1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright © 2006-2009, Intel Corporation. 4 * 5 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 6 */ 7 8 #include <linux/iova.h> 9 #include <linux/module.h> 10 #include <linux/slab.h> 11 #include <linux/smp.h> 12 #include <linux/bitops.h> 13 #include <linux/cpu.h> 14 15 /* The anchor node sits above the top of the usable address space */ 16 #define IOVA_ANCHOR ~0UL 17 18 static bool iova_rcache_insert(struct iova_domain *iovad, 19 unsigned long pfn, 20 unsigned long size); 21 static unsigned long iova_rcache_get(struct iova_domain *iovad, 22 unsigned long size, 23 unsigned long limit_pfn); 24 static void init_iova_rcaches(struct iova_domain *iovad); 25 static void free_cpu_cached_iovas(unsigned int cpu, struct iova_domain *iovad); 26 static void free_iova_rcaches(struct iova_domain *iovad); 27 static void fq_destroy_all_entries(struct iova_domain *iovad); 28 static void fq_flush_timeout(struct timer_list *t); 29 30 static int iova_cpuhp_dead(unsigned int cpu, struct hlist_node *node) 31 { 32 struct iova_domain *iovad; 33 34 iovad = hlist_entry_safe(node, struct iova_domain, cpuhp_dead); 35 36 free_cpu_cached_iovas(cpu, iovad); 37 return 0; 38 } 39 40 static void free_global_cached_iovas(struct iova_domain *iovad); 41 42 static struct iova *to_iova(struct rb_node *node) 43 { 44 return rb_entry(node, struct iova, node); 45 } 46 47 void 48 init_iova_domain(struct iova_domain *iovad, unsigned long granule, 49 unsigned long start_pfn) 50 { 51 /* 52 * IOVA granularity will normally be equal to the smallest 53 * supported IOMMU page size; both *must* be capable of 54 * representing individual CPU pages exactly. 55 */ 56 BUG_ON((granule > PAGE_SIZE) || !is_power_of_2(granule)); 57 58 spin_lock_init(&iovad->iova_rbtree_lock); 59 iovad->rbroot = RB_ROOT; 60 iovad->cached_node = &iovad->anchor.node; 61 iovad->cached32_node = &iovad->anchor.node; 62 iovad->granule = granule; 63 iovad->start_pfn = start_pfn; 64 iovad->dma_32bit_pfn = 1UL << (32 - iova_shift(iovad)); 65 iovad->max32_alloc_size = iovad->dma_32bit_pfn; 66 iovad->flush_cb = NULL; 67 iovad->fq = NULL; 68 iovad->anchor.pfn_lo = iovad->anchor.pfn_hi = IOVA_ANCHOR; 69 rb_link_node(&iovad->anchor.node, NULL, &iovad->rbroot.rb_node); 70 rb_insert_color(&iovad->anchor.node, &iovad->rbroot); 71 cpuhp_state_add_instance_nocalls(CPUHP_IOMMU_IOVA_DEAD, &iovad->cpuhp_dead); 72 init_iova_rcaches(iovad); 73 } 74 EXPORT_SYMBOL_GPL(init_iova_domain); 75 76 static bool has_iova_flush_queue(struct iova_domain *iovad) 77 { 78 return !!iovad->fq; 79 } 80 81 static void free_iova_flush_queue(struct iova_domain *iovad) 82 { 83 if (!has_iova_flush_queue(iovad)) 84 return; 85 86 if (timer_pending(&iovad->fq_timer)) 87 del_timer(&iovad->fq_timer); 88 89 fq_destroy_all_entries(iovad); 90 91 free_percpu(iovad->fq); 92 93 iovad->fq = NULL; 94 iovad->flush_cb = NULL; 95 iovad->entry_dtor = NULL; 96 } 97 98 int init_iova_flush_queue(struct iova_domain *iovad, 99 iova_flush_cb flush_cb, iova_entry_dtor entry_dtor) 100 { 101 struct iova_fq __percpu *queue; 102 int cpu; 103 104 atomic64_set(&iovad->fq_flush_start_cnt, 0); 105 atomic64_set(&iovad->fq_flush_finish_cnt, 0); 106 107 queue = alloc_percpu(struct iova_fq); 108 if (!queue) 109 return -ENOMEM; 110 111 iovad->flush_cb = flush_cb; 112 iovad->entry_dtor = entry_dtor; 113 114 for_each_possible_cpu(cpu) { 115 struct iova_fq *fq; 116 117 fq = per_cpu_ptr(queue, cpu); 118 fq->head = 0; 119 fq->tail = 0; 120 121 spin_lock_init(&fq->lock); 122 } 123 124 smp_wmb(); 125 126 iovad->fq = queue; 127 128 timer_setup(&iovad->fq_timer, fq_flush_timeout, 0); 129 atomic_set(&iovad->fq_timer_on, 0); 130 131 return 0; 132 } 133 134 static struct rb_node * 135 __get_cached_rbnode(struct iova_domain *iovad, unsigned long limit_pfn) 136 { 137 