xref: /openbmc/linux/drivers/iommu/ipmmu-vmsa.c (revision 2f828fb2)
1 /*
2  * IPMMU VMSA
3  *
4  * Copyright (C) 2014 Renesas Electronics Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  */
10 
11 #include <linux/bitmap.h>
12 #include <linux/delay.h>
13 #include <linux/dma-iommu.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/export.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iommu.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/of_iommu.h>
24 #include <linux/of_platform.h>
25 #include <linux/platform_device.h>
26 #include <linux/sizes.h>
27 #include <linux/slab.h>
28 #include <linux/sys_soc.h>
29 
30 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
31 #include <asm/dma-iommu.h>
32 #include <asm/pgalloc.h>
33 #else
34 #define arm_iommu_create_mapping(...)	NULL
35 #define arm_iommu_attach_device(...)	-ENODEV
36 #define arm_iommu_release_mapping(...)	do {} while (0)
37 #define arm_iommu_detach_device(...)	do {} while (0)
38 #endif
39 
40 #include "io-pgtable.h"
41 
42 #define IPMMU_CTX_MAX 8
43 
44 struct ipmmu_features {
45 	bool use_ns_alias_offset;
46 	bool has_cache_leaf_nodes;
47 	unsigned int number_of_contexts;
48 	bool setup_imbuscr;
49 	bool twobit_imttbcr_sl0;
50 };
51 
52 struct ipmmu_vmsa_device {
53 	struct device *dev;
54 	void __iomem *base;
55 	struct iommu_device iommu;
56 	struct ipmmu_vmsa_device *root;
57 	const struct ipmmu_features *features;
58 	unsigned int num_utlbs;
59 	unsigned int num_ctx;
60 	spinlock_t lock;			/* Protects ctx and domains[] */
61 	DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
62 	struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
63 
64 	struct iommu_group *group;
65 	struct dma_iommu_mapping *mapping;
66 };
67 
68 struct ipmmu_vmsa_domain {
69 	struct ipmmu_vmsa_device *mmu;
70 	struct iommu_domain io_domain;
71 
72 	struct io_pgtable_cfg cfg;
73 	struct io_pgtable_ops *iop;
74 
75 	unsigned int context_id;
76 	spinlock_t lock;			/* Protects mappings */
77 };
78 
79 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
80 {
81 	return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
82 }
83 
84 static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev)
85 {
86 	return dev->iommu_fwspec ? dev->iommu_fwspec->iommu_priv : NULL;
87 }
88 
89 #define TLB_LOOP_TIMEOUT		100	/* 100us */
90 
91 /* -----------------------------------------------------------------------------
92  * Registers Definition
93  */
94 
95 #define IM_NS_ALIAS_OFFSET		0x800
96 
97 #define IM_CTX_SIZE			0x40
98 
99 #define IMCTR				0x0000
100 #define IMCTR_TRE			(1 << 17)
101 #define IMCTR_AFE			(1 << 16)
102 #define IMCTR_RTSEL_MASK		(3 << 4)
103 #define IMCTR_RTSEL_SHIFT		4
104 #define IMCTR_TREN			(1 << 3)
105 #define IMCTR_INTEN			(1 << 2)
106 #define IMCTR_FLUSH			(1 << 1)
107 #define IMCTR_MMUEN			(1 << 0)
108 
109 #define IMCAAR				0x0004
110 
111 #define IMTTBCR				0x0008
112 #define IMTTBCR_EAE			(1 << 31)
113 #define IMTTBCR_PMB			(1 << 30)
114 #define IMTTBCR_SH1_NON_SHAREABLE	(0 << 28)
115 #define IMTTBCR_SH1_OUTER_SHAREABLE	(2 << 28)
116 #define IMTTBCR_SH1_INNER_SHAREABLE	(3 << 28)
117 #define IMTTBCR_SH1_MASK		(3 << 28)
118 #define IMTTBCR_ORGN1_NC		(0 << 26)
119 #define IMTTBCR_ORGN1_WB_WA		(1 << 26)
120 #define IMTTBCR_ORGN1_WT		(2 << 26)
121 #define IMTTBCR_ORGN1_WB		(3 << 26)
122 #define IMTTBCR_ORGN1_MASK		(3 << 26)
123 #define IMTTBCR_IRGN1_NC		(0 << 24)
124 #define IMTTBCR_IRGN1_WB_WA		(1 << 24)
125 #define IMTTBCR_IRGN1_WT		(2 << 24)
126 #define IMTTBCR_IRGN1_WB		(3 << 24)
127 #define IMTTBCR_IRGN1_MASK		(3 << 24)
128 #define IMTTBCR_TSZ1_MASK		(7 << 16)
129 #define IMTTBCR_TSZ1_SHIFT		16
130 #define IMTTBCR_SH0_NON_SHAREABLE	(0 << 12)
131 #define IMTTBCR_SH0_OUTER_SHAREABLE	(2 << 12)
132 #define IMTTBCR_SH0_INNER_SHAREABLE	(3 << 12)
133 #define IMTTBCR_SH0_MASK		(3 << 12)
134 #define IMTTBCR_ORGN0_NC		(0 << 10)
135 #define IMTTBCR_ORGN0_WB_WA		(1 << 10)
136 #define IMTTBCR_ORGN0_WT		(2 << 10)
