1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright © 2006-2009, Intel Corporation. 4 * 5 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 6 */ 7 8 #include <linux/iova.h> 9 #include <linux/module.h> 10 #include <linux/slab.h> 11 #include <linux/smp.h> 12 #include <linux/bitops.h> 13 #include <linux/cpu.h> 14 15 /* The anchor node sits above the top of the usable address space */ 16 #define IOVA_ANCHOR ~0UL 17 18 static bool iova_rcache_insert(struct iova_domain *iovad, 19 unsigned long pfn, 20 unsigned long size); 21 static unsigned long iova_rcache_get(struct iova_domain *iovad, 22 unsigned long size, 23 unsigned long limit_pfn); 24 static void init_iova_rcaches(struct iova_domain *iovad); 25 static void free_iova_rcaches(struct iova_domain *iovad); 26 static void fq_destroy_all_entries(struct iova_domain *iovad); 27 static void fq_flush_timeout(struct timer_list *t); 28 static void free_global_cached_iovas(struct iova_domain *iovad); 29 30 void 31 init_iova_domain(struct iova_domain *iovad, unsigned long granule, 32 unsigned long start_pfn) 33 { 34 /* 35 * IOVA granularity will normally be equal to the smallest 36 * supported IOMMU page size; both *must* be capable of 37 * representing individual CPU pages exactly. 38 */ 39 BUG_ON((granule > PAGE_SIZE) || !is_power_of_2(granule)); 40 41 spin_lock_init(&iovad->iova_rbtree_lock); 42 iovad->rbroot = RB_ROOT; 43 iovad->cached_node = &iovad->anchor.node; 44 iovad->cached32_node = &iovad->anchor.node; 45 iovad->granule = granule; 46 iovad->start_pfn = start_pfn; 47 iovad->dma_32bit_pfn = 1UL << (32 - iova_shift(iovad)); 48 iovad->max32_alloc_size = iovad->dma_32bit_pfn; 49 iovad->flush_cb = NULL; 50 iovad->fq = NULL; 51 iovad->anchor.pfn_lo = iovad->anchor.pfn_hi = IOVA_ANCHOR; 52 rb_link_node(&iovad->anchor.node, NULL, &iovad->rbroot.rb_node); 53 rb_insert_color(&iovad->anchor.node, &iovad->rbroot); 54 init_iova_rcaches(iovad); 55 } 56 EXPORT_SYMBOL_GPL(init_iova_domain); 57 58 bool has_iova_flush_queue(struct iova_domain *iovad) 59 { 60 return !!iovad->fq; 61 } 62 63 static void free_iova_flush_queue(struct iova_domain *iovad) 64 { 65 if (!has_iova_flush_queue(iovad)) 66 return; 67 68 if (timer_pending(&iovad->fq_timer)) 69 del_timer(&iovad->fq_timer); 70 71 fq_destroy_all_entries(iovad); 72 73 free_percpu(iovad->fq); 74 75 iovad->fq = NULL; 76 iovad->flush_cb = NULL; 77 iovad->entry_dtor = NULL; 78 } 79 80 int init_iova_flush_queue(struct iova_domain *iovad, 81 iova_flush_cb flush_cb, iova_entry_dtor entry_dtor) 82 { 83 struct iova_fq __percpu *queue; 84 int cpu; 85 86 atomic64_set(&iovad->fq_flush_start_cnt, 0); 87 atomic64_set(&iovad->fq_flush_finish_cnt, 0); 88 89 queue = alloc_percpu(struct iova_fq); 90 if (!queue) 91 return -ENOMEM; 92 93 iovad->flush_cb = flush_cb; 94 iovad->entry_dtor = entry_dtor; 95 96 for_each_possible_cpu(cpu) { 97 struct iova_fq *fq; 98 99 fq = per_cpu_ptr(queue, cpu); 100 fq->head = 0; 101 fq->tail = 0; 102 103 spin_lock_init(&fq->lock); 104 } 105 106 smp_wmb(); 107 108 iovad->fq = queue; 109 110 timer_setup(&iovad->fq_timer, fq_flush_timeout, 0); 111 atomic_set(&iovad->fq_timer_on, 0); 112 113 return 0; 114 } 115 EXPORT_SYMBOL_GPL(init_iova_flush_queue); 116 117 static struct rb_node * 118 __get_cached_rbnode(struct iova_domain *iovad, unsigned long limit_pfn) 119 { 120 if (limit_pfn <= iovad->dma_32bit_pfn) 121 return iovad->cached32_node; 122 123 return iovad->cached_node; 124 } 125 126 static void 127 __cached_rbnode_insert_update(struct iova_domain *iovad, struct iova *new) 128 { 129 if (new->pfn_hi < iovad->dma_32bit_pfn) 130 iovad->cached32_node = &new->node; 131 else 132 iovad->cached_node = &new->node; 133 } 134 135 static