xref: /openbmc/linux/drivers/iommu/iova.c (revision 29d97219)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright © 2006-2009, Intel Corporation.
4  *
5  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
6  */
7 
8 #include <linux/iova.h>
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/smp.h>
12 #include <linux/bitops.h>
13 #include <linux/cpu.h>
14 
15 /* The anchor node sits above the top of the usable address space */
16 #define IOVA_ANCHOR	~0UL
17 
18 static bool iova_rcache_insert(struct iova_domain *iovad,
19 			       unsigned long pfn,
20 			       unsigned long size);
21 static unsigned long iova_rcache_get(struct iova_domain *iovad,
22 				     unsigned long size,
23 				     unsigned long limit_pfn);
24 static void init_iova_rcaches(struct iova_domain *iovad);
25 static void free_cpu_cached_iovas(unsigned int cpu, struct iova_domain *iovad);
26 static void free_iova_rcaches(struct iova_domain *iovad);
27 static void fq_destroy_all_entries(struct iova_domain *iovad);
28 static void fq_flush_timeout(struct timer_list *t);
29 
30 static int iova_cpuhp_dead(unsigned int cpu, struct hlist_node *node)
31 {
32 	struct iova_domain *iovad;
33 
34 	iovad = hlist_entry_safe(node, struct iova_domain, cpuhp_dead);
35 
36 	free_cpu_cached_iovas(cpu, iovad);
37 	return 0;
38 }
39 
40 static void free_global_cached_iovas(struct iova_domain *iovad);
41 
42 static struct iova *to_iova(struct rb_node *node)
43 {
44 	return rb_entry(node, struct iova, node);
45 }
46 
47 void
48 init_iova_domain(struct iova_domain *iovad, unsigned long granule,
49 	unsigned long start_pfn)
50 {
51 	/*
52 	 * IOVA granularity will normally be equal to the smallest
53 	 * supported IOMMU page size; both *must* be capable of
54 	 * representing individual CPU pages exactly.
55 	 */
56 	BUG_ON((granule > PAGE_SIZE) || !is_power_of_2(granule));
57 
58 	spin_lock_init(&iovad->iova_rbtree_lock);
59 	iovad->rbroot = RB_ROOT;
60 	iovad->cached_node = &iovad->anchor.node;
61 	iovad->cached32_node = &iovad->anchor.node;
62 	iovad->granule = granule;
63 	iovad->start_pfn = start_pfn;
64 	iovad->dma_32bit_pfn = 1UL << (32 - iova_shift(iovad));
65 	iovad->max32_alloc_size = iovad->dma_32bit_pfn;
66 	iovad->flush_cb = NULL;
67 	iovad->fq = NULL;
68 	iovad->anchor.pfn_lo = iovad->anchor.pfn_hi = IOVA_ANCHOR;
69 	rb_link_node(&iovad->anchor.node, NULL, &iovad->rbroot.rb_node);
70 	rb_insert_color(&iovad->anchor.node, &iovad->rbroot);
71 	cpuhp_state_add_instance_nocalls(CPUHP_IOMMU_IOVA_DEAD, &iovad->cpuhp_dead);
72 	init_iova_rcaches(iovad);
73 }
74 EXPORT_SYMBOL_GPL(init_iova_domain);
75 
76 static bool has_iova_flush_queue(struct iova_domain *iovad)
77 {
78 	return !!iovad->fq;
79 }
80 
81 static void free_iova_flush_queue(struct iova_domain *iovad)
82 {
83 	if (!has_iova_flush_queue(iovad))
84 		return;
85 
86 	if (timer_pending(&iovad->fq_timer))
87 		del_timer(&iovad->fq_timer);
88 
89 	fq_destroy_all_entries(iovad);
90 
91 	free_percpu(iovad->fq);
92 
93 	iovad->fq         = NULL;
94 	iovad->flush_cb   = NULL;
95 	iovad->entry_dtor = NULL;
96 }
97 
98 int init_iova_flush_queue(struct iova_domain *iovad,
99 			  iova_flush_cb flush_cb, iova_entry_dtor entry_dtor)
100 {
101 	struct iova_fq __percpu *queue;
102 	int cpu;
103 
104 	atomic64_set(&iovad->fq_flush_start_cnt,  0);
105 	atomic64_set(&iovad->fq_flush_finish_cnt, 0);
106 
107 	queue = alloc_percpu(struct iova_fq);
108 	if (!queue)
109 		return -ENOMEM;
110 
111 	iovad->flush_cb   = flush_cb;
112 	iovad->entry_dtor = entry_dtor;
113 
114 	for_each_possible_cpu(cpu) {
115 		struct iova_fq *fq;
116 
117 		fq = per_cpu_ptr(queue, cpu);
118 		fq->head = 0;
119 		fq->tail = 0;
120 
121 		spin_lock_init(&fq->lock);