137 #define IMTTBCR_ORGN0_WB		(3 << 10)
138 #define IMTTBCR_ORGN0_MASK		(3 << 10)
139 #define IMTTBCR_IRGN0_NC		(0 << 8)
140 #define IMTTBCR_IRGN0_WB_WA		(1 << 8)
141 #define IMTTBCR_IRGN0_WT		(2 << 8)
142 #define IMTTBCR_IRGN0_WB		(3 << 8)
143 #define IMTTBCR_IRGN0_MASK		(3 << 8)
144 #define IMTTBCR_SL0_LVL_2		(0 << 4)
145 #define IMTTBCR_SL0_LVL_1		(1 << 4)
146 #define IMTTBCR_TSZ0_MASK		(7 << 0)
147 #define IMTTBCR_TSZ0_SHIFT		O
148 
149 #define IMTTBCR_SL0_TWOBIT_LVL_3	(0 << 6)
150 #define IMTTBCR_SL0_TWOBIT_LVL_2	(1 << 6)
151 #define IMTTBCR_SL0_TWOBIT_LVL_1	(2 << 6)
152 
153 #define IMBUSCR				0x000c
154 #define IMBUSCR_DVM			(1 << 2)
155 #define IMBUSCR_BUSSEL_SYS		(0 << 0)
156 #define IMBUSCR_BUSSEL_CCI		(1 << 0)
157 #define IMBUSCR_BUSSEL_IMCAAR		(2 << 0)
158 #define IMBUSCR_BUSSEL_CCI_IMCAAR	(3 << 0)
159 #define IMBUSCR_BUSSEL_MASK		(3 << 0)
160 
161 #define IMTTLBR0			0x0010
162 #define IMTTUBR0			0x0014
163 #define IMTTLBR1			0x0018
164 #define IMTTUBR1			0x001c
165 
166 #define IMSTR				0x0020
167 #define IMSTR_ERRLVL_MASK		(3 << 12)
168 #define IMSTR_ERRLVL_SHIFT		12
169 #define IMSTR_ERRCODE_TLB_FORMAT	(1 << 8)
170 #define IMSTR_ERRCODE_ACCESS_PERM	(4 << 8)
171 #define IMSTR_ERRCODE_SECURE_ACCESS	(5 << 8)
172 #define IMSTR_ERRCODE_MASK		(7 << 8)
173 #define IMSTR_MHIT			(1 << 4)
174 #define IMSTR_ABORT			(1 << 2)
175 #define IMSTR_PF			(1 << 1)
176 #define IMSTR_TF			(1 << 0)
177 
178 #define IMMAIR0				0x0028
179 #define IMMAIR1				0x002c
180 #define IMMAIR_ATTR_MASK		0xff
181 #define IMMAIR_ATTR_DEVICE		0x04
182 #define IMMAIR_ATTR_NC			0x44
183 #define IMMAIR_ATTR_WBRWA		0xff
184 #define IMMAIR_ATTR_SHIFT(n)		((n) << 3)
185 #define IMMAIR_ATTR_IDX_NC		0
186 #define IMMAIR_ATTR_IDX_WBRWA		1
187 #define IMMAIR_ATTR_IDX_DEV		2
188 
189 #define IMEAR				0x0030
190 
191 #define IMPCTR				0x0200
192 #define IMPSTR				0x0208
193 #define IMPEAR				0x020c
194 #define IMPMBA(n)			(0x0280 + ((n) * 4))
195 #define IMPMBD(n)			(0x02c0 + ((n) * 4))
196 
197 #define IMUCTR(n)			(0x0300 + ((n) * 16))
198 #define IMUCTR_FIXADDEN			(1 << 31)
199 #define IMUCTR_FIXADD_MASK		(0xff << 16)
200 #define IMUCTR_FIXADD_SHIFT		16
201 #define IMUCTR_TTSEL_MMU(n)		((n) << 4)
202 #define IMUCTR_TTSEL_PMB		(8 << 4)
203 #define IMUCTR_TTSEL_MASK		(15 << 4)
204 #define IMUCTR_FLUSH			(1 << 1)
205 #define IMUCTR_MMUEN			(1 << 0)
206 
207 #define IMUASID(n)			(0x0308 + ((n) * 16))
208 #define IMUASID_ASID8_MASK		(0xff << 8)
209 #define IMUASID_ASID8_SHIFT		8
210 #define IMUASID_ASID0_MASK		(0xff << 0)
211 #define IMUASID_ASID0_SHIFT		0
212 
213 /* -----------------------------------------------------------------------------
214  * Root device handling
215  */
216 
217 static struct platform_driver ipmmu_driver;
218 
219 static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu)
220 {
221 	return mmu->root == mmu;
222 }
223 
224 static int __ipmmu_check_device(struct device *dev, void *data)
225 {
226 	struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
227 	struct ipmmu_vmsa_device **rootp = data;
228 
229 	if (ipmmu_is_root(mmu))
230 		*rootp = mmu;
231 
232 	return 0;
233 }
234 
235 static struct ipmmu_vmsa_device *ipmmu_find_root(void)
236 {
237 	struct ipmmu_vmsa_device *root = NULL;
238 
239 	return driver_for_each_device(&ipmmu_driver.driver, NULL, &root,
240 				      __ipmmu_check_device) == 0 ? root : NULL;
241 }
242 
243 /* -----------------------------------------------------------------------------
244  * Read/Write Access
245  */
246 
247 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
248 {
249 	return ioread32(mmu->base + offset);
250 }
251 
252 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
253 			u32 data)
254 {
255 	iowrite32(data, mmu->base + offset);
256 }
257 
258 static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain,
259 			       unsigned int reg)
260 {
261 	return ipmmu_read(domain->mmu->root,
262 			  domain->context_id * IM_CTX_SIZE + reg);