void 136 __cached_rbnode_delete_update(struct iova_domain *iovad, struct iova *free) 137 { 138 struct iova *cached_iova; 139 140 cached_iova = rb_entry(iovad->cached32_node, struct iova, node); 141 if (free == cached_iova || 142 (free->pfn_hi < iovad->dma_32bit_pfn && 143 free->pfn_lo >= cached_iova->pfn_lo)) { 144 iovad->cached32_node = rb_next(&free->node); 145 iovad->max32_alloc_size = iovad->dma_32bit_pfn; 146 } 147 148 cached_iova = rb_entry(iovad->cached_node, struct iova, node); 149 if (free->pfn_lo >= cached_iova->pfn_lo) 150 iovad->cached_node = rb_next(&free->node); 151 } 152 153 /* Insert the iova into domain rbtree by holding writer lock */ 154 static void 155 iova_insert_rbtree(struct rb_root *root, struct iova *iova, 156 struct rb_node *start) 157 { 158 struct rb_node **new, *parent = NULL; 159 160 new = (start) ? &start : &(root->rb_node); 161 /* Figure out where to put new node */ 162 while (*new) { 163 struct iova *this = rb_entry(*new, struct iova, node); 164 165 parent = *new; 166 167 if (iova->pfn_lo < this->pfn_lo) 168 new = &((*new)->rb_left); 169 else if (iova->pfn_lo > this->pfn_lo) 170 new = &((*new)->rb_right); 171 else { 172 WARN_ON(1); /* this should not happen */ 173 return; 174 } 175 } 176 /* Add new node and rebalance tree. */ 177 rb_link_node(&iova->node, parent, new); 178 rb_insert_color(&iova->node, root); 179 } 180 181 static int __alloc_and_insert_iova_range(struct iova_domain *iovad, 182 unsigned long size, unsigned long limit_pfn, 183 struct iova *new, bool size_aligned) 184 { 185 struct rb_node *curr, *prev; 186 struct iova *curr_iova; 187 unsigned long flags; 188 unsigned long new_pfn, retry_pfn; 189 unsigned long align_mask = ~0UL; 190 unsigned long high_pfn = limit_pfn, low_pfn = iovad->start_pfn; 191 192 if (size_aligned) 193 align_mask <<= fls_long(size - 1); 194 195 /* Walk the tree backwards */ 196 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 197 if (limit_pfn <= iovad->dma_32bit_pfn && 198 size >= iovad->max32_alloc_size) 199 goto iova32_full; 200 201 curr = __get_cached_rbnode(iovad, limit_pfn); 202 curr_iova = rb_entry(curr, struct iova, node); 203 retry_pfn = curr_iova->pfn_hi + 1; 204 205 retry: 206 do { 207 high_pfn = min(high_pfn, curr_iova->pfn_lo); 208 new_pfn = (high_pfn - size) & align_mask; 209 prev = curr; 210 curr = rb_prev(curr); 211 curr_iova = rb_entry(curr, struct iova, node); 212 } while (curr && new_pfn <= curr_iova->pfn_hi && new_pfn >= low_pfn); 213 214 if (high_pfn < size || new_pfn < low_pfn) { 215 if (low_pfn == iovad->start_pfn && retry_pfn < limit_pfn) { 216 high_pfn = limit_pfn; 217 low_pfn = retry_pfn; 218 curr = &iovad->anchor.node; 219 curr_iova = rb_entry(curr, struct iova, node); 220 goto retry; 221 } 222 iovad->max32_alloc_size = size; 223 goto iova32_full; 224 } 225 226 /* pfn_lo will point to size aligned address if size_aligned is set */ 227 new->pfn_lo = new_pfn; 228 new->pfn_hi = new->pfn_lo + size - 1; 229 230 /* If we have 'prev', it's a valid place to start the insertion. */ 231 iova_insert_rbtree(&iovad->rbroot, new, prev); 232 __cached_rbnode_insert_update(iovad, new); 233 234 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 235 return 0; 236 237 iova32_full: 238 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 239 return -ENOMEM; 240 } 241 242 static struct kmem_cache *iova_cache; 243 static unsigned int iova_cache_users; 244 static DEFINE_MUTEX(iova_cache_mutex); 245 246 static struct iova *alloc_iova_mem(void) 247 { 248 return kmem_cache_zalloc(iova_cache, GFP_ATOMIC | __GFP_NOWARN); 249 } 250 251 static void free_iova_mem(struct iova *iova) 252 { 253 if (iova->pfn_lo != IOVA_ANCHOR) 254 kmem_cache_free(iova_cache, iova); 