xref: /openbmc/linux/drivers/iommu/iova.c (revision 8bdc2a19)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright © 2006-2009, Intel Corporation.
4  *
5  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
6  */
7 
8 #include <linux/iova.h>
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/smp.h>
12 #include <linux/bitops.h>
13 #include <linux/cpu.h>
14 
15 /* The anchor node sits above the top of the usable address space */
16 #define IOVA_ANCHOR	~0UL
17 
18 #define IOVA_RANGE_CACHE_MAX_SIZE 6	/* log of max cached IOVA range size (in pages) */
19 
20 static bool iova_rcache_insert(struct iova_domain *iovad,
21 			       unsigned long pfn,
22 			       unsigned long size);
23 static unsigned long iova_rcache_get(struct iova_domain *iovad,
24 				     unsigned long size,
25 				     unsigned long limit_pfn);
26 static void free_cpu_cached_iovas(unsigned int cpu, struct iova_domain *iovad);
27 static void free_iova_rcaches(struct iova_domain *iovad);
28 
29 static int iova_cpuhp_dead(unsigned int cpu, struct hlist_node *node)
30 {
31 	struct iova_domain *iovad;
32 
33 	iovad = hlist_entry_safe(node, struct iova_domain, cpuhp_dead);
34 
35 	free_cpu_cached_iovas(cpu, iovad);
36 	return 0;
37 }
38 
39 static void free_global_cached_iovas(struct iova_domain *iovad);
40 
41 static struct iova *to_iova(struct rb_node *node)
42 {
43 	return rb_entry(node, struct iova, node);
44 }
45 
46 void
47 init_iova_domain(struct iova_domain *iovad, unsigned long granule,
48 	unsigned long start_pfn)
49 {
50 	/*
51 	 * IOVA granularity will normally be equal to the smallest
52 	 * supported IOMMU page size; both *must* be capable of
53 	 * representing individual CPU pages exactly.
54 	 */
55 	BUG_ON((granule > PAGE_SIZE) || !is_power_of_2(granule));
56 
57 	spin_lock_init(&iovad->iova_rbtree_lock);
58 	iovad->rbroot = RB_ROOT;
59 	iovad->cached_node = &iovad->anchor.node;
60 	iovad->cached32_node = &iovad->anchor.node;
61 	iovad->granule = granule;
62 	iovad->start_pfn = start_pfn;
63 	iovad->dma_32bit_pfn = 1UL << (32 - iova_shift(iovad));
64 	iovad->max32_alloc_size = iovad->dma_32bit_pfn;
65 	iovad->anchor.pfn_lo = iovad->anchor.pfn_hi = IOVA_ANCHOR;
66 	rb_link_node(&iovad->anchor.node, NULL, &iovad->rbroot.rb_node);
67 	rb_insert_color(&iovad->anchor.node, &iovad->rbroot);
68 }
69 EXPORT_SYMBOL_GPL(init_iova_domain);
70 
71 static struct rb_node *
72 __get_cached_rbnode(struct iova_domain *iovad, unsigned long limit_pfn)
73 {
74 	if (limit_pfn <= iovad->dma_32bit_pfn)
75 		return iovad->cached32_node;
76 
77 	return iovad->cached_node;
78 }
79 
80 static void
81 __cached_rbnode_insert_update(struct iova_domain *iovad, struct iova *new)
82 {
83 	if (new->pfn_hi < iovad->dma_32bit_pfn)
84 		iovad->cached32_node = &new->node;
85 	else
86 		iovad->cached_node = &new->node;
87 }
88 
89 static void
90 __cached_rbnode_delete_update(struct iova_domain *iovad, struct iova *free)
91 {
92 	struct iova *cached_iova;
93 
94 	cached_iova = to_iova(iovad->cached32_node);
95 	if (free == cached_iova ||
96 	    (free->pfn_hi < iovad->dma_32bit_pfn &&
97 	     free->pfn_lo >= cached_iova->pfn_lo))
98 		iovad->cached32_node = rb_next(&free->node);
99 
100 	if (free->pfn_lo < iovad->dma_32bit_pfn)
101 		iovad->max32_alloc_size = iovad->dma_32bit_pfn;
102 
103 	cached_iova = to_iova(iovad->cached_node);
104 	if (free->pfn_lo >= cached_iova->pfn_lo)
105 		iovad->cached_node = rb_next(&free->node);
106 }
107 
108 static struct rb_node *iova_find_limit(struct iova_domain *iovad, unsigned long limit_pfn)
109 {
110 	struct rb_node *node, *next;
111 	/*
112 	 * Ideally what we'd like to judge here is whether limit_pfn is close
113 	 * enough to the highest-allocated IOVA that starting the allocation
114 	 * walk from the anchor node will be quicker than this initial work to
115 	 * find an exact starting point (especially if that ends up being the
116 	 * anchor node anyway). This is an incredibly crude approximation which
117 	 * only really helps the most likely case, but is at least trivially easy.