263 }
264 
265 static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain,
266 				 unsigned int reg, u32 data)
267 {
268 	ipmmu_write(domain->mmu->root,
269 		    domain->context_id * IM_CTX_SIZE + reg, data);
270 }
271 
272 static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain,
273 				unsigned int reg, u32 data)
274 {
275 	if (domain->mmu != domain->mmu->root)
276 		ipmmu_write(domain->mmu,
277 			    domain->context_id * IM_CTX_SIZE + reg, data);
278 
279 	ipmmu_write(domain->mmu->root,
280 		    domain->context_id * IM_CTX_SIZE + reg, data);
281 }
282 
283 /* -----------------------------------------------------------------------------
284  * TLB and microTLB Management
285  */
286 
287 /* Wait for any pending TLB invalidations to complete */
288 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
289 {
290 	unsigned int count = 0;
291 
292 	while (ipmmu_ctx_read_root(domain, IMCTR) & IMCTR_FLUSH) {
293 		cpu_relax();
294 		if (++count == TLB_LOOP_TIMEOUT) {
295 			dev_err_ratelimited(domain->mmu->dev,
296 			"TLB sync timed out -- MMU may be deadlocked\n");
297 			return;
298 		}
299 		udelay(1);
300 	}
301 }
302 
303 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
304 {
305 	u32 reg;
306 
307 	reg = ipmmu_ctx_read_root(domain, IMCTR);
308 	reg |= IMCTR_FLUSH;
309 	ipmmu_ctx_write_all(domain, IMCTR, reg);
310 
311 	ipmmu_tlb_sync(domain);
312 }
313 
314 /*
315  * Enable MMU translation for the microTLB.
316  */
317 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
318 			      unsigned int utlb)
319 {
320 	struct ipmmu_vmsa_device *mmu = domain->mmu;
321 
322 	/*
323 	 * TODO: Reference-count the microTLB as several bus masters can be
324 	 * connected to the same microTLB.
325 	 */
326 
327 	/* TODO: What should we set the ASID to ? */
328 	ipmmu_write(mmu, IMUASID(utlb), 0);
329 	/* TODO: Do we need to flush the microTLB ? */
330 	ipmmu_write(mmu, IMUCTR(utlb),
331 		    IMUCTR_TTSEL_MMU(domain->context_id) | IMUCTR_FLUSH |
332 		    IMUCTR_MMUEN);
333 }
334 
335 /*
336  * Disable MMU translation for the microTLB.
337  */
338 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
339 			       unsigned int utlb)
340 {
341 	struct ipmmu_vmsa_device *mmu = domain->mmu;
342 
343 	ipmmu_write(mmu, IMUCTR(utlb), 0);
344 }
345 
346 static void ipmmu_tlb_flush_all(void *cookie)
347 {
348 	struct ipmmu_vmsa_domain *domain = cookie;
349 
350 	ipmmu_tlb_invalidate(domain);
351 }
352 
353 static void ipmmu_tlb_add_flush(unsigned long iova, size_t size,
354 				size_t granule, bool leaf, void *cookie)
355 {
356 	/* The hardware doesn't support selective TLB flush. */
357 }
358 
359 static const struct iommu_gather_ops ipmmu_gather_ops = {
360 	.tlb_flush_all = ipmmu_tlb_flush_all,
361 	.tlb_add_flush = ipmmu_tlb_add_flush,
362 	.tlb_sync = ipmmu_tlb_flush_all,
363 };
364 
365 /* -----------------------------------------------------------------------------
366  * Domain/Context Management
367  */
368 
369 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
370 					 struct ipmmu_vmsa_domain *domain)
371 {
372 	unsigned long flags;
373 	int ret;
374 
375 	spin_lock_irqsave(&mmu->lock, flags);
376 
377 	ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx);
378 	if (ret != mmu->num_ctx) {
379 		mmu->domains[ret] = domain;
380 		set_bit(ret, mmu->ctx);
381 	} else
382 		ret = -EBUSY;
383 
384 	spin_unlock_irqrestore(&mmu->lock, flags);
385 
386 	return ret;
387 }
388 
389 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
390 				      unsigned int context_id)
391 {
392 	unsigned long flags;
393 
394 	spin_lock_irqsave(&mmu->lock, flags);
395 
396 	clear_bit(context_id, mmu->ctx);
397 	mmu->domains[context_id] = NULL;
398 
399 	spin_unlock_irqrestore(&mmu->lock, flags);
400 }
401 
402 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
403 {
404 	u64 ttbr;
405 	u32 tmp;
406 	int ret;
407 
408 	/*
409 	 * Allocate the page table operations.
