1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc. 4 * Author: Joerg Roedel <jroedel@suse.de> 5 */ 6 7 #define pr_fmt(fmt) "iommu: " fmt 8 9 #include <linux/device.h> 10 #include <linux/dma-iommu.h> 11 #include <linux/kernel.h> 12 #include <linux/bits.h> 13 #include <linux/bug.h> 14 #include <linux/types.h> 15 #include <linux/init.h> 16 #include <linux/export.h> 17 #include <linux/slab.h> 18 #include <linux/errno.h> 19 #include <linux/iommu.h> 20 #include <linux/idr.h> 21 #include <linux/notifier.h> 22 #include <linux/err.h> 23 #include <linux/pci.h> 24 #include <linux/bitops.h> 25 #include <linux/property.h> 26 #include <linux/fsl/mc.h> 27 #include <linux/module.h> 28 #include <linux/cc_platform.h> 29 #include <trace/events/iommu.h> 30 31 static struct kset *iommu_group_kset; 32 static DEFINE_IDA(iommu_group_ida); 33 34 static unsigned int iommu_def_domain_type __read_mostly; 35 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT); 36 static u32 iommu_cmd_line __read_mostly; 37 38 struct iommu_group { 39 struct kobject kobj; 40 struct kobject *devices_kobj; 41 struct list_head devices; 42 struct mutex mutex; 43 struct blocking_notifier_head notifier; 44 void *iommu_data; 45 void (*iommu_data_release)(void *iommu_data); 46 char *name; 47 int id; 48 struct iommu_domain *default_domain; 49 struct iommu_domain *domain; 50 struct list_head entry; 51 }; 52 53 struct group_device { 54 struct list_head list; 55 struct device *dev; 56 char *name; 57 }; 58 59 struct iommu_group_attribute { 60 struct attribute attr; 61 ssize_t (*show)(struct iommu_group *group, char *buf); 62 ssize_t (*store)(struct iommu_group *group, 63 const char *buf, size_t count); 64 }; 65 66 static const char * const iommu_group_resv_type_string[] = { 67 [IOMMU_RESV_DIRECT] = "direct", 68 [IOMMU_RESV_DIRECT_RELAXABLE] = "direct-relaxable", 69 [IOMMU_RESV_RESERVED] = "reserved", 70 [IOMMU_RESV_MSI] = "msi", 71 [IOMMU_RESV_SW_MSI] = "msi", 72 }; 73 74 #define IOMMU_CMD_LINE_DMA_API BIT(0) 75 #define IOMMU_CMD_LINE_STRICT BIT(1) 76 77 static int iommu_alloc_default_domain(struct iommu_group *group, 78 struct device *dev); 79 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus, 80 unsigned type); 81 static int __iommu_attach_device(struct iommu_domain *domain, 82 struct device *dev); 83 static int __iommu_attach_group(struct iommu_domain *domain, 84 struct iommu_group *group); 85 static void __iommu_detach_group(struct iommu_domain *domain, 86 struct iommu_group *group); 87 static int iommu_create_device_direct_mappings(struct iommu_group *group, 88 struct device *dev); 89 static struct iommu_group *iommu_group_get_for_dev(struct device *dev); 90 static ssize_t iommu_group_store_type(struct iommu_group *group, 91 const char *buf, size_t count); 92 93 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \ 94 struct iommu_group_attribute iommu_group_attr_##_name = \ 95 __ATTR(_name, _mode, _show, _store) 96 97 #define to_iommu_group_attr(_attr) \ 98 container_of(_attr, struct iommu_group_attribute, attr) 99 #define to_iommu_group(_kobj) \ 100 container_of(_kobj, struct iommu_group, kobj) 101 102 static LIST_HEAD(iommu_device_list); 103 static DEFINE_SPINLOCK(iommu_device_lock); 104 105 /* 106 * Use a function instead of an array here because the domain-type is a 107 * bit-field, so an array would waste memory. 108 */ 109 static const char *iommu_domain_type_str(unsigned int t) 110 { 111 switch (t) { 112 case IOMMU_DOMAIN_BLOCKED: 113 return "Blocked"; 114 case IOMMU_DOMAIN_IDENTITY: 115 return "Passthrough"; 116 case IOMMU_DOMAIN_UNMANAGED: 117 return "Unmanaged"; 118 case IOMMU_DOMAIN_DMA: 119 case IOMMU_DOMAIN_DMA_FQ: 120 return "Translated"; 121 default: 122 return "Unknown"; 123 } 124 } 125 126 static int __init iommu_subsys_init(void) 127 { 128 if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) { 129 if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH)) 130 iommu_set_default_passthrough(false); 131 else 132 iommu_set_default_translated(false); 133 134 if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) { 135 pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n"); 136 iommu_set_default_translated(false); 137 } 138 } 139 140 if (!iommu_default_passthrough() && !iommu_dma_strict) 141 iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ; 142 143 pr_info("Default domain type: %s %s\n", 144 iommu_domain_type_str(iommu_def_domain_type), 145 (iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ? 146 "(set via kernel command line)" : ""); 147 148 if (!iommu_default_passthrough()) 149 pr_info("DMA domain TLB invalidation policy: %s mode %s\n", 150 iommu_dma_strict ? "strict" : "lazy", 151 (iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ? 152 "(set via kernel command line)" : ""); 153 154 return 0; 155 } 156 subsys_initcall(iommu_subsys_init); 157 158 /** 159 * iommu_device_register() - Register an IOMMU hardware instance 160 * @iommu: IOMMU handle for the instance 161 * @ops: IOMMU ops to associate with the instance 162 * @hwdev: (optional) actual instance device, used for fwnode lookup 163 * 164 * Return: 0 on success, or an error. 165 */ 166 int iommu_device_register(struct iommu_device *iommu, 167 const struct iommu_ops *ops, struct device *hwdev) 168 { 169 /* We need to be able to take module references appropriately */ 170 if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner)) 171 return -EINVAL; 172 173 iommu->ops = ops; 174 if (hwdev) 175 iommu->fwnode = hwdev->fwnode; 176 177 spin_lock(&iommu_device_lock); 178 list_add_tail(&iommu->list, &iommu_device_list); 179 spin_unlock(&iommu_device_lock); 180 return 0; 181 } 182 EXPORT_SYMBOL_GPL(iommu_device_register); 183 184 void iommu_device_unregister(struct iommu_device *iommu) 185 { 186 spin_lock(&iommu_device_lock); 187 list_del(&iommu->list); 188 spin_unlock(&iommu_device_lock); 189 } 190 EXPORT_SYMBOL_GPL(iommu_device_unregister); 191 192 static struct dev_iommu *dev_iommu_get(struct device *dev) 193 { 194 struct dev_iommu *param = dev->iommu; 195 196 if (param) 197 return param; 198 199 param = kzalloc(sizeof(*param), GFP_KERNEL); 200 if (!param) 201 return NULL; 202 203 mutex_init(¶m->lock); 204 dev->iommu = param; 205 return param; 206 } 207 208 static void dev_iommu_free(struct device *dev) 209 { 210 struct dev_iommu *param = dev->iommu; 211 212 dev->iommu = NULL; 213 if (param->fwspec) { 214 fwnode_handle_put(param->fwspec->iommu_fwnode); 215 kfree(param->fwspec); 216 } 217 kfree(param); 218 } 219 220 static int __iommu_probe_device(struct device *dev, struct list_head *group_list) 221 { 222 const struct iommu_ops *ops = dev->bus->iommu_ops; 223 struct iommu_device *iommu_dev; 224 struct iommu_group *group; 225 int ret; 226 227 if (!ops) 228 return -ENODEV; 229 230 if (!dev_iommu_get(dev)) 231 return -ENOMEM; 232 233 if (!try_module_get(ops->owner)) { 234 ret = -EINVAL; 235 goto err_free; 236 } 237 238 iommu_dev = ops->probe_device(dev); 239 if (IS_ERR(iommu_dev)) { 240 ret = PTR_ERR(iommu_dev); 241 goto out_module_put; 242 } 243 244 dev->iommu->iommu_dev = iommu_dev; 245 246 group = iommu_group_get_for_dev(dev); 247 if (IS_ERR(group)) { 248 ret = PTR_ERR(group); 249 goto out_release; 250 } 251 iommu_group_put(group); 252 253 if (group_list && !group->default_domain && list_empty(&group->entry)) 254 list_add_tail(&group->entry, group_list); 255 256 iommu_device_link(iommu_dev, dev); 257 258 return 0; 259 260 out_release: 261 ops->release_device(dev); 262 263 out_module_put: 264 module_put(ops->owner); 265 266 err_free: 267 dev_iommu_free(dev); 268 269 return ret; 270 } 271 272 int iommu_probe_device(struct device *dev) 273 { 274 const struct iommu_ops *ops = dev->bus->iommu_ops; 275 struct iommu_group *group; 276 int ret; 277 278 ret = __iommu_probe_device(dev, NULL); 279 if (ret) 280 goto err_out; 281 282 group = iommu_group_get(dev); 283 if (!group) { 284 ret = -ENODEV; 285 goto err_release; 286 } 287 288 /* 289 * Try to allocate a default domain - needs support from the 290 * IOMMU driver. There are still some drivers which don't 291 * support default domains, so the return value is not yet 292 * checked. 293 */ 294 mutex_lock(&group->mutex); 295 iommu_alloc_default_domain(group, dev); 296 297 if (group->default_domain) { 298 ret = __iommu_attach_device(group->default_domain, dev); 299 if (ret) { 300 mutex_unlock(&group->mutex); 301 iommu_group_put(group); 302 goto err_release; 303 } 304 } 305 306 iommu_create_device_direct_mappings(group, dev); 307 308 mutex_unlock(&group->mutex); 309 iommu_group_put(group); 310 311 if (ops->probe_finalize) 312 ops->probe_finalize(dev); 313 314 return 0; 315 316 err_release: 317 iommu_release_device(dev); 318 319 err_out: 320 return ret; 321 322 } 323 324 void iommu_release_device(struct device *dev) 325 { 326 const struct iommu_ops *ops; 327 328 if (!dev->iommu) 329 return; 330 331 iommu_device_unlink(dev->iommu->iommu_dev, dev); 332 333 ops = dev_iommu_ops(dev); 334 ops->release_device(dev); 335 336 iommu_group_remove_device(dev); 337 module_put(ops->owner); 338 dev_iommu_free(dev); 339 } 340 341 static int __init iommu_set_def_domain_type(char *str) 342 { 343 bool pt; 344 int ret; 345 346 ret = kstrtobool(str, &pt); 347 if (ret) 348 return ret; 349 350 if (pt) 351 iommu_set_default_passthrough(true); 352 else 353 iommu_set_default_translated(true); 354 355 return 0; 356 } 357 early_param("iommu.passthrough", iommu_set_def_domain_type); 358 359 static int __init iommu_dma_setup(char *str) 360 { 361 int ret = kstrtobool(str, &iommu_dma_strict); 362 363 if (!ret) 364 iommu_cmd_line |= IOMMU_CMD_LINE_STRICT; 365 return ret; 366 } 367 early_param("iommu.strict", iommu_dma_setup); 368 369 void iommu_set_dma_strict(void) 370 { 371 iommu_dma_strict = true; 372 if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ) 373 iommu_def_domain_type = IOMMU_DOMAIN_DMA; 374 } 375 376 static ssize_t iommu_group_attr_show(struct kobject *kobj, 377 struct attribute *__attr, char *buf) 378 { 379 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 380 struct iommu_group *group = to_iommu_group(kobj); 381 ssize_t ret = -EIO; 382 383 if (attr->show) 384 ret = attr->show(group, buf); 385 return ret; 386 } 387 388 static ssize_t iommu_group_attr_store(struct kobject *kobj, 389 struct attribute *__attr, 390 const char *buf, size_t count) 391 { 392 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 393 struct iommu_group *group = to_iommu_group(kobj); 394 ssize_t ret = -EIO; 395 396 if (attr->store) 397 ret = attr->store(group, buf, count); 398 return ret; 399 } 400 401 static const struct sysfs_ops iommu_group_sysfs_ops = { 402 .show = iommu_group_attr_show, 403 .store = iommu_group_attr_store, 404 }; 405 406 static int iommu_group_create_file(struct iommu_group *group, 407 struct iommu_group_attribute *attr) 408 { 409 return sysfs_create_file(&group->kobj, &attr->attr); 410 } 411 412 static void iommu_group_remove_file(struct iommu_group *group, 413 struct iommu_group_attribute *attr) 414 { 415 sysfs_remove_file(&group->kobj, &attr->attr); 416 } 417 418 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf) 419 { 420 return sprintf(buf, "%s\n", group->name); 421 } 422 423 /** 424 * iommu_insert_resv_region - Insert a new region in the 425 * list of reserved regions. 