663 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
664 				      dma_addr_t iova)
665 {
666 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
667 
668 	/* TODO: Is locking needed ? */
669 
670 	return domain->iop->iova_to_phys(domain->iop, iova);
671 }
672 
673 static int ipmmu_init_platform_device(struct device *dev,
674 				      struct of_phandle_args *args)
675 {
676 	struct platform_device *ipmmu_pdev;
677 
678 	ipmmu_pdev = of_find_device_by_node(args->np);
679 	if (!ipmmu_pdev)
680 		return -ENODEV;
681 
682 	dev_iommu_priv_set(dev, platform_get_drvdata(ipmmu_pdev));
683 
684 	return 0;
685 }
686 
687 static const struct soc_device_attribute soc_needs_opt_in[] = {
688 	{ .family = "R-Car Gen3", },
689 	{ .family = "R-Car Gen4", },
690 	{ .family = "RZ/G2", },
691 	{ /* sentinel */ }
692 };
693 
694 static const struct soc_device_attribute soc_denylist[] = {
695 	{ .soc_id = "r8a774a1", },
696 	{ .soc_id = "r8a7795", .revision = "ES2.*" },
697 	{ .soc_id = "r8a7796", },
698 	{ /* sentinel */ }
699 };
700 
701 static const char * const devices_allowlist[] = {
702 	"ee100000.mmc",
703 	"ee120000.mmc",
704 	"ee140000.mmc",
705 	"ee160000.mmc"
706 };
707 
708 static bool ipmmu_device_is_allowed(struct device *dev)
709 {
710 	unsigned int i;
711 
712 	/*
713 	 * R-Car Gen3/4 and RZ/G2 use the allow list to opt-in devices.
714 	 * For Other SoCs, this returns true anyway.
715 	 */
716 	if (!soc_device_match(soc_needs_opt_in))
717 		return true;
718 
719 	/* Check whether this SoC can use the IPMMU correctly or not */
720 	if (soc_device_match(soc_denylist))
721 		return false;
722 
723 	/* Check whether this device is a PCI device */
724 	if (dev_is_pci(dev))
725 		return true;
726 
727 	/* Check whether this device can work with the IPMMU */
728 	for (i = 0; i < ARRAY_SIZE(devices_allowlist); i++) {
729 		if (!strcmp(dev_name(dev), devices_allowlist[i]))
730 			return true;
731 	}
732 
733 	/* Otherwise, do not allow use of IPMMU */
734 	return false;
735 }
736 
737 static int ipmmu_of_xlate(struct device *dev,
738 			  struct of_phandle_args *spec)
739 {
740 	if (!ipmmu_device_is_allowed(dev))
741 		return -ENODEV;
742 
743 	iommu_fwspec_add_ids(dev, spec->args, 1);
744 
745 	/* Initialize once - xlate() will call multiple times */
746 	if (to_ipmmu(dev))
747 		return 0;
748 
749 	return ipmmu_init_platform_device(dev, spec);
750 }
751 
752 static int ipmmu_init_arm_mapping(struct device *dev)
753 {
754 	struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
755 	int ret;
756 
757 	/*
758 	 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
759 	 * VAs. This will allocate a corresponding IOMMU domain.
760 	 *
761 	 * TODO:
762 	 * - Create one mapping per context (TLB).
763 	 * - Make the mapping size configurable ? We currently use a 2GB mapping
764 	 *   at a 1GB offset to ensure that NULL VAs will fault.