255 } 256 257 int iova_cache_get(void) 258 { 259 mutex_lock(&iova_cache_mutex); 260 if (!iova_cache_users) { 261 iova_cache = kmem_cache_create( 262 "iommu_iova", sizeof(struct iova), 0, 263 SLAB_HWCACHE_ALIGN, NULL); 264 if (!iova_cache) { 265 mutex_unlock(&iova_cache_mutex); 266 pr_err("Couldn't create iova cache\n"); 267 return -ENOMEM; 268 } 269 } 270 271 iova_cache_users++; 272 mutex_unlock(&iova_cache_mutex); 273 274 return 0; 275 } 276 EXPORT_SYMBOL_GPL(iova_cache_get); 277 278 void iova_cache_put(void) 279 { 280 mutex_lock(&iova_cache_mutex); 281 if (WARN_ON(!iova_cache_users)) { 282 mutex_unlock(&iova_cache_mutex); 283 return; 284 } 285 iova_cache_users--; 286 if (!iova_cache_users) 287 kmem_cache_destroy(iova_cache); 288 mutex_unlock(&iova_cache_mutex); 289 } 290 EXPORT_SYMBOL_GPL(iova_cache_put); 291 292 /** 293 * alloc_iova - allocates an iova 294 * @iovad: - iova domain in question 295 * @size: - size of page frames to allocate 296 * @limit_pfn: - max limit address 297 * @size_aligned: - set if size_aligned address range is required 298 * This function allocates an iova in the range iovad->start_pfn to limit_pfn, 299 * searching top-down from limit_pfn to iovad->start_pfn. If the size_aligned 300 * flag is set then the allocated address iova->pfn_lo will be naturally 301 * aligned on roundup_power_of_two(size). 302 */ 303 struct iova * 304 alloc_iova(struct iova_domain *iovad, unsigned long size, 305 unsigned long limit_pfn, 306 bool size_aligned) 307 { 308 struct iova *new_iova; 309 int ret; 310 311 new_iova = alloc_iova_mem(); 312 if (!new_iova) 313 return NULL; 314 315 ret = __alloc_and_insert_iova_range(iovad, size, limit_pfn + 1, 316 new_iova, size_aligned); 317 318 if (ret) { 319 free_iova_mem(new_iova); 320 return NULL; 321 } 322 323 return new_iova; 324 } 325 EXPORT_SYMBOL_GPL(alloc_iova); 326 327 static struct iova * 328 private_find_iova(struct iova_domain *iovad, unsigned long pfn) 329 { 330 struct rb_node *node = iovad->rbroot.rb_node; 331 332 assert_spin_locked(&iovad->iova_rbtree_lock); 333 334 while (node) { 335 struct iova *iova = rb_entry(node, struct iova, node); 336 337 if (pfn < iova->pfn_lo) 338 node = node->rb_left; 339 else if (pfn > iova->pfn_hi) 340 node = node->rb_right; 341 else 342 return iova; /* pfn falls within iova's range */ 343 } 344 345 return NULL; 346 } 347 348 static void private_free_iova(struct iova_domain *iovad, struct iova *iova) 349 { 350 assert_spin_locked(&iovad->iova_rbtree_lock); 351 __cached_rbnode_delete_update(iovad, iova); 352 rb_erase(&iova->node, &iovad->rbroot); 353 free_iova_mem(iova); 354 } 355 356 /** 357 * find_iova - finds an iova for a given pfn 358 * @iovad: - iova domain in question. 359 * @pfn: - page frame number 360 * This function finds and returns an iova belonging to the 361 * given doamin which matches the given pfn. 362 */ 363 struct iova *find_iova(struct iova_domain *iovad, unsigned long pfn) 364 { 365 unsigned long flags; 366 struct iova *iova; 367 368 /* Take the lock so that no other thread is manipulating the rbtree */ 369 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 370 iova = private_find_iova(iovad, pfn); 371 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 372 return iova; 373 } 374 EXPORT_SYMBOL_GPL(find_iova); 375 376 /** 377 * __free_iova - frees the given iova 378 * @iovad: iova domain in question. 379 * @iova: iova in question. 380 * Frees the given iova belonging to the giving domain 381 */ 382 void 383 __free_iova(struct iova_domain *iovad, struct iova *iova) 384 { 385 unsigned long flags; 386 387 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 388 private_free_iova(iovad, iova); 389 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 390 } 391 EXPORT_SYMBOL_GPL(__free_iova); 392 393 /** 394 * free_iova - finds and frees the iova for a given pfn 395 * @iovad: - iova domain in question. 