1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * IOMMU API for Renesas VMSA-compatible IPMMU 4 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com> 5 * 6 * Copyright (C) 2014-2020 Renesas Electronics Corporation 7 */ 8 9 #include <linux/bitmap.h> 10 #include <linux/delay.h> 11 #include <linux/dma-iommu.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/err.h> 14 #include <linux/export.h> 15 #include <linux/init.h> 16 #include <linux/interrupt.h> 17 #include <linux/io.h> 18 #include <linux/io-pgtable.h> 19 #include <linux/iommu.h> 20 #include <linux/of.h> 21 #include <linux/of_device.h> 22 #include <linux/of_iommu.h> 23 #include <linux/of_platform.h> 24 #include <linux/platform_device.h> 25 #include <linux/sizes.h> 26 #include <linux/slab.h> 27 #include <linux/sys_soc.h> 28 29 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA) 30 #include <asm/dma-iommu.h> 31 #else 32 #define arm_iommu_create_mapping(...) NULL 33 #define arm_iommu_attach_device(...) -ENODEV 34 #define arm_iommu_release_mapping(...) do {} while (0) 35 #define arm_iommu_detach_device(...) do {} while (0) 36 #endif 37 38 #define IPMMU_CTX_MAX 8U 39 #define IPMMU_CTX_INVALID -1 40 41 #define IPMMU_UTLB_MAX 48U 42 43 struct ipmmu_features { 44 bool use_ns_alias_offset; 45 bool has_cache_leaf_nodes; 46 unsigned int number_of_contexts; 47 unsigned int num_utlbs; 48 bool setup_imbuscr; 49 bool twobit_imttbcr_sl0; 50 bool reserved_context; 51 bool cache_snoop; 52 unsigned int ctx_offset_base; 53 unsigned int ctx_offset_stride; 54 unsigned int utlb_offset_base; 55 }; 56 57 struct ipmmu_vmsa_device { 58 struct device *dev; 59 void __iomem *base; 60 struct iommu_device iommu; 61 struct ipmmu_vmsa_device *root; 62 const struct ipmmu_features *features; 63 unsigned int num_ctx; 64 spinlock_t lock; /* Protects ctx and domains[] */ 65 DECLARE_BITMAP(ctx, IPMMU_CTX_MAX); 66 struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX]; 67 s8 utlb_ctx[IPMMU_UTLB_MAX]; 68 69 struct iommu_group *group; 70 struct dma_iommu_mapping *mapping; 71 }; 72 73 struct ipmmu_vmsa_domain { 74 struct ipmmu_vmsa_device *mmu; 75 struct iommu_domain io_domain; 76 77 struct io_pgtable_cfg cfg; 78 struct io_pgtable_ops *iop; 79 80 unsigned int context_id; 81 struct mutex mutex; /* Protects mappings */ 82 }; 83 84 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom) 85 { 86 return container_of(dom, struct ipmmu_vmsa_domain, io_domain); 87 } 88 89 static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev) 90 { 91 return dev_iommu_priv_get(dev); 92 } 93 94 #define TLB_LOOP_TIMEOUT 100 /* 100us */ 95 96 /* ----------------------------------------------------------------------------- 97 * Registers Definition 98 */ 99 100 #define IM_NS_ALIAS_OFFSET 0x800 101 102 /* MMU "context" registers */ 103 #define IMCTR 0x0000 /* R-Car Gen2/3 */ 104 #define IMCTR_INTEN (1 << 2) /* R-Car Gen2/3 */ 105 #define IMCTR_FLUSH (1 << 1) /* R-Car Gen2/3 */ 106 #define IMCTR_MMUEN (1 << 0) /* R-Car Gen2/3 */ 107 108 #define IMTTBCR 0x0008 /* R-Car Gen2/3 */ 109 #define IMTTBCR_EAE (1 << 31) /* R-Car Gen2/3 */ 110 #define IMTTBCR_SH0_INNER_SHAREABLE (3 << 12) /* R-Car Gen2 only */ 111 #define IMTTBCR_ORGN0_WB_WA (1 << 10) /* R-Car Gen2 only */ 112 #define IMTTBCR_IRGN0_WB_WA (1 << 8) /* R-Car Gen2 only */ 113 #define IMTTBCR_SL0_TWOBIT_LVL_1 (2 << 6) /* R-Car Gen3 only */ 114 #define IMTTBCR_SL0_LVL_1 (1 << 4) /* R-Car Gen2 only */ 115 116 #define IMBUSCR 0x000c /* R-Car Gen2 only */ 117 #define IMBUSCR_DVM (1 << 2) /* R-Car Gen2 only */ 118 #define IMBUSCR_BUSSEL_MASK (3 << 0) /* R-Car Gen2 only */ 119 120 #define IMTTLBR0 0x0010 /* R-Car Gen2/3 */ 121 #define IMTTUBR0 0x0014 /* R-Car Gen2/3 */ 122 123 #define IMSTR 0x0020 /* R-Car Gen2/3 */ 124 #define IMSTR_MHIT (1 << 4) /* R-Car Gen2/3 */ 125 #define IMSTR_ABORT (1 << 2) /* R-Car Gen2/3 */ 126 #define IMSTR_PF (1 << 1) /* R-Car Gen2/3 */ 127 #define IMSTR_TF (1 << 0) /* R-Car Gen2/3 */ 128 129 #define IMMAIR0 0x0028 /* R-Car Gen2/3 */ 130 131 #define IMELAR 0x0030 /* R-Car Gen2/3, IMEAR on R-Car Gen2 */ 132 #define IMEUAR 0x0034 /* R-Car Gen3 only */ 133 134 /* uTLB registers */ 135 #define IMUCTR(n) ((n) < 32 ? IMUCTR0(n) : IMUCTR32(n)) 136 #define IMUCTR0(n) (0x0300 + ((n) * 16)) /* R-Car Gen2/3 */ 137 #define IMUCTR32(n) (0x0600 + (((n) - 