426 * @new: new region to insert 427 * @regions: list of regions 428 * 429 * Elements are sorted by start address and overlapping segments 430 * of the same type are merged. 431 */ 432 static int iommu_insert_resv_region(struct iommu_resv_region *new, 433 struct list_head *regions) 434 { 435 struct iommu_resv_region *iter, *tmp, *nr, *top; 436 LIST_HEAD(stack); 437 438 nr = iommu_alloc_resv_region(new->start, new->length, 439 new->prot, new->type); 440 if (!nr) 441 return -ENOMEM; 442 443 /* First add the new element based on start address sorting */ 444 list_for_each_entry(iter, regions, list) { 445 if (nr->start < iter->start || 446 (nr->start == iter->start && nr->type <= iter->type)) 447 break; 448 } 449 list_add_tail(&nr->list, &iter->list); 450 451 /* Merge overlapping segments of type nr->type in @regions, if any */ 452 list_for_each_entry_safe(iter, tmp, regions, list) { 453 phys_addr_t top_end, iter_end = iter->start + iter->length - 1; 454 455 /* no merge needed on elements of different types than @new */ 456 if (iter->type != new->type) { 457 list_move_tail(&iter->list, &stack); 458 continue; 459 } 460 461 /* look for the last stack element of same type as @iter */ 462 list_for_each_entry_reverse(top, &stack, list) 463 if (top->type == iter->type) 464 goto check_overlap; 465 466 list_move_tail(&iter->list, &stack); 467 continue; 468 469 check_overlap: 470 top_end = top->start + top->length - 1; 471 472 if (iter->start > top_end + 1) { 473 list_move_tail(&iter->list, &stack); 474 } else { 475 top->length = max(top_end, iter_end) - top->start + 1; 476 list_del(&iter->list); 477 kfree(iter); 478 } 479 } 480 list_splice(&stack, regions); 481 return 0; 482 } 483 484 static int 485 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions, 486 struct list_head *group_resv_regions) 487 { 488 struct iommu_resv_region *entry; 489 int ret = 0; 490 491 list_for_each_entry(entry, dev_resv_regions, list) { 492 ret = iommu_insert_resv_region(entry, group_resv_regions); 493 if (ret) 494 break; 495 } 496 return ret; 497 } 498 499 int iommu_get_group_resv_regions(struct iommu_group *group, 500 struct list_head *head) 501 { 502 struct group_device *device; 503 int ret = 0; 504 505 mutex_lock(&group->mutex); 506 list_for_each_entry(device, &group->devices, list) { 507 struct list_head dev_resv_regions; 508 509 /* 510 * Non-API groups still expose reserved_regions in sysfs, 511 * so filter out calls that get here that way. 512 */ 513 if (!device->dev->iommu) 514 break; 515 516 INIT_LIST_HEAD(&dev_resv_regions); 517 iommu_get_resv_regions(device->dev, &dev_resv_regions); 518 ret = iommu_insert_device_resv_regions(&dev_resv_regions, head); 519 iommu_put_resv_regions(device->dev, &dev_resv_regions); 520 if (ret) 521 break; 522 } 523 mutex_unlock(&group->mutex); 524 return ret; 525 } 526 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions); 527 528 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group, 529 char *buf) 530 { 531 struct iommu_resv_region *region, *next; 532 struct list_head group_resv_regions; 533 char *str = buf; 534 535 INIT_LIST_HEAD(&group_resv_regions); 536 iommu_get_group_resv_regions(group, &group_resv_regions); 537 538 list_for_each_entry_safe(region, next, &group_resv_regions, list) { 539 str += sprintf(str, "0x%016llx 0x%016llx %s\n", 540 (long long int)region->start, 541 (long long int)(region->start + 542 region->length - 1), 543 iommu_group_resv_type_string[region->type]); 544 kfree(region); 545 } 546 547 return (str - buf); 548 } 549 550 static ssize_t iommu_group_show_type(struct iommu_group *group, 551 char *buf) 552 { 553 char *type = "unknown\n"; 554 555 mutex_lock(&group->mutex); 556 if (group->default_domain) { 557 switch (group->default_domain->type) { 558 case IOMMU_DOMAIN_BLOCKED: 559 type = "blocked\n"; 560 break; 561 case IOMMU_DOMAIN_IDENTITY: 562 type = "identity\n"; 563 break; 564 case IOMMU_DOMAIN_UNMANAGED: 565 type = "unmanaged\n"; 566 break; 567 case IOMMU_DOMAIN_DMA: 568 type = "DMA\n"; 569 break; 570 case IOMMU_DOMAIN_DMA_FQ: 571 type = "DMA-FQ\n"; 572 break; 573 } 574 } 575 mutex_unlock(&group->mutex); 576 strcpy(buf, type); 577 578 return strlen(type); 579 } 580 581 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL); 582 583 static IOMMU_GROUP_ATTR(reserved_regions, 0444, 584 iommu_group_show_resv_regions, NULL); 585 586 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type, 587 iommu_group_store_type); 588 589 static void iommu_group_release(struct kobject *kobj) 590 { 591 struct iommu_group *group = to_iommu_group(kobj); 592 593 pr_debug("Releasing group %d\n", group->id); 594 595 if (group->iommu_data_release) 596 group->iommu_data_release(group->iommu_data); 597 598 ida_simple_remove(&iommu_group_ida, group->id); 599 600 if (group->default_domain) 601 iommu_domain_free(group->default_domain); 602 603 kfree(group->name); 604 kfree(group); 605 } 606 607 static struct kobj_type iommu_group_ktype = { 608 .sysfs_ops = &iommu_group_sysfs_ops, 609 .release = iommu_group_release, 610 }; 611 612 /** 613 * iommu_group_alloc - Allocate a new group 614 * 615 * This function is called by an iommu driver to allocate a new iommu 616 * group. The iommu group represents the minimum granularity of the iommu. 617 * Upon successful return, the caller holds a reference to the supplied 618 * group in order to hold the group until devices are added. Use 619 * iommu_group_put() to release this extra reference count, allowing the 620 * group to be automatically reclaimed once it has no devices or external 621 * references. 622 */ 623 struct iommu_group *iommu_group_alloc(void) 624 { 625 struct iommu_group *group; 626 int ret; 627 628 group = kzalloc(sizeof(*group), GFP_KERNEL); 629 if (!group) 630 return ERR_PTR(-ENOMEM); 631 632 group->kobj.kset = iommu_group_kset; 633 mutex_init(&group->mutex); 634 INIT_LIST_HEAD(&group->devices); 635 INIT_LIST_HEAD(&group->entry); 636 BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier); 637 638 ret = ida_simple_get(&iommu_group_ida, 0, 0, GFP_KERNEL); 639 if (ret < 0) { 640 kfree(group); 641 return ERR_PTR(ret); 642 } 643 group->id = ret; 644 645 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype, 646 NULL, "%d", group->id); 647 if (ret) { 648 ida_simple_remove(&iommu_group_ida, group->id); 649 kobject_put(&group->kobj); 650 return ERR_PTR(ret); 651 } 652 653 group->devices_kobj = kobject_create_and_add("devices", &group->kobj); 654 if (!group->devices_kobj) { 655 kobject_put(&group->kobj); /* triggers .release & free */ 656 return ERR_PTR(-ENOMEM); 657 } 658 659 /* 660 * The devices_kobj holds a reference on the group kobject, so 661 * as long as that exists so will the group. We can therefore 662 * use the devices_kobj for reference counting. 663 */ 664 kobject_put(&group->kobj); 665 666 ret = iommu_group_create_file(group, 667 &iommu_group_attr_reserved_regions); 668 if (ret) 669 return ERR_PTR(ret); 670 671 ret = iommu_group_create_file(group, &iommu_group_attr_type); 672 if (ret) 673 return ERR_PTR(ret); 674 675 pr_debug("Allocated group %d\n", group->id); 676 677 return group; 678 } 679 EXPORT_SYMBOL_GPL(iommu_group_alloc); 680 681 struct iommu_group *iommu_group_get_by_id(int id) 682 { 683 struct kobject *group_kobj; 684 struct iommu_group *group; 685 const char *name; 686 687 if (!iommu_group_kset) 688 return NULL; 689 690 name = kasprintf(GFP_KERNEL, "%d", id); 691 if (!name) 692 return NULL; 693 694 group_kobj = kset_find_obj(iommu_group_kset, name); 695 kfree(name); 696 697 if (!group_kobj) 698 return NULL; 699 700 group = container_of(group_kobj, struct iommu_group, kobj); 701 BUG_ON(group->id != id); 702 703 kobject_get(group->devices_kobj); 704 kobject_put(&group->kobj); 705 706 return group; 707 } 708 EXPORT_SYMBOL_GPL(iommu_group_get_by_id); 709 710 /** 711 * iommu_group_get_iommudata - retrieve iommu_data registered for a group 712 * @group: the group 713 * 714 * iommu drivers can store data in the group for use when doing iommu 715 * operations. This function provides a way to retrieve it. Caller 716 * should hold a group reference. 717 */ 718 void *iommu_group_get_iommudata(struct iommu_group *group) 719 { 720 return group->iommu_data; 721 } 722 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata); 723 724 /** 725 * iommu_group_set_iommudata - set iommu_data for a group 726 * @group: the group 727 * @iommu_data: new data 728 * @release: release function for iommu_data 729 * 730 * iommu drivers can store data in the group for use when doing iommu 731 * operations. This function provides a way to set the data after 732 * the group has been allocated. Caller should hold a group reference. 733 */ 734 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data, 735 void (*release)(void *iommu_data)) 736 { 737 group->iommu_data = iommu_data; 738 group->iommu_data_release = release; 739 } 740 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata); 741 742 /** 743 * iommu_group_set_name - set name for a group 744 * @group: the group 745 * @name: name 746 * 747 * Allow iommu driver to set a name for a group. When set it will 748 * appear in a name attribute file under the group in sysfs. 749 */ 750 int iommu_group_set_name(struct iommu_group *group, const char *name) 751 { 752 int ret; 753 754 if (group->name) { 755 iommu_group_remove_file(group, &iommu_group_attr_name); 756 kfree(group->name); 757 group->name = NULL; 758 if (!name) 759 return 0; 760 } 761 762 group->name = kstrdup(name, GFP_KERNEL); 763 if (!group->name) 764 return -ENOMEM; 765 766 ret = iommu_group_create_file(group, &iommu_group_attr_name); 767 if (ret) { 768 kfree(group->name); 769 group->name = NULL; 770 return ret; 771 } 772 773 return 0; 774 } 775 EXPORT_SYMBOL_GPL(iommu_group_set_name); 776 777 static int iommu_create_device_direct_mappings(struct iommu_group *group, 778 struct device *dev) 779 { 780 struct iommu_domain *domain = group->default_domain; 781 struct iommu_resv_region *entry; 782 struct list_head mappings; 783 unsigned long pg_size; 784 int ret = 0; 785 786 if (!domain || !iommu_is_dma_domain(domain)) 787 return 0; 788 789 BUG_ON(!domain->pgsize_bitmap); 790 791 pg_size = 1UL << __ffs(domain->pgsize_bitmap); 792 INIT_LIST_HEAD(&mappings); 793 794 iommu_get_resv_regions(dev, &mappings); 795 796 /* We need to consider overlapping regions for different devices */ 797 list_for_each_entry(entry, &mappings, list) { 798 dma_addr_t start, end, addr; 799 size_t map_size = 0; 800 801 start = ALIGN(entry->start, pg_size); 802 end = ALIGN(entry->start + entry->length, pg_size); 803 804 if (entry->type != IOMMU_RESV_DIRECT && 805 entry->type != IOMMU_RESV_DIRECT_RELAXABLE) 806 continue; 807 808 for (addr = start; addr <= end; addr += pg_size) { 809 phys_addr_t phys_addr; 810 811 if (addr == end) 812 goto map_end; 813 814 phys_addr = iommu_iova_to_phys(domain, addr); 815 if (!phys_addr) { 816 map_size += pg_size; 817 continue; 818 } 819 820 map_end: 821 if (map_size) { 822 ret = iommu_map(domain, addr - map_size, 823 addr - map_size, map_size, 824 entry->prot); 825 if (ret) 826 goto out; 827 map_size = 0; 828 } 829 } 830 831 } 832 833 iommu_flush_iotlb_all(domain); 834 835 out: 836 iommu_put_resv_regions(dev, &mappings); 837 838 return ret; 839 } 840 841 static bool iommu_is_attach_deferred(struct device *dev) 842 { 843 const struct iommu_ops *ops = dev_iommu_ops(dev); 844 845 if (ops->is_attach_deferred) 846 return ops->is_attach_deferred(dev); 847 848 return false; 849 } 850 851 /** 852 * iommu_group_add_device - add a device to an iommu group 853 * @group: the group into which to add the device (reference should be held) 854 * @dev: the device 855 * 856 * This function is called by an iommu driver to add a device into a 857 * group. Adding a device increments the group reference count. 