1 /* 2 * Copyright © 2006-2009, Intel Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 15 * Place - Suite 330, Boston, MA 02111-1307 USA. 16 * 17 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 18 */ 19 20 #include <linux/iova.h> 21 #include <linux/module.h> 22 #include <linux/slab.h> 23 #include <linux/smp.h> 24 #include <linux/bitops.h> 25 26 static bool iova_rcache_insert(struct iova_domain *iovad, 27 unsigned long pfn, 28 unsigned long size); 29 static unsigned long iova_rcache_get(struct iova_domain *iovad, 30 unsigned long size, 31 unsigned long limit_pfn); 32 static void init_iova_rcaches(struct iova_domain *iovad); 33 static void free_iova_rcaches(struct iova_domain *iovad); 34 35 void 36 init_iova_domain(struct iova_domain *iovad, unsigned long granule, 37 unsigned long start_pfn, unsigned long pfn_32bit) 38 { 39 /* 40 * IOVA granularity will normally be equal to the smallest 41 * supported IOMMU page size; both *must* be capable of 42 * representing individual CPU pages exactly. 43 */ 44 BUG_ON((granule > PAGE_SIZE) || !is_power_of_2(granule)); 45 46 spin_lock_init(&iovad->iova_rbtree_lock); 47 iovad->rbroot = RB_ROOT; 48 iovad->cached32_node = NULL; 49 iovad->granule = granule; 50 iovad->start_pfn = start_pfn; 51 iovad->dma_32bit_pfn = pfn_32bit; 52 init_iova_rcaches(iovad); 53 } 54 EXPORT_SYMBOL_GPL(init_iova_domain); 55 56 static struct rb_node * 57 __get_cached_rbnode(struct iova_domain *iovad, unsigned long *limit_pfn) 58 { 59 if ((*limit_pfn > iovad->dma_32bit_pfn) || 60 (iovad->cached32_node == NULL)) 61 return rb_last(&iovad->rbroot); 62 else { 63 struct rb_node *prev_node = rb_prev(iovad->cached32_node); 64 struct iova *curr_iova = 65 rb_entry(iovad->cached32_node, struct iova, node); 66 *limit_pfn = curr_iova->pfn_lo - 1; 67 return prev_node; 68 } 69 } 70 71 static void 72 __cached_rbnode_insert_update(struct iova_domain *iovad, 73 unsigned long limit_pfn, struct iova *new) 74 { 75 if (limit_pfn != iovad->dma_32bit_pfn) 76 return; 77 iovad->cached32_node = &new->node; 78 } 79 80 static void 81 __cached_rbnode_delete_update(struct iova_domain *iovad, struct iova *free) 82 { 83 struct iova *cached_iova; 84 struct rb_node *curr; 85 86 if (!iovad->cached32_node) 87 return; 88 curr = iovad->cached32_node; 89 cached_iova = rb_entry(curr, struct iova, node); 90 91 if (free->pfn_lo >= cached_iova->pfn_lo) { 92 struct rb_node *node = rb_next(&free->node); 93 struct iova *iova = rb_entry(node, struct iova, node); 94 95 /* only cache if it's below 32bit pfn */ 96 if (node && iova->pfn_lo < iovad->dma_32bit_pfn) 97 iovad->cached32_node = node; 98 else 99 iovad->cached32_node = NULL; 100 } 101 } 102 103 /* 104 * Computes the padding size required, to make the start address 105 * naturally aligned on the power-of-two order of its size 106 */ 107 static unsigned int 108 iova_get_pad_size(unsigned int size, unsigned int limit_pfn) 109 { 110 return (limit_pfn + 1 - size) & (__roundup_pow_of_two(size) - 1); 111 } 112 113 static int __alloc_and_insert_iova_range(struct iova_domain *iovad, 114 unsigned long size, unsigned long limit_pfn, 115 struct iova *new, bool size_aligned) 116 { 117 struct rb_node *prev, *curr = NULL; 118 unsigned long flags; 119 unsigned long saved_pfn; 