410 	 *
411 	 * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
412 	 * access, Long-descriptor format" that the NStable bit being set in a
413 	 * table descriptor will result in the NStable and NS bits of all child
414 	 * entries being ignored and considered as being set. The IPMMU seems
415 	 * not to comply with this, as it generates a secure access page fault
416 	 * if any of the NStable and NS bits isn't set when running in
417 	 * non-secure mode.
418 	 */
419 	domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
420 	domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
421 	domain->cfg.ias = 32;
422 	domain->cfg.oas = 40;
423 	domain->cfg.tlb = &ipmmu_gather_ops;
424 	domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
425 	domain->io_domain.geometry.force_aperture = true;
426 	/*
427 	 * TODO: Add support for coherent walk through CCI with DVM and remove
428 	 * cache handling. For now, delegate it to the io-pgtable code.
429 	 */
430 	domain->cfg.iommu_dev = domain->mmu->root->dev;
431 
432 	/*
433 	 * Find an unused context.
434 	 */
435 	ret = ipmmu_domain_allocate_context(domain->mmu->root, domain);
436 	if (ret < 0)
437 		return ret;
438 
439 	domain->context_id = ret;
440 
441 	domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
442 					   domain);
443 	if (!domain->iop) {
444 		ipmmu_domain_free_context(domain->mmu->root,
445 					  domain->context_id);
446 		return -EINVAL;
447 	}
448 
449 	/* TTBR0 */
450 	ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr[0];
451 	ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr);
452 	ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32);
453 
454 	/*
455 	 * TTBCR
456 	 * We use long descriptors with inner-shareable WBWA tables and allocate
457 	 * the whole 32-bit VA space to TTBR0.
458 	 */
459 	if (domain->mmu->features->twobit_imttbcr_sl0)
460 		tmp = IMTTBCR_SL0_TWOBIT_LVL_1;
461 	else
462 		tmp = IMTTBCR_SL0_LVL_1;
463 
464 	ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE |
465 			     IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
466 			     IMTTBCR_IRGN0_WB_WA | tmp);
467 
468 	/* MAIR0 */
469 	ipmmu_ctx_write_root(domain, IMMAIR0,
470 			     domain->cfg.arm_lpae_s1_cfg.mair[0]);
471 
472 	/* IMBUSCR */
473 	if (domain->mmu->features->setup_imbuscr)
474 		ipmmu_ctx_write_root(domain, IMBUSCR,
475 				     ipmmu_ctx_read_root(domain, IMBUSCR) &
476 				     ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
477 
478 	/*
479 	 * IMSTR
480 	 * Clear all interrupt flags.
481 	 */
482 	ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR));
483 
484 	/*
485 	 * IMCTR
486 	 * Enable the MMU and interrupt generation. The long-descriptor
487 	 * translation table format doesn't use TEX remapping. Don't enable AF
488 	 * software management as we have no use for it. Flush the TLB as
489 	 * required when modifying the context registers.
490 	 */
491 	ipmmu_ctx_write_all(domain, IMCTR,
492 			    IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
493 
494 	return 0;
495 }
496 
497 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
498 {
499 	/*
500 	 * Disable the context. Flush the TLB as required when modifying the
501 	 * context registers.
502 	 *
503 	 * TODO: Is TLB flush really needed ?
504 	 */
505 	ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH);
506 	ipmmu_tlb_sync(domain);
507 	ipmmu_domain_free_context(domain->mmu->root, domain->context_id);
508 }
509 
510 /* -----------------------------------------------------------------------------
511  * Fault Handling
512  */
513 
514 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
515 {
516 	const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
517 	struct ipmmu_vmsa_device *mmu = domain->mmu;
518 	u32 status;
519 	u32 iova;
520 
521 	status = ipmmu_ctx_read_root(domain, IMSTR);
522 	if (!(status & err_mask))
523 		return IRQ_NONE;
524 
525 	iova = ipmmu_ctx_read_root(domain, IMEAR);
526 
527 	/*
528 	 * Clear the error status flags. Unlike traditional interrupt flag
529 	 * registers that must be cleared by writing 1, this status register
530 	 * seems to require 0. The error address register must be read before,
531 	 * otherwise its value will be 0.