396 * @pfn: - pfn that is allocated previously 397 * This functions finds an iova for a given pfn and then 398 * frees the iova from that domain. 399 */ 400 void 401 free_iova(struct iova_domain *iovad, unsigned long pfn) 402 { 403 unsigned long flags; 404 struct iova *iova; 405 406 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 407 iova = private_find_iova(iovad, pfn); 408 if (iova) 409 private_free_iova(iovad, iova); 410 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 411 412 } 413 EXPORT_SYMBOL_GPL(free_iova); 414 415 /** 416 * alloc_iova_fast - allocates an iova from rcache 417 * @iovad: - iova domain in question 418 * @size: - size of page frames to allocate 419 * @limit_pfn: - max limit address 420 * @flush_rcache: - set to flush rcache on regular allocation failure 421 * This function tries to satisfy an iova allocation from the rcache, 422 * and falls back to regular allocation on failure. If regular allocation 423 * fails too and the flush_rcache flag is set then the rcache will be flushed. 424 */ 425 unsigned long 426 alloc_iova_fast(struct iova_domain *iovad, unsigned long size, 427 unsigned long limit_pfn, bool flush_rcache) 428 { 429 unsigned long iova_pfn; 430 struct iova *new_iova; 431 432 iova_pfn = iova_rcache_get(iovad, size, limit_pfn + 1); 433 if (iova_pfn) 434 return iova_pfn; 435 436 retry: 437 new_iova = alloc_iova(iovad, size, limit_pfn, true); 438 if (!new_iova) { 439 unsigned int cpu; 440 441 if (!flush_rcache) 442 return 0; 443 444 /* Try replenishing IOVAs by flushing rcache. */ 445 flush_rcache = false; 446 for_each_online_cpu(cpu) 447 free_cpu_cached_iovas(cpu, iovad); 448 free_global_cached_iovas(iovad); 449 goto retry; 450 } 451 452 return new_iova->pfn_lo; 453 } 454 EXPORT_SYMBOL_GPL(alloc_iova_fast); 455 456 /** 457 * free_iova_fast - free iova pfn range into rcache 458 * @iovad: - iova domain in question. 459 * @pfn: - pfn that is allocated previously 460 * @size: - # of pages in range 461 * This functions frees an iova range by trying to put it into the rcache, 462 * falling back to regular iova deallocation via free_iova() if this fails. 463 */ 464 void 465 free_iova_fast(struct iova_domain *iovad, unsigned long pfn, unsigned long size) 466 { 467 if (iova_rcache_insert(iovad, pfn, size)) 468 return; 469 470 free_iova(iovad, pfn); 471 } 472 EXPORT_SYMBOL_GPL(free_iova_fast); 473 474 #define fq_ring_for_each(i, fq) \ 475 for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE) 476 477 static inline bool fq_full(struct iova_fq *fq) 478 { 479 assert_spin_locked(&fq->lock); 480 return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head); 481 } 482 483 static inline unsigned fq_ring_add(struct iova_fq *fq) 484 { 485 unsigned idx = fq->tail; 486 487 assert_spin_locked(&fq->lock); 488 489 fq->tail = (idx + 1) % IOVA_FQ_SIZE; 490 491 return idx; 492 } 493 494 static void fq_ring_free(struct iova_domain *iovad, struct iova_fq *fq) 495 { 496 u64 counter = atomic64_read(&iovad->fq_flush_finish_cnt); 497 unsigned idx; 498 499 assert_spin_locked(&fq->lock); 500 501 fq_ring_for_each(idx, fq) { 502 503 if (fq->entries[idx].counter >= counter) 504 break; 505 506 if (iovad->entry_dtor) 507 iovad->entry_dtor(fq->entries[idx].data); 508 509 free_iova_fast(iovad, 510 fq->entries[idx].iova_pfn, 511 fq->entries[idx].pages); 512 513 fq->head = (fq->head + 1) % IOVA_FQ_SIZE; 514 } 515 } 516 517 static void iova_domain_flush(struct iova_domain *iovad) 518 { 519 atomic64_inc(&iovad->fq_flush_start_cnt); 520 iovad->flush_cb(iovad); 521 atomic64_inc(&iovad->fq_flush_finish_cnt); 522 } 523 524 static void fq_destroy_all_entries(struct iova_domain *iovad) 525 { 526 int cpu; 527 528 /* 529 * This code runs when the iova_domain is being detroyed, so don't 530 * bother to free iovas, just call the entry_dtor on all remaining 531 * entries. 