32) * 16)) /* R-Car Gen3 only */ 138 #define IMUCTR_TTSEL_MMU(n) ((n) << 4) /* R-Car Gen2/3 */ 139 #define IMUCTR_FLUSH (1 << 1) /* R-Car Gen2/3 */ 140 #define IMUCTR_MMUEN (1 << 0) /* R-Car Gen2/3 */ 141 142 #define IMUASID(n) ((n) < 32 ? IMUASID0(n) : IMUASID32(n)) 143 #define IMUASID0(n) (0x0308 + ((n) * 16)) /* R-Car Gen2/3 */ 144 #define IMUASID32(n) (0x0608 + (((n) - 32) * 16)) /* R-Car Gen3 only */ 145 146 /* ----------------------------------------------------------------------------- 147 * Root device handling 148 */ 149 150 static struct platform_driver ipmmu_driver; 151 152 static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu) 153 { 154 return mmu->root == mmu; 155 } 156 157 static int __ipmmu_check_device(struct device *dev, void *data) 158 { 159 struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev); 160 struct ipmmu_vmsa_device **rootp = data; 161 162 if (ipmmu_is_root(mmu)) 163 *rootp = mmu; 164 165 return 0; 166 } 167 168 static struct ipmmu_vmsa_device *ipmmu_find_root(void) 169 { 170 struct ipmmu_vmsa_device *root = NULL; 171 172 return driver_for_each_device(&ipmmu_driver.driver, NULL, &root, 173 __ipmmu_check_device) == 0 ? root : NULL; 174 } 175 176 /* ----------------------------------------------------------------------------- 177 * Read/Write Access 178 */ 179 180 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset) 181 { 182 return ioread32(mmu->base + offset); 183 } 184 185 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset, 186 u32 data) 187 { 188 iowrite32(data, mmu->base + offset); 189 } 190 191 static unsigned int ipmmu_ctx_reg(struct ipmmu_vmsa_device *mmu, 192 unsigned int context_id, unsigned int reg) 193 { 194 return mmu->features->ctx_offset_base + 195 context_id * mmu->features->ctx_offset_stride + reg; 196 } 197 198 static u32 ipmmu_ctx_read(struct ipmmu_vmsa_device *mmu, 199 unsigned int context_id, unsigned int reg) 200 { 201 return ipmmu_read(mmu, ipmmu_ctx_reg(mmu, context_id, reg)); 202 } 203 204 static void ipmmu_ctx_write(struct ipmmu_vmsa_device *mmu, 205 unsigned int context_id, unsigned int reg, u32 data) 206 { 207 ipmmu_write(mmu, ipmmu_ctx_reg(mmu, context_id, reg), data); 208 } 209 210 static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain, 211 unsigned int reg) 212 { 213 return ipmmu_ctx_read(domain->mmu->root, domain->context_id, reg); 214 } 215 216 static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain, 217 unsigned int reg, u32 data) 218 { 219 ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data); 220 } 221 222 static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain, 223 unsigned int reg, u32 data) 224 { 225 if (domain->mmu != domain->mmu->root) 226 ipmmu_ctx_write(domain->mmu, domain->context_id, reg, data); 227 228 ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data); 229 } 230 231 static u32 ipmmu_utlb_reg(struct ipmmu_vmsa_device *mmu, unsigned int reg) 232 { 233 return mmu->features->utlb_offset_base + reg; 234 } 235 236 static void ipmmu_imuasid_write(struct ipmmu_vmsa_device *mmu, 237 unsigned int utlb, u32 data) 238 { 239 ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUASID(utlb)), data); 240 } 241 242 static void ipmmu_imuctr_write(struct ipmmu_vmsa_device *mmu, 243 unsigned int utlb, u32 data) 244 { 245 ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUCTR(utlb)), data); 246 } 247 248 /* ----------------------------------------------------------------------------- 249 * TLB and microTLB Management 250 */ 251 252 /* Wait for any pending TLB invalidations to complete */ 253 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain) 254 { 255 unsigned int count = 0; 256 257 while (ipmmu_ctx_read_root(domain, IMCTR) & IMCTR_FLUSH) { 258 cpu_relax(); 259 if (++count == TLB_LOOP_TIMEOUT) { 260 dev_err_ratelimited(domain->mmu->dev, 261 "TLB sync timed out -- MMU may be deadlocked\n"); 262 return; 263 } 264 udelay(1); 265 } 266 } 267 268 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain) 269 { 270 u32 reg; 271 272 reg = ipmmu_ctx_read_root(domain, IMCTR); 273 reg |= IMCTR_FLUSH; 274 ipmmu_ctx_write_all(domain, IMCTR, reg); 275 276 ipmmu_tlb_sync(domain); 277 } 278 279 /* 280 * Enable MMU translation for the microTLB. 