xref: /openbmc/linux/drivers/iommu/iommu.c (revision eb96b740192b2a09720aaed8a8c132e6a29d5bdb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  */
6 
7 #define pr_fmt(fmt)    "iommu: " fmt
8 
9 #include <linux/amba/bus.h>
10 #include <linux/device.h>
11 #include <linux/kernel.h>
12 #include <linux/bits.h>
13 #include <linux/bug.h>
14 #include <linux/types.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/host1x_context_bus.h>
20 #include <linux/iommu.h>
21 #include <linux/idr.h>
22 #include <linux/err.h>
23 #include <linux/pci.h>
24 #include <linux/pci-ats.h>
25 #include <linux/bitops.h>
26 #include <linux/platform_device.h>
27 #include <linux/property.h>
28 #include <linux/fsl/mc.h>
29 #include <linux/module.h>
30 #include <linux/cc_platform.h>
31 #include <linux/cdx/cdx_bus.h>
32 #include <trace/events/iommu.h>
33 #include <linux/sched/mm.h>
34 #include <linux/msi.h>
35 
36 #include "dma-iommu.h"
37 
38 #include "iommu-sva.h"
39 
40 static struct kset *iommu_group_kset;
41 static DEFINE_IDA(iommu_group_ida);
42 
43 static unsigned int iommu_def_domain_type __read_mostly;
44 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT);
45 static u32 iommu_cmd_line __read_mostly;
46 
47 struct iommu_group {
48 	struct kobject kobj;
49 	struct kobject *devices_kobj;
50 	struct list_head devices;
51 	struct xarray pasid_array;
52 	struct mutex mutex;
53 	void *iommu_data;
54 	void (*iommu_data_release)(void *iommu_data);
55 	char *name;
56 	int id;
57 	struct iommu_domain *default_domain;
58 	struct iommu_domain *blocking_domain;
59 	struct iommu_domain *domain;
60 	struct list_head entry;
61 	unsigned int owner_cnt;
62 	void *owner;
63 };
64 
65 struct group_device {
66 	struct list_head list;
67 	struct device *dev;
68 	char *name;
69 };
70 
71 struct iommu_group_attribute {
72 	struct attribute attr;
73 	ssize_t (*show)(struct iommu_group *group, char *buf);
74 	ssize_t (*store)(struct iommu_group *group,
75 			 const char *buf, size_t count);
76 };
77 
78 static const char * const iommu_group_resv_type_string[] = {
79 	[IOMMU_RESV_DIRECT]			= "direct",
80 	[IOMMU_RESV_DIRECT_RELAXABLE]		= "direct-relaxable",
81 	[IOMMU_RESV_RESERVED]			= "reserved",
82 	[IOMMU_RESV_MSI]			= "msi",
83 	[IOMMU_RESV_SW_MSI]			= "msi",
84 };
85 
86 #define IOMMU_CMD_LINE_DMA_API		BIT(0)
87 #define IOMMU_CMD_LINE_STRICT		BIT(1)
88 
89 static int iommu_bus_notifier(struct notifier_block *nb,
90 			      unsigned long action, void *data);
91 static int iommu_alloc_default_domain(struct iommu_group *group,
92 				      struct device *dev);
93 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
94 						 unsigned type);
95 static int __iommu_attach_device(struct iommu_domain *domain,
96 				 struct device *dev);
97 static int __iommu_attach_group(struct iommu_domain *domain,
98 				struct iommu_group *group);
99 static int __iommu_group_set_domain(struct iommu_group *group,
100 				    struct iommu_domain *new_domain);
101 static int iommu_create_device_direct_mappings(struct iommu_group *group,
102 					       struct device *dev);
103 static struct iommu_group *iommu_group_get_for_dev(struct device *dev);
104 static ssize_t iommu_group_store_type(struct iommu_group *group,
105 				      const char *buf, size_t count);
106 
107 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store)		\
108 struct iommu_group_attribute iommu_group_attr_##_name =		\
109 	__ATTR(_name, _mode, _show, _store)
110 
111 #define to_iommu_group_attr(_attr)	\
112 	container_of(_attr, struct iommu_group_attribute, attr)
113 #define to_iommu_group(_kobj)		\
114 	container_of(_kobj, struct iommu_group, kobj)
115 
116 static LIST_HEAD(iommu_device_list);
117 static DEFINE_SPINLOCK(iommu_device_lock);
118 
119 static struct bus_type * const iommu_buses[] = {
120 	&platform_bus_type,
121 #ifdef CONFIG_PCI
122 	&pci_bus_type,
123 #endif
124 #ifdef CONFIG_ARM_AMBA
125 	&amba_bustype,
126 #endif
127 #ifdef CONFIG_FSL_MC_BUS
128 	&fsl_mc_bus_type,
129 #endif
130 #ifdef CONFIG_TEGRA_HOST1X_CONTEXT_BUS
131 	&host1x_context_device_bus_type,
132 #endif
133 #ifdef CONFIG_CDX_BUS
134 	&cdx_bus_type,
135 #endif
136 };
137 
138 /*
139  * Use a function instead of an array here because the domain-type is a
140  * bit-field, so an array would waste memory.