765 	 */
766 	if (!mmu->mapping) {
767 		struct dma_iommu_mapping *mapping;
768 
769 		mapping = arm_iommu_create_mapping(&platform_bus_type,
770 						   SZ_1G, SZ_2G);
771 		if (IS_ERR(mapping)) {
772 			dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
773 			ret = PTR_ERR(mapping);
774 			goto error;
775 		}
776 
777 		mmu->mapping = mapping;
778 	}
779 
780 	/* Attach the ARM VA mapping to the device. */
781 	ret = arm_iommu_attach_device(dev, mmu->mapping);
782 	if (ret < 0) {
783 		dev_err(dev, "Failed to attach device to VA mapping\n");
784 		goto error;
785 	}
786 
787 	return 0;
788 
789 error:
790 	if (mmu->mapping)
791 		arm_iommu_release_mapping(mmu->mapping);
792 
793 	return ret;
794 }
795 
796 static struct iommu_device *ipmmu_probe_device(struct device *dev)
797 {
798 	struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
799 
800 	/*
801 	 * Only let through devices that have been verified in xlate()
802 	 */
803 	if (!mmu)
804 		return ERR_PTR(-ENODEV);
805 
806 	return &mmu->iommu;
807 }
808 
809 static void ipmmu_probe_finalize(struct device *dev)
810 {
811 	int ret = 0;
812 
813 	if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA))
814 		ret = ipmmu_init_arm_mapping(dev);
815 
816 	if (ret)
817 		dev_err(dev, "Can't create IOMMU mapping - DMA-OPS will not work\n");
818 }
819 
820 static void ipmmu_release_device(struct device *dev)
821 {
822 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
823 	struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
824 	unsigned int i;
825 
826 	for (i = 0; i < fwspec->num_ids; ++i) {
827 		unsigned int utlb = fwspec->ids[i];
828 
829 		ipmmu_imuctr_write(mmu, utlb, 0);
830 		mmu->utlb_ctx[utlb] = IPMMU_CTX_INVALID;
831 	}
832 
833 	arm_iommu_release_mapping(mmu->mapping);
834 }
835 
836 static struct iommu_group *ipmmu_find_group(struct device *dev)
837 {
838 	struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
839 	struct iommu_group *group;
840 
841 	if (mmu->group)
842 		return iommu_group_ref_get(mmu->group);
843 
844 	group = iommu_group_alloc();
845 	if (!IS_ERR(group))
846 		mmu->group = group;
847 
848 	return group;
849 }
850 
851 static const struct iommu_ops ipmmu_ops = {
852 	.domain_alloc = ipmmu_domain_alloc,
853 	.probe_device = ipmmu_probe_device,
854 	.release_device = ipmmu_release_device,
855 	.probe_finalize = ipmmu_probe_finalize,
856 	.device_group = IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA)
857 			? generic_device_group : ipmmu_find_group,
858 	.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
859 	.of_xlate = ipmmu_of_xlate,
860 	.default_domain_ops = &(const struct iommu_domain_ops) {
861 		.attach_dev	= ipmmu_attach_device,
862 		.map_pages	= ipmmu_map,
863 		.unmap_pages	= ipmmu_unmap,
864 		.flush_iotlb_all = ipmmu_flush_iotlb_all,
865 		.iotlb_sync	= ipmmu_iotlb_sync,
866 		.iova_to_phys	= ipmmu_iova_to_phys,
867 		.free		= ipmmu_domain_free,
868 	}
869 };
870 
871 /* -----------------------------------------------------------------------------
872  * Probe/remove and init
873  */
874 
875 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
876 {
877 	unsigned int i;
878 
879 	/* Disable all contexts. */
880 	for (i = 0; i < mmu->num_ctx; ++i)
881 		ipmmu_ctx_write(mmu, i, IMCTR, 0);
882 }
883 
884 static const struct ipmmu_features ipmmu_features_default = {
885 	.use_ns_alias_offset = true,
886 	.has_cache_leaf_nodes = false,
887 	.number_of_contexts = 1, /* software only tested with one context */
888 	.num_utlbs = 32,
889 	.setup_imbuscr = true,
890 	.twobit_imttbcr_sl0 = false,
891 	.reserved_context = false,
892 	.cache_snoop = true,
893 	.ctx_offset_base = 0,
894 	.ctx_offset_stride = 0x40,
895 	.utlb_offset_base = 0,
896 };
897 
898 static const struct ipmmu_features ipmmu_features_rcar_gen3 = {
899 	.use_ns_alias_offset = false,