281 */ 282 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain, 283 unsigned int utlb) 284 { 285 struct ipmmu_vmsa_device *mmu = domain->mmu; 286 287 /* 288 * TODO: Reference-count the microTLB as several bus masters can be 289 * connected to the same microTLB. 290 */ 291 292 /* TODO: What should we set the ASID to ? */ 293 ipmmu_imuasid_write(mmu, utlb, 0); 294 /* TODO: Do we need to flush the microTLB ? */ 295 ipmmu_imuctr_write(mmu, utlb, IMUCTR_TTSEL_MMU(domain->context_id) | 296 IMUCTR_FLUSH | IMUCTR_MMUEN); 297 mmu->utlb_ctx[utlb] = domain->context_id; 298 } 299 300 /* 301 * Disable MMU translation for the microTLB. 302 */ 303 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain, 304 unsigned int utlb) 305 { 306 struct ipmmu_vmsa_device *mmu = domain->mmu; 307 308 ipmmu_imuctr_write(mmu, utlb, 0); 309 mmu->utlb_ctx[utlb] = IPMMU_CTX_INVALID; 310 } 311 312 static void ipmmu_tlb_flush_all(void *cookie) 313 { 314 struct ipmmu_vmsa_domain *domain = cookie; 315 316 ipmmu_tlb_invalidate(domain); 317 } 318 319 static void ipmmu_tlb_flush(unsigned long iova, size_t size, 320 size_t granule, void *cookie) 321 { 322 ipmmu_tlb_flush_all(cookie); 323 } 324 325 static const struct iommu_flush_ops ipmmu_flush_ops = { 326 .tlb_flush_all = ipmmu_tlb_flush_all, 327 .tlb_flush_walk = ipmmu_tlb_flush, 328 .tlb_flush_leaf = ipmmu_tlb_flush, 329 }; 330 331 /* ----------------------------------------------------------------------------- 332 * Domain/Context Management 333 */ 334 335 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu, 336 struct ipmmu_vmsa_domain *domain) 337 { 338 unsigned long flags; 339 int ret; 340 341 spin_lock_irqsave(&mmu->lock, flags); 342 343 ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx); 344 if (ret != mmu->num_ctx) { 345 mmu->domains[ret] = domain; 346 set_bit(ret, mmu->ctx); 347 } else 348 ret = -EBUSY; 349 350 spin_unlock_irqrestore(&mmu->lock, flags); 351 352 return ret; 353 } 354 355 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu, 356 unsigned int context_id) 357 { 358 unsigned long flags; 359 360 spin_lock_irqsave(&mmu->lock, flags); 361 362 clear_bit(context_id, mmu->ctx); 363 mmu->domains[context_id] = NULL; 364 365 spin_unlock_irqrestore(&mmu->lock, flags); 366 } 367 368 static void ipmmu_domain_setup_context(struct ipmmu_vmsa_domain *domain) 369 { 370 u64 ttbr; 371 u32 tmp; 372 373 /* TTBR0 */ 374 ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr; 375 ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr); 376 ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32); 377 378 /* 379 * TTBCR 380 * We use long descriptors and allocate the whole 32-bit VA space to 381 * TTBR0. 382 */ 383 if (domain->mmu->features->twobit_imttbcr_sl0) 384 tmp = IMTTBCR_SL0_TWOBIT_LVL_1; 385 else 386 tmp = IMTTBCR_SL0_LVL_1; 387 388 if (domain->mmu->features->cache_snoop) 389 tmp |= IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA | 390 IMTTBCR_IRGN0_WB_WA; 391 392 ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE | tmp); 393 394 /* MAIR0 */ 395 ipmmu_ctx_write_root(domain, IMMAIR0, 396 domain->cfg.arm_lpae_s1_cfg.mair); 397 398 /* IMBUSCR */ 399 if (domain->mmu->features->setup_imbuscr) 400 ipmmu_ctx_write_root(domain, IMBUSCR, 401 ipmmu_ctx_read_root(domain, IMBUSCR) & 402 ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK)); 403 404 /* 405 * IMSTR 406 * Clear all interrupt flags. 407 */ 408 ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR)); 409 410 /* 411 * IMCTR 412 * Enable the MMU and interrupt generation. The long-descriptor 413 * translation table format doesn't use TEX remapping. Don't enable AF 414 * software management as we have no use for it. Flush the TLB as 415 * required when modifying the context registers. 416 */ 417 ipmmu_ctx_write_all(domain, IMCTR, 418 IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN); 419 } 420 421 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain) 422 { 423 int ret; 424 425 /* 426 * Allocate the page table operations. 