141  */
142 static const char *iommu_domain_type_str(unsigned int t)
143 {
144 	switch (t) {
145 	case IOMMU_DOMAIN_BLOCKED:
146 		return "Blocked";
147 	case IOMMU_DOMAIN_IDENTITY:
148 		return "Passthrough";
149 	case IOMMU_DOMAIN_UNMANAGED:
150 		return "Unmanaged";
151 	case IOMMU_DOMAIN_DMA:
152 	case IOMMU_DOMAIN_DMA_FQ:
153 		return "Translated";
154 	default:
155 		return "Unknown";
156 	}
157 }
158 
159 static int __init iommu_subsys_init(void)
160 {
161 	struct notifier_block *nb;
162 
163 	if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) {
164 		if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH))
165 			iommu_set_default_passthrough(false);
166 		else
167 			iommu_set_default_translated(false);
168 
169 		if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) {
170 			pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n");
171 			iommu_set_default_translated(false);
172 		}
173 	}
174 
175 	if (!iommu_default_passthrough() && !iommu_dma_strict)
176 		iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ;
177 
178 	pr_info("Default domain type: %s %s\n",
179 		iommu_domain_type_str(iommu_def_domain_type),
180 		(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ?
181 			"(set via kernel command line)" : "");
182 
183 	if (!iommu_default_passthrough())
184 		pr_info("DMA domain TLB invalidation policy: %s mode %s\n",
185 			iommu_dma_strict ? "strict" : "lazy",
186 			(iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ?
187 				"(set via kernel command line)" : "");
188 
189 	nb = kcalloc(ARRAY_SIZE(iommu_buses), sizeof(*nb), GFP_KERNEL);
190 	if (!nb)
191 		return -ENOMEM;
192 
193 	for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) {
194 		nb[i].notifier_call = iommu_bus_notifier;
195 		bus_register_notifier(iommu_buses[i], &nb[i]);
196 	}
197 
198 	return 0;
199 }
200 subsys_initcall(iommu_subsys_init);
201 
202 static int remove_iommu_group(struct device *dev, void *data)
203 {
204 	if (dev->iommu && dev->iommu->iommu_dev == data)
205 		iommu_release_device(dev);
206 
207 	return 0;
208 }
209 
210 /**
211  * iommu_device_register() - Register an IOMMU hardware instance
212  * @iommu: IOMMU handle for the instance
213  * @ops:   IOMMU ops to associate with the instance
214  * @hwdev: (optional) actual instance device, used for fwnode lookup
215  *
216  * Return: 0 on success, or an error.
217  */
218 int iommu_device_register(struct iommu_device *iommu,
219 			  const struct iommu_ops *ops, struct device *hwdev)
220 {
221 	int err = 0;
222 
223 	/* We need to be able to take module references appropriately */
224 	if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner))
225 		return -EINVAL;
226 	/*
227 	 * Temporarily enforce global restriction to a single driver. This was
228 	 * already the de-facto behaviour, since any possible combination of
229 	 * existing drivers would compete for at least the PCI or platform bus.
230 	 */
231 	if (iommu_buses[0]->iommu_ops && iommu_buses[0]->iommu_ops != ops)
232 		return -EBUSY;
233 
234 	iommu->ops = ops;
235 	if (hwdev)
236 		iommu->fwnode = dev_fwnode(hwdev);
237 
238 	spin_lock(&iommu_device_lock);
239 	list_add_tail(&iommu->list, &iommu_device_list);
240 	spin_unlock(&iommu_device_lock);
241 
242 	for (int i = 0; i < ARRAY_SIZE(iommu_buses) && !err; i++) {
243 		iommu_buses[i]->iommu_ops = ops;
244 		err = bus_iommu_probe(iommu_buses[i]);
245 	}
246 	if (err)
247 		iommu_device_unregister(iommu);
248 	return err;
249 }
250 EXPORT_SYMBOL_GPL(iommu_device_register);
251 
252 void iommu_device_unregister(struct iommu_device *iommu)
253 {
254 	for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++)
255 		bus_for_each_dev(iommu_buses[i], NULL, iommu, remove_iommu_group);
256 
257 	spin_lock(&iommu_device_lock);
258 	list_del(&iommu->list);
259 	spin_unlock(&iommu_device_lock);
260 }
261 EXPORT_SYMBOL_GPL(iommu_device_unregister);
262 
263 static struct dev_iommu *dev_iommu_get(struct device *dev)
264 {
265 	struct dev_iommu *param = dev->iommu;
266 
267 	if (param)
268 		return param;
269 
270 	param = kzalloc(sizeof(*param), GFP_KERNEL);
