xref: /openbmc/linux/drivers/iommu/iova.c (revision bc05aa6e)
1 /*
2  * Copyright © 2006-2009, Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
18  */
19 
20 #include <linux/iova.h>
21 #include <linux/module.h>
22 #include <linux/slab.h>
23 #include <linux/smp.h>
24 #include <linux/bitops.h>
25 #include <linux/cpu.h>
26 
27 /* The anchor node sits above the top of the usable address space */
28 #define IOVA_ANCHOR	~0UL
29 
30 static bool iova_rcache_insert(struct iova_domain *iovad,
31 			       unsigned long pfn,
32 			       unsigned long size);
33 static unsigned long iova_rcache_get(struct iova_domain *iovad,
34 				     unsigned long size,
35 				     unsigned long limit_pfn);
36 static void init_iova_rcaches(struct iova_domain *iovad);
37 static void free_iova_rcaches(struct iova_domain *iovad);
38 static void fq_destroy_all_entries(struct iova_domain *iovad);
39 static void fq_flush_timeout(struct timer_list *t);
40 
41 void
42 init_iova_domain(struct iova_domain *iovad, unsigned long granule,
43 	unsigned long start_pfn)
44 {
45 	/*
46 	 * IOVA granularity will normally be equal to the smallest
47 	 * supported IOMMU page size; both *must* be capable of
48 	 * representing individual CPU pages exactly.
49 	 */
50 	BUG_ON((granule > PAGE_SIZE) || !is_power_of_2(granule));
51 
52 	spin_lock_init(&iovad->iova_rbtree_lock);
53 	iovad->rbroot = RB_ROOT;
54 	iovad->cached_node = &iovad->anchor.node;
55 	iovad->cached32_node = &iovad->anchor.node;
56 	iovad->granule = granule;
57 	iovad->start_pfn = start_pfn;
58 	iovad->dma_32bit_pfn = 1UL << (32 - iova_shift(iovad));
59 	iovad->flush_cb = NULL;
60 	iovad->fq = NULL;
61 	iovad->anchor.pfn_lo = iovad->anchor.pfn_hi = IOVA_ANCHOR;
62 	rb_link_node(&iovad->anchor.node, NULL, &iovad->rbroot.rb_node);
63 	rb_insert_color(&iovad->anchor.node, &iovad->rbroot);
64 	init_iova_rcaches(iovad);
65 }
66 EXPORT_SYMBOL_GPL(init_iova_domain);
67 
68 static void free_iova_flush_queue(struct iova_domain *iovad)
69 {
70 	if (!iovad->fq)
71 		return;
72 
73 	if (timer_pending(&iovad->fq_timer))
74 		del_timer(&iovad->fq_timer);
75 
76 	fq_destroy_all_entries(iovad);
77 
78 	free_percpu(iovad->fq);
79 
80 	iovad->fq         = NULL;
81 	iovad->flush_cb   = NULL;
82 	iovad->entry_dtor = NULL;
83 }
84 
85 int init_iova_flush_queue(struct iova_domain *iovad,
86 			  iova_flush_cb flush_cb, iova_entry_dtor entry_dtor)
87 {
88 	int cpu;
89 
90 	atomic64_set(&iovad->fq_flush_start_cnt,  0);
91 	atomic64_set(&iovad->fq_flush_finish_cnt, 0);
92 
93 	iovad->fq = alloc_percpu(struct iova_fq);
94 	if (!iovad->fq)
95 		return -ENOMEM;
96 
97 	iovad->flush_cb   = flush_cb;
98 	iovad->entry_dtor = entry_dtor;
99 
100 	for_each_possible_cpu(cpu) {
101 		struct iova_fq *fq;
102 
103 		fq = per_cpu_ptr(iovad->fq, cpu);
104 		fq->head = 0;
105 		fq->tail = 0;
106 
107 		spin_lock_init(&fq->lock);
108 	}
109 
110 	timer_setup(&iovad->fq_timer, fq_flush_timeout, 0);
111 	atomic_set(&iovad->fq_timer_on, 0);
112 
113 	return 0;
114 }
115 EXPORT_SYMBOL_GPL(init_iova_flush_queue);
116 
117 static struct rb_node *
118 __get_cached_rbnode(struct iova_domain *iovad, unsigned long limit_pfn)
119 {
120 	if (limit_pfn <= iovad->dma_32bit_pfn)
121 		return iovad->cached32_node;
122 
123 	return iovad->cached_node;
124 }
125 
126 static void
127 __cached_rbnode_insert_update(struct iova_domain *iovad, struct iova *new)
128 {
129 	if (new->pfn_hi < iovad->dma_32bit_pfn)
130 		iovad->cached32_node = &new->node;
131 	else
132 		iovad->cached_node = &new->node;
133 }
134 
135 static void
136 __cached_rbnode_delete_update(struct iova_domain *iovad, struct iova *free)
137 {
138 	struct iova *cached_iova;
139 
140 	cached_iova = rb_entry(iovad->cached32_node, struct iova, node);
141 	if (free->pfn_hi < iovad->dma_32bit_pfn &&
142 	    free->pfn_lo >= cached_iova->pfn_lo)
143 		iovad->cached32_node = rb_next(&free->node);
144 
145 	cached_iova = rb_entry(iovad->cached_node, struct iova, node);
146 	if (free->pfn_lo >= cached_iova->pfn_lo)
147 		iovad->cached_node = rb_next(&free->node);
148 }
149 
