1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright © 2006-2009, Intel Corporation. 4 * 5 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 6 */ 7 8 #include <linux/iova.h> 9 #include <linux/module.h> 10 #include <linux/slab.h> 11 #include <linux/smp.h> 12 #include <linux/bitops.h> 13 #include <linux/cpu.h> 14 15 /* The anchor node sits above the top of the usable address space */ 16 #define IOVA_ANCHOR ~0UL 17 18 static bool iova_rcache_insert(struct iova_domain *iovad, 19 unsigned long pfn, 20 unsigned long size); 21 static unsigned long iova_rcache_get(struct iova_domain *iovad, 22 unsigned long size, 23 unsigned long limit_pfn); 24 static void init_iova_rcaches(struct iova_domain *iovad); 25 static void free_cpu_cached_iovas(unsigned int cpu, struct iova_domain *iovad); 26 static void free_iova_rcaches(struct iova_domain *iovad); 27 static void fq_destroy_all_entries(struct iova_domain *iovad); 28 static void fq_flush_timeout(struct timer_list *t); 29 30 static int iova_cpuhp_dead(unsigned int cpu, struct hlist_node *node) 31 { 32 struct iova_domain *iovad; 33 34 iovad = hlist_entry_safe(node, struct iova_domain, cpuhp_dead); 35 36 free_cpu_cached_iovas(cpu, iovad); 37 return 0; 38 } 39 40 static void free_global_cached_iovas(struct iova_domain *iovad); 41 42 static struct iova *to_iova(struct rb_node *node) 43 { 44 return rb_entry(node, struct iova, node); 45 } 46 47 void 48 init_iova_domain(struct iova_domain *iovad, unsigned long granule, 49 unsigned long start_pfn) 50 { 51 /* 52 * IOVA granularity will normally be equal to the smallest 53 * supported IOMMU page size; both *must* be capable of 54 * representing individual CPU pages exactly. 55 */ 56 BUG_ON((granule > PAGE_SIZE) || !is_power_of_2(granule)); 57 58 spin_lock_init(&iovad->iova_rbtree_lock); 59 iovad->rbroot = RB_ROOT; 60 iovad->cached_node = &iovad->anchor.node; 61 iovad->cached32_node = &iovad->anchor.node; 62 iovad->granule = granule; 63 iovad->start_pfn = start_pfn; 64 iovad->dma_32bit_pfn = 1UL << (32 - iova_shift(iovad)); 65 iovad->max32_alloc_size = iovad->dma_32bit_pfn; 66 iovad->flush_cb = NULL; 67 iovad->fq = NULL; 68 iovad->anchor.pfn_lo = iovad->anchor.pfn_hi = IOVA_ANCHOR; 69 rb_link_node(&iovad->anchor.node, NULL, &iovad->rbroot.rb_node); 70 rb_insert_color(&iovad->anchor.node, &iovad->rbroot); 71 cpuhp_state_add_instance_nocalls(CPUHP_IOMMU_IOVA_DEAD, &iovad->cpuhp_dead); 72 init_iova_rcaches(iovad); 73 } 74 EXPORT_SYMBOL_GPL(init_iova_domain); 75 76 static bool has_iova_flush_queue(struct iova_domain *iovad) 77 { 78 return !!iovad->fq; 79 } 80 81 static void free_iova_flush_queue(struct iova_domain *iovad) 82 { 83 if (!has_iova_flush_queue(iovad)) 84 return; 85 86 if (timer_pending(&iovad->fq_timer)) 87 del_timer(&iovad->fq_timer); 88 89 fq_destroy_all_entries(iovad); 90 91 free_percpu(iovad->fq); 92 93 iovad->fq = NULL; 94 iovad->flush_cb = NULL; 95 iovad->entry_dtor = NULL; 96 } 97 98 int init_iova_flush_queue(struct iova_domain *iovad, 99 iova_flush_cb flush_cb, iova_entry_dtor entry_dtor) 100 { 101 struct iova_fq __percpu *queue; 102 int cpu; 103 104 atomic64_set(&iovad->fq_flush_start_cnt, 0); 105 atomic64_set(&iovad->fq_flush_finish_cnt, 0); 106 107 queue = alloc_percpu(struct iova_fq); 108 if (!queue) 109 return -ENOMEM; 110 111 iovad->flush_cb = flush_cb; 112 iovad->entry_dtor = entry_dtor; 113 114 for_each_possible_cpu(cpu) { 115 struct iova_fq *fq; 116 117 fq = per_cpu_ptr(queue, cpu); 118 fq->head = 0; 119 fq->tail = 0; 120 121 spin_lock_init(&fq->lock); 122 } 123 124 iovad->fq = queue; 125 126 timer_setup(&iovad->fq_timer, fq_flush_timeout, 0); 127 atomic_set(&iovad->fq_timer_on, 0); 128 129 return 0; 130 } 131 132 static struct rb_node * 133 __get_cached_rbnode(struct iova_domain *iovad, unsigned long limit_pfn) 134 { 135 if (limit_pfn <= iovad->dma_32bit_pfn) 136 return iovad->cached32_node; 