1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc. 4 * Author: Joerg Roedel <jroedel@suse.de> 5 */ 6 7 #define pr_fmt(fmt) "iommu: " fmt 8 9 #include <linux/device.h> 10 #include <linux/kernel.h> 11 #include <linux/bug.h> 12 #include <linux/types.h> 13 #include <linux/init.h> 14 #include <linux/export.h> 15 #include <linux/slab.h> 16 #include <linux/errno.h> 17 #include <linux/iommu.h> 18 #include <linux/idr.h> 19 #include <linux/notifier.h> 20 #include <linux/err.h> 21 #include <linux/pci.h> 22 #include <linux/bitops.h> 23 #include <linux/property.h> 24 #include <linux/fsl/mc.h> 25 #include <trace/events/iommu.h> 26 27 static struct kset *iommu_group_kset; 28 static DEFINE_IDA(iommu_group_ida); 29 30 static unsigned int iommu_def_domain_type __read_mostly; 31 static bool iommu_dma_strict __read_mostly = true; 32 static u32 iommu_cmd_line __read_mostly; 33 34 struct iommu_group { 35 struct kobject kobj; 36 struct kobject *devices_kobj; 37 struct list_head devices; 38 struct mutex mutex; 39 struct blocking_notifier_head notifier; 40 void *iommu_data; 41 void (*iommu_data_release)(void *iommu_data); 42 char *name; 43 int id; 44 struct iommu_domain *default_domain; 45 struct iommu_domain *domain; 46 }; 47 48 struct group_device { 49 struct list_head list; 50 struct device *dev; 51 char *name; 52 }; 53 54 struct iommu_group_attribute { 55 struct attribute attr; 56 ssize_t (*show)(struct iommu_group *group, char *buf); 57 ssize_t (*store)(struct iommu_group *group, 58 const char *buf, size_t count); 59 }; 60 61 static const char * const iommu_group_resv_type_string[] = { 62 [IOMMU_RESV_DIRECT] = "direct", 63 [IOMMU_RESV_DIRECT_RELAXABLE] = "direct-relaxable", 64 [IOMMU_RESV_RESERVED] = "reserved", 65 [IOMMU_RESV_MSI] = "msi", 66 [IOMMU_RESV_SW_MSI] = "msi", 67 }; 68 69 #define IOMMU_CMD_LINE_DMA_API BIT(0) 70 71 static void iommu_set_cmd_line_dma_api(void) 72 { 73 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API; 74 } 75 76 static bool iommu_cmd_line_dma_api(void) 77 { 78 return !!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API); 79 } 80 81 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \ 82 struct iommu_group_attribute iommu_group_attr_##_name = \ 83 __ATTR(_name, _mode, _show, _store) 84 85 #define to_iommu_group_attr(_attr) \ 86 container_of(_attr, struct iommu_group_attribute, attr) 87 #define to_iommu_group(_kobj) \ 88 container_of(_kobj, struct iommu_group, kobj) 89 90 static LIST_HEAD(iommu_device_list); 91 static DEFINE_SPINLOCK(iommu_device_lock); 92 93 /* 94 * Use a function instead of an array here because the domain-type is a 95 * bit-field, so an array would waste memory. 96 */ 97 static const char *iommu_domain_type_str(unsigned int t) 98 { 99 switch (t) { 100 case IOMMU_DOMAIN_BLOCKED: 101 return "Blocked"; 102 case IOMMU_DOMAIN_IDENTITY: 103 return "Passthrough"; 104 case IOMMU_DOMAIN_UNMANAGED: 105 return "Unmanaged"; 106 case IOMMU_DOMAIN_DMA: 107 return "Translated"; 108 default: 109 return "Unknown"; 110 } 111 } 112 113 static int __init iommu_subsys_init(void) 114 { 115 bool cmd_line = iommu_cmd_line_dma_api(); 116 117 if (!cmd_line) { 118 if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH)) 119 iommu_set_default_passthrough(false); 120 else 121 iommu_set_default_translated(false); 122 123 if (iommu_default_passthrough() && mem_encrypt_active()) { 124 pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n"); 125 iommu_set_default_translated(false); 126 } 127 } 128 129 pr_info("Default domain type: %s %s\n", 130 iommu_domain_type_str(iommu_def_domain_type), 131 cmd_line ? "(set via kernel command line)" : ""); 132 133 return 0; 134 } 135 subsys_initcall(iommu_subsys_init); 136 137 int iommu_device_register(struct iommu_device *iommu) 138 { 139 spin_lock(&iommu_device_lock); 140 list_add_tail(&iommu->list, &iommu_device_list); 141 spin_unlock(&iommu_device_lock); 142 return 0; 143 } 144 145 void iommu_device_unregister(struct iommu_device *iommu) 146 { 147 spin_lock(&iommu_device_lock); 148 list_del(&iommu->list); 149 spin_unlock(&iommu_device_lock); 150 } 151 152 static struct iommu_param *iommu_get_dev_param(struct device *dev) 153 { 154 struct iommu_param *param = dev->iommu_param; 155 156 if (param) 157 return param; 158 159 param = kzalloc(sizeof(*param), GFP_KERNEL); 160 if (!param) 161 return NULL; 162 163 mutex_init(¶m->lock); 164 dev->iommu_param = param; 165 return param; 166 } 167 168 static void iommu_free_dev_param(struct device *dev) 169 { 170 kfree(dev->iommu_param); 171 dev->iommu_param = NULL; 172 } 173 174 int iommu_probe_device(struct device *dev) 175 { 176 const struct iommu_ops *ops = dev->bus->iommu_ops; 177 int ret; 178 179 WARN_ON(dev->iommu_group); 180 if (!ops) 181 return -EINVAL; 182 183 if (!iommu_get_dev_param(dev)) 184 return -ENOMEM; 185 186 ret = ops->add_device(dev); 187 if (ret) 188 iommu_free_dev_param(dev); 189 190 return ret; 191 } 192 193 void iommu_release_device(struct device *dev) 194 { 195 const struct iommu_ops *ops = dev->bus->iommu_ops; 196 197 if (dev->iommu_group) 198 ops->remove_device(dev); 199 200 iommu_free_dev_param(dev); 201 } 202 203 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus, 204 unsigned type); 205 static int __iommu_attach_device(struct iommu_domain *domain, 206 struct device *dev); 207 static int __iommu_attach_group(struct iommu_domain *domain, 208 struct iommu_group *group); 209 static void __iommu_detach_group(struct iommu_domain *domain, 210 struct iommu_group *group); 211 212 static int __init iommu_set_def_domain_type(char *str) 213 { 214 bool pt; 215 int ret; 216 217 ret = kstrtobool(str, &pt); 218 if (ret) 219 return ret; 220 221 if (pt) 222 iommu_set_default_passthrough(true); 223 else 224 iommu_set_default_translated(true); 225 226 return 0; 227 } 228 early_param("iommu.passthrough", iommu_set_def_domain_type); 229 230 static int __init iommu_dma_setup(char *str) 231 { 232 return kstrtobool(str, &iommu_dma_strict); 233 } 234 early_param("iommu.strict", iommu_dma_setup); 235 236 static ssize_t iommu_group_attr_show(struct kobject *kobj, 237 struct attribute *__attr, char *buf) 238 { 239 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 240 struct iommu_group *group = to_iommu_group(kobj); 241 ssize_t ret = -EIO; 242 243 if (attr->show) 244 ret = attr->show(group, buf); 245 return ret; 246 } 247 248 static ssize_t iommu_group_attr_store(struct kobject *kobj, 249 struct attribute *__attr, 250 const char *buf, size_t count) 251 { 252 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 253 struct iommu_group *group = to_iommu_group(kobj); 254 ssize_t ret = -EIO; 255 256 if (attr->store) 257 ret = attr->store(group, buf, count); 258 return ret; 259 } 260 261 static const struct sysfs_ops iommu_group_sysfs_ops = { 262 .show = iommu_group_attr_show, 263 .store = iommu_group_attr_store, 264 }; 265 266 static int iommu_group_create_file(struct iommu_group *group, 267 struct iommu_group_attribute *attr) 268 { 269 return sysfs_create_file(&group->kobj, &attr->attr); 270 } 271 272 static void iommu_group_remove_file(struct iommu_group *group, 273 struct iommu_group_attribute *attr) 274 { 275 sysfs_remove_file(&group->kobj, &attr->attr); 276 } 277 278 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf) 279 { 280 return sprintf(buf, "%s\n", group->name); 281 } 282 283 /** 284 * iommu_insert_resv_region - Insert a new region in the 285 * list of reserved regions. 286 * @new: new region to insert 287 * @regions: list of regions 288 * 289 * Elements are sorted by start address and overlapping segments 290 * of the same type are merged. 291 */ 292 int iommu_insert_resv_region(struct iommu_resv_region *new, 293 struct list_head *regions) 294 { 295 struct iommu_resv_region *iter, *tmp, *nr, *top; 296 LIST_HEAD(stack); 297 298 nr = iommu_alloc_resv_region(new->start, new->length, 299 new->prot, new->type); 300 if (!nr) 301 return -ENOMEM; 302 303 /* First add the new element based on start address sorting */ 304 list_for_each_entry(iter, regions, list) { 305 if (nr->start < iter->start || 306 (nr->start == iter->start && nr->type <= iter->type)) 307 break; 308 } 309 list_add_tail(&nr->list, &iter->list); 310 311 /* Merge overlapping segments of type nr->type in @regions, if any */ 312 list_for_each_entry_safe(iter, tmp, regions, list) { 313 phys_addr_t top_end, iter_end = iter->start + iter->length - 1; 314 315 /* no merge needed on elements of different types than @new */ 316 if (iter->type != new->type) { 317 list_move_tail(&iter->list, &stack); 318 continue; 319 } 320 321 /* look for the last stack element of same type as @iter */ 322 list_for_each_entry_reverse(top, &stack, list) 323 if (top->type == iter->type) 324 goto check_overlap; 325 326 list_move_tail(&iter->list, &stack); 327 continue; 328 329 check_overlap: 330 top_end = top->start + top->length - 1; 331 332 if (iter->start > top_end + 1) { 333 list_move_tail(&iter->list, &stack); 334 } else { 335 top->length = max(top_end, iter_end) - top->start + 1; 336 list_del(&iter->list); 337 kfree(iter); 338 } 339 } 340 list_splice(&stack, regions); 341 return 0; 342 } 343 344 static int 345 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions, 346 struct list_head *group_resv_regions) 347 { 348 struct iommu_resv_region *entry; 349 int ret = 0; 350 351 list_for_each_entry(entry, dev_resv_regions, list) { 352 ret = iommu_insert_resv_region(entry, group_resv_regions); 353 if (ret) 354 break; 355 } 356 return ret; 357 } 358 359 int iommu_get_group_resv_regions(struct iommu_group *group, 360 struct list_head *head) 361 { 362 struct group_device *device; 363 int ret = 0; 364 365 mutex_lock(&group->mutex); 366 list_for_each_entry(device, &group->devices, list) { 367 struct list_head dev_resv_regions; 368 369 INIT_LIST_HEAD(&dev_resv_regions); 370 iommu_get_resv_regions(device->dev, &dev_resv_regions); 371 ret = iommu_insert_device_resv_regions(&dev_resv_regions, head); 372 iommu_put_resv_regions(device->dev, &dev_resv_regions); 373 if (ret) 374 break; 375 } 376 mutex_unlock(&group->mutex); 377 return ret; 378 } 379 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions); 380 381 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group, 382 char *buf) 383 { 384 struct iommu_resv_region *region, *next; 385 struct list_head group_resv_regions; 386 char *str = buf; 387 388 INIT_LIST_HEAD(&group_resv_regions); 389 iommu_get_group_resv_regions(group, &group_resv_regions); 390 391 list_for_each_entry_safe(region, next, &group_resv_regions, list) { 392 str += sprintf(str, "0x%016llx 0x%016llx %s\n", 393 (long long int)region->start, 394 (long long int)(region->start + 395 region->length - 1), 396 iommu_group_resv_type_string[region->type]); 397 kfree(region); 398 } 399 400 return (str - buf); 401 } 402 403 static ssize_t iommu_group_show_type(struct iommu_group *group, 404 char *buf) 405 { 406 char *type = "unknown\n"; 407 408 if (group->default_domain) { 409 switch (group->default_domain->type) { 410 case IOMMU_DOMAIN_BLOCKED: 411 type = "blocked\n"; 412 break; 413 case IOMMU_DOMAIN_IDENTITY: 414 type = "identity\n"; 415 break; 416 case IOMMU_DOMAIN_UNMANAGED: 417 type = "unmanaged\n"; 418 break; 419 case IOMMU_DOMAIN_DMA: 420 type = "DMA\n"; 421 break; 422 } 423 } 424 strcpy(buf, type); 425 426 return strlen(type); 427 } 428 429 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL); 430 431 static IOMMU_GROUP_ATTR(reserved_regions, 0444, 432 iommu_group_show_resv_regions, NULL); 433 434 static IOMMU_GROUP_ATTR(type, 0444, iommu_group_show_type, NULL); 435 436 static void iommu_group_release(struct kobject *kobj) 437 { 438 struct iommu_group *group = to_iommu_group(kobj); 439 440 pr_debug("Releasing group %d\n", group->id); 441 442 if (group->iommu_data_release) 443 group->iommu_data_release(group->iommu_data); 444 445 ida_simple_remove(&iommu_group_ida, group->id); 446 447 if (group->default_domain) 448 iommu_domain_free(group->default_domain); 449 450 kfree(group->name); 451 kfree(group); 452 } 453 454 static struct kobj_type iommu_group_ktype = { 455 .sysfs_ops = &iommu_group_sysfs_ops, 456 .release = iommu_group_release, 457 }; 458 459 /** 460 * iommu_group_alloc - Allocate a new group 461 * 462 * This function is called by an iommu driver to allocate a new iommu 463 * group. The iommu group represents the minimum granularity of the iommu. 464 * Upon successful return, the caller holds a reference to the supplied 465 * group in order to hold the group until devices are added. Use 466 * iommu_group_put() to release this extra reference count, allowing the 467 * group to be automatically reclaimed once it has no devices or external 468 * references. 469 */ 470 struct iommu_group *iommu_group_alloc(void) 471 { 472 struct iommu_group *group; 473 int ret; 474 475 group = kzalloc(sizeof(*group), GFP_KERNEL); 476 if (!group) 477 return ERR_PTR(-ENOMEM); 478 479 group->kobj.kset = iommu_group_kset; 480 mutex_init(&group->mutex); 481 INIT_LIST_HEAD(&group->devices); 482 BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier); 483 484 ret = ida_simple_get(&iommu_group_ida, 0, 0, GFP_KERNEL); 485 if (ret < 0) { 486 kfree(group); 487 return ERR_PTR(ret); 488 } 489 group->id = ret; 490 491 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype, 492 NULL, "%d", group->id); 493 if (ret) { 494 ida_simple_remove(&iommu_group_ida, group->id); 495 kfree(group); 496 return ERR_PTR(ret); 497 } 498 499 group->devices_kobj = kobject_create_and_add("devices", &group->kobj); 500 if (!group->devices_kobj) { 501 kobject_put(&group->kobj); /* triggers .release & free */ 502 return ERR_PTR(-ENOMEM); 503 } 504 505 /* 506 * The devices_kobj holds a reference on the group kobject, so 507 * as long as that exists so will the group. We can therefore 508 * use the devices_kobj for reference counting. 509 */ 510 kobject_put(&group->kobj); 511 512 ret = iommu_group_create_file(group, 513 &iommu_group_attr_reserved_regions); 514 if (ret) 515 return ERR_PTR(ret); 516 517 ret = iommu_group_create_file(group, &iommu_group_attr_type); 518 if (ret) 519 return ERR_PTR(ret); 520 521 pr_debug("Allocated group %d\n", group->id); 522 523 return group; 524 } 525 EXPORT_SYMBOL_GPL(iommu_group_alloc); 526 527 struct iommu_group *iommu_group_get_by_id(int id) 528 { 529 struct kobject *group_kobj; 530 struct iommu_group *group; 531 const char *name; 532 533 if (!iommu_group_kset) 534 return NULL; 535 536 name = kasprintf(GFP_KERNEL, "%d", id); 537 if (!name) 538 return NULL; 539 540 group_kobj = kset_find_obj(iommu_group_kset, name); 541 kfree(name); 542 543 if (!group_kobj) 544 return NULL; 545 546 group = container_of(group_kobj, struct iommu_group, kobj); 547 BUG_ON(group->id != id); 548 549 kobject_get(group->devices_kobj); 550 kobject_put(&group->kobj); 551 552 return group; 553 } 554 EXPORT_SYMBOL_GPL(iommu_group_get_by_id); 555 556 /** 557 * iommu_group_get_iommudata - retrieve iommu_data registered for a group 558 * @group: the group 559 * 560 * iommu drivers can store data in the group for use when doing iommu 561 * operations. This function provides a way to retrieve it. Caller 562 * should hold a group reference. 563 */ 564 void *iommu_group_get_iommudata(struct iommu_group *group) 565 { 566 return group->iommu_data; 567 } 568 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata); 569 570 /** 571 * iommu_group_set_iommudata - set iommu_data for a group 572 * @group: the group 573 * @iommu_data: new data 574 * @release: release function for iommu_data 575 * 576 * iommu drivers can store data in the group for use when doing iommu 577 * operations. This function provides a way to set the data after 578 * the group has been allocated. Caller should hold a group reference. 579 */ 580 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data, 581 void (*release)(void *iommu_data)) 582 { 583 group->iommu_data = iommu_data; 584 group->iommu_data_release = release; 585 } 586 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata); 587 588 /** 589 * iommu_group_set_name - set name for a group 590 * @group: the group 591 * @name: name 592 * 593 * Allow iommu driver to set a name for a group. When set it will 594 * appear in a name attribute file under the group in sysfs. 595 */ 596 int iommu_group_set_name(struct iommu_group *group, const char *name) 597 { 598 int ret; 599 600 if (group->name) { 601 iommu_group_remove_file(group, &iommu_group_attr_name); 602 kfree(group->name); 603 group->name = NULL; 604 if (!name) 605 return 0; 606 } 607 608 group->name = kstrdup(name, GFP_KERNEL); 609 if (!group->name) 610 return -ENOMEM; 611 612 ret = iommu_group_create_file(group, &iommu_group_attr_name); 613 if (ret) { 614 kfree(group->name); 615 group->name = NULL; 616 return ret; 617 } 618 619 return 0; 620 } 621 EXPORT_SYMBOL_GPL(iommu_group_set_name); 622 623 static int iommu_group_create_direct_mappings(struct iommu_group *group, 624 struct device *dev) 625 { 626 struct iommu_domain *domain = group->default_domain; 627 struct iommu_resv_region *entry; 628 struct list_head mappings; 629 unsigned long pg_size; 630 int ret = 0; 631 632 if (!domain || domain->type != IOMMU_DOMAIN_DMA) 633 return 0; 634 635 BUG_ON(!domain->pgsize_bitmap); 636 637 pg_size = 1UL << __ffs(domain->pgsize_bitmap); 638 INIT_LIST_HEAD(&mappings); 639 640 iommu_get_resv_regions(dev, &mappings); 641 642 /* We need to consider overlapping regions for different devices */ 643 list_for_each_entry(entry, &mappings, list) { 644 dma_addr_t start, end, addr; 645 646 if (domain->ops->apply_resv_region) 647 domain->ops->apply_resv_region(dev, domain, entry); 648 649 start = ALIGN(entry->start, pg_size); 650 end = ALIGN(entry->start + entry->length, pg_size); 651 652 if (entry->type != IOMMU_RESV_DIRECT && 653 entry->type != IOMMU_RESV_DIRECT_RELAXABLE) 654 continue; 655 656 for (addr = start; addr < end; addr += pg_size) { 657 phys_addr_t phys_addr; 658 659 phys_addr = iommu_iova_to_phys(domain, addr); 660 if (phys_addr) 661 continue; 662 663 ret = iommu_map(domain, addr, addr, pg_size, entry->prot); 664 if (ret) 665 goto out; 666 } 667 668 } 669 670 iommu_flush_tlb_all(domain); 671 672 out: 673 iommu_put_resv_regions(dev, &mappings); 674 675 return ret; 676 } 677 678 /** 679 * iommu_group_add_device - add a device to an iommu group 680 * @group: the group into which to add the device (reference should be held) 681 * @dev: the device 682 * 683 * This function is called by an iommu driver to add a device into a 684 * group. Adding a device increments the group reference count. 