if (limit_pfn <= iovad->dma_32bit_pfn) 138 return iovad->cached32_node; 139 140 return iovad->cached_node; 141 } 142 143 static void 144 __cached_rbnode_insert_update(struct iova_domain *iovad, struct iova *new) 145 { 146 if (new->pfn_hi < iovad->dma_32bit_pfn) 147 iovad->cached32_node = &new->node; 148 else 149 iovad->cached_node = &new->node; 150 } 151 152 static void 153 __cached_rbnode_delete_update(struct iova_domain *iovad, struct iova *free) 154 { 155 struct iova *cached_iova; 156 157 cached_iova = to_iova(iovad->cached32_node); 158 if (free == cached_iova || 159 (free->pfn_hi < iovad->dma_32bit_pfn && 160 free->pfn_lo >= cached_iova->pfn_lo)) { 161 iovad->cached32_node = rb_next(&free->node); 162 iovad->max32_alloc_size = iovad->dma_32bit_pfn; 163 } 164 165 cached_iova = to_iova(iovad->cached_node); 166 if (free->pfn_lo >= cached_iova->pfn_lo) 167 iovad->cached_node = rb_next(&free->node); 168 } 169 170 static struct rb_node *iova_find_limit(struct iova_domain *iovad, unsigned long limit_pfn) 171 { 172 struct rb_node *node, *next; 173 /* 174 * Ideally what we'd like to judge here is whether limit_pfn is close 175 * enough to the highest-allocated IOVA that starting the allocation 176 * walk from the anchor node will be quicker than this initial work to 177 * find an exact starting point (especially if that ends up being the 178 * anchor node anyway). This is an incredibly crude approximation which 179 * only really helps the most likely case, but is at least trivially easy. 180 */ 181 if (limit_pfn > iovad->dma_32bit_pfn) 182 return &iovad->anchor.node; 183 184 node = iovad->rbroot.rb_node; 185 while (to_iova(node)->pfn_hi < limit_pfn) 186 node = node->rb_right; 187 188 search_left: 189 while (node->rb_left && to_iova(node->rb_left)->pfn_lo >= limit_pfn) 190 node = node->rb_left; 191 192 if (!node->rb_left) 193 return node; 194 195 next = node->rb_left; 196 while (next->rb_right) { 197 next = next->rb_right; 198 if (to_iova(next)->pfn_lo >= limit_pfn) { 199 node = next; 200 goto search_left; 201 } 202 } 203 204 return node; 205 } 206 207 /* Insert the iova into domain rbtree by holding writer lock */ 208 static void 209 iova_insert_rbtree(struct rb_root *root, struct iova *iova, 210 struct rb_node *start) 211 { 212 struct rb_node **new, *parent = NULL; 213 214 new = (start) ? &start : &(root->rb_node); 215 /* Figure out where to put new node */ 216 while (*new) { 217 struct iova *this = to_iova(*new); 218 219 parent = *new; 220 221 if (iova->pfn_lo < this->pfn_lo) 222 new = &((*new)->rb_left); 223 else if (iova->pfn_lo > this->pfn_lo) 224 new = &((*new)->rb_right); 225 else { 226 WARN_ON(1); /* this should not happen */ 227 return; 228 } 229 } 230 /* Add new node and rebalance tree. */ 231 rb_link_node(&iova->node, parent, new); 232 rb_insert_color(&iova->node, root); 233 } 234 235 static int __alloc_and_insert_iova_range(struct iova_domain *iovad, 236 unsigned long size, unsigned long limit_pfn, 237 struct iova *new, bool size_aligned) 238 { 239 struct rb_node *curr, *prev; 240 struct iova *curr_iova; 241 unsigned long flags; 242 unsigned long new_pfn, retry_pfn; 243 unsigned long align_mask = ~0UL; 244 unsigned long high_pfn = limit_pfn, low_pfn = iovad->start_pfn; 245 246 if (size_aligned) 247 align_mask <<= fls_long(size - 1); 248 249 /* Walk the tree backwards */ 250 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 251 if (limit_pfn <= iovad->dma_32bit_pfn && 252 size >= iovad->max32_alloc_size) 253 goto iova32_full; 254 255 curr = __get_cached_rbnode(iovad, limit_pfn); 256 curr_iova = to_iova(curr); 257 retry_pfn = curr_iova->pfn_hi + 1; 258 259 retry: 260 do { 261 high_pfn = min(high_pfn, curr_iova->pfn_lo); 262 new_pfn = (high_pfn - size) & align_mask; 263 prev = curr; 264 curr = rb_prev(curr); 265 curr_iova = to_iova(curr); 266 } while (curr && new_pfn <= curr_iova->pfn_hi && new_pfn >= low_pfn); 267 268 if (high_pfn < size || new_pfn < low_pfn) { 269 if (low_pfn == iovad->start_pfn && retry_pfn < limit_pfn) { 270 high_pfn = limit_pfn; 271 low_pfn = retry_pfn; 272 curr = iova_find_limit(iovad, limit_pfn); 273 curr_iova = to_iova(curr); 274 goto retry; 275 } 276 iovad->max32_alloc_size = size; 277 goto iova32_full; 278 } 279 280 /* pfn_lo will point to size aligned address if size_aligned is set */ 281 new->pfn_lo = new_pfn; 282 new->pfn_hi = new->pfn_lo + size - 1; 283 284 /* If we have 'prev', it's a valid place to start the insertion. */ 285 iova_insert_rbtree(&iovad->rbroot, new, prev); 286 __cached_rbnode_insert_update(iovad, new); 287 288 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 289 return 0; 290 291 iova32_full: 292 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 293 return -ENOMEM; 294 } 295 296 static struct kmem_cache *iova_cache; 297 static unsigned int iova_cache_users; 298 static DEFINE_MUTEX(iova_cache_mutex); 299 300 static struct iova *alloc_iova_mem(void) 301 { 302 return kmem_cache_zalloc(iova_cache, GFP_ATOMIC | __GFP_NOWARN); 303 } 304 305 static void free_iova_mem(struct iova *iova) 306 { 307 if (iova->pfn_lo != IOVA_ANCHOR) 308 kmem_cache_free(iova_cache, iova); 309 } 310 311 int iova_cache_get(void) 312 { 313 mutex_lock(&iova_cache_mutex); 314 if (!iova_cache_users) { 315 int ret; 316 317 ret = cpuhp_setup_state_multi(CPUHP_IOMMU_IOVA_DEAD, "iommu/iova:dead", NULL, 318 iova_cpuhp_dead); 319 if (ret) { 320 mutex_unlock(&iova_cache_mutex); 321 pr_err("Couldn't register cpuhp handler\n"); 322 return ret; 323 } 324 325 iova_cache = kmem_cache_create( 326 "iommu_iova", sizeof(struct iova), 0, 327 SLAB_HWCACHE_ALIGN, NULL); 328 if (!iova_cache) { 329 cpuhp_remove_multi_state(CPUHP_IOMMU_IOVA_DEAD); 330 mutex_unlock(&iova_cache_mutex); 331 pr_err("Couldn't create iova cache\n"); 332 return -ENOMEM; 333 } 334 } 335 336 iova_cache_users++; 337 mutex_unlock(&iova_cache_mutex); 338 339 return 0; 340 } 341 EXPORT_SYMBOL_GPL(iova_cache_get); 342 343 void iova_cache_put(void) 344 { 345 mutex_lock(&iova_cache_mutex); 346 if (WARN_ON(!iova_cache_users)) { 347 mutex_unlock(&iova_cache_mutex); 348 return; 349 } 350 iova_cache_users--; 351 if (!iova_cache_users) { 352 cpuhp_remove_multi_state(CPUHP_IOMMU_IOVA_DEAD); 353 kmem_cache_destroy(iova_cache); 354 } 355 mutex_unlock(&iova_cache_mutex); 356 } 357 EXPORT_SYMBOL_GPL(iova_cache_put); 358 359 /** 360 * alloc_iova - allocates an iova 361 * @iovad: - iova domain in question 362 * @size: - size of page frames to allocate 363 * @limit_pfn: - max limit address 364 * @size_aligned: - set if size_aligned address range is required 365 * This function allocates an iova in the range iovad->start_pfn to limit_pfn, 366 * searching top-down from limit_pfn to iovad->start_pfn. If the size_aligned 367 * flag is set then the allocated address iova->pfn_lo will be naturally 368 * aligned on roundup_power_of_two(size). 369 */ 370 struct iova * 371 alloc_iova(struct iova_domain *iovad, unsigned long size, 372 unsigned long limit_pfn, 373 bool size_aligned) 374 { 375 struct iova *new_iova; 376 int ret; 377 378 new_iova = alloc_iova_mem(); 379 if (!new_iova) 380 return NULL; 381 382 ret = __alloc_and_insert_iova_range(iovad, size, limit_pfn + 1, 383 new_iova, size_aligned); 384 385 if (ret) { 386 free_iova_mem(new_iova); 387 return NULL; 388 } 389 390 return new_iova; 391 } 392 EXPORT_SYMBOL_GPL(alloc_iova); 393 394 static struct iova * 395 private_find_iova(struct iova_domain *iovad, unsigned long pfn) 396 { 397 struct rb_node *node = iovad->rbroot.rb_node; 398 399 assert_spin_locked(&iovad->iova_rbtree_lock); 400 401 while (node) { 402 struct iova *iova = to_iova(node); 403 404 if (pfn < iova->pfn_lo) 405 node = node->rb_left; 406 else if (pfn > iova->pfn_hi) 407 node = node->rb_right; 408 else 409 return iova; /* pfn falls within iova's range */ 410 } 411 412 return NULL; 413 } 414 415 static void remove_iova(struct iova_domain *iovad, struct iova *iova) 416 { 417 assert_spin_locked(&iovad->iova_rbtree_lock); 418 __cached_rbnode_delete_update(iovad, iova); 419 rb_erase(&iova->node, &iovad->rbroot); 420 } 421 422 /** 423 * find_iova - finds an iova for a given pfn 424 * @iovad: - iova domain in question. 