137 138 return iovad->cached_node; 139 } 140 141 static void 142 __cached_rbnode_insert_update(struct iova_domain *iovad, struct iova *new) 143 { 144 if (new->pfn_hi < iovad->dma_32bit_pfn) 145 iovad->cached32_node = &new->node; 146 else 147 iovad->cached_node = &new->node; 148 } 149 150 static void 151 __cached_rbnode_delete_update(struct iova_domain *iovad, struct iova *free) 152 { 153 struct iova *cached_iova; 154 155 cached_iova = to_iova(iovad->cached32_node); 156 if (free == cached_iova || 157 (free->pfn_hi < iovad->dma_32bit_pfn && 158 free->pfn_lo >= cached_iova->pfn_lo)) { 159 iovad->cached32_node = rb_next(&free->node); 160 iovad->max32_alloc_size = iovad->dma_32bit_pfn; 161 } 162 163 cached_iova = to_iova(iovad->cached_node); 164 if (free->pfn_lo >= cached_iova->pfn_lo) 165 iovad->cached_node = rb_next(&free->node); 166 } 167 168 static struct rb_node *iova_find_limit(struct iova_domain *iovad, unsigned long limit_pfn) 169 { 170 struct rb_node *node, *next; 171 /* 172 * Ideally what we'd like to judge here is whether limit_pfn is close 173 * enough to the highest-allocated IOVA that starting the allocation 174 * walk from the anchor node will be quicker than this initial work to 175 * find an exact starting point (especially if that ends up being the 176 * anchor node anyway). This is an incredibly crude approximation which 177 * only really helps the most likely case, but is at least trivially easy. 178 */ 179 if (limit_pfn > iovad->dma_32bit_pfn) 180 return &iovad->anchor.node; 181 182 node = iovad->rbroot.rb_node; 183 while (to_iova(node)->pfn_hi < limit_pfn) 184 node = node->rb_right; 185 186 search_left: 187 while (node->rb_left && to_iova(node->rb_left)->pfn_lo >= limit_pfn) 188 node = node->rb_left; 189 190 if (!node->rb_left) 191 return node; 192 193 next = node->rb_left; 194 while (next->rb_right) { 195 next = next->rb_right; 196 if (to_iova(next)->pfn_lo >= limit_pfn) { 197 node = next; 198 goto search_left; 199 } 200 } 201 202 return node; 203 } 204 205 /* Insert the iova into domain rbtree by holding writer lock */ 206 static void 207 iova_insert_rbtree(struct rb_root *root, struct iova *iova, 208 struct rb_node *start) 209 { 210 struct rb_node **new, *parent = NULL; 211 212 new = (start) ? &start : &(root->rb_node); 213 /* Figure out where to put new node */ 214 while (*new) { 215 struct iova *this = to_iova(*new); 216 217 parent = *new; 218 219 if (iova->pfn_lo < this->pfn_lo) 220 new = &((*new)->rb_left); 221 else if (iova->pfn_lo > this->pfn_lo) 222 new = &((*new)->rb_right); 223 else { 224 WARN_ON(1); /* this should not happen */ 225 return; 226 } 227 } 228 /* Add new node and rebalance tree. */ 229 rb_link_node(&iova->node, parent, new); 230 rb_insert_color(&iova->node, root); 231 } 232 233 static int __alloc_and_insert_iova_range(struct iova_domain *iovad, 234 unsigned long size, unsigned long limit_pfn, 235 struct iova *new, bool size_aligned) 236 { 237 struct rb_node *curr, *prev; 238 struct iova *curr_iova; 239 unsigned long flags; 240 unsigned long new_pfn, retry_pfn; 241 unsigned long align_mask = ~0UL; 242 unsigned long high_pfn = limit_pfn, low_pfn = iovad->start_pfn; 243 244 if (size_aligned) 245 align_mask <<= fls_long(size - 1); 246 247 /* Walk the tree backwards */ 248 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 249 if (limit_pfn <= iovad->dma_32bit_pfn && 250 size >= iovad->max32_alloc_size) 251 goto iova32_full; 252 253 curr = __get_cached_rbnode(iovad, limit_pfn); 254 curr_iova = to_iova(curr); 255 retry_pfn = curr_iova->pfn_hi + 1; 256 257 retry: 258 do { 259 high_pfn = min(high_pfn, curr_iova->pfn_lo); 260 new_pfn = (high_pfn - size) & align_mask; 261 prev = curr; 262 curr = rb_prev(curr); 263 curr_iova = to_iova(curr); 264 } while (curr && new_pfn <= curr_iova->pfn_hi && new_pfn >= low_pfn); 265 266 if (high_pfn < size || new_pfn < low_pfn) { 267 if (low_pfn == iovad->start_pfn && retry_pfn < limit_pfn) { 268 high_pfn = limit_pfn; 269 low_pfn = retry_pfn; 270 curr = iova_find_limit(iovad, limit_pfn); 271 curr_iova = to_iova(curr); 272 goto retry; 273 } 274 iovad->max32_alloc_size = size; 275 goto iova32_full; 276 } 277 278 /* pfn_lo will point to size aligned address if size_aligned is set */ 279 new->pfn_lo = new_pfn; 280 new->pfn_hi = new->pfn_lo + size - 1; 281 282 /* If we have 'prev', it's a valid place to start the insertion. */ 283 iova_insert_rbtree(&iovad->rbroot, new, prev); 284 __cached_rbnode_insert_update(iovad, new); 285 286 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 287 return 0; 288 289 iova32_full: 290 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 291 return -ENOMEM; 292 } 293 294 static struct kmem_cache *iova_cache; 295 static unsigned int iova_cache_users; 296 static DEFINE_MUTEX(iova_cache_mutex); 297 298 static struct iova *alloc_iova_mem(void) 299 { 300 return kmem_cache_zalloc(iova_cache, GFP_ATOMIC | __GFP_NOWARN); 301 } 302 303 static void free_iova_mem(struct iova *iova) 304 { 305 if (iova->pfn_lo != IOVA_ANCHOR) 306 kmem_cache_free(iova_cache, iova); 307 } 308 309 int iova_cache_get(void) 310 { 311 mutex_lock(&iova_cache_mutex); 312 if (!iova_cache_users) { 313 int ret; 314 315 ret = cpuhp_setup_state_multi(CPUHP_IOMMU_IOVA_DEAD, "iommu/iova:dead", NULL, 316 iova_cpuhp_dead); 317 if (ret) { 318 mutex_unlock(&iova_cache_mutex); 319 pr_err("Couldn't register cpuhp handler\n"); 320 return ret; 321 } 322 323 iova_cache = kmem_cache_create( 324 "iommu_iova", sizeof(struct iova), 0, 325 SLAB_HWCACHE_ALIGN, NULL); 326 if (!iova_cache) { 327 cpuhp_remove_multi_state(CPUHP_IOMMU_IOVA_DEAD); 328 mutex_unlock(&iova_cache_mutex); 329 pr_err("Couldn't create iova cache\n"); 330 return -ENOMEM; 331 } 332 } 333 334 iova_cache_users++; 335 mutex_unlock(&iova_cache_mutex); 336 337 return 0; 338 } 339 EXPORT_SYMBOL_GPL(iova_cache_get); 340 341 void iova_cache_put(void) 342 { 343 mutex_lock(&iova_cache_mutex); 344 if (WARN_ON(!iova_cache_users)) { 345 mutex_unlock(&iova_cache_mutex); 346 return; 347 } 348 iova_cache_users--; 349 if (!iova_cache_users) { 350 cpuhp_remove_multi_state(CPUHP_IOMMU_IOVA_DEAD); 351 kmem_cache_destroy(iova_cache); 352 } 353 mutex_unlock(&iova_cache_mutex); 354 } 355 EXPORT_SYMBOL_GPL(iova_cache_put); 356 357 /** 358 * alloc_iova - allocates an iova 359 * @iovad: - iova domain in question 360 * @size: - size of page frames to allocate 361 * @limit_pfn: - max limit address 362 * @size_aligned: - set if size_aligned address range is required 363 * This function allocates an iova in the range iovad->start_pfn to limit_pfn, 364 * searching top-down from limit_pfn to iovad->start_pfn. If the size_aligned 365 * flag is set then the allocated address iova->pfn_lo will be naturally 366 * aligned on roundup_power_of_two(size). 367 */ 368 struct iova * 369 alloc_iova(struct iova_domain *iovad, unsigned long size, 370 unsigned long limit_pfn, 371 bool size_aligned) 372 { 373 struct iova *new_iova; 374 int ret; 375 376 new_iova = alloc_iova_mem(); 377 if (!new_iova) 378 return NULL; 379 380 ret = __alloc_and_insert_iova_range(iovad, size, limit_pfn + 1, 381 new_iova, size_aligned); 382 383 if (ret) { 384 free_iova_mem(new_iova); 385 return NULL; 386 } 387 388 return new_iova; 389 } 390 EXPORT_SYMBOL_GPL(alloc_iova); 391 392 static struct iova * 393 private_find_iova(struct iova_domain *iovad, unsigned long pfn) 394 { 395 struct rb_node *node = iovad->rbroot.rb_node; 396 397 assert_spin_locked(&iovad->iova_rbtree_lock); 398 399 while (node) { 400 struct iova *iova = to_iova(node); 401 402 if (pfn < iova->pfn_lo) 403 node = node->rb_left; 404 else if (pfn > iova->pfn_hi) 405 node = node->rb_right; 406 else 407 return iova; /* pfn falls within iova's range */ 408 } 409 410 return NULL; 411 } 412 413 static void remove_iova(struct iova_domain *iovad, struct iova *iova) 414 { 415 assert_spin_locked(&iovad->iova_rbtree_lock); 416 __cached_rbnode_delete_update(iovad, iova); 417 rb_erase(&iova->node, &iovad->rbroot); 418 } 419 420 /** 421 * find_iova - finds an iova for a given pfn 422 * @iovad: - iova domain in question. 