685 */ 686 int iommu_group_add_device(struct iommu_group *group, struct device *dev) 687 { 688 int ret, i = 0; 689 struct group_device *device; 690 691 device = kzalloc(sizeof(*device), GFP_KERNEL); 692 if (!device) 693 return -ENOMEM; 694 695 device->dev = dev; 696 697 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group"); 698 if (ret) 699 goto err_free_device; 700 701 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj)); 702 rename: 703 if (!device->name) { 704 ret = -ENOMEM; 705 goto err_remove_link; 706 } 707 708 ret = sysfs_create_link_nowarn(group->devices_kobj, 709 &dev->kobj, device->name); 710 if (ret) { 711 if (ret == -EEXIST && i >= 0) { 712 /* 713 * Account for the slim chance of collision 714 * and append an instance to the name. 715 */ 716 kfree(device->name); 717 device->name = kasprintf(GFP_KERNEL, "%s.%d", 718 kobject_name(&dev->kobj), i++); 719 goto rename; 720 } 721 goto err_free_name; 722 } 723 724 kobject_get(group->devices_kobj); 725 726 dev->iommu_group = group; 727 728 iommu_group_create_direct_mappings(group, dev); 729 730 mutex_lock(&group->mutex); 731 list_add_tail(&device->list, &group->devices); 732 if (group->domain) 733 ret = __iommu_attach_device(group->domain, dev); 734 mutex_unlock(&group->mutex); 735 if (ret) 736 goto err_put_group; 737 738 /* Notify any listeners about change to group. */ 739 blocking_notifier_call_chain(&group->notifier, 740 IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev); 741 742 trace_add_device_to_group(group->id, dev); 743 744 dev_info(dev, "Adding to iommu group %d\n", group->id); 745 746 return 0; 747 748 err_put_group: 749 mutex_lock(&group->mutex); 750 list_del(&device->list); 751 mutex_unlock(&group->mutex); 752 dev->iommu_group = NULL; 753 kobject_put(group->devices_kobj); 754 sysfs_remove_link(group->devices_kobj, device->name); 755 err_free_name: 756 kfree(device->name); 757 err_remove_link: 758 sysfs_remove_link(&dev->kobj, "iommu_group"); 759 err_free_device: 760 kfree(device); 761 dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret); 762 return ret; 763 } 764 EXPORT_SYMBOL_GPL(iommu_group_add_device); 765 766 /** 767 * iommu_group_remove_device - remove a device from it's current group 768 * @dev: device to be removed 769 * 770 * This function is called by an iommu driver to remove the device from 771 * it's current group. This decrements the iommu group reference count. 772 */ 773 void iommu_group_remove_device(struct device *dev) 774 { 775 struct iommu_group *group = dev->iommu_group; 776 struct group_device *tmp_device, *device = NULL; 777 778 dev_info(dev, "Removing from iommu group %d\n", group->id); 779 780 /* Pre-notify listeners that a device is being removed. */ 781 blocking_notifier_call_chain(&group->notifier, 782 IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev); 783 784 mutex_lock(&group->mutex); 785 list_for_each_entry(tmp_device, &group->devices, list) { 786 if (tmp_device->dev == dev) { 787 device = tmp_device; 788 list_del(&device->list); 789 break; 790 } 791 } 792 mutex_unlock(&group->mutex); 793 794 if (!device) 795 return; 796 797 sysfs_remove_link(group->devices_kobj, device->name); 798 sysfs_remove_link(&dev->kobj, "iommu_group"); 799 800 trace_remove_device_from_group(group->id, dev); 801 802 kfree(device->name); 803 kfree(device); 804 dev->iommu_group = NULL; 805 kobject_put(group->devices_kobj); 806 } 807 EXPORT_SYMBOL_GPL(iommu_group_remove_device); 808 809 static int iommu_group_device_count(struct iommu_group *group) 810 { 811 struct group_device *entry; 812 int ret = 0; 813 814 list_for_each_entry(entry, &group->devices, list) 815 ret++; 816 817 return ret; 818 } 819 820 /** 821 * iommu_group_for_each_dev - iterate over each device in the group 822 * @group: the group 823 * @data: caller opaque data to be passed to callback function 824 * @fn: caller supplied callback function 825 * 826 * This function is called by group users to iterate over group devices. 827 * Callers should hold a reference count to the group during callback. 828 * The group->mutex is held across callbacks, which will block calls to 829 * iommu_group_add/remove_device. 830 */ 831 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data, 832 int (*fn)(struct device *, void *)) 833 { 834 struct group_device *device; 835 int ret = 0; 836 837 list_for_each_entry(device, &group->devices, list) { 838 ret = fn(device->dev, data); 839 if (ret) 840 break; 841 } 842 return ret; 843 } 844 845 846 int iommu_group_for_each_dev(struct iommu_group *group, void *data, 847 int (*fn)(struct device *, void *)) 848 { 849 int ret; 850 851 mutex_lock(&group->mutex); 852 ret = __iommu_group_for_each_dev(group, data, fn); 853 mutex_unlock(&group->mutex); 854 855 return ret; 856 } 857 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev); 858 859 /** 860 * iommu_group_get - Return the group for a device and increment reference 861 * @dev: get the group that this device belongs to 862 * 863 * This function is called by iommu drivers and users to get the group 864 * for the specified device. If found, the group is returned and the group 865 * reference in incremented, else NULL. 866 */ 867 struct iommu_group *iommu_group_get(struct device *dev) 868 { 869 struct iommu_group *group = dev->iommu_group; 870 871 if (group) 872 kobject_get(group->devices_kobj); 873 874 return group; 875 } 876 EXPORT_SYMBOL_GPL(iommu_group_get); 877 878 /** 879 * iommu_group_ref_get - Increment reference on a group 880 * @group: the group to use, must not be NULL 881 * 882 * This function is called by iommu drivers to take additional references on an 883 * existing group. Returns the given group for convenience. 884 */ 885 struct iommu_group *iommu_group_ref_get(struct iommu_group *group) 886 { 887 kobject_get(group->devices_kobj); 888 return group; 889 } 890 891 /** 892 * iommu_group_put - Decrement group reference 893 * @group: the group to use 894 * 895 * This function is called by iommu drivers and users to release the 896 * iommu group. Once the reference count is zero, the group is released. 897 */ 898 void iommu_group_put(struct iommu_group *group) 899 { 900 if (group) 901 kobject_put(group->devices_kobj); 902 } 903 EXPORT_SYMBOL_GPL(iommu_group_put); 904 905 /** 906 * iommu_group_register_notifier - Register a notifier for group changes 907 * @group: the group to watch 908 * @nb: notifier block to signal 909 * 910 * This function allows iommu group users to track changes in a group. 911 * See include/linux/iommu.h for actions sent via this notifier. Caller 912 * should hold a reference to the group throughout notifier registration. 913 */ 914 int iommu_group_register_notifier(struct iommu_group *group, 915 struct notifier_block *nb) 916 { 917 return blocking_notifier_chain_register(&group->notifier, nb); 918 } 919 EXPORT_SYMBOL_GPL(iommu_group_register_notifier); 920 921 /** 922 * iommu_group_unregister_notifier - Unregister a notifier 923 * @group: the group to watch 924 * @nb: notifier block to signal 925 * 926 * Unregister a previously registered group notifier block. 927 */ 928 int iommu_group_unregister_notifier(struct iommu_group *group, 929 struct notifier_block *nb) 930 { 931 return blocking_notifier_chain_unregister(&group->notifier, nb); 932 } 933 EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier); 934 935 /** 936 * iommu_register_device_fault_handler() - Register a device fault handler 937 * @dev: the device 938 * @handler: the fault handler 939 * @data: private data passed as argument to the handler 940 * 941 * When an IOMMU fault event is received, this handler gets called with the 942 * fault event and data as argument. The handler should return 0 on success. If 943 * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also 944 * complete the fault by calling iommu_page_response() with one of the following 945 * response code: 946 * - IOMMU_PAGE_RESP_SUCCESS: retry the translation 947 * - IOMMU_PAGE_RESP_INVALID: terminate the fault 948 * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting 949 * page faults if possible. 950 * 951 * Return 0 if the fault handler was installed successfully, or an error. 952 */ 953 int iommu_register_device_fault_handler(struct device *dev, 954 iommu_dev_fault_handler_t handler, 955 void *data) 956 { 957 struct iommu_param *param = dev->iommu_param; 958 int ret = 0; 959 960 if (!param) 961 return -EINVAL; 962 963 mutex_lock(¶m->lock); 964 /* Only allow one fault handler registered for each device */ 965 if (param->fault_param) { 966 ret = -EBUSY; 967 goto done_unlock; 968 } 969 970 get_device(dev); 971 param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL); 972 if (!param->fault_param) { 973 put_device(dev); 974 ret = -ENOMEM; 975 goto done_unlock; 976 } 977 param->fault_param->handler = handler; 978 param->fault_param->data = data; 979 mutex_init(¶m->fault_param->lock); 980 INIT_LIST_HEAD(¶m->fault_param->faults); 981 982 done_unlock: 983 mutex_unlock(¶m->lock); 984 985 return ret; 986 } 987 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler); 988 989 /** 990 * iommu_unregister_device_fault_handler() - Unregister the device fault handler 991 * @dev: the device 992 * 993 * Remove the device fault handler installed with 994 * iommu_register_device_fault_handler(). 995 * 996 * Return 0 on success, or an error. 