271 	if (!param)
272 		return NULL;
273 
274 	mutex_init(&param->lock);
275 	dev->iommu = param;
276 	return param;
277 }
278 
279 static void dev_iommu_free(struct device *dev)
280 {
281 	struct dev_iommu *param = dev->iommu;
282 
283 	dev->iommu = NULL;
284 	if (param->fwspec) {
285 		fwnode_handle_put(param->fwspec->iommu_fwnode);
286 		kfree(param->fwspec);
287 	}
288 	kfree(param);
289 }
290 
291 static u32 dev_iommu_get_max_pasids(struct device *dev)
292 {
293 	u32 max_pasids = 0, bits = 0;
294 	int ret;
295 
296 	if (dev_is_pci(dev)) {
297 		ret = pci_max_pasids(to_pci_dev(dev));
298 		if (ret > 0)
299 			max_pasids = ret;
300 	} else {
301 		ret = device_property_read_u32(dev, "pasid-num-bits", &bits);
302 		if (!ret)
303 			max_pasids = 1UL << bits;
304 	}
305 
306 	return min_t(u32, max_pasids, dev->iommu->iommu_dev->max_pasids);
307 }
308 
309 static int __iommu_probe_device(struct device *dev, struct list_head *group_list)
310 {
311 	const struct iommu_ops *ops = dev->bus->iommu_ops;
312 	struct iommu_device *iommu_dev;
313 	struct iommu_group *group;
314 	static DEFINE_MUTEX(iommu_probe_device_lock);
315 	int ret;
316 
317 	if (!ops)
318 		return -ENODEV;
319 	/*
320 	 * Serialise to avoid races between IOMMU drivers registering in
321 	 * parallel and/or the "replay" calls from ACPI/OF code via client
322 	 * driver probe. Once the latter have been cleaned up we should
323 	 * probably be able to use device_lock() here to minimise the scope,
324 	 * but for now enforcing a simple global ordering is fine.
325 	 */
326 	mutex_lock(&iommu_probe_device_lock);
327 	if (!dev_iommu_get(dev)) {
328 		ret = -ENOMEM;
329 		goto err_unlock;
330 	}
331 
332 	if (!try_module_get(ops->owner)) {
333 		ret = -EINVAL;
334 		goto err_free;
335 	}
336 
337 	iommu_dev = ops->probe_device(dev);
338 	if (IS_ERR(iommu_dev)) {
339 		ret = PTR_ERR(iommu_dev);
340 		goto out_module_put;
341 	}
342 
343 	dev->iommu->iommu_dev = iommu_dev;
344 	dev->iommu->max_pasids = dev_iommu_get_max_pasids(dev);
345 
346 	group = iommu_group_get_for_dev(dev);
347 	if (IS_ERR(group)) {
348 		ret = PTR_ERR(group);
349 		goto out_release;
350 	}
351 
352 	mutex_lock(&group->mutex);
353 	if (group_list && !group->default_domain && list_empty(&group->entry))
354 		list_add_tail(&group->entry, group_list);
355 	mutex_unlock(&group->mutex);
356 	iommu_group_put(group);
357 
358 	mutex_unlock(&iommu_probe_device_lock);
359 	iommu_device_link(iommu_dev, dev);
360 
361 	return 0;
362 
363 out_release:
364 	if (ops->release_device)
365 		ops->release_device(dev);
366 
367 out_module_put:
368 	module_put(ops->owner);
369 
370 err_free:
371 	dev_iommu_free(dev);
372 
373 err_unlock:
374 	mutex_unlock(&iommu_probe_device_lock);
375 
376 	return ret;
377 }
378 
379 static bool iommu_is_attach_deferred(struct device *dev)
380 {
381 	const struct iommu_ops *ops = dev_iommu_ops(dev);
382 
383 	if (ops->is_attach_deferred)
384 		return ops->is_attach_deferred(dev);
385 
386 	return false;
387 }
388 
389 static int iommu_group_do_dma_first_attach(struct device *dev, void *data)
390 {
391 	struct iommu_domain *domain = data;
392 
393 	lockdep_assert_held(&dev->iommu_group->mutex);
394 
395 	if (iommu_is_attach_deferred(dev)) {
396 		dev->iommu->attach_deferred = 1;
397 		return 0;
398 	}
399 
400 	return __iommu_attach_device(domain, dev);
401 }
402 
403 int iommu_probe_device(struct device *dev)
404 {
405 	const struct iommu_ops *ops;
406 	struct iommu_group *group;
407 	int ret;
408 
409 	ret = __iommu_probe_device(dev, NULL);
410 	if (ret)
411 		goto err_out;
412 
413 	group = iommu_group_get(dev);
414 	if (!group) {
415 		ret = -ENODEV;
416 		goto err_release;
417 	}
418 
419 	/*
420 	 * Try to allocate a default domain - needs support from the
421 	 * IOMMU driver. There are still some drivers which don't
422 	 * support default domains, so the return value is not yet
423 	 * checked.
424 	 */
425 	mutex_lock(&group->mutex);
426 	iommu_alloc_default_domain(group, dev);
427 
428 	/*
429 	 * If device joined an existing group which has been claimed, don't
430 	 * attach the default domain.