150 /* Insert the iova into domain rbtree by holding writer lock */
151 static void
152 iova_insert_rbtree(struct rb_root *root, struct iova *iova,
153 		   struct rb_node *start)
154 {
155 	struct rb_node **new, *parent = NULL;
156 
157 	new = (start) ? &start : &(root->rb_node);
158 	/* Figure out where to put new node */
159 	while (*new) {
160 		struct iova *this = rb_entry(*new, struct iova, node);
161 
162 		parent = *new;
163 
164 		if (iova->pfn_lo < this->pfn_lo)
165 			new = &((*new)->rb_left);
166 		else if (iova->pfn_lo > this->pfn_lo)
167 			new = &((*new)->rb_right);
168 		else {
169 			WARN_ON(1); /* this should not happen */
170 			return;
171 		}
172 	}
173 	/* Add new node and rebalance tree. */
174 	rb_link_node(&iova->node, parent, new);
175 	rb_insert_color(&iova->node, root);
176 }
177 
178 static int __alloc_and_insert_iova_range(struct iova_domain *iovad,
179 		unsigned long size, unsigned long limit_pfn,
180 			struct iova *new, bool size_aligned)
181 {
182 	struct rb_node *curr, *prev;
183 	struct iova *curr_iova;
184 	unsigned long flags;
185 	unsigned long new_pfn;
186 	unsigned long align_mask = ~0UL;
187 
188 	if (size_aligned)
189 		align_mask <<= fls_long(size - 1);
190 
191 	/* Walk the tree backwards */
192 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
193 	curr = __get_cached_rbnode(iovad, limit_pfn);
194 	curr_iova = rb_entry(curr, struct iova, node);
195 	do {
196 		limit_pfn = min(limit_pfn, curr_iova->pfn_lo);
197 		new_pfn = (limit_pfn - size) & align_mask;
198 		prev = curr;
199 		curr = rb_prev(curr);
200 		curr_iova = rb_entry(curr, struct iova, node);
201 	} while (curr && new_pfn <= curr_iova->pfn_hi);
202 
203 	if (limit_pfn < size || new_pfn < iovad->start_pfn) {
204 		spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
205 		return -ENOMEM;
206 	}
207 
208 	/* pfn_lo will point to size aligned address if size_aligned is set */
209 	new->pfn_lo = new_pfn;
210 	new->pfn_hi = new->pfn_lo + size - 1;
211 
212 	/* If we have 'prev', it's a valid place to start the insertion. */
213 	iova_insert_rbtree(&iovad->rbroot, new, prev);
214 	__cached_rbnode_insert_update(iovad, new);
215 
216 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
217 
218 
219 	return 0;
220 }
221 
222 static struct kmem_cache *iova_cache;
223 static unsigned int iova_cache_users;
224 static DEFINE_MUTEX(iova_cache_mutex);
225 
226 struct iova *alloc_iova_mem(void)
227 {
228 	return kmem_cache_alloc(iova_cache, GFP_ATOMIC);
229 }
230 EXPORT_SYMBOL(alloc_iova_mem);
231 
232 void free_iova_mem(struct iova *iova)
233 {
234 	if (iova->pfn_lo != IOVA_ANCHOR)
235 		kmem_cache_free(iova_cache, iova);
236 }
237 EXPORT_SYMBOL(free_iova_mem);
238 
239 int iova_cache_get(void)
240 {
241 	mutex_lock(&iova_cache_mutex);
242 	if (!iova_cache_users) {
243 		iova_cache = kmem_cache_create(
244 			"iommu_iova", sizeof(struct iova), 0,
245 			SLAB_HWCACHE_ALIGN, NULL);
246 		if (!iova_cache) {
247 			mutex_unlock(&iova_cache_mutex);
248 			printk(KERN_ERR "Couldn't create iova cache\n");
249 			return -ENOMEM;
250 		}
251 	}
252 
253 	iova_cache_users++;
254 	mutex_unlock(&iova_cache_mutex);
255 
256 	return 0;
257 }
258 EXPORT_SYMBOL_GPL(iova_cache_get);
259 
260 void iova_cache_put(void)
261 {
262 	mutex_lock(&iova_cache_mutex);
263 	if (WARN_ON(!iova_cache_users)) {
264 		mutex_unlock(&iova_cache_mutex);
265 		return;
266 	}
267 	iova_cache_users--;
268 	if (!iova_cache_users)
269 		kmem_cache_destroy(iova_cache);
270 	mutex_unlock(&iova_cache_mutex);
271 }
272 EXPORT_SYMBOL_GPL(iova_cache_put);
273 
274 /**
275  * alloc_iova - allocates an iova
276  * @iovad: - iova domain in question
277  * @size: - size of page frames to allocate
278  * @limit_pfn: - max limit address
279  * @size_aligned: - set if size_aligned address range is required
280  * This function allocates an iova in the range iovad->start_pfn to limit_pfn,
281  * searching top-down from limit_pfn to iovad->start_pfn. If the size_aligned
282  * flag is set then the allocated address iova->pfn_lo will be naturally
283  * aligned on roundup_power_of_two(size).