427 * 428 * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory 429 * access, Long-descriptor format" that the NStable bit being set in a 430 * table descriptor will result in the NStable and NS bits of all child 431 * entries being ignored and considered as being set. The IPMMU seems 432 * not to comply with this, as it generates a secure access page fault 433 * if any of the NStable and NS bits isn't set when running in 434 * non-secure mode. 435 */ 436 domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS; 437 domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K; 438 domain->cfg.ias = 32; 439 domain->cfg.oas = 40; 440 domain->cfg.tlb = &ipmmu_flush_ops; 441 domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32); 442 domain->io_domain.geometry.force_aperture = true; 443 /* 444 * TODO: Add support for coherent walk through CCI with DVM and remove 445 * cache handling. For now, delegate it to the io-pgtable code. 446 */ 447 domain->cfg.coherent_walk = false; 448 domain->cfg.iommu_dev = domain->mmu->root->dev; 449 450 /* 451 * Find an unused context. 452 */ 453 ret = ipmmu_domain_allocate_context(domain->mmu->root, domain); 454 if (ret < 0) 455 return ret; 456 457 domain->context_id = ret; 458 459 domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg, 460 domain); 461 if (!domain->iop) { 462 ipmmu_domain_free_context(domain->mmu->root, 463 domain->context_id); 464 return -EINVAL; 465 } 466 467 ipmmu_domain_setup_context(domain); 468 return 0; 469 } 470 471 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain) 472 { 473 if (!domain->mmu) 474 return; 475 476 /* 477 * Disable the context. Flush the TLB as required when modifying the 478 * context registers. 479 * 480 * TODO: Is TLB flush really needed ? 481 */ 482 ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH); 483 ipmmu_tlb_sync(domain); 484 ipmmu_domain_free_context(domain->mmu->root, domain->context_id); 485 } 486 487 /* ----------------------------------------------------------------------------- 488 * Fault Handling 489 */ 490 491 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain) 492 { 493 const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF; 494 struct ipmmu_vmsa_device *mmu = domain->mmu; 495 unsigned long iova; 496 u32 status; 497 498 status = ipmmu_ctx_read_root(domain, IMSTR); 499 if (!(status & err_mask)) 500 return IRQ_NONE; 501 502 iova = ipmmu_ctx_read_root(domain, IMELAR); 503 if (IS_ENABLED(CONFIG_64BIT)) 504 iova |= (u64)ipmmu_ctx_read_root(domain, IMEUAR) << 32; 505 506 /* 507 * Clear the error status flags. Unlike traditional interrupt flag 508 * registers that must be cleared by writing 1, this status register 509 * seems to require 0. The error address register must be read before, 510 * otherwise its value will be 0. 511 */ 512 ipmmu_ctx_write_root(domain, IMSTR, 0); 513 514 /* Log fatal errors. */ 515 if (status & IMSTR_MHIT) 516 dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%lx\n", 517 iova); 518 if (status & IMSTR_ABORT) 519 dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%lx\n", 520 iova); 521 522 if (!(status & (IMSTR_PF | IMSTR_TF))) 523 return IRQ_NONE; 524 525 /* 526 * Try to handle page faults and translation faults. 527 * 528 * TODO: We need to look up the faulty device based on the I/O VA. Use 529 * the IOMMU device for now. 530 */ 531 if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0)) 532 return IRQ_HANDLED; 533 534 dev_err_ratelimited(mmu->dev, 535 "Unhandled fault: status 0x%08x iova 0x%lx\n", 536 status, iova); 537 538 return IRQ_HANDLED; 539 } 540 541 static irqreturn_t ipmmu_irq(int irq, void *dev) 542 { 543 struct ipmmu_vmsa_device *mmu = dev; 544 irqreturn_t status = IRQ_NONE; 545 unsigned int i; 546 unsigned long flags; 547 548 spin_lock_irqsave(&mmu->lock, flags); 549 550 /* 551 * Check interrupts for all active contexts. 552 */ 553 for (i = 0; i < mmu->num_ctx; i++) { 554 if (!mmu->domains[i]) 555 continue; 556 if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED) 557 status = IRQ_HANDLED; 558 } 559 560 spin_unlock_irqrestore(&mmu->lock, flags); 561 562 return status; 563 } 564 565 /* ----------------------------------------------------------------------------- 566 * IOMMU Operations 567 */ 568 569 static struct iommu_domain *__ipmmu_domain_alloc(unsigned type) 570 { 571 struct ipmmu_vmsa_domain *domain; 572 573 domain = kzalloc(sizeof(*domain), GFP_KERNEL); 574 if (!domain) 575 return NULL; 576 577 mutex_init(&domain->mutex); 578 579 return &domain->io_domain; 580 } 581 582 static struct iommu_domain *ipmmu_domain_alloc(unsigned type) 583 { 584 struct iommu_domain *io_domain = NULL; 585 586 switch (type) { 587 case IOMMU_DOMAIN_UNMANAGED: 588 io_domain = __ipmmu_domain_alloc(type); 589 break; 590 591 case IOMMU_DOMAIN_DMA: 592 io_domain = __ipmmu_domain_alloc(type); 593 if (io_domain && iommu_get_dma_cookie(io_domain)) { 594 kfree(io_domain); 595 io_domain = NULL; 596 } 597 break; 598 } 599 600 return io_domain; 601 } 602 603 static void ipmmu_domain_free(struct iommu_domain *io_domain) 604 { 605 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain); 606 607 /* 608 * Free the domain resources. We assume that all devices have already 609 * been detached. 