431 	 */
432 	if (group->default_domain && !group->owner) {
433 		ret = iommu_group_do_dma_first_attach(dev, group->default_domain);
434 		if (ret) {
435 			mutex_unlock(&group->mutex);
436 			iommu_group_put(group);
437 			goto err_release;
438 		}
439 	}
440 
441 	iommu_create_device_direct_mappings(group, dev);
442 
443 	mutex_unlock(&group->mutex);
444 	iommu_group_put(group);
445 
446 	ops = dev_iommu_ops(dev);
447 	if (ops->probe_finalize)
448 		ops->probe_finalize(dev);
449 
450 	return 0;
451 
452 err_release:
453 	iommu_release_device(dev);
454 
455 err_out:
456 	return ret;
457 
458 }
459 
460 void iommu_release_device(struct device *dev)
461 {
462 	const struct iommu_ops *ops;
463 
464 	if (!dev->iommu)
465 		return;
466 
467 	iommu_device_unlink(dev->iommu->iommu_dev, dev);
468 
469 	ops = dev_iommu_ops(dev);
470 	if (ops->release_device)
471 		ops->release_device(dev);
472 
473 	iommu_group_remove_device(dev);
474 	module_put(ops->owner);
475 	dev_iommu_free(dev);
476 }
477 
478 static int __init iommu_set_def_domain_type(char *str)
479 {
480 	bool pt;
481 	int ret;
482 
483 	ret = kstrtobool(str, &pt);
484 	if (ret)
485 		return ret;
486 
487 	if (pt)
488 		iommu_set_default_passthrough(true);
489 	else
490 		iommu_set_default_translated(true);
491 
492 	return 0;
493 }
494 early_param("iommu.passthrough", iommu_set_def_domain_type);
495 
496 static int __init iommu_dma_setup(char *str)
497 {
498 	int ret = kstrtobool(str, &iommu_dma_strict);
499 
500 	if (!ret)
501 		iommu_cmd_line |= IOMMU_CMD_LINE_STRICT;
502 	return ret;
503 }
504 early_param("iommu.strict", iommu_dma_setup);
505 
506 void iommu_set_dma_strict(void)
507 {
508 	iommu_dma_strict = true;
509 	if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ)
510 		iommu_def_domain_type = IOMMU_DOMAIN_DMA;
511 }
512 
513 static ssize_t iommu_group_attr_show(struct kobject *kobj,
514 				     struct attribute *__attr, char *buf)
515 {
516 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
517 	struct iommu_group *group = to_iommu_group(kobj);
518 	ssize_t ret = -EIO;
519 
520 	if (attr->show)
521 		ret = attr->show(group, buf);
522 	return ret;
523 }
524 
525 static ssize_t iommu_group_attr_store(struct kobject *kobj,
526 				      struct attribute *__attr,
527 				      const char *buf, size_t count)
528 {
529 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
530 	struct iommu_group *group = to_iommu_group(kobj);
531 	ssize_t ret = -EIO;
532 
533 	if (attr->store)
534 		ret = attr->store(group, buf, count);
535 	return ret;
536 }
537 
538 static const struct sysfs_ops iommu_group_sysfs_ops = {
539 	.show = iommu_group_attr_show,
540 	.store = iommu_group_attr_store,
541 };
542 
543 static int iommu_group_create_file(struct iommu_group *group,
544 				   struct iommu_group_attribute *attr)
545 {
546 	return sysfs_create_file(&group->kobj, &attr->attr);
547 }
548 
549 static void iommu_group_remove_file(struct iommu_group *group,
550 				    struct iommu_group_attribute *attr)
551 {
552 	sysfs_remove_file(&group->kobj, &attr->attr);
553 }
554 
555 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
556 {
557 	return sprintf(buf, "%s\n", group->name);
558 }
559 
560 /**
561  * iommu_insert_resv_region - Insert a new region in the
562  * list of reserved regions.
563  * @new: new region to insert
564  * @regions: list of regions
565  *
566  * Elements are sorted by start address and overlapping segments
567  * of the same type are merged.