284  */
285 struct iova *
286 alloc_iova(struct iova_domain *iovad, unsigned long size,
287 	unsigned long limit_pfn,
288 	bool size_aligned)
289 {
290 	struct iova *new_iova;
291 	int ret;
292 
293 	new_iova = alloc_iova_mem();
294 	if (!new_iova)
295 		return NULL;
296 
297 	ret = __alloc_and_insert_iova_range(iovad, size, limit_pfn + 1,
298 			new_iova, size_aligned);
299 
300 	if (ret) {
301 		free_iova_mem(new_iova);
302 		return NULL;
303 	}
304 
305 	return new_iova;
306 }
307 EXPORT_SYMBOL_GPL(alloc_iova);
308 
309 static struct iova *
310 private_find_iova(struct iova_domain *iovad, unsigned long pfn)
311 {
312 	struct rb_node *node = iovad->rbroot.rb_node;
313 
314 	assert_spin_locked(&iovad->iova_rbtree_lock);
315 
316 	while (node) {
317 		struct iova *iova = rb_entry(node, struct iova, node);
318 
319 		if (pfn < iova->pfn_lo)
320 			node = node->rb_left;
321 		else if (pfn > iova->pfn_hi)
322 			node = node->rb_right;
323 		else
324 			return iova;	/* pfn falls within iova's range */
325 	}
326 
327 	return NULL;
328 }
329 
330 static void private_free_iova(struct iova_domain *iovad, struct iova *iova)
331 {
332 	assert_spin_locked(&iovad->iova_rbtree_lock);
333 	__cached_rbnode_delete_update(iovad, iova);
334 	rb_erase(&iova->node, &iovad->rbroot);
335 	free_iova_mem(iova);
336 }
337 
338 /**
339  * find_iova - finds an iova for a given pfn
340  * @iovad: - iova domain in question.
341  * @pfn: - page frame number
342  * This function finds and returns an iova belonging to the
343  * given doamin which matches the given pfn.
344  */
345 struct iova *find_iova(struct iova_domain *iovad, unsigned long pfn)
346 {
347 	unsigned long flags;
348 	struct iova *iova;
349 
350 	/* Take the lock so that no other thread is manipulating the rbtree */
351 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
352 	iova = private_find_iova(iovad, pfn);
353 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
354 	return iova;
355 }
356 EXPORT_SYMBOL_GPL(find_iova);
357 
358 /**
359  * __free_iova - frees the given iova
360  * @iovad: iova domain in question.
361  * @iova: iova in question.
362  * Frees the given iova belonging to the giving domain
363  */
364 void
365 __free_iova(struct iova_domain *iovad, struct iova *iova)
366 {
367 	unsigned long flags;
368 
369 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
370 	private_free_iova(iovad, iova);
371 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
372 }
373 EXPORT_SYMBOL_GPL(__free_iova);
374 
375 /**
376  * free_iova - finds and frees the iova for a given pfn
377  * @iovad: - iova domain in question.
378  * @pfn: - pfn that is allocated previously
379  * This functions finds an iova for a given pfn and then
380  * frees the iova from that domain.
381  */
382 void
383 free_iova(struct iova_domain *iovad, unsigned long pfn)
384 {
385 	struct iova *iova = find_iova(iovad, pfn);
386 
387 	if (iova)
388 		__free_iova(iovad, iova);
389 
390 }
391 EXPORT_SYMBOL_GPL(free_iova);
392 
393 /**
394  * alloc_iova_fast - allocates an iova from rcache
395  * @iovad: - iova domain in question
396  * @size: - size of page frames to allocate
397  * @limit_pfn: - max limit address
398  * @flush_rcache: - set to flush rcache on regular allocation failure
399  * This function tries to satisfy an iova allocation from the rcache,
400  * and falls back to regular allocation on failure. If regular allocation
401  * fails too and the flush_rcache flag is set then the rcache will be flushed.