858 */ 859 int iommu_group_add_device(struct iommu_group *group, struct device *dev) 860 { 861 int ret, i = 0; 862 struct group_device *device; 863 864 device = kzalloc(sizeof(*device), GFP_KERNEL); 865 if (!device) 866 return -ENOMEM; 867 868 device->dev = dev; 869 870 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group"); 871 if (ret) 872 goto err_free_device; 873 874 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj)); 875 rename: 876 if (!device->name) { 877 ret = -ENOMEM; 878 goto err_remove_link; 879 } 880 881 ret = sysfs_create_link_nowarn(group->devices_kobj, 882 &dev->kobj, device->name); 883 if (ret) { 884 if (ret == -EEXIST && i >= 0) { 885 /* 886 * Account for the slim chance of collision 887 * and append an instance to the name. 888 */ 889 kfree(device->name); 890 device->name = kasprintf(GFP_KERNEL, "%s.%d", 891 kobject_name(&dev->kobj), i++); 892 goto rename; 893 } 894 goto err_free_name; 895 } 896 897 kobject_get(group->devices_kobj); 898 899 dev->iommu_group = group; 900 901 mutex_lock(&group->mutex); 902 list_add_tail(&device->list, &group->devices); 903 if (group->domain && !iommu_is_attach_deferred(dev)) 904 ret = __iommu_attach_device(group->domain, dev); 905 mutex_unlock(&group->mutex); 906 if (ret) 907 goto err_put_group; 908 909 /* Notify any listeners about change to group. */ 910 blocking_notifier_call_chain(&group->notifier, 911 IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev); 912 913 trace_add_device_to_group(group->id, dev); 914 915 dev_info(dev, "Adding to iommu group %d\n", group->id); 916 917 return 0; 918 919 err_put_group: 920 mutex_lock(&group->mutex); 921 list_del(&device->list); 922 mutex_unlock(&group->mutex); 923 dev->iommu_group = NULL; 924 kobject_put(group->devices_kobj); 925 sysfs_remove_link(group->devices_kobj, device->name); 926 err_free_name: 927 kfree(device->name); 928 err_remove_link: 929 sysfs_remove_link(&dev->kobj, "iommu_group"); 930 err_free_device: 931 kfree(device); 932 dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret); 933 return ret; 934 } 935 EXPORT_SYMBOL_GPL(iommu_group_add_device); 936 937 /** 938 * iommu_group_remove_device - remove a device from it's current group 939 * @dev: device to be removed 940 * 941 * This function is called by an iommu driver to remove the device from 942 * it's current group. This decrements the iommu group reference count. 943 */ 944 void iommu_group_remove_device(struct device *dev) 945 { 946 struct iommu_group *group = dev->iommu_group; 947 struct group_device *tmp_device, *device = NULL; 948 949 if (!group) 950 return; 951 952 dev_info(dev, "Removing from iommu group %d\n", group->id); 953 954 /* Pre-notify listeners that a device is being removed. */ 955 blocking_notifier_call_chain(&group->notifier, 956 IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev); 957 958 mutex_lock(&group->mutex); 959 list_for_each_entry(tmp_device, &group->devices, list) { 960 if (tmp_device->dev == dev) { 961 device = tmp_device; 962 list_del(&device->list); 963 break; 964 } 965 } 966 mutex_unlock(&group->mutex); 967 968 if (!device) 969 return; 970 971 sysfs_remove_link(group->devices_kobj, device->name); 972 sysfs_remove_link(&dev->kobj, "iommu_group"); 973 974 trace_remove_device_from_group(group->id, dev); 975 976 kfree(device->name); 977 kfree(device); 978 dev->iommu_group = NULL; 979 kobject_put(group->devices_kobj); 980 } 981 EXPORT_SYMBOL_GPL(iommu_group_remove_device); 982 983 static int iommu_group_device_count(struct iommu_group *group) 984 { 985 struct group_device *entry; 986 int ret = 0; 987 988 list_for_each_entry(entry, &group->devices, list) 989 ret++; 990 991 return ret; 992 } 993 994 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data, 995 int (*fn)(struct device *, void *)) 996 { 997 struct group_device *device; 998 int ret = 0; 999 1000 list_for_each_entry(device, &group->devices, list) { 1001 ret = fn(device->dev, data); 1002 if (ret) 1003 break; 1004 } 1005 return ret; 1006 } 1007 1008 /** 1009 * iommu_group_for_each_dev - iterate over each device in the group 1010 * @group: the group 1011 * @data: caller opaque data to be passed to callback function 1012 * @fn: caller supplied callback function 1013 * 1014 * This function is called by group users to iterate over group devices. 1015 * Callers should hold a reference count to the group during callback. 1016 * The group->mutex is held across callbacks, which will block calls to 1017 * iommu_group_add/remove_device. 1018 */ 1019 int iommu_group_for_each_dev(struct iommu_group *group, void *data, 1020 int (*fn)(struct device *, void *)) 1021 { 1022 int ret; 1023 1024 mutex_lock(&group->mutex); 1025 ret = __iommu_group_for_each_dev(group, data, fn); 1026 mutex_unlock(&group->mutex); 1027 1028 return ret; 1029 } 1030 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev); 1031 1032 /** 1033 * iommu_group_get - Return the group for a device and increment reference 1034 * @dev: get the group that this device belongs to 1035 * 1036 * This function is called by iommu drivers and users to get the group 1037 * for the specified device. If found, the group is returned and the group 1038 * reference in incremented, else NULL. 1039 */ 1040 struct iommu_group *iommu_group_get(struct device *dev) 1041 { 1042 struct iommu_group *group = dev->iommu_group; 1043 1044 if (group) 1045 kobject_get(group->devices_kobj); 1046 1047 return group; 1048 } 1049 EXPORT_SYMBOL_GPL(iommu_group_get); 1050 1051 /** 1052 * iommu_group_ref_get - Increment reference on a group 1053 * @group: the group to use, must not be NULL 1054 * 1055 * This function is called by iommu drivers to take additional references on an 1056 * existing group. Returns the given group for convenience. 1057 */ 1058 struct iommu_group *iommu_group_ref_get(struct iommu_group *group) 1059 { 1060 kobject_get(group->devices_kobj); 1061 return group; 1062 } 1063 EXPORT_SYMBOL_GPL(iommu_group_ref_get); 1064 1065 /** 1066 * iommu_group_put - Decrement group reference 1067 * @group: the group to use 1068 * 1069 * This function is called by iommu drivers and users to release the 1070 * iommu group. Once the reference count is zero, the group is released. 1071 */ 1072 void iommu_group_put(struct iommu_group *group) 1073 { 1074 if (group) 1075 kobject_put(group->devices_kobj); 1076 } 1077 EXPORT_SYMBOL_GPL(iommu_group_put); 1078 1079 /** 1080 * iommu_group_register_notifier - Register a notifier for group changes 1081 * @group: the group to watch 1082 * @nb: notifier block to signal 1083 * 1084 * This function allows iommu group users to track changes in a group. 1085 * See include/linux/iommu.h for actions sent via this notifier. Caller 1086 * should hold a reference to the group throughout notifier registration. 1087 */ 1088 int iommu_group_register_notifier(struct iommu_group *group, 1089 struct notifier_block *nb) 1090 { 1091 return blocking_notifier_chain_register(&group->notifier, nb); 1092 } 1093 EXPORT_SYMBOL_GPL(iommu_group_register_notifier); 1094 1095 /** 1096 * iommu_group_unregister_notifier - Unregister a notifier 1097 * @group: the group to watch 1098 * @nb: notifier block to signal 1099 * 1100 * Unregister a previously registered group notifier block. 1101 */ 1102 int iommu_group_unregister_notifier(struct iommu_group *group, 1103 struct notifier_block *nb) 1104 { 1105 return blocking_notifier_chain_unregister(&group->notifier, nb); 1106 } 1107 EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier); 1108 1109 /** 1110 * iommu_register_device_fault_handler() - Register a device fault handler 1111 * @dev: the device 1112 * @handler: the fault handler 1113 * @data: private data passed as argument to the handler 1114 * 1115 * When an IOMMU fault event is received, this handler gets called with the 1116 * fault event and data as argument. The handler should return 0 on success. If 1117 * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also 1118 * complete the fault by calling iommu_page_response() with one of the following 1119 * response code: 1120 * - IOMMU_PAGE_RESP_SUCCESS: retry the translation 1121 * - IOMMU_PAGE_RESP_INVALID: terminate the fault 1122 * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting 1123 * page faults if possible. 1124 * 1125 * Return 0 if the fault handler was installed successfully, or an error. 1126 */ 1127 int iommu_register_device_fault_handler(struct device *dev, 1128 iommu_dev_fault_handler_t handler, 1129 void *data) 1130 { 1131 struct dev_iommu *param = dev->iommu; 1132 int ret = 0; 1133 1134 if (!param) 1135 return -EINVAL; 1136 1137 mutex_lock(¶m->lock); 1138 /* Only allow one fault handler registered for each device */ 1139 if (param->fault_param) { 1140 ret = -EBUSY; 1141 goto done_unlock; 1142 } 1143 1144 get_device(dev); 1145 param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL); 1146 if (!param->fault_param) { 1147 put_device(dev); 1148 ret = -ENOMEM; 1149 goto done_unlock; 1150 } 1151 param->fault_param->handler = handler; 1152 param->fault_param->data = data; 1153 mutex_init(¶m->fault_param->lock); 1154 INIT_LIST_HEAD(¶m->fault_param->faults); 1155 1156 done_unlock: 1157 mutex_unlock(¶m->lock); 1158 1159 return ret; 1160 } 1161 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler); 1162 1163 /** 1164 * iommu_unregister_device_fault_handler() - Unregister the device fault handler 1165 * @dev: the device 1166 * 1167 * Remove the device fault handler installed with 1168 * iommu_register_device_fault_handler(). 1169 * 1170 * Return 0 on success, or an error. 1171 */ 1172 int iommu_unregister_device_fault_handler(struct device *dev) 1173 { 1174 struct dev_iommu *param = dev->iommu; 1175 int ret = 0; 1176 1177 if (!param) 1178 return -EINVAL; 1179 1180 mutex_lock(¶m->lock); 1181 1182 if (!param->fault_param) 1183 goto unlock; 1184 1185 /* we cannot unregister handler if there are pending faults */ 1186 if (!list_empty(¶m->fault_param->faults)) { 1187 ret = -EBUSY; 1188 goto unlock; 1189 } 1190 1191 kfree(param->fault_param); 1192 param->fault_param = NULL; 1193 put_device(dev); 1194 unlock: 1195 mutex_unlock(¶m->lock); 1196 1197 return ret; 1198 } 1199 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler); 1200 1201 /** 1202 * iommu_report_device_fault() - Report fault event to device driver 1203 * @dev: the device 1204 * @evt: fault event data 1205 * 1206 * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ 1207 * handler. When this function fails and the fault is recoverable, it is the 1208 * caller's responsibility to complete the fault. 