568  */
569 static int iommu_insert_resv_region(struct iommu_resv_region *new,
570 				    struct list_head *regions)
571 {
572 	struct iommu_resv_region *iter, *tmp, *nr, *top;
573 	LIST_HEAD(stack);
574 
575 	nr = iommu_alloc_resv_region(new->start, new->length,
576 				     new->prot, new->type, GFP_KERNEL);
577 	if (!nr)
578 		return -ENOMEM;
579 
580 	/* First add the new element based on start address sorting */
581 	list_for_each_entry(iter, regions, list) {
582 		if (nr->start < iter->start ||
583 		    (nr->start == iter->start && nr->type <= iter->type))
584 			break;
585 	}
586 	list_add_tail(&nr->list, &iter->list);
587 
588 	/* Merge overlapping segments of type nr->type in @regions, if any */
589 	list_for_each_entry_safe(iter, tmp, regions, list) {
590 		phys_addr_t top_end, iter_end = iter->start + iter->length - 1;
591 
592 		/* no merge needed on elements of different types than @new */
593 		if (iter->type != new->type) {
594 			list_move_tail(&iter->list, &stack);
595 			continue;
596 		}
597 
598 		/* look for the last stack element of same type as @iter */
599 		list_for_each_entry_reverse(top, &stack, list)
600 			if (top->type == iter->type)
601 				goto check_overlap;
602 
603 		list_move_tail(&iter->list, &stack);
604 		continue;
605 
606 check_overlap:
607 		top_end = top->start + top->length - 1;
608 
609 		if (iter->start > top_end + 1) {
610 			list_move_tail(&iter->list, &stack);
611 		} else {
612 			top->length = max(top_end, iter_end) - top->start + 1;
613 			list_del(&iter->list);
614 			kfree(iter);
615 		}
616 	}
617 	list_splice(&stack, regions);
618 	return 0;
619 }
620 
621 static int
622 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
623 				 struct list_head *group_resv_regions)
624 {
625 	struct iommu_resv_region *entry;
626 	int ret = 0;
627 
628 	list_for_each_entry(entry, dev_resv_regions, list) {
629 		ret = iommu_insert_resv_region(entry, group_resv_regions);
630 		if (ret)
631 			break;
632 	}
633 	return ret;
634 }
635 
636 int iommu_get_group_resv_regions(struct iommu_group *group,
637 				 struct list_head *head)
638 {
639 	struct group_device *device;
640 	int ret = 0;
641 
642 	mutex_lock(&group->mutex);
643 	list_for_each_entry(device, &group->devices, list) {
644 		struct list_head dev_resv_regions;
645 
646 		/*
647 		 * Non-API groups still expose reserved_regions in sysfs,
648 		 * so filter out calls that get here that way.
649 		 */
650 		if (!device->dev->iommu)
651 			break;
652 
653 		INIT_LIST_HEAD(&dev_resv_regions);
654 		iommu_get_resv_regions(device->dev, &dev_resv_regions);
655 		ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
656 		iommu_put_resv_regions(device->dev, &dev_resv_regions);
657 		if (ret)
658 			break;
659 	}
660 	mutex_unlock(&group->mutex);
661 	return ret;
662 }
663 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
664 
665 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
666 					     char *buf)
667 {
668 	struct iommu_resv_region *region, *next;
669 	struct list_head group_resv_regions;
670 	char *str = buf;
671 
672 	INIT_LIST_HEAD(&group_resv_regions);
673 	iommu_get_group_resv_regions(group, &group_resv_regions);
674 
675 	list_for_each_entry_safe(region, next, &group_resv_regions, list) {
676 		str += sprintf(str, "0x%016llx 0x%016llx %s\n",
677 			       (long long int)region->start,
678 			       (long long int)(region->start +
679 						region->length - 1),
680 			       iommu_group_resv_type_string[region->type]);
681 		kfree(region);
682 	}
683 
684 	return (str - buf);
685 }
686 
687 static ssize_t iommu_group_show_type(struct iommu_group *group,
688 				     char *buf)
689 {
690 	char *type = "unknown\n";
691 
692 	mutex_lock(&group->mutex);
693 	if (group->default_domain) {
694 		switch (group->default_domain->type) {
695 		case IOMMU_DOMAIN_BLOCKED:
696 			type = "blocked\n";
697 			break;
698 		case IOMMU_DOMAIN_IDENTITY:
699 			type = "identity\n";
700 			break;
701 		case IOMMU_DOMAIN_UNMANAGED:
702 			type = "unmanaged\n";
703 			break;
704 		case IOMMU_DOMAIN_DMA:
705 			type = "DMA\n";
706 			break;
707 		case IOMMU_DOMAIN_DMA_FQ:
708 			type = "DMA-FQ\n";
709 			break;
710 		}
711 	}
712 	mutex_unlock(&group->mutex);
713 	strcpy(buf, type);
714 
715 	return strlen(type);
716 }
717 
718 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
719 
720 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
721 			iommu_group_show_resv_regions, NULL);
722 
723 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type,
724 			iommu_group_store_type);
725 
726 static void iommu_group_release(struct kobject *kobj)
727 {
728 	struct iommu_group *group = to_iommu_group(kobj);
729 
730 	pr_debug("Releasing group %d\n", group->id);
731 
732 	if (group->iommu_data_release)
733 		group->iommu_data_release(group->iommu_data);
734 
735 	ida_free(&iommu_group_ida, group->id);
736 
737 	if (group->default_domain)
738 		iommu_domain_free(group->default_domain);
739 	if (group->blocking_domain)
740 		iommu_domain_free(group->blocking_domain);
741 
742 	kfree(group->name);
743 	kfree(group);
744 }
745 
746 static struct kobj_type iommu_group_ktype = {
747 	.sysfs_ops = &iommu_group_sysfs_ops,
748 	.release = iommu_group_release,
749 };
750 
751 /**
752  * iommu_group_alloc - Allocate a new group
753  *
754  * This function is called by an iommu driver to allocate a new iommu
755  * group.  The iommu group represents the minimum granularity of the iommu.
756  * Upon successful return, the caller holds a reference to the supplied
757  * group in order to hold the group until devices are added.  Use
758  * iommu_group_put() to release this extra reference count, allowing the
759  * group to be automatically reclaimed once it has no devices or external
760  * references.