402 */
403 unsigned long
404 alloc_iova_fast(struct iova_domain *iovad, unsigned long size,
405 		unsigned long limit_pfn, bool flush_rcache)
406 {
407 	unsigned long iova_pfn;
408 	struct iova *new_iova;
409 
410 	iova_pfn = iova_rcache_get(iovad, size, limit_pfn + 1);
411 	if (iova_pfn)
412 		return iova_pfn;
413 
414 retry:
415 	new_iova = alloc_iova(iovad, size, limit_pfn, true);
416 	if (!new_iova) {
417 		unsigned int cpu;
418 
419 		if (!flush_rcache)
420 			return 0;
421 
422 		/* Try replenishing IOVAs by flushing rcache. */
423 		flush_rcache = false;
424 		for_each_online_cpu(cpu)
425 			free_cpu_cached_iovas(cpu, iovad);
426 		goto retry;
427 	}
428 
429 	return new_iova->pfn_lo;
430 }
431 EXPORT_SYMBOL_GPL(alloc_iova_fast);
432 
433 /**
434  * free_iova_fast - free iova pfn range into rcache
435  * @iovad: - iova domain in question.
436  * @pfn: - pfn that is allocated previously
437  * @size: - # of pages in range
438  * This functions frees an iova range by trying to put it into the rcache,
439  * falling back to regular iova deallocation via free_iova() if this fails.
440  */
441 void
442 free_iova_fast(struct iova_domain *iovad, unsigned long pfn, unsigned long size)
443 {
444 	if (iova_rcache_insert(iovad, pfn, size))
445 		return;
446 
447 	free_iova(iovad, pfn);
448 }
449 EXPORT_SYMBOL_GPL(free_iova_fast);
450 
451 #define fq_ring_for_each(i, fq) \
452 	for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE)
453 
454 static inline bool fq_full(struct iova_fq *fq)
455 {
456 	assert_spin_locked(&fq->lock);
457 	return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head);
458 }
459 
460 static inline unsigned fq_ring_add(struct iova_fq *fq)
461 {
462 	unsigned idx = fq->tail;
463 
464 	assert_spin_locked(&fq->lock);
465 
466 	fq->tail = (idx + 1) % IOVA_FQ_SIZE;
467 
468 	return idx;
469 }
470 
471 static void fq_ring_free(struct iova_domain *iovad, struct iova_fq *fq)
472 {
473 	u64 counter = atomic64_read(&iovad->fq_flush_finish_cnt);
474 	unsigned idx;
475 
476 	assert_spin_locked(&fq->lock);
477 
478 	fq_ring_for_each(idx, fq) {
479 
480 		if (fq->entries[idx].counter >= counter)
481 			break;
482 
483 		if (iovad->entry_dtor)
484 			iovad->entry_dtor(fq->entries[idx].data);
485 
486 		free_iova_fast(iovad,
487 			       fq->entries[idx].iova_pfn,
488 			       fq->entries[idx].pages);
489 
490 		fq->head = (fq->head + 1) % IOVA_FQ_SIZE;
491 	}
492 }
493 
494 static void iova_domain_flush(struct iova_domain *iovad)
495 {
496 	atomic64_inc(&iovad->fq_flush_start_cnt);
497 	iovad->flush_cb(iovad);
498 	atomic64_inc(&iovad->fq_flush_finish_cnt);
499 }
500 
501 static void fq_destroy_all_entries(struct iova_domain *iovad)
502 {
503 	int cpu;
504 
505 	/*
506 	 * This code runs when the iova_domain is being detroyed, so don't
507 	 * bother to free iovas, just call the entry_dtor on all remaining
508 	 * entries.
