1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright © 2006-2009, Intel Corporation. 4 * 5 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 6 */ 7 8 #include <linux/iova.h> 9 #include <linux/module.h> 10 #include <linux/slab.h> 11 #include <linux/smp.h> 12 #include <linux/bitops.h> 13 #include <linux/cpu.h> 14 15 /* The anchor node sits above the top of the usable address space */ 16 #define IOVA_ANCHOR ~0UL 17 18 static bool iova_rcache_insert(struct iova_domain *iovad, 19 unsigned long pfn, 20 unsigned long size); 21 static unsigned long iova_rcache_get(struct iova_domain *iovad, 22 unsigned long size, 23 unsigned long limit_pfn); 24 static void init_iova_rcaches(struct iova_domain *iovad); 25 static void free_cpu_cached_iovas(unsigned int cpu, struct iova_domain *iovad); 26 static void free_iova_rcaches(struct iova_domain *iovad); 27 static void fq_destroy_all_entries(struct iova_domain *iovad); 28 static void fq_flush_timeout(struct timer_list *t); 29 30 static int iova_cpuhp_dead(unsigned int cpu, struct hlist_node *node) 31 { 32 struct iova_domain *iovad; 33 34 iovad = hlist_entry_safe(node, struct iova_domain, cpuhp_dead); 35 36 free_cpu_cached_iovas(cpu, iovad); 37 return 0; 38 } 39 40 static void free_global_cached_iovas(struct iova_domain *iovad); 41 42 static struct iova *to_iova(struct rb_node *node) 43 { 44 return rb_entry(node, struct iova, node); 45 } 46 47 void 48 init_iova_domain(struct iova_domain *iovad, unsigned long granule, 49 unsigned long start_pfn) 50 { 51 /* 52 * IOVA granularity will normally be equal to the smallest 53 * supported IOMMU page size; both *must* be capable of 54 * representing individual CPU pages exactly. 55 */ 56 BUG_ON((granule > PAGE_SIZE) || !is_power_of_2(granule)); 57 58 spin_lock_init(&iovad->iova_rbtree_lock); 59 iovad->rbroot = RB_ROOT; 60 iovad->cached_node = &iovad->anchor.node; 61 iovad->cached32_node = &iovad->anchor.node; 62 iovad->granule = granule; 63 iovad->start_pfn = start_pfn; 64 iovad->dma_32bit_pfn = 1UL << (32 - iova_shift(iovad)); 65 iovad->max32_alloc_size = iovad->dma_32bit_pfn; 66 iovad->flush_cb = NULL; 67 iovad->fq = NULL; 68 iovad->anchor.pfn_lo = iovad->anchor.pfn_hi = IOVA_ANCHOR; 69 rb_link_node(&iovad->anchor.node, NULL, &iovad->rbroot.rb_node); 70 rb_insert_color(&iovad->anchor.node, &iovad->rbroot); 71 cpuhp_state_add_instance_nocalls(CPUHP_IOMMU_IOVA_DEAD, &iovad->cpuhp_dead); 72 init_iova_rcaches(iovad); 73 } 74 EXPORT_SYMBOL_GPL(init_iova_domain); 75 76 static bool has_iova_flush_queue(struct iova_domain *iovad) 77 { 78 return !!iovad->fq; 79 } 80 81 static void free_iova_flush_queue(struct iova_domain *iovad) 82 { 83 if (!has_iova_flush_queue(iovad)) 84 return; 85 86 if (timer_pending(&iovad->fq_timer)) 87 del_timer(&iovad->fq_timer); 88 89 fq_destroy_all_entries(iovad); 90 91 free_percpu(iovad->fq); 92 93 iovad->fq = NULL; 94 iovad->flush_cb = NULL; 95 iovad->entry_dtor = NULL; 96 } 97 98 int init_iova_flush_queue(struct iova_domain *iovad, 99 iova_flush_cb flush_cb, iova_entry_dtor entry_dtor) 100 { 101 struct iova_fq __percpu *queue; 102 int cpu; 103 104 atomic64_set(&iovad->fq_flush_start_cnt, 0); 105 atomic64_set(&iovad->fq_flush_finish_cnt, 0); 106 107 queue = alloc_percpu(struct iova_fq); 108 if (!queue) 109 return -ENOMEM; 110 111 iovad->flush_cb = flush_cb; 112 iovad->entry_dtor = entry_dtor; 113 114 for_each_possible_cpu(cpu) { 115 struct iova_fq *fq; 116 117 fq = per_cpu_ptr(queue, cpu); 118 fq->head = 0; 119 fq->tail = 0; 120 121 spin_lock_init(&fq->lock); 122 } 123 124 smp_wmb(); 125 126 iovad->fq = queue; 127 128 timer_setup(&iovad->fq_timer, fq_flush_timeout, 0); 129 atomic_set(&iovad->fq_timer_on, 0); 130 131 return 0; 132 } 133 134 static struct rb_node * 135 __get_cached_rbnode(struct iova_domain *iovad, unsigned long limit_pfn) 