425 * @pfn: - page frame number 426 * This function finds and returns an iova belonging to the 427 * given domain which matches the given pfn. 428 */ 429 struct iova *find_iova(struct iova_domain *iovad, unsigned long pfn) 430 { 431 unsigned long flags; 432 struct iova *iova; 433 434 /* Take the lock so that no other thread is manipulating the rbtree */ 435 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 436 iova = private_find_iova(iovad, pfn); 437 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 438 return iova; 439 } 440 EXPORT_SYMBOL_GPL(find_iova); 441 442 /** 443 * __free_iova - frees the given iova 444 * @iovad: iova domain in question. 445 * @iova: iova in question. 446 * Frees the given iova belonging to the giving domain 447 */ 448 void 449 __free_iova(struct iova_domain *iovad, struct iova *iova) 450 { 451 unsigned long flags; 452 453 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 454 remove_iova(iovad, iova); 455 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 456 free_iova_mem(iova); 457 } 458 EXPORT_SYMBOL_GPL(__free_iova); 459 460 /** 461 * free_iova - finds and frees the iova for a given pfn 462 * @iovad: - iova domain in question. 463 * @pfn: - pfn that is allocated previously 464 * This functions finds an iova for a given pfn and then 465 * frees the iova from that domain. 466 */ 467 void 468 free_iova(struct iova_domain *iovad, unsigned long pfn) 469 { 470 unsigned long flags; 471 struct iova *iova; 472 473 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 474 iova = private_find_iova(iovad, pfn); 475 if (!iova) { 476 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 477 return; 478 } 479 remove_iova(iovad, iova); 480 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 481 free_iova_mem(iova); 482 } 483 EXPORT_SYMBOL_GPL(free_iova); 484 485 /** 486 * alloc_iova_fast - allocates an iova from rcache 487 * @iovad: - iova domain in question 488 * @size: - size of page frames to allocate 489 * @limit_pfn: - max limit address 490 * @flush_rcache: - set to flush rcache on regular allocation failure 491 * This function tries to satisfy an iova allocation from the rcache, 492 * and falls back to regular allocation on failure. If regular allocation 493 * fails too and the flush_rcache flag is set then the rcache will be flushed. 494 */ 495 unsigned long 496 alloc_iova_fast(struct iova_domain *iovad, unsigned long size, 497 unsigned long limit_pfn, bool flush_rcache) 498 { 499 unsigned long iova_pfn; 500 struct iova *new_iova; 501 502 iova_pfn = iova_rcache_get(iovad, size, limit_pfn + 1); 503 if (iova_pfn) 504 return iova_pfn; 505 506 retry: 507 new_iova = alloc_iova(iovad, size, limit_pfn, true); 508 if (!new_iova) { 509 unsigned int cpu; 510 511 if (!flush_rcache) 512 return 0; 513 514 /* Try replenishing IOVAs by flushing rcache. */ 515 flush_rcache = false; 516 for_each_online_cpu(cpu) 517 free_cpu_cached_iovas(cpu, iovad); 518 free_global_cached_iovas(iovad); 519 goto retry; 520 } 521 522 return new_iova->pfn_lo; 523 } 524 525 /** 526 * free_iova_fast - free iova pfn range into rcache 527 * @iovad: - iova domain in question. 528 * @pfn: - pfn that is allocated previously 529 * @size: - # of pages in range 530 * This functions frees an iova range by trying to put it into the rcache, 531 * falling back to regular iova deallocation via free_iova() if this fails. 