1209 * 1210 * Return 0 on success, or an error. 1211 */ 1212 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt) 1213 { 1214 struct dev_iommu *param = dev->iommu; 1215 struct iommu_fault_event *evt_pending = NULL; 1216 struct iommu_fault_param *fparam; 1217 int ret = 0; 1218 1219 if (!param || !evt) 1220 return -EINVAL; 1221 1222 /* we only report device fault if there is a handler registered */ 1223 mutex_lock(¶m->lock); 1224 fparam = param->fault_param; 1225 if (!fparam || !fparam->handler) { 1226 ret = -EINVAL; 1227 goto done_unlock; 1228 } 1229 1230 if (evt->fault.type == IOMMU_FAULT_PAGE_REQ && 1231 (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) { 1232 evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event), 1233 GFP_KERNEL); 1234 if (!evt_pending) { 1235 ret = -ENOMEM; 1236 goto done_unlock; 1237 } 1238 mutex_lock(&fparam->lock); 1239 list_add_tail(&evt_pending->list, &fparam->faults); 1240 mutex_unlock(&fparam->lock); 1241 } 1242 1243 ret = fparam->handler(&evt->fault, fparam->data); 1244 if (ret && evt_pending) { 1245 mutex_lock(&fparam->lock); 1246 list_del(&evt_pending->list); 1247 mutex_unlock(&fparam->lock); 1248 kfree(evt_pending); 1249 } 1250 done_unlock: 1251 mutex_unlock(¶m->lock); 1252 return ret; 1253 } 1254 EXPORT_SYMBOL_GPL(iommu_report_device_fault); 1255 1256 int iommu_page_response(struct device *dev, 1257 struct iommu_page_response *msg) 1258 { 1259 bool needs_pasid; 1260 int ret = -EINVAL; 1261 struct iommu_fault_event *evt; 1262 struct iommu_fault_page_request *prm; 1263 struct dev_iommu *param = dev->iommu; 1264 const struct iommu_ops *ops = dev_iommu_ops(dev); 1265 bool has_pasid = msg->flags & IOMMU_PAGE_RESP_PASID_VALID; 1266 1267 if (!ops->page_response) 1268 return -ENODEV; 1269 1270 if (!param || !param->fault_param) 1271 return -EINVAL; 1272 1273 if (msg->version != IOMMU_PAGE_RESP_VERSION_1 || 1274 msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID) 1275 return -EINVAL; 1276 1277 /* Only send response if there is a fault report pending */ 1278 mutex_lock(¶m->fault_param->lock); 1279 if (list_empty(¶m->fault_param->faults)) { 1280 dev_warn_ratelimited(dev, "no pending PRQ, drop response\n"); 1281 goto done_unlock; 1282 } 1283 /* 1284 * Check if we have a matching page request pending to respond, 1285 * otherwise return -EINVAL 1286 */ 1287 list_for_each_entry(evt, ¶m->fault_param->faults, list) { 1288 prm = &evt->fault.prm; 1289 if (prm->grpid != msg->grpid) 1290 continue; 1291 1292 /* 1293 * If the PASID is required, the corresponding request is 1294 * matched using the group ID, the PASID valid bit and the PASID 1295 * value. Otherwise only the group ID matches request and 1296 * response. 1297 */ 1298 needs_pasid = prm->flags & IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID; 1299 if (needs_pasid && (!has_pasid || msg->pasid != prm->pasid)) 1300 continue; 1301 1302 if (!needs_pasid && has_pasid) { 1303 /* No big deal, just clear it. */ 1304 msg->flags &= ~IOMMU_PAGE_RESP_PASID_VALID; 1305 msg->pasid = 0; 1306 } 1307 1308 ret = ops->page_response(dev, evt, msg); 1309 list_del(&evt->list); 1310 kfree(evt); 1311 break; 1312 } 1313 1314 done_unlock: 1315 mutex_unlock(¶m->fault_param->lock); 1316 return ret; 1317 } 1318 EXPORT_SYMBOL_GPL(iommu_page_response); 1319 1320 /** 1321 * iommu_group_id - Return ID for a group 1322 * @group: the group to ID 1323 * 1324 * Return the unique ID for the group matching the sysfs group number. 1325 */ 1326 int iommu_group_id(struct iommu_group *group) 1327 { 1328 return group->id; 1329 } 1330 EXPORT_SYMBOL_GPL(iommu_group_id); 1331 1332 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1333 unsigned long *devfns); 1334 1335 /* 1336 * To consider a PCI device isolated, we require ACS to support Source 1337 * Validation, Request Redirection, Completer Redirection, and Upstream 1338 * Forwarding. This effectively means that devices cannot spoof their 1339 * requester ID, requests and completions cannot be redirected, and all 1340 * transactions are forwarded upstream, even as it passes through a 1341 * bridge where the target device is downstream. 1342 */ 1343 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF) 1344 1345 /* 1346 * For multifunction devices which are not isolated from each other, find 1347 * all the other non-isolated functions and look for existing groups. For 1348 * each function, we also need to look for aliases to or from other devices 1349 * that may already have a group. 1350 */ 1351 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev, 1352 unsigned long *devfns) 1353 { 1354 struct pci_dev *tmp = NULL; 1355 struct iommu_group *group; 1356 1357 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS)) 1358 return NULL; 1359 1360 for_each_pci_dev(tmp) { 1361 if (tmp == pdev || tmp->bus != pdev->bus || 1362 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) || 1363 pci_acs_enabled(tmp, REQ_ACS_FLAGS)) 1364 continue; 1365 1366 group = get_pci_alias_group(tmp, devfns); 1367 if (group) { 1368 pci_dev_put(tmp); 1369 return group; 1370 } 1371 } 1372 1373 return NULL; 1374 } 1375 1376 /* 1377 * Look for aliases to or from the given device for existing groups. DMA 1378 * aliases are only supported on the same bus, therefore the search 1379 * space is quite small (especially since we're really only looking at pcie 1380 * device, and therefore only expect multiple slots on the root complex or 1381 * downstream switch ports). It's conceivable though that a pair of 1382 * multifunction devices could have aliases between them that would cause a 1383 * loop. To prevent this, we use a bitmap to track where we've been. 1384 */ 1385 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1386 unsigned long *devfns) 1387 { 1388 struct pci_dev *tmp = NULL; 1389 struct iommu_group *group; 1390 1391 if (test_and_set_bit(pdev->devfn & 0xff, devfns)) 1392 return NULL; 1393 1394 group = iommu_group_get(&pdev->dev); 1395 if (group) 1396 return group; 1397 1398 for_each_pci_dev(tmp) { 1399 if (tmp == pdev || tmp->bus != pdev->bus) 1400 continue; 1401 1402 /* We alias them or they alias us */ 1403 if (pci_devs_are_dma_aliases(pdev, tmp)) { 1404 group = get_pci_alias_group(tmp, devfns); 1405 if (group) { 1406 pci_dev_put(tmp); 1407 return group; 1408 } 1409 1410 group = get_pci_function_alias_group(tmp, devfns); 1411 if (group) { 1412 pci_dev_put(tmp); 1413 return group; 1414 } 1415 } 1416 } 1417 1418 return NULL; 1419 } 1420 1421 struct group_for_pci_data { 1422 struct pci_dev *pdev; 1423 struct iommu_group *group; 1424 }; 1425 1426 /* 1427 * DMA alias iterator callback, return the last seen device. Stop and return 1428 * the IOMMU group if we find one along the way. 1429 */ 1430 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque) 1431 { 1432 struct group_for_pci_data *data = opaque; 1433 1434 data->pdev = pdev; 1435 data->group = iommu_group_get(&pdev->dev); 1436 1437 return data->group != NULL; 1438 } 1439 1440 /* 1441 * Generic device_group call-back function. It just allocates one 1442 * iommu-group per device. 1443 */ 1444 struct iommu_group *generic_device_group(struct device *dev) 1445 { 1446 return iommu_group_alloc(); 1447 } 1448 EXPORT_SYMBOL_GPL(generic_device_group); 1449 1450 /* 1451 * Use standard PCI bus topology, isolation features, and DMA alias quirks 1452 * to find or create an IOMMU group for a device. 1453 */ 1454 struct iommu_group *pci_device_group(struct device *dev) 1455 { 1456 struct pci_dev *pdev = to_pci_dev(dev); 1457 struct group_for_pci_data data; 1458 struct pci_bus *bus; 1459 struct iommu_group *group = NULL; 1460 u64 devfns[4] = { 0 }; 1461 1462 if (WARN_ON(!dev_is_pci(dev))) 1463 return ERR_PTR(-EINVAL); 1464 1465 /* 1466 * Find the upstream DMA alias for the device. A device must not 1467 * be aliased due to topology in order to have its own IOMMU group. 1468 * If we find an alias along the way that already belongs to a 1469 * group, use it. 1470 */ 1471 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data)) 1472 return data.group; 1473 1474 pdev = data.pdev; 1475 1476 /* 1477 * Continue upstream from the point of minimum IOMMU granularity 1478 * due to aliases to the point where devices are protected from 1479 * peer-to-peer DMA by PCI ACS. Again, if we find an existing 1480 * group, use it. 1481 */ 1482 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) { 1483 if (!bus->self) 1484 continue; 1485 1486 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS)) 1487 break; 1488 1489 pdev = bus->self; 1490 1491 group = iommu_group_get(&pdev->dev); 1492 if (group) 1493 return group; 1494 } 1495 1496 /* 1497 * Look for existing groups on device aliases. If we alias another 1498 * device or another device aliases us, use the same group. 1499 */ 1500 group = get_pci_alias_group(pdev, (unsigned long *)devfns); 1501 if (group) 1502 return group; 1503 1504 /* 1505 * Look for existing groups on non-isolated functions on the same 1506 * slot and aliases of those funcions, if any. No need to clear 1507 * the search bitmap, the tested devfns are still valid. 1508 */ 1509 group = get_pci_function_alias_group(pdev, (unsigned long *)devfns); 1510 if (group) 1511 return group; 1512 1513 /* No shared group found, allocate new */ 1514 return iommu_group_alloc(); 1515 } 1516 EXPORT_SYMBOL_GPL(pci_device_group); 1517 1518 /* Get the IOMMU group for device on fsl-mc bus */ 1519 struct iommu_group *fsl_mc_device_group(struct device *dev) 1520 { 1521 struct device *cont_dev = fsl_mc_cont_dev(dev); 1522 struct iommu_group *group; 1523 1524 group = iommu_group_get(cont_dev); 1525 if (!group) 1526 group = iommu_group_alloc(); 1527 return group; 1528 } 1529 EXPORT_SYMBOL_GPL(fsl_mc_device_group); 1530 1531 static int iommu_get_def_domain_type(struct device *dev) 1532 { 1533 const struct iommu_ops *ops = dev_iommu_ops(dev); 1534 1535 if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted) 1536 return IOMMU_DOMAIN_DMA; 1537 1538 if (ops->def_domain_type) 1539 return ops->def_domain_type(dev); 1540 1541 return 0; 1542 } 1543 1544 static int iommu_group_alloc_default_domain(struct bus_type *bus, 1545 struct iommu_group *group, 1546 unsigned int type) 1547 { 1548 struct iommu_domain *dom; 1549 1550 dom = __iommu_domain_alloc(bus, type); 1551 if (!dom && type != IOMMU_DOMAIN_DMA) { 1552 dom = __iommu_domain_alloc(bus, IOMMU_DOMAIN_DMA); 1553 if (dom) 1554 pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA", 1555 type, group->name); 1556 } 1557 1558 if (!dom) 1559 return -ENOMEM; 1560 1561 group->default_domain = dom; 1562 if (!group->domain) 1563 group->domain = dom; 1564 return 0; 1565 } 1566 1567 static int iommu_alloc_default_domain(struct iommu_group *group, 1568 struct device *dev) 1569 { 1570 unsigned int type; 1571 1572 if (group->default_domain) 1573 return 0; 1574 1575 type = iommu_get_def_domain_type(dev) ? : iommu_def_domain_type; 1576 1577 return iommu_group_alloc_default_domain(dev->bus, group, type); 1578 } 1579 1580 /** 1581 * iommu_group_get_for_dev - Find or create the IOMMU group for a device 1582 * @dev: target device 1583 * 1584 * This function is intended to be called by IOMMU drivers and extended to 1585 * support common, bus-defined algorithms when determining or creating the 1586 * IOMMU group for a device. On success, the caller will hold a reference 1587 * to the returned IOMMU group, which will already include the provided 1588 * device. The reference should be released with iommu_group_put(). 