120 unsigned int pad_size = 0; 121 122 /* Walk the tree backwards */ 123 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 124 saved_pfn = limit_pfn; 125 curr = __get_cached_rbnode(iovad, &limit_pfn); 126 prev = curr; 127 while (curr) { 128 struct iova *curr_iova = rb_entry(curr, struct iova, node); 129 130 if (limit_pfn < curr_iova->pfn_lo) 131 goto move_left; 132 else if (limit_pfn < curr_iova->pfn_hi) 133 goto adjust_limit_pfn; 134 else { 135 if (size_aligned) 136 pad_size = iova_get_pad_size(size, limit_pfn); 137 if ((curr_iova->pfn_hi + size + pad_size) <= limit_pfn) 138 break; /* found a free slot */ 139 } 140 adjust_limit_pfn: 141 limit_pfn = curr_iova->pfn_lo - 1; 142 move_left: 143 prev = curr; 144 curr = rb_prev(curr); 145 } 146 147 if (!curr) { 148 if (size_aligned) 149 pad_size = iova_get_pad_size(size, limit_pfn); 150 if ((iovad->start_pfn + size + pad_size) > limit_pfn) { 151 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 152 return -ENOMEM; 153 } 154 } 155 156 /* pfn_lo will point to size aligned address if size_aligned is set */ 157 new->pfn_lo = limit_pfn - (size + pad_size) + 1; 158 new->pfn_hi = new->pfn_lo + size - 1; 159 160 /* Insert the new_iova into domain rbtree by holding writer lock */ 161 /* Add new node and rebalance tree. */ 162 { 163 struct rb_node **entry, *parent = NULL; 164 165 /* If we have 'prev', it's a valid place to start the 166 insertion. Otherwise, start from the root. */ 167 if (prev) 168 entry = &prev; 169 else 170 entry = &iovad->rbroot.rb_node; 171 172 /* Figure out where to put new node */ 173 while (*entry) { 174 struct iova *this = rb_entry(*entry, struct iova, node); 175 parent = *entry; 176 177 if (new->pfn_lo < this->pfn_lo) 178 entry = &((*entry)->rb_left); 179 else if (new->pfn_lo > this->pfn_lo) 180 entry = &((*entry)->rb_right); 181 else 182 BUG(); /* this should not happen */ 183 } 184 185 /* Add new node and rebalance tree. */ 186 rb_link_node(&new->node, parent, entry); 187 rb_insert_color(&new->node, &iovad->rbroot); 188 } 189 __cached_rbnode_insert_update(iovad, saved_pfn, new); 190 191 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 192 193 194 return 0; 195 } 196 197 static void 198 iova_insert_rbtree(struct rb_root *root, struct iova *iova) 199 { 200 struct rb_node **new = &(root->rb_node), *parent = NULL; 201 /* Figure out where to put new node */ 202 while (*new) { 203 struct iova *this = rb_entry(*new, struct iova, node); 204 205 parent = *new; 206 207 if (iova->pfn_lo < this->pfn_lo) 208 new = &((*new)->rb_left); 209 else if (iova->pfn_lo > this->pfn_lo) 210 new = &((*new)->rb_right); 211 else 212 BUG(); /* this should not happen */ 213 } 214 /* Add new node and rebalance tree. */ 215 rb_link_node(&iova->node, parent, new); 216 rb_insert_color(&iova->node, root); 217 } 218 219 static struct kmem_cache *iova_cache; 220 static unsigned int iova_cache_users; 221 static DEFINE_MUTEX(iova_cache_mutex); 222 223 struct iova *alloc_iova_mem(void) 224 { 225 return kmem_cache_alloc(iova_cache, GFP_ATOMIC); 226 } 227 EXPORT_SYMBOL(alloc_iova_mem); 228 229 void free_iova_mem(struct iova *iova) 230 { 231 kmem_cache_free(iova_cache, iova); 232 } 233 EXPORT_SYMBOL(free_iova_mem); 234 235 int iova_cache_get(void) 236 { 237 mutex_lock(&iova_cache_mutex); 238 if (!iova_cache_users) { 239 iova_cache = kmem_cache_create( 240 "iommu_iova", sizeof(struct iova), 0, 241 SLAB_HWCACHE_ALIGN, NULL); 242 if (!iova_cache) { 243 mutex_unlock(&iova_cache_mutex); 244 printk(KERN_ERR "Couldn't create iova cache\n"); 245 return -ENOMEM; 246 } 247 } 248 249 iova_cache_users++; 250 mutex_unlock(&iova_cache_mutex); 251 252 return 0; 253 } 254 EXPORT_SYMBOL_GPL(iova_cache_get); 255 256 void iova_cache_put(void) 257 { 258 mutex_lock(&iova_cache_mutex); 259 if (WARN_ON(!iova_cache_users)) { 260 mutex_unlock(&iova_cache_mutex); 261 return; 262 } 263 iova_cache_users--; 264 if (!iova_cache_users) 265 kmem_cache_destroy(iova_cache); 266 mutex_unlock(&iova_cache_mutex); 267 } 268 EXPORT_SYMBOL_GPL(iova_cache_put); 269 270 /** 271 * alloc_iova - allocates an iova 272 * @iovad: - iova domain in question 273 * @size: - size of page frames to allocate 274 * @limit_pfn: - max limit address 275 * @size_aligned: - set if size_aligned address range is required 276 * This function allocates an iova in the range iovad->start_pfn to limit_pfn, 277 * searching top-down from limit_pfn to iovad->start_pfn. If the size_aligned 278 * flag is set then the allocated address iova->pfn_lo will be naturally 279 * aligned on roundup_power_of_two(size). 280 */ 281 struct iova * 282 alloc_iova(struct iova_domain *iovad, unsigned long size, 283 unsigned long limit_pfn, 284 bool size_aligned) 285 { 286 struct iova *new_iova; 287 int ret; 288 289 new_iova = alloc_iova_mem(); 290 if (!new_iova) 291 return NULL; 292 293 ret = __alloc_and_insert_iova_range(iovad, size, limit_pfn, 294 new_iova, size_aligned); 295 296 if (ret) { 297 free_iova_mem(new_iova); 298 return NULL; 299 } 300 301 return new_iova; 302 } 303 EXPORT_SYMBOL_GPL(alloc_iova); 304 305 static struct iova * 306 private_find_iova(struct iova_domain *iovad, unsigned long pfn) 307 { 308 struct rb_node *node = iovad->rbroot.rb_node; 309 310 assert_spin_locked(&iovad->iova_rbtree_lock); 311 312 while (node) { 313 struct iova *iova = rb_entry(node, struct iova, node); 314 315 /* If pfn falls within iova's range, return iova */ 316 if ((pfn >= iova->pfn_lo) && (pfn <= iova->pfn_hi)) { 317 return iova; 318 } 319 320 if (pfn < iova->pfn_lo) 321 node = node->rb_left; 322 else if (pfn > iova->pfn_lo) 323 node = node->rb_right; 324 } 325 326 return NULL; 327 } 328 329 static void private_free_iova(struct iova_domain *iovad, struct iova *iova) 330 { 331 assert_spin_locked(&iovad->iova_rbtree_lock); 332 __cached_rbnode_delete_update(iovad, iova); 333 rb_erase(&iova->node, &iovad->rbroot); 334 free_iova_mem(iova); 335 } 336 337 /** 338 * find_iova - finds an iova for a given pfn 339 * @iovad: - iova domain in question. 340 * @pfn: - page frame number 341 * This function finds and returns an iova belonging to the 342 * given doamin which matches the given pfn. 343 */ 344 struct iova *find_iova(struct iova_domain *iovad, unsigned long pfn) 345 { 346 unsigned long flags; 347 struct iova *iova; 348 349 /* Take the lock so that no other thread is manipulating the rbtree */ 350 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 351 iova = private_find_iova(iovad, pfn); 352 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 353 return iova; 354 } 355 EXPORT_SYMBOL_GPL(find_iova); 356 357 /** 358 * __free_iova - frees the given iova 359 * @iovad: iova domain in question. 