900 	.has_cache_leaf_nodes = true,
901 	.number_of_contexts = 8,
902 	.num_utlbs = 48,
903 	.setup_imbuscr = false,
904 	.twobit_imttbcr_sl0 = true,
905 	.reserved_context = true,
906 	.cache_snoop = false,
907 	.ctx_offset_base = 0,
908 	.ctx_offset_stride = 0x40,
909 	.utlb_offset_base = 0,
910 };
911 
912 static const struct ipmmu_features ipmmu_features_rcar_gen4 = {
913 	.use_ns_alias_offset = false,
914 	.has_cache_leaf_nodes = true,
915 	.number_of_contexts = 16,
916 	.num_utlbs = 64,
917 	.setup_imbuscr = false,
918 	.twobit_imttbcr_sl0 = true,
919 	.reserved_context = true,
920 	.cache_snoop = false,
921 	.ctx_offset_base = 0x10000,
922 	.ctx_offset_stride = 0x1040,
923 	.utlb_offset_base = 0x3000,
924 };
925 
926 static const struct of_device_id ipmmu_of_ids[] = {
927 	{
928 		.compatible = "renesas,ipmmu-vmsa",
929 		.data = &ipmmu_features_default,
930 	}, {
931 		.compatible = "renesas,ipmmu-r8a774a1",
932 		.data = &ipmmu_features_rcar_gen3,
933 	}, {
934 		.compatible = "renesas,ipmmu-r8a774b1",
935 		.data = &ipmmu_features_rcar_gen3,
936 	}, {
937 		.compatible = "renesas,ipmmu-r8a774c0",
938 		.data = &ipmmu_features_rcar_gen3,
939 	}, {
940 		.compatible = "renesas,ipmmu-r8a774e1",
941 		.data = &ipmmu_features_rcar_gen3,
942 	}, {
943 		.compatible = "renesas,ipmmu-r8a7795",
944 		.data = &ipmmu_features_rcar_gen3,
945 	}, {
946 		.compatible = "renesas,ipmmu-r8a7796",
947 		.data = &ipmmu_features_rcar_gen3,
948 	}, {
949 		.compatible = "renesas,ipmmu-r8a77961",
950 		.data = &ipmmu_features_rcar_gen3,
951 	}, {
952 		.compatible = "renesas,ipmmu-r8a77965",
953 		.data = &ipmmu_features_rcar_gen3,
954 	}, {
955 		.compatible = "renesas,ipmmu-r8a77970",
956 		.data = &ipmmu_features_rcar_gen3,
957 	}, {
958 		.compatible = "renesas,ipmmu-r8a77980",
959 		.data = &ipmmu_features_rcar_gen3,
960 	}, {
961 		.compatible = "renesas,ipmmu-r8a77990",
962 		.data = &ipmmu_features_rcar_gen3,
963 	}, {
964 		.compatible = "renesas,ipmmu-r8a77995",
965 		.data = &ipmmu_features_rcar_gen3,
966 	}, {
967 		.compatible = "renesas,ipmmu-r8a779a0",
968 		.data = &ipmmu_features_rcar_gen4,
969 	}, {
970 		.compatible = "renesas,rcar-gen4-ipmmu-vmsa",
971 		.data = &ipmmu_features_rcar_gen4,
972 	}, {
973 		/* Terminator */
974 	},
975 };
976 
977 static int ipmmu_probe(struct platform_device *pdev)
978 {
979 	struct ipmmu_vmsa_device *mmu;
980 	struct resource *res;
981 	int irq;
982 	int ret;
983 
984 	mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
985 	if (!mmu) {
986 		dev_err(&pdev->dev, "cannot allocate device data\n");
987 		return -ENOMEM;
988 	}
989 
990 	mmu->dev = &pdev->dev;
991 	spin_lock_init(&mmu->lock);
992 	bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
993 	mmu->features = of_device_get_match_data(&pdev->dev);
994 	memset(mmu->utlb_ctx, IPMMU_CTX_INVALID, mmu->features->num_utlbs);
995 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
996 	if (ret)
997 		return ret;
998 
999 	/* Map I/O memory and request IRQ. */
1000 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1001 	mmu->base = devm_ioremap_resource(&pdev->dev, res);
1002 	if (IS_ERR(mmu->base))
1003 		return PTR_ERR(mmu->base);
1004 
1005 	/*
1006 	 * The IPMMU has two register banks, for secure and non-secure modes.
1007 	 * The bank mapped at the beginning of the IPMMU address space
1008 	 * corresponds to the running mode of the CPU. When running in secure
1009 	 * mode the non-secure register bank is also available at an offset.
1010 	 *
1011 	 * Secure mode operation isn't clearly documented and is thus currently
1012 	 * not implemented in the driver. Furthermore, preliminary tests of
1013 	 * non-secure operation with the main register bank were not successful.
1014 	 * Offset the registers base unconditionally to point to the non-secure
1015 	 * alias space for now.