532 */ 533 void 534 free_iova_fast(struct iova_domain *iovad, unsigned long pfn, unsigned long size) 535 { 536 if (iova_rcache_insert(iovad, pfn, size)) 537 return; 538 539 free_iova(iovad, pfn); 540 } 541 542 #define fq_ring_for_each(i, fq) \ 543 for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE) 544 545 static inline bool fq_full(struct iova_fq *fq) 546 { 547 assert_spin_locked(&fq->lock); 548 return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head); 549 } 550 551 static inline unsigned fq_ring_add(struct iova_fq *fq) 552 { 553 unsigned idx = fq->tail; 554 555 assert_spin_locked(&fq->lock); 556 557 fq->tail = (idx + 1) % IOVA_FQ_SIZE; 558 559 return idx; 560 } 561 562 static void fq_ring_free(struct iova_domain *iovad, struct iova_fq *fq) 563 { 564 u64 counter = atomic64_read(&iovad->fq_flush_finish_cnt); 565 unsigned idx; 566 567 assert_spin_locked(&fq->lock); 568 569 fq_ring_for_each(idx, fq) { 570 571 if (fq->entries[idx].counter >= counter) 572 break; 573 574 if (iovad->entry_dtor) 575 iovad->entry_dtor(fq->entries[idx].data); 576 577 free_iova_fast(iovad, 578 fq->entries[idx].iova_pfn, 579 fq->entries[idx].pages); 580 581 fq->head = (fq->head + 1) % IOVA_FQ_SIZE; 582 } 583 } 584 585 static void iova_domain_flush(struct iova_domain *iovad) 586 { 587 atomic64_inc(&iovad->fq_flush_start_cnt); 588 iovad->flush_cb(iovad); 589 atomic64_inc(&iovad->fq_flush_finish_cnt); 590 } 591 592 static void fq_destroy_all_entries(struct iova_domain *iovad) 593 { 594 int cpu; 595 596 /* 597 * This code runs when the iova_domain is being detroyed, so don't 598 * bother to free iovas, just call the entry_dtor on all remaining 599 * entries. 600 */ 601 if (!iovad->entry_dtor) 602 return; 603 604 for_each_possible_cpu(cpu) { 605 struct iova_fq *fq = per_cpu_ptr(iovad->fq, cpu); 606 int idx; 607 608 fq_ring_for_each(idx, fq) 609 iovad->entry_dtor(fq->entries[idx].data); 610 } 611 } 612 613 static void fq_flush_timeout(struct timer_list *t) 614 { 615 struct iova_domain *iovad = from_timer(iovad, t, fq_timer); 616 int cpu; 617 618 atomic_set(&iovad->fq_timer_on, 0); 619 iova_domain_flush(iovad); 620 621 for_each_possible_cpu(cpu) { 622 unsigned long flags; 623 struct iova_fq *fq; 624 625 fq = per_cpu_ptr(iovad->fq, cpu); 626 spin_lock_irqsave(&fq->lock, flags); 627 fq_ring_free(iovad, fq); 628 spin_unlock_irqrestore(&fq->lock, flags); 629 } 630 } 631 632 void queue_iova(struct iova_domain *iovad, 633 unsigned long pfn, unsigned long pages, 634 unsigned long data) 635 { 636 struct iova_fq *fq = raw_cpu_ptr(iovad->fq); 637 unsigned long flags; 638 unsigned idx; 639 640 spin_lock_irqsave(&fq->lock, flags); 641 642 /* 643 * First remove all entries from the flush queue that have already been 644 * flushed out on another CPU. This makes the fq_full() check below less 645 * likely to be true. 646 */ 647 fq_ring_free(iovad, fq); 648 649 if (fq_full(fq)) { 650 iova_domain_flush(iovad); 651 fq_ring_free(iovad, fq); 652 } 653 654 idx = fq_ring_add(fq); 655 656 fq->entries[idx].iova_pfn = pfn; 657 fq->entries[idx].pages = pages; 658 fq->entries[idx].data = data; 659 fq->entries[idx].counter = atomic64_read(&iovad->fq_flush_start_cnt); 660 661 spin_unlock_irqrestore(&fq->lock, flags); 662 663 /* Avoid false sharing as much as possible. */ 664 if (!atomic_read(&iovad->fq_timer_on) && 665 !atomic_xchg(&iovad->fq_timer_on, 1)) 666 mod_timer(&iovad->fq_timer, 667 jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT)); 668 } 669 670 /** 671 * put_iova_domain - destroys the iova domain 672 * @iovad: - iova domain in question. 673 * All the iova's in that domain are destroyed. 