122 	}
123 
124 	smp_wmb();
125 
126 	iovad->fq = queue;
127 
128 	timer_setup(&iovad->fq_timer, fq_flush_timeout, 0);
129 	atomic_set(&iovad->fq_timer_on, 0);
130 
131 	return 0;
132 }
133 
134 static struct rb_node *
135 __get_cached_rbnode(struct iova_domain *iovad, unsigned long limit_pfn)
136 {
137 	if (limit_pfn <= iovad->dma_32bit_pfn)
138 		return iovad->cached32_node;
139 
140 	return iovad->cached_node;
141 }
142 
143 static void
144 __cached_rbnode_insert_update(struct iova_domain *iovad, struct iova *new)
145 {
146 	if (new->pfn_hi < iovad->dma_32bit_pfn)
147 		iovad->cached32_node = &new->node;
148 	else
149 		iovad->cached_node = &new->node;
150 }
151 
152 static void
153 __cached_rbnode_delete_update(struct iova_domain *iovad, struct iova *free)
154 {
155 	struct iova *cached_iova;
156 
157 	cached_iova = to_iova(iovad->cached32_node);
158 	if (free == cached_iova ||
159 	    (free->pfn_hi < iovad->dma_32bit_pfn &&
160 	     free->pfn_lo >= cached_iova->pfn_lo)) {
161 		iovad->cached32_node = rb_next(&free->node);
162 		iovad->max32_alloc_size = iovad->dma_32bit_pfn;
163 	}
164 
165 	cached_iova = to_iova(iovad->cached_node);
166 	if (free->pfn_lo >= cached_iova->pfn_lo)
167 		iovad->cached_node = rb_next(&free->node);
168 }
169 
170 static struct rb_node *iova_find_limit(struct iova_domain *iovad, unsigned long limit_pfn)
171 {
172 	struct rb_node *node, *next;
173 	/*
174 	 * Ideally what we'd like to judge here is whether limit_pfn is close
175 	 * enough to the highest-allocated IOVA that starting the allocation
176 	 * walk from the anchor node will be quicker than this initial work to
177 	 * find an exact starting point (especially if that ends up being the
178 	 * anchor node anyway). This is an incredibly crude approximation which
179 	 * only really helps the most likely case, but is at least trivially easy.
180 	 */
181 	if (limit_pfn > iovad->dma_32bit_pfn)
182 		return &iovad->anchor.node;
183 
184 	node = iovad->rbroot.rb_node;
185 	while (to_iova(node)->pfn_hi < limit_pfn)
186 		node = node->rb_right;
187 
188 search_left:
189 	while (node->rb_left && to_iova(node->rb_left)->pfn_lo >= limit_pfn)
190 		node = node->rb_left;
191 
192 	if (!node->rb_left)
193 		return node;
194 
195 	next = node->rb_left;
196 	while (next->rb_right) {
197 		next = next->rb_right;
198 		if (to_iova(next)->pfn_lo >= limit_pfn) {
199 			node = next;
200 			goto search_left;
201 		}
202 	}
203 
204 	return node;
205 }
206 
207 /* Insert the iova into domain rbtree by holding writer lock */
208 static void
209 iova_insert_rbtree(struct rb_root *root, struct iova *iova,
210 		   struct rb_node *start)
211 {
212 	struct rb_node **new, *parent = NULL;
213 
214 	new = (start) ? &start : &(root->rb_node);
215 	/* Figure out where to put new node */
216 	while (*new) {
217 		struct iova *this = to_iova(*new);
218 
219 		parent = *new;
220 
221 		if (iova->pfn_lo < this->pfn_lo)
222 			new = &((*new)->rb_left);
223 		else if (iova->pfn_lo > this->pfn_lo)
224 			new = &((*new)->rb_right);
225 		else {
226 			WARN_ON(1); /* this should not happen */
227 			return;
228 		}
229 	}
230 	/* Add new node and rebalance tree. */
231 	rb_link_node(&iova->node, parent, new);
232 	rb_insert_color(&iova->node, root);
233 }
234 
235 static int __alloc_and_insert_iova_range(struct iova_domain *iovad,
236 		unsigned long size, unsigned long limit_pfn,
237 			struct iova *new, bool size_aligned)
238 {
239 	struct rb_node *curr, *prev;
240 	struct iova *curr_iova;
241 	unsigned long flags;
242 	unsigned long new_pfn, retry_pfn;
243 	unsigned long align_mask = ~0UL;
244 	unsigned long high_pfn = limit_pfn, low_pfn = iovad->start_pfn;
245 
246 	if (size_aligned)