1589 */ 1590 static struct iommu_group *iommu_group_get_for_dev(struct device *dev) 1591 { 1592 const struct iommu_ops *ops = dev_iommu_ops(dev); 1593 struct iommu_group *group; 1594 int ret; 1595 1596 group = iommu_group_get(dev); 1597 if (group) 1598 return group; 1599 1600 group = ops->device_group(dev); 1601 if (WARN_ON_ONCE(group == NULL)) 1602 return ERR_PTR(-EINVAL); 1603 1604 if (IS_ERR(group)) 1605 return group; 1606 1607 ret = iommu_group_add_device(group, dev); 1608 if (ret) 1609 goto out_put_group; 1610 1611 return group; 1612 1613 out_put_group: 1614 iommu_group_put(group); 1615 1616 return ERR_PTR(ret); 1617 } 1618 1619 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group) 1620 { 1621 return group->default_domain; 1622 } 1623 1624 static int probe_iommu_group(struct device *dev, void *data) 1625 { 1626 struct list_head *group_list = data; 1627 struct iommu_group *group; 1628 int ret; 1629 1630 /* Device is probed already if in a group */ 1631 group = iommu_group_get(dev); 1632 if (group) { 1633 iommu_group_put(group); 1634 return 0; 1635 } 1636 1637 ret = __iommu_probe_device(dev, group_list); 1638 if (ret == -ENODEV) 1639 ret = 0; 1640 1641 return ret; 1642 } 1643 1644 static int remove_iommu_group(struct device *dev, void *data) 1645 { 1646 iommu_release_device(dev); 1647 1648 return 0; 1649 } 1650 1651 static int iommu_bus_notifier(struct notifier_block *nb, 1652 unsigned long action, void *data) 1653 { 1654 unsigned long group_action = 0; 1655 struct device *dev = data; 1656 struct iommu_group *group; 1657 1658 /* 1659 * ADD/DEL call into iommu driver ops if provided, which may 1660 * result in ADD/DEL notifiers to group->notifier 1661 */ 1662 if (action == BUS_NOTIFY_ADD_DEVICE) { 1663 int ret; 1664 1665 ret = iommu_probe_device(dev); 1666 return (ret) ? NOTIFY_DONE : NOTIFY_OK; 1667 } else if (action == BUS_NOTIFY_REMOVED_DEVICE) { 1668 iommu_release_device(dev); 1669 return NOTIFY_OK; 1670 } 1671 1672 /* 1673 * Remaining BUS_NOTIFYs get filtered and republished to the 1674 * group, if anyone is listening 1675 */ 1676 group = iommu_group_get(dev); 1677 if (!group) 1678 return 0; 1679 1680 switch (action) { 1681 case BUS_NOTIFY_BIND_DRIVER: 1682 group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER; 1683 break; 1684 case BUS_NOTIFY_BOUND_DRIVER: 1685 group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER; 1686 break; 1687 case BUS_NOTIFY_UNBIND_DRIVER: 1688 group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER; 1689 break; 1690 case BUS_NOTIFY_UNBOUND_DRIVER: 1691 group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER; 1692 break; 1693 } 1694 1695 if (group_action) 1696 blocking_notifier_call_chain(&group->notifier, 1697 group_action, dev); 1698 1699 iommu_group_put(group); 1700 return 0; 1701 } 1702 1703 struct __group_domain_type { 1704 struct device *dev; 1705 unsigned int type; 1706 }; 1707 1708 static int probe_get_default_domain_type(struct device *dev, void *data) 1709 { 1710 struct __group_domain_type *gtype = data; 1711 unsigned int type = iommu_get_def_domain_type(dev); 1712 1713 if (type) { 1714 if (gtype->type && gtype->type != type) { 1715 dev_warn(dev, "Device needs domain type %s, but device %s in the same iommu group requires type %s - using default\n", 1716 iommu_domain_type_str(type), 1717 dev_name(gtype->dev), 1718 iommu_domain_type_str(gtype->type)); 1719 gtype->type = 0; 1720 } 1721 1722 if (!gtype->dev) { 1723 gtype->dev = dev; 1724 gtype->type = type; 1725 } 1726 } 1727 1728 return 0; 1729 } 1730 1731 static void probe_alloc_default_domain(struct bus_type *bus, 1732 struct iommu_group *group) 1733 { 1734 struct __group_domain_type gtype; 1735 1736 memset(>ype, 0, sizeof(gtype)); 1737 1738 /* Ask for default domain requirements of all devices in the group */ 1739 __iommu_group_for_each_dev(group, >ype, 1740 probe_get_default_domain_type); 1741 1742 if (!gtype.type) 1743 gtype.type = iommu_def_domain_type; 1744 1745 iommu_group_alloc_default_domain(bus, group, gtype.type); 1746 1747 } 1748 1749 static int iommu_group_do_dma_attach(struct device *dev, void *data) 1750 { 1751 struct iommu_domain *domain = data; 1752 int ret = 0; 1753 1754 if (!iommu_is_attach_deferred(dev)) 1755 ret = __iommu_attach_device(domain, dev); 1756 1757 return ret; 1758 } 1759 1760 static int __iommu_group_dma_attach(struct iommu_group *group) 1761 { 1762 return __iommu_group_for_each_dev(group, group->default_domain, 1763 iommu_group_do_dma_attach); 1764 } 1765 1766 static int iommu_group_do_probe_finalize(struct device *dev, void *data) 1767 { 1768 const struct iommu_ops *ops = dev_iommu_ops(dev); 1769 1770 if (ops->probe_finalize) 1771 ops->probe_finalize(dev); 1772 1773 return 0; 1774 } 1775 1776 static void __iommu_group_dma_finalize(struct iommu_group *group) 1777 { 1778 __iommu_group_for_each_dev(group, group->default_domain, 1779 iommu_group_do_probe_finalize); 1780 } 1781 1782 static int iommu_do_create_direct_mappings(struct device *dev, void *data) 1783 { 1784 struct iommu_group *group = data; 1785 1786 iommu_create_device_direct_mappings(group, dev); 1787 1788 return 0; 1789 } 1790 1791 static int iommu_group_create_direct_mappings(struct iommu_group *group) 1792 { 1793 return __iommu_group_for_each_dev(group, group, 1794 iommu_do_create_direct_mappings); 1795 } 1796 1797 int bus_iommu_probe(struct bus_type *bus) 1798 { 1799 struct iommu_group *group, *next; 1800 LIST_HEAD(group_list); 1801 int ret; 1802 1803 /* 1804 * This code-path does not allocate the default domain when 1805 * creating the iommu group, so do it after the groups are 1806 * created. 1807 */ 1808 ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group); 1809 if (ret) 1810 return ret; 1811 1812 list_for_each_entry_safe(group, next, &group_list, entry) { 1813 /* Remove item from the list */ 1814 list_del_init(&group->entry); 1815 1816 mutex_lock(&group->mutex); 1817 1818 /* Try to allocate default domain */ 1819 probe_alloc_default_domain(bus, group); 1820 1821 if (!group->default_domain) { 1822 mutex_unlock(&group->mutex); 1823 continue; 1824 } 1825 1826 iommu_group_create_direct_mappings(group); 1827 1828 ret = __iommu_group_dma_attach(group); 1829 1830 mutex_unlock(&group->mutex); 1831 1832 if (ret) 1833 break; 1834 1835 __iommu_group_dma_finalize(group); 1836 } 1837 1838 return ret; 1839 } 1840 1841 static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops) 1842 { 1843 struct notifier_block *nb; 1844 int err; 1845 1846 nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL); 1847 if (!nb) 1848 return -ENOMEM; 1849 1850 nb->notifier_call = iommu_bus_notifier; 1851 1852 err = bus_register_notifier(bus, nb); 1853 if (err) 1854 goto out_free; 1855 1856 err = bus_iommu_probe(bus); 1857 if (err) 1858 goto out_err; 1859 1860 1861 return 0; 1862 1863 out_err: 1864 /* Clean up */ 1865 bus_for_each_dev(bus, NULL, NULL, remove_iommu_group); 1866 bus_unregister_notifier(bus, nb); 1867 1868 out_free: 1869 kfree(nb); 1870 1871 return err; 1872 } 1873 1874 /** 1875 * bus_set_iommu - set iommu-callbacks for the bus 1876 * @bus: bus. 1877 * @ops: the callbacks provided by the iommu-driver 1878 * 1879 * This function is called by an iommu driver to set the iommu methods 1880 * used for a particular bus. Drivers for devices on that bus can use 1881 * the iommu-api after these ops are registered. 1882 * This special function is needed because IOMMUs are usually devices on 1883 * the bus itself, so the iommu drivers are not initialized when the bus 1884 * is set up. With this function the iommu-driver can set the iommu-ops 1885 * afterwards. 1886 */ 1887 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops) 1888 { 1889 int err; 1890 1891 if (ops == NULL) { 1892 bus->iommu_ops = NULL; 1893 return 0; 1894 } 1895 1896 if (bus->iommu_ops != NULL) 1897 return -EBUSY; 1898 1899 bus->iommu_ops = ops; 1900 1901 /* Do IOMMU specific setup for this bus-type */ 1902 err = iommu_bus_init(bus, ops); 1903 if (err) 1904 bus->iommu_ops = NULL; 1905 1906 return err; 1907 } 1908 EXPORT_SYMBOL_GPL(bus_set_iommu); 1909 1910 bool iommu_present(struct bus_type *bus) 1911 { 1912 return bus->iommu_ops != NULL; 1913 } 1914 EXPORT_SYMBOL_GPL(iommu_present); 1915 1916 bool iommu_capable(struct bus_type *bus, enum iommu_cap cap) 1917 { 1918 if (!bus->iommu_ops || !bus->iommu_ops->capable) 1919 return false; 1920 1921 return bus->iommu_ops->capable(cap); 1922 } 1923 EXPORT_SYMBOL_GPL(iommu_capable); 1924 1925 /** 1926 * iommu_set_fault_handler() - set a fault handler for an iommu domain 1927 * @domain: iommu domain 1928 * @handler: fault handler 1929 * @token: user data, will be passed back to the fault handler 1930 * 1931 * This function should be used by IOMMU users which want to be notified 1932 * whenever an IOMMU fault happens. 1933 * 1934 * The fault handler itself should return 0 on success, and an appropriate 1935 * error code otherwise. 1936 */ 1937 void iommu_set_fault_handler(struct iommu_domain *domain, 1938 iommu_fault_handler_t handler, 1939 void *token) 1940 { 1941 BUG_ON(!domain); 1942 1943 domain->handler = handler; 1944 domain->handler_token = token; 1945 } 1946 EXPORT_SYMBOL_GPL(iommu_set_fault_handler); 1947 1948 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus, 1949 unsigned type) 1950 { 1951 struct iommu_domain *domain; 1952 1953 if (bus == NULL || bus->iommu_ops == NULL) 1954 return NULL; 1955 1956 domain = bus->iommu_ops->domain_alloc(type); 1957 if (!domain) 1958 return NULL; 1959 1960 domain->type = type; 1961 /* Assume all sizes by default; the driver may override this later */ 1962 domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap; 1963 if (!domain->ops) 1964 domain->ops = bus->iommu_ops->default_domain_ops; 1965 1966 if (iommu_is_dma_domain(domain) && iommu_get_dma_cookie(domain)) { 1967 iommu_domain_free(domain); 1968 domain = NULL; 1969 } 1970 return domain; 1971 } 1972 1973 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus) 1974 { 1975 return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED); 1976 } 1977 EXPORT_SYMBOL_GPL(iommu_domain_alloc); 1978 1979 void iommu_domain_free(struct iommu_domain *domain) 1980 { 1981 iommu_put_dma_cookie(domain); 1982 domain->ops->free(domain); 1983 } 1984 EXPORT_SYMBOL_GPL(iommu_domain_free); 1985 1986 static int __iommu_attach_device(struct iommu_domain *domain, 1987 struct device *dev) 1988 { 1989 int ret; 1990 1991 if (unlikely(domain->ops->attach_dev == NULL)) 1992 return -ENODEV; 1993 1994 ret = domain->ops->attach_dev(domain, dev); 1995 if (!ret) 1996 trace_attach_device_to_domain(dev); 1997 return ret; 1998 } 1999 2000 int iommu_attach_device(struct iommu_domain *domain, struct device *dev) 2001 { 2002 struct iommu_group *group; 2003 int ret; 2004 2005 group = iommu_group_get(dev); 2006 if (!group) 2007 return -ENODEV; 2008 2009 /* 2010 * Lock the group to make sure the device-count