360 * @iova: iova in question. 361 * Frees the given iova belonging to the giving domain 362 */ 363 void 364 __free_iova(struct iova_domain *iovad, struct iova *iova) 365 { 366 unsigned long flags; 367 368 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 369 private_free_iova(iovad, iova); 370 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 371 } 372 EXPORT_SYMBOL_GPL(__free_iova); 373 374 /** 375 * free_iova - finds and frees the iova for a given pfn 376 * @iovad: - iova domain in question. 377 * @pfn: - pfn that is allocated previously 378 * This functions finds an iova for a given pfn and then 379 * frees the iova from that domain. 380 */ 381 void 382 free_iova(struct iova_domain *iovad, unsigned long pfn) 383 { 384 struct iova *iova = find_iova(iovad, pfn); 385 386 if (iova) 387 __free_iova(iovad, iova); 388 389 } 390 EXPORT_SYMBOL_GPL(free_iova); 391 392 /** 393 * alloc_iova_fast - allocates an iova from rcache 394 * @iovad: - iova domain in question 395 * @size: - size of page frames to allocate 396 * @limit_pfn: - max limit address 397 * This function tries to satisfy an iova allocation from the rcache, 398 * and falls back to regular allocation on failure. 399 */ 400 unsigned long 401 alloc_iova_fast(struct iova_domain *iovad, unsigned long size, 402 unsigned long limit_pfn) 403 { 404 bool flushed_rcache = false; 405 unsigned long iova_pfn; 406 struct iova *new_iova; 407 408 iova_pfn = iova_rcache_get(iovad, size, limit_pfn); 409 if (iova_pfn) 410 return iova_pfn; 411 412 retry: 413 new_iova = alloc_iova(iovad, size, limit_pfn, true); 414 if (!new_iova) { 415 unsigned int cpu; 416 417 if (flushed_rcache) 418 return 0; 419 420 /* Try replenishing IOVAs by flushing rcache. */ 421 flushed_rcache = true; 422 preempt_disable(); 423 for_each_online_cpu(cpu) 424 free_cpu_cached_iovas(cpu, iovad); 425 preempt_enable(); 426 goto retry; 427 } 428 429 return new_iova->pfn_lo; 430 } 431 EXPORT_SYMBOL_GPL(alloc_iova_fast); 432 433 /** 434 * free_iova_fast - free iova pfn range into rcache 435 * @iovad: - iova domain in question. 436 * @pfn: - pfn that is allocated previously 437 * @size: - # of pages in range 438 * This functions frees an iova range by trying to put it into the rcache, 439 * falling back to regular iova deallocation via free_iova() if this fails. 440 */ 441 void 442 free_iova_fast(struct iova_domain *iovad, unsigned long pfn, unsigned long size) 443 { 444 if (iova_rcache_insert(iovad, pfn, size)) 445 return; 446 447 free_iova(iovad, pfn); 448 } 449 EXPORT_SYMBOL_GPL(free_iova_fast); 450 451 /** 452 * put_iova_domain - destroys the iova doamin 453 * @iovad: - iova domain in question. 454 * All the iova's in that domain are destroyed. 