509 	 */
510 	if (!iovad->entry_dtor)
511 		return;
512 
513 	for_each_possible_cpu(cpu) {
514 		struct iova_fq *fq = per_cpu_ptr(iovad->fq, cpu);
515 		int idx;
516 
517 		fq_ring_for_each(idx, fq)
518 			iovad->entry_dtor(fq->entries[idx].data);
519 	}
520 }
521 
522 static void fq_flush_timeout(struct timer_list *t)
523 {
524 	struct iova_domain *iovad = from_timer(iovad, t, fq_timer);
525 	int cpu;
526 
527 	atomic_set(&iovad->fq_timer_on, 0);
528 	iova_domain_flush(iovad);
529 
530 	for_each_possible_cpu(cpu) {
531 		unsigned long flags;
532 		struct iova_fq *fq;
533 
534 		fq = per_cpu_ptr(iovad->fq, cpu);
535 		spin_lock_irqsave(&fq->lock, flags);
536 		fq_ring_free(iovad, fq);
537 		spin_unlock_irqrestore(&fq->lock, flags);
538 	}
539 }
540 
541 void queue_iova(struct iova_domain *iovad,
542 		unsigned long pfn, unsigned long pages,
543 		unsigned long data)
544 {
545 	struct iova_fq *fq = raw_cpu_ptr(iovad->fq);
546 	unsigned long flags;
547 	unsigned idx;
548 
549 	spin_lock_irqsave(&fq->lock, flags);
550 
551 	/*
552 	 * First remove all entries from the flush queue that have already been
553 	 * flushed out on another CPU. This makes the fq_full() check below less
554 	 * likely to be true.
555 	 */
556 	fq_ring_free(iovad, fq);
557 
558 	if (fq_full(fq)) {
559 		iova_domain_flush(iovad);
560 		fq_ring_free(iovad, fq);
561 	}
562 
563 	idx = fq_ring_add(fq);
564 
565 	fq->entries[idx].iova_pfn = pfn;
566 	fq->entries[idx].pages    = pages;
567 	fq->entries[idx].data     = data;
568 	fq->entries[idx].counter  = atomic64_read(&iovad->fq_flush_start_cnt);
569 
570 	spin_unlock_irqrestore(&fq->lock, flags);
571 
572 	if (atomic_cmpxchg(&iovad->fq_timer_on, 0, 1) == 0)
573 		mod_timer(&iovad->fq_timer,
574 			  jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT));
575 }
576 EXPORT_SYMBOL_GPL(queue_iova);
577 
578 /**
579  * put_iova_domain - destroys the iova doamin
580  * @iovad: - iova domain in question.
581  * All the iova's in that domain are destroyed.
582  */
583 void put_iova_domain(struct iova_domain *iovad)
584 {
585 	struct iova *iova, *tmp;
586 
587 	free_iova_flush_queue(iovad);
588 	free_iova_rcaches(iovad);
589 	rbtree_postorder_for_each_entry_safe(iova, tmp, &iovad->rbroot, node)
590 		free_iova_mem(iova);
591 }
592 EXPORT_SYMBOL_GPL(put_iova_domain);
593 
594 static int
595 __is_range_overlap(struct rb_node *node,
596 	unsigned long pfn_lo, unsigned long pfn_hi)
597 {
598 	struct iova *iova = rb_entry(node, struct iova, node);
599 
600 	if ((pfn_lo <= iova->pfn_hi) && (pfn_hi >= iova->pfn_lo))
601 		return 1;
602 	return 0;
603 }
604 
605 static inline struct iova *
606 alloc_and_init_iova(unsigned long pfn_lo, unsigned long pfn_hi)
607 {
608 	struct iova *iova;
609 
610 	iova = alloc_iova_mem();
611 	if (iova) {
612 		iova->pfn_lo = pfn_lo;
613 		iova->pfn_hi = pfn_hi;
614 	}
615 
616 	return iova;
617 }
618 
619 static struct iova *
620 __insert_new_range(struct iova_domain *iovad,
621 	unsigned long pfn_lo, unsigned long pfn_hi)
622 {
623 	struct iova *iova;
624 
625 	iova = alloc_and_init_iova(pfn_lo, pfn_hi);
626 	if (iova)
627 		iova_insert_rbtree(&iovad->rbroot, iova, NULL);
628 
629 	return iova;
630 }
631 
632 static void
633 __adjust_overlap_range(struct iova *iova,
634 	unsigned long *pfn_lo, unsigned long *pfn_hi)
635 {
636 	if (*pfn_lo < iova->pfn_lo)
637 		iova->pfn_lo = *pfn_lo;
638 	if (*pfn_hi > iova->pfn_hi)
639 		*pfn_lo = iova->pfn_hi + 1;
640 }
641 
642 /**
643  * reserve_iova - reserves an iova in the given range
644  * @iovad: - iova domain pointer
645  * @pfn_lo: - lower page frame address
646  * @pfn_hi:- higher pfn adderss
647  * This function allocates reserves the address range from pfn_lo to pfn_hi so
648  * that this address is not dished out as part of alloc_iova.
