xref: /openbmc/linux/drivers/iommu/iova.c (revision f3d7c2cd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright © 2006-2009, Intel Corporation.
4  *
5  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
6  */
7 
8 #include <linux/iova.h>
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/smp.h>
12 #include <linux/bitops.h>
13 #include <linux/cpu.h>
14 
15 /* The anchor node sits above the top of the usable address space */
16 #define IOVA_ANCHOR	~0UL
17 
18 static bool iova_rcache_insert(struct iova_domain *iovad,
19 			       unsigned long pfn,
20 			       unsigned long size);
21 static unsigned long iova_rcache_get(struct iova_domain *iovad,
22 				     unsigned long size,
23 				     unsigned long limit_pfn);
24 static void init_iova_rcaches(struct iova_domain *iovad);
25 static void free_cpu_cached_iovas(unsigned int cpu, struct iova_domain *iovad);
26 static void free_iova_rcaches(struct iova_domain *iovad);
27 static void fq_destroy_all_entries(struct iova_domain *iovad);
28 static void fq_flush_timeout(struct timer_list *t);
29 
30 static int iova_cpuhp_dead(unsigned int cpu, struct hlist_node *node)
31 {
32 	struct iova_domain *iovad;
33 
34 	iovad = hlist_entry_safe(node, struct iova_domain, cpuhp_dead);
35 
36 	free_cpu_cached_iovas(cpu, iovad);
37 	return 0;
38 }
39 
40 static void free_global_cached_iovas(struct iova_domain *iovad);
41 
42 static struct iova *to_iova(struct rb_node *node)
43 {
44 	return rb_entry(node, struct iova, node);
45 }
46 
47 void
48 init_iova_domain(struct iova_domain *iovad, unsigned long granule,
49 	unsigned long start_pfn)
50 {
51 	/*
52 	 * IOVA granularity will normally be equal to the smallest
53 	 * supported IOMMU page size; both *must* be capable of
54 	 * representing individual CPU pages exactly.
55 	 */
56 	BUG_ON((granule > PAGE_SIZE) || !is_power_of_2(granule));
57 
58 	spin_lock_init(&iovad->iova_rbtree_lock);
59 	iovad->rbroot = RB_ROOT;
60 	iovad->cached_node = &iovad->anchor.node;
61 	iovad->cached32_node = &iovad->anchor.node;
62 	iovad->granule = granule;
63 	iovad->start_pfn = start_pfn;
64 	iovad->dma_32bit_pfn = 1UL << (32 - iova_shift(iovad));
65 	iovad->max32_alloc_size = iovad->dma_32bit_pfn;
66 	iovad->flush_cb = NULL;
67 	iovad->fq = NULL;
68 	iovad->anchor.pfn_lo = iovad->anchor.pfn_hi = IOVA_ANCHOR;
69 	rb_link_node(&iovad->anchor.node, NULL, &iovad->rbroot.rb_node);
70 	rb_insert_color(&iovad->anchor.node, &iovad->rbroot);
71 	cpuhp_state_add_instance_nocalls(CPUHP_IOMMU_IOVA_DEAD, &iovad->cpuhp_dead);
72 	init_iova_rcaches(iovad);
73 }
74 EXPORT_SYMBOL_GPL(init_iova_domain);
75 
76 static bool has_iova_flush_queue(struct iova_domain *iovad)
77 {
78 	return !!iovad->fq;
79 }
80 
81 static void free_iova_flush_queue(struct iova_domain *iovad)
82 {
83 	if (!has_iova_flush_queue(iovad))
84 		return;
85 
86 	if (timer_pending(&iovad->fq_timer))
87 		del_timer(&iovad->fq_timer);
88 
89 	fq_destroy_all_entries(iovad);
90 
91 	free_percpu(iovad->fq);
92 
93 	iovad->fq         = NULL;
94 	iovad->flush_cb   = NULL;
95 	iovad->entry_dtor = NULL;
96 }
97 
98 int init_iova_flush_queue(struct iova_domain *iovad,
99 			  iova_flush_cb flush_cb, iova_entry_dtor entry_dtor)
100 {
101 	struct iova_fq __percpu *queue;
102 	int cpu;
103 
104 	atomic64_set(&iovad->fq_flush_start_cnt,  0);
105 	atomic64_set(&iovad->fq_flush_finish_cnt, 0);
106 
107 	queue = alloc_percpu(struct iova_fq);
108 	if (!queue)
109 		return -ENOMEM;
110 
111 	iovad->flush_cb   = flush_cb;
112 	iovad->entry_dtor = entry_dtor;
113 
114 	for_each_possible_cpu(cpu) {
115 		struct iova_fq *fq;
116 
117 		fq = per_cpu_ptr(queue, cpu);
118 		fq->head = 0;
119 		fq->tail = 0;
120 
121 		spin_lock_init(&fq->lock);