118 	 */
119 	if (limit_pfn > iovad->dma_32bit_pfn)
120 		return &iovad->anchor.node;
121 
122 	node = iovad->rbroot.rb_node;
123 	while (to_iova(node)->pfn_hi < limit_pfn)
124 		node = node->rb_right;
125 
126 search_left:
127 	while (node->rb_left && to_iova(node->rb_left)->pfn_lo >= limit_pfn)
128 		node = node->rb_left;
129 
130 	if (!node->rb_left)
131 		return node;
132 
133 	next = node->rb_left;
134 	while (next->rb_right) {
135 		next = next->rb_right;
136 		if (to_iova(next)->pfn_lo >= limit_pfn) {
137 			node = next;
138 			goto search_left;
139 		}
140 	}
141 
142 	return node;
143 }
144 
145 /* Insert the iova into domain rbtree by holding writer lock */
146 static void
147 iova_insert_rbtree(struct rb_root *root, struct iova *iova,
148 		   struct rb_node *start)
149 {
150 	struct rb_node **new, *parent = NULL;
151 
152 	new = (start) ? &start : &(root->rb_node);
153 	/* Figure out where to put new node */
154 	while (*new) {
155 		struct iova *this = to_iova(*new);
156 
157 		parent = *new;
158 
159 		if (iova->pfn_lo < this->pfn_lo)
160 			new = &((*new)->rb_left);
161 		else if (iova->pfn_lo > this->pfn_lo)
162 			new = &((*new)->rb_right);
163 		else {
164 			WARN_ON(1); /* this should not happen */
165 			return;
166 		}
167 	}
168 	/* Add new node and rebalance tree. */
169 	rb_link_node(&iova->node, parent, new);
170 	rb_insert_color(&iova->node, root);
171 }
172 
173 static int __alloc_and_insert_iova_range(struct iova_domain *iovad,
174 		unsigned long size, unsigned long limit_pfn,
175 			struct iova *new, bool size_aligned)
176 {
177 	struct rb_node *curr, *prev;
178 	struct iova *curr_iova;
179 	unsigned long flags;
180 	unsigned long new_pfn, retry_pfn;
181 	unsigned long align_mask = ~0UL;
182 	unsigned long high_pfn = limit_pfn, low_pfn = iovad->start_pfn;
183 
184 	if (size_aligned)
185 		align_mask <<= fls_long(size - 1);
186 
187 	/* Walk the tree backwards */
188 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
189 	if (limit_pfn <= iovad->dma_32bit_pfn &&
190 			size >= iovad->max32_alloc_size)
191 		goto iova32_full;
192 
193 	curr = __get_cached_rbnode(iovad, limit_pfn);
194 	curr_iova = to_iova(curr);
195 	retry_pfn = curr_iova->pfn_hi + 1;
196 
197 retry:
198 	do {
199 		high_pfn = min(high_pfn, curr_iova->pfn_lo);
200 		new_pfn = (high_pfn - size) & align_mask;
201 		prev = curr;
202 		curr = rb_prev(curr);
203 		curr_iova = to_iova(curr);
204 	} while (curr && new_pfn <= curr_iova->pfn_hi && new_pfn >= low_pfn);
205 
206 	if (high_pfn < size || new_pfn < low_pfn) {
207 		if (low_pfn == iovad->start_pfn && retry_pfn < limit_pfn) {
208 			high_pfn = limit_pfn;
209 			low_pfn = retry_pfn;
210 			curr = iova_find_limit(iovad, limit_pfn);
211 			curr_iova = to_iova(curr);
212 			goto retry;
213 		}
214 		iovad->max32_alloc_size = size;
215 		goto iova32_full;
216 	}
217 
218 	/* pfn_lo will point to size aligned address if size_aligned is set */
219 	new->pfn_lo = new_pfn;
220 	new->pfn_hi = new->pfn_lo + size - 1;
221 
222 	/* If we have 'prev', it's a valid place to start the insertion. */
223 	iova_insert_rbtree(&iovad->rbroot, new, prev);
224 	__cached_rbnode_insert_update(iovad, new);
225 
226 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
227 	return 0;
228 
229 iova32_full:
230 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
231 	return -ENOMEM;
232 }
233 
234 static struct kmem_cache *iova_cache;
235 static unsigned int iova_cache_users;