649  */
650 struct iova *
651 reserve_iova(struct iova_domain *iovad,
652 	unsigned long pfn_lo, unsigned long pfn_hi)
653 {
654 	struct rb_node *node;
655 	unsigned long flags;
656 	struct iova *iova;
657 	unsigned int overlap = 0;
658 
659 	/* Don't allow nonsensical pfns */
660 	if (WARN_ON((pfn_hi | pfn_lo) > (ULLONG_MAX >> iova_shift(iovad))))
661 		return NULL;
662 
663 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
664 	for (node = rb_first(&iovad->rbroot); node; node = rb_next(node)) {
665 		if (__is_range_overlap(node, pfn_lo, pfn_hi)) {
666 			iova = rb_entry(node, struct iova, node);
667 			__adjust_overlap_range(iova, &pfn_lo, &pfn_hi);
668 			if ((pfn_lo >= iova->pfn_lo) &&
669 				(pfn_hi <= iova->pfn_hi))
670 				goto finish;
671 			overlap = 1;
672 
673 		} else if (overlap)
674 				break;
675 	}
676 
677 	/* We are here either because this is the first reserver node
678 	 * or need to insert remaining non overlap addr range
679 	 */
680 	iova = __insert_new_range(iovad, pfn_lo, pfn_hi);
681 finish:
682 
683 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
684 	return iova;
685 }
686 EXPORT_SYMBOL_GPL(reserve_iova);
687 
688 /**
689  * copy_reserved_iova - copies the reserved between domains
690  * @from: - source doamin from where to copy
691  * @to: - destination domin where to copy
692  * This function copies reserved iova's from one doamin to
693  * other.
694  */
695 void
696 copy_reserved_iova(struct iova_domain *from, struct iova_domain *to)
697 {
698 	unsigned long flags;
699 	struct rb_node *node;
700 
701 	spin_lock_irqsave(&from->iova_rbtree_lock, flags);
702 	for (node = rb_first(&from->rbroot); node; node = rb_next(node)) {
703 		struct iova *iova = rb_entry(node, struct iova, node);
704 		struct iova *new_iova;
705 
706 		if (iova->pfn_lo == IOVA_ANCHOR)
707 			continue;
708 
709 		new_iova = reserve_iova(to, iova->pfn_lo, iova->pfn_hi);
710 		if (!new_iova)
711 			printk(KERN_ERR "Reserve iova range %lx@%lx failed\n",
712 				iova->pfn_lo, iova->pfn_lo);
713 	}
714 	spin_unlock_irqrestore(&from->iova_rbtree_lock, flags);
715 }
716 EXPORT_SYMBOL_GPL(copy_reserved_iova);
717 
718 struct iova *
719 split_and_remove_iova(struct iova_domain *iovad, struct iova *iova,
720 		      unsigned long pfn_lo, unsigned long pfn_hi)
721 {
722 	unsigned long flags;
723 	struct iova *prev = NULL, *next = NULL;
724 
725 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
726 	if (iova->pfn_lo < pfn_lo) {
727 		prev = alloc_and_init_iova(iova->pfn_lo, pfn_lo - 1);
728 		if (prev == NULL)
729 			goto error;
730 	}
731 	if (iova->pfn_hi > pfn_hi) {
732 		next = alloc_and_init_iova(pfn_hi + 1, iova->pfn_hi);
733 		if (next == NULL)
734 			goto error;
735 	}
736 
737 	__cached_rbnode_delete_update(iovad, iova);
738 	rb_erase(&iova->node, &iovad->rbroot);
739 
740 	if (prev) {
741 		iova_insert_rbtree(&iovad->rbroot, prev, NULL);
742 		iova->pfn_lo = pfn_lo;
743 	}
744 	if (next) {
745 		iova_insert_rbtree(&iovad->rbroot, next, NULL);
746 		iova->pfn_hi = pfn_hi;
747 	}
748 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
749 
750 	return iova;
751 
752 error:
753 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
754 	if (prev)
755 		free_iova_mem(prev);
756 	return NULL;
757 }
758 
759 /*
760  * Magazine caches for IOVA ranges.  For an introduction to magazines,
761  * see the USENIX 2001 paper "Magazines and Vmem: Extending the Slab
762  * Allocator to Many CPUs and Arbitrary Resources" by Bonwick and Adams.
763  * For simplicity, we use a static magazine size and don't implement the
764  * dynamic size tuning described in the paper.