247 		align_mask <<= fls_long(size - 1);
248 
249 	/* Walk the tree backwards */
250 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
251 	if (limit_pfn <= iovad->dma_32bit_pfn &&
252 			size >= iovad->max32_alloc_size)
253 		goto iova32_full;
254 
255 	curr = __get_cached_rbnode(iovad, limit_pfn);
256 	curr_iova = to_iova(curr);
257 	retry_pfn = curr_iova->pfn_hi + 1;
258 
259 retry:
260 	do {
261 		high_pfn = min(high_pfn, curr_iova->pfn_lo);
262 		new_pfn = (high_pfn - size) & align_mask;
263 		prev = curr;
264 		curr = rb_prev(curr);
265 		curr_iova = to_iova(curr);
266 	} while (curr && new_pfn <= curr_iova->pfn_hi && new_pfn >= low_pfn);
267 
268 	if (high_pfn < size || new_pfn < low_pfn) {
269 		if (low_pfn == iovad->start_pfn && retry_pfn < limit_pfn) {
270 			high_pfn = limit_pfn;
271 			low_pfn = retry_pfn;
272 			curr = iova_find_limit(iovad, limit_pfn);
273 			curr_iova = to_iova(curr);
274 			goto retry;
275 		}
276 		iovad->max32_alloc_size = size;
277 		goto iova32_full;
278 	}
279 
280 	/* pfn_lo will point to size aligned address if size_aligned is set */
281 	new->pfn_lo = new_pfn;
282 	new->pfn_hi = new->pfn_lo + size - 1;
283 
284 	/* If we have 'prev', it's a valid place to start the insertion. */
285 	iova_insert_rbtree(&iovad->rbroot, new, prev);
286 	__cached_rbnode_insert_update(iovad, new);
287 
288 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
289 	return 0;
290 
291 iova32_full:
292 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
293 	return -ENOMEM;
294 }
295 
296 static struct kmem_cache *iova_cache;
297 static unsigned int iova_cache_users;
298 static DEFINE_MUTEX(iova_cache_mutex);
299 
300 static struct iova *alloc_iova_mem(void)
301 {
302 	return kmem_cache_zalloc(iova_cache, GFP_ATOMIC | __GFP_NOWARN);
303 }
304 
305 static void free_iova_mem(struct iova *iova)
306 {
307 	if (iova->pfn_lo != IOVA_ANCHOR)
308 		kmem_cache_free(iova_cache, iova);
309 }
310 
311 int iova_cache_get(void)
312 {
313 	mutex_lock(&iova_cache_mutex);
314 	if (!iova_cache_users) {
315 		int ret;
316 
317 		ret = cpuhp_setup_state_multi(CPUHP_IOMMU_IOVA_DEAD, "iommu/iova:dead", NULL,
318 					iova_cpuhp_dead);
319 		if (ret) {
320 			mutex_unlock(&iova_cache_mutex);
321 			pr_err("Couldn't register cpuhp handler\n");
322 			return ret;
323 		}
324 
325 		iova_cache = kmem_cache_create(
326 			"iommu_iova", sizeof(struct iova), 0,
327 			SLAB_HWCACHE_ALIGN, NULL);
328 		if (!iova_cache) {
329 			cpuhp_remove_multi_state(CPUHP_IOMMU_IOVA_DEAD);
330 			mutex_unlock(&iova_cache_mutex);
331 			pr_err("Couldn't create iova cache\n");
332 			return -ENOMEM;
333 		}
334 	}
335 
336 	iova_cache_users++;
337 	mutex_unlock(&iova_cache_mutex);
338 
339 	return 0;
340 }
341 EXPORT_SYMBOL_GPL(iova_cache_get);
342 
343 void iova_cache_put(void)
344 {
345 	mutex_lock(&iova_cache_mutex);
346 	if (WARN_ON(!iova_cache_users)) {
347 		mutex_unlock(&iova_cache_mutex);
348 		return;
349 	}
350 	iova_cache_users--;
351 	if (!iova_cache_users) {
352 		cpuhp_remove_multi_state(CPUHP_IOMMU_IOVA_DEAD);
353 		kmem_cache_destroy(iova_cache);
354 	}
355 	mutex_unlock(&iova_cache_mutex);
356 }
357 EXPORT_SYMBOL_GPL(iova_cache_put);
358 
359 /**
360  * alloc_iova - allocates an iova
361  * @iovad: - iova domain in question
362  * @size: - size of page frames to allocate
363  * @limit_pfn: - max limit address
364  * @size_aligned: - set if size_aligned address range is required
365  * This function allocates an iova in the range iovad->start_pfn to limit_pfn,
366  * searching top-down from limit_pfn to iovad->start_pfn. If the size_aligned
367  * flag is set then the allocated address iova->pfn_lo will be naturally
368  * aligned on roundup_power_of_two(size).