532 	 */
533 	ipmmu_ctx_write_root(domain, IMSTR, 0);
534 
535 	/* Log fatal errors. */
536 	if (status & IMSTR_MHIT)
537 		dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%08x\n",
538 				    iova);
539 	if (status & IMSTR_ABORT)
540 		dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%08x\n",
541 				    iova);
542 
543 	if (!(status & (IMSTR_PF | IMSTR_TF)))
544 		return IRQ_NONE;
545 
546 	/*
547 	 * Try to handle page faults and translation faults.
548 	 *
549 	 * TODO: We need to look up the faulty device based on the I/O VA. Use
550 	 * the IOMMU device for now.
551 	 */
552 	if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
553 		return IRQ_HANDLED;
554 
555 	dev_err_ratelimited(mmu->dev,
556 			    "Unhandled fault: status 0x%08x iova 0x%08x\n",
557 			    status, iova);
558 
559 	return IRQ_HANDLED;
560 }
561 
562 static irqreturn_t ipmmu_irq(int irq, void *dev)
563 {
564 	struct ipmmu_vmsa_device *mmu = dev;
565 	irqreturn_t status = IRQ_NONE;
566 	unsigned int i;
567 	unsigned long flags;
568 
569 	spin_lock_irqsave(&mmu->lock, flags);
570 
571 	/*
572 	 * Check interrupts for all active contexts.
573 	 */
574 	for (i = 0; i < mmu->num_ctx; i++) {
575 		if (!mmu->domains[i])
576 			continue;
577 		if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
578 			status = IRQ_HANDLED;
579 	}
580 
581 	spin_unlock_irqrestore(&mmu->lock, flags);
582 
583 	return status;
584 }
585 
586 /* -----------------------------------------------------------------------------
587  * IOMMU Operations
588  */
589 
590 static struct iommu_domain *__ipmmu_domain_alloc(unsigned type)
591 {
592 	struct ipmmu_vmsa_domain *domain;
593 
594 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
595 	if (!domain)
596 		return NULL;
597 
598 	spin_lock_init(&domain->lock);
599 
600 	return &domain->io_domain;
601 }
602 
603 static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
604 {
605 	struct iommu_domain *io_domain = NULL;
606 
607 	switch (type) {
608 	case IOMMU_DOMAIN_UNMANAGED:
609 		io_domain = __ipmmu_domain_alloc(type);
610 		break;
611 
612 	case IOMMU_DOMAIN_DMA:
613 		io_domain = __ipmmu_domain_alloc(type);
614 		if (io_domain && iommu_get_dma_cookie(io_domain)) {
615 			kfree(io_domain);
616 			io_domain = NULL;
617 		}
618 		break;
619 	}
620 
621 	return io_domain;
622 }
623 
624 static void ipmmu_domain_free(struct iommu_domain *io_domain)
625 {
626 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
627 
628 	/*
629 	 * Free the domain resources. We assume that all devices have already
630 	 * been detached.
631 	 */
632 	iommu_put_dma_cookie(io_domain);
633 	ipmmu_domain_destroy_context(domain);
634 	free_io_pgtable_ops(domain->iop);
635 	kfree(domain);
636 }
637 
638 static int ipmmu_attach_device(struct iommu_domain *io_domain,
639 			       struct device *dev)
640 {
641 	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
642 	struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
643 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
644 	unsigned long flags;
645 	unsigned int i;
646 	int ret = 0;
647 
648 	if (!mmu) {
649 		dev_err(dev, "Cannot attach to IPMMU\n");
650 		return -ENXIO;
651 	}
652 
653 	spin_lock_irqsave(&domain->lock, flags);
654 
655 	if (!domain->mmu) {
656 		/* The domain hasn't been used yet, initialize it. */
657 		domain->mmu = mmu;
658 		ret = ipmmu_domain_init_context(domain);
659 		if (ret < 0) {
660 			dev_err(dev, "Unable to initialize IPMMU context\n");
661 			domain->mmu = NULL;
662 		} else {
663 			dev_info(dev, "Using IPMMU context %u\n",
664 				 domain->context_id);
665 		}
666 	} else if (domain->mmu != mmu) {
667 		/*
668 		 * Something is wrong, we can't attach two devices using
669 		 * different IOMMUs to the same domain.