136 { 137 if (limit_pfn <= iovad->dma_32bit_pfn) 138 return iovad->cached32_node; 139 140 return iovad->cached_node; 141 } 142 143 static void 144 __cached_rbnode_insert_update(struct iova_domain *iovad, struct iova *new) 145 { 146 if (new->pfn_hi < iovad->dma_32bit_pfn) 147 iovad->cached32_node = &new->node; 148 else 149 iovad->cached_node = &new->node; 150 } 151 152 static void 153 __cached_rbnode_delete_update(struct iova_domain *iovad, struct iova *free) 154 { 155 struct iova *cached_iova; 156 157 cached_iova = to_iova(iovad->cached32_node); 158 if (free == cached_iova || 159 (free->pfn_hi < iovad->dma_32bit_pfn && 160 free->pfn_lo >= cached_iova->pfn_lo)) { 161 iovad->cached32_node = rb_next(&free->node); 162 iovad->max32_alloc_size = iovad->dma_32bit_pfn; 163 } 164 165 cached_iova = to_iova(iovad->cached_node); 166 if (free->pfn_lo >= cached_iova->pfn_lo) 167 iovad->cached_node = rb_next(&free->node); 168 } 169 170 static struct rb_node *iova_find_limit(struct iova_domain *iovad, unsigned long limit_pfn) 171 { 172 struct rb_node *node, *next; 173 /* 174 * Ideally what we'd like to judge here is whether limit_pfn is close 175 * enough to the highest-allocated IOVA that starting the allocation 176 * walk from the anchor node will be quicker than this initial work to 177 * find an exact starting point (especially if that ends up being the 178 * anchor node anyway). This is an incredibly crude approximation which 179 * only really helps the most likely case, but is at least trivially easy. 180 */ 181 if (limit_pfn > iovad->dma_32bit_pfn) 182 return &iovad->anchor.node; 183 184 node = iovad->rbroot.rb_node; 185 while (to_iova(node)->pfn_hi < limit_pfn) 186 node = node->rb_right; 187 188 search_left: 189 while (node->rb_left && to_iova(node->rb_left)->pfn_lo >= limit_pfn) 190 node = node->rb_left; 191 192 if (!node->rb_left) 193 return node; 194 195 next = node->rb_left; 196 while (next->rb_right) { 197 next = next->rb_right; 198 if (to_iova(next)->pfn_lo >= limit_pfn) { 199 node = next; 200 goto search_left; 201 } 202 } 203 204 return node; 205 } 206 207 /* Insert the iova into domain rbtree by holding writer lock */ 208 static void 209 iova_insert_rbtree(struct rb_root *root, struct iova *iova, 210 struct rb_node *start) 211 { 212 struct rb_node **new, *parent = NULL; 213 214 new = (start) ? &start : &(root->rb_node); 215 /* Figure out where to put new node */ 216 while (*new) { 217 struct iova *this = to_iova(*new); 218 219 parent = *new; 220 221 if (iova->pfn_lo < this->pfn_lo) 222 new = &((*new)->rb_left); 223 else if (iova->pfn_lo > this->pfn_lo) 224 new = &((*new)->rb_right); 225 else { 226 WARN_ON(1); /* this should not happen */ 227 return; 228 } 229 } 230 /* Add new node and rebalance tree. */ 231 rb_link_node(&iova->node, parent, new); 232 rb_insert_color(&iova->node, root); 233 } 234 235 static int __alloc_and_insert_iova_range(struct iova_domain *iovad, 236 unsigned long size, unsigned long limit_pfn, 237 struct iova *new, bool size_aligned) 238 { 239 struct rb_node *curr, *prev; 240 struct iova *curr_iova; 241 unsigned long flags; 242 unsigned long new_pfn, retry_pfn; 243 unsigned long align_mask = ~0UL; 244 unsigned long high_pfn = limit_pfn, low_pfn = iovad->start_pfn; 245 246 if (size_aligned) 247 align_mask <<= fls_long(size - 1); 248 249 /* Walk the tree backwards */ 250 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 251 if (limit_pfn <= iovad->dma_32bit_pfn && 252 size >= iovad->max32_alloc_size) 253 goto iova32_full; 254 255 curr = __get_cached_rbnode(iovad, limit_pfn); 256 curr_iova = to_iova(curr); 257 retry_pfn = curr_iova->pfn_hi + 1; 258 259 retry: 260 do { 261 high_pfn = min(high_pfn, curr_iova->pfn_lo); 262 new_pfn = (high_pfn - size) & align_mask; 263 prev = curr; 264 curr = rb_prev(curr); 265 