455 */ 456 void put_iova_domain(struct iova_domain *iovad) 457 { 458 struct rb_node *node; 459 unsigned long flags; 460 461 free_iova_rcaches(iovad); 462 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 463 node = rb_first(&iovad->rbroot); 464 while (node) { 465 struct iova *iova = rb_entry(node, struct iova, node); 466 467 rb_erase(node, &iovad->rbroot); 468 free_iova_mem(iova); 469 node = rb_first(&iovad->rbroot); 470 } 471 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 472 } 473 EXPORT_SYMBOL_GPL(put_iova_domain); 474 475 static int 476 __is_range_overlap(struct rb_node *node, 477 unsigned long pfn_lo, unsigned long pfn_hi) 478 { 479 struct iova *iova = rb_entry(node, struct iova, node); 480 481 if ((pfn_lo <= iova->pfn_hi) && (pfn_hi >= iova->pfn_lo)) 482 return 1; 483 return 0; 484 } 485 486 static inline struct iova * 487 alloc_and_init_iova(unsigned long pfn_lo, unsigned long pfn_hi) 488 { 489 struct iova *iova; 490 491 iova = alloc_iova_mem(); 492 if (iova) { 493 iova->pfn_lo = pfn_lo; 494 iova->pfn_hi = pfn_hi; 495 } 496 497 return iova; 498 } 499 500 static struct iova * 501 __insert_new_range(struct iova_domain *iovad, 502 unsigned long pfn_lo, unsigned long pfn_hi) 503 { 504 struct iova *iova; 505 506 iova = alloc_and_init_iova(pfn_lo, pfn_hi); 507 if (iova) 508 iova_insert_rbtree(&iovad->rbroot, iova); 509 510 return iova; 511 } 512 513 static void 514 __adjust_overlap_range(struct iova *iova, 515 unsigned long *pfn_lo, unsigned long *pfn_hi) 516 { 517 if (*pfn_lo < iova->pfn_lo) 518 iova->pfn_lo = *pfn_lo; 519 if (*pfn_hi > iova->pfn_hi) 520 *pfn_lo = iova->pfn_hi + 1; 521 } 522 523 /** 524 * reserve_iova - reserves an iova in the given range 525 * @iovad: - iova domain pointer 526 * @pfn_lo: - lower page frame address 527 * @pfn_hi:- higher pfn adderss 528 * This function allocates reserves the address range from pfn_lo to pfn_hi so 529 * that this address is not dished out as part of alloc_iova. 530 */ 531 struct iova * 532 reserve_iova(struct iova_domain *iovad, 533 unsigned long pfn_lo, unsigned long pfn_hi) 534 { 535 struct rb_node *node; 536 unsigned long flags; 537 struct iova *iova; 538 unsigned int overlap = 0; 539 540 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 541 for (node = rb_first(&iovad->rbroot); node; node = rb_next(node)) { 542 if (__is_range_overlap(node, pfn_lo, pfn_hi)) { 543 iova = rb_entry(node, struct iova, node); 544 __adjust_overlap_range(iova, &pfn_lo, &pfn_hi); 545 if ((pfn_lo >= iova->pfn_lo) && 546 (pfn_hi <= iova->pfn_hi)) 547 goto finish; 548 overlap = 1; 549 550 } else if (overlap) 551 break; 552 } 553 554 /* We are here either because this is the first reserver node 555 * or need to insert remaining non overlap addr range 556 */ 557 iova = __insert_new_range(iovad, pfn_lo, pfn_hi); 558 finish: 559 560 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 561 return iova; 562 } 563 EXPORT_SYMBOL_GPL(reserve_iova); 564 565 /** 566 * copy_reserved_iova - copies the reserved between domains 567 * @from: - source doamin from where to copy 568 * @to: - destination domin where to copy 569 * This function copies reserved iova's from one doamin to 570 * other. 