532 */ 533 if (!iovad->entry_dtor) 534 return; 535 536 for_each_possible_cpu(cpu) { 537 struct iova_fq *fq = per_cpu_ptr(iovad->fq, cpu); 538 int idx; 539 540 fq_ring_for_each(idx, fq) 541 iovad->entry_dtor(fq->entries[idx].data); 542 } 543 } 544 545 static void fq_flush_timeout(struct timer_list *t) 546 { 547 struct iova_domain *iovad = from_timer(iovad, t, fq_timer); 548 int cpu; 549 550 atomic_set(&iovad->fq_timer_on, 0); 551 iova_domain_flush(iovad); 552 553 for_each_possible_cpu(cpu) { 554 unsigned long flags; 555 struct iova_fq *fq; 556 557 fq = per_cpu_ptr(iovad->fq, cpu); 558 spin_lock_irqsave(&fq->lock, flags); 559 fq_ring_free(iovad, fq); 560 spin_unlock_irqrestore(&fq->lock, flags); 561 } 562 } 563 564 void queue_iova(struct iova_domain *iovad, 565 unsigned long pfn, unsigned long pages, 566 unsigned long data) 567 { 568 struct iova_fq *fq = raw_cpu_ptr(iovad->fq); 569 unsigned long flags; 570 unsigned idx; 571 572 spin_lock_irqsave(&fq->lock, flags); 573 574 /* 575 * First remove all entries from the flush queue that have already been 576 * flushed out on another CPU. This makes the fq_full() check below less 577 * likely to be true. 578 */ 579 fq_ring_free(iovad, fq); 580 581 if (fq_full(fq)) { 582 iova_domain_flush(iovad); 583 fq_ring_free(iovad, fq); 584 } 585 586 idx = fq_ring_add(fq); 587 588 fq->entries[idx].iova_pfn = pfn; 589 fq->entries[idx].pages = pages; 590 fq->entries[idx].data = data; 591 fq->entries[idx].counter = atomic64_read(&iovad->fq_flush_start_cnt); 592 593 spin_unlock_irqrestore(&fq->lock, flags); 594 595 /* Avoid false sharing as much as possible. */ 596 if (!atomic_read(&iovad->fq_timer_on) && 597 !atomic_xchg(&iovad->fq_timer_on, 1)) 598 mod_timer(&iovad->fq_timer, 599 jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT)); 600 } 601 EXPORT_SYMBOL_GPL(queue_iova); 602 603 /** 604 * put_iova_domain - destroys the iova doamin 605 * @iovad: - iova domain in question. 606 * All the iova's in that domain are destroyed. 607 */ 608 void put_iova_domain(struct iova_domain *iovad) 609 { 610 struct iova *iova, *tmp; 611 612 free_iova_flush_queue(iovad); 613 free_iova_rcaches(iovad); 614 rbtree_postorder_for_each_entry_safe(iova, tmp, &iovad->rbroot, node) 615 free_iova_mem(iova); 616 } 617 EXPORT_SYMBOL_GPL(put_iova_domain); 618 619 static int 620 __is_range_overlap(struct rb_node *node, 621 unsigned long pfn_lo, unsigned long pfn_hi) 622 { 623 struct iova *iova = rb_entry(node, struct iova, node); 624 625 if ((pfn_lo <= iova->pfn_hi) && (pfn_hi >= iova->pfn_lo)) 626 return 1; 627 return 0; 628 } 629 630 static inline struct iova * 631 alloc_and_init_iova(unsigned long pfn_lo, unsigned long pfn_hi) 632 { 633 struct iova *iova; 634 635 iova = alloc_iova_mem(); 636 if (iova) { 637 iova->pfn_lo = pfn_lo; 638 iova->pfn_hi = pfn_hi; 639 } 640 641 return iova; 642 } 643 644 static struct iova * 645 __insert_new_range(struct iova_domain *iovad, 646 unsigned long pfn_lo, unsigned long pfn_hi) 647 { 648 struct iova *iova; 649 650 iova = alloc_and_init_iova(pfn_lo, pfn_hi); 651 if (iova) 652 iova_insert_rbtree(&iovad->rbroot, iova, NULL); 653 654 return iova; 655 } 656 657 static void 658 __adjust_overlap_range(struct iova *iova, 659 unsigned long *pfn_lo, unsigned long *pfn_hi) 660 { 661 if (*pfn_lo < iova->pfn_lo) 662 iova->pfn_lo = *pfn_lo; 663 if (*pfn_hi > iova->pfn_hi) 