curr_iova = to_iova(curr); 266 } while (curr && new_pfn <= curr_iova->pfn_hi && new_pfn >= low_pfn); 267 268 if (high_pfn < size || new_pfn < low_pfn) { 269 if (low_pfn == iovad->start_pfn && retry_pfn < limit_pfn) { 270 high_pfn = limit_pfn; 271 low_pfn = retry_pfn; 272 curr = iova_find_limit(iovad, limit_pfn); 273 curr_iova = to_iova(curr); 274 goto retry; 275 } 276 iovad->max32_alloc_size = size; 277 goto iova32_full; 278 } 279 280 /* pfn_lo will point to size aligned address if size_aligned is set */ 281 new->pfn_lo = new_pfn; 282 new->pfn_hi = new->pfn_lo + size - 1; 283 284 /* If we have 'prev', it's a valid place to start the insertion. */ 285 iova_insert_rbtree(&iovad->rbroot, new, prev); 286 __cached_rbnode_insert_update(iovad, new); 287 288 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 289 return 0; 290 291 iova32_full: 292 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 293 return -ENOMEM; 294 } 295 296 static struct kmem_cache *iova_cache; 297 static unsigned int iova_cache_users; 298 static DEFINE_MUTEX(iova_cache_mutex); 299 300 static struct iova *alloc_iova_mem(void) 301 { 302 return kmem_cache_zalloc(iova_cache, GFP_ATOMIC | __GFP_NOWARN); 303 } 304 305 static void free_iova_mem(struct iova *iova) 306 { 307 if (iova->pfn_lo != IOVA_ANCHOR) 308 kmem_cache_free(iova_cache, iova); 309 } 310 311 int iova_cache_get(void) 312 { 313 mutex_lock(&iova_cache_mutex); 314 if (!iova_cache_users) { 315 int ret; 316 317 ret = cpuhp_setup_state_multi(CPUHP_IOMMU_IOVA_DEAD, "iommu/iova:dead", NULL, 318 iova_cpuhp_dead); 319 if (ret) { 320 mutex_unlock(&iova_cache_mutex); 321 pr_err("Couldn't register cpuhp handler\n"); 322 return ret; 323 } 324 325 iova_cache = kmem_cache_create( 326 "iommu_iova", sizeof(struct iova), 0, 327 SLAB_HWCACHE_ALIGN, NULL); 328 if (!iova_cache) { 329 cpuhp_remove_multi_state(CPUHP_IOMMU_IOVA_DEAD); 330 mutex_unlock(&iova_cache_mutex); 331 pr_err("Couldn't create iova cache\n"); 332 return -ENOMEM; 333 } 334 } 335 336 iova_cache_users++; 337 mutex_unlock(&iova_cache_mutex); 338 339 return 0; 340 } 341 EXPORT_SYMBOL_GPL(iova_cache_get); 342 343 void iova_cache_put(void) 344 { 345 mutex_lock(&iova_cache_mutex); 346 if (WARN_ON(!iova_cache_users)) { 347 mutex_unlock(&iova_cache_mutex); 348 return; 349 } 350 iova_cache_users--; 351 if (!iova_cache_users) { 352 cpuhp_remove_multi_state(CPUHP_IOMMU_IOVA_DEAD); 353 kmem_cache_destroy(iova_cache); 354 } 355 mutex_unlock(&iova_cache_mutex); 356 } 357 EXPORT_SYMBOL_GPL(iova_cache_put); 358 359 /** 360 * alloc_iova - allocates an iova 361 * @iovad: - iova domain in question 362 * @size: - size of page frames to allocate 363 * @limit_pfn: - max limit address 364 * @size_aligned: - set if size_aligned address range is required 365 * This function allocates an iova in the range iovad->start_pfn to limit_pfn, 366 * searching top-down from limit_pfn to iovad->start_pfn. If the size_aligned 367 * flag is set then the allocated address iova->pfn_lo will be naturally 368 * aligned on roundup_power_of_two(size). 369 */ 370 struct iova * 371 alloc_iova(struct iova_domain *iovad, unsigned long size, 372 unsigned long limit_pfn, 373 bool size_aligned) 374 { 375 struct iova *new_iova; 376 int ret; 377 378 new_iova = alloc_iova_mem(); 379 if (!new_iova) 380 return NULL; 381 382 ret = __alloc_and_insert_iova_range(iovad, size, limit_pfn + 1, 383 new_iova, size_aligned); 384 385 if (ret) { 386 free_iova_mem(new_iova); 387 return NULL; 388 } 389 390 return new_iova; 391 } 392 EXPORT_SYMBOL_GPL(alloc_iova); 393 394 static struct iova * 395 private_find_iova(struct iova_domain *iovad, unsigned long pfn) 396 { 397 struct rb_node *node = iovad->rbroot.rb_node; 398 399 assert_spin_locked(&iovad->iova_rbtree_lock); 400 401 while (node) { 402 struct iova *iova = to_iova(node); 403 404 if (pfn < iova->pfn_lo) 405 node = node->rb_left; 406 else if (pfn > iova->pfn_hi) 407 node = node->rb_right; 408 else 409 return iova; /* pfn falls within iova's range */ 410 } 411 412 return NULL; 413 } 414 415 static void private_free_iova(struct iova_domain *iovad, struct iova *iova) 416 { 417 assert_spin_locked(&iovad->iova_rbtree_lock); 418 __cached_rbnode_delete_update(iovad, iova); 419 rb_erase(&iova->node, &iovad->rbroot); 420 free_iova_mem(iova); 421 } 422 423 /** 424 * find_iova - finds an iova for a given pfn 425 * @iovad: - iova domain in question. 