761  */
762 struct iommu_group *iommu_group_alloc(void)
763 {
764 	struct iommu_group *group;
765 	int ret;
766 
767 	group = kzalloc(sizeof(*group), GFP_KERNEL);
768 	if (!group)
769 		return ERR_PTR(-ENOMEM);
770 
771 	group->kobj.kset = iommu_group_kset;
772 	mutex_init(&group->mutex);
773 	INIT_LIST_HEAD(&group->devices);
774 	INIT_LIST_HEAD(&group->entry);
775 	xa_init(&group->pasid_array);
776 
777 	ret = ida_alloc(&iommu_group_ida, GFP_KERNEL);
778 	if (ret < 0) {
779 		kfree(group);
780 		return ERR_PTR(ret);
781 	}
782 	group->id = ret;
783 
784 	ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
785 				   NULL, "%d", group->id);
786 	if (ret) {
787 		kobject_put(&group->kobj);
788 		return ERR_PTR(ret);
789 	}
790 
791 	group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
792 	if (!group->devices_kobj) {
793 		kobject_put(&group->kobj); /* triggers .release & free */
794 		return ERR_PTR(-ENOMEM);
795 	}
796 
797 	/*
798 	 * The devices_kobj holds a reference on the group kobject, so
799 	 * as long as that exists so will the group.  We can therefore
800 	 * use the devices_kobj for reference counting.
801 	 */
802 	kobject_put(&group->kobj);
803 
804 	ret = iommu_group_create_file(group,
805 				      &iommu_group_attr_reserved_regions);
806 	if (ret) {
807 		kobject_put(group->devices_kobj);
808 		return ERR_PTR(ret);
809 	}
810 
811 	ret = iommu_group_create_file(group, &iommu_group_attr_type);
812 	if (ret) {
813 		kobject_put(group->devices_kobj);
814 		return ERR_PTR(ret);
815 	}
816 
817 	pr_debug("Allocated group %d\n", group->id);
818 
819 	return group;
820 }
821 EXPORT_SYMBOL_GPL(iommu_group_alloc);
822 
823 struct iommu_group *iommu_group_get_by_id(int id)
824 {
825 	struct kobject *group_kobj;
826 	struct iommu_group *group;
827 	const char *name;
828 
829 	if (!iommu_group_kset)
830 		return NULL;
831 
832 	name = kasprintf(GFP_KERNEL, "%d", id);
833 	if (!name)
834 		return NULL;
835 
836 	group_kobj = kset_find_obj(iommu_group_kset, name);
837 	kfree(name);
838 
839 	if (!group_kobj)
840 		return NULL;
841 
842 	group = container_of(group_kobj, struct iommu_group, kobj);
843 	BUG_ON(group->id != id);
844 
845 	kobject_get(group->devices_kobj);
846 	kobject_put(&group->kobj);
847 
848 	return group;
849 }
850 EXPORT_SYMBOL_GPL(iommu_group_get_by_id);
851 
852 /**
853  * iommu_group_get_iommudata - retrieve iommu_data registered for a group
854  * @group: the group
855  *
856  * iommu drivers can store data in the group for use when doing iommu
857  * operations.  This function provides a way to retrieve it.  Caller
858  * should hold a group reference.
859  */
860 void *iommu_group_get_iommudata(struct iommu_group *group)
861 {
862 	return group->iommu_data;
863 }
864 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
865 
866 /**
867  * iommu_group_set_iommudata - set iommu_data for a group
868  * @group: the group
869  * @iommu_data: new data
870  * @release: release function for iommu_data
871  *
872  * iommu drivers can store data in the group for use when doing iommu
873  * operations.  This function provides a way to set the data after
874  * the group has been allocated.  Caller should hold a group reference.
875  */
876 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
877 			       void (*release)(void *iommu_data))
878 {
879 	group->iommu_data = iommu_data;
880 	group->iommu_data_release = release;
881 }
882 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
883 
884 /**
885  * iommu_group_set_name - set name for a group
886  * @group: the group
887  * @name: name
888  *
889  * Allow iommu driver to set a name for a group.  When set it will
890  * appear in a name attribute file under the group in sysfs.