122 	}
123 
124 	iovad->fq = queue;
125 
126 	timer_setup(&iovad->fq_timer, fq_flush_timeout, 0);
127 	atomic_set(&iovad->fq_timer_on, 0);
128 
129 	return 0;
130 }
131 
132 static struct rb_node *
133 __get_cached_rbnode(struct iova_domain *iovad, unsigned long limit_pfn)
134 {
135 	if (limit_pfn <= iovad->dma_32bit_pfn)
136 		return iovad->cached32_node;
137 
138 	return iovad->cached_node;
139 }
140 
141 static void
142 __cached_rbnode_insert_update(struct iova_domain *iovad, struct iova *new)
143 {
144 	if (new->pfn_hi < iovad->dma_32bit_pfn)
145 		iovad->cached32_node = &new->node;
146 	else
147 		iovad->cached_node = &new->node;
148 }
149 
150 static void
151 __cached_rbnode_delete_update(struct iova_domain *iovad, struct iova *free)
152 {
153 	struct iova *cached_iova;
154 
155 	cached_iova = to_iova(iovad->cached32_node);
156 	if (free == cached_iova ||
157 	    (free->pfn_hi < iovad->dma_32bit_pfn &&
158 	     free->pfn_lo >= cached_iova->pfn_lo)) {
159 		iovad->cached32_node = rb_next(&free->node);
160 		iovad->max32_alloc_size = iovad->dma_32bit_pfn;
161 	}
162 
163 	cached_iova = to_iova(iovad->cached_node);
164 	if (free->pfn_lo >= cached_iova->pfn_lo)
165 		iovad->cached_node = rb_next(&free->node);
166 }
167 
168 static struct rb_node *iova_find_limit(struct iova_domain *iovad, unsigned long limit_pfn)
169 {
170 	struct rb_node *node, *next;
171 	/*
172 	 * Ideally what we'd like to judge here is whether limit_pfn is close
173 	 * enough to the highest-allocated IOVA that starting the allocation
174 	 * walk from the anchor node will be quicker than this initial work to
175 	 * find an exact starting point (especially if that ends up being the
176 	 * anchor node anyway). This is an incredibly crude approximation which
177 	 * only really helps the most likely case, but is at least trivially easy.
178 	 */
179 	if (limit_pfn > iovad->dma_32bit_pfn)
180 		return &iovad->anchor.node;
181 
182 	node = iovad->rbroot.rb_node;
183 	while (to_iova(node)->pfn_hi < limit_pfn)
184 		node = node->rb_right;
185 
186 search_left:
187 	while (node->rb_left && to_iova(node->rb_left)->pfn_lo >= limit_pfn)
188 		node = node->rb_left;
189 
190 	if (!node->rb_left)
191 		return node;
192 
193 	next = node->rb_left;
194 	while (next->rb_right) {
195 		next = next->rb_right;
196 		if (to_iova(next)->pfn_lo >= limit_pfn) {
197 			node = next;
198 			goto search_left;
199 		}
200 	}
201 
202 	return node;
203 }
204 
205 /* Insert the iova into domain rbtree by holding writer lock */
206 static void
207 iova_insert_rbtree(struct rb_root *root, struct iova *iova,
208 		   struct rb_node *start)
209 {
210 	struct rb_node **new, *parent = NULL;
211 
212 	new = (start) ? &start : &(root->rb_node);
213 	/* Figure out where to put new node */
214 	while (*new) {
215 		struct iova *this = to_iova(*new);
216 
217 		parent = *new;
218 
219 		if (iova->pfn_lo < this->pfn_lo)
220 			new = &((*new)->rb_left);
221 		else if (iova->pfn_lo > this->pfn_lo)
222 			new = &((*new)->rb_right);
223 		else {
224 			WARN_ON(1); /* this should not happen */
225 			return;
226 		}
227 	}
228 	/* Add new node and rebalance tree. */
229 	rb_link_node(&iova->node, parent, new);
230 	rb_insert_color(&iova->node, root);
231 }
232 
233 static int __alloc_and_insert_iova_range(struct iova_domain *iovad,
234 		unsigned long size, unsigned long limit_pfn,
235 			struct iova *new, bool size_aligned)
236 {
237 	struct rb_node *curr, *prev;
238 	struct iova *curr_iova;
239 	unsigned long flags;
240 	unsigned long new_pfn, retry_pfn;
241 	unsigned long align_mask = ~0UL;
242 	unsigned long high_pfn = limit_pfn, low_pfn = iovad->start_pfn;
243 
244 	if (size_aligned)