426 * @pfn: - page frame number 427 * This function finds and returns an iova belonging to the 428 * given domain which matches the given pfn. 429 */ 430 struct iova *find_iova(struct iova_domain *iovad, unsigned long pfn) 431 { 432 unsigned long flags; 433 struct iova *iova; 434 435 /* Take the lock so that no other thread is manipulating the rbtree */ 436 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 437 iova = private_find_iova(iovad, pfn); 438 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 439 return iova; 440 } 441 EXPORT_SYMBOL_GPL(find_iova); 442 443 /** 444 * __free_iova - frees the given iova 445 * @iovad: iova domain in question. 446 * @iova: iova in question. 447 * Frees the given iova belonging to the giving domain 448 */ 449 void 450 __free_iova(struct iova_domain *iovad, struct iova *iova) 451 { 452 unsigned long flags; 453 454 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 455 private_free_iova(iovad, iova); 456 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 457 } 458 EXPORT_SYMBOL_GPL(__free_iova); 459 460 /** 461 * free_iova - finds and frees the iova for a given pfn 462 * @iovad: - iova domain in question. 463 * @pfn: - pfn that is allocated previously 464 * This functions finds an iova for a given pfn and then 465 * frees the iova from that domain. 466 */ 467 void 468 free_iova(struct iova_domain *iovad, unsigned long pfn) 469 { 470 unsigned long flags; 471 struct iova *iova; 472 473 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 474 iova = private_find_iova(iovad, pfn); 475 if (iova) 476 private_free_iova(iovad, iova); 477 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 478 479 } 480 EXPORT_SYMBOL_GPL(free_iova); 481 482 /** 483 * alloc_iova_fast - allocates an iova from rcache 484 * @iovad: - iova domain in question 485 * @size: - size of page frames to allocate 486 * @limit_pfn: - max limit address 487 * @flush_rcache: - set to flush rcache on regular allocation failure 488 * This function tries to satisfy an iova allocation from the rcache, 489 * and falls back to regular allocation on failure. If regular allocation 490 * fails too and the flush_rcache flag is set then the rcache will be flushed. 491 */ 492 unsigned long 493 alloc_iova_fast(struct iova_domain *iovad, unsigned long size, 494 unsigned long limit_pfn, bool flush_rcache) 495 { 496 unsigned long iova_pfn; 497 struct iova *new_iova; 498 499 iova_pfn = iova_rcache_get(iovad, size, limit_pfn + 1); 500 if (iova_pfn) 501 return iova_pfn; 502 503 retry: 504 new_iova = alloc_iova(iovad, size, limit_pfn, true); 505 if (!new_iova) { 506 unsigned int cpu; 507 508 if (!flush_rcache) 509 return 0; 510 511 /* Try replenishing IOVAs by flushing rcache. */ 512 flush_rcache = false; 513 for_each_online_cpu(cpu) 514 free_cpu_cached_iovas(cpu, iovad); 515 free_global_cached_iovas(iovad); 516 goto retry; 517 } 518 519 return new_iova->pfn_lo; 520 } 521 522 /** 523 * free_iova_fast - free iova pfn range into rcache 524 * @iovad: - iova domain in question. 525 * @pfn: - pfn that is allocated previously 526 * @size: - # of pages in range 527 * This functions frees an iova range by trying to put it into the rcache, 528 * falling back to regular iova deallocation via free_iova() if this fails. 