236 static DEFINE_MUTEX(iova_cache_mutex);
237 
238 static struct iova *alloc_iova_mem(void)
239 {
240 	return kmem_cache_zalloc(iova_cache, GFP_ATOMIC | __GFP_NOWARN);
241 }
242 
243 static void free_iova_mem(struct iova *iova)
244 {
245 	if (iova->pfn_lo != IOVA_ANCHOR)
246 		kmem_cache_free(iova_cache, iova);
247 }
248 
249 int iova_cache_get(void)
250 {
251 	mutex_lock(&iova_cache_mutex);
252 	if (!iova_cache_users) {
253 		int ret;
254 
255 		ret = cpuhp_setup_state_multi(CPUHP_IOMMU_IOVA_DEAD, "iommu/iova:dead", NULL,
256 					iova_cpuhp_dead);
257 		if (ret) {
258 			mutex_unlock(&iova_cache_mutex);
259 			pr_err("Couldn't register cpuhp handler\n");
260 			return ret;
261 		}
262 
263 		iova_cache = kmem_cache_create(
264 			"iommu_iova", sizeof(struct iova), 0,
265 			SLAB_HWCACHE_ALIGN, NULL);
266 		if (!iova_cache) {
267 			cpuhp_remove_multi_state(CPUHP_IOMMU_IOVA_DEAD);
268 			mutex_unlock(&iova_cache_mutex);
269 			pr_err("Couldn't create iova cache\n");
270 			return -ENOMEM;
271 		}
272 	}
273 
274 	iova_cache_users++;
275 	mutex_unlock(&iova_cache_mutex);
276 
277 	return 0;
278 }
279 EXPORT_SYMBOL_GPL(iova_cache_get);
280 
281 void iova_cache_put(void)
282 {
283 	mutex_lock(&iova_cache_mutex);
284 	if (WARN_ON(!iova_cache_users)) {
285 		mutex_unlock(&iova_cache_mutex);
286 		return;
287 	}
288 	iova_cache_users--;
289 	if (!iova_cache_users) {
290 		cpuhp_remove_multi_state(CPUHP_IOMMU_IOVA_DEAD);
291 		kmem_cache_destroy(iova_cache);
292 	}
293 	mutex_unlock(&iova_cache_mutex);
294 }
295 EXPORT_SYMBOL_GPL(iova_cache_put);
296 
297 /**
298  * alloc_iova - allocates an iova
299  * @iovad: - iova domain in question
300  * @size: - size of page frames to allocate
301  * @limit_pfn: - max limit address
302  * @size_aligned: - set if size_aligned address range is required
303  * This function allocates an iova in the range iovad->start_pfn to limit_pfn,
304  * searching top-down from limit_pfn to iovad->start_pfn. If the size_aligned
305  * flag is set then the allocated address iova->pfn_lo will be naturally
306  * aligned on roundup_power_of_two(size).
307  */
308 struct iova *
309 alloc_iova(struct iova_domain *iovad, unsigned long size,
310 	unsigned long limit_pfn,
311 	bool size_aligned)
312 {
313 	struct iova *new_iova;
314 	int ret;
315 
316 	new_iova = alloc_iova_mem();
317 	if (!new_iova)
318 		return NULL;
319 
320 	ret = __alloc_and_insert_iova_range(iovad, size, limit_pfn + 1,
321 			new_iova, size_aligned);
322 
323 	if (ret) {
324 		free_iova_mem(new_iova);
325 		return NULL;
326 	}
327 
328 	return new_iova;
329 }
330 EXPORT_SYMBOL_GPL(alloc_iova);
331 
332 static struct iova *
333 private_find_iova(struct iova_domain *iovad, unsigned long pfn)
334 {
335 	struct rb_node *node = iovad->rbroot.rb_node;
336 
337 	assert_spin_locked(&iovad->iova_rbtree_lock);
338 
339 	while (node) {
340 		struct iova *iova = to_iova(node);
341 
342 		if (pfn < iova->pfn_lo)
343 			node = node->rb_left;
344 		else if (pfn > iova->pfn_hi)
345 			node = node->rb_right;
346 		else
347 			return iova;	/* pfn falls within iova's range */
348 	}
349 
350 	return NULL;
351 }
352 
353 static void remove_iova(struct iova_domain *iovad, struct iova *iova)
354 {
355 	assert_spin_locked(&iovad->iova_rbtree_lock);
356 	__cached_rbnode_delete_update(iovad, iova);
357 	rb_erase(&iova->node, &iovad->rbroot);
358 }
359 
360 /**
361  * find_iova - finds an iova for a given pfn
362  * @iovad: - iova domain in question.