369  */
370 struct iova *
371 alloc_iova(struct iova_domain *iovad, unsigned long size,
372 	unsigned long limit_pfn,
373 	bool size_aligned)
374 {
375 	struct iova *new_iova;
376 	int ret;
377 
378 	new_iova = alloc_iova_mem();
379 	if (!new_iova)
380 		return NULL;
381 
382 	ret = __alloc_and_insert_iova_range(iovad, size, limit_pfn + 1,
383 			new_iova, size_aligned);
384 
385 	if (ret) {
386 		free_iova_mem(new_iova);
387 		return NULL;
388 	}
389 
390 	return new_iova;
391 }
392 EXPORT_SYMBOL_GPL(alloc_iova);
393 
394 static struct iova *
395 private_find_iova(struct iova_domain *iovad, unsigned long pfn)
396 {
397 	struct rb_node *node = iovad->rbroot.rb_node;
398 
399 	assert_spin_locked(&iovad->iova_rbtree_lock);
400 
401 	while (node) {
402 		struct iova *iova = to_iova(node);
403 
404 		if (pfn < iova->pfn_lo)
405 			node = node->rb_left;
406 		else if (pfn > iova->pfn_hi)
407 			node = node->rb_right;
408 		else
409 			return iova;	/* pfn falls within iova's range */
410 	}
411 
412 	return NULL;
413 }
414 
415 static void private_free_iova(struct iova_domain *iovad, struct iova *iova)
416 {
417 	assert_spin_locked(&iovad->iova_rbtree_lock);
418 	__cached_rbnode_delete_update(iovad, iova);
419 	rb_erase(&iova->node, &iovad->rbroot);
420 	free_iova_mem(iova);
421 }
422 
423 /**
424  * find_iova - finds an iova for a given pfn
425  * @iovad: - iova domain in question.
426  * @pfn: - page frame number
427  * This function finds and returns an iova belonging to the
428  * given domain which matches the given pfn.
429  */
430 struct iova *find_iova(struct iova_domain *iovad, unsigned long pfn)
431 {
432 	unsigned long flags;
433 	struct iova *iova;
434 
435 	/* Take the lock so that no other thread is manipulating the rbtree */
436 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
437 	iova = private_find_iova(iovad, pfn);
438 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
439 	return iova;
440 }
441 EXPORT_SYMBOL_GPL(find_iova);
442 
443 /**
444  * __free_iova - frees the given iova
445  * @iovad: iova domain in question.
446  * @iova: iova in question.
447  * Frees the given iova belonging to the giving domain
448  */
449 void
450 __free_iova(struct iova_domain *iovad, struct iova *iova)
451 {
452 	unsigned long flags;
453 
454 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
455 	private_free_iova(iovad, iova);
456 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
457 }
458 EXPORT_SYMBOL_GPL(__free_iova);
459 
460 /**
461  * free_iova - finds and frees the iova for a given pfn
462  * @iovad: - iova domain in question.
463  * @pfn: - pfn that is allocated previously
464  * This functions finds an iova for a given pfn and then
465  * frees the iova from that domain.
466  */
467 void
468 free_iova(struct iova_domain *iovad, unsigned long pfn)
469 {
470 	unsigned long flags;
471 	struct iova *iova;
472 
473 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
474 	iova = private_find_iova(iovad, pfn);
475 	if (iova)
476 		private_free_iova(iovad, iova);
477 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
478 
479 }
480 EXPORT_SYMBOL_GPL(free_iova);
481 
482 /**
483  * alloc_iova_fast - allocates an iova from rcache
484  * @iovad: - iova domain in question
485  * @size: - size of page frames to allocate
486  * @limit_pfn: - max limit address
487  * @flush_rcache: - set to flush rcache on regular allocation failure
488  * This function tries to satisfy an iova allocation from the rcache,
489  * and falls back to regular allocation on failure. If regular allocation
490  * fails too and the flush_rcache flag is set then the rcache will be flushed.
491 */
492 unsigned long
493 alloc_iova_fast(struct iova_domain *iovad, unsigned long size,
494 		unsigned long limit_pfn, bool flush_rcache)
495 {
496 	unsigned long iova_pfn;
497 	struct iova *new_iova;
498 
499 	iova_pfn = iova_rcache_get(iovad, size, limit_pfn + 1);
500 	if (iova_pfn)
501 		return iova_pfn;
502 
503 retry:
504 	new_iova = alloc_iova(iovad, size, limit_pfn, true);
505 	if (!new_iova) {
506 		unsigned int cpu;
507 
508 		if (!flush_rcache)
509 			return 0;
510 
511 		/* Try replenishing IOVAs by flushing rcache. */
512 		flush_rcache = false;
513 		for_each_online_cpu(cpu)
514 			free_cpu_cached_iovas(cpu, iovad);
515 		free_global_cached_iovas(iovad);
516 		goto retry;
517 	}
518 
519 	return new_iova->pfn_lo;
520 }
521 
522 /**
523  * free_iova_fast - free iova pfn range into rcache
524  * @iovad: - iova domain in question.
525  * @pfn: - pfn that is allocated previously
526  * @size: - # of pages in range
527  * This functions frees an iova range by trying to put it into the rcache,
528  * falling back to regular iova deallocation via free_iova() if this fails.