670 		 */
671 		dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
672 			dev_name(mmu->dev), dev_name(domain->mmu->dev));
673 		ret = -EINVAL;
674 	} else
675 		dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
676 
677 	spin_unlock_irqrestore(&domain->lock, flags);
678 
679 	if (ret < 0)
680 		return ret;
681 
682 	for (i = 0; i < fwspec->num_ids; ++i)
683 		ipmmu_utlb_enable(domain, fwspec->ids[i]);
684 
685 	return 0;
686 }
687 
688 static void ipmmu_detach_device(struct iommu_domain *io_domain,
689 				struct device *dev)
690 {
691 	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
692 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
693 	unsigned int i;
694 
695 	for (i = 0; i < fwspec->num_ids; ++i)
696 		ipmmu_utlb_disable(domain, fwspec->ids[i]);
697 
698 	/*
699 	 * TODO: Optimize by disabling the context when no device is attached.
700 	 */
701 }
702 
703 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
704 		     phys_addr_t paddr, size_t size, int prot)
705 {
706 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
707 
708 	if (!domain)
709 		return -ENODEV;
710 
711 	return domain->iop->map(domain->iop, iova, paddr, size, prot);
712 }
713 
714 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
715 			  size_t size)
716 {
717 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
718 
719 	return domain->iop->unmap(domain->iop, iova, size);
720 }
721 
722 static void ipmmu_iotlb_sync(struct iommu_domain *io_domain)
723 {
724 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
725 
726 	if (domain->mmu)
727 		ipmmu_tlb_flush_all(domain);
728 }
729 
730 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
731 				      dma_addr_t iova)
732 {
733 	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
734 
735 	/* TODO: Is locking needed ? */
736 
737 	return domain->iop->iova_to_phys(domain->iop, iova);
738 }
739 
740 static int ipmmu_init_platform_device(struct device *dev,
741 				      struct of_phandle_args *args)
742 {
743 	struct platform_device *ipmmu_pdev;
744 
745 	ipmmu_pdev = of_find_device_by_node(args->np);
746 	if (!ipmmu_pdev)
747 		return -ENODEV;
748 
749 	dev->iommu_fwspec->iommu_priv = platform_get_drvdata(ipmmu_pdev);
750 	return 0;
751 }
752 
753 static bool ipmmu_slave_whitelist(struct device *dev)
754 {
755 	/* By default, do not allow use of IPMMU */
756 	return false;
757 }
758 
759 static const struct soc_device_attribute soc_r8a7795[] = {
760 	{ .soc_id = "r8a7795", },
761 	{ /* sentinel */ }
762 };
763 
764 static int ipmmu_of_xlate(struct device *dev,
765 			  struct of_phandle_args *spec)
766 {
767 	/* For R-Car Gen3 use a white list to opt-in slave devices */
768 	if (soc_device_match(soc_r8a7795) && !ipmmu_slave_whitelist(dev))
769 		return -ENODEV;
770 
771 	iommu_fwspec_add_ids(dev, spec->args, 1);
772 
773 	/* Initialize once - xlate() will call multiple times */
774 	if (to_ipmmu(dev))
775 		return 0;
776 
777 	return ipmmu_init_platform_device(dev, spec);
778 }
779 
780 static int ipmmu_init_arm_mapping(struct device *dev)
781 {
782 	struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
783 	struct iommu_group *group;
784 	int ret;
785 
786 	/* Create a device group and add the device to it. */
787 	group = iommu_group_alloc();
788 	if (IS_ERR(group)) {
789 		dev_err(dev, "Failed to allocate IOMMU group\n");
790 		return PTR_ERR(group);
791 	}
792 
793 	ret = iommu_group_add_device(group, dev);
794 	iommu_group_put(group);
795 
796 	if (ret < 0) {
797 		dev_err(dev, "Failed to add device to IPMMU group\n");
798 		return ret;
799 	}
800 
801 	/*
802 	 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
803 	 * VAs. This will allocate a corresponding IOMMU domain.
804 	 *
805 	 * TODO:
806 	 * - Create one mapping per context (TLB).
807 	 * - Make the mapping size configurable ? We currently use a 2GB mapping
808 	 *   at a 1GB offset to ensure that NULL VAs will fault.