363  * @pfn: - page frame number
364  * This function finds and returns an iova belonging to the
365  * given domain which matches the given pfn.
366  */
367 struct iova *find_iova(struct iova_domain *iovad, unsigned long pfn)
368 {
369 	unsigned long flags;
370 	struct iova *iova;
371 
372 	/* Take the lock so that no other thread is manipulating the rbtree */
373 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
374 	iova = private_find_iova(iovad, pfn);
375 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
376 	return iova;
377 }
378 EXPORT_SYMBOL_GPL(find_iova);
379 
380 /**
381  * __free_iova - frees the given iova
382  * @iovad: iova domain in question.
383  * @iova: iova in question.
384  * Frees the given iova belonging to the giving domain
385  */
386 void
387 __free_iova(struct iova_domain *iovad, struct iova *iova)
388 {
389 	unsigned long flags;
390 
391 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
392 	remove_iova(iovad, iova);
393 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
394 	free_iova_mem(iova);
395 }
396 EXPORT_SYMBOL_GPL(__free_iova);
397 
398 /**
399  * free_iova - finds and frees the iova for a given pfn
400  * @iovad: - iova domain in question.
401  * @pfn: - pfn that is allocated previously
402  * This functions finds an iova for a given pfn and then
403  * frees the iova from that domain.
404  */
405 void
406 free_iova(struct iova_domain *iovad, unsigned long pfn)
407 {
408 	unsigned long flags;
409 	struct iova *iova;
410 
411 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
412 	iova = private_find_iova(iovad, pfn);
413 	if (!iova) {
414 		spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
415 		return;
416 	}
417 	remove_iova(iovad, iova);
418 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
419 	free_iova_mem(iova);
420 }
421 EXPORT_SYMBOL_GPL(free_iova);
422 
423 /**
424  * alloc_iova_fast - allocates an iova from rcache
425  * @iovad: - iova domain in question
426  * @size: - size of page frames to allocate
427  * @limit_pfn: - max limit address
428  * @flush_rcache: - set to flush rcache on regular allocation failure
429  * This function tries to satisfy an iova allocation from the rcache,
430  * and falls back to regular allocation on failure. If regular allocation
431  * fails too and the flush_rcache flag is set then the rcache will be flushed.
432 */
433 unsigned long
434 alloc_iova_fast(struct iova_domain *iovad, unsigned long size,
435 		unsigned long limit_pfn, bool flush_rcache)
436 {
437 	unsigned long iova_pfn;
438 	struct iova *new_iova;
439 
440 	/*
441 	 * Freeing non-power-of-two-sized allocations back into the IOVA caches
442 	 * will come back to bite us badly, so we have to waste a bit of space
443 	 * rounding up anything cacheable to make sure that can't happen. The
444 	 * order of the unadjusted size will still match upon freeing.
445 	 */
446 	if (size < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
447 		size = roundup_pow_of_two(size);
448 
449 	iova_pfn = iova_rcache_get(iovad, size, limit_pfn + 1);
450 	if (iova_pfn)
451 		return iova_pfn;
452 
453 retry:
454 	new_iova = alloc_iova(iovad, size, limit_pfn, true);
455 	if (!new_iova) {
456 		unsigned int cpu;
457 
458 		if (!flush_rcache)
459 			return 0;
460 
461 		/* Try replenishing IOVAs by flushing rcache. */
462 		flush_rcache = false;
463 		for_each_online_cpu(cpu)
464 			free_cpu_cached_iovas(cpu, iovad);
465 		free_global_cached_iovas(iovad);
466 		goto retry;
467 	}
468 
469 	return new_iova->pfn_lo;
470 }
471 EXPORT_SYMBOL_GPL(alloc_iova_fast);
472 
473 /**
474  * free_iova_fast - free iova pfn range into rcache
475  * @iovad: - iova domain in question.