529  */
530 void
531 free_iova_fast(struct iova_domain *iovad, unsigned long pfn, unsigned long size)
532 {
533 	if (iova_rcache_insert(iovad, pfn, size))
534 		return;
535 
536 	free_iova(iovad, pfn);
537 }
538 
539 #define fq_ring_for_each(i, fq) \
540 	for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE)
541 
542 static inline bool fq_full(struct iova_fq *fq)
543 {
544 	assert_spin_locked(&fq->lock);
545 	return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head);
546 }
547 
548 static inline unsigned fq_ring_add(struct iova_fq *fq)
549 {
550 	unsigned idx = fq->tail;
551 
552 	assert_spin_locked(&fq->lock);
553 
554 	fq->tail = (idx + 1) % IOVA_FQ_SIZE;
555 
556 	return idx;
557 }
558 
559 static void fq_ring_free(struct iova_domain *iovad, struct iova_fq *fq)
560 {
561 	u64 counter = atomic64_read(&iovad->fq_flush_finish_cnt);
562 	unsigned idx;
563 
564 	assert_spin_locked(&fq->lock);
565 
566 	fq_ring_for_each(idx, fq) {
567 
568 		if (fq->entries[idx].counter >= counter)
569 			break;
570 
571 		if (iovad->entry_dtor)
572 			iovad->entry_dtor(fq->entries[idx].data);
573 
574 		free_iova_fast(iovad,
575 			       fq->entries[idx].iova_pfn,
576 			       fq->entries[idx].pages);
577 
578 		fq->head = (fq->head + 1) % IOVA_FQ_SIZE;
579 	}
580 }
581 
582 static void iova_domain_flush(struct iova_domain *iovad)
583 {
584 	atomic64_inc(&iovad->fq_flush_start_cnt);
585 	iovad->flush_cb(iovad);
586 	atomic64_inc(&iovad->fq_flush_finish_cnt);
587 }
588 
589 static void fq_destroy_all_entries(struct iova_domain *iovad)
590 {
591 	int cpu;
592 
593 	/*
594 	 * This code runs when the iova_domain is being detroyed, so don't
595 	 * bother to free iovas, just call the entry_dtor on all remaining
596 	 * entries.
597 	 */
598 	if (!iovad->entry_dtor)
599 		return;
600 
601 	for_each_possible_cpu(cpu) {
602 		struct iova_fq *fq = per_cpu_ptr(iovad->fq, cpu);
603 		int idx;
604 
605 		fq_ring_for_each(idx, fq)
606 			iovad->entry_dtor(fq->entries[idx].data);
607 	}
608 }
609 
610 static void fq_flush_timeout(struct timer_list *t)
611 {
612 	struct iova_domain *iovad = from_timer(iovad, t, fq_timer);
613 	int cpu;
614 
615 	atomic_set(&iovad->fq_timer_on, 0);
616 	iova_domain_flush(iovad);
617 
618 	for_each_possible_cpu(cpu) {
619 		unsigned long flags;
620 		struct iova_fq *fq;
621 
622 		fq = per_cpu_ptr(iovad->fq, cpu);
623 		spin_lock_irqsave(&fq->lock, flags);
624 		fq_ring_free(iovad, fq);
625 		spin_unlock_irqrestore(&fq->lock, flags);
626 	}
627 }
628 
629 void queue_iova(struct iova_domain *iovad,
630 		unsigned long pfn, unsigned long pages,
631 		unsigned long data)
632 {
633 	struct iova_fq *fq = raw_cpu_ptr(iovad->fq);
634 	unsigned long flags;
635 	unsigned idx;
636 
637 	spin_lock_irqsave(&fq->lock, flags);
638 
639 	/*
640 	 * First remove all entries from the flush queue that have already been
641 	 * flushed out on another CPU. This makes the fq_full() check below less
642 	 * likely to be true.
643 	 */
644 	fq_ring_free(iovad, fq);
645 
646 	if (fq_full(fq)) {
647 		iova_domain_flush(iovad);
648 		fq_ring_free(iovad, fq);
649 	}
650 
651 	idx = fq_ring_add(fq);
652 
653 	fq->entries[idx].iova_pfn = pfn;
654 	fq->entries[idx].pages    = pages;
655 	fq->entries[idx].data     = data;
656 	fq->entries[idx].counter  = atomic64_read(&iovad->fq_flush_start_cnt);
657 
658 	spin_unlock_irqrestore(&fq->lock, flags);
659 
660 	/* Avoid false sharing as much as possible. */
661 	if (!atomic_read(&iovad->fq_timer_on) &&
662 	    !atomic_xchg(&iovad->fq_timer_on, 1))
663 		mod_timer(&iovad->fq_timer,
664 			  jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT));
665 }
666 
667 /**
668  * put_iova_domain - destroys the iova domain
669  * @iovad: - iova domain in question.
670  * All the iova's in that domain are destroyed.