423 * @pfn: - page frame number 424 * This function finds and returns an iova belonging to the 425 * given domain which matches the given pfn. 426 */ 427 struct iova *find_iova(struct iova_domain *iovad, unsigned long pfn) 428 { 429 unsigned long flags; 430 struct iova *iova; 431 432 /* Take the lock so that no other thread is manipulating the rbtree */ 433 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 434 iova = private_find_iova(iovad, pfn); 435 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 436 return iova; 437 } 438 EXPORT_SYMBOL_GPL(find_iova); 439 440 /** 441 * __free_iova - frees the given iova 442 * @iovad: iova domain in question. 443 * @iova: iova in question. 444 * Frees the given iova belonging to the giving domain 445 */ 446 void 447 __free_iova(struct iova_domain *iovad, struct iova *iova) 448 { 449 unsigned long flags; 450 451 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 452 remove_iova(iovad, iova); 453 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 454 free_iova_mem(iova); 455 } 456 EXPORT_SYMBOL_GPL(__free_iova); 457 458 /** 459 * free_iova - finds and frees the iova for a given pfn 460 * @iovad: - iova domain in question. 461 * @pfn: - pfn that is allocated previously 462 * This functions finds an iova for a given pfn and then 463 * frees the iova from that domain. 464 */ 465 void 466 free_iova(struct iova_domain *iovad, unsigned long pfn) 467 { 468 unsigned long flags; 469 struct iova *iova; 470 471 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 472 iova = private_find_iova(iovad, pfn); 473 if (!iova) { 474 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 475 return; 476 } 477 remove_iova(iovad, iova); 478 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 479 free_iova_mem(iova); 480 } 481 EXPORT_SYMBOL_GPL(free_iova); 482 483 /** 484 * alloc_iova_fast - allocates an iova from rcache 485 * @iovad: - iova domain in question 486 * @size: - size of page frames to allocate 487 * @limit_pfn: - max limit address 488 * @flush_rcache: - set to flush rcache on regular allocation failure 489 * This function tries to satisfy an iova allocation from the rcache, 490 * and falls back to regular allocation on failure. If regular allocation 491 * fails too and the flush_rcache flag is set then the rcache will be flushed. 492 */ 493 unsigned long 494 alloc_iova_fast(struct iova_domain *iovad, unsigned long size, 495 unsigned long limit_pfn, bool flush_rcache) 496 { 497 unsigned long iova_pfn; 498 struct iova *new_iova; 499 500 iova_pfn = iova_rcache_get(iovad, size, limit_pfn + 1); 501 if (iova_pfn) 502 return iova_pfn; 503 504 retry: 505 new_iova = alloc_iova(iovad, size, limit_pfn, true); 506 if (!new_iova) { 507 unsigned int cpu; 508 509 if (!flush_rcache) 510 return 0; 511 512 /* Try replenishing IOVAs by flushing rcache. */ 513 flush_rcache = false; 514 for_each_online_cpu(cpu) 515 free_cpu_cached_iovas(cpu, iovad); 516 free_global_cached_iovas(iovad); 517 goto retry; 518 } 519 520 return new_iova->pfn_lo; 521 } 522 523 /** 524 * free_iova_fast - free iova pfn range into rcache 525 * @iovad: - iova domain in question. 526 * @pfn: - pfn that is allocated previously 527 * @size: - # of pages in range 528 * This functions frees an iova range by trying to put it into the rcache, 529 * falling back to regular iova deallocation via free_iova() if this fails. 