664 *pfn_lo = iova->pfn_hi + 1; 665 } 666 667 /** 668 * reserve_iova - reserves an iova in the given range 669 * @iovad: - iova domain pointer 670 * @pfn_lo: - lower page frame address 671 * @pfn_hi:- higher pfn adderss 672 * This function allocates reserves the address range from pfn_lo to pfn_hi so 673 * that this address is not dished out as part of alloc_iova. 674 */ 675 struct iova * 676 reserve_iova(struct iova_domain *iovad, 677 unsigned long pfn_lo, unsigned long pfn_hi) 678 { 679 struct rb_node *node; 680 unsigned long flags; 681 struct iova *iova; 682 unsigned int overlap = 0; 683 684 /* Don't allow nonsensical pfns */ 685 if (WARN_ON((pfn_hi | pfn_lo) > (ULLONG_MAX >> iova_shift(iovad)))) 686 return NULL; 687 688 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 689 for (node = rb_first(&iovad->rbroot); node; node = rb_next(node)) { 690 if (__is_range_overlap(node, pfn_lo, pfn_hi)) { 691 iova = rb_entry(node, struct iova, node); 692 __adjust_overlap_range(iova, &pfn_lo, &pfn_hi); 693 if ((pfn_lo >= iova->pfn_lo) && 694 (pfn_hi <= iova->pfn_hi)) 695 goto finish; 696 overlap = 1; 697 698 } else if (overlap) 699 break; 700 } 701 702 /* We are here either because this is the first reserver node 703 * or need to insert remaining non overlap addr range 704 */ 705 iova = __insert_new_range(iovad, pfn_lo, pfn_hi); 706 finish: 707 708 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 709 return iova; 710 } 711 EXPORT_SYMBOL_GPL(reserve_iova); 712 713 /** 714 * copy_reserved_iova - copies the reserved between domains 715 * @from: - source doamin from where to copy 716 * @to: - destination domin where to copy 717 * This function copies reserved iova's from one doamin to 718 * other. 719 */ 720 void 721 copy_reserved_iova(struct iova_domain *from, struct iova_domain *to) 722 { 723 unsigned long flags; 724 struct rb_node *node; 725 726 spin_lock_irqsave(&from->iova_rbtree_lock, flags); 727 for (node = rb_first(&from->rbroot); node; node = rb_next(node)) { 728 struct iova *iova = rb_entry(node, struct iova, node); 729 struct iova *new_iova; 730 731 if (iova->pfn_lo == IOVA_ANCHOR) 732 continue; 733 734 new_iova = reserve_iova(to, iova->pfn_lo, iova->pfn_hi); 735 if (!new_iova) 736 pr_err("Reserve iova range %lx@%lx failed\n", 737 iova->pfn_lo, iova->pfn_lo); 738 } 739 spin_unlock_irqrestore(&from->iova_rbtree_lock, flags); 740 } 741 EXPORT_SYMBOL_GPL(copy_reserved_iova); 742 743 /* 744 * Magazine caches for IOVA ranges. For an introduction to magazines, 745 * see the USENIX 2001 paper "Magazines and Vmem: Extending the Slab 746 * Allocator to Many CPUs and Arbitrary Resources" by Bonwick and Adams. 747 * For simplicity, we use a static magazine size and don't implement the 748 * dynamic size tuning described in the paper. 749 */ 750 751 #define IOVA_MAG_SIZE 128 752 753 struct iova_magazine { 754 unsigned long size; 755 unsigned long pfns[IOVA_MAG_SIZE]; 756 }; 757 758 struct iova_cpu_rcache { 759 spinlock_t lock; 760 struct iova_magazine *loaded; 761 struct iova_magazine *prev; 762 }; 763 764 static struct iova_magazine *iova_magazine_alloc(gfp_t flags) 765 { 766 return kzalloc(sizeof(struct iova_magazine), flags); 767 } 768 769 static void iova_magazine_free(struct iova_magazine *mag) 770 { 771 kfree(mag); 772 } 773 774 static void 775 iova_magazine_free_pfns(struct iova_magazine *mag, struct iova_domain *iovad) 776 { 777 unsigned long flags; 778 int i; 779 780 if (!mag) 781 return; 782 783 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 784 785 for (i = 0 ; i < mag->size; ++i) { 786 struct iova *iova = private_find_iova(iovad, mag->pfns[i]); 787 788 if (WARN_ON(!iova)) 789 continue; 790 791 