997 */ 998 int iommu_unregister_device_fault_handler(struct device *dev) 999 { 1000 struct iommu_param *param = dev->iommu_param; 1001 int ret = 0; 1002 1003 if (!param) 1004 return -EINVAL; 1005 1006 mutex_lock(¶m->lock); 1007 1008 if (!param->fault_param) 1009 goto unlock; 1010 1011 /* we cannot unregister handler if there are pending faults */ 1012 if (!list_empty(¶m->fault_param->faults)) { 1013 ret = -EBUSY; 1014 goto unlock; 1015 } 1016 1017 kfree(param->fault_param); 1018 param->fault_param = NULL; 1019 put_device(dev); 1020 unlock: 1021 mutex_unlock(¶m->lock); 1022 1023 return ret; 1024 } 1025 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler); 1026 1027 /** 1028 * iommu_report_device_fault() - Report fault event to device driver 1029 * @dev: the device 1030 * @evt: fault event data 1031 * 1032 * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ 1033 * handler. When this function fails and the fault is recoverable, it is the 1034 * caller's responsibility to complete the fault. 1035 * 1036 * Return 0 on success, or an error. 1037 */ 1038 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt) 1039 { 1040 struct iommu_param *param = dev->iommu_param; 1041 struct iommu_fault_event *evt_pending = NULL; 1042 struct iommu_fault_param *fparam; 1043 int ret = 0; 1044 1045 if (!param || !evt) 1046 return -EINVAL; 1047 1048 /* we only report device fault if there is a handler registered */ 1049 mutex_lock(¶m->lock); 1050 fparam = param->fault_param; 1051 if (!fparam || !fparam->handler) { 1052 ret = -EINVAL; 1053 goto done_unlock; 1054 } 1055 1056 if (evt->fault.type == IOMMU_FAULT_PAGE_REQ && 1057 (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) { 1058 evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event), 1059 GFP_KERNEL); 1060 if (!evt_pending) { 1061 ret = -ENOMEM; 1062 goto done_unlock; 1063 } 1064 mutex_lock(&fparam->lock); 1065 list_add_tail(&evt_pending->list, &fparam->faults); 1066 mutex_unlock(&fparam->lock); 1067 } 1068 1069 ret = fparam->handler(&evt->fault, fparam->data); 1070 if (ret && evt_pending) { 1071 mutex_lock(&fparam->lock); 1072 list_del(&evt_pending->list); 1073 mutex_unlock(&fparam->lock); 1074 kfree(evt_pending); 1075 } 1076 done_unlock: 1077 mutex_unlock(¶m->lock); 1078 return ret; 1079 } 1080 EXPORT_SYMBOL_GPL(iommu_report_device_fault); 1081 1082 int iommu_page_response(struct device *dev, 1083 struct iommu_page_response *msg) 1084 { 1085 bool pasid_valid; 1086 int ret = -EINVAL; 1087 struct iommu_fault_event *evt; 1088 struct iommu_fault_page_request *prm; 1089 struct iommu_param *param = dev->iommu_param; 1090 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1091 1092 if (!domain || !domain->ops->page_response) 1093 return -ENODEV; 1094 1095 if (!param || !param->fault_param) 1096 return -EINVAL; 1097 1098 if (msg->version != IOMMU_PAGE_RESP_VERSION_1 || 1099 msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID) 1100 return -EINVAL; 1101 1102 /* Only send response if there is a fault report pending */ 1103 mutex_lock(¶m->fault_param->lock); 1104 if (list_empty(¶m->fault_param->faults)) { 1105 dev_warn_ratelimited(dev, "no pending PRQ, drop response\n"); 1106 goto done_unlock; 1107 } 1108 /* 1109 * Check if we have a matching page request pending to respond, 1110 * otherwise return -EINVAL 1111 */ 1112 list_for_each_entry(evt, ¶m->fault_param->faults, list) { 1113 prm = &evt->fault.prm; 1114 pasid_valid = prm->flags & IOMMU_FAULT_PAGE_REQUEST_PASID_VALID; 1115 1116 if ((pasid_valid && prm->pasid != msg->pasid) || 1117 prm->grpid != msg->grpid) 1118 continue; 1119 1120 /* Sanitize the reply */ 1121 msg->flags = pasid_valid ? IOMMU_PAGE_RESP_PASID_VALID : 0; 1122 1123 ret = domain->ops->page_response(dev, evt, msg); 1124 list_del(&evt->list); 1125 kfree(evt); 1126 break; 1127 } 1128 1129 done_unlock: 1130 mutex_unlock(¶m->fault_param->lock); 1131 return ret; 1132 } 1133 EXPORT_SYMBOL_GPL(iommu_page_response); 1134 1135 /** 1136 * iommu_group_id - Return ID for a group 1137 * @group: the group to ID 1138 * 1139 * Return the unique ID for the group matching the sysfs group number. 1140 */ 1141 int iommu_group_id(struct iommu_group *group) 1142 { 1143 return group->id; 1144 } 1145 EXPORT_SYMBOL_GPL(iommu_group_id); 1146 1147 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1148 unsigned long *devfns); 1149 1150 /* 1151 * To consider a PCI device isolated, we require ACS to support Source 1152 * Validation, Request Redirection, Completer Redirection, and Upstream 1153 * Forwarding. This effectively means that devices cannot spoof their 1154 * requester ID, requests and completions cannot be redirected, and all 1155 * transactions are forwarded upstream, even as it passes through a 1156 * bridge where the target device is downstream. 1157 */ 1158 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF) 1159 1160 /* 1161 * For multifunction devices which are not isolated from each other, find 1162 * all the other non-isolated functions and look for existing groups. For 1163 * each function, we also need to look for aliases to or from other devices 1164 * that may already have a group. 1165 */ 1166 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev, 1167 unsigned long *devfns) 1168 { 1169 struct pci_dev *tmp = NULL; 1170 struct iommu_group *group; 1171 1172 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS)) 1173 return NULL; 1174 1175 for_each_pci_dev(tmp) { 1176 if (tmp == pdev || tmp->bus != pdev->bus || 1177 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) || 1178 pci_acs_enabled(tmp, REQ_ACS_FLAGS)) 1179 continue; 1180 1181 group = get_pci_alias_group(tmp, devfns); 1182 if (group) { 1183 pci_dev_put(tmp); 1184 return group; 1185 } 1186 } 1187 1188 return NULL; 1189 } 1190 1191 /* 1192 * Look for aliases to or from the given device for existing groups. DMA 1193 * aliases are only supported on the same bus, therefore the search 1194 * space is quite small (especially since we're really only looking at pcie 1195 * device, and therefore only expect multiple slots on the root complex or 1196 * downstream switch ports). It's conceivable though that a pair of 1197 * multifunction devices could have aliases between them that would cause a 1198 * loop. To prevent this, we use a bitmap to track where we've been. 1199 */ 1200 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1201 unsigned long *devfns) 1202 { 1203 struct pci_dev *tmp = NULL; 1204 struct iommu_group *group; 1205 1206 if (test_and_set_bit(pdev->devfn & 0xff, devfns)) 1207 return NULL; 1208 1209 group = iommu_group_get(&pdev->dev); 1210 if (group) 1211 return group; 1212 1213 for_each_pci_dev(tmp) { 1214 if (tmp == pdev || tmp->bus != pdev->bus) 1215 continue; 1216 1217 /* We alias them or they alias us */ 1218 if (pci_devs_are_dma_aliases(pdev, tmp)) { 1219 group = get_pci_alias_group(tmp, devfns); 1220 if (group) { 1221 pci_dev_put(tmp); 1222 return group; 1223 } 1224 1225 group = get_pci_function_alias_group(tmp, devfns); 1226 if (group) { 1227 pci_dev_put(tmp); 1228 return group; 1229 } 1230 } 1231 } 1232 1233 return NULL; 1234 } 1235 1236 struct group_for_pci_data { 1237 struct pci_dev *pdev; 1238 struct iommu_group *group; 1239 }; 1240 1241 /* 1242 * DMA alias iterator callback, return the last seen device. Stop and return 1243 * the IOMMU group if we find one along the way. 1244 */ 1245 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque) 1246 { 1247 struct group_for_pci_data *data = opaque; 1248 1249 data->pdev = pdev; 1250 data->group = iommu_group_get(&pdev->dev); 1251 1252 return data->group != NULL; 1253 } 1254 1255 /* 1256 * Generic device_group call-back function. It just allocates one 1257 * iommu-group per device. 1258 */ 1259 struct iommu_group *generic_device_group(struct device *dev) 1260 { 1261 return iommu_group_alloc(); 1262 } 1263 1264 /* 1265 * Use standard PCI bus topology, isolation features, and DMA alias quirks 1266 * to find or create an IOMMU group for a device. 1267 */ 1268 struct iommu_group *pci_device_group(struct device *dev) 1269 { 1270 struct pci_dev *pdev = to_pci_dev(dev); 1271 struct group_for_pci_data data; 1272 struct pci_bus *bus; 1273 struct iommu_group *group = NULL; 1274 u64 devfns[4] = { 0 }; 1275 1276 if (WARN_ON(!dev_is_pci(dev))) 1277 return ERR_PTR(-EINVAL); 1278 1279 /* 1280 * Find the upstream DMA alias for the device. A device must not 1281 * be aliased due to topology in order to have its own IOMMU group. 1282 * If we find an alias along the way that already belongs to a 1283 * group, use it. 1284 */ 1285 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data)) 1286 return data.group; 1287 1288 pdev = data.pdev; 1289 1290 /* 1291 * Continue upstream from the point of minimum IOMMU granularity 1292 * due to aliases to the point where devices are protected from 1293 * peer-to-peer DMA by PCI ACS. Again, if we find an existing 1294 * group, use it. 1295 */ 1296 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) { 1297 if (!bus->self) 1298 continue; 1299 1300 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS)) 1301 break; 1302 1303 pdev = bus->self; 1304 1305 group = iommu_group_get(&pdev->dev); 1306 if (group) 1307 return group; 1308 } 1309 1310 /* 1311 * Look for existing groups on device aliases. If we alias another 1312 * device or another device aliases us, use the same group. 