809 	 */
810 	if (!mmu->mapping) {
811 		struct dma_iommu_mapping *mapping;
812 
813 		mapping = arm_iommu_create_mapping(&platform_bus_type,
814 						   SZ_1G, SZ_2G);
815 		if (IS_ERR(mapping)) {
816 			dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
817 			ret = PTR_ERR(mapping);
818 			goto error;
819 		}
820 
821 		mmu->mapping = mapping;
822 	}
823 
824 	/* Attach the ARM VA mapping to the device. */
825 	ret = arm_iommu_attach_device(dev, mmu->mapping);
826 	if (ret < 0) {
827 		dev_err(dev, "Failed to attach device to VA mapping\n");
828 		goto error;
829 	}
830 
831 	return 0;
832 
833 error:
834 	iommu_group_remove_device(dev);
835 	if (mmu->mapping)
836 		arm_iommu_release_mapping(mmu->mapping);
837 
838 	return ret;
839 }
840 
841 static int ipmmu_add_device(struct device *dev)
842 {
843 	struct iommu_group *group;
844 
845 	/*
846 	 * Only let through devices that have been verified in xlate()
847 	 */
848 	if (!to_ipmmu(dev))
849 		return -ENODEV;
850 
851 	if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA))
852 		return ipmmu_init_arm_mapping(dev);
853 
854 	group = iommu_group_get_for_dev(dev);
855 	if (IS_ERR(group))
856 		return PTR_ERR(group);
857 
858 	iommu_group_put(group);
859 	return 0;
860 }
861 
862 static void ipmmu_remove_device(struct device *dev)
863 {
864 	arm_iommu_detach_device(dev);
865 	iommu_group_remove_device(dev);
866 }
867 
868 static struct iommu_group *ipmmu_find_group(struct device *dev)
869 {
870 	struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
871 	struct iommu_group *group;
872 
873 	if (mmu->group)
874 		return iommu_group_ref_get(mmu->group);
875 
876 	group = iommu_group_alloc();
877 	if (!IS_ERR(group))
878 		mmu->group = group;
879 
880 	return group;
881 }
882 
883 static const struct iommu_ops ipmmu_ops = {
884 	.domain_alloc = ipmmu_domain_alloc,
885 	.domain_free = ipmmu_domain_free,
886 	.attach_dev = ipmmu_attach_device,
887 	.detach_dev = ipmmu_detach_device,
888 	.map = ipmmu_map,
889 	.unmap = ipmmu_unmap,
890 	.flush_iotlb_all = ipmmu_iotlb_sync,
891 	.iotlb_sync = ipmmu_iotlb_sync,
892 	.map_sg = default_iommu_map_sg,
893 	.iova_to_phys = ipmmu_iova_to_phys,
894 	.add_device = ipmmu_add_device,
895 	.remove_device = ipmmu_remove_device,
896 	.device_group = ipmmu_find_group,
897 	.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
898 	.of_xlate = ipmmu_of_xlate,
899 };
900 
901 /* -----------------------------------------------------------------------------
902  * Probe/remove and init
903  */
904 
905 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
906 {
907 	unsigned int i;
908 
909 	/* Disable all contexts. */
910 	for (i = 0; i < mmu->num_ctx; ++i)
911 		ipmmu_write(mmu, i * IM_CTX_SIZE + IMCTR, 0);
912 }
913 
914 static const struct ipmmu_features ipmmu_features_default = {
915 	.use_ns_alias_offset = true,
916 	.has_cache_leaf_nodes = false,
917 	.number_of_contexts = 1, /* software only tested with one context */
918 	.setup_imbuscr = true,
919 	.twobit_imttbcr_sl0 = false,
920 };
921 
922 static const struct ipmmu_features ipmmu_features_r8a7795 = {
923 	.use_ns_alias_offset = false,
924 	.has_cache_leaf_nodes = true,
925 	.number_of_contexts = 8,
926 	.setup_imbuscr = false,
927 	.twobit_imttbcr_sl0 = true,
928 };
929 
930 static const struct of_device_id ipmmu_of_ids[] = {
931 	{
932 		.compatible = "renesas,ipmmu-vmsa",
933 		.data = &ipmmu_features_default,
934 	}, {
935 		.compatible = "renesas,ipmmu-r8a7795",
936 		.data = &ipmmu_features_r8a7795,
937 	}, {
938 		/* Terminator */
939 	},
940 };
941 
942 MODULE_DEVICE_TABLE(of, ipmmu_of_ids);
943 
944 static int ipmmu_probe(struct platform_device *pdev)
945 {
946 	struct ipmmu_vmsa_device *mmu;
947 	struct resource *res;
948 	int irq;
949 	int ret;
950 
951 	mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
952 	if (!mmu) {
953 		dev_err(&pdev->dev, "cannot allocate device data\n");
954 		return -ENOMEM;
955 	}
956 
957 	mmu->dev = &pdev->dev;
958 	mmu->num_utlbs = 32;
959 	spin_lock_init(&mmu->lock);
960 	bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
961 	mmu->features = of_device_get_match_data(&pdev->dev);
962 	dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
963 
964 	/* Map I/O memory and request IRQ. */
965 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
966 	mmu->base = devm_ioremap_resource(&pdev->dev, res);
967 	if (IS_ERR(mmu->base))
968 		return PTR_ERR(mmu->base);
969 
970 	/*
971 	 * The IPMMU has two register banks, for secure and non-secure modes.
972 	 * The bank mapped at the beginning of the IPMMU address space
973 	 * corresponds to the running mode of the CPU. When running in secure
974 	 * mode the non-secure register bank is also available at an offset.
975 	 *
976 	 * Secure mode operation isn't clearly documented and is thus currently
977 	 * not implemented in the driver. Furthermore, preliminary tests of
978 	 * non-secure operation with the main register bank were not successful.
979 	 * Offset the registers base unconditionally to point to the non-secure
980 	 * alias space for now.