610 */ 611 iommu_put_dma_cookie(io_domain); 612 ipmmu_domain_destroy_context(domain); 613 free_io_pgtable_ops(domain->iop); 614 kfree(domain); 615 } 616 617 static int ipmmu_attach_device(struct iommu_domain *io_domain, 618 struct device *dev) 619 { 620 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 621 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev); 622 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain); 623 unsigned int i; 624 int ret = 0; 625 626 if (!mmu) { 627 dev_err(dev, "Cannot attach to IPMMU\n"); 628 return -ENXIO; 629 } 630 631 mutex_lock(&domain->mutex); 632 633 if (!domain->mmu) { 634 /* The domain hasn't been used yet, initialize it. */ 635 domain->mmu = mmu; 636 ret = ipmmu_domain_init_context(domain); 637 if (ret < 0) { 638 dev_err(dev, "Unable to initialize IPMMU context\n"); 639 domain->mmu = NULL; 640 } else { 641 dev_info(dev, "Using IPMMU context %u\n", 642 domain->context_id); 643 } 644 } else if (domain->mmu != mmu) { 645 /* 646 * Something is wrong, we can't attach two devices using 647 * different IOMMUs to the same domain. 648 */ 649 dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n", 650 dev_name(mmu->dev), dev_name(domain->mmu->dev)); 651 ret = -EINVAL; 652 } else 653 dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id); 654 655 mutex_unlock(&domain->mutex); 656 657 if (ret < 0) 658 return ret; 659 660 for (i = 0; i < fwspec->num_ids; ++i) 661 ipmmu_utlb_enable(domain, fwspec->ids[i]); 662 663 return 0; 664 } 665 666 static void ipmmu_detach_device(struct iommu_domain *io_domain, 667 struct device *dev) 668 { 669 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 670 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain); 671 unsigned int i; 672 673 for (i = 0; i < fwspec->num_ids; ++i) 674 ipmmu_utlb_disable(domain, fwspec->ids[i]); 675 676 /* 677 * TODO: Optimize by disabling the context when no device is attached. 678 */ 679 } 680 681 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova, 682 phys_addr_t paddr, size_t size, int prot, gfp_t gfp) 683 { 684 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain); 685 686 if (!domain) 687 return -ENODEV; 688 689 return domain->iop->map(domain->iop, iova, paddr, size, prot, gfp); 690 } 691 692 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova, 693 size_t size, struct iommu_iotlb_gather *gather) 694 { 695 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain); 696 697 return domain->iop->unmap(domain->iop, iova, size, gather); 698 } 699 700 static void ipmmu_flush_iotlb_all(struct iommu_domain *io_domain) 701 { 702 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain); 703 704 if (domain->mmu) 705 ipmmu_tlb_flush_all(domain); 706 } 707 708 static void ipmmu_iotlb_sync(struct iommu_domain *io_domain, 709 struct iommu_iotlb_gather *gather) 710 { 711 ipmmu_flush_iotlb_all(io_domain); 712 } 713 714 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain, 715 dma_addr_t iova) 716 { 717 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain); 718 719 /* TODO: Is locking needed ? */ 720 721 return domain->iop->iova_to_phys(domain->iop, iova); 722 } 723 724 static int ipmmu_init_platform_device(struct device *dev, 725 struct of_phandle_args *args) 726 { 727 struct platform_device *ipmmu_pdev; 728 729 ipmmu_pdev = of_find_device_by_node(args->np); 730 if (!ipmmu_pdev) 731 return -ENODEV; 732 733 dev_iommu_priv_set(dev, platform_get_drvdata(ipmmu_pdev)); 734 735 return 0; 736 } 737 738 static const struct soc_device_attribute soc_rcar_gen3[] = { 739 { .soc_id = "r8a774a1", }, 740 { .soc_id = "r8a774b1", }, 741 { .soc_id = "r8a774c0", }, 742 { .soc_id = "r8a774e1", }, 743 { .soc_id = "r8a7795", }, 744 { .soc_id = "r8a77961", }, 745 { .soc_id = "r8a7796", }, 746 { .soc_id = "r8a77965", }, 747 { .soc_id = "r8a77970", }, 748 { .soc_id = "r8a77990", }, 749 { .soc_id = "r8a77995", }, 750 { /* sentinel */ } 751 }; 752 753 static const struct soc_device_attribute soc_rcar_gen3_whitelist[] = { 754 { .soc_id = "r8a774b1", }, 755 { .soc_id = "r8a774c0", }, 756 { .soc_id = "r8a774e1", }, 757 { .soc_id = "r8a7795", .revision = "ES3.