245 		align_mask <<= fls_long(size - 1);
246 
247 	/* Walk the tree backwards */
248 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
249 	if (limit_pfn <= iovad->dma_32bit_pfn &&
250 			size >= iovad->max32_alloc_size)
251 		goto iova32_full;
252 
253 	curr = __get_cached_rbnode(iovad, limit_pfn);
254 	curr_iova = to_iova(curr);
255 	retry_pfn = curr_iova->pfn_hi + 1;
256 
257 retry:
258 	do {
259 		high_pfn = min(high_pfn, curr_iova->pfn_lo);
260 		new_pfn = (high_pfn - size) & align_mask;
261 		prev = curr;
262 		curr = rb_prev(curr);
263 		curr_iova = to_iova(curr);
264 	} while (curr && new_pfn <= curr_iova->pfn_hi && new_pfn >= low_pfn);
265 
266 	if (high_pfn < size || new_pfn < low_pfn) {
267 		if (low_pfn == iovad->start_pfn && retry_pfn < limit_pfn) {
268 			high_pfn = limit_pfn;
269 			low_pfn = retry_pfn;
270 			curr = iova_find_limit(iovad, limit_pfn);
271 			curr_iova = to_iova(curr);
272 			goto retry;
273 		}
274 		iovad->max32_alloc_size = size;
275 		goto iova32_full;
276 	}
277 
278 	/* pfn_lo will point to size aligned address if size_aligned is set */
279 	new->pfn_lo = new_pfn;
280 	new->pfn_hi = new->pfn_lo + size - 1;
281 
282 	/* If we have 'prev', it's a valid place to start the insertion. */
283 	iova_insert_rbtree(&iovad->rbroot, new, prev);
284 	__cached_rbnode_insert_update(iovad, new);
285 
286 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
287 	return 0;
288 
289 iova32_full:
290 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
291 	return -ENOMEM;
292 }
293 
294 static struct kmem_cache *iova_cache;
295 static unsigned int iova_cache_users;
296 static DEFINE_MUTEX(iova_cache_mutex);
297 
298 static struct iova *alloc_iova_mem(void)
299 {
300 	return kmem_cache_zalloc(iova_cache, GFP_ATOMIC | __GFP_NOWARN);
301 }
302 
303 static void free_iova_mem(struct iova *iova)
304 {
305 	if (iova->pfn_lo != IOVA_ANCHOR)
306 		kmem_cache_free(iova_cache, iova);
307 }
308 
309 int iova_cache_get(void)
310 {
311 	mutex_lock(&iova_cache_mutex);
312 	if (!iova_cache_users) {
313 		int ret;
314 
315 		ret = cpuhp_setup_state_multi(CPUHP_IOMMU_IOVA_DEAD, "iommu/iova:dead", NULL,
316 					iova_cpuhp_dead);
317 		if (ret) {
318 			mutex_unlock(&iova_cache_mutex);
319 			pr_err("Couldn't register cpuhp handler\n");
320 			return ret;
321 		}
322 
323 		iova_cache = kmem_cache_create(
324 			"iommu_iova", sizeof(struct iova), 0,
325 			SLAB_HWCACHE_ALIGN, NULL);
326 		if (!iova_cache) {
327 			cpuhp_remove_multi_state(CPUHP_IOMMU_IOVA_DEAD);
328 			mutex_unlock(&iova_cache_mutex);
329 			pr_err("Couldn't create iova cache\n");
330 			return -ENOMEM;
331 		}
332 	}
333 
334 	iova_cache_users++;
335 	mutex_unlock(&iova_cache_mutex);
336 
337 	return 0;
338 }
339 EXPORT_SYMBOL_GPL(iova_cache_get);
340 
341 void iova_cache_put(void)
342 {
343 	mutex_lock(&iova_cache_mutex);
344 	if (WARN_ON(!iova_cache_users)) {
345 		mutex_unlock(&iova_cache_mutex);
346 		return;
347 	}
348 	iova_cache_users--;
349 	if (!iova_cache_users) {
350 		cpuhp_remove_multi_state(CPUHP_IOMMU_IOVA_DEAD);
351 		kmem_cache_destroy(iova_cache);
352 	}
353 	mutex_unlock(&iova_cache_mutex);
354 }
355 EXPORT_SYMBOL_GPL(iova_cache_put);
356 
357 /**
358  * alloc_iova - allocates an iova
359  * @iovad: - iova domain in question
360  * @size: - size of page frames to allocate
361  * @limit_pfn: - max limit address
362  * @size_aligned: - set if size_aligned address range is required
363  * This function allocates an iova in the range iovad->start_pfn to limit_pfn,
364  * searching top-down from limit_pfn to iovad->start_pfn. If the size_aligned
365  * flag is set then the allocated address iova->pfn_lo will be naturally
366  * aligned on roundup_power_of_two(size).