476  * @pfn: - pfn that is allocated previously
477  * @size: - # of pages in range
478  * This functions frees an iova range by trying to put it into the rcache,
479  * falling back to regular iova deallocation via free_iova() if this fails.
480  */
481 void
482 free_iova_fast(struct iova_domain *iovad, unsigned long pfn, unsigned long size)
483 {
484 	if (iova_rcache_insert(iovad, pfn, size))
485 		return;
486 
487 	free_iova(iovad, pfn);
488 }
489 EXPORT_SYMBOL_GPL(free_iova_fast);
490 
491 static void iova_domain_free_rcaches(struct iova_domain *iovad)
492 {
493 	cpuhp_state_remove_instance_nocalls(CPUHP_IOMMU_IOVA_DEAD,
494 					    &iovad->cpuhp_dead);
495 	free_iova_rcaches(iovad);
496 }
497 
498 /**
499  * put_iova_domain - destroys the iova domain
500  * @iovad: - iova domain in question.
501  * All the iova's in that domain are destroyed.
502  */
503 void put_iova_domain(struct iova_domain *iovad)
504 {
505 	struct iova *iova, *tmp;
506 
507 	if (iovad->rcaches)
508 		iova_domain_free_rcaches(iovad);
509 
510 	rbtree_postorder_for_each_entry_safe(iova, tmp, &iovad->rbroot, node)
511 		free_iova_mem(iova);
512 }
513 EXPORT_SYMBOL_GPL(put_iova_domain);
514 
515 static int
516 __is_range_overlap(struct rb_node *node,
517 	unsigned long pfn_lo, unsigned long pfn_hi)
518 {
519 	struct iova *iova = to_iova(node);
520 
521 	if ((pfn_lo <= iova->pfn_hi) && (pfn_hi >= iova->pfn_lo))
522 		return 1;
523 	return 0;
524 }
525 
526 static inline struct iova *
527 alloc_and_init_iova(unsigned long pfn_lo, unsigned long pfn_hi)
528 {
529 	struct iova *iova;
530 
531 	iova = alloc_iova_mem();
532 	if (iova) {
533 		iova->pfn_lo = pfn_lo;
534 		iova->pfn_hi = pfn_hi;
535 	}
536 
537 	return iova;
538 }
539 
540 static struct iova *
541 __insert_new_range(struct iova_domain *iovad,
542 	unsigned long pfn_lo, unsigned long pfn_hi)
543 {
544 	struct iova *iova;
545 
546 	iova = alloc_and_init_iova(pfn_lo, pfn_hi);
547 	if (iova)
548 		iova_insert_rbtree(&iovad->rbroot, iova, NULL);
549 
550 	return iova;
551 }
552 
553 static void
554 __adjust_overlap_range(struct iova *iova,
555 	unsigned long *pfn_lo, unsigned long *pfn_hi)
556 {
557 	if (*pfn_lo < iova->pfn_lo)
558 		iova->pfn_lo = *pfn_lo;
559 	if (*pfn_hi > iova->pfn_hi)
560 		*pfn_lo = iova->pfn_hi + 1;
561 }
562 
563 /**
564  * reserve_iova - reserves an iova in the given range
565  * @iovad: - iova domain pointer
566  * @pfn_lo: - lower page frame address
567  * @pfn_hi:- higher pfn adderss
568  * This function allocates reserves the address range from pfn_lo to pfn_hi so
569  * that this address is not dished out as part of alloc_iova.