*" }, 758 { .soc_id = "r8a77961", }, 759 { .soc_id = "r8a77965", }, 760 { .soc_id = "r8a77990", }, 761 { .soc_id = "r8a77995", }, 762 { /* sentinel */ } 763 }; 764 765 static const char * const rcar_gen3_slave_whitelist[] = { 766 }; 767 768 static bool ipmmu_slave_whitelist(struct device *dev) 769 { 770 unsigned int i; 771 772 /* 773 * For R-Car Gen3 use a white list to opt-in slave devices. 774 * For Other SoCs, this returns true anyway. 775 */ 776 if (!soc_device_match(soc_rcar_gen3)) 777 return true; 778 779 /* Check whether this R-Car Gen3 can use the IPMMU correctly or not */ 780 if (!soc_device_match(soc_rcar_gen3_whitelist)) 781 return false; 782 783 /* Check whether this slave device can work with the IPMMU */ 784 for (i = 0; i < ARRAY_SIZE(rcar_gen3_slave_whitelist); i++) { 785 if (!strcmp(dev_name(dev), rcar_gen3_slave_whitelist[i])) 786 return true; 787 } 788 789 /* Otherwise, do not allow use of IPMMU */ 790 return false; 791 } 792 793 static int ipmmu_of_xlate(struct device *dev, 794 struct of_phandle_args *spec) 795 { 796 if (!ipmmu_slave_whitelist(dev)) 797 return -ENODEV; 798 799 iommu_fwspec_add_ids(dev, spec->args, 1); 800 801 /* Initialize once - xlate() will call multiple times */ 802 if (to_ipmmu(dev)) 803 return 0; 804 805 return ipmmu_init_platform_device(dev, spec); 806 } 807 808 static int ipmmu_init_arm_mapping(struct device *dev) 809 { 810 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev); 811 int ret; 812 813 /* 814 * Create the ARM mapping, used by the ARM DMA mapping core to allocate 815 * VAs. This will allocate a corresponding IOMMU domain. 816 * 817 * TODO: 818 * - Create one mapping per context (TLB). 819 * - Make the mapping size configurable ? We currently use a 2GB mapping 820 * at a 1GB offset to ensure that NULL VAs will fault. 821 */ 822 if (!mmu->mapping) { 823 struct dma_iommu_mapping *mapping; 824 825 mapping = arm_iommu_create_mapping(&platform_bus_type, 826 SZ_1G, SZ_2G); 827 if (IS_ERR(mapping)) { 828 dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n"); 829 ret = PTR_ERR(mapping); 830 goto error; 831 } 832 833 mmu->mapping = mapping; 834 } 835 836 /* Attach the ARM VA mapping to the device. */ 837 ret = arm_iommu_attach_device(dev, mmu->mapping); 838 if (ret < 0) { 839 dev_err(dev, "Failed to attach device to VA mapping\n"); 840 goto error; 841 } 842 843 return 0; 844 845 error: 846 if (mmu->mapping) 847 arm_iommu_release_mapping(mmu->mapping); 848 849 return ret; 850 } 851 852 static struct iommu_device *ipmmu_probe_device(struct device *dev) 853 { 854 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev); 855 856 /* 857 * Only let through devices that have been verified in xlate() 858 */ 859 if (!mmu) 860 return ERR_PTR(-ENODEV); 861 862 return &mmu->iommu; 863 } 864 865 static void ipmmu_probe_finalize(struct device *dev) 866 { 867 int ret = 0; 868 869 if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA)) 870 ret = ipmmu_init_arm_mapping(dev); 871 872 if (ret) 873 dev_err(dev, "Can't create IOMMU mapping - DMA-OPS will not work\n"); 874 } 875 876 static void ipmmu_release_device(struct device *dev) 877 { 878 arm_iommu_detach_device(dev); 879 } 880 881 static struct iommu_group *ipmmu_find_group(struct device *dev) 882 { 883 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev); 884 struct iommu_group *group; 885 886 if (mmu->group) 887 return iommu_group_ref_get(mmu->group); 888 889 group = iommu_group_alloc(); 890 if (!IS_ERR(group)) 891 mmu->group = group; 892 893 return group; 894 } 895 896 static const struct iommu_ops ipmmu_ops = { 897 .domain_alloc = ipmmu_domain_alloc, 898 .domain_free = ipmmu_domain_free, 899 .attach_dev = ipmmu_attach_device, 900 .detach_dev = ipmmu_detach_device, 901 .map = ipmmu_map, 902 .unmap = ipmmu_unmap, 903 .flush_iotlb_all = ipmmu_flush_iotlb_all, 904 .iotlb_sync = ipmmu_iotlb_sync, 905 .iova_to_phys = ipmmu_iova_to_phys, 906 .probe_device = ipmmu_probe_device, 907 .release_device = ipmmu_release_device, 908 .probe_finalize = ipmmu_probe_finalize, 909 .device_group = IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA) 910 ? generic_device_group : ipmmu_find_group, 911 .