367  */
368 struct iova *
369 alloc_iova(struct iova_domain *iovad, unsigned long size,
370 	unsigned long limit_pfn,
371 	bool size_aligned)
372 {
373 	struct iova *new_iova;
374 	int ret;
375 
376 	new_iova = alloc_iova_mem();
377 	if (!new_iova)
378 		return NULL;
379 
380 	ret = __alloc_and_insert_iova_range(iovad, size, limit_pfn + 1,
381 			new_iova, size_aligned);
382 
383 	if (ret) {
384 		free_iova_mem(new_iova);
385 		return NULL;
386 	}
387 
388 	return new_iova;
389 }
390 EXPORT_SYMBOL_GPL(alloc_iova);
391 
392 static struct iova *
393 private_find_iova(struct iova_domain *iovad, unsigned long pfn)
394 {
395 	struct rb_node *node = iovad->rbroot.rb_node;
396 
397 	assert_spin_locked(&iovad->iova_rbtree_lock);
398 
399 	while (node) {
400 		struct iova *iova = to_iova(node);
401 
402 		if (pfn < iova->pfn_lo)
403 			node = node->rb_left;
404 		else if (pfn > iova->pfn_hi)
405 			node = node->rb_right;
406 		else
407 			return iova;	/* pfn falls within iova's range */
408 	}
409 
410 	return NULL;
411 }
412 
413 static void remove_iova(struct iova_domain *iovad, struct iova *iova)
414 {
415 	assert_spin_locked(&iovad->iova_rbtree_lock);
416 	__cached_rbnode_delete_update(iovad, iova);
417 	rb_erase(&iova->node, &iovad->rbroot);
418 }
419 
420 /**
421  * find_iova - finds an iova for a given pfn
422  * @iovad: - iova domain in question.
423  * @pfn: - page frame number
424  * This function finds and returns an iova belonging to the
425  * given domain which matches the given pfn.
426  */
427 struct iova *find_iova(struct iova_domain *iovad, unsigned long pfn)
428 {
429 	unsigned long flags;
430 	struct iova *iova;
431 
432 	/* Take the lock so that no other thread is manipulating the rbtree */
433 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
434 	iova = private_find_iova(iovad, pfn);
435 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
436 	return iova;
437 }
438 EXPORT_SYMBOL_GPL(find_iova);
439 
440 /**
441  * __free_iova - frees the given iova
442  * @iovad: iova domain in question.
443  * @iova: iova in question.
444  * Frees the given iova belonging to the giving domain
445  */
446 void
447 __free_iova(struct iova_domain *iovad, struct iova *iova)
448 {
449 	unsigned long flags;
450 
451 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
452 	remove_iova(iovad, iova);
453 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
454 	free_iova_mem(iova);
455 }
456 EXPORT_SYMBOL_GPL(__free_iova);
457 
458 /**
459  * free_iova - finds and frees the iova for a given pfn
460  * @iovad: - iova domain in question.
461  * @pfn: - pfn that is allocated previously
462  * This functions finds an iova for a given pfn and then
463  * frees the iova from that domain.
464  */
465 void
466 free_iova(struct iova_domain *iovad, unsigned long pfn)
467 {
468 	unsigned long flags;
469 	struct iova *iova;
470 
471 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
472 	iova = private_find_iova(iovad, pfn);
473 	if (!iova) {
474 		spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
475 		return;
476 	}
477 	remove_iova(iovad, iova);
478 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
479 	free_iova_mem(iova);
480 }
481 EXPORT_SYMBOL_GPL(free_iova);
482 
483 /**
484  * alloc_iova_fast - allocates an iova from rcache
485  * @iovad: - iova domain in question
486  * @size: - size of page frames to allocate
487  * @limit_pfn: - max limit address
488  * @flush_rcache: - set to flush rcache on regular allocation failure
489  * This function tries to satisfy an iova allocation from the rcache,
490  * and falls back to regular allocation on failure. If regular allocation
491  * fails too and the flush_rcache flag is set then the rcache will be flushed.
492 */
493 unsigned long
494 alloc_iova_fast(struct iova_domain *iovad, unsigned long size,
495 		unsigned long limit_pfn, bool flush_rcache)
496 {
497 	unsigned long iova_pfn;
498 	struct iova *new_iova;
499 
500 	iova_pfn = iova_rcache_get(iovad, size, limit_pfn + 1);
501 	if (iova_pfn)
502 		return iova_pfn;
503 
504 retry:
505 	new_iova = alloc_iova(iovad, size, limit_pfn, true);
506 	if (!new_iova) {
507 		unsigned int cpu;
508 
509 		if (!flush_rcache)
510 			return 0;
511 
512 		/* Try replenishing IOVAs by flushing rcache. */
513 		flush_rcache = false;
514 		for_each_online_cpu(cpu)
515 			free_cpu_cached_iovas(cpu, iovad);
516 		free_global_cached_iovas(iovad);
517 		goto retry;
518 	}
519 
520 	return new_iova->pfn_lo;
521 }
522 EXPORT_SYMBOL_GPL(alloc_iova_fast);
523 
524 /**
525  * free_iova_fast - free iova pfn range into rcache
526  * @iovad: - iova domain in question.
527  * @pfn: - pfn that is allocated previously
528  * @size: - # of pages in range
529  * This functions frees an iova range by trying to put it into the rcache,
530  * falling back to regular iova deallocation via free_iova() if this fails.