671  */
672 void put_iova_domain(struct iova_domain *iovad)
673 {
674 	struct iova *iova, *tmp;
675 
676 	cpuhp_state_remove_instance_nocalls(CPUHP_IOMMU_IOVA_DEAD,
677 					    &iovad->cpuhp_dead);
678 
679 	free_iova_flush_queue(iovad);
680 	free_iova_rcaches(iovad);
681 	rbtree_postorder_for_each_entry_safe(iova, tmp, &iovad->rbroot, node)
682 		free_iova_mem(iova);
683 }
684 EXPORT_SYMBOL_GPL(put_iova_domain);
685 
686 static int
687 __is_range_overlap(struct rb_node *node,
688 	unsigned long pfn_lo, unsigned long pfn_hi)
689 {
690 	struct iova *iova = to_iova(node);
691 
692 	if ((pfn_lo <= iova->pfn_hi) && (pfn_hi >= iova->pfn_lo))
693 		return 1;
694 	return 0;
695 }
696 
697 static inline struct iova *
698 alloc_and_init_iova(unsigned long pfn_lo, unsigned long pfn_hi)
699 {
700 	struct iova *iova;
701 
702 	iova = alloc_iova_mem();
703 	if (iova) {
704 		iova->pfn_lo = pfn_lo;
705 		iova->pfn_hi = pfn_hi;
706 	}
707 
708 	return iova;
709 }
710 
711 static struct iova *
712 __insert_new_range(struct iova_domain *iovad,
713 	unsigned long pfn_lo, unsigned long pfn_hi)
714 {
715 	struct iova *iova;
716 
717 	iova = alloc_and_init_iova(pfn_lo, pfn_hi);
718 	if (iova)
719 		iova_insert_rbtree(&iovad->rbroot, iova, NULL);
720 
721 	return iova;
722 }
723 
724 static void
725 __adjust_overlap_range(struct iova *iova,
726 	unsigned long *pfn_lo, unsigned long *pfn_hi)
727 {
728 	if (*pfn_lo < iova->pfn_lo)
729 		iova->pfn_lo = *pfn_lo;
730 	if (*pfn_hi > iova->pfn_hi)
731 		*pfn_lo = iova->pfn_hi + 1;
732 }
733 
734 /**
735  * reserve_iova - reserves an iova in the given range
736  * @iovad: - iova domain pointer
737  * @pfn_lo: - lower page frame address
738  * @pfn_hi:- higher pfn adderss
739  * This function allocates reserves the address range from pfn_lo to pfn_hi so
740  * that this address is not dished out as part of alloc_iova.
741  */
742 struct iova *
743 reserve_iova(struct iova_domain *iovad,
744 	unsigned long pfn_lo, unsigned long pfn_hi)
745 {
746 	struct rb_node *node;
747 	unsigned long flags;
748 	struct iova *iova;
749 	unsigned int overlap = 0;
750 
751 	/* Don't allow nonsensical pfns */
752 	if (WARN_ON((pfn_hi | pfn_lo) > (ULLONG_MAX >> iova_shift(iovad))))
753 		return NULL;
754 
755 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
756 	for (node = rb_first(&iovad->rbroot); node; node = rb_next(node)) {
757 		if (__is_range_overlap(node, pfn_lo, pfn_hi)) {
758 			iova = to_iova(node);
759 			__adjust_overlap_range(iova, &pfn_lo, &pfn_hi);
760 			if ((pfn_lo >= iova->pfn_lo) &&
761 				(pfn_hi <= iova->pfn_hi))
762 				goto finish;
763 			overlap = 1;
764 
765 		} else if (overlap)
766 				break;
767 	}
768 
769 	/* We are here either because this is the first reserver node
770 	 * or need to insert remaining non overlap addr range
771 	 */
772 	iova = __insert_new_range(iovad, pfn_lo, pfn_hi);
773 finish:
774 
775 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
776 	return iova;
777 }
778 EXPORT_SYMBOL_GPL(reserve_iova);
779 
780 /*
781  * Magazine caches for IOVA ranges.  For an introduction to magazines,
782  * see the USENIX 2001 paper "Magazines and Vmem: Extending the Slab
783  * Allocator to Many CPUs and Arbitrary Resources" by Bonwick and Adams.
784  * For simplicity, we use a static magazine size and don't implement the
785  * dynamic size tuning described in the paper.