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K, 912 .of_xlate = ipmmu_of_xlate, 913 }; 914 915 /* ----------------------------------------------------------------------------- 916 * Probe/remove and init 917 */ 918 919 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu) 920 { 921 unsigned int i; 922 923 /* Disable all contexts. */ 924 for (i = 0; i < mmu->num_ctx; ++i) 925 ipmmu_ctx_write(mmu, i, IMCTR, 0); 926 } 927 928 static const struct ipmmu_features ipmmu_features_default = { 929 .use_ns_alias_offset = true, 930 .has_cache_leaf_nodes = false, 931 .number_of_contexts = 1, /* software only tested with one context */ 932 .num_utlbs = 32, 933 .setup_imbuscr = true, 934 .twobit_imttbcr_sl0 = false, 935 .reserved_context = false, 936 .cache_snoop = true, 937 .ctx_offset_base = 0, 938 .ctx_offset_stride = 0x40, 939 .utlb_offset_base = 0, 940 }; 941 942 static const struct ipmmu_features ipmmu_features_rcar_gen3 = { 943 .use_ns_alias_offset = false, 944 .has_cache_leaf_nodes = true, 945 .number_of_contexts = 8, 946 .num_utlbs = 48, 947 .setup_imbuscr = false, 948 .twobit_imttbcr_sl0 = true, 949 .reserved_context = true, 950 .cache_snoop = false, 951 .ctx_offset_base = 0, 952 .ctx_offset_stride = 0x40, 953 .utlb_offset_base = 0, 954 }; 955 956 static const struct of_device_id ipmmu_of_ids[] = { 957 { 958 .compatible = "renesas,ipmmu-vmsa", 959 .data = &ipmmu_features_default, 960 }, { 961 .compatible = "renesas,ipmmu-r8a774a1", 962 .data = &ipmmu_features_rcar_gen3, 963 }, { 964 .compatible = "renesas,ipmmu-r8a774b1", 965 .data = &ipmmu_features_rcar_gen3, 966 }, { 967 .compatible = "renesas,ipmmu-r8a774c0", 968 .data = &ipmmu_features_rcar_gen3, 969 }, { 970 .compatible = "renesas,ipmmu-r8a774e1", 971 .data = &ipmmu_features_rcar_gen3, 972 }, { 973 .compatible = "renesas,ipmmu-r8a7795", 974 .data = &ipmmu_features_rcar_gen3, 975 }, { 976 .compatible = "renesas,ipmmu-r8a7796", 977 .data = &ipmmu_features_rcar_gen3, 978 }, { 979 .compatible = "renesas,ipmmu-r8a77961", 980 .data = &ipmmu_features_rcar_gen3, 981 }, { 982 .compatible = "renesas,ipmmu-r8a77965", 983 .data = &ipmmu_features_rcar_gen3, 984 }, { 985 .compatible = "renesas,ipmmu-r8a77970", 986 .data = &ipmmu_features_rcar_gen3, 987 }, { 988 .compatible = "renesas,ipmmu-r8a77990", 989 .data = &ipmmu_features_rcar_gen3, 990 }, { 991 .compatible = "renesas,ipmmu-r8a77995", 992 .data = &ipmmu_features_rcar_gen3, 993 }, { 994 /* Terminator */ 995 }, 996 }; 997 998 static int ipmmu_probe(struct platform_device *pdev) 999 { 1000 struct ipmmu_vmsa_device *mmu; 1001 struct resource *res; 1002 int irq; 1003 int ret; 1004 1005 mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL); 1006 if (!mmu) { 1007 dev_err(&pdev->dev, "cannot allocate device data\n"); 1008 return -ENOMEM; 1009 } 1010 1011 mmu->dev = &pdev->dev; 1012 spin_lock_init(&mmu->lock); 1013 bitmap_zero(mmu->ctx, IPMMU_CTX_MAX); 1014 mmu->features = of_device_get_match_data(&pdev->dev); 1015 memset(mmu->utlb_ctx, IPMMU_CTX_INVALID, mmu->features->num_utlbs); 1016 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40)); 1017 1018 /* Map I/O memory and request IRQ. */ 1019 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1020 mmu->base = devm_ioremap_resource(&pdev->dev, res); 1021 if (IS_ERR(mmu->base)) 1022 return PTR_ERR(mmu->base); 1023 1024 /* 1025 * The IPMMU has two register banks, for secure and non-secure modes. 1026 * The bank mapped at the beginning of the IPMMU address space 1027 * corresponds to the running mode of the CPU. When running in secure 1028 * mode the non-secure register bank is also available at an offset. 1029 * 1030 * Secure mode operation isn't clearly documented and is thus currently 1031 * not implemented in the driver. Furthermore, preliminary tests of 1032 * non-secure operation with the main register bank were not successful. 1033 * Offset the registers base unconditionally to point to the non-secure 1034 * alias space for now. 1035 */ 1036 if (mmu->features->use_ns_alias_offset) 1037 mmu->base += IM_NS_ALIAS_OFFSET; 1038 1039 mmu->num_ctx = min(IPMMU_CTX_MAX, mmu->features->number_of_contexts); 1040 1041 /* 1042 * Determine if this IPMMU instance is a root device by checking for 1043 * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property. 