531  */
532 void
533 free_iova_fast(struct iova_domain *iovad, unsigned long pfn, unsigned long size)
534 {
535 	if (iova_rcache_insert(iovad, pfn, size))
536 		return;
537 
538 	free_iova(iovad, pfn);
539 }
540 EXPORT_SYMBOL_GPL(free_iova_fast);
541 
542 #define fq_ring_for_each(i, fq) \
543 	for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE)
544 
545 static inline bool fq_full(struct iova_fq *fq)
546 {
547 	assert_spin_locked(&fq->lock);
548 	return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head);
549 }
550 
551 static inline unsigned fq_ring_add(struct iova_fq *fq)
552 {
553 	unsigned idx = fq->tail;
554 
555 	assert_spin_locked(&fq->lock);
556 
557 	fq->tail = (idx + 1) % IOVA_FQ_SIZE;
558 
559 	return idx;
560 }
561 
562 static void fq_ring_free(struct iova_domain *iovad, struct iova_fq *fq)
563 {
564 	u64 counter = atomic64_read(&iovad->fq_flush_finish_cnt);
565 	unsigned idx;
566 
567 	assert_spin_locked(&fq->lock);
568 
569 	fq_ring_for_each(idx, fq) {
570 
571 		if (fq->entries[idx].counter >= counter)
572 			break;
573 
574 		if (iovad->entry_dtor)
575 			iovad->entry_dtor(fq->entries[idx].data);
576 
577 		free_iova_fast(iovad,
578 			       fq->entries[idx].iova_pfn,
579 			       fq->entries[idx].pages);
580 
581 		fq->head = (fq->head + 1) % IOVA_FQ_SIZE;
582 	}
583 }
584 
585 static void iova_domain_flush(struct iova_domain *iovad)
586 {
587 	atomic64_inc(&iovad->fq_flush_start_cnt);
588 	iovad->flush_cb(iovad);
589 	atomic64_inc(&iovad->fq_flush_finish_cnt);
590 }
591 
592 static void fq_destroy_all_entries(struct iova_domain *iovad)
593 {
594 	int cpu;
595 
596 	/*
597 	 * This code runs when the iova_domain is being detroyed, so don't
598 	 * bother to free iovas, just call the entry_dtor on all remaining
599 	 * entries.
600 	 */
601 	if (!iovad->entry_dtor)
602 		return;
603 
604 	for_each_possible_cpu(cpu) {
605 		struct iova_fq *fq = per_cpu_ptr(iovad->fq, cpu);
606 		int idx;
607 
608 		fq_ring_for_each(idx, fq)
609 			iovad->entry_dtor(fq->entries[idx].data);
610 	}
611 }
612 
613 static void fq_flush_timeout(struct timer_list *t)
614 {
615 	struct iova_domain *iovad = from_timer(iovad, t, fq_timer);
616 	int cpu;
617 
618 	atomic_set(&iovad->fq_timer_on, 0);
619 	iova_domain_flush(iovad);
620 
621 	for_each_possible_cpu(cpu) {
622 		unsigned long flags;
623 		struct iova_fq *fq;
624 
625 		fq = per_cpu_ptr(iovad->fq, cpu);
626 		spin_lock_irqsave(&fq->lock, flags);
627 		fq_ring_free(iovad, fq);
628 		spin_unlock_irqrestore(&fq->lock, flags);
629 	}
630 }
631 
632 void queue_iova(struct iova_domain *iovad,
633 		unsigned long pfn, unsigned long pages,
634 		unsigned long data)
635 {
636 	struct iova_fq *fq;
637 	unsigned long flags;
638 	unsigned idx;
639 
640 	/*
641 	 * Order against the IOMMU driver's pagetable update from unmapping
642 	 * @pte, to guarantee that iova_domain_flush() observes that if called
643 	 * from a different CPU before we release the lock below. Full barrier
644 	 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially
645 	 * written fq state here.
646 	 */
647 	smp_mb();
648 
649 	fq = raw_cpu_ptr(iovad->fq);
650 	spin_lock_irqsave(&fq->lock, flags);
651 
652 	/*
653 	 * First remove all entries from the flush queue that have already been
654 	 * flushed out on another CPU. This makes the fq_full() check below less
655 	 * likely to be true.
656 	 */
657 	fq_ring_free(iovad, fq);
658 
659 	if (fq_full(fq)) {
660 		iova_domain_flush(iovad);
661 		fq_ring_free(iovad, fq);
662 	}
663 
664 	idx = fq_ring_add(fq);
665 
666 	fq->entries[idx].iova_pfn = pfn;
667 	fq->entries[idx].pages    = pages;
668 	fq->entries[idx].data     = data;
669 	fq->entries[idx].counter  = atomic64_read(&iovad->fq_flush_start_cnt);
670 
671 	spin_unlock_irqrestore(&fq->lock, flags);
672 
673 	/* Avoid false sharing as much as possible. */
674 	if (!atomic_read(&iovad->fq_timer_on) &&
675 	    !atomic_xchg(&iovad->fq_timer_on, 1))
676 		mod_timer(&iovad->fq_timer,
677 			  jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT));
678 }
679 
680 /**
681  * put_iova_domain - destroys the iova domain
682  * @iovad: - iova domain in question.
683  * All the iova's in that domain are destroyed.