530 */ 531 void 532 free_iova_fast(struct iova_domain *iovad, unsigned long pfn, unsigned long size) 533 { 534 if (iova_rcache_insert(iovad, pfn, size)) 535 return; 536 537 free_iova(iovad, pfn); 538 } 539 540 #define fq_ring_for_each(i, fq) \ 541 for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE) 542 543 static inline bool fq_full(struct iova_fq *fq) 544 { 545 assert_spin_locked(&fq->lock); 546 return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head); 547 } 548 549 static inline unsigned fq_ring_add(struct iova_fq *fq) 550 { 551 unsigned idx = fq->tail; 552 553 assert_spin_locked(&fq->lock); 554 555 fq->tail = (idx + 1) % IOVA_FQ_SIZE; 556 557 return idx; 558 } 559 560 static void fq_ring_free(struct iova_domain *iovad, struct iova_fq *fq) 561 { 562 u64 counter = atomic64_read(&iovad->fq_flush_finish_cnt); 563 unsigned idx; 564 565 assert_spin_locked(&fq->lock); 566 567 fq_ring_for_each(idx, fq) { 568 569 if (fq->entries[idx].counter >= counter) 570 break; 571 572 if (iovad->entry_dtor) 573 iovad->entry_dtor(fq->entries[idx].data); 574 575 free_iova_fast(iovad, 576 fq->entries[idx].iova_pfn, 577 fq->entries[idx].pages); 578 579 fq->head = (fq->head + 1) % IOVA_FQ_SIZE; 580 } 581 } 582 583 static void iova_domain_flush(struct iova_domain *iovad) 584 { 585 atomic64_inc(&iovad->fq_flush_start_cnt); 586 iovad->flush_cb(iovad); 587 atomic64_inc(&iovad->fq_flush_finish_cnt); 588 } 589 590 static void fq_destroy_all_entries(struct iova_domain *iovad) 591 { 592 int cpu; 593 594 /* 595 * This code runs when the iova_domain is being detroyed, so don't 596 * bother to free iovas, just call the entry_dtor on all remaining 597 * entries. 598 */ 599 if (!iovad->entry_dtor) 600 return; 601 602 for_each_possible_cpu(cpu) { 603 struct iova_fq *fq = per_cpu_ptr(iovad->fq, cpu); 604 int idx; 605 606 fq_ring_for_each(idx, fq) 607 iovad->entry_dtor(fq->entries[idx].data); 608 } 609 } 610 611 static void fq_flush_timeout(struct timer_list *t) 612 { 613 struct iova_domain *iovad = from_timer(iovad, t, fq_timer); 614 int cpu; 615 616 atomic_set(&iovad->fq_timer_on, 0); 617 iova_domain_flush(iovad); 618 619 for_each_possible_cpu(cpu) { 620 unsigned long flags; 621 struct iova_fq *fq; 622 623 fq = per_cpu_ptr(iovad->fq, cpu); 624 spin_lock_irqsave(&fq->lock, flags); 625 fq_ring_free(iovad, fq); 626 spin_unlock_irqrestore(&fq->lock, flags); 627 } 628 } 629 630 void queue_iova(struct iova_domain *iovad, 631 unsigned long pfn, unsigned long pages, 632 unsigned long data) 633 { 634 struct iova_fq *fq; 635 unsigned long flags; 636 unsigned idx; 637 638 /* 639 * Order against the IOMMU driver's pagetable update from unmapping 640 * @pte, to guarantee that iova_domain_flush() observes that if called 641 * from a different CPU before we release the lock below. Full barrier 642 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially 643 * written fq state here. 644 */ 645 smp_mb(); 646 647 fq = raw_cpu_ptr(iovad->fq); 648 spin_lock_irqsave(&fq->lock, flags); 649 650 /* 651 * First remove all entries from the flush queue that have already been 652 * flushed out on another CPU. This makes the fq_full() check below less 653 * likely to be true. 654 */ 655 fq_ring_free(iovad, fq); 656 657 if (fq_full(fq)) { 658 iova_domain_flush(iovad); 659 fq_ring_free(iovad, fq); 660 } 661 662 idx = fq_ring_add(fq); 663 664 fq->entries[idx].iova_pfn = pfn; 665 fq->entries[idx].pages = pages; 666 fq->entries[idx].data = data; 667 fq->entries[idx].counter = atomic64_read(&iovad->fq_flush_start_cnt); 668 669 spin_unlock_irqrestore(&fq->lock, flags); 670 671 /* Avoid false sharing as much as possible. */ 672 if (!atomic_read(&iovad->fq_timer_on) && 673 !atomic_xchg(&iovad->fq_timer_on, 1)) 674 mod_timer(&iovad->fq_timer, 675 jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT)); 676 } 677 678 /** 679 * put_iova_domain - destroys the iova domain 680 * @iovad: - iova domain in question. 681 * All the iova's in that domain are destroyed. 