786  */
787 
788 #define IOVA_MAG_SIZE 128
789 
790 struct iova_magazine {
791 	unsigned long size;
792 	unsigned long pfns[IOVA_MAG_SIZE];
793 };
794 
795 struct iova_cpu_rcache {
796 	spinlock_t lock;
797 	struct iova_magazine *loaded;
798 	struct iova_magazine *prev;
799 };
800 
801 static struct iova_magazine *iova_magazine_alloc(gfp_t flags)
802 {
803 	return kzalloc(sizeof(struct iova_magazine), flags);
804 }
805 
806 static void iova_magazine_free(struct iova_magazine *mag)
807 {
808 	kfree(mag);
809 }
810 
811 static void
812 iova_magazine_free_pfns(struct iova_magazine *mag, struct iova_domain *iovad)
813 {
814 	unsigned long flags;
815 	int i;
816 
817 	if (!mag)
818 		return;
819 
820 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
821 
822 	for (i = 0 ; i < mag->size; ++i) {
823 		struct iova *iova = private_find_iova(iovad, mag->pfns[i]);
824 
825 		if (WARN_ON(!iova))
826 			continue;
827 
828 		private_free_iova(iovad, iova);
829 	}
830 
831 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
832 
833 	mag->size = 0;
834 }
835 
836 static bool iova_magazine_full(struct iova_magazine *mag)
837 {
838 	return (mag && mag->size == IOVA_MAG_SIZE);
839 }
840 
841 static bool iova_magazine_empty(struct iova_magazine *mag)
842 {
843 	return (!mag || mag->size == 0);
844 }
845 
846 static unsigned long iova_magazine_pop(struct iova_magazine *mag,
847 				       unsigned long limit_pfn)
848 {
849 	int i;
850 	unsigned long pfn;
851 
852 	BUG_ON(iova_magazine_empty(mag));
853 
854 	/* Only fall back to the rbtree if we have no suitable pfns at all */
855 	for (i = mag->size - 1; mag->pfns[i] > limit_pfn; i--)
856 		if (i == 0)
857 			return 0;
858 
859 	/* Swap it to pop it */
860 	pfn = mag->pfns[i];
861 	mag->pfns[i] = mag->pfns[--mag->size];
862 
863 	return pfn;
864 }
865 
866 static void iova_magazine_push(struct iova_magazine *mag, unsigned long pfn)
867 {
868 	BUG_ON(iova_magazine_full(mag));
869 
870 	mag->pfns[mag->size++] = pfn;
871 }
872 
873 static void init_iova_rcaches(struct iova_domain *iovad)
874 {
875 	struct iova_cpu_rcache *cpu_rcache;
876 	struct iova_rcache *rcache;
877 	unsigned int cpu;
878 	int i;
879 
880 	for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) {
881 		rcache = &iovad->rcaches[i];
882 		spin_lock_init(&rcache->lock);
883 		rcache->depot_size = 0;
884 		rcache->cpu_rcaches = __alloc_percpu(sizeof(*cpu_rcache), cache_line_size());
885 		if (WARN_ON(!rcache->cpu_rcaches))
886 			continue;
887 		for_each_possible_cpu(cpu) {
888 			cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu);
889 			spin_lock_init(&cpu_rcache->lock);
890 			cpu_rcache->loaded = iova_magazine_alloc(GFP_KERNEL);
891 			cpu_rcache->prev = iova_magazine_alloc(GFP_KERNEL);
892 		}
893 	}
894 }
895 
896 /*
897  * Try inserting IOVA range starting with 'iova_pfn' into 'rcache', and
898  * return true on success.  Can fail if rcache is full and we can't free
899  * space, and free_iova() (our only caller) will then return the IOVA
900  * range to the rbtree instead.
901  */
902 static bool __iova_rcache_insert(struct iova_domain *iovad,
903 				 struct iova_rcache *rcache,
904 				 unsigned long iova_pfn)
905 {
906 	struct iova_magazine *mag_to_free = NULL;
907 	struct iova_cpu_rcache *cpu_rcache;
908 	bool can_insert = false;
909 	unsigned long flags;
910 
911 	cpu_rcache = raw_cpu_ptr(rcache->cpu_rcaches);
912 	spin_lock_irqsave(&cpu_rcache->lock, flags);
913 
914 	if (!iova_magazine_full(cpu_rcache->loaded)) {
915 		can_insert = true;
916 	} else if (!iova_magazine_full(cpu_rcache->prev)) {
917 		swap(cpu_rcache->prev, cpu_rcache->loaded);
918 		can_insert = true;
919 	} else {
920 		struct iova_magazine *new_mag = iova_magazine_alloc(GFP_ATOMIC);
921 
922 		if (new_mag) {
923 			spin_lock(&rcache->lock);
924 			if (rcache->depot_size < MAX_GLOBAL_MAGS) {
925 				rcache->depot[rcache->depot_size++] =
926 						cpu_rcache->loaded;
927 			} else {
928 				mag_to_free = cpu_rcache->loaded;
929 			}
930 			spin_unlock(&rcache->lock);
931 
932 			cpu_rcache->loaded = new_mag;
933 			can_insert = true;
934 		}
935 	}
936 
937 	if (can_insert)
938 		iova_magazine_push(cpu_rcache->loaded, iova_pfn);
939 
940 	spin_unlock_irqrestore(&cpu_rcache->lock, flags);
941 
942 	if (mag_to_free) {
943 		iova_magazine_free_pfns(mag_to_free, iovad);
944 		iova_magazine_free(mag_to_free);
945 	}
946 
947 	return can_insert;
948 }
949 
950 static bool iova_rcache_insert(struct iova_domain *iovad, unsigned long pfn,
951 			       unsigned long size)
952 {
953 	unsigned int log_size = order_base_2(size);
954 
955 	if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE)
956 		return false;
957 
958 	return __iova_rcache_insert(iovad, &iovad->rcaches[log_size], pfn);
959 }
960 
961 /*
962  * Caller wants to allocate a new IOVA range from 'rcache'.  If we can
963  * satisfy the request, return a matching non-NULL range and remove
964  * it from the 'rcache'.