684  */
685 void put_iova_domain(struct iova_domain *iovad)
686 {
687 	struct iova *iova, *tmp;
688 
689 	cpuhp_state_remove_instance_nocalls(CPUHP_IOMMU_IOVA_DEAD,
690 					    &iovad->cpuhp_dead);
691 
692 	free_iova_flush_queue(iovad);
693 	free_iova_rcaches(iovad);
694 	rbtree_postorder_for_each_entry_safe(iova, tmp, &iovad->rbroot, node)
695 		free_iova_mem(iova);
696 }
697 EXPORT_SYMBOL_GPL(put_iova_domain);
698 
699 static int
700 __is_range_overlap(struct rb_node *node,
701 	unsigned long pfn_lo, unsigned long pfn_hi)
702 {
703 	struct iova *iova = to_iova(node);
704 
705 	if ((pfn_lo <= iova->pfn_hi) && (pfn_hi >= iova->pfn_lo))
706 		return 1;
707 	return 0;
708 }
709 
710 static inline struct iova *
711 alloc_and_init_iova(unsigned long pfn_lo, unsigned long pfn_hi)
712 {
713 	struct iova *iova;
714 
715 	iova = alloc_iova_mem();
716 	if (iova) {
717 		iova->pfn_lo = pfn_lo;
718 		iova->pfn_hi = pfn_hi;
719 	}
720 
721 	return iova;
722 }
723 
724 static struct iova *
725 __insert_new_range(struct iova_domain *iovad,
726 	unsigned long pfn_lo, unsigned long pfn_hi)
727 {
728 	struct iova *iova;
729 
730 	iova = alloc_and_init_iova(pfn_lo, pfn_hi);
731 	if (iova)
732 		iova_insert_rbtree(&iovad->rbroot, iova, NULL);
733 
734 	return iova;
735 }
736 
737 static void
738 __adjust_overlap_range(struct iova *iova,
739 	unsigned long *pfn_lo, unsigned long *pfn_hi)
740 {
741 	if (*pfn_lo < iova->pfn_lo)
742 		iova->pfn_lo = *pfn_lo;
743 	if (*pfn_hi > iova->pfn_hi)
744 		*pfn_lo = iova->pfn_hi + 1;
745 }
746 
747 /**
748  * reserve_iova - reserves an iova in the given range
749  * @iovad: - iova domain pointer
750  * @pfn_lo: - lower page frame address
751  * @pfn_hi:- higher pfn adderss
752  * This function allocates reserves the address range from pfn_lo to pfn_hi so
753  * that this address is not dished out as part of alloc_iova.
754  */
755 struct iova *
756 reserve_iova(struct iova_domain *iovad,
757 	unsigned long pfn_lo, unsigned long pfn_hi)
758 {
759 	struct rb_node *node;
760 	unsigned long flags;
761 	struct iova *iova;
762 	unsigned int overlap = 0;
763 
764 	/* Don't allow nonsensical pfns */
765 	if (WARN_ON((pfn_hi | pfn_lo) > (ULLONG_MAX >> iova_shift(iovad))))
766 		return NULL;
767 
768 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
769 	for (node = rb_first(&iovad->rbroot); node; node = rb_next(node)) {
770 		if (__is_range_overlap(node, pfn_lo, pfn_hi)) {
771 			iova = to_iova(node);
772 			__adjust_overlap_range(iova, &pfn_lo, &pfn_hi);
773 			if ((pfn_lo >= iova->pfn_lo) &&
774 				(pfn_hi <= iova->pfn_hi))
775 				goto finish;
776 			overlap = 1;
777 
778 		} else if (overlap)
779 				break;
780 	}
781 
782 	/* We are here either because this is the first reserver node
783 	 * or need to insert remaining non overlap addr range
784 	 */
785 	iova = __insert_new_range(iovad, pfn_lo, pfn_hi);
786 finish:
787 
788 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
789 	return iova;
790 }
791 EXPORT_SYMBOL_GPL(reserve_iova);
792 
793 /*
794  * Magazine caches for IOVA ranges.  For an introduction to magazines,
795  * see the USENIX 2001 paper "Magazines and Vmem: Extending the Slab
796  * Allocator to Many CPUs and Arbitrary Resources" by Bonwick and Adams.
797  * For simplicity, we use a static magazine size and don't implement the
798  * dynamic size tuning described in the paper.