891  */
892 int iommu_group_set_name(struct iommu_group *group, const char *name)
893 {
894 	int ret;
895 
896 	if (group->name) {
897 		iommu_group_remove_file(group, &iommu_group_attr_name);
898 		kfree(group->name);
899 		group->name = NULL;
900 		if (!name)
901 			return 0;
902 	}
903 
904 	group->name = kstrdup(name, GFP_KERNEL);
905 	if (!group->name)
906 		return -ENOMEM;
907 
908 	ret = iommu_group_create_file(group, &iommu_group_attr_name);
909 	if (ret) {
910 		kfree(group->name);
911 		group->name = NULL;
912 		return ret;
913 	}
914 
915 	return 0;
916 }
917 EXPORT_SYMBOL_GPL(iommu_group_set_name);
918 
919 static int iommu_create_device_direct_mappings(struct iommu_group *group,
920 					       struct device *dev)
921 {
922 	struct iommu_domain *domain = group->default_domain;
923 	struct iommu_resv_region *entry;
924 	struct list_head mappings;
925 	unsigned long pg_size;
926 	int ret = 0;
927 
928 	if (!domain || !iommu_is_dma_domain(domain))
929 		return 0;
930 
931 	BUG_ON(!domain->pgsize_bitmap);
932 
933 	pg_size = 1UL << __ffs(domain->pgsize_bitmap);
934 	INIT_LIST_HEAD(&mappings);
935 
936 	iommu_get_resv_regions(dev, &mappings);
937 
938 	/* We need to consider overlapping regions for different devices */
939 	list_for_each_entry(entry, &mappings, list) {
940 		dma_addr_t start, end, addr;
941 		size_t map_size = 0;
942 
943 		start = ALIGN(entry->start, pg_size);
944 		end   = ALIGN(entry->start + entry->length, pg_size);
945 
946 		if (entry->type != IOMMU_RESV_DIRECT &&
947 		    entry->type != IOMMU_RESV_DIRECT_RELAXABLE)
948 			continue;
949 
950 		for (addr = start; addr <= end; addr += pg_size) {
951 			phys_addr_t phys_addr;
952 
953 			if (addr == end)
954 				goto map_end;
955 
956 			phys_addr = iommu_iova_to_phys(domain, addr);
957 			if (!phys_addr) {
958 				map_size += pg_size;
959 				continue;
960 			}
961 
962 map_end:
963 			if (map_size) {
964 				ret = iommu_map(domain, addr - map_size,
965 						addr - map_size, map_size,
966 						entry->prot, GFP_KERNEL);
967 				if (ret)
968 					goto out;
969 				map_size = 0;
970 			}
971 		}
972 
973 	}
974 
975 	iommu_flush_iotlb_all(domain);
976 
977 out:
978 	iommu_put_resv_regions(dev, &mappings);
979 
980 	return ret;
981 }
982 
983 /**
984  * iommu_group_add_device - add a device to an iommu group
985  * @group: the group into which to add the device (reference should be held)
986  * @dev: the device
987  *
988  * This function is called by an iommu driver to add a device into a
989  * group.  Adding a device increments the group reference count.
990  */
991 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
992 {
993 	int ret, i = 0;
994 	struct group_device *device;
995 
996 	device = kzalloc(sizeof(*device), GFP_KERNEL);
997 	if (!device)
998 		return -ENOMEM;
999 
1000 	device->dev = dev;
1001 
1002 	ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
1003 	if (ret)
1004 		goto err_free_device;
1005 
1006 	device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
1007 rename:
1008 	if (!device->name) {
1009 		ret = -ENOMEM;
1010 		goto err_remove_link;
1011 	}
1012 
1013 	ret = sysfs_create_link_nowarn(group->devices_kobj,
1014 				       &dev->kobj, device->name);
1015 	if (ret) {
1016 		if (ret == -EEXIST && i >= 0) {
1017 			/*
1018 			 * Account for the slim chance of collision
1019 			 * and append an instance to the name.
1020 			 */
1021 			kfree(device->name);
1022 			device->name = kasprintf(GFP_KERNEL, "%s.%d",
1023 						 kobject_name(&dev->kobj), i++);
1024 			goto rename;
1025 		}
1026 		goto err_free_name;
1027 	}
1028 
1029 	kobject_get(group->devices_kobj);
1030 
1031 	dev->iommu_group = group;
1032 
1033 	mutex_lock(&group->mutex);
1034 	list_add_tail(&device->list, &group->devices);
1035 	if (group->domain)
1036 		ret = iommu_group_do_dma_first_attach(dev, group->domain);
1037 	mutex_unlock(&group->mutex);
1038 	if (ret)
1039 		goto err_put_group;
1040 
1041 	trace_add_device_to_group(group->id, dev);
1042 
1043 	dev_info(dev, "Adding to iommu group %d\n", group->id);
1044 
1045 	return 0;
1046 
1047 err_put_group:
1048 	mutex_lock(&group->mutex);
1049 	list_del(&device->list);
1050 	mutex_unlock(&group->mutex);
1051 	dev->iommu_group = NULL;
1052 	kobject_put(group->devices_kobj);
1053 	sysfs_remove_link(group->devices_kobj, device->name);
1054 err_free_name:
1055 	kfree(device->name);
1056 err_remove_link:
1057 	sysfs_remove_link(&dev->kobj, "iommu_group");
1058 err_free_device:
1059 	kfree(device);
1060 	dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
1061 	return ret;
1062 }
1063 EXPORT_SYMBOL_GPL(iommu_group_add_device);
1064 
1065 /**
1066  * iommu_group_remove_device - remove a device from it's current group
1067  * @dev: device to be removed
1068  *
1069  * This function is called by an iommu driver to remove the device from
1070  * it's current group.  This decrements the iommu group reference count.