1313 */ 1314 group = get_pci_alias_group(pdev, (unsigned long *)devfns); 1315 if (group) 1316 return group; 1317 1318 /* 1319 * Look for existing groups on non-isolated functions on the same 1320 * slot and aliases of those funcions, if any. No need to clear 1321 * the search bitmap, the tested devfns are still valid. 1322 */ 1323 group = get_pci_function_alias_group(pdev, (unsigned long *)devfns); 1324 if (group) 1325 return group; 1326 1327 /* No shared group found, allocate new */ 1328 return iommu_group_alloc(); 1329 } 1330 1331 /* Get the IOMMU group for device on fsl-mc bus */ 1332 struct iommu_group *fsl_mc_device_group(struct device *dev) 1333 { 1334 struct device *cont_dev = fsl_mc_cont_dev(dev); 1335 struct iommu_group *group; 1336 1337 group = iommu_group_get(cont_dev); 1338 if (!group) 1339 group = iommu_group_alloc(); 1340 return group; 1341 } 1342 1343 /** 1344 * iommu_group_get_for_dev - Find or create the IOMMU group for a device 1345 * @dev: target device 1346 * 1347 * This function is intended to be called by IOMMU drivers and extended to 1348 * support common, bus-defined algorithms when determining or creating the 1349 * IOMMU group for a device. On success, the caller will hold a reference 1350 * to the returned IOMMU group, which will already include the provided 1351 * device. The reference should be released with iommu_group_put(). 1352 */ 1353 struct iommu_group *iommu_group_get_for_dev(struct device *dev) 1354 { 1355 const struct iommu_ops *ops = dev->bus->iommu_ops; 1356 struct iommu_group *group; 1357 int ret; 1358 1359 group = iommu_group_get(dev); 1360 if (group) 1361 return group; 1362 1363 if (!ops) 1364 return ERR_PTR(-EINVAL); 1365 1366 group = ops->device_group(dev); 1367 if (WARN_ON_ONCE(group == NULL)) 1368 return ERR_PTR(-EINVAL); 1369 1370 if (IS_ERR(group)) 1371 return group; 1372 1373 /* 1374 * Try to allocate a default domain - needs support from the 1375 * IOMMU driver. 1376 */ 1377 if (!group->default_domain) { 1378 struct iommu_domain *dom; 1379 1380 dom = __iommu_domain_alloc(dev->bus, iommu_def_domain_type); 1381 if (!dom && iommu_def_domain_type != IOMMU_DOMAIN_DMA) { 1382 dom = __iommu_domain_alloc(dev->bus, IOMMU_DOMAIN_DMA); 1383 if (dom) { 1384 dev_warn(dev, 1385 "failed to allocate default IOMMU domain of type %u; falling back to IOMMU_DOMAIN_DMA", 1386 iommu_def_domain_type); 1387 } 1388 } 1389 1390 group->default_domain = dom; 1391 if (!group->domain) 1392 group->domain = dom; 1393 1394 if (dom && !iommu_dma_strict) { 1395 int attr = 1; 1396 iommu_domain_set_attr(dom, 1397 DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, 1398 &attr); 1399 } 1400 } 1401 1402 ret = iommu_group_add_device(group, dev); 1403 if (ret) { 1404 iommu_group_put(group); 1405 return ERR_PTR(ret); 1406 } 1407 1408 return group; 1409 } 1410 1411 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group) 1412 { 1413 return group->default_domain; 1414 } 1415 1416 static int add_iommu_group(struct device *dev, void *data) 1417 { 1418 int ret = iommu_probe_device(dev); 1419 1420 /* 1421 * We ignore -ENODEV errors for now, as they just mean that the 1422 * device is not translated by an IOMMU. We still care about 1423 * other errors and fail to initialize when they happen. 1424 */ 1425 if (ret == -ENODEV) 1426 ret = 0; 1427 1428 return ret; 1429 } 1430 1431 static int remove_iommu_group(struct device *dev, void *data) 1432 { 1433 iommu_release_device(dev); 1434 1435 return 0; 1436 } 1437 1438 static int iommu_bus_notifier(struct notifier_block *nb, 1439 unsigned long action, void *data) 1440 { 1441 unsigned long group_action = 0; 1442 struct device *dev = data; 1443 struct iommu_group *group; 1444 1445 /* 1446 * ADD/DEL call into iommu driver ops if provided, which may 1447 * result in ADD/DEL notifiers to group->notifier 1448 */ 1449 if (action == BUS_NOTIFY_ADD_DEVICE) { 1450 int ret; 1451 1452 ret = iommu_probe_device(dev); 1453 return (ret) ? NOTIFY_DONE : NOTIFY_OK; 1454 } else if (action == BUS_NOTIFY_REMOVED_DEVICE) { 1455 iommu_release_device(dev); 1456 return NOTIFY_OK; 1457 } 1458 1459 /* 1460 * Remaining BUS_NOTIFYs get filtered and republished to the 1461 * group, if anyone is listening 1462 */ 1463 group = iommu_group_get(dev); 1464 if (!group) 1465 return 0; 1466 1467 switch (action) { 1468 case BUS_NOTIFY_BIND_DRIVER: 1469 group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER; 1470 break; 1471 case BUS_NOTIFY_BOUND_DRIVER: 1472 group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER; 1473 break; 1474 case BUS_NOTIFY_UNBIND_DRIVER: 1475 group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER; 1476 break; 1477 case BUS_NOTIFY_UNBOUND_DRIVER: 1478 group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER; 1479 break; 1480 } 1481 1482 if (group_action) 1483 blocking_notifier_call_chain(&group->notifier, 1484 group_action, dev); 1485 1486 iommu_group_put(group); 1487 return 0; 1488 } 1489 1490 static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops) 1491 { 1492 int err; 1493 struct notifier_block *nb; 1494 1495 nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL); 1496 if (!nb) 1497 return -ENOMEM; 1498 1499 nb->notifier_call = iommu_bus_notifier; 1500 1501 err = bus_register_notifier(bus, nb); 1502 if (err) 1503 goto out_free; 1504 1505 err = bus_for_each_dev(bus, NULL, NULL, add_iommu_group); 1506 if (err) 1507 goto out_err; 1508 1509 1510 return 0; 1511 1512 out_err: 1513 /* Clean up */ 1514 bus_for_each_dev(bus, NULL, NULL, remove_iommu_group); 1515 bus_unregister_notifier(bus, nb); 1516 1517 out_free: 1518 kfree(nb); 1519 1520 return err; 1521 } 1522 1523 /** 1524 * bus_set_iommu - set iommu-callbacks for the bus 1525 * @bus: bus. 1526 * @ops: the callbacks provided by the iommu-driver 1527 * 1528 * This function is called by an iommu driver to set the iommu methods 1529 * used for a particular bus. Drivers for devices on that bus can use 1530 * the iommu-api after these ops are registered. 1531 * This special function is needed because IOMMUs are usually devices on 1532 * the bus itself, so the iommu drivers are not initialized when the bus 1533 * is set up. With this function the iommu-driver can set the iommu-ops 1534 * afterwards. 1535 */ 1536 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops) 1537 { 1538 int err; 1539 1540 if (bus->iommu_ops != NULL) 1541 return -EBUSY; 1542 1543 bus->iommu_ops = ops; 1544 1545 /* Do IOMMU specific setup for this bus-type */ 1546 err = iommu_bus_init(bus, ops); 1547 if (err) 1548 bus->iommu_ops = NULL; 1549 1550 return err; 1551 } 1552 EXPORT_SYMBOL_GPL(bus_set_iommu); 1553 1554 bool iommu_present(struct bus_type *bus) 1555 { 1556 return bus->iommu_ops != NULL; 1557 } 1558 EXPORT_SYMBOL_GPL(iommu_present); 1559 1560 bool iommu_capable(struct bus_type *bus, enum iommu_cap cap) 1561 { 1562 if (!bus->iommu_ops || !bus->iommu_ops->capable) 1563 return false; 1564 1565 return bus->iommu_ops->capable(cap); 1566 } 1567 EXPORT_SYMBOL_GPL(iommu_capable); 1568 1569 /** 1570 * iommu_set_fault_handler() - set a fault handler for an iommu domain 1571 * @domain: iommu domain 1572 * @handler: fault handler 1573 * @token: user data, will be passed back to the fault handler 1574 * 1575 * This function should be used by IOMMU users which want to be notified 1576 * whenever an IOMMU fault happens. 1577 * 1578 * The fault handler itself should return 0 on success, and an appropriate 1579 * error code otherwise. 1580 */ 1581 void iommu_set_fault_handler(struct iommu_domain *domain, 1582 iommu_fault_handler_t handler, 1583 void *token) 1584 { 1585 BUG_ON(!domain); 1586 1587 domain->handler = handler; 1588 domain->handler_token = token; 1589 } 1590 EXPORT_SYMBOL_GPL(iommu_set_fault_handler); 1591 1592 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus, 1593 unsigned type) 1594 { 1595 struct iommu_domain *domain; 1596 1597 if (bus == NULL || bus->iommu_ops == NULL) 1598 return NULL; 1599 1600 domain = bus->iommu_ops->domain_alloc(type); 1601 if (!domain) 1602 return NULL; 1603 1604 domain->ops = bus->iommu_ops; 1605 domain->type = type; 1606 /* Assume all sizes by default; the driver may override this later */ 1607 domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap; 1608 1609 return domain; 1610 } 1611 1612 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus) 1613 { 1614 return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED); 1615 } 1616 EXPORT_SYMBOL_GPL(iommu_domain_alloc); 1617 1618 void iommu_domain_free(struct iommu_domain *domain) 1619 { 1620 domain->ops->domain_free(domain); 1621 } 1622 EXPORT_SYMBOL_GPL(iommu_domain_free); 1623 1624 static int __iommu_attach_device(struct iommu_domain *domain, 1625 struct device *dev) 1626 { 1627 int ret; 1628 if ((domain->ops->is_attach_deferred != NULL) && 1629 domain->ops->is_attach_deferred(domain, dev)) 1630 return 0; 1631 1632 if (unlikely(domain->ops->attach_dev == NULL)) 1633 return -ENODEV; 1634 1635 ret = domain->ops->attach_dev(domain, dev); 1636 if (!ret) 1637 trace_attach_device_to_domain(dev); 1638 return ret; 1639 } 1640 1641 int iommu_attach_device(struct iommu_domain *domain, struct device *dev) 1642 { 1643 struct