799  */
800 
801 #define IOVA_MAG_SIZE 128
802 
803 struct iova_magazine {
804 	unsigned long size;
805 	unsigned long pfns[IOVA_MAG_SIZE];
806 };
807 
808 struct iova_cpu_rcache {
809 	spinlock_t lock;
810 	struct iova_magazine *loaded;
811 	struct iova_magazine *prev;
812 };
813 
814 static struct iova_magazine *iova_magazine_alloc(gfp_t flags)
815 {
816 	return kzalloc(sizeof(struct iova_magazine), flags);
817 }
818 
819 static void iova_magazine_free(struct iova_magazine *mag)
820 {
821 	kfree(mag);
822 }
823 
824 static void
825 iova_magazine_free_pfns(struct iova_magazine *mag, struct iova_domain *iovad)
826 {
827 	unsigned long flags;
828 	int i;
829 
830 	if (!mag)
831 		return;
832 
833 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
834 
835 	for (i = 0 ; i < mag->size; ++i) {
836 		struct iova *iova = private_find_iova(iovad, mag->pfns[i]);
837 
838 		if (WARN_ON(!iova))
839 			continue;
840 
841 		remove_iova(iovad, iova);
842 		free_iova_mem(iova);
843 	}
844 
845 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
846 
847 	mag->size = 0;
848 }
849 
850 static bool iova_magazine_full(struct iova_magazine *mag)
851 {
852 	return (mag && mag->size == IOVA_MAG_SIZE);
853 }
854 
855 static bool iova_magazine_empty(struct iova_magazine *mag)
856 {
857 	return (!mag || mag->size == 0);
858 }
859 
860 static unsigned long iova_magazine_pop(struct iova_magazine *mag,
861 				       unsigned long limit_pfn)
862 {
863 	int i;
864 	unsigned long pfn;
865 
866 	BUG_ON(iova_magazine_empty(mag));
867 
868 	/* Only fall back to the rbtree if we have no suitable pfns at all */
869 	for (i = mag->size - 1; mag->pfns[i] > limit_pfn; i--)
870 		if (i == 0)
871 			return 0;
872 
873 	/* Swap it to pop it */
874 	pfn = mag->pfns[i];
875 	mag->pfns[i] = mag->pfns[--mag->size];
876 
877 	return pfn;
878 }
879 
880 static void iova_magazine_push(struct iova_magazine *mag, unsigned long pfn)
881 {
882 	BUG_ON(iova_magazine_full(mag));
883 
884 	mag->pfns[mag->size++] = pfn;
885 }
886 
887 static void init_iova_rcaches(struct iova_domain *iovad)
888 {
889 	struct iova_cpu_rcache *cpu_rcache;
890 	struct iova_rcache *rcache;
891 	unsigned int cpu;
892 	int i;
893 
894 	for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) {
895 		rcache = &iovad->rcaches[i];
896 		spin_lock_init(&rcache->lock);
897 		rcache->depot_size = 0;
898 		rcache->cpu_rcaches = __alloc_percpu(sizeof(*cpu_rcache), cache_line_size());
899 		if (WARN_ON(!rcache->cpu_rcaches))
900 			continue;
901 		for_each_possible_cpu(cpu) {
902 			cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu);
903 			spin_lock_init(&cpu_rcache->lock);
904 			cpu_rcache->loaded = iova_magazine_alloc(GFP_KERNEL);
905 			cpu_rcache->prev = iova_magazine_alloc(GFP_KERNEL);
906 		}
907 	}
908 }
909 
910 /*
911  * Try inserting IOVA range starting with 'iova_pfn' into 'rcache', and
912  * return true on success.  Can fail if rcache is full and we can't free
913  * space, and free_iova() (our only caller) will then return the IOVA
914  * range to the rbtree instead.
915  */
916 static bool __iova_rcache_insert(struct iova_domain *iovad,
917 				 struct iova_rcache *rcache,
918 				 unsigned long iova_pfn)
919 {
920 	struct iova_magazine *mag_to_free = NULL;
921 	struct iova_cpu_rcache *cpu_rcache;
922 	bool can_insert = false;
923 	unsigned long flags;
924 
925 	cpu_rcache = raw_cpu_ptr(rcache->cpu_rcaches);
926 	spin_lock_irqsave(&cpu_rcache->lock, flags);
927 
928 	if (!iova_magazine_full(cpu_rcache->loaded)) {
929 		can_insert = true;
930 	} else if (!iova_magazine_full(cpu_rcache->prev)) {
931 		swap(cpu_rcache->prev, cpu_rcache->loaded);
932 		can_insert = true;
933 	} else {
934 		struct iova_magazine *new_mag = iova_magazine_alloc(GFP_ATOMIC);
935 
936 		if (new_mag) {
937 			spin_lock(&rcache->lock);
938 			if (rcache->depot_size < MAX_GLOBAL_MAGS) {
939 				rcache->depot[rcache->depot_size++] =
940 						cpu_rcache->loaded;
941 			} else {
942 				mag_to_free = cpu_rcache->loaded;
943 			}
944 			spin_unlock(&rcache->lock);
945 
946 			cpu_rcache->loaded = new_mag;
947 			can_insert = true;
948 		}
949 	}
950 
951 	if (can_insert)
952 		iova_magazine_push(cpu_rcache->loaded, iova_pfn);
953 
954 	spin_unlock_irqrestore(&cpu_rcache->lock, flags);
955 
956 	if (mag_to_free) {
957 		iova_magazine_free_pfns(mag_to_free, iovad);
958 		iova_magazine_free(mag_to_free);
959 	}
960 
961 	return can_insert;
962 }
963 
964 static bool iova_rcache_insert(struct iova_domain *iovad, unsigned long pfn,
965 			       unsigned long size)
966 {
967 	unsigned int log_size = order_base_2(size);
968 
969 	if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE)
970 		return false;
971 
972 	return __iova_rcache_insert(iovad, &iovad->rcaches[log_size], pfn);
973 }
974 
975 /*
976  * Caller wants to allocate a new IOVA range from 'rcache'.  If we can
977  * satisfy the request, return a matching non-NULL range and remove
978  * it from the 'rcache'.