682 */ 683 void put_iova_domain(struct iova_domain *iovad) 684 { 685 struct iova *iova, *tmp; 686 687 cpuhp_state_remove_instance_nocalls(CPUHP_IOMMU_IOVA_DEAD, 688 &iovad->cpuhp_dead); 689 690 free_iova_flush_queue(iovad); 691 free_iova_rcaches(iovad); 692 rbtree_postorder_for_each_entry_safe(iova, tmp, &iovad->rbroot, node) 693 free_iova_mem(iova); 694 } 695 EXPORT_SYMBOL_GPL(put_iova_domain); 696 697 static int 698 __is_range_overlap(struct rb_node *node, 699 unsigned long pfn_lo, unsigned long pfn_hi) 700 { 701 struct iova *iova = to_iova(node); 702 703 if ((pfn_lo <= iova->pfn_hi) && (pfn_hi >= iova->pfn_lo)) 704 return 1; 705 return 0; 706 } 707 708 static inline struct iova * 709 alloc_and_init_iova(unsigned long pfn_lo, unsigned long pfn_hi) 710 { 711 struct iova *iova; 712 713 iova = alloc_iova_mem(); 714 if (iova) { 715 iova->pfn_lo = pfn_lo; 716 iova->pfn_hi = pfn_hi; 717 } 718 719 return iova; 720 } 721 722 static struct iova * 723 __insert_new_range(struct iova_domain *iovad, 724 unsigned long pfn_lo, unsigned long pfn_hi) 725 { 726 struct iova *iova; 727 728 iova = alloc_and_init_iova(pfn_lo, pfn_hi); 729 if (iova) 730 iova_insert_rbtree(&iovad->rbroot, iova, NULL); 731 732 return iova; 733 } 734 735 static void 736 __adjust_overlap_range(struct iova *iova, 737 unsigned long *pfn_lo, unsigned long *pfn_hi) 738 { 739 if (*pfn_lo < iova->pfn_lo) 740 iova->pfn_lo = *pfn_lo; 741 if (*pfn_hi > iova->pfn_hi) 742 *pfn_lo = iova->pfn_hi + 1; 743 } 744 745 /** 746 * reserve_iova - reserves an iova in the given range 747 * @iovad: - iova domain pointer 748 * @pfn_lo: - lower page frame address 749 * @pfn_hi:- higher pfn adderss 750 * This function allocates reserves the address range from pfn_lo to pfn_hi so 751 * that this address is not dished out as part of alloc_iova. 752 */ 753 struct iova * 754 reserve_iova(struct iova_domain *iovad, 755 unsigned long pfn_lo, unsigned long pfn_hi) 756 { 757 struct rb_node *node; 758 unsigned long flags; 759 struct iova *iova; 760 unsigned int overlap = 0; 761 762 /* Don't allow nonsensical pfns */ 763 if (WARN_ON((pfn_hi | pfn_lo) > (ULLONG_MAX >> iova_shift(iovad)))) 764 return NULL; 765 766 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 767 for (node = rb_first(&iovad->rbroot); node; node = rb_next(node)) { 768 if (__is_range_overlap(node, pfn_lo, pfn_hi)) { 769 iova = to_iova(node); 770 __adjust_overlap_range(iova, &pfn_lo, &pfn_hi); 771 if ((pfn_lo >= iova->pfn_lo) && 772 (pfn_hi <= iova->pfn_hi)) 773 goto finish; 774 overlap = 1; 775 776 } else if (overlap) 777 break; 778 } 779 780 /* We are here either because this is the first reserver node 781 * or need to insert remaining non overlap addr range 782 */ 783 iova = __insert_new_range(iovad, pfn_lo, pfn_hi); 784 finish: 785 786 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 787 return iova; 788 } 789 EXPORT_SYMBOL_GPL(reserve_iova); 790 791 /* 792 * Magazine caches for IOVA ranges. For an introduction to magazines, 793 * see the USENIX 2001 paper "Magazines and Vmem: Extending the Slab 794 * Allocator to Many CPUs and Arbitrary Resources" by Bonwick and Adams. 795 * For simplicity, we use a static magazine size and don't implement the 796 * dynamic size tuning described in the paper. 797 */ 798 799 #define IOVA_MAG_SIZE 128 800 801 struct iova_magazine { 802 unsigned long size; 803 unsigned long pfns[IOVA_MAG_SIZE]; 804 }; 805 806 struct iova_cpu_rcache { 807 spinlock_t lock; 808 struct iova_magazine *loaded; 809 struct iova_magazine *prev; 810 }; 811 812 static struct iova_magazine *iova_magazine_alloc(gfp_t flags) 813 { 814 return kzalloc(sizeof(struct iova_magazine), flags); 815 } 816 817 static void iova_magazine_free(struct iova_magazine *mag) 818 { 819 kfree(mag); 820 } 821 822 static void 823 iova_magazine_free_pfns(struct iova_magazine *mag, struct iova_domain *iovad) 824 { 825 unsigned long flags; 826 