doesn't 2011 * change while we are attaching 2012 */ 2013 mutex_lock(&group->mutex); 2014 ret = -EINVAL; 2015 if (iommu_group_device_count(group) != 1) 2016 goto out_unlock; 2017 2018 ret = __iommu_attach_group(domain, group); 2019 2020 out_unlock: 2021 mutex_unlock(&group->mutex); 2022 iommu_group_put(group); 2023 2024 return ret; 2025 } 2026 EXPORT_SYMBOL_GPL(iommu_attach_device); 2027 2028 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain) 2029 { 2030 if (iommu_is_attach_deferred(dev)) 2031 return __iommu_attach_device(domain, dev); 2032 2033 return 0; 2034 } 2035 2036 static void __iommu_detach_device(struct iommu_domain *domain, 2037 struct device *dev) 2038 { 2039 if (iommu_is_attach_deferred(dev)) 2040 return; 2041 2042 if (unlikely(domain->ops->detach_dev == NULL)) 2043 return; 2044 2045 domain->ops->detach_dev(domain, dev); 2046 trace_detach_device_from_domain(dev); 2047 } 2048 2049 void iommu_detach_device(struct iommu_domain *domain, struct device *dev) 2050 { 2051 struct iommu_group *group; 2052 2053 group = iommu_group_get(dev); 2054 if (!group) 2055 return; 2056 2057 mutex_lock(&group->mutex); 2058 if (iommu_group_device_count(group) != 1) { 2059 WARN_ON(1); 2060 goto out_unlock; 2061 } 2062 2063 __iommu_detach_group(domain, group); 2064 2065 out_unlock: 2066 mutex_unlock(&group->mutex); 2067 iommu_group_put(group); 2068 } 2069 EXPORT_SYMBOL_GPL(iommu_detach_device); 2070 2071 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev) 2072 { 2073 struct iommu_domain *domain; 2074 struct iommu_group *group; 2075 2076 group = iommu_group_get(dev); 2077 if (!group) 2078 return NULL; 2079 2080 domain = group->domain; 2081 2082 iommu_group_put(group); 2083 2084 return domain; 2085 } 2086 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev); 2087 2088 /* 2089 * For IOMMU_DOMAIN_DMA implementations which already provide their own 2090 * guarantees that the group and its default domain are valid and correct. 2091 */ 2092 struct iommu_domain *iommu_get_dma_domain(struct device *dev) 2093 { 2094 return dev->iommu_group->default_domain; 2095 } 2096 2097 /* 2098 * IOMMU groups are really the natural working unit of the IOMMU, but 2099 * the IOMMU API works on domains and devices. Bridge that gap by 2100 * iterating over the devices in a group. Ideally we'd have a single 2101 * device which represents the requestor ID of the group, but we also 2102 * allow IOMMU drivers to create policy defined minimum sets, where 2103 * the physical hardware may be able to distiguish members, but we 2104 * wish to group them at a higher level (ex. untrusted multi-function 2105 * PCI devices). Thus we attach each device. 2106 */ 2107 static int iommu_group_do_attach_device(struct device *dev, void *data) 2108 { 2109 struct iommu_domain *domain = data; 2110 2111 return __iommu_attach_device(domain, dev); 2112 } 2113 2114 static int __iommu_attach_group(struct iommu_domain *domain, 2115 struct iommu_group *group) 2116 { 2117 int ret; 2118 2119 if (group->default_domain && group->domain != group->default_domain) 2120 return -EBUSY; 2121 2122 ret = __iommu_group_for_each_dev(group, domain, 2123 iommu_group_do_attach_device); 2124 if (ret == 0) 2125 group->domain = domain; 2126 2127 return ret; 2128 } 2129 2130 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group) 2131 { 2132 int ret; 2133 2134 mutex_lock(&group->mutex); 2135 ret = __iommu_attach_group(domain, group); 2136 mutex_unlock(&group->mutex); 2137 2138 return ret; 2139 } 2140 EXPORT_SYMBOL_GPL(iommu_attach_group); 2141 2142 static int iommu_group_do_detach_device(struct device *dev, void *data) 2143 { 2144 struct iommu_domain *domain = data; 2145 2146 __iommu_detach_device(domain, dev); 2147 2148 return 0; 2149 } 2150 2151 static void __iommu_detach_group(struct iommu_domain *domain, 2152 struct iommu_group *group) 2153 { 2154 int ret; 2155 2156 if (!group->default_domain) { 2157 __iommu_group_for_each_dev(group, domain, 2158 iommu_group_do_detach_device); 2159 group->domain = NULL; 2160 return; 2161 } 2162 2163 if (group->domain == group->default_domain) 2164 return; 2165 2166 /* Detach by re-attaching to the default domain */ 2167 ret = __iommu_group_for_each_dev(group, group->default_domain, 2168 iommu_group_do_attach_device); 2169 if (ret != 0) 2170 WARN_ON(1); 2171 else 2172 group->domain = group->default_domain; 2173 } 2174 2175 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group) 2176 { 2177 mutex_lock(&group->mutex); 2178 __iommu_detach_group(domain, group); 2179 mutex_unlock(&group->mutex); 2180 } 2181 EXPORT_SYMBOL_GPL(iommu_detach_group); 2182 2183 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) 2184 { 2185 if (domain->type == IOMMU_DOMAIN_IDENTITY) 2186 return iova; 2187 2188 if (domain->type == IOMMU_DOMAIN_BLOCKED) 2189 return 0; 2190 2191 return domain->ops->iova_to_phys(domain, iova); 2192 } 2193 EXPORT_SYMBOL_GPL(iommu_iova_to_phys); 2194 2195 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova, 2196 phys_addr_t paddr, size_t size, size_t *count) 2197 { 2198 unsigned int pgsize_idx, pgsize_idx_next; 2199 unsigned long pgsizes; 2200 size_t offset, pgsize, pgsize_next; 2201 unsigned long addr_merge = paddr | iova; 2202 2203 /* Page sizes supported by the hardware and small enough for @size */ 2204 pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0); 2205 2206 /* Constrain the page sizes further based on the maximum alignment */ 2207 if (likely(addr_merge)) 2208 pgsizes &= GENMASK(__ffs(addr_merge), 0); 2209 2210 /* Make sure we have at least one suitable page size */ 2211 BUG_ON(!pgsizes); 2212 2213 /* Pick the biggest page size remaining */ 2214 pgsize_idx = __fls(pgsizes); 2215 pgsize = BIT(pgsize_idx); 2216 if (!count) 2217 return pgsize; 2218 2219 /* Find the next biggest support page size, if it exists */ 2220 pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0); 2221 if (!pgsizes) 2222 goto out_set_count; 2223 2224 pgsize_idx_next = __ffs(pgsizes); 2225 pgsize_next = BIT(pgsize_idx_next); 2226 2227 /* 2228 * There's no point trying a bigger page size unless the virtual 2229 * and physical addresses are similarly offset within the larger page. 2230 */ 2231 if ((iova ^ paddr) & (pgsize_next - 1)) 2232 goto out_set_count; 2233 2234 /* Calculate the offset to the next page size alignment boundary */ 2235 offset = pgsize_next - (addr_merge & (pgsize_next - 1)); 2236 2237 /* 2238 * If size is big enough to accommodate the larger page, reduce 2239 * the number of smaller pages. 2240 */ 2241 if (offset + pgsize_next <= size) 2242 size = offset; 2243 2244 out_set_count: 2245 *count = size >> pgsize_idx; 2246 return pgsize; 2247 } 2248 2249 static int __iommu_map_pages(struct iommu_domain *domain, unsigned long iova, 2250 phys_addr_t paddr, size_t size, int prot, 2251 gfp_t gfp, size_t *mapped) 2252 { 2253 const struct iommu_domain_ops *ops = domain->ops; 2254 size_t pgsize, count; 2255 int ret; 2256 2257 pgsize = iommu_pgsize(domain, iova, paddr, size, &count); 2258 2259 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n", 2260 iova, &paddr, pgsize, count); 2261 2262 if (ops->map_pages) { 2263 ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot, 2264 gfp, mapped); 2265 } else { 2266 ret = ops->map(domain, iova, paddr, pgsize, prot, gfp); 2267 *mapped = ret ? 0 : pgsize; 2268 } 2269 2270 return ret; 2271 } 2272 2273 static int __iommu_map(struct iommu_domain *domain, unsigned long iova, 2274 phys_addr_t paddr, size_t size, int prot, gfp_t gfp) 2275 { 2276 const struct iommu_domain_ops *ops = domain->ops; 2277 unsigned long orig_iova = iova; 2278 unsigned int min_pagesz; 2279 size_t orig_size = size; 2280 phys_addr_t orig_paddr = paddr; 2281 int ret = 0; 2282 2283 if (unlikely(!(ops->map || ops->map_pages) || 2284 domain->pgsize_bitmap == 0UL)) 2285 return -ENODEV; 2286 2287 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 2288 return -EINVAL; 2289 2290 /* find out the minimum page size supported */ 2291 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 2292 2293 /* 2294 * both the virtual address and the physical one, as well as 2295 * the size of the mapping, must be aligned (at least) to the 2296 * size of the smallest page supported by the hardware 2297 */ 2298 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) { 2299 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n", 2300 iova, &paddr, size, min_pagesz); 2301 return -EINVAL; 2302 } 2303 2304 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size); 2305 2306 while (size) { 2307 size_t mapped = 0; 2308 2309 ret = __iommu_map_pages(domain, iova, paddr, size, prot, gfp, 2310 &mapped); 2311 /* 2312 * Some pages may have been mapped, even if an error occurred, 2313 * so we should account for those so they can be unmapped. 2314 */ 2315 size -= mapped; 2316 2317 if (ret) 2318 break; 2319 2320 iova += mapped; 2321 paddr += mapped; 2322 } 2323 2324 /* unroll mapping in case something went wrong */ 2325 if (ret) 2326 iommu_unmap(domain, orig_iova, orig_size - size); 2327 else 2328 trace_map(orig_iova, orig_paddr, orig_size); 2329 2330 return ret; 2331 } 2332 2333 static int _iommu_map(struct iommu_domain *domain, unsigned long iova, 2334 phys_addr_t paddr, size_t size, int prot, gfp_t gfp) 2335 { 2336 const struct iommu_domain_ops *ops = domain->ops; 2337 int ret; 2338 2339 ret = __iommu_map(domain, iova, paddr, size, prot, gfp); 2340 if (ret == 0 && ops->iotlb_sync_map) 2341 ops->iotlb_sync_map(domain, iova, size); 2342 2343 return ret; 2344 } 2345 2346 int iommu_map(struct iommu_domain *domain, unsigned long iova, 2347 phys_addr_t paddr, size_t size, int prot) 2348 { 2349 might_sleep(); 2350 return _iommu_map(domain, iova, paddr, size, prot, GFP_KERNEL); 2351 } 2352 EXPORT_SYMBOL_GPL(iommu_map); 2353 2354 int iommu_map_atomic(struct iommu_domain *domain, unsigned long iova, 2355 phys_addr_t paddr, size_t size, int prot) 2356 { 2357 return _iommu_map(domain, iova, paddr, size, prot, GFP_ATOMIC); 2358 } 2359 EXPORT_SYMBOL_GPL(iommu_map_atomic); 2360 2361 static size_t __iommu_unmap_pages(struct iommu_domain *domain, 2362 unsigned long iova, size_t size, 2363 struct iommu_iotlb_gather *iotlb_gather) 2364 { 2365 const struct iommu_domain_ops *ops = domain->ops; 2366 size_t pgsize, count; 2367 2368 pgsize = iommu_pgsize(domain, iova, iova, size, &count); 2369 return ops->unmap_pages ? 2370 ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather) : 2371 ops->unmap(domain, iova, pgsize, iotlb_gather); 2372 } 2373 2374 static size_t __iommu_unmap(struct iommu_domain *domain, 2375 unsigned long iova, size_t size, 2376 struct iommu_iotlb_gather *iotlb_gather) 2377 { 2378 const struct iommu_domain_ops *ops = domain->ops; 2379 size_t unmapped_page, unmapped = 0; 2380 unsigned long orig_iova = iova; 2381 unsigned int min_pagesz; 2382 2383 if (unlikely(!