674 */ 675 void put_iova_domain(struct iova_domain *iovad) 676 { 677 struct iova *iova, *tmp; 678 679 cpuhp_state_remove_instance_nocalls(CPUHP_IOMMU_IOVA_DEAD, 680 &iovad->cpuhp_dead); 681 682 free_iova_flush_queue(iovad); 683 free_iova_rcaches(iovad); 684 rbtree_postorder_for_each_entry_safe(iova, tmp, &iovad->rbroot, node) 685 free_iova_mem(iova); 686 } 687 EXPORT_SYMBOL_GPL(put_iova_domain); 688 689 static int 690 __is_range_overlap(struct rb_node *node, 691 unsigned long pfn_lo, unsigned long pfn_hi) 692 { 693 struct iova *iova = to_iova(node); 694 695 if ((pfn_lo <= iova->pfn_hi) && (pfn_hi >= iova->pfn_lo)) 696 return 1; 697 return 0; 698 } 699 700 static inline struct iova * 701 alloc_and_init_iova(unsigned long pfn_lo, unsigned long pfn_hi) 702 { 703 struct iova *iova; 704 705 iova = alloc_iova_mem(); 706 if (iova) { 707 iova->pfn_lo = pfn_lo; 708 iova->pfn_hi = pfn_hi; 709 } 710 711 return iova; 712 } 713 714 static struct iova * 715 __insert_new_range(struct iova_domain *iovad, 716 unsigned long pfn_lo, unsigned long pfn_hi) 717 { 718 struct iova *iova; 719 720 iova = alloc_and_init_iova(pfn_lo, pfn_hi); 721 if (iova) 722 iova_insert_rbtree(&iovad->rbroot, iova, NULL); 723 724 return iova; 725 } 726 727 static void 728 __adjust_overlap_range(struct iova *iova, 729 unsigned long *pfn_lo, unsigned long *pfn_hi) 730 { 731 if (*pfn_lo < iova->pfn_lo) 732 iova->pfn_lo = *pfn_lo; 733 if (*pfn_hi > iova->pfn_hi) 734 *pfn_lo = iova->pfn_hi + 1; 735 } 736 737 /** 738 * reserve_iova - reserves an iova in the given range 739 * @iovad: - iova domain pointer 740 * @pfn_lo: - lower page frame address 741 * @pfn_hi:- higher pfn adderss 742 * This function allocates reserves the address range from pfn_lo to pfn_hi so 743 * that this address is not dished out as part of alloc_iova. 744 */ 745 struct iova * 746 reserve_iova(struct iova_domain *iovad, 747 unsigned long pfn_lo, unsigned long pfn_hi) 748 { 749 struct rb_node *node; 750 unsigned long flags; 751 struct iova *iova; 752 unsigned int overlap = 0; 753 754 /* Don't allow nonsensical pfns */ 755 if (WARN_ON((pfn_hi | pfn_lo) > (ULLONG_MAX >> iova_shift(iovad)))) 756 return NULL; 757 758 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 759 for (node = rb_first(&iovad->rbroot); node; node = rb_next(node)) { 760 if (__is_range_overlap(node, pfn_lo, pfn_hi)) { 761 iova = to_iova(node); 762 __adjust_overlap_range(iova, &pfn_lo, &pfn_hi); 763 if ((pfn_lo >= iova->pfn_lo) && 764 (pfn_hi <= iova->pfn_hi)) 765 goto finish; 766 overlap = 1; 767 768 } else if (overlap) 769 break; 770 } 771 772 /* We are here either because this is the first reserver node 773 * or need to insert remaining non overlap addr range 774 */ 775 iova = __insert_new_range(iovad, pfn_lo, pfn_hi); 776 finish: 777 778 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 779 return iova; 780 } 781 EXPORT_SYMBOL_GPL(reserve_iova); 782 783 /* 784 * Magazine caches for IOVA ranges. For an introduction to magazines, 785 * see the USENIX 2001 paper "Magazines and Vmem: Extending the Slab 786 * Allocator to Many CPUs and Arbitrary Resources" by Bonwick and Adams. 787 * For simplicity, we use a static magazine size and don't implement the 788 * dynamic size tuning described in the paper. 789 */ 790 791 #define IOVA_MAG_SIZE 128 792 793 struct iova_magazine { 794 unsigned long size; 795 unsigned long pfns[IOVA_MAG_SIZE]; 796 }; 797 798 struct iova_cpu_rcache { 799 spinlock_t lock; 800 struct iova_magazine *loaded; 801 struct iova_magazine *prev; 802 }; 803 804 static struct iova_magazine *iova_magazine_alloc(gfp_t flags) 805 { 806 return kzalloc(sizeof(struct iova_magazine), flags); 807 } 808 809 static void iova_magazine_free(struct iova_magazine *mag) 810 { 811 kfree(mag); 812 } 813 814 static void 815 iova_magazine_free_pfns(struct iova_magazine *mag, struct iova_domain *iovad) 816 { 817 unsigned long flags; 818 int i; 819 820 if (!mag) 821 return; 822 823 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags); 