981 	 */
982 	if (mmu->features->use_ns_alias_offset)
983 		mmu->base += IM_NS_ALIAS_OFFSET;
984 
985 	mmu->num_ctx = min_t(unsigned int, IPMMU_CTX_MAX,
986 			     mmu->features->number_of_contexts);
987 
988 	irq = platform_get_irq(pdev, 0);
989 
990 	/*
991 	 * Determine if this IPMMU instance is a root device by checking for
992 	 * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
993 	 */
994 	if (!mmu->features->has_cache_leaf_nodes ||
995 	    !of_find_property(pdev->dev.of_node, "renesas,ipmmu-main", NULL))
996 		mmu->root = mmu;
997 	else
998 		mmu->root = ipmmu_find_root();
999 
1000 	/*
1001 	 * Wait until the root device has been registered for sure.
1002 	 */
1003 	if (!mmu->root)
1004 		return -EPROBE_DEFER;
1005 
1006 	/* Root devices have mandatory IRQs */
1007 	if (ipmmu_is_root(mmu)) {
1008 		if (irq < 0) {
1009 			dev_err(&pdev->dev, "no IRQ found\n");
1010 			return irq;
1011 		}
1012 
1013 		ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1014 				       dev_name(&pdev->dev), mmu);
1015 		if (ret < 0) {
1016 			dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1017 			return ret;
1018 		}
1019 
1020 		ipmmu_device_reset(mmu);
1021 	}
1022 
1023 	/*
1024 	 * Register the IPMMU to the IOMMU subsystem in the following cases:
1025 	 * - R-Car Gen2 IPMMU (all devices registered)
1026 	 * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1027 	 */
1028 	if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) {
1029 		ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL,
1030 					     dev_name(&pdev->dev));
1031 		if (ret)
1032 			return ret;
1033 
1034 		iommu_device_set_ops(&mmu->iommu, &ipmmu_ops);
1035 		iommu_device_set_fwnode(&mmu->iommu,
1036 					&pdev->dev.of_node->fwnode);
1037 
1038 		ret = iommu_device_register(&mmu->iommu);
1039 		if (ret)
1040 			return ret;
1041 
1042 #if defined(CONFIG_IOMMU_DMA)
1043 		if (!iommu_present(&platform_bus_type))
1044 			bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1045 #endif
1046 	}
1047 
1048 	/*
1049 	 * We can't create the ARM mapping here as it requires the bus to have
1050 	 * an IOMMU, which only happens when bus_set_iommu() is called in
1051 	 * ipmmu_init() after the probe function returns.
1052 	 */
1053 
1054 	platform_set_drvdata(pdev, mmu);
1055 
1056 	return 0;
1057 }
1058 
1059 static int ipmmu_remove(struct platform_device *pdev)
1060 {
1061 	struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1062 
1063 	iommu_device_sysfs_remove(&mmu->iommu);
1064 	iommu_device_unregister(&mmu->iommu);
1065 
1066 	arm_iommu_release_mapping(mmu->mapping);
1067 
1068 	ipmmu_device_reset(mmu);
1069 
1070 	return 0;
1071 }
1072 
1073 static struct platform_driver ipmmu_driver = {
1074 	.driver = {
1075 		.name = "ipmmu-vmsa",
1076 		.of_match_table = of_match_ptr(ipmmu_of_ids),
1077 	},
1078 	.probe = ipmmu_probe,
1079 	.remove	= ipmmu_remove,
1080 };
1081 
1082 static int __init ipmmu_init(void)
1083 {
1084 	static bool setup_done;
1085 	int ret;
1086 
1087 	if (setup_done)
1088 		return 0;
1089 
1090 	ret = platform_driver_register(&ipmmu_driver);
1091 	if (ret < 0)
1092 		return ret;
1093 
1094 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
1095 	if (!iommu_present(&platform_bus_type))
1096 		bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1097 #endif
1098 
1099 	setup_done = true;
1100 	return 0;
1101 }
1102 
1103 static void __exit ipmmu_exit(void)
1104 {
1105 	return platform_driver_unregister(&ipmmu_driver);
1106 }
1107 
1108 subsys_initcall(ipmmu_init);
1109 module_exit(ipmmu_exit);
1110 
1111 #ifdef CONFIG_IOMMU_DMA
1112 static int __init ipmmu_vmsa_iommu_of_setup(struct device_node *np)
1113 {
1114 	ipmmu_init();
1115 	return 0;
1116 }
1117 
1118 IOMMU_OF_DECLARE(ipmmu_vmsa_iommu_of, "renesas,ipmmu-vmsa",
1119 		 ipmmu_vmsa_iommu_of_setup);
1120 IOMMU_OF_DECLARE(ipmmu_r8a7795_iommu_of, "renesas,ipmmu-r8a7795",
1121 		 ipmmu_vmsa_iommu_of_setup);
1122 #endif
1123 
1124 MODULE_DESCRIPTION("IOMMU API for Renesas VMSA-compatible IPMMU");
1125 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
1126 MODULE_LICENSE("GPL v2");
1127