765  */
766 
767 #define IOVA_MAG_SIZE 128
768 
769 struct iova_magazine {
770 	unsigned long size;
771 	unsigned long pfns[IOVA_MAG_SIZE];
772 };
773 
774 struct iova_cpu_rcache {
775 	spinlock_t lock;
776 	struct iova_magazine *loaded;
777 	struct iova_magazine *prev;
778 };
779 
780 static struct iova_magazine *iova_magazine_alloc(gfp_t flags)
781 {
782 	return kzalloc(sizeof(struct iova_magazine), flags);
783 }
784 
785 static void iova_magazine_free(struct iova_magazine *mag)
786 {
787 	kfree(mag);
788 }
789 
790 static void
791 iova_magazine_free_pfns(struct iova_magazine *mag, struct iova_domain *iovad)
792 {
793 	unsigned long flags;
794 	int i;
795 
796 	if (!mag)
797 		return;
798 
799 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
800 
801 	for (i = 0 ; i < mag->size; ++i) {
802 		struct iova *iova = private_find_iova(iovad, mag->pfns[i]);
803 
804 		BUG_ON(!iova);
805 		private_free_iova(iovad, iova);
806 	}
807 
808 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
809 
810 	mag->size = 0;
811 }
812 
813 static bool iova_magazine_full(struct iova_magazine *mag)
814 {
815 	return (mag && mag->size == IOVA_MAG_SIZE);
816 }
817 
818 static bool iova_magazine_empty(struct iova_magazine *mag)
819 {
820 	return (!mag || mag->size == 0);
821 }
822 
823 static unsigned long iova_magazine_pop(struct iova_magazine *mag,
824 				       unsigned long limit_pfn)
825 {
826 	int i;
827 	unsigned long pfn;
828 
829 	BUG_ON(iova_magazine_empty(mag));
830 
831 	/* Only fall back to the rbtree if we have no suitable pfns at all */
832 	for (i = mag->size - 1; mag->pfns[i] > limit_pfn; i--)
833 		if (i == 0)
834 			return 0;
835 
836 	/* Swap it to pop it */
837 	pfn = mag->pfns[i];
838 	mag->pfns[i] = mag->pfns[--mag->size];
839 
840 	return pfn;
841 }
842 
843 static void iova_magazine_push(struct iova_magazine *mag, unsigned long pfn)
844 {
845 	BUG_ON(iova_magazine_full(mag));
846 
847 	mag->pfns[mag->size++] = pfn;
848 }
849 
850 static void init_iova_rcaches(struct iova_domain *iovad)
851 {
852 	struct iova_cpu_rcache *cpu_rcache;
853 	struct iova_rcache *rcache;
854 	unsigned int cpu;
855 	int i;
856 
857 	for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) {
858 		rcache = &iovad->rcaches[i];
859 		spin_lock_init(&rcache->lock);
860 		rcache->depot_size = 0;
861 		rcache->cpu_rcaches = __alloc_percpu(sizeof(*cpu_rcache), cache_line_size());
862 		if (WARN_ON(!rcache->cpu_rcaches))
863 			continue;
864 		for_each_possible_cpu(cpu) {
865 			cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu);
866 			spin_lock_init(&cpu_rcache->lock);
867 			cpu_rcache->loaded = iova_magazine_alloc(GFP_KERNEL);
868 			cpu_rcache->prev = iova_magazine_alloc(GFP_KERNEL);
869 		}
870 	}
871 }
872 
873 /*
874  * Try inserting IOVA range starting with 'iova_pfn' into 'rcache', and
875  * return true on success.  Can fail if rcache is full and we can't free
876  * space, and free_iova() (our only caller) will then return the IOVA
877  * range to the rbtree instead.
878  */
879 static bool __iova_rcache_insert(struct iova_domain *iovad,
880 				 struct iova_rcache *rcache,
881 				 unsigned long iova_pfn)
882 {
883 	struct iova_magazine *mag_to_free = NULL;
884 	struct iova_cpu_rcache *cpu_rcache;
885 	bool can_insert = false;
886 	unsigned long flags;
887 
888 	cpu_rcache = raw_cpu_ptr(rcache->cpu_rcaches);
889 	spin_lock_irqsave(&cpu_rcache->lock, flags);
890 
891 	if (!iova_magazine_full(cpu_rcache->loaded)) {
892 		can_insert = true;
893 	} else if (!iova_magazine_full(cpu_rcache->prev)) {
894 		swap(cpu_rcache->prev, cpu_rcache->loaded);
895 		can_insert = true;
896 	} else {
897 		struct iova_magazine *new_mag = iova_magazine_alloc(GFP_ATOMIC);
898 
899 		if (new_mag) {
900 			spin_lock(&rcache->lock);
901 			if (rcache->depot_size < MAX_GLOBAL_MAGS) {
902 				rcache->depot[rcache->depot_size++] =
903 						cpu_rcache->loaded;
904 			} else {
905 				mag_to_free = cpu_rcache->loaded;
906 			}
907 			spin_unlock(&rcache->lock);
908 
909 			cpu_rcache->loaded = new_mag;
910 			can_insert = true;
911 		}
912 	}
913 
914 	if (can_insert)
915 		iova_magazine_push(cpu_rcache->loaded, iova_pfn);
916 
917 	spin_unlock_irqrestore(&cpu_rcache->lock, flags);
918 
919 	if (mag_to_free) {
920 		iova_magazine_free_pfns(mag_to_free, iovad);
921 		iova_magazine_free(mag_to_free);
922 	}
923 
924 	return can_insert;
925 }
926 
927 static bool iova_rcache_insert(struct iova_domain *iovad, unsigned long pfn,
928 			       unsigned long size)
929 {
930 	unsigned int log_size = order_base_2(size);
931 
932 	if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE)
933 		return false;
934 
935 	return __iova_rcache_insert(iovad, &iovad->rcaches[log_size], pfn);
936 }
937 
938 /*
939  * Caller wants to allocate a new IOVA range from 'rcache'.  If we can
940  * satisfy the request, return a matching non-NULL range and remove
941  * it from the 'rcache'.