1044 */ 1045 if (!mmu->features->has_cache_leaf_nodes || 1046 !of_find_property(pdev->dev.of_node, "renesas,ipmmu-main", NULL)) 1047 mmu->root = mmu; 1048 else 1049 mmu->root = ipmmu_find_root(); 1050 1051 /* 1052 * Wait until the root device has been registered for sure. 1053 */ 1054 if (!mmu->root) 1055 return -EPROBE_DEFER; 1056 1057 /* Root devices have mandatory IRQs */ 1058 if (ipmmu_is_root(mmu)) { 1059 irq = platform_get_irq(pdev, 0); 1060 if (irq < 0) 1061 return irq; 1062 1063 ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0, 1064 dev_name(&pdev->dev), mmu); 1065 if (ret < 0) { 1066 dev_err(&pdev->dev, "failed to request IRQ %d\n", irq); 1067 return ret; 1068 } 1069 1070 ipmmu_device_reset(mmu); 1071 1072 if (mmu->features->reserved_context) { 1073 dev_info(&pdev->dev, "IPMMU context 0 is reserved\n"); 1074 set_bit(0, mmu->ctx); 1075 } 1076 } 1077 1078 /* 1079 * Register the IPMMU to the IOMMU subsystem in the following cases: 1080 * - R-Car Gen2 IPMMU (all devices registered) 1081 * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device) 1082 */ 1083 if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) { 1084 ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL, 1085 dev_name(&pdev->dev)); 1086 if (ret) 1087 return ret; 1088 1089 iommu_device_set_ops(&mmu->iommu, &ipmmu_ops); 1090 iommu_device_set_fwnode(&mmu->iommu, 1091 &pdev->dev.of_node->fwnode); 1092 1093 ret = iommu_device_register(&mmu->iommu); 1094 if (ret) 1095 return ret; 1096 1097 #if defined(CONFIG_IOMMU_DMA) 1098 if (!iommu_present(&platform_bus_type)) 1099 bus_set_iommu(&platform_bus_type, &ipmmu_ops); 1100 #endif 1101 } 1102 1103 /* 1104 * We can't create the ARM mapping here as it requires the bus to have 1105 * an IOMMU, which only happens when bus_set_iommu() is called in 1106 * ipmmu_init() after the probe function returns. 1107 */ 1108 1109 platform_set_drvdata(pdev, mmu); 1110 1111 return 0; 1112 } 1113 1114 static int ipmmu_remove(struct platform_device *pdev) 1115 { 1116 struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev); 1117 1118 iommu_device_sysfs_remove(&mmu->iommu); 1119 iommu_device_unregister(&mmu->iommu); 1120 1121 arm_iommu_release_mapping(mmu->mapping); 1122 1123 ipmmu_device_reset(mmu); 1124 1125 return 0; 1126 } 1127 1128 #ifdef CONFIG_PM_SLEEP 1129 static int ipmmu_resume_noirq(struct device *dev) 1130 { 1131 struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev); 1132 unsigned int i; 1133 1134 /* Reset root MMU and restore contexts */ 1135 if (ipmmu_is_root(mmu)) { 1136 ipmmu_device_reset(mmu); 1137 1138 for (i = 0; i < mmu->num_ctx; i++) { 1139 if (!mmu->domains[i]) 1140 continue; 1141 1142 ipmmu_domain_setup_context(mmu->domains[i]); 1143 } 1144 } 1145 1146 /* Re-enable active micro-TLBs */ 1147 for (i = 0; i < mmu->features->num_utlbs; i++) { 1148 if (mmu->utlb_ctx[i] == IPMMU_CTX_INVALID) 1149 continue; 1150 1151 ipmmu_utlb_enable(mmu->root->domains[mmu->utlb_ctx[i]], i); 1152 } 1153 1154 return 0; 1155 } 1156 1157 static const struct dev_pm_ops ipmmu_pm = { 1158 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(NULL, ipmmu_resume_noirq) 1159 }; 1160 #define DEV_PM_OPS &ipmmu_pm 1161 #else 1162 #define DEV_PM_OPS NULL 1163 #endif /* CONFIG_PM_SLEEP */ 1164 1165 static struct platform_driver ipmmu_driver = { 1166 .driver = { 1167 .name = "ipmmu-vmsa", 1168 .of_match_table = of_match_ptr(ipmmu_of_ids), 1169 .pm = DEV_PM_OPS, 1170 }, 1171 .probe = ipmmu_probe, 1172 .remove = ipmmu_remove, 1173 }; 1174 1175 static int __init ipmmu_init(void) 1176 { 1177 struct device_node *np; 1178 static bool setup_done; 1179 int ret; 1180 1181 if (setup_done) 1182 return 0; 1183 1184 np = of_find_matching_node(NULL, ipmmu_of_ids); 1185 if (!np) 1186 return 0; 1187 1188 of_node_put(np); 1189 1190 ret = platform_driver_register(&ipmmu_driver); 1191 if (ret < 0) 1192 return ret; 1193 1194 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA) 1195 if (!iommu_present(&platform_bus_type)) 1196 bus_set_iommu(&platform_bus_type, &ipmmu_ops); 1197 #endif 1198 1199 setup_done = true; 1200 return 0; 1201 } 1202 subsys_initcall(ipmmu_init); 1203