570  */
571 struct iova *
572 reserve_iova(struct iova_domain *iovad,
573 	unsigned long pfn_lo, unsigned long pfn_hi)
574 {
575 	struct rb_node *node;
576 	unsigned long flags;
577 	struct iova *iova;
578 	unsigned int overlap = 0;
579 
580 	/* Don't allow nonsensical pfns */
581 	if (WARN_ON((pfn_hi | pfn_lo) > (ULLONG_MAX >> iova_shift(iovad))))
582 		return NULL;
583 
584 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
585 	for (node = rb_first(&iovad->rbroot); node; node = rb_next(node)) {
586 		if (__is_range_overlap(node, pfn_lo, pfn_hi)) {
587 			iova = to_iova(node);
588 			__adjust_overlap_range(iova, &pfn_lo, &pfn_hi);
589 			if ((pfn_lo >= iova->pfn_lo) &&
590 				(pfn_hi <= iova->pfn_hi))
591 				goto finish;
592 			overlap = 1;
593 
594 		} else if (overlap)
595 				break;
596 	}
597 
598 	/* We are here either because this is the first reserver node
599 	 * or need to insert remaining non overlap addr range
600 	 */
601 	iova = __insert_new_range(iovad, pfn_lo, pfn_hi);
602 finish:
603 
604 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
605 	return iova;
606 }
607 EXPORT_SYMBOL_GPL(reserve_iova);
608 
609 /*
610  * Magazine caches for IOVA ranges.  For an introduction to magazines,
611  * see the USENIX 2001 paper "Magazines and Vmem: Extending the Slab
612  * Allocator to Many CPUs and Arbitrary Resources" by Bonwick and Adams.
613  * For simplicity, we use a static magazine size and don't implement the
614  * dynamic size tuning described in the paper.
615  */
616 
617 #define IOVA_MAG_SIZE 128
618 #define MAX_GLOBAL_MAGS 32	/* magazines per bin */
619 
620 struct iova_magazine {
621 	unsigned long size;
622 	unsigned long pfns[IOVA_MAG_SIZE];
623 };
624 
625 struct iova_cpu_rcache {
626 	spinlock_t lock;
627 	struct iova_magazine *loaded;
628 	struct iova_magazine *prev;
629 };
630 
631 struct iova_rcache {
632 	spinlock_t lock;
633 	unsigned long depot_size;
634 	struct iova_magazine *depot[MAX_GLOBAL_MAGS];
635 	struct iova_cpu_rcache __percpu *cpu_rcaches;
636 };
637 
638 static struct iova_magazine *iova_magazine_alloc(gfp_t flags)
639 {
640 	return kzalloc(sizeof(struct iova_magazine), flags);
641 }
642 
643 static void iova_magazine_free(struct iova_magazine *mag)
644 {
645 	kfree(mag);
646 }
647 
648 static void
649 iova_magazine_free_pfns(struct iova_magazine *mag, struct iova_domain *iovad)
650 {
651 	unsigned long flags;
652 	int i;
653 
654 	if (!mag)
655 		return;
656 
657 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
658 
659 	for (i = 0 ; i < mag->size; ++i) {
660 		struct iova *iova = private_find_iova(iovad, mag->pfns[i]);
661 
662 		if (WARN_ON(!iova))
663 			continue;
664 
665 		remove_iova(iovad, iova);
666 		free_iova_mem(iova);
667 	}
668 
669 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
670 
671 	mag->size = 0;
672 }
673 
674 static bool iova_magazine_full(struct iova_magazine *mag)
675 {
676 	return (mag && mag->size == IOVA_MAG_SIZE);
677 }
678 
679 static bool iova_magazine_empty(struct iova_magazine *mag)
680 {
681 	return (!mag || mag->size == 0);
682 }
683 
684 static unsigned long iova_magazine_pop(struct iova_magazine *mag,
685 				       unsigned long limit_pfn)
686 {
687 	int i;
688 	unsigned long pfn;
689 
690 	BUG_ON(iova_magazine_empty(mag));
691 
692 	/* Only fall back to the rbtree if we have no suitable pfns at all */
693 	for (i = mag->size - 1; mag->pfns[i] > limit_pfn; i--)
694 		if (i == 0)
695 			return 0;
696 
697 	/* Swap it to pop it */
698 	pfn = mag->pfns[i];
699 	mag->pfns[i] = mag->pfns[--mag->size];
700 
701 	return pfn;
702 }
703 
704 static void iova_magazine_push(struct iova_magazine *mag, unsigned long pfn)