iommu_group *group; 1644 int ret; 1645 1646 group = iommu_group_get(dev); 1647 if (!group) 1648 return -ENODEV; 1649 1650 /* 1651 * Lock the group to make sure the device-count doesn't 1652 * change while we are attaching 1653 */ 1654 mutex_lock(&group->mutex); 1655 ret = -EINVAL; 1656 if (iommu_group_device_count(group) != 1) 1657 goto out_unlock; 1658 1659 ret = __iommu_attach_group(domain, group); 1660 1661 out_unlock: 1662 mutex_unlock(&group->mutex); 1663 iommu_group_put(group); 1664 1665 return ret; 1666 } 1667 EXPORT_SYMBOL_GPL(iommu_attach_device); 1668 1669 int iommu_cache_invalidate(struct iommu_domain *domain, struct device *dev, 1670 struct iommu_cache_invalidate_info *inv_info) 1671 { 1672 if (unlikely(!domain->ops->cache_invalidate)) 1673 return -ENODEV; 1674 1675 return domain->ops->cache_invalidate(domain, dev, inv_info); 1676 } 1677 EXPORT_SYMBOL_GPL(iommu_cache_invalidate); 1678 1679 int iommu_sva_bind_gpasid(struct iommu_domain *domain, 1680 struct device *dev, struct iommu_gpasid_bind_data *data) 1681 { 1682 if (unlikely(!domain->ops->sva_bind_gpasid)) 1683 return -ENODEV; 1684 1685 return domain->ops->sva_bind_gpasid(domain, dev, data); 1686 } 1687 EXPORT_SYMBOL_GPL(iommu_sva_bind_gpasid); 1688 1689 int iommu_sva_unbind_gpasid(struct iommu_domain *domain, struct device *dev, 1690 ioasid_t pasid) 1691 { 1692 if (unlikely(!domain->ops->sva_unbind_gpasid)) 1693 return -ENODEV; 1694 1695 return domain->ops->sva_unbind_gpasid(dev, pasid); 1696 } 1697 EXPORT_SYMBOL_GPL(iommu_sva_unbind_gpasid); 1698 1699 static void __iommu_detach_device(struct iommu_domain *domain, 1700 struct device *dev) 1701 { 1702 if ((domain->ops->is_attach_deferred != NULL) && 1703 domain->ops->is_attach_deferred(domain, dev)) 1704 return; 1705 1706 if (unlikely(domain->ops->detach_dev == NULL)) 1707 return; 1708 1709 domain->ops->detach_dev(domain, dev); 1710 trace_detach_device_from_domain(dev); 1711 } 1712 1713 void iommu_detach_device(struct iommu_domain *domain, struct device *dev) 1714 { 1715 struct iommu_group *group; 1716 1717 group = iommu_group_get(dev); 1718 if (!group) 1719 return; 1720 1721 mutex_lock(&group->mutex); 1722 if (iommu_group_device_count(group) != 1) { 1723 WARN_ON(1); 1724 goto out_unlock; 1725 } 1726 1727 __iommu_detach_group(domain, group); 1728 1729 out_unlock: 1730 mutex_unlock(&group->mutex); 1731 iommu_group_put(group); 1732 } 1733 EXPORT_SYMBOL_GPL(iommu_detach_device); 1734 1735 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev) 1736 { 1737 struct iommu_domain *domain; 1738 struct iommu_group *group; 1739 1740 group = iommu_group_get(dev); 1741 if (!group) 1742 return NULL; 1743 1744 domain = group->domain; 1745 1746 iommu_group_put(group); 1747 1748 return domain; 1749 } 1750 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev); 1751 1752 /* 1753 * For IOMMU_DOMAIN_DMA implementations which already provide their own 1754 * guarantees that the group and its default domain are valid and correct. 1755 */ 1756 struct iommu_domain *iommu_get_dma_domain(struct device *dev) 1757 { 1758 return dev->iommu_group->default_domain; 1759 } 1760 1761 /* 1762 * IOMMU groups are really the natural working unit of the IOMMU, but 1763 * the IOMMU API works on domains and devices. Bridge that gap by 1764 * iterating over the devices in a group. Ideally we'd have a single 1765 * device which represents the requestor ID of the group, but we also 1766 * allow IOMMU drivers to create policy defined minimum sets, where 1767 * the physical hardware may be able to distiguish members, but we 1768 * wish to group them at a higher level (ex. untrusted multi-function 1769 * PCI devices). Thus we attach each device. 1770 */ 1771 static int iommu_group_do_attach_device(struct device *dev, void *data) 1772 { 1773 struct iommu_domain *domain = data; 1774 1775 return __iommu_attach_device(domain, dev); 1776 } 1777 1778 static int __iommu_attach_group(struct iommu_domain *domain, 1779 struct iommu_group *group) 1780 { 1781 int ret; 1782 1783 if (group->default_domain && group->domain != group->default_domain) 1784 return -EBUSY; 1785 1786 ret = __iommu_group_for_each_dev(group, domain, 1787 iommu_group_do_attach_device); 1788 if (ret == 0) 1789 group->domain = domain; 1790 1791 return ret; 1792 } 1793 1794 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group) 1795 { 1796 int ret; 1797 1798 mutex_lock(&group->mutex); 1799 ret = __iommu_attach_group(domain, group); 1800 mutex_unlock(&group->mutex); 1801 1802 return ret; 1803 } 1804 EXPORT_SYMBOL_GPL(iommu_attach_group); 1805 1806 static int iommu_group_do_detach_device(struct device *dev, void *data) 1807 { 1808 struct iommu_domain *domain = data; 1809 1810 __iommu_detach_device(domain, dev); 1811 1812 return 0; 1813 } 1814 1815 static void __iommu_detach_group(struct iommu_domain *domain, 1816 struct iommu_group *group) 1817 { 1818 int ret; 1819 1820 if (!group->default_domain) { 1821 __iommu_group_for_each_dev(group, domain, 1822 iommu_group_do_detach_device); 1823 group->domain = NULL; 1824 return; 1825 } 1826 1827 if (group->domain == group->default_domain) 1828 return; 1829 1830 /* Detach by re-attaching to the default domain */ 1831 ret = __iommu_group_for_each_dev(group, group->default_domain, 1832 iommu_group_do_attach_device); 1833 if (ret != 0) 1834 WARN_ON(1); 1835 else 1836 group->domain = group->default_domain; 1837 } 1838 1839 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group) 1840 { 1841 mutex_lock(&group->mutex); 1842 __iommu_detach_group(domain, group); 1843 mutex_unlock(&group->mutex); 1844 } 1845 EXPORT_SYMBOL_GPL(iommu_detach_group); 1846 1847 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) 1848 { 1849 if (unlikely(domain->ops->iova_to_phys == NULL)) 1850 return 0; 1851 1852 return domain->ops->iova_to_phys(domain, iova); 1853 } 1854 EXPORT_SYMBOL_GPL(iommu_iova_to_phys); 1855 1856 static size_t iommu_pgsize(struct iommu_domain *domain, 1857 unsigned long addr_merge, size_t size) 1858 { 1859 unsigned int pgsize_idx; 1860 size_t pgsize; 1861 1862 /* Max page size that still fits into 'size' */ 1863 pgsize_idx = __fls(size); 1864 1865 /* need to consider alignment requirements ? */ 1866 if (likely(addr_merge)) { 1867 /* Max page size allowed by address */ 1868 unsigned int align_pgsize_idx = __ffs(addr_merge); 1869 pgsize_idx = min(pgsize_idx, align_pgsize_idx); 1870 } 1871 1872 /* build a mask of acceptable page sizes */ 1873 pgsize = (1UL << (pgsize_idx + 1)) - 1; 1874 1875 /* throw away page sizes not supported by the hardware */ 1876 pgsize &= domain->pgsize_bitmap; 1877 1878 /* make sure we're still sane */ 1879 BUG_ON(!pgsize); 1880 1881 /* pick the biggest page */ 1882 pgsize_idx = __fls(pgsize); 1883 pgsize = 1UL << pgsize_idx; 1884 1885 return pgsize; 1886 } 1887 1888 int __iommu_map(struct iommu_domain *domain, unsigned long iova, 1889 phys_addr_t paddr, size_t size, int prot, gfp_t gfp) 1890 { 1891 const struct iommu_ops *ops = domain->ops; 1892 unsigned long orig_iova = iova; 1893 unsigned int min_pagesz; 1894 size_t orig_size = size; 1895 phys_addr_t orig_paddr = paddr; 1896 int ret = 0; 1897 1898 if (unlikely(ops->map == NULL || 1899 domain->pgsize_bitmap == 0UL)) 1900 return -ENODEV; 1901 1902 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 1903 return -EINVAL; 1904 1905 /* find out the minimum page size supported */ 1906 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 1907 1908 /* 1909 * both the virtual address and the physical one, as well as 1910 * the size of the mapping, must be aligned (at least) to the 1911 * size of the smallest page supported by the hardware 1912 */ 1913 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) { 1914 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n", 1915 iova, &paddr, size, min_pagesz); 1916 return -EINVAL; 1917 } 1918 1919 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size); 1920 1921 while (size) { 1922 size_t pgsize = iommu_pgsize(domain, iova | paddr, size); 1923 1924 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx\n", 1925 iova, &paddr, pgsize); 1926 ret = ops->map(domain, iova, paddr, pgsize, prot, gfp); 1927 1928 if (ret) 1929 break; 1930 1931 iova += pgsize; 1932 paddr += pgsize; 1933 size -= pgsize; 1934 } 1935 1936 if (ops->iotlb_sync_map) 1937 ops->iotlb_sync_map(domain); 1938 1939 /* unroll mapping in case something went wrong */ 1940 if (ret) 1941 iommu_unmap(domain, orig_iova, orig_size - size); 1942 else 1943 trace_map(orig_iova, orig_paddr, orig_size); 1944 1945 return ret; 1946 } 1947 1948 int iommu_map(struct iommu_domain *domain, unsigned long iova, 1949 phys_addr_t paddr, size_t size, int prot) 1950 { 1951 might_sleep(); 1952 return __iommu_map(domain, iova, paddr, size, prot, GFP_KERNEL); 1953 } 1954 EXPORT_SYMBOL_GPL(iommu_map); 1955 1956 int iommu_map_atomic(struct iommu_domain *domain, unsigned long iova, 1957 phys_addr_t paddr, size_t size, int prot) 1958 { 1959 return __iommu_map(domain, iova, paddr, size, prot, GFP_ATOMIC); 1960 } 1961 EXPORT_SYMBOL_GPL(iommu_map_atomic); 1962 1963 static size_t __iommu_unmap(struct iommu_domain *domain, 1964 unsigned long iova, size_t size, 1965 struct iommu_iotlb_gather *iotlb_gather) 1966 { 1967 const struct iommu_ops *ops = domain->ops; 1968 size_t unmapped_page, unmapped = 0; 1969 unsigned long orig_iova = iova; 1970 unsigned int min_pagesz; 1971 1972 if (unlikely(ops->unmap == NULL || 1973 domain->pgsize_bitmap == 0UL)) 1974 return 0; 1975 1976 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 1977 return 0; 1978 1979 /* find out the minimum page size supported */ 1980 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 1981 1982 /* 1983 * The virtual address, as well as the size of the mapping, must be 1984 * aligned (at least) to the size of the smallest page supported 1985 * by the hardware 1986 */ 1987 if (!IS_ALIGNED(iova | size, min_pagesz)) { 1988 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n", 1989 iova, size, min_pagesz); 1990 return 0; 1991 } 1992 1993 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size); 1994 1995 /* 1996 * Keep iterating until we either unmap 'size' bytes (or more) 1997 * or we hit an area that isn't mapped. 