529 */ 530 void 531 free_iova_fast(struct iova_domain *iovad, unsigned long pfn, unsigned long size) 532 { 533 if (iova_rcache_insert(iovad, pfn, size)) 534 return; 535 536 free_iova(iovad, pfn); 537 } 538 539 #define fq_ring_for_each(i, fq) \ 540 for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE) 541 542 static inline bool fq_full(struct iova_fq *fq) 543 { 544 assert_spin_locked(&fq->lock); 545 return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head); 546 } 547 548 static inline unsigned fq_ring_add(struct iova_fq *fq) 549 { 550 unsigned idx = fq->tail; 551 552 assert_spin_locked(&fq->lock); 553 554 fq->tail = (idx + 1) % IOVA_FQ_SIZE; 555 556 return idx; 557 } 558 559 static void fq_ring_free(struct iova_domain *iovad, struct iova_fq *fq) 560 { 561 u64 counter = atomic64_read(&iovad->fq_flush_finish_cnt); 562 unsigned idx; 563 564 assert_spin_locked(&fq->lock); 565 566 fq_ring_for_each(idx, fq) { 567 568 if (fq->entries[idx].counter >= counter) 569 break; 570 571 if (iovad->entry_dtor) 572 iovad->entry_dtor(fq->entries[idx].data); 573 574 free_iova_fast(iovad, 575 fq->entries[idx].iova_pfn, 576 fq->entries[idx].pages); 577 578 fq->head = (fq->head + 1) % IOVA_FQ_SIZE; 579 } 580 } 581 582 static void iova_domain_flush(struct iova_domain *iovad) 583 { 584 atomic64_inc(&iovad->fq_flush_start_cnt); 585 iovad->flush_cb(iovad); 586 atomic64_inc(&iovad->fq_flush_finish_cnt); 587 } 588 589 static void fq_destroy_all_entries(struct iova_domain *iovad) 590 { 591 int cpu; 592 593 /* 594 * This code runs when the iova_domain is being detroyed, so don't 595 * bother to free iovas, just call the entry_dtor on all remaining 596 * entries. 597 */ 598 if (!iovad->entry_dtor) 599 return; 600 601 for_each_possible_cpu(cpu) { 602 struct iova_fq *fq = per_cpu_ptr(iovad->fq, cpu); 603 int idx; 604 605 fq_ring_for_each(idx, fq) 606 iovad->entry_dtor(fq->entries[idx].data); 607 } 608 } 609 610 static void fq_flush_timeout(struct timer_list *t) 611 { 612 struct iova_domain *iovad = from_timer(iovad, t, fq_timer); 613 int cpu; 614 615 atomic_set(&iovad->fq_timer_on, 0); 616 iova_domain_flush(iovad); 617 618 for_each_possible_cpu(cpu) { 619 unsigned long flags; 620 struct iova_fq *fq; 621 622 fq = per_cpu_ptr(iovad->fq, cpu); 623 spin_lock_irqsave(&fq->lock, flags); 624 fq_ring_free(iovad, fq); 625 spin_unlock_irqrestore(&fq->lock, flags); 626 } 627 } 628 629 void queue_iova(struct iova_domain *iovad, 630 unsigned long pfn, unsigned long pages, 631 unsigned long data) 632 { 633 struct iova_fq *fq = raw_cpu_ptr(iovad->fq); 634 unsigned long flags; 635 unsigned idx; 636 637 spin_lock_irqsave(&fq->lock, flags); 638 639 /* 640 * First remove all entries from the flush queue that have already been 641 * flushed out on another CPU. This makes the fq_full() check below less 642 * likely to be true. 643 */ 644 fq_ring_free(iovad, fq); 645 646 if (fq_full(fq)) { 647 iova_domain_flush(iovad); 648 fq_ring_free(iovad, fq); 649 } 650 651 idx = fq_ring_add(fq); 652 653 fq->entries[idx].iova_pfn = pfn; 654 fq->entries[idx].pages = pages; 655 fq->entries[idx].data = data; 656 fq->entries[idx].counter = atomic64_read(&iovad->fq_flush_start_cnt); 657 658 spin_unlock_irqrestore(&fq->lock, flags); 659 660 /* Avoid false sharing as much as possible. */ 661 if (!atomic_read(&iovad->fq_timer_on) && 662 !atomic_xchg(&iovad->fq_timer_on, 1)) 663 mod_timer(&iovad->fq_timer, 664 jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT)); 665 } 666 667 /** 668 * put_iova_domain - destroys the iova domain 669 * @iovad: - iova domain in question. 670 * All the iova's in that domain are destroyed. 