824 825 for (i = 0 ; i < mag->size; ++i) { 826 struct iova *iova = private_find_iova(iovad, mag->pfns[i]); 827 828 if (WARN_ON(!iova)) 829 continue; 830 831 remove_iova(iovad, iova); 832 free_iova_mem(iova); 833 } 834 835 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags); 836 837 mag->size = 0; 838 } 839 840 static bool iova_magazine_full(struct iova_magazine *mag) 841 { 842 return (mag && mag->size == IOVA_MAG_SIZE); 843 } 844 845 static bool iova_magazine_empty(struct iova_magazine *mag) 846 { 847 return (!mag || mag->size == 0); 848 } 849 850 static unsigned long iova_magazine_pop(struct iova_magazine *mag, 851 unsigned long limit_pfn) 852 { 853 int i; 854 unsigned long pfn; 855 856 BUG_ON(iova_magazine_empty(mag)); 857 858 /* Only fall back to the rbtree if we have no suitable pfns at all */ 859 for (i = mag->size - 1; mag->pfns[i] > limit_pfn; i--) 860 if (i == 0) 861 return 0; 862 863 /* Swap it to pop it */ 864 pfn = mag->pfns[i]; 865 mag->pfns[i] = mag->pfns[--mag->size]; 866 867 return pfn; 868 } 869 870 static void iova_magazine_push(struct iova_magazine *mag, unsigned long pfn) 871 { 872 BUG_ON(iova_magazine_full(mag)); 873 874 mag->pfns[mag->size++] = pfn; 875 } 876 877 static void init_iova_rcaches(struct iova_domain *iovad) 878 { 879 struct iova_cpu_rcache *cpu_rcache; 880 struct iova_rcache *rcache; 881 unsigned int cpu; 882 int i; 883 884 for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 885 rcache = &iovad->rcaches[i]; 886 spin_lock_init(&rcache->lock); 887 rcache->depot_size = 0; 888 rcache->cpu_rcaches = __alloc_percpu(sizeof(*cpu_rcache), cache_line_size()); 889 if (WARN_ON(!rcache->cpu_rcaches)) 890 continue; 891 for_each_possible_cpu(cpu) { 892 cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu); 893 spin_lock_init(&cpu_rcache->lock); 894 cpu_rcache->loaded = iova_magazine_alloc(GFP_KERNEL); 895 cpu_rcache->prev = iova_magazine_alloc(GFP_KERNEL); 896 } 897 } 898 } 899 900 /* 901 * Try inserting IOVA range starting with 'iova_pfn' into 'rcache', and 902 * return true on success. Can fail if rcache is full and we can't free 903 * space, and free_iova() (our only caller) will then return the IOVA 904 * range to the rbtree instead. 905 */ 906 static bool __iova_rcache_insert(struct iova_domain *iovad, 907 struct iova_rcache *rcache, 908 unsigned long iova_pfn) 909 { 910 struct iova_magazine *mag_to_free = NULL; 911 struct iova_cpu_rcache *cpu_rcache; 912 bool can_insert = false; 913 unsigned long flags; 914 915 cpu_rcache = raw_cpu_ptr(rcache->cpu_rcaches); 916 spin_lock_irqsave(&cpu_rcache->lock, flags); 917 918 if (!iova_magazine_full(cpu_rcache->loaded)) { 919 can_insert = true; 920 } else if (!iova_magazine_full(cpu_rcache->prev)) { 921 swap(cpu_rcache->prev, cpu_rcache->loaded); 922 can_insert = true; 923 } else { 924 struct iova_magazine *new_mag = iova_magazine_alloc(GFP_ATOMIC); 925 926 if (new_mag) { 927 spin_lock(&rcache->lock); 928 if (rcache->depot_size < MAX_GLOBAL_MAGS) { 929 rcache->depot[rcache->depot_size++] = 930 cpu_rcache->loaded; 931 } else { 932 mag_to_free = cpu_rcache->loaded; 933 } 934 spin_unlock(&rcache->lock); 935 936 cpu_rcache->loaded = new_mag; 937 can_insert = true; 938 } 939 } 940 941 if (can_insert) 942 iova_magazine_push(cpu_rcache->loaded, iova_pfn); 943 944 spin_unlock_irqrestore(&cpu_rcache->lock, flags); 945 946 if (mag_to_free) { 947 iova_magazine_free_pfns(mag_to_free, iovad); 948 iova_magazine_free(mag_to_free); 949 } 950 951 return can_insert; 952 } 953 954 static bool iova_rcache_insert(struct iova_domain *iovad, unsigned long pfn, 955 unsigned long size) 956 { 957 unsigned int log_size = order_base_2(size); 958 959 if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE) 960 return false; 961 962 return __iova_rcache_insert(iovad, &iovad->rcaches[log_size], pfn); 963 } 964 965 /* 966 * Caller wants to allocate a new IOVA range from 'rcache'. If we can 967 * satisfy the request, return a matching non-NULL range and remove 968 * it from the 'rcache'. 