private_free_iova(iovad, iova); 792 } 793 794 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 795 796 mag->size = 0; 797 } 798 799 static bool iova_magazine_full(struct iova_magazine *mag) 800 { 801 return (mag && mag->size == IOVA_MAG_SIZE); 802 } 803 804 static bool iova_magazine_empty(struct iova_magazine *mag) 805 { 806 return (!mag || mag->size == 0); 807 } 808 809 static unsigned long iova_magazine_pop(struct iova_magazine *mag, 810 unsigned long limit_pfn) 811 { 812 int i; 813 unsigned long pfn; 814 815 BUG_ON(iova_magazine_empty(mag)); 816 817 /* Only fall back to the rbtree if we have no suitable pfns at all */ 818 for (i = mag->size - 1; mag->pfns[i] > limit_pfn; i--) 819 if (i == 0) 820 return 0; 821 822 /* Swap it to pop it */ 823 pfn = mag->pfns[i]; 824 mag->pfns[i] = mag->pfns[--mag->size]; 825 826 return pfn; 827 } 828 829 static void iova_magazine_push(struct iova_magazine *mag, unsigned long pfn) 830 { 831 BUG_ON(iova_magazine_full(mag)); 832 833 mag->pfns[mag->size++] = pfn; 834 } 835 836 static void init_iova_rcaches(struct iova_domain *iovad) 837 { 838 struct iova_cpu_rcache *cpu_rcache; 839 struct iova_rcache *rcache; 840 unsigned int cpu; 841 int i; 842 843 for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 844 rcache = &iovad->rcaches[i]; 845 spin_lock_init(&rcache->lock); 846 rcache->depot_size = 0; 847 rcache->cpu_rcaches = __alloc_percpu(sizeof(*cpu_rcache), cache_line_size()); 848 if (WARN_ON(!rcache->cpu_rcaches)) 849 continue; 850 for_each_possible_cpu(cpu) { 851 cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu); 852 spin_lock_init(&cpu_rcache->lock); 853 cpu_rcache->loaded = iova_magazine_alloc(GFP_KERNEL); 854 cpu_rcache->prev = iova_magazine_alloc(GFP_KERNEL); 855 } 856 } 857 } 858 859 /* 860 * Try inserting IOVA range starting with 'iova_pfn' into 'rcache', and 861 * return true on success. Can fail if rcache is full and we can't free 862 * space, and free_iova() (our only caller) will then return the IOVA 863 * range to the rbtree instead. 864 */ 865 static bool __iova_rcache_insert(struct iova_domain *iovad, 866 struct iova_rcache *rcache, 867 unsigned long iova_pfn) 868 { 869 struct iova_magazine *mag_to_free = NULL; 870 struct iova_cpu_rcache *cpu_rcache; 871 bool can_insert = false; 872 unsigned long flags; 873 874 cpu_rcache = raw_cpu_ptr(rcache->cpu_rcaches); 875 spin_lock_irqsave(&cpu_rcache->lock, flags); 876 877 if (!iova_magazine_full(cpu_rcache->loaded)) { 878 can_insert = true; 879 } else if (!iova_magazine_full(cpu_rcache->prev)) { 880 swap(cpu_rcache->prev, cpu_rcache->loaded); 881 can_insert = true; 882 } else { 883 struct iova_magazine *new_mag = iova_magazine_alloc(GFP_ATOMIC); 884 885 if (new_mag) { 886 spin_lock(&rcache->lock); 887 if (rcache->depot_size < MAX_GLOBAL_MAGS) { 888 rcache->depot[rcache->depot_size++] = 889 cpu_rcache->loaded; 890 } else { 891 mag_to_free = cpu_rcache->loaded; 892 } 893 spin_unlock(&rcache->lock); 894 895 cpu_rcache->loaded = new_mag; 896 can_insert = true; 897 } 898 } 899 900 if (can_insert) 901 iova_magazine_push(cpu_rcache->loaded, iova_pfn); 902 903 spin_unlock_irqrestore(&cpu_rcache->lock, flags); 904 905 if (mag_to_free) { 906 iova_magazine_free_pfns(mag_to_free, iovad); 907 iova_magazine_free(mag_to_free); 908 } 909 910 return can_insert; 911 } 912 913 static bool iova_rcache_insert(struct iova_domain *iovad, unsigned long pfn, 914 unsigned long size) 915 { 916 unsigned int log_size = order_base_2(size); 917 918 if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE) 919 return false; 920 921 return __iova_rcache_insert(iovad, &iovad->rcaches[log_size], pfn); 922 } 923 924 /* 925 * Caller wants to allocate a new IOVA range from 'rcache'. If we can 926 * satisfy the request, return a matching non-NULL range and remove 927 * it from the 'rcache'. 