671 */ 672 void put_iova_domain(struct iova_domain *iovad) 673 { 674 struct iova *iova, *tmp; 675 676 cpuhp_state_remove_instance_nocalls(CPUHP_IOMMU_IOVA_DEAD, 677 &iovad->cpuhp_dead); 678 679 free_iova_flush_queue(iovad); 680 free_iova_rcaches(iovad); 681 rbtree_postorder_for_each_entry_safe(iova, tmp, &iovad->rbroot, node) 682 free_iova_mem(iova); 683 } 684 EXPORT_SYMBOL_GPL(put_iova_domain); 685 686 static int 687 __is_range_overlap(struct rb_node *node, 688 unsigned long pfn_lo, unsigned long pfn_hi) 689 { 690 struct iova *iova = to_iova(node); 691 692 if ((pfn_lo <= iova->pfn_hi) && (pfn_hi >= iova->pfn_lo)) 693 return 1; 694 return 0; 695 } 696 697 static inline struct iova * 698 alloc_and_init_iova(unsigned long pfn_lo, unsigned long pfn_hi) 699 { 700 struct iova *iova; 701 702 iova = alloc_iova_mem(); 703 if (iova) { 704 iova->pfn_lo = pfn_lo; 705 iova->pfn_hi = pfn_hi; 706 } 707 708 return iova; 709 } 710 711 static struct iova * 712 __insert_new_range(struct iova_domain *iovad, 713 unsigned long pfn_lo, unsigned long pfn_hi) 714 { 715 struct iova *iova; 716 717 iova = alloc_and_init_iova(pfn_lo, pfn_hi); 718 if (iova) 719 iova_insert_rbtree(&iovad->rbroot, iova, NULL); 720 721 return iova; 722 } 723 724 static void 725 __adjust_overlap_range(struct iova *iova, 726 unsigned long *pfn_lo, unsigned long *pfn_hi) 727 { 728 if (*pfn_lo < iova->pfn_lo) 729 iova->pfn_lo = *pfn_lo; 730 if (*pfn_hi > iova->pfn_hi) 731 *pfn_lo = iova->pfn_hi + 1; 732 } 733 734 /** 735 * reserve_iova - reserves an iova in the given range 736 * @iovad: - iova domain pointer 737 * @pfn_lo: - lower page frame address 738 * @pfn_hi:- higher pfn adderss 739 * This function allocates reserves the address range from pfn_lo to pfn_hi so 740 * that this address is not dished out as part of alloc_iova. 741 */ 742 struct iova * 743 reserve_iova(struct iova_domain *iovad, 744 unsigned long pfn_lo, unsigned long pfn_hi) 745 { 746 struct rb_node *node; 747 unsigned long flags; 748 struct iova *iova; 749 unsigned int overlap = 0; 750 751 /* Don't allow nonsensical pfns */ 752 if (WARN_ON((pfn_hi | pfn_lo) > (ULLONG_MAX >> iova_shift(iovad)))) 753 return NULL; 754 755 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 756 for (node = rb_first(&iovad->rbroot); node; node = rb_next(node)) { 757 if (__is_range_overlap(node, pfn_lo, pfn_hi)) { 758 iova = to_iova(node); 759 __adjust_overlap_range(iova, &pfn_lo, &pfn_hi); 760 if ((pfn_lo >= iova->pfn_lo) && 761 (pfn_hi <= iova->pfn_hi)) 762 goto finish; 763 overlap = 1; 764 765 } else if (overlap) 766 break; 767 } 768 769 /* We are here either because this is the first reserver node 770 * or need to insert remaining non overlap addr range 771 */ 772 iova = __insert_new_range(iovad, pfn_lo, pfn_hi); 773 finish: 774 775 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 776 return iova; 777 } 778 EXPORT_SYMBOL_GPL(reserve_iova); 779 780 /* 781 * Magazine caches for IOVA ranges. For an introduction to magazines, 782 * see the USENIX 2001 paper "Magazines and Vmem: Extending the Slab 783 * Allocator to Many CPUs and Arbitrary Resources" by Bonwick and Adams. 784 * For simplicity, we use a static magazine size and don't implement the 785 * dynamic size tuning described in the paper. 786 */ 787 788 #define IOVA_MAG_SIZE 128 789 790 struct iova_magazine { 791 unsigned long size; 792 unsigned long pfns[IOVA_MAG_SIZE]; 793 }; 794 795 struct iova_cpu_rcache { 796 spinlock_t lock; 797 struct iova_magazine *loaded; 798 struct iova_magazine *prev; 799 }; 800 801 static struct iova_magazine *iova_magazine_alloc(gfp_t flags) 802 { 803 return kzalloc(sizeof(struct iova_magazine), flags); 804 } 805 806 static void iova_magazine_free(struct iova_magazine *mag) 807 { 808 kfree(mag); 809 } 810 811 static void 812 iova_magazine_free_pfns(struct iova_magazine *mag, struct iova_domain *iovad) 813 { 814 unsigned long flags; 815 int i; 816 817 if (!mag) 818 return; 819 820 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 