(ops->unmap || ops->unmap_pages) || 2384 domain->pgsize_bitmap == 0UL)) 2385 return 0; 2386 2387 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 2388 return 0; 2389 2390 /* find out the minimum page size supported */ 2391 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 2392 2393 /* 2394 * The virtual address, as well as the size of the mapping, must be 2395 * aligned (at least) to the size of the smallest page supported 2396 * by the hardware 2397 */ 2398 if (!IS_ALIGNED(iova | size, min_pagesz)) { 2399 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n", 2400 iova, size, min_pagesz); 2401 return 0; 2402 } 2403 2404 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size); 2405 2406 /* 2407 * Keep iterating until we either unmap 'size' bytes (or more) 2408 * or we hit an area that isn't mapped. 2409 */ 2410 while (unmapped < size) { 2411 unmapped_page = __iommu_unmap_pages(domain, iova, 2412 size - unmapped, 2413 iotlb_gather); 2414 if (!unmapped_page) 2415 break; 2416 2417 pr_debug("unmapped: iova 0x%lx size 0x%zx\n", 2418 iova, unmapped_page); 2419 2420 iova += unmapped_page; 2421 unmapped += unmapped_page; 2422 } 2423 2424 trace_unmap(orig_iova, size, unmapped); 2425 return unmapped; 2426 } 2427 2428 size_t iommu_unmap(struct iommu_domain *domain, 2429 unsigned long iova, size_t size) 2430 { 2431 struct iommu_iotlb_gather iotlb_gather; 2432 size_t ret; 2433 2434 iommu_iotlb_gather_init(&iotlb_gather); 2435 ret = __iommu_unmap(domain, iova, size, &iotlb_gather); 2436 iommu_iotlb_sync(domain, &iotlb_gather); 2437 2438 return ret; 2439 } 2440 EXPORT_SYMBOL_GPL(iommu_unmap); 2441 2442 size_t iommu_unmap_fast(struct iommu_domain *domain, 2443 unsigned long iova, size_t size, 2444 struct iommu_iotlb_gather *iotlb_gather) 2445 { 2446 return __iommu_unmap(domain, iova, size, iotlb_gather); 2447 } 2448 EXPORT_SYMBOL_GPL(iommu_unmap_fast); 2449 2450 static ssize_t __iommu_map_sg(struct iommu_domain *domain, unsigned long iova, 2451 struct scatterlist *sg, unsigned int nents, int prot, 2452 gfp_t gfp) 2453 { 2454 const struct iommu_domain_ops *ops = domain->ops; 2455 size_t len = 0, mapped = 0; 2456 phys_addr_t start; 2457 unsigned int i = 0; 2458 int ret; 2459 2460 while (i <= nents) { 2461 phys_addr_t s_phys = sg_phys(sg); 2462 2463 if (len && s_phys != start + len) { 2464 ret = __iommu_map(domain, iova + mapped, start, 2465 len, prot, gfp); 2466 2467 if (ret) 2468 goto out_err; 2469 2470 mapped += len; 2471 len = 0; 2472 } 2473 2474 if (len) { 2475 len += sg->length; 2476 } else { 2477 len = sg->length; 2478 start = s_phys; 2479 } 2480 2481 if (++i < nents) 2482 sg = sg_next(sg); 2483 } 2484 2485 if (ops->iotlb_sync_map) 2486 ops->iotlb_sync_map(domain, iova, mapped); 2487 return mapped; 2488 2489 out_err: 2490 /* undo mappings already done */ 2491 iommu_unmap(domain, iova, mapped); 2492 2493 return ret; 2494 } 2495 2496 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova, 2497 struct scatterlist *sg, unsigned int nents, int prot) 2498 { 2499 might_sleep(); 2500 return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_KERNEL); 2501 } 2502 EXPORT_SYMBOL_GPL(iommu_map_sg); 2503 2504 ssize_t iommu_map_sg_atomic(struct iommu_domain *domain, unsigned long iova, 2505 struct scatterlist *sg, unsigned int nents, int prot) 2506 { 2507 return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC); 2508 } 2509 2510 /** 2511 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework 2512 * @domain: the iommu domain where the fault has happened 2513 * @dev: the device where the fault has happened 2514 * @iova: the faulting address 2515 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...) 2516 * 2517 * This function should be called by the low-level IOMMU implementations 2518 * whenever IOMMU faults happen, to allow high-level users, that are 2519 * interested in such events, to know about them. 2520 * 2521 * This event may be useful for several possible use cases: 2522 * - mere logging of the event 2523 * - dynamic TLB/PTE loading 2524 * - if restarting of the faulting device is required 2525 * 2526 * Returns 0 on success and an appropriate error code otherwise (if dynamic 2527 * PTE/TLB loading will one day be supported, implementations will be able 2528 * to tell whether it succeeded or not according to this return value). 2529 * 2530 * Specifically, -ENOSYS is returned if a fault handler isn't installed 2531 * (though fault handlers can also return -ENOSYS, in case they want to 2532 * elicit the default behavior of the IOMMU drivers). 2533 */ 2534 int report_iommu_fault(struct iommu_domain *domain, struct device *dev, 2535 unsigned long iova, int flags) 2536 { 2537 int ret = -ENOSYS; 2538 2539 /* 2540 * if upper layers showed interest and installed a fault handler, 2541 * invoke it. 2542 */ 2543 if (domain->handler) 2544 ret = domain->handler(domain, dev, iova, flags, 2545 domain->handler_token); 2546 2547 trace_io_page_fault(dev, iova, flags); 2548 return ret; 2549 } 2550 EXPORT_SYMBOL_GPL(report_iommu_fault); 2551 2552 static int __init iommu_init(void) 2553 { 2554 iommu_group_kset = kset_create_and_add("iommu_groups", 2555 NULL, kernel_kobj); 2556 BUG_ON(!iommu_group_kset); 2557 2558 iommu_debugfs_setup(); 2559 2560 return 0; 2561 } 2562 core_initcall(iommu_init); 2563 2564 int iommu_enable_nesting(struct iommu_domain *domain) 2565 { 2566 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 2567 return -EINVAL; 2568 if (!domain->ops->enable_nesting) 2569 return -EINVAL; 2570 return domain->ops->enable_nesting(domain); 2571 } 2572 EXPORT_SYMBOL_GPL(iommu_enable_nesting); 2573 2574 int iommu_set_pgtable_quirks(struct iommu_domain *domain, 2575 unsigned long quirk) 2576 { 2577 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 2578 return -EINVAL; 2579 if (!domain->ops->set_pgtable_quirks) 2580 return -EINVAL; 2581 return domain->ops->set_pgtable_quirks(domain, quirk); 2582 } 2583 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks); 2584 2585 void iommu_get_resv_regions(struct device *dev, struct list_head *list) 2586 { 2587 const struct iommu_ops *ops = dev_iommu_ops(dev); 2588 2589 if (ops->get_resv_regions) 2590 ops->get_resv_regions(dev, list); 2591 } 2592 2593 void iommu_put_resv_regions(struct device *dev, struct list_head *list) 2594 { 2595 const struct iommu_ops *ops = dev_iommu_ops(dev); 2596 2597 if (ops->put_resv_regions) 2598 ops->put_resv_regions(dev, list); 2599 } 2600 2601 /** 2602 * generic_iommu_put_resv_regions - Reserved region driver helper 2603 * @dev: device for which to free reserved regions 2604 * @list: reserved region list for device 2605 * 2606 * IOMMU drivers can use this to implement their .put_resv_regions() callback 2607 * for simple reservations. Memory allocated for each reserved region will be 2608 * freed. If an IOMMU driver allocates additional resources per region, it is 2609 * going to have to implement a custom callback. 2610 */ 2611 void generic_iommu_put_resv_regions(struct device *dev, struct list_head *list) 2612 { 2613 struct iommu_resv_region *entry, *next; 2614 2615 list_for_each_entry_safe(entry, next, list, list) 2616 kfree(entry); 2617 } 2618 EXPORT_SYMBOL(generic_iommu_put_resv_regions); 2619 2620 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start, 2621 size_t length, int prot, 2622 enum iommu_resv_type type) 2623 { 2624 struct iommu_resv_region *region; 2625 2626 region = kzalloc(sizeof(*region), GFP_KERNEL); 2627 if (!region) 2628 return NULL; 2629 2630 INIT_LIST_HEAD(®ion->list); 2631 region->start = start; 2632 region->length = length; 2633 region->prot = prot; 2634 region->type = type; 2635 return region; 2636 } 2637 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region); 2638 2639 void iommu_set_default_passthrough(bool cmd_line) 2640 { 2641 if (cmd_line) 2642 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API; 2643 iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY; 2644 } 2645 2646 void iommu_set_default_translated(bool cmd_line) 2647 { 2648 if (cmd_line) 2649 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API; 2650 iommu_def_domain_type = IOMMU_DOMAIN_DMA; 2651 } 2652 2653 bool iommu_default_passthrough(void) 2654 { 2655 return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY; 2656 } 2657 EXPORT_SYMBOL_GPL(iommu_default_passthrough); 2658 2659 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode) 2660 { 2661 const struct iommu_ops *ops = NULL; 2662 struct iommu_device *iommu; 2663 2664 spin_lock(&iommu_device_lock); 2665 list_for_each_entry(iommu, &iommu_device_list, list) 2666 if (iommu->fwnode == fwnode) { 2667 ops = iommu->ops; 2668 break; 2669 } 2670 spin_unlock(&iommu_device_lock); 2671 return ops; 2672 } 2673 2674 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode, 2675 const struct iommu_ops *ops) 2676 { 2677 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2678 2679 if (fwspec) 2680 return ops == fwspec->ops ? 0 : -EINVAL; 2681 2682 if (!dev_iommu_get(dev)) 2683 return -ENOMEM; 2684 2685 /* Preallocate for the overwhelmingly common case of 1 ID */ 2686 fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL); 2687 if (!fwspec) 2688 return -ENOMEM; 2689 2690 of_node_get(to_of_node(iommu_fwnode)); 2691 fwspec->iommu_fwnode = iommu_fwnode; 2692 fwspec->ops = ops; 2693 dev_iommu_fwspec_set(dev, fwspec); 2694 return 0; 2695 } 2696 EXPORT_SYMBOL_GPL(iommu_fwspec_init); 2697 2698 void iommu_fwspec_free(struct device *dev) 2699 { 2700 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2701 2702 if (fwspec) { 2703 fwnode_handle_put(fwspec->iommu_fwnode); 2704 kfree(fwspec); 2705 dev_iommu_fwspec_set(dev, NULL); 2706 } 2707 } 2708 EXPORT_SYMBOL_GPL(iommu_fwspec_free); 2709 2710 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids) 2711 { 2712 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2713 int i, new_num; 2714 2715 if (!fwspec) 2716 return -EINVAL; 2717 2718 new_num = fwspec->num_ids + num_ids; 2719 if (new_num > 1) { 2720 fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num), 2721 GFP_KERNEL); 2722 if (!fwspec) 2723 return -ENOMEM; 2724 2725 dev_iommu_fwspec_set(dev, fwspec); 2726 } 2727 2728 for (i = 0; i < num_ids; i++) 2729 fwspec->ids[fwspec->num_ids + i] = ids[i]; 2730 2731 fwspec->num_ids = new_num; 2732 return 0; 2733 } 2734 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids); 2735 2736 /* 2737 * Per device IOMMU features. 2738 */ 2739 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat) 2740 { 2741 if (dev->iommu && dev->iommu->iommu_dev) { 2742 const struct iommu_ops *ops = dev->iommu->iommu_dev->ops; 2743 2744 if (ops->dev_enable_feat) 2745 return ops->dev_enable_feat(dev, feat); 2746 } 2747 2748 return -ENODEV; 2749 } 2750 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature); 2751 2752 /* 2753 * The device drivers should do the necessary cleanups before calling this. 2754 */ 2755 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat) 2756 { 2757 if (dev->iommu && dev->iommu->iommu_dev) { 2758 const struct iommu_ops *ops = dev->iommu->iommu_dev->ops; 2759 2760 if (ops->dev_disable_feat) 2761 return ops->dev_disable_feat(dev, feat); 2762 } 2763 2764 return -EBUSY; 2765 } 2766 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature); 2767 2768 bool iommu_dev_feature_enabled(struct device *dev, enum iommu_dev_features feat) 2769 { 2770 if (dev->iommu && dev->iommu->iommu_dev) { 2771 const struct iommu_ops *ops = dev->iommu->iommu_dev->ops; 2772 2773 if (ops->dev_feat_enabled) 2774 return ops->dev_feat_enabled(dev, feat); 2775 } 2776 2777 return false; 2778 } 2779 EXPORT_SYMBOL_GPL(iommu_dev_feature_enabled); 2780 2781 /** 2782 * iommu_sva_bind_device() - Bind a process address space to a device 2783 * @dev: the device 2784 * @mm: the mm to bind, caller must hold a reference to it 2785 * @drvdata: opaque data pointer to pass to bind callback 2786 * 2787 * Create a bond between device and address space, allowing the device to access 2788 * the mm using the returned PASID. If a bond already exists between @device and 2789 * @mm, it is returned and an additional reference is taken. Caller must call 2790 * iommu_sva_unbind_device() to release each reference. 