571 */ 572 void 573 copy_reserved_iova(struct iova_domain *from, struct iova_domain *to) 574 { 575 unsigned long flags; 576 struct rb_node *node; 577 578 spin_lock_irqsave(&from->iova_rbtree_lock, flags); 579 for (node = rb_first(&from->rbroot); node; node = rb_next(node)) { 580 struct iova *iova = rb_entry(node, struct iova, node); 581 struct iova *new_iova; 582 583 new_iova = reserve_iova(to, iova->pfn_lo, iova->pfn_hi); 584 if (!new_iova) 585 printk(KERN_ERR "Reserve iova range %lx@%lx failed\n", 586 iova->pfn_lo, iova->pfn_lo); 587 } 588 spin_unlock_irqrestore(&from->iova_rbtree_lock, flags); 589 } 590 EXPORT_SYMBOL_GPL(copy_reserved_iova); 591 592 struct iova * 593 split_and_remove_iova(struct iova_domain *iovad, struct iova *iova, 594 unsigned long pfn_lo, unsigned long pfn_hi) 595 { 596 unsigned long flags; 597 struct iova *prev = NULL, *next = NULL; 598 599 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 600 if (iova->pfn_lo < pfn_lo) { 601 prev = alloc_and_init_iova(iova->pfn_lo, pfn_lo - 1); 602 if (prev == NULL) 603 goto error; 604 } 605 if (iova->pfn_hi > pfn_hi) { 606 next = alloc_and_init_iova(pfn_hi + 1, iova->pfn_hi); 607 if (next == NULL) 608 goto error; 609 } 610 611 __cached_rbnode_delete_update(iovad, iova); 612 rb_erase(&iova->node, &iovad->rbroot); 613 614 if (prev) { 615 iova_insert_rbtree(&iovad->rbroot, prev); 616 iova->pfn_lo = pfn_lo; 617 } 618 if (next) { 619 iova_insert_rbtree(&iovad->rbroot, next); 620 iova->pfn_hi = pfn_hi; 621 } 622 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 623 624 return iova; 625 626 error: 627 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 628 if (prev) 629 free_iova_mem(prev); 630 return NULL; 631 } 632 633 /* 634 * Magazine caches for IOVA ranges. For an introduction to magazines, 635 * see the USENIX 2001 paper "Magazines and Vmem: Extending the Slab 636 * Allocator to Many CPUs and Arbitrary Resources" by Bonwick and Adams. 637 * For simplicity, we use a static magazine size and don't implement the 638 * dynamic size tuning described in the paper. 639 */ 640 641 #define IOVA_MAG_SIZE 128 642 643 struct iova_magazine { 644 unsigned long size; 645 unsigned long pfns[IOVA_MAG_SIZE]; 646 }; 647 648 struct iova_cpu_rcache { 649 spinlock_t lock; 650 struct iova_magazine *loaded; 651 struct iova_magazine *prev; 652 }; 653 654 static struct iova_magazine *iova_magazine_alloc(gfp_t flags) 655 { 656 return kzalloc(sizeof(struct iova_magazine), flags); 657 } 658 659 static void iova_magazine_free(struct iova_magazine *mag) 660 { 661 kfree(mag); 662 } 663 664 static void 665 iova_magazine_free_pfns(struct iova_magazine *mag, struct iova_domain *iovad) 666 { 667 unsigned long flags; 668 int i; 669 670 if (!mag) 671 return; 672 673 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 674 675 for (i = 0 ; i < mag->size; ++i) { 676 struct iova *iova = private_find_iova(iovad, mag->pfns[i]); 677 678 BUG_ON(!iova); 679 private_free_iova(iovad, iova); 680 } 681 682 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 683 684 mag->size = 0; 685 } 686 687 static bool iova_magazine_full(struct iova_magazine *mag) 688 { 689 return (mag && mag->size == IOVA_MAG_SIZE); 690 } 691 692 static bool iova_magazine_empty(struct iova_magazine *mag) 693 { 694 return (!mag || mag->size == 0); 695 } 696 697 static unsigned long iova_magazine_pop(struct iova_magazine *mag, 698 unsigned long limit_pfn) 699 { 700 BUG_ON(iova_magazine_empty(mag)); 701 702 if (mag->pfns[mag->size - 1] >= limit_pfn) 703 return 0; 704 705 return mag->pfns[--mag->size]; 706 } 707 708 static void iova_magazine_push(struct iova_magazine *mag, unsigned long pfn) 709 { 710 BUG_ON(iova_magazine_full(mag)); 