942  */
943 static unsigned long __iova_rcache_get(struct iova_rcache *rcache,
944 				       unsigned long limit_pfn)
945 {
946 	struct iova_cpu_rcache *cpu_rcache;
947 	unsigned long iova_pfn = 0;
948 	bool has_pfn = false;
949 	unsigned long flags;
950 
951 	cpu_rcache = raw_cpu_ptr(rcache->cpu_rcaches);
952 	spin_lock_irqsave(&cpu_rcache->lock, flags);
953 
954 	if (!iova_magazine_empty(cpu_rcache->loaded)) {
955 		has_pfn = true;
956 	} else if (!iova_magazine_empty(cpu_rcache->prev)) {
957 		swap(cpu_rcache->prev, cpu_rcache->loaded);
958 		has_pfn = true;
959 	} else {
960 		spin_lock(&rcache->lock);
961 		if (rcache->depot_size > 0) {
962 			iova_magazine_free(cpu_rcache->loaded);
963 			cpu_rcache->loaded = rcache->depot[--rcache->depot_size];
964 			has_pfn = true;
965 		}
966 		spin_unlock(&rcache->lock);
967 	}
968 
969 	if (has_pfn)
970 		iova_pfn = iova_magazine_pop(cpu_rcache->loaded, limit_pfn);
971 
972 	spin_unlock_irqrestore(&cpu_rcache->lock, flags);
973 
974 	return iova_pfn;
975 }
976 
977 /*
978  * Try to satisfy IOVA allocation range from rcache.  Fail if requested
979  * size is too big or the DMA limit we are given isn't satisfied by the
980  * top element in the magazine.
981  */
982 static unsigned long iova_rcache_get(struct iova_domain *iovad,
983 				     unsigned long size,
984 				     unsigned long limit_pfn)
985 {
986 	unsigned int log_size = order_base_2(size);
987 
988 	if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE)
989 		return 0;
990 
991 	return __iova_rcache_get(&iovad->rcaches[log_size], limit_pfn - size);
992 }
993 
994 /*
995  * free rcache data structures.
996  */
997 static void free_iova_rcaches(struct iova_domain *iovad)
998 {
999 	struct iova_rcache *rcache;
1000 	struct iova_cpu_rcache *cpu_rcache;
1001 	unsigned int cpu;
1002 	int i, j;
1003 
1004 	for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) {
1005 		rcache = &iovad->rcaches[i];
1006 		for_each_possible_cpu(cpu) {
1007 			cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu);
1008 			iova_magazine_free(cpu_rcache->loaded);
1009 			iova_magazine_free(cpu_rcache->prev);
1010 		}
1011 		free_percpu(rcache->cpu_rcaches);
1012 		for (j = 0; j < rcache->depot_size; ++j)
1013 			iova_magazine_free(rcache->depot[j]);
1014 	}
1015 }
1016 
1017 /*
1018  * free all the IOVA ranges cached by a cpu (used when cpu is unplugged)
1019  */
1020 void free_cpu_cached_iovas(unsigned int cpu, struct iova_domain *iovad)
1021 {
1022 	struct iova_cpu_rcache *cpu_rcache;
1023 	struct iova_rcache *rcache;
1024 	unsigned long flags;
1025 	int i;
1026 
1027 	for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) {
1028 		rcache = &iovad->rcaches[i];
1029 		cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu);
1030 		spin_lock_irqsave(&cpu_rcache->lock, flags);
1031 		iova_magazine_free_pfns(cpu_rcache->loaded, iovad);
1032 		iova_magazine_free_pfns(cpu_rcache->prev, iovad);
1033 		spin_unlock_irqrestore(&cpu_rcache->lock, flags);
1034 	}
1035 }
1036 
1037 MODULE_AUTHOR("Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>");
1038 MODULE_LICENSE("GPL");
1039