2791 * 2792 * iommu_dev_enable_feature(dev, IOMMU_DEV_FEAT_SVA) must be called first, to 2793 * initialize the required SVA features. 2794 * 2795 * On error, returns an ERR_PTR value. 2796 */ 2797 struct iommu_sva * 2798 iommu_sva_bind_device(struct device *dev, struct mm_struct *mm, void *drvdata) 2799 { 2800 struct iommu_group *group; 2801 struct iommu_sva *handle = ERR_PTR(-EINVAL); 2802 const struct iommu_ops *ops = dev_iommu_ops(dev); 2803 2804 if (!ops->sva_bind) 2805 return ERR_PTR(-ENODEV); 2806 2807 group = iommu_group_get(dev); 2808 if (!group) 2809 return ERR_PTR(-ENODEV); 2810 2811 /* Ensure device count and domain don't change while we're binding */ 2812 mutex_lock(&group->mutex); 2813 2814 /* 2815 * To keep things simple, SVA currently doesn't support IOMMU groups 2816 * with more than one device. Existing SVA-capable systems are not 2817 * affected by the problems that required IOMMU groups (lack of ACS 2818 * isolation, device ID aliasing and other hardware issues). 2819 */ 2820 if (iommu_group_device_count(group) != 1) 2821 goto out_unlock; 2822 2823 handle = ops->sva_bind(dev, mm, drvdata); 2824 2825 out_unlock: 2826 mutex_unlock(&group->mutex); 2827 iommu_group_put(group); 2828 2829 return handle; 2830 } 2831 EXPORT_SYMBOL_GPL(iommu_sva_bind_device); 2832 2833 /** 2834 * iommu_sva_unbind_device() - Remove a bond created with iommu_sva_bind_device 2835 * @handle: the handle returned by iommu_sva_bind_device() 2836 * 2837 * Put reference to a bond between device and address space. The device should 2838 * not be issuing any more transaction for this PASID. All outstanding page 2839 * requests for this PASID must have been flushed to the IOMMU. 2840 */ 2841 void iommu_sva_unbind_device(struct iommu_sva *handle) 2842 { 2843 struct iommu_group *group; 2844 struct device *dev = handle->dev; 2845 const struct iommu_ops *ops = dev_iommu_ops(dev); 2846 2847 if (!ops->sva_unbind) 2848 return; 2849 2850 group = iommu_group_get(dev); 2851 if (!group) 2852 return; 2853 2854 mutex_lock(&group->mutex); 2855 ops->sva_unbind(handle); 2856 mutex_unlock(&group->mutex); 2857 2858 iommu_group_put(group); 2859 } 2860 EXPORT_SYMBOL_GPL(iommu_sva_unbind_device); 2861 2862 u32 iommu_sva_get_pasid(struct iommu_sva *handle) 2863 { 2864 const struct iommu_ops *ops = dev_iommu_ops(handle->dev); 2865 2866 if (!ops->sva_get_pasid) 2867 return IOMMU_PASID_INVALID; 2868 2869 return ops->sva_get_pasid(handle); 2870 } 2871 EXPORT_SYMBOL_GPL(iommu_sva_get_pasid); 2872 2873 /* 2874 * Changes the default domain of an iommu group that has *only* one device 2875 * 2876 * @group: The group for which the default domain should be changed 2877 * @prev_dev: The device in the group (this is used to make sure that the device 2878 * hasn't changed after the caller has called this function) 2879 * @type: The type of the new default domain that gets associated with the group 2880 * 2881 * Returns 0 on success and error code on failure 2882 * 2883 * Note: 2884 * 1. Presently, this function is called only when user requests to change the 2885 * group's default domain type through /sys/kernel/iommu_groups/<grp_id>/type 2886 * Please take a closer look if intended to use for other purposes. 2887 */ 2888 static int iommu_change_dev_def_domain(struct iommu_group *group, 2889 struct device *prev_dev, int type) 2890 { 2891 struct iommu_domain *prev_dom; 2892 struct group_device *grp_dev; 2893 int ret, dev_def_dom; 2894 struct device *dev; 2895 2896 mutex_lock(&group->mutex); 2897 2898 if (group->default_domain != group->domain) { 2899 dev_err_ratelimited(prev_dev, "Group not assigned to default domain\n"); 2900 ret = -EBUSY; 2901 goto out; 2902 } 2903 2904 /* 2905 * iommu group wasn't locked while acquiring device lock in 2906 * iommu_group_store_type(). So, make sure that the device count hasn't 2907 * changed while acquiring device lock. 2908 * 2909 * Changing default domain of an iommu group with two or more devices 2910 * isn't supported because there could be a potential deadlock. Consider 2911 * the following scenario. T1 is trying to acquire device locks of all 2912 * the devices in the group and before it could acquire all of them, 2913 * there could be another thread T2 (from different sub-system and use 2914 * case) that has already acquired some of the device locks and might be 2915 * waiting for T1 to release other device locks. 2916 */ 2917 if (iommu_group_device_count(group) != 1) { 2918 dev_err_ratelimited(prev_dev, "Cannot change default domain: Group has more than one device\n"); 2919 ret = -EINVAL; 2920 goto out; 2921 } 2922 2923 /* Since group has only one device */ 2924 grp_dev = list_first_entry(&group->devices, struct group_device, list); 2925 dev = grp_dev->dev; 2926 2927 if (prev_dev != dev) { 2928 dev_err_ratelimited(prev_dev, "Cannot change default domain: Device has been changed\n"); 2929 ret = -EBUSY; 2930 goto out; 2931 } 2932 2933 prev_dom = group->default_domain; 2934 if (!prev_dom) { 2935 ret = -EINVAL; 2936 goto out; 2937 } 2938 2939 dev_def_dom = iommu_get_def_domain_type(dev); 2940 if (!type) { 2941 /* 2942 * If the user hasn't requested any specific type of domain and 2943 * if the device supports both the domains, then default to the 2944 * domain the device was booted with 2945 */ 2946 type = dev_def_dom ? : iommu_def_domain_type; 2947 } else if (dev_def_dom && type != dev_def_dom) { 2948 dev_err_ratelimited(prev_dev, "Device cannot be in %s domain\n", 2949 iommu_domain_type_str(type)); 2950 ret = -EINVAL; 2951 goto out; 2952 } 2953 2954 /* 2955 * Switch to a new domain only if the requested domain type is different 2956 * from the existing default domain type 2957 */ 2958 if (prev_dom->type == type) { 2959 ret = 0; 2960 goto out; 2961 } 2962 2963 /* We can bring up a flush queue without tearing down the domain */ 2964 if (type == IOMMU_DOMAIN_DMA_FQ && prev_dom->type == IOMMU_DOMAIN_DMA) { 2965 ret = iommu_dma_init_fq(prev_dom); 2966 if (!ret) 2967 prev_dom->type = IOMMU_DOMAIN_DMA_FQ; 2968 goto out; 2969 } 2970 2971 /* Sets group->default_domain to the newly allocated domain */ 2972 ret = iommu_group_alloc_default_domain(dev->bus, group, type); 2973 if (ret) 2974 goto out; 2975 2976 ret = iommu_create_device_direct_mappings(group, dev); 2977 if (ret) 2978 goto free_new_domain; 2979 2980 ret = __iommu_attach_device(group->default_domain, dev); 2981 if (ret) 2982 goto free_new_domain; 2983 2984 group->domain = group->default_domain; 2985 2986 /* 2987 * Release the mutex here because ops->probe_finalize() call-back of 2988 * some vendor IOMMU drivers calls arm_iommu_attach_device() which 2989 * in-turn might call back into IOMMU core code, where it tries to take 2990 * group->mutex, resulting in a deadlock. 2991 */ 2992 mutex_unlock(&group->mutex); 2993 2994 /* Make sure dma_ops is appropriatley set */ 2995 iommu_group_do_probe_finalize(dev, group->default_domain); 2996 iommu_domain_free(prev_dom); 2997 return 0; 2998 2999 free_new_domain: 3000 iommu_domain_free(group->default_domain); 3001 group->default_domain = prev_dom; 3002 group->domain = prev_dom; 3003 3004 out: 3005 mutex_unlock(&group->mutex); 3006 3007 return ret; 3008 } 3009 3010 /* 3011 * Changing the default domain through sysfs requires the users to unbind the 3012 * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ 3013 * transition. Return failure if this isn't met. 3014 * 3015 * We need to consider the race between this and the device release path. 3016 * device_lock(dev) is used here to guarantee that the device release path 3017 * will not be entered at the same time. 3018 */ 3019 static ssize_t iommu_group_store_type(struct iommu_group *group, 3020 const char *buf, size_t count) 3021 { 3022 struct group_device *grp_dev; 3023 struct device *dev; 3024 int ret, req_type; 3025 3026 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) 3027 return -EACCES; 3028 3029 if (WARN_ON(!group) || !group->default_domain) 3030 return -EINVAL; 3031 3032 if (sysfs_streq(buf, "identity")) 3033 req_type = IOMMU_DOMAIN_IDENTITY; 3034 else if (sysfs_streq(buf, "DMA")) 3035 req_type = IOMMU_DOMAIN_DMA; 3036 else if (sysfs_streq(buf, "DMA-FQ")) 3037 req_type = IOMMU_DOMAIN_DMA_FQ; 3038 else if (sysfs_streq(buf, "auto")) 3039 req_type = 0; 3040 else 3041 return -EINVAL; 3042 3043 /* 3044 * Lock/Unlock the group mutex here before device lock to 3045 * 1. Make sure that the iommu group has only one device (this is a 3046 * prerequisite for step 2) 3047 * 2. Get struct *dev which is needed to lock device 3048 */ 3049 mutex_lock(&group->mutex); 3050 if (iommu_group_device_count(group) != 1) { 3051 mutex_unlock(&group->mutex); 3052 pr_err_ratelimited("Cannot change default domain: Group has more than one device\n"); 3053 return -EINVAL; 3054 } 3055 3056 /* Since group has only one device */ 3057 grp_dev = list_first_entry(&group->devices, struct group_device, list); 3058 dev = grp_dev->dev; 3059 get_device(dev); 3060 3061 /* 3062 * Don't hold the group mutex because taking group mutex first and then 3063 * the device lock could potentially cause a deadlock as below. Assume 3064 * two threads T1 and T2. T1 is trying to change default domain of an 3065 * iommu group and T2 is trying to hot unplug a device or release [1] VF 3066 * of a PCIe device which is in the same iommu group. T1 takes group 3067 * mutex and before it could take device lock assume T2 has taken device 3068 * lock and is yet to take group mutex. Now, both the threads will be 3069 * waiting for the other thread to release lock. Below, lock order was 3070 * suggested. 3071 * device_lock(dev); 3072 * mutex_lock(&group->mutex); 3073 * iommu_change_dev_def_domain(); 3074 * mutex_unlock(&group->mutex); 3075 * device_unlock(dev); 3076 * 3077 * [1] Typical device release path 3078 * device_lock() from device/driver core code 3079 * -> bus_notifier() 3080 * -> iommu_bus_notifier() 3081 * -> iommu_release_device() 3082 * -> ops->release_device() vendor driver calls back iommu core code 3083 * -> mutex_lock() from iommu core code 3084 */ 3085 mutex_unlock(&group->mutex); 3086 3087 /* Check if the device in the group still has a driver bound to it */ 3088 device_lock(dev); 3089 if (device_is_bound(dev) && !(req_type == IOMMU_DOMAIN_DMA_FQ && 3090 group->default_domain->type == IOMMU_DOMAIN_DMA)) { 3091 pr_err_ratelimited("Device is still bound to driver\n"); 3092 ret = -EBUSY; 3093 goto out; 3094 } 3095 3096 ret = iommu_change_dev_def_domain(group, dev, req_type); 3097 ret = ret ?: count; 3098 3099 out: 3100 device_unlock(dev); 3101 put_device(dev); 3102 3103 return ret; 3104 } 3105