979  */
980 static unsigned long __iova_rcache_get(struct iova_rcache *rcache,
981 				       unsigned long limit_pfn)
982 {
983 	struct iova_cpu_rcache *cpu_rcache;
984 	unsigned long iova_pfn = 0;
985 	bool has_pfn = false;
986 	unsigned long flags;
987 
988 	cpu_rcache = raw_cpu_ptr(rcache->cpu_rcaches);
989 	spin_lock_irqsave(&cpu_rcache->lock, flags);
990 
991 	if (!iova_magazine_empty(cpu_rcache->loaded)) {
992 		has_pfn = true;
993 	} else if (!iova_magazine_empty(cpu_rcache->prev)) {
994 		swap(cpu_rcache->prev, cpu_rcache->loaded);
995 		has_pfn = true;
996 	} else {
997 		spin_lock(&rcache->lock);
998 		if (rcache->depot_size > 0) {
999 			iova_magazine_free(cpu_rcache->loaded);
1000 			cpu_rcache->loaded = rcache->depot[--rcache->depot_size];
1001 			has_pfn = true;
1002 		}
1003 		spin_unlock(&rcache->lock);
1004 	}
1005 
1006 	if (has_pfn)
1007 		iova_pfn = iova_magazine_pop(cpu_rcache->loaded, limit_pfn);
1008 
1009 	spin_unlock_irqrestore(&cpu_rcache->lock, flags);
1010 
1011 	return iova_pfn;
1012 }
1013 
1014 /*
1015  * Try to satisfy IOVA allocation range from rcache.  Fail if requested
1016  * size is too big or the DMA limit we are given isn't satisfied by the
1017  * top element in the magazine.
1018  */
1019 static unsigned long iova_rcache_get(struct iova_domain *iovad,
1020 				     unsigned long size,
1021 				     unsigned long limit_pfn)
1022 {
1023 	unsigned int log_size = order_base_2(size);
1024 
1025 	if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE)
1026 		return 0;
1027 
1028 	return __iova_rcache_get(&iovad->rcaches[log_size], limit_pfn - size);
1029 }
1030 
1031 /*
1032  * free rcache data structures.
1033  */
1034 static void free_iova_rcaches(struct iova_domain *iovad)
1035 {
1036 	struct iova_rcache *rcache;
1037 	struct iova_cpu_rcache *cpu_rcache;
1038 	unsigned int cpu;
1039 	int i, j;
1040 
1041 	for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) {
1042 		rcache = &iovad->rcaches[i];
1043 		for_each_possible_cpu(cpu) {
1044 			cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu);
1045 			iova_magazine_free(cpu_rcache->loaded);
1046 			iova_magazine_free(cpu_rcache->prev);
1047 		}
1048 		free_percpu(rcache->cpu_rcaches);
1049 		for (j = 0; j < rcache->depot_size; ++j)
1050 			iova_magazine_free(rcache->depot[j]);
1051 	}
1052 }
1053 
1054 /*
1055  * free all the IOVA ranges cached by a cpu (used when cpu is unplugged)
1056  */
1057 static void free_cpu_cached_iovas(unsigned int cpu, struct iova_domain *iovad)
1058 {
1059 	struct iova_cpu_rcache *cpu_rcache;
1060 	struct iova_rcache *rcache;
1061 	unsigned long flags;
1062 	int i;
1063 
1064 	for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) {
1065 		rcache = &iovad->rcaches[i];
1066 		cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu);
1067 		spin_lock_irqsave(&cpu_rcache->lock, flags);
1068 		iova_magazine_free_pfns(cpu_rcache->loaded, iovad);
1069 		iova_magazine_free_pfns(cpu_rcache->prev, iovad);
1070 		spin_unlock_irqrestore(&cpu_rcache->lock, flags);
1071 	}
1072 }
1073 
1074 /*
1075  * free all the IOVA ranges of global cache
1076  */
1077 static void free_global_cached_iovas(struct iova_domain *iovad)
1078 {
1079 	struct iova_rcache *rcache;
1080 	unsigned long flags;
1081 	int i, j;
1082 
1083 	for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) {
1084 		rcache = &iovad->rcaches[i];
1085 		spin_lock_irqsave(&rcache->lock, flags);
1086 		for (j = 0; j < rcache->depot_size; ++j) {
1087 			iova_magazine_free_pfns(rcache->depot[j], iovad);
1088 			iova_magazine_free(rcache->depot[j]);
1089 		}
1090 		rcache->depot_size = 0;
1091 		spin_unlock_irqrestore(&rcache->lock, flags);
1092 	}
1093 }
1094 MODULE_AUTHOR("Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>");
1095 MODULE_LICENSE("GPL");
1096