int i; 827 828 if (!mag) 829 return; 830 831 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 832 833 for (i = 0 ; i < mag->size; ++i) { 834 struct iova *iova = private_find_iova(iovad, mag->pfns[i]); 835 836 if (WARN_ON(!iova)) 837 continue; 838 839 remove_iova(iovad, iova); 840 free_iova_mem(iova); 841 } 842 843 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 844 845 mag->size = 0; 846 } 847 848 static bool iova_magazine_full(struct iova_magazine *mag) 849 { 850 return (mag && mag->size == IOVA_MAG_SIZE); 851 } 852 853 static bool iova_magazine_empty(struct iova_magazine *mag) 854 { 855 return (!mag || mag->size == 0); 856 } 857 858 static unsigned long iova_magazine_pop(struct iova_magazine *mag, 859 unsigned long limit_pfn) 860 { 861 int i; 862 unsigned long pfn; 863 864 BUG_ON(iova_magazine_empty(mag)); 865 866 /* Only fall back to the rbtree if we have no suitable pfns at all */ 867 for (i = mag->size - 1; mag->pfns[i] > limit_pfn; i--) 868 if (i == 0) 869 return 0; 870 871 /* Swap it to pop it */ 872 pfn = mag->pfns[i]; 873 mag->pfns[i] = mag->pfns[--mag->size]; 874 875 return pfn; 876 } 877 878 static void iova_magazine_push(struct iova_magazine *mag, unsigned long pfn) 879 { 880 BUG_ON(iova_magazine_full(mag)); 881 882 mag->pfns[mag->size++] = pfn; 883 } 884 885 static void init_iova_rcaches(struct iova_domain *iovad) 886 { 887 struct iova_cpu_rcache *cpu_rcache; 888 struct iova_rcache *rcache; 889 unsigned int cpu; 890 int i; 891 892 for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 893 rcache = &iovad->rcaches[i]; 894 spin_lock_init(&rcache->lock); 895 rcache->depot_size = 0; 896 rcache->cpu_rcaches = __alloc_percpu(sizeof(*cpu_rcache), cache_line_size()); 897 if (WARN_ON(!rcache->cpu_rcaches)) 898 continue; 899 for_each_possible_cpu(cpu) { 900 cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu); 901 spin_lock_init(&cpu_rcache->lock); 902 cpu_rcache->loaded = iova_magazine_alloc(GFP_KERNEL); 903 cpu_rcache->prev = iova_magazine_alloc(GFP_KERNEL); 904 } 905 } 906 } 907 908 /* 909 * Try inserting IOVA range starting with 'iova_pfn' into 'rcache', and 910 * return true on success. Can fail if rcache is full and we can't free 911 * space, and free_iova() (our only caller) will then return the IOVA 912 * range to the rbtree instead. 913 */ 914 static bool __iova_rcache_insert(struct iova_domain *iovad, 915 struct iova_rcache *rcache, 916 unsigned long iova_pfn) 917 { 918 struct iova_magazine *mag_to_free = NULL; 919 struct iova_cpu_rcache *cpu_rcache; 920 bool can_insert = false; 921 unsigned long flags; 922 923 cpu_rcache = raw_cpu_ptr(rcache->cpu_rcaches); 924 spin_lock_irqsave(&cpu_rcache->lock, flags); 925 926 if (!iova_magazine_full(cpu_rcache->loaded)) { 927 can_insert = true; 928 } else if (!iova_magazine_full(cpu_rcache->prev)) { 929 swap(cpu_rcache->prev, cpu_rcache->loaded); 930 can_insert = true; 931 } else { 932 struct iova_magazine *new_mag = iova_magazine_alloc(GFP_ATOMIC); 933 934 if (new_mag) { 935 spin_lock(&rcache->lock); 936 if (rcache->depot_size < MAX_GLOBAL_MAGS) { 937 rcache->depot[rcache->depot_size++] = 938 cpu_rcache->loaded; 939 } else { 940 mag_to_free = cpu_rcache->loaded; 941 } 942 spin_unlock(&rcache->lock); 943 944 cpu_rcache->loaded = new_mag; 945 can_insert = true; 946 } 947 } 948 949 if (can_insert) 950 iova_magazine_push(cpu_rcache->loaded, iova_pfn); 951 952 spin_unlock_irqrestore(&cpu_rcache->lock, flags); 953 954 if (mag_to_free) { 955 iova_magazine_free_pfns(mag_to_free, iovad); 956 iova_magazine_free(mag_to_free); 957 } 958 959 return can_insert; 960 } 961 962 static bool iova_rcache_insert(struct iova_domain *iovad, unsigned long pfn, 963 unsigned long size) 964 { 965 unsigned int log_size = order_base_2(size); 966 967 if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE) 968 return false; 969 970 return __iova_rcache_insert(iovad, &iovad->rcaches[log_size], pfn); 971 } 972 973 /* 974 * Caller wants to allocate a new IOVA range from 'rcache'. If we can 975 * satisfy the request, return a matching non-NULL range and remove 976 * it from the 'rcache'. 