705 {
706 	BUG_ON(iova_magazine_full(mag));
707 
708 	mag->pfns[mag->size++] = pfn;
709 }
710 
711 int iova_domain_init_rcaches(struct iova_domain *iovad)
712 {
713 	unsigned int cpu;
714 	int i, ret;
715 
716 	iovad->rcaches = kcalloc(IOVA_RANGE_CACHE_MAX_SIZE,
717 				 sizeof(struct iova_rcache),
718 				 GFP_KERNEL);
719 	if (!iovad->rcaches)
720 		return -ENOMEM;
721 
722 	for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) {
723 		struct iova_cpu_rcache *cpu_rcache;
724 		struct iova_rcache *rcache;
725 
726 		rcache = &iovad->rcaches[i];
727 		spin_lock_init(&rcache->lock);
728 		rcache->depot_size = 0;
729 		rcache->cpu_rcaches = __alloc_percpu(sizeof(*cpu_rcache),
730 						     cache_line_size());
731 		if (!rcache->cpu_rcaches) {
732 			ret = -ENOMEM;
733 			goto out_err;
734 		}
735 		for_each_possible_cpu(cpu) {
736 			cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu);
737 
738 			spin_lock_init(&cpu_rcache->lock);
739 			cpu_rcache->loaded = iova_magazine_alloc(GFP_KERNEL);
740 			cpu_rcache->prev = iova_magazine_alloc(GFP_KERNEL);
741 			if (!cpu_rcache->loaded || !cpu_rcache->prev) {
742 				ret = -ENOMEM;
743 				goto out_err;
744 			}
745 		}
746 	}
747 
748 	ret = cpuhp_state_add_instance_nocalls(CPUHP_IOMMU_IOVA_DEAD,
749 					       &iovad->cpuhp_dead);
750 	if (ret)
751 		goto out_err;
752 	return 0;
753 
754 out_err:
755 	free_iova_rcaches(iovad);
756 	return ret;
757 }
758 EXPORT_SYMBOL_GPL(iova_domain_init_rcaches);
759 
760 /*
761  * Try inserting IOVA range starting with 'iova_pfn' into 'rcache', and
762  * return true on success.  Can fail if rcache is full and we can't free
763  * space, and free_iova() (our only caller) will then return the IOVA
764  * range to the rbtree instead.
765  */
766 static bool __iova_rcache_insert(struct iova_domain *iovad,
767 				 struct iova_rcache *rcache,
768 				 unsigned long iova_pfn)
769 {
770 	struct iova_magazine *mag_to_free = NULL;
771 	struct iova_cpu_rcache *cpu_rcache;
772 	bool can_insert = false;
773 	unsigned long flags;
774 
775 	cpu_rcache = raw_cpu_ptr(rcache->cpu_rcaches);
776 	spin_lock_irqsave(&cpu_rcache->lock, flags);
777 
778 	if (!iova_magazine_full(cpu_rcache->loaded)) {
779 		can_insert = true;
780 	} else if (!iova_magazine_full(cpu_rcache->prev)) {
781 		swap(cpu_rcache->prev, cpu_rcache->loaded);
782 		can_insert = true;
783 	} else {
784 		struct iova_magazine *new_mag = iova_magazine_alloc(GFP_ATOMIC);
785 
786 		if (new_mag) {
787 			spin_lock(&rcache->lock);
788 			if (rcache->depot_size < MAX_GLOBAL_MAGS) {
789 				rcache->depot[rcache->depot_size++] =
790 						cpu_rcache->loaded;
791 			} else {
792 				mag_to_free = cpu_rcache->loaded;
793 			}
794 			spin_unlock(&rcache->lock);
795 
796 			cpu_rcache->loaded = new_mag;
797 			can_insert = true;
798 		}
799 	}
800 
801 	if (can_insert)
802 		iova_magazine_push(cpu_rcache->loaded, iova_pfn);
803 
804 	spin_unlock_irqrestore(&cpu_rcache->lock, flags);
805 
806 	if (mag_to_free) {
807 		iova_magazine_free_pfns(mag_to_free, iovad);
808 		iova_magazine_free(mag_to_free);
809 	}
810 
811 	return can_insert;
812 }
813 
814 static bool iova_rcache_insert(struct iova_domain *iovad, unsigned long pfn,
815 			       unsigned long size)
816 {
817 	unsigned int log_size = order_base_2(size);
818 
819 	if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE)
820 		return false;
821 
822 	return __iova_rcache_insert(iovad, &iovad->rcaches[log_size], pfn);
823 }
824 
825 /*
826  * Caller wants to allocate a new IOVA range from 'rcache'.  If we can
827  * satisfy the request, return a matching non-NULL range and remove
828  * it from the 'rcache'.