821 822 for (i = 0 ; i < mag->size; ++i) { 823 struct iova *iova = private_find_iova(iovad, mag->pfns[i]); 824 825 if (WARN_ON(!iova)) 826 continue; 827 828 private_free_iova(iovad, iova); 829 } 830 831 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 832 833 mag->size = 0; 834 } 835 836 static bool iova_magazine_full(struct iova_magazine *mag) 837 { 838 return (mag && mag->size == IOVA_MAG_SIZE); 839 } 840 841 static bool iova_magazine_empty(struct iova_magazine *mag) 842 { 843 return (!mag || mag->size == 0); 844 } 845 846 static unsigned long iova_magazine_pop(struct iova_magazine *mag, 847 unsigned long limit_pfn) 848 { 849 int i; 850 unsigned long pfn; 851 852 BUG_ON(iova_magazine_empty(mag)); 853 854 /* Only fall back to the rbtree if we have no suitable pfns at all */ 855 for (i = mag->size - 1; mag->pfns[i] > limit_pfn; i--) 856 if (i == 0) 857 return 0; 858 859 /* Swap it to pop it */ 860 pfn = mag->pfns[i]; 861 mag->pfns[i] = mag->pfns[--mag->size]; 862 863 return pfn; 864 } 865 866 static void iova_magazine_push(struct iova_magazine *mag, unsigned long pfn) 867 { 868 BUG_ON(iova_magazine_full(mag)); 869 870 mag->pfns[mag->size++] = pfn; 871 } 872 873 static void init_iova_rcaches(struct iova_domain *iovad) 874 { 875 struct iova_cpu_rcache *cpu_rcache; 876 struct iova_rcache *rcache; 877 unsigned int cpu; 878 int i; 879 880 for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 881 rcache = &iovad->rcaches[i]; 882 spin_lock_init(&rcache->lock); 883 rcache->depot_size = 0; 884 rcache->cpu_rcaches = __alloc_percpu(sizeof(*cpu_rcache), cache_line_size()); 885 if (WARN_ON(!rcache->cpu_rcaches)) 886 continue; 887 for_each_possible_cpu(cpu) { 888 cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu); 889 spin_lock_init(&cpu_rcache->lock); 890 cpu_rcache->loaded = iova_magazine_alloc(GFP_KERNEL); 891 cpu_rcache->prev = iova_magazine_alloc(GFP_KERNEL); 892 } 893 } 894 } 895 896 /* 897 * Try inserting IOVA range starting with 'iova_pfn' into 'rcache', and 898 * return true on success. Can fail if rcache is full and we can't free 899 * space, and free_iova() (our only caller) will then return the IOVA 900 * range to the rbtree instead. 901 */ 902 static bool __iova_rcache_insert(struct iova_domain *iovad, 903 struct iova_rcache *rcache, 904 unsigned long iova_pfn) 905 { 906 struct iova_magazine *mag_to_free = NULL; 907 struct iova_cpu_rcache *cpu_rcache; 908 bool can_insert = false; 909 unsigned long flags; 910 911 cpu_rcache = raw_cpu_ptr(rcache->cpu_rcaches); 912 spin_lock_irqsave(&cpu_rcache->lock, flags); 913 914 if (!iova_magazine_full(cpu_rcache->loaded)) { 915 can_insert = true; 916 } else if (!iova_magazine_full(cpu_rcache->prev)) { 917 swap(cpu_rcache->prev, cpu_rcache->loaded); 918 can_insert = true; 919 } else { 920 struct iova_magazine *new_mag = iova_magazine_alloc(GFP_ATOMIC); 921 922 if (new_mag) { 923 spin_lock(&rcache->lock); 924 if (rcache->depot_size < MAX_GLOBAL_MAGS) { 925 rcache->depot[rcache->depot_size++] = 926 cpu_rcache->loaded; 927 } else { 928 mag_to_free = cpu_rcache->loaded; 929 } 930 spin_unlock(&rcache->lock); 931 932 cpu_rcache->loaded = new_mag; 933 can_insert = true; 934 } 935 } 936 937 if (can_insert) 938 iova_magazine_push(cpu_rcache->loaded, iova_pfn); 939 940 spin_unlock_irqrestore(&cpu_rcache->lock, flags); 941 942 if (mag_to_free) { 943 iova_magazine_free_pfns(mag_to_free, iovad); 944 iova_magazine_free(mag_to_free); 945 } 946 947 return can_insert; 948 } 949 950 static bool iova_rcache_insert(struct iova_domain *iovad, unsigned long pfn, 951 unsigned long size) 952 { 953 unsigned int log_size = order_base_2(size); 954 955 if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE) 956 return false; 957 958 return __iova_rcache_insert(iovad, &iovad->rcaches[log_size], pfn); 959 } 960 961 /* 962 * Caller wants to allocate a new IOVA range from 'rcache'. If we can 963 * satisfy the request, return a matching non-NULL range and remove 964 * it from the 'rcache'. 