977 */ 978 static unsigned long __iova_rcache_get(struct iova_rcache *rcache, 979 unsigned long limit_pfn) 980 { 981 struct iova_cpu_rcache *cpu_rcache; 982 unsigned long iova_pfn = 0; 983 bool has_pfn = false; 984 unsigned long flags; 985 986 cpu_rcache = raw_cpu_ptr(rcache->cpu_rcaches); 987 spin_lock_irqsave(&cpu_rcache->lock, flags); 988 989 if (!iova_magazine_empty(cpu_rcache->loaded)) { 990 has_pfn = true; 991 } else if (!iova_magazine_empty(cpu_rcache->prev)) { 992 swap(cpu_rcache->prev, cpu_rcache->loaded); 993 has_pfn = true; 994 } else { 995 spin_lock(&rcache->lock); 996 if (rcache->depot_size > 0) { 997 iova_magazine_free(cpu_rcache->loaded); 998 cpu_rcache->loaded = rcache->depot[--rcache->depot_size]; 999 has_pfn = true; 1000 } 1001 spin_unlock(&rcache->lock); 1002 } 1003 1004 if (has_pfn) 1005 iova_pfn = iova_magazine_pop(cpu_rcache->loaded, limit_pfn); 1006 1007 spin_unlock_irqrestore(&cpu_rcache->lock, flags); 1008 1009 return iova_pfn; 1010 } 1011 1012 /* 1013 * Try to satisfy IOVA allocation range from rcache. Fail if requested 1014 * size is too big or the DMA limit we are given isn't satisfied by the 1015 * top element in the magazine. 1016 */ 1017 static unsigned long iova_rcache_get(struct iova_domain *iovad, 1018 unsigned long size, 1019 unsigned long limit_pfn) 1020 { 1021 unsigned int log_size = order_base_2(size); 1022 1023 if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE) 1024 return 0; 1025 1026 return __iova_rcache_get(&iovad->rcaches[log_size], limit_pfn - size); 1027 } 1028 1029 /* 1030 * free rcache data structures. 1031 */ 1032 static void free_iova_rcaches(struct iova_domain *iovad) 1033 { 1034 struct iova_rcache *rcache; 1035 struct iova_cpu_rcache *cpu_rcache; 1036 unsigned int cpu; 1037 int i, j; 1038 1039 for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 1040 rcache = &iovad->rcaches[i]; 1041 for_each_possible_cpu(cpu) { 1042 cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu); 1043 iova_magazine_free(cpu_rcache->loaded); 1044 iova_magazine_free(cpu_rcache->prev); 1045 } 1046 free_percpu(rcache->cpu_rcaches); 1047 for (j = 0; j < rcache->depot_size; ++j) 1048 iova_magazine_free(rcache->depot[j]); 1049 } 1050 } 1051 1052 /* 1053 * free all the IOVA ranges cached by a cpu (used when cpu is unplugged) 1054 */ 1055 static void free_cpu_cached_iovas(unsigned int cpu, struct iova_domain *iovad) 1056 { 1057 struct iova_cpu_rcache *cpu_rcache; 1058 struct iova_rcache *rcache; 1059 unsigned long flags; 1060 int i; 1061 1062 for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 1063 rcache = &iovad->rcaches[i]; 1064 cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu); 1065 spin_lock_irqsave(&cpu_rcache->lock, flags); 1066 iova_magazine_free_pfns(cpu_rcache->loaded, iovad); 1067 iova_magazine_free_pfns(cpu_rcache->prev, iovad); 1068 spin_unlock_irqrestore(&cpu_rcache->lock, flags); 1069 } 1070 } 1071 1072 /* 1073 * free all the IOVA ranges of global cache 1074 */ 1075 static void free_global_cached_iovas(struct iova_domain *iovad) 1076 { 1077 struct iova_rcache *rcache; 1078 unsigned long flags; 1079 int i, j; 1080 1081 for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 1082 rcache = &iovad->rcaches[i]; 1083 spin_lock_irqsave(&rcache->lock, flags); 1084 for (j = 0; j < rcache->depot_size; ++j) { 1085 iova_magazine_free_pfns(rcache->depot[j], iovad); 1086 iova_magazine_free(rcache->depot[j]); 1087 } 1088 rcache->depot_size = 0; 1089 spin_unlock_irqrestore(&rcache->lock, flags); 1090 } 1091 } 1092 MODULE_AUTHOR("Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>"); 1093 MODULE_LICENSE("GPL"); 1094