928 */ 929 static unsigned long __iova_rcache_get(struct iova_rcache *rcache, 930 unsigned long limit_pfn) 931 { 932 struct iova_cpu_rcache *cpu_rcache; 933 unsigned long iova_pfn = 0; 934 bool has_pfn = false; 935 unsigned long flags; 936 937 cpu_rcache = raw_cpu_ptr(rcache->cpu_rcaches); 938 spin_lock_irqsave(&cpu_rcache->lock, flags); 939 940 if (!iova_magazine_empty(cpu_rcache->loaded)) { 941 has_pfn = true; 942 } else if (!iova_magazine_empty(cpu_rcache->prev)) { 943 swap(cpu_rcache->prev, cpu_rcache->loaded); 944 has_pfn = true; 945 } else { 946 spin_lock(&rcache->lock); 947 if (rcache->depot_size > 0) { 948 iova_magazine_free(cpu_rcache->loaded); 949 cpu_rcache->loaded = rcache->depot[--rcache->depot_size]; 950 has_pfn = true; 951 } 952 spin_unlock(&rcache->lock); 953 } 954 955 if (has_pfn) 956 iova_pfn = iova_magazine_pop(cpu_rcache->loaded, limit_pfn); 957 958 spin_unlock_irqrestore(&cpu_rcache->lock, flags); 959 960 return iova_pfn; 961 } 962 963 /* 964 * Try to satisfy IOVA allocation range from rcache. Fail if requested 965 * size is too big or the DMA limit we are given isn't satisfied by the 966 * top element in the magazine. 967 */ 968 static unsigned long iova_rcache_get(struct iova_domain *iovad, 969 unsigned long size, 970 unsigned long limit_pfn) 971 { 972 unsigned int log_size = order_base_2(size); 973 974 if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE) 975 return 0; 976 977 return __iova_rcache_get(&iovad->rcaches[log_size], limit_pfn - size); 978 } 979 980 /* 981 * free rcache data structures. 982 */ 983 static void free_iova_rcaches(struct iova_domain *iovad) 984 { 985 struct iova_rcache *rcache; 986 struct iova_cpu_rcache *cpu_rcache; 987 unsigned int cpu; 988 int i, j; 989 990 for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 991 rcache = &iovad->rcaches[i]; 992 for_each_possible_cpu(cpu) { 993 cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu); 994 iova_magazine_free(cpu_rcache->loaded); 995 iova_magazine_free(cpu_rcache->prev); 996 } 997 free_percpu(rcache->cpu_rcaches); 998 for (j = 0; j < rcache->depot_size; ++j) 999 iova_magazine_free(rcache->depot[j]); 1000 } 1001 } 1002 1003 /* 1004 * free all the IOVA ranges cached by a cpu (used when cpu is unplugged) 1005 */ 1006 void free_cpu_cached_iovas(unsigned int cpu, struct iova_domain *iovad) 1007 { 1008 struct iova_cpu_rcache *cpu_rcache; 1009 struct iova_rcache *rcache; 1010 unsigned long flags; 1011 int i; 1012 1013 for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 1014 rcache = &iovad->rcaches[i]; 1015 cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu); 1016 spin_lock_irqsave(&cpu_rcache->lock, flags); 1017 iova_magazine_free_pfns(cpu_rcache->loaded, iovad); 1018 iova_magazine_free_pfns(cpu_rcache->prev, iovad); 1019 spin_unlock_irqrestore(&cpu_rcache->lock, flags); 1020 } 1021 } 1022 1023 /* 1024 * free all the IOVA ranges of global cache 1025 */ 1026 static void free_global_cached_iovas(struct iova_domain *iovad) 1027 { 1028 struct iova_rcache *rcache; 1029 unsigned long flags; 1030 int i, j; 1031 1032 for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 1033 rcache = &iovad->rcaches[i]; 1034 spin_lock_irqsave(&rcache->lock, flags); 1035 for (j = 0; j < rcache->depot_size; ++j) { 1036 iova_magazine_free_pfns(rcache->depot[j], iovad); 1037 iova_magazine_free(rcache->depot[j]); 1038 } 1039 rcache->depot_size = 0; 1040 spin_unlock_irqrestore(&rcache->lock, flags); 1041 } 1042 } 1043 MODULE_AUTHOR("Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>"); 1044 MODULE_LICENSE("GPL"); 1045