965  */
966 static unsigned long __iova_rcache_get(struct iova_rcache *rcache,
967 				       unsigned long limit_pfn)
968 {
969 	struct iova_cpu_rcache *cpu_rcache;
970 	unsigned long iova_pfn = 0;
971 	bool has_pfn = false;
972 	unsigned long flags;
973 
974 	cpu_rcache = raw_cpu_ptr(rcache->cpu_rcaches);
975 	spin_lock_irqsave(&cpu_rcache->lock, flags);
976 
977 	if (!iova_magazine_empty(cpu_rcache->loaded)) {
978 		has_pfn = true;
979 	} else if (!iova_magazine_empty(cpu_rcache->prev)) {
980 		swap(cpu_rcache->prev, cpu_rcache->loaded);
981 		has_pfn = true;
982 	} else {
983 		spin_lock(&rcache->lock);
984 		if (rcache->depot_size > 0) {
985 			iova_magazine_free(cpu_rcache->loaded);
986 			cpu_rcache->loaded = rcache->depot[--rcache->depot_size];
987 			has_pfn = true;
988 		}
989 		spin_unlock(&rcache->lock);
990 	}
991 
992 	if (has_pfn)
993 		iova_pfn = iova_magazine_pop(cpu_rcache->loaded, limit_pfn);
994 
995 	spin_unlock_irqrestore(&cpu_rcache->lock, flags);
996 
997 	return iova_pfn;
998 }
999 
1000 /*
1001  * Try to satisfy IOVA allocation range from rcache.  Fail if requested
1002  * size is too big or the DMA limit we are given isn't satisfied by the
1003  * top element in the magazine.
1004  */
1005 static unsigned long iova_rcache_get(struct iova_domain *iovad,
1006 				     unsigned long size,
1007 				     unsigned long limit_pfn)
1008 {
1009 	unsigned int log_size = order_base_2(size);
1010 
1011 	if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE)
1012 		return 0;
1013 
1014 	return __iova_rcache_get(&iovad->rcaches[log_size], limit_pfn - size);
1015 }
1016 
1017 /*
1018  * free rcache data structures.
1019  */
1020 static void free_iova_rcaches(struct iova_domain *iovad)
1021 {
1022 	struct iova_rcache *rcache;
1023 	struct iova_cpu_rcache *cpu_rcache;
1024 	unsigned int cpu;
1025 	int i, j;
1026 
1027 	for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) {
1028 		rcache = &iovad->rcaches[i];
1029 		for_each_possible_cpu(cpu) {
1030 			cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu);
1031 			iova_magazine_free(cpu_rcache->loaded);
1032 			iova_magazine_free(cpu_rcache->prev);
1033 		}
1034 		free_percpu(rcache->cpu_rcaches);
1035 		for (j = 0; j < rcache->depot_size; ++j)
1036 			iova_magazine_free(rcache->depot[j]);
1037 	}
1038 }
1039 
1040 /*
1041  * free all the IOVA ranges cached by a cpu (used when cpu is unplugged)
1042  */
1043 static void free_cpu_cached_iovas(unsigned int cpu, struct iova_domain *iovad)
1044 {
1045 	struct iova_cpu_rcache *cpu_rcache;
1046 	struct iova_rcache *rcache;
1047 	unsigned long flags;
1048 	int i;
1049 
1050 	for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) {
1051 		rcache = &iovad->rcaches[i];
1052 		cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu);
1053 		spin_lock_irqsave(&cpu_rcache->lock, flags);
1054 		iova_magazine_free_pfns(cpu_rcache->loaded, iovad);
1055 		iova_magazine_free_pfns(cpu_rcache->prev, iovad);
1056 		spin_unlock_irqrestore(&cpu_rcache->lock, flags);
1057 	}
1058 }
1059 
1060 /*
1061  * free all the IOVA ranges of global cache
1062  */
1063 static void free_global_cached_iovas(struct iova_domain *iovad)
1064 {
1065 	struct iova_rcache *rcache;
1066 	unsigned long flags;
1067 	int i, j;
1068 
1069 	for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) {
1070 		rcache = &iovad->rcaches[i];
1071 		spin_lock_irqsave(&rcache->lock, flags);
1072 		for (j = 0; j < rcache->depot_size; ++j) {
1073 			iova_magazine_free_pfns(rcache->depot[j], iovad);
1074 			iova_magazine_free(rcache->depot[j]);
1075 		}
1076 		rcache->depot_size = 0;
1077 		spin_unlock_irqrestore(&rcache->lock, flags);
1078 	}
1079 }
1080 MODULE_AUTHOR("Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>");
1081 MODULE_LICENSE("GPL");
1082