711 712 mag->pfns[mag->size++] = pfn; 713 } 714 715 static void init_iova_rcaches(struct iova_domain *iovad) 716 { 717 struct iova_cpu_rcache *cpu_rcache; 718 struct iova_rcache *rcache; 719 unsigned int cpu; 720 int i; 721 722 for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 723 rcache = &iovad->rcaches[i]; 724 spin_lock_init(&rcache->lock); 725 rcache->depot_size = 0; 726 rcache->cpu_rcaches = __alloc_percpu(sizeof(*cpu_rcache), cache_line_size()); 727 if (WARN_ON(!rcache->cpu_rcaches)) 728 continue; 729 for_each_possible_cpu(cpu) { 730 cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu); 731 spin_lock_init(&cpu_rcache->lock); 732 cpu_rcache->loaded = iova_magazine_alloc(GFP_KERNEL); 733 cpu_rcache->prev = iova_magazine_alloc(GFP_KERNEL); 734 } 735 } 736 } 737 738 /* 739 * Try inserting IOVA range starting with 'iova_pfn' into 'rcache', and 740 * return true on success. Can fail if rcache is full and we can't free 741 * space, and free_iova() (our only caller) will then return the IOVA 742 * range to the rbtree instead. 743 */ 744 static bool __iova_rcache_insert(struct iova_domain *iovad, 745 struct iova_rcache *rcache, 746 unsigned long iova_pfn) 747 { 748 struct iova_magazine *mag_to_free = NULL; 749 struct iova_cpu_rcache *cpu_rcache; 750 bool can_insert = false; 751 unsigned long flags; 752 753 cpu_rcache = get_cpu_ptr(rcache->cpu_rcaches); 754 spin_lock_irqsave(&cpu_rcache->lock, flags); 755 756 if (!iova_magazine_full(cpu_rcache->loaded)) { 757 can_insert = true; 758 } else if (!iova_magazine_full(cpu_rcache->prev)) { 759 swap(cpu_rcache->prev, cpu_rcache->loaded); 760 can_insert = true; 761 } else { 762 struct iova_magazine *new_mag = iova_magazine_alloc(GFP_ATOMIC); 763 764 if (new_mag) { 765 spin_lock(&rcache->lock); 766 if (rcache->depot_size < MAX_GLOBAL_MAGS) { 767 rcache->depot[rcache->depot_size++] = 768 cpu_rcache->loaded; 769 } else { 770 mag_to_free = cpu_rcache->loaded; 771 } 772 spin_unlock(&rcache->lock); 773 774 cpu_rcache->loaded = new_mag; 775 can_insert = true; 776 } 777 } 778 779 if (can_insert) 780 iova_magazine_push(cpu_rcache->loaded, iova_pfn); 781 782 spin_unlock_irqrestore(&cpu_rcache->lock, flags); 783 put_cpu_ptr(rcache->cpu_rcaches); 784 785 if (mag_to_free) { 786 iova_magazine_free_pfns(mag_to_free, iovad); 787 iova_magazine_free(mag_to_free); 788 } 789 790 return can_insert; 791 } 792 793 static bool iova_rcache_insert(struct iova_domain *iovad, unsigned long pfn, 794 unsigned long size) 795 { 796 unsigned int log_size = order_base_2(size); 797 798 if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE) 799 return false; 800 801 return __iova_rcache_insert(iovad, &iovad->rcaches[log_size], pfn); 802 } 803 804 /* 805 * Caller wants to allocate a new IOVA range from 'rcache'. If we can 806 * satisfy the request, return a matching non-NULL range and remove 807 * it from the 'rcache'. 