1998 */ 1999 while (unmapped < size) { 2000 size_t pgsize = iommu_pgsize(domain, iova, size - unmapped); 2001 2002 unmapped_page = ops->unmap(domain, iova, pgsize, iotlb_gather); 2003 if (!unmapped_page) 2004 break; 2005 2006 pr_debug("unmapped: iova 0x%lx size 0x%zx\n", 2007 iova, unmapped_page); 2008 2009 iova += unmapped_page; 2010 unmapped += unmapped_page; 2011 } 2012 2013 trace_unmap(orig_iova, size, unmapped); 2014 return unmapped; 2015 } 2016 2017 size_t iommu_unmap(struct iommu_domain *domain, 2018 unsigned long iova, size_t size) 2019 { 2020 struct iommu_iotlb_gather iotlb_gather; 2021 size_t ret; 2022 2023 iommu_iotlb_gather_init(&iotlb_gather); 2024 ret = __iommu_unmap(domain, iova, size, &iotlb_gather); 2025 iommu_tlb_sync(domain, &iotlb_gather); 2026 2027 return ret; 2028 } 2029 EXPORT_SYMBOL_GPL(iommu_unmap); 2030 2031 size_t iommu_unmap_fast(struct iommu_domain *domain, 2032 unsigned long iova, size_t size, 2033 struct iommu_iotlb_gather *iotlb_gather) 2034 { 2035 return __iommu_unmap(domain, iova, size, iotlb_gather); 2036 } 2037 EXPORT_SYMBOL_GPL(iommu_unmap_fast); 2038 2039 size_t __iommu_map_sg(struct iommu_domain *domain, unsigned long iova, 2040 struct scatterlist *sg, unsigned int nents, int prot, 2041 gfp_t gfp) 2042 { 2043 size_t len = 0, mapped = 0; 2044 phys_addr_t start; 2045 unsigned int i = 0; 2046 int ret; 2047 2048 while (i <= nents) { 2049 phys_addr_t s_phys = sg_phys(sg); 2050 2051 if (len && s_phys != start + len) { 2052 ret = __iommu_map(domain, iova + mapped, start, 2053 len, prot, gfp); 2054 2055 if (ret) 2056 goto out_err; 2057 2058 mapped += len; 2059 len = 0; 2060 } 2061 2062 if (len) { 2063 len += sg->length; 2064 } else { 2065 len = sg->length; 2066 start = s_phys; 2067 } 2068 2069 if (++i < nents) 2070 sg = sg_next(sg); 2071 } 2072 2073 return mapped; 2074 2075 out_err: 2076 /* undo mappings already done */ 2077 iommu_unmap(domain, iova, mapped); 2078 2079 return 0; 2080 2081 } 2082 2083 size_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova, 2084 struct scatterlist *sg, unsigned int nents, int prot) 2085 { 2086 might_sleep(); 2087 return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_KERNEL); 2088 } 2089 EXPORT_SYMBOL_GPL(iommu_map_sg); 2090 2091 size_t iommu_map_sg_atomic(struct iommu_domain *domain, unsigned long iova, 2092 struct scatterlist *sg, unsigned int nents, int prot) 2093 { 2094 return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC); 2095 } 2096 EXPORT_SYMBOL_GPL(iommu_map_sg_atomic); 2097 2098 int iommu_domain_window_enable(struct iommu_domain *domain, u32 wnd_nr, 2099 phys_addr_t paddr, u64 size, int prot) 2100 { 2101 if (unlikely(domain->ops->domain_window_enable == NULL)) 2102 return -ENODEV; 2103 2104 return domain->ops->domain_window_enable(domain, wnd_nr, paddr, size, 2105 prot); 2106 } 2107 EXPORT_SYMBOL_GPL(iommu_domain_window_enable); 2108 2109 void iommu_domain_window_disable(struct iommu_domain *domain, u32 wnd_nr) 2110 { 2111 if (unlikely(domain->ops->domain_window_disable == NULL)) 2112 return; 2113 2114 return domain->ops->domain_window_disable(domain, wnd_nr); 2115 } 2116 EXPORT_SYMBOL_GPL(iommu_domain_window_disable); 2117 2118 /** 2119 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework 2120 * @domain: the iommu domain where the fault has happened 2121 * @dev: the device where the fault has happened 2122 * @iova: the faulting address 2123 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...) 2124 * 2125 * This function should be called by the low-level IOMMU implementations 2126 * whenever IOMMU faults happen, to allow high-level users, that are 2127 * interested in such events, to know about them. 2128 * 2129 * This event may be useful for several possible use cases: 2130 * - mere logging of the event 2131 * - dynamic TLB/PTE loading 2132 * - if restarting of the faulting device is required 2133 * 2134 * Returns 0 on success and an appropriate error code otherwise (if dynamic 2135 * PTE/TLB loading will one day be supported, implementations will be able 2136 * to tell whether it succeeded or not according to this return value). 2137 * 2138 * Specifically, -ENOSYS is returned if a fault handler isn't installed 2139 * (though fault handlers can also return -ENOSYS, in case they want to 2140 * elicit the default behavior of the IOMMU drivers). 2141 */ 2142 int report_iommu_fault(struct iommu_domain *domain, struct device *dev, 2143 unsigned long iova, int flags) 2144 { 2145 int ret = -ENOSYS; 2146 2147 /* 2148 * if upper layers showed interest and installed a fault handler, 2149 * invoke it. 2150 */ 2151 if (domain->handler) 2152 ret = domain->handler(domain, dev, iova, flags, 2153 domain->handler_token); 2154 2155 trace_io_page_fault(dev, iova, flags); 2156 return ret; 2157 } 2158 EXPORT_SYMBOL_GPL(report_iommu_fault); 2159 2160 static int __init iommu_init(void) 2161 { 2162 iommu_group_kset = kset_create_and_add("iommu_groups", 2163 NULL, kernel_kobj); 2164 BUG_ON(!iommu_group_kset); 2165 2166 iommu_debugfs_setup(); 2167 2168 return 0; 2169 } 2170 core_initcall(iommu_init); 2171 2172 int iommu_domain_get_attr(struct iommu_domain *domain, 2173 enum iommu_attr attr, void *data) 2174 { 2175 struct iommu_domain_geometry *geometry; 2176 bool *paging; 2177 int ret = 0; 2178 2179 switch (attr) { 2180 case DOMAIN_ATTR_GEOMETRY: 2181 geometry = data; 2182 *geometry = domain->geometry; 2183 2184 break; 2185 case DOMAIN_ATTR_PAGING: 2186 paging = data; 2187 *paging = (domain->pgsize_bitmap != 0UL); 2188 break; 2189 default: 2190 if (!domain->ops->domain_get_attr) 2191 return -EINVAL; 2192 2193 ret = domain->ops->domain_get_attr(domain, attr, data); 2194 } 2195 2196 return ret; 2197 } 2198 EXPORT_SYMBOL_GPL(iommu_domain_get_attr); 2199 2200 int iommu_domain_set_attr(struct iommu_domain *domain, 2201 enum iommu_attr attr, void *data) 2202 { 2203 int ret = 0; 2204 2205 switch (attr) { 2206 default: 2207 if (domain->ops->domain_set_attr == NULL) 2208 return -EINVAL; 2209 2210 ret = domain->ops->domain_set_attr(domain, attr, data); 2211 } 2212 2213 return ret; 2214 } 2215 EXPORT_SYMBOL_GPL(iommu_domain_set_attr); 2216 2217 void iommu_get_resv_regions(struct device *dev, struct list_head *list) 2218 { 2219 const struct iommu_ops *ops = dev->bus->iommu_ops; 2220 2221 if (ops && ops->get_resv_regions) 2222 ops->get_resv_regions(dev, list); 2223 } 2224 2225 void iommu_put_resv_regions(struct device *dev, struct list_head *list) 2226 { 2227 const struct iommu_ops *ops = dev->bus->iommu_ops; 2228 2229 if (ops && ops->put_resv_regions) 2230 ops->put_resv_regions(dev, list); 2231 } 2232 2233 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start, 2234 size_t length, int prot, 2235 enum iommu_resv_type type) 2236 { 2237 struct iommu_resv_region *region; 2238 2239 region = kzalloc(sizeof(*region), GFP_KERNEL); 2240 if (!region) 2241 return NULL; 2242 2243 INIT_LIST_HEAD(®ion->list); 2244 region->start = start; 2245 region->length = length; 2246 region->prot = prot; 2247 region->type = type; 2248 return region; 2249 } 2250 2251 static int 2252 request_default_domain_for_dev(struct device *dev, unsigned long type) 2253 { 2254 struct iommu_domain *domain; 2255 struct iommu_group *group; 2256 int ret; 2257 2258 /* Device must already be in a group before calling this function */ 2259 group = iommu_group_get(dev); 2260 if (!group) 2261 return -EINVAL; 2262 2263 mutex_lock(&group->mutex); 2264 2265 ret = 0; 2266 if (group->default_domain && group->default_domain->type == type) 2267 goto out; 2268 2269 /* Don't change mappings of existing devices */ 2270 ret = -EBUSY; 2271 if (iommu_group_device_count(group) != 1) 2272 goto out; 2273 2274 ret = -ENOMEM; 2275 domain = __iommu_domain_alloc(dev->bus, type); 2276 if (!domain) 2277 goto out; 2278 2279 /* Attach the device to the domain */ 2280 ret = __iommu_attach_group(domain, group); 2281 if (ret) { 2282 iommu_domain_free(domain); 2283 goto out; 2284 } 2285 2286 /* Make the domain the default for this group */ 2287 if (group->default_domain) 2288 iommu_domain_free(group->default_domain); 2289 group->default_domain = domain; 2290 2291 iommu_group_create_direct_mappings(group, dev); 2292 2293 dev_info(dev, "Using iommu %s mapping\n", 2294 type == IOMMU_DOMAIN_DMA ? "dma" : "direct"); 2295 2296 ret = 0; 2297 out: 2298 mutex_unlock(&group->mutex); 2299 iommu_group_put(group); 