1016 	 */
1017 	if (mmu->features->use_ns_alias_offset)
1018 		mmu->base += IM_NS_ALIAS_OFFSET;
1019 
1020 	mmu->num_ctx = min(IPMMU_CTX_MAX, mmu->features->number_of_contexts);
1021 
1022 	/*
1023 	 * Determine if this IPMMU instance is a root device by checking for
1024 	 * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
1025 	 */
1026 	if (!mmu->features->has_cache_leaf_nodes ||
1027 	    !of_property_present(pdev->dev.of_node, "renesas,ipmmu-main"))
1028 		mmu->root = mmu;
1029 	else
1030 		mmu->root = ipmmu_find_root();
1031 
1032 	/*
1033 	 * Wait until the root device has been registered for sure.
1034 	 */
1035 	if (!mmu->root)
1036 		return -EPROBE_DEFER;
1037 
1038 	/* Root devices have mandatory IRQs */
1039 	if (ipmmu_is_root(mmu)) {
1040 		irq = platform_get_irq(pdev, 0);
1041 		if (irq < 0)
1042 			return irq;
1043 
1044 		ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1045 				       dev_name(&pdev->dev), mmu);
1046 		if (ret < 0) {
1047 			dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1048 			return ret;
1049 		}
1050 
1051 		ipmmu_device_reset(mmu);
1052 
1053 		if (mmu->features->reserved_context) {
1054 			dev_info(&pdev->dev, "IPMMU context 0 is reserved\n");
1055 			set_bit(0, mmu->ctx);
1056 		}
1057 	}
1058 
1059 	/*
1060 	 * Register the IPMMU to the IOMMU subsystem in the following cases:
1061 	 * - R-Car Gen2 IPMMU (all devices registered)
1062 	 * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1063 	 */
1064 	if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) {
1065 		ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL,
1066 					     dev_name(&pdev->dev));
1067 		if (ret)
1068 			return ret;
1069 
1070 		ret = iommu_device_register(&mmu->iommu, &ipmmu_ops, &pdev->dev);
1071 		if (ret)
1072 			return ret;
1073 	}
1074 
1075 	/*
1076 	 * We can't create the ARM mapping here as it requires the bus to have
1077 	 * an IOMMU, which only happens when bus_set_iommu() is called in
1078 	 * ipmmu_init() after the probe function returns.
1079 	 */
1080 
1081 	platform_set_drvdata(pdev, mmu);
1082 
1083 	return 0;
1084 }
1085 
1086 static void ipmmu_remove(struct platform_device *pdev)
1087 {
1088 	struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1089 
1090 	iommu_device_sysfs_remove(&mmu->iommu);
1091 	iommu_device_unregister(&mmu->iommu);
1092 
1093 	arm_iommu_release_mapping(mmu->mapping);
1094 
1095 	ipmmu_device_reset(mmu);
1096 }
1097 
1098 #ifdef CONFIG_PM_SLEEP
1099 static int ipmmu_resume_noirq(struct device *dev)
1100 {
1101 	struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
1102 	unsigned int i;
1103 
1104 	/* Reset root MMU and restore contexts */
1105 	if (ipmmu_is_root(mmu)) {
1106 		ipmmu_device_reset(mmu);
1107 
1108 		for (i = 0; i < mmu->num_ctx; i++) {
1109 			if (!mmu->domains[i])
1110 				continue;
1111 
1112 			ipmmu_domain_setup_context(mmu->domains[i]);
1113 		}
1114 	}
1115 
1116 	/* Re-enable active micro-TLBs */
1117 	for (i = 0; i < mmu->features->num_utlbs; i++) {
1118 		if (mmu->utlb_ctx[i] == IPMMU_CTX_INVALID)
1119 			continue;
1120 
1121 		ipmmu_utlb_enable(mmu->root->domains[mmu->utlb_ctx[i]], i);
1122 	}
1123 
1124 	return 0;
1125 }
1126 
1127 static const struct dev_pm_ops ipmmu_pm  = {
1128 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(NULL, ipmmu_resume_noirq)
1129 };
1130 #define DEV_PM_OPS	&ipmmu_pm
1131 #else
1132 #define DEV_PM_OPS	NULL
1133 #endif /* CONFIG_PM_SLEEP */
1134 
1135 static struct platform_driver ipmmu_driver = {
1136 	.driver = {
1137 		.name = "ipmmu-vmsa",
1138 		.of_match_table = of_match_ptr(ipmmu_of_ids),
1139 		.pm = DEV_PM_OPS,
1140 	},
1141 	.probe = ipmmu_probe,
1142 	.remove_new = ipmmu_remove,
1143 };
1144 builtin_platform_driver(ipmmu_driver);
1145