808 */ 809 static unsigned long __iova_rcache_get(struct iova_rcache *rcache, 810 unsigned long limit_pfn) 811 { 812 struct iova_cpu_rcache *cpu_rcache; 813 unsigned long iova_pfn = 0; 814 bool has_pfn = false; 815 unsigned long flags; 816 817 cpu_rcache = get_cpu_ptr(rcache->cpu_rcaches); 818 spin_lock_irqsave(&cpu_rcache->lock, flags); 819 820 if (!iova_magazine_empty(cpu_rcache->loaded)) { 821 has_pfn = true; 822 } else if (!iova_magazine_empty(cpu_rcache->prev)) { 823 swap(cpu_rcache->prev, cpu_rcache->loaded); 824 has_pfn = true; 825 } else { 826 spin_lock(&rcache->lock); 827 if (rcache->depot_size > 0) { 828 iova_magazine_free(cpu_rcache->loaded); 829 cpu_rcache->loaded = rcache->depot[--rcache->depot_size]; 830 has_pfn = true; 831 } 832 spin_unlock(&rcache->lock); 833 } 834 835 if (has_pfn) 836 iova_pfn = iova_magazine_pop(cpu_rcache->loaded, limit_pfn); 837 838 spin_unlock_irqrestore(&cpu_rcache->lock, flags); 839 put_cpu_ptr(rcache->cpu_rcaches); 840 841 return iova_pfn; 842 } 843 844 /* 845 * Try to satisfy IOVA allocation range from rcache. Fail if requested 846 * size is too big or the DMA limit we are given isn't satisfied by the 847 * top element in the magazine. 848 */ 849 static unsigned long iova_rcache_get(struct iova_domain *iovad, 850 unsigned long size, 851 unsigned long limit_pfn) 852 { 853 unsigned int log_size = order_base_2(size); 854 855 if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE) 856 return 0; 857 858 return __iova_rcache_get(&iovad->rcaches[log_size], limit_pfn); 859 } 860 861 /* 862 * Free a cpu's rcache. 863 */ 864 static void free_cpu_iova_rcache(unsigned int cpu, struct iova_domain *iovad, 865 struct iova_rcache *rcache) 866 { 867 struct iova_cpu_rcache *cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu); 868 unsigned long flags; 869 870 spin_lock_irqsave(&cpu_rcache->lock, flags); 871 872 iova_magazine_free_pfns(cpu_rcache->loaded, iovad); 873 iova_magazine_free(cpu_rcache->loaded); 874 875 iova_magazine_free_pfns(cpu_rcache->prev, iovad); 876 iova_magazine_free(cpu_rcache->prev); 877 878 spin_unlock_irqrestore(&cpu_rcache->lock, flags); 879 } 880 881 /* 882 * free rcache data structures. 883 */ 884 static void free_iova_rcaches(struct iova_domain *iovad) 885 { 886 struct iova_rcache *rcache; 887 unsigned long flags; 888 unsigned int cpu; 889 int i, j; 890 891 for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 892 rcache = &iovad->rcaches[i]; 893 for_each_possible_cpu(cpu) 894 free_cpu_iova_rcache(cpu, iovad, rcache); 895 spin_lock_irqsave(&rcache->lock, flags); 896 free_percpu(rcache->cpu_rcaches); 897 for (j = 0; j < rcache->depot_size; ++j) { 898 iova_magazine_free_pfns(rcache->depot[j], iovad); 899 iova_magazine_free(rcache->depot[j]); 900 } 901 spin_unlock_irqrestore(&rcache->lock, flags); 902 } 903 } 904 905 /* 906 * free all the IOVA ranges cached by a cpu (used when cpu is unplugged) 907 */ 908 void free_cpu_cached_iovas(unsigned int cpu, struct iova_domain *iovad) 909 { 910 struct iova_cpu_rcache *cpu_rcache; 911 struct iova_rcache *rcache; 912 unsigned long flags; 913 int i; 914 915 for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 916 rcache = &iovad->rcaches[i]; 917 cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu); 918 spin_lock_irqsave(&cpu_rcache->lock, flags); 919 iova_magazine_free_pfns(cpu_rcache->loaded, iovad); 920 iova_magazine_free_pfns(cpu_rcache->prev, iovad); 921 spin_unlock_irqrestore(&cpu_rcache->lock, flags); 922 } 923 } 924 925 MODULE_AUTHOR("Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>"); 926 MODULE_LICENSE("GPL"); 927