829  */
830 static unsigned long __iova_rcache_get(struct iova_rcache *rcache,
831 				       unsigned long limit_pfn)
832 {
833 	struct iova_cpu_rcache *cpu_rcache;
834 	unsigned long iova_pfn = 0;
835 	bool has_pfn = false;
836 	unsigned long flags;
837 
838 	cpu_rcache = raw_cpu_ptr(rcache->cpu_rcaches);
839 	spin_lock_irqsave(&cpu_rcache->lock, flags);
840 
841 	if (!iova_magazine_empty(cpu_rcache->loaded)) {
842 		has_pfn = true;
843 	} else if (!iova_magazine_empty(cpu_rcache->prev)) {
844 		swap(cpu_rcache->prev, cpu_rcache->loaded);
845 		has_pfn = true;
846 	} else {
847 		spin_lock(&rcache->lock);
848 		if (rcache->depot_size > 0) {
849 			iova_magazine_free(cpu_rcache->loaded);
850 			cpu_rcache->loaded = rcache->depot[--rcache->depot_size];
851 			has_pfn = true;
852 		}
853 		spin_unlock(&rcache->lock);
854 	}
855 
856 	if (has_pfn)
857 		iova_pfn = iova_magazine_pop(cpu_rcache->loaded, limit_pfn);
858 
859 	spin_unlock_irqrestore(&cpu_rcache->lock, flags);
860 
861 	return iova_pfn;
862 }
863 
864 /*
865  * Try to satisfy IOVA allocation range from rcache.  Fail if requested
866  * size is too big or the DMA limit we are given isn't satisfied by the
867  * top element in the magazine.
868  */
869 static unsigned long iova_rcache_get(struct iova_domain *iovad,
870 				     unsigned long size,
871 				     unsigned long limit_pfn)
872 {
873 	unsigned int log_size = order_base_2(size);
874 
875 	if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE || !iovad->rcaches)
876 		return 0;
877 
878 	return __iova_rcache_get(&iovad->rcaches[log_size], limit_pfn - size);
879 }
880 
881 /*
882  * free rcache data structures.
883  */
884 static void free_iova_rcaches(struct iova_domain *iovad)
885 {
886 	struct iova_rcache *rcache;
887 	struct iova_cpu_rcache *cpu_rcache;
888 	unsigned int cpu;
889 	int i, j;
890 
891 	for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) {
892 		rcache = &iovad->rcaches[i];
893 		if (!rcache->cpu_rcaches)
894 			break;
895 		for_each_possible_cpu(cpu) {
896 			cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu);
897 			iova_magazine_free(cpu_rcache->loaded);
898 			iova_magazine_free(cpu_rcache->prev);
899 		}
900 		free_percpu(rcache->cpu_rcaches);
901 		for (j = 0; j < rcache->depot_size; ++j)
902 			iova_magazine_free(rcache->depot[j]);
903 	}
904 
905 	kfree(iovad->rcaches);
906 	iovad->rcaches = NULL;
907 }
908 
909 /*
910  * free all the IOVA ranges cached by a cpu (used when cpu is unplugged)
911  */
912 static void free_cpu_cached_iovas(unsigned int cpu, struct iova_domain *iovad)
913 {
914 	struct iova_cpu_rcache *cpu_rcache;
915 	struct iova_rcache *rcache;
916 	unsigned long flags;
917 	int i;
918 
919 	for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) {
920 		rcache = &iovad->rcaches[i];
921 		cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu);
922 		spin_lock_irqsave(&cpu_rcache->lock, flags);
923 		iova_magazine_free_pfns(cpu_rcache->loaded, iovad);
924 		iova_magazine_free_pfns(cpu_rcache->prev, iovad);
925 		spin_unlock_irqrestore(&cpu_rcache->lock, flags);
926 	}
927 }
928 
929 /*
930  * free all the IOVA ranges of global cache
931  */
932 static void free_global_cached_iovas(struct iova_domain *iovad)
933 {
934 	struct iova_rcache *rcache;
935 	unsigned long flags;
936 	int i, j;
937 
938 	for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) {
939 		rcache = &iovad->rcaches[i];
940 		spin_lock_irqsave(&rcache->lock, flags);
941 		for (j = 0; j < rcache->depot_size; ++j) {
942 			iova_magazine_free_pfns(rcache->depot[j], iovad);
943 			iova_magazine_free(rcache->depot[j]);
944 		}
945 		rcache->depot_size = 0;
946 		spin_unlock_irqrestore(&rcache->lock, flags);
947 	}
948 }
949 MODULE_AUTHOR("Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>");
950 MODULE_LICENSE("GPL");
951