969 */ 970 static unsigned long __iova_rcache_get(struct iova_rcache *rcache, 971 unsigned long limit_pfn) 972 { 973 struct iova_cpu_rcache *cpu_rcache; 974 unsigned long iova_pfn = 0; 975 bool has_pfn = false; 976 unsigned long flags; 977 978 cpu_rcache = raw_cpu_ptr(rcache->cpu_rcaches); 979 spin_lock_irqsave(&cpu_rcache->lock, flags); 980 981 if (!iova_magazine_empty(cpu_rcache->loaded)) { 982 has_pfn = true; 983 } else if (!iova_magazine_empty(cpu_rcache->prev)) { 984 swap(cpu_rcache->prev, cpu_rcache->loaded); 985 has_pfn = true; 986 } else { 987 spin_lock(&rcache->lock); 988 if (rcache->depot_size > 0) { 989 iova_magazine_free(cpu_rcache->loaded); 990 cpu_rcache->loaded = rcache->depot[--rcache->depot_size]; 991 has_pfn = true; 992 } 993 spin_unlock(&rcache->lock); 994 } 995 996 if (has_pfn) 997 iova_pfn = iova_magazine_pop(cpu_rcache->loaded, limit_pfn); 998 999 spin_unlock_irqrestore(&cpu_rcache->lock, flags); 1000 1001 return iova_pfn; 1002 } 1003 1004 /* 1005 * Try to satisfy IOVA allocation range from rcache. Fail if requested 1006 * size is too big or the DMA limit we are given isn't satisfied by the 1007 * top element in the magazine. 1008 */ 1009 static unsigned long iova_rcache_get(struct iova_domain *iovad, 1010 unsigned long size, 1011 unsigned long limit_pfn) 1012 { 1013 unsigned int log_size = order_base_2(size); 1014 1015 if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE) 1016 return 0; 1017 1018 return __iova_rcache_get(&iovad->rcaches[log_size], limit_pfn - size); 1019 } 1020 1021 /* 1022 * free rcache data structures. 1023 */ 1024 static void free_iova_rcaches(struct iova_domain *iovad) 1025 { 1026 struct iova_rcache *rcache; 1027 struct iova_cpu_rcache *cpu_rcache; 1028 unsigned int cpu; 1029 int i, j; 1030 1031 for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 1032 rcache = &iovad->rcaches[i]; 1033 for_each_possible_cpu(cpu) { 1034 cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu); 1035 iova_magazine_free(cpu_rcache->loaded); 1036 iova_magazine_free(cpu_rcache->prev); 1037 } 1038 free_percpu(rcache->cpu_rcaches); 1039 for (j = 0; j < rcache->depot_size; ++j) 1040 iova_magazine_free(rcache->depot[j]); 1041 } 1042 } 1043 1044 /* 1045 * free all the IOVA ranges cached by a cpu (used when cpu is unplugged) 1046 */ 1047 static void free_cpu_cached_iovas(unsigned int cpu, struct iova_domain *iovad) 1048 { 1049 struct iova_cpu_rcache *cpu_rcache; 1050 struct iova_rcache *rcache; 1051 unsigned long flags; 1052 int i; 1053 1054 for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 1055 rcache = &iovad->rcaches[i]; 1056 cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu); 1057 spin_lock_irqsave(&cpu_rcache->lock, flags); 1058 iova_magazine_free_pfns(cpu_rcache->loaded, iovad); 1059 iova_magazine_free_pfns(cpu_rcache->prev, iovad); 1060 spin_unlock_irqrestore(&cpu_rcache->lock, flags); 1061 } 1062 } 1063 1064 /* 1065 * free all the IOVA ranges of global cache 1066 */ 1067 static void free_global_cached_iovas(struct iova_domain *iovad) 1068 { 1069 struct iova_rcache *rcache; 1070 unsigned long flags; 1071 int i, j; 1072 1073 for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) { 1074 rcache = &iovad->rcaches[i]; 1075 spin_lock_irqsave(&rcache->lock, flags); 1076 for (j = 0; j < rcache->depot_size; ++j) { 1077 iova_magazine_free_pfns(rcache->depot[j], iovad); 1078 iova_magazine_free(rcache->depot[j]); 1079 } 1080 rcache->depot_size = 0; 1081 spin_unlock_irqrestore(&rcache->lock, flags); 1082 } 1083 } 1084 MODULE_AUTHOR("Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>"); 1085 MODULE_LICENSE("GPL"); 1086