965 */ 966 static unsigned long __iova_rcache_get(struct iova_rcache *rcache, 967 unsigned long limit_pfn) 968 { 969 struct iova_cpu_rcache *cpu_rcache; 970 unsigned long iova_pfn = 0; 971 bool has_pfn = false; 972 unsigned long flags; 973 974 cpu_rcache = raw_cpu_ptr(rcache->cpu_rcaches); 975 spin_lock_irqsave(&cpu_rcache->lock, flags); 976 977 if (!iova_magazine_empty(cpu_rcache->loaded)) { 978 has_pfn = true; 979 } else if (!iova_magazine_empty(cpu_rcache->prev)) { 980 swap(cpu_rcache->prev, cpu_rcache->loaded); 981 has_pfn = true; 982 } else { 983 spin_lock(&rcache->lock); 984 if (rcache->depot_size > 0) { 985 iova_magazine_free(cpu_rcache->loaded); 986 cpu_rcache->loaded = rcache->depot[--rcache->depot_size]; 987 has_pfn = true; 988 } 989 spin_unlock(&rcache->lock); 990 } 991 992 if (has_pfn) 993 iova_pfn = iova_magazine_pop(cpu_rcache->loaded, limit_pfn); 994 995 spin_unlock_irqrestore(&cpu_rcache->lock, flags); 996 997 return iova_pfn; 998 } 999 1000 /* 1001 * Try to satisfy IOVA allocation range from rcache. Fail if requested 1002 * size is too big or the DMA limit we are given isn't satisfied by the 1003 * top element in the magazine. 1004 */ 1005 static unsigned long iova_rcache_get(struct iova_domain *iovad, 1006 unsigned long size, 1007 unsigned long limit_pfn) 1008 { 1009 unsigned int log_size = order_base_2(size); 1010 1011 if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE) 1012 return 0; 1013 1014 return __iova_rcache_get(&iovad->rcaches[log_size], limit_pfn - size); 1015 } 1016 1017 /* 1018 * free rcache data structures. 1019 */ 1020 static void free_iova_rcaches(struct iova_domain *iovad) 1021 { 1022 struct iova_rcache *rcache; 1023 struct iova_cpu_rcache *cpu_rcache; 1024 unsigned int cpu; 1025 int i, j; 1026 1027 for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 1028 rcache = &iovad->rcaches[i]; 1029 for_each_possible_cpu(cpu) { 1030 cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu); 1031 iova_magazine_free(cpu_rcache->loaded); 1032 iova_magazine_free(cpu_rcache->prev); 1033 } 1034 free_percpu(rcache->cpu_rcaches); 1035 for (j = 0; j < rcache->depot_size; ++j) 1036 iova_magazine_free(rcache->depot[j]); 1037 } 1038 } 1039 1040 /* 1041 * free all the IOVA ranges cached by a cpu (used when cpu is unplugged) 1042 */ 1043 static void free_cpu_cached_iovas(unsigned int cpu, struct iova_domain *iovad) 1044 { 1045 struct iova_cpu_rcache *cpu_rcache; 1046 struct iova_rcache *rcache; 1047 unsigned long flags; 1048 int i; 1049 1050 for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 1051 rcache = &iovad->rcaches[i]; 1052 cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu); 1053 spin_lock_irqsave(&cpu_rcache->lock, flags); 1054 iova_magazine_free_pfns(cpu_rcache->loaded, iovad); 1055 iova_magazine_free_pfns(cpu_rcache->prev, iovad); 1056 spin_unlock_irqrestore(&cpu_rcache->lock, flags); 1057 } 1058 } 1059 1060 /* 1061 * free all the IOVA ranges of global cache 1062 */ 1063 static void free_global_cached_iovas(struct iova_domain *iovad) 1064 { 1065 struct iova_rcache *rcache; 1066 unsigned long flags; 1067 int i, j; 1068 1069 for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 1070 rcache = &iovad->rcaches[i]; 1071 spin_lock_irqsave(&rcache->lock, flags); 1072 for (j = 0; j < rcache->depot_size; ++j) { 1073 iova_magazine_free_pfns(rcache->depot[j], iovad); 1074 iova_magazine_free(rcache->depot[j]); 1075 } 1076 rcache->depot_size = 0; 1077 spin_unlock_irqrestore(&rcache->lock, flags); 1078 } 1079 } 1080 MODULE_AUTHOR("Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>"); 1081 MODULE_LICENSE("GPL"); 1082