2300 2301 return ret; 2302 } 2303 2304 /* Request that a device is direct mapped by the IOMMU */ 2305 int iommu_request_dm_for_dev(struct device *dev) 2306 { 2307 return request_default_domain_for_dev(dev, IOMMU_DOMAIN_IDENTITY); 2308 } 2309 2310 /* Request that a device can't be direct mapped by the IOMMU */ 2311 int iommu_request_dma_domain_for_dev(struct device *dev) 2312 { 2313 return request_default_domain_for_dev(dev, IOMMU_DOMAIN_DMA); 2314 } 2315 2316 void iommu_set_default_passthrough(bool cmd_line) 2317 { 2318 if (cmd_line) 2319 iommu_set_cmd_line_dma_api(); 2320 2321 iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY; 2322 } 2323 2324 void iommu_set_default_translated(bool cmd_line) 2325 { 2326 if (cmd_line) 2327 iommu_set_cmd_line_dma_api(); 2328 2329 iommu_def_domain_type = IOMMU_DOMAIN_DMA; 2330 } 2331 2332 bool iommu_default_passthrough(void) 2333 { 2334 return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY; 2335 } 2336 EXPORT_SYMBOL_GPL(iommu_default_passthrough); 2337 2338 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode) 2339 { 2340 const struct iommu_ops *ops = NULL; 2341 struct iommu_device *iommu; 2342 2343 spin_lock(&iommu_device_lock); 2344 list_for_each_entry(iommu, &iommu_device_list, list) 2345 if (iommu->fwnode == fwnode) { 2346 ops = iommu->ops; 2347 break; 2348 } 2349 spin_unlock(&iommu_device_lock); 2350 return ops; 2351 } 2352 2353 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode, 2354 const struct iommu_ops *ops) 2355 { 2356 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2357 2358 if (fwspec) 2359 return ops == fwspec->ops ? 0 : -EINVAL; 2360 2361 fwspec = kzalloc(sizeof(*fwspec), GFP_KERNEL); 2362 if (!fwspec) 2363 return -ENOMEM; 2364 2365 of_node_get(to_of_node(iommu_fwnode)); 2366 fwspec->iommu_fwnode = iommu_fwnode; 2367 fwspec->ops = ops; 2368 dev_iommu_fwspec_set(dev, fwspec); 2369 return 0; 2370 } 2371 EXPORT_SYMBOL_GPL(iommu_fwspec_init); 2372 2373 void iommu_fwspec_free(struct device *dev) 2374 { 2375 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2376 2377 if (fwspec) { 2378 fwnode_handle_put(fwspec->iommu_fwnode); 2379 kfree(fwspec); 2380 dev_iommu_fwspec_set(dev, NULL); 2381 } 2382 } 2383 EXPORT_SYMBOL_GPL(iommu_fwspec_free); 2384 2385 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids) 2386 { 2387 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2388 size_t size; 2389 int i; 2390 2391 if (!fwspec) 2392 return -EINVAL; 2393 2394 size = offsetof(struct iommu_fwspec, ids[fwspec->num_ids + num_ids]); 2395 if (size > sizeof(*fwspec)) { 2396 fwspec = krealloc(fwspec, size, GFP_KERNEL); 2397 if (!fwspec) 2398 return -ENOMEM; 2399 2400 dev_iommu_fwspec_set(dev, fwspec); 2401 } 2402 2403 for (i = 0; i < num_ids; i++) 2404 fwspec->ids[fwspec->num_ids + i] = ids[i]; 2405 2406 fwspec->num_ids += num_ids; 2407 return 0; 2408 } 2409 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids); 2410 2411 /* 2412 * Per device IOMMU features. 2413 */ 2414 bool iommu_dev_has_feature(struct device *dev, enum iommu_dev_features feat) 2415 { 2416 const struct iommu_ops *ops = dev->bus->iommu_ops; 2417 2418 if (ops && ops->dev_has_feat) 2419 return ops->dev_has_feat(dev, feat); 2420 2421 return false; 2422 } 2423 EXPORT_SYMBOL_GPL(iommu_dev_has_feature); 2424 2425 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat) 2426 { 2427 const struct iommu_ops *ops = dev->bus->iommu_ops; 2428 2429 if (ops && ops->dev_enable_feat) 2430 return ops->dev_enable_feat(dev, feat); 2431 2432 return -ENODEV; 2433 } 2434 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature); 2435 2436 /* 2437 * The device drivers should do the necessary cleanups before calling this. 2438 * For example, before disabling the aux-domain feature, the device driver 2439 * should detach all aux-domains. Otherwise, this will return -EBUSY. 2440 */ 2441 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat) 2442 { 2443 const struct iommu_ops *ops = dev->bus->iommu_ops; 2444 2445 if (ops && ops->dev_disable_feat) 2446 return ops->dev_disable_feat(dev, feat); 2447 2448 return -EBUSY; 2449 } 2450 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature); 2451 2452 bool iommu_dev_feature_enabled(struct device *dev, enum iommu_dev_features feat) 2453 { 2454 const struct iommu_ops *ops = dev->bus->iommu_ops; 2455 2456 if (ops && ops->dev_feat_enabled) 2457 return ops->dev_feat_enabled(dev, feat); 2458 2459 return false; 2460 } 2461 EXPORT_SYMBOL_GPL(iommu_dev_feature_enabled); 2462 2463 /* 2464 * Aux-domain specific attach/detach. 2465 * 2466 * Only works if iommu_dev_feature_enabled(dev, IOMMU_DEV_FEAT_AUX) returns 2467 * true. Also, as long as domains are attached to a device through this 2468 * interface, any tries to call iommu_attach_device() should fail 2469 * (iommu_detach_device() can't fail, so we fail when trying to re-attach). 2470 * This should make us safe against a device being attached to a guest as a 2471 * whole while there are still pasid users on it (aux and sva). 2472 */ 2473 int iommu_aux_attach_device(struct iommu_domain *domain, struct device *dev) 2474 { 2475 int ret = -ENODEV; 2476 2477 if (domain->ops->aux_attach_dev) 2478 ret = domain->ops->aux_attach_dev(domain, dev); 2479 2480 if (!ret) 2481 trace_attach_device_to_domain(dev); 2482 2483 return ret; 2484 } 2485 EXPORT_SYMBOL_GPL(iommu_aux_attach_device); 2486 2487 void iommu_aux_detach_device(struct iommu_domain *domain, struct device *dev) 2488 { 2489 if (domain->ops->aux_detach_dev) { 2490 domain->ops->aux_detach_dev(domain, dev); 2491 trace_detach_device_from_domain(dev); 2492 } 2493 } 2494 EXPORT_SYMBOL_GPL(iommu_aux_detach_device); 2495 2496 int iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev) 2497 { 2498 int ret = -ENODEV; 2499 2500 if (domain->ops->aux_get_pasid) 2501 ret = domain->ops->aux_get_pasid(domain, dev); 2502 2503 return ret; 2504 } 2505 EXPORT_SYMBOL_GPL(iommu_aux_get_pasid); 2506 2507 /** 2508 * iommu_sva_bind_device() - Bind a process address space to a device 2509 * @dev: the device 2510 * @mm: the mm to bind, caller must hold a reference to it 2511 * 2512 * Create a bond between device and address space, allowing the device to access 2513 * the mm using the returned PASID. If a bond already exists between @device and 2514 * @mm, it is returned and an additional reference is taken. Caller must call 2515 * iommu_sva_unbind_device() to release each reference. 2516 * 2517 * iommu_dev_enable_feature(dev, IOMMU_DEV_FEAT_SVA) must be called first, to 2518 * initialize the required SVA features. 2519 * 2520 * On error, returns an ERR_PTR value. 2521 */ 2522 struct iommu_sva * 2523 iommu_sva_bind_device(struct device *dev, struct mm_struct *mm, void *drvdata) 2524 { 2525 struct iommu_group *group; 2526 struct iommu_sva *handle = ERR_PTR(-EINVAL); 2527 const struct iommu_ops *ops = dev->bus->iommu_ops; 2528 2529 if (!ops || !ops->sva_bind) 2530 return ERR_PTR(-ENODEV); 2531 2532 group = iommu_group_get(dev); 2533 if (!group) 2534 return ERR_PTR(-ENODEV); 2535 2536 /* Ensure device count and domain don't change while we're binding */ 2537 mutex_lock(&group->mutex); 2538 2539 /* 2540 * To keep things simple, SVA currently doesn't support IOMMU groups 2541 * with more than one device. Existing SVA-capable systems are not 2542 * affected by the problems that required IOMMU groups (lack of ACS 2543 * isolation, device ID aliasing and other hardware issues). 2544 */ 2545 if (iommu_group_device_count(group) != 1) 2546 goto out_unlock; 2547 2548 handle = ops->sva_bind(dev, mm, drvdata); 2549 2550 out_unlock: 2551 mutex_unlock(&group->mutex); 2552 iommu_group_put(group); 2553 2554 return handle; 2555 } 2556 EXPORT_SYMBOL_GPL(iommu_sva_bind_device); 2557 2558 /** 2559 * iommu_sva_unbind_device() - Remove a bond created with iommu_sva_bind_device 2560 * @handle: the handle returned by iommu_sva_bind_device() 2561 * 2562 * Put reference to a bond between device and address space. The device should 2563 * not be issuing any more transaction for this PASID. All outstanding page 2564 * requests for this PASID must have been flushed to the IOMMU. 2565 * 2566 * Returns 0 on success, or an error value 2567 */ 2568 void iommu_sva_unbind_device(struct iommu_sva *handle) 2569 { 2570 struct iommu_group *group; 2571 struct device *dev = handle->dev; 2572 const struct iommu_ops *ops = dev->bus->iommu_ops; 2573 2574 if (!ops || !ops->sva_unbind) 2575 return; 2576 2577 group = iommu_group_get(dev); 2578 if (!group) 2579 return; 2580 2581 mutex_lock(&group->mutex); 2582 ops->sva_unbind(handle); 2583 mutex_unlock(&group->mutex); 2584 2585 iommu_group_put(group); 2586 } 2587 EXPORT_SYMBOL_GPL(iommu_sva_unbind_device); 2588 2589 int iommu_sva_set_ops(struct iommu_sva *handle, 2590 const struct iommu_sva_ops *sva_ops) 2591 { 2592 if (handle->ops && handle->ops != sva_ops) 2593 return -EEXIST; 2594 2595 handle->ops = sva_ops; 2596 return 0; 2597 } 2598 EXPORT_SYMBOL_GPL(iommu_sva_set_ops); 2599 2600 int iommu_sva_get_pasid(struct iommu_sva *handle) 2601 { 2602 const struct iommu_ops *ops = handle->dev->bus->iommu_ops; 2603 2604 if (!ops || !ops->sva_get_pasid) 2605 return IOMMU_PASID_INVALID; 2606 2607 return ops->sva_get_pasid(handle); 2608 } 2609 EXPORT_SYMBOL_GPL(iommu_sva_get_pasid); 2610