1071  */
1072 void iommu_group_remove_device(struct device *dev)
1073 {
1074 	struct iommu_group *group = dev->iommu_group;
1075 	struct group_device *tmp_device, *device = NULL;
1076 
1077 	if (!group)
1078 		return;
1079 
1080 	dev_info(dev, "Removing from iommu group %d\n", group->id);
1081 
1082 	mutex_lock(&group->mutex);
1083 	list_for_each_entry(tmp_device, &group->devices, list) {
1084 		if (tmp_device->dev == dev) {
1085 			device = tmp_device;
1086 			list_del(&device->list);
1087 			break;
1088 		}
1089 	}
1090 	mutex_unlock(&group->mutex);
1091 
1092 	if (!device)
1093 		return;
1094 
1095 	sysfs_remove_link(group->devices_kobj, device->name);
1096 	sysfs_remove_link(&dev->kobj, "iommu_group");
1097 
1098 	trace_remove_device_from_group(group->id, dev);
1099 
1100 	kfree(device->name);
1101 	kfree(device);
1102 	dev->iommu_group = NULL;
1103 	kobject_put(group->devices_kobj);
1104 }
1105 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
1106 
1107 static int iommu_group_device_count(struct iommu_group *group)
1108 {
1109 	struct group_device *entry;
1110 	int ret = 0;
1111 
1112 	list_for_each_entry(entry, &group->devices, list)
1113 		ret++;
1114 
1115 	return ret;
1116 }
1117 
1118 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data,
1119 				      int (*fn)(struct device *, void *))
1120 {
1121 	struct group_device *device;
1122 	int ret = 0;
1123 
1124 	list_for_each_entry(device, &group->devices, list) {
1125 		ret = fn(device->dev, data);
1126 		if (ret)
1127 			break;
1128 	}
1129 	return ret;
1130 }
1131 
1132 /**
1133  * iommu_group_for_each_dev - iterate over each device in the group
1134  * @group: the group
1135  * @data: caller opaque data to be passed to callback function
1136  * @fn: caller supplied callback function
1137  *
1138  * This function is called by group users to iterate over group devices.
1139  * Callers should hold a reference count to the group during callback.
1140  * The group->mutex is held across callbacks, which will block calls to
1141  * iommu_group_add/remove_device.
1142  */
1143 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
1144 			     int (*fn)(struct device *, void *))
1145 {
1146 	int ret;
1147 
1148 	mutex_lock(&group->mutex);
1149 	ret = __iommu_group_for_each_dev(group, data, fn);
1150 	mutex_unlock(&group->mutex);
1151 
1152 	return ret;
1153 }
1154 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
1155 
1156 /**
1157  * iommu_group_get - Return the group for a device and increment reference
1158  * @dev: get the group that this device belongs to
1159  *
1160  * This function is called by iommu drivers and users to get the group
1161  * for the specified device.  If found, the group is returned and the group
1162  * reference in incremented, else NULL.
1163  */
1164 struct iommu_group *iommu_group_get(struct device *dev)
1165 {
1166 	struct iommu_group *group = dev->iommu_group;
1167 
1168 	if (group)
1169 		kobject_get(group->devices_kobj);
1170 
1171 	return group;
1172 }
1173 EXPORT_SYMBOL_GPL(iommu_group_get);
1174 
1175 /**
1176  * iommu_group_ref_get - Increment reference on a group
1177  * @group: the group to use, must not be NULL
1178  *
1179  * This function is called by iommu drivers to take additional references on an
1180  * existing group.  Returns the given group for convenience.
1181  */
1182 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
1183 {
1184 	kobject_get(group->devices_kobj);
1185 	return group;
1186 }
1187 EXPORT_SYMBOL_GPL(iommu_group_ref_get);
1188 
1189 /**
1190  * iommu_group_put - Decrement group reference
1191  * @group: the group to use
1192  *
1193  * This function is called by iommu drivers and users to release the
1194  * iommu group.  Once the reference count is zero, the group is released.
1195  */
1196 void iommu_group_put(struct iommu_group *group)
1197 {
1198 	if (group)
1199 		kobject_put(group->devices_kobj);
1200 }
1201 EXPORT_SYMBOL_GPL(iommu_group_put);
1202 
1203 /**
1204  * iommu_register_device_fault_handler() - Register a device fault handler
1205  * @dev: the device
1206  * @handler: the fault handler
1207  * @data: private data passed as argument to the handler
1208  *
1209  * When an IOMMU fault event is received, this handler gets called with the
1210  * fault event and data as argument. The handler should return 0 on success. If
1211  * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also
1212  * complete the fault by calling iommu_page_response() with one of the following
1213  * response code:
1214  * - IOMMU_PAGE_RESP_SUCCESS: retry the translation
1215  * - IOMMU_PAGE_RESP_INVALID: terminate the fault
1216  * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting
1217  *   page faults if possible.
1218  *
1219  * Return 0 if the fault handler was installed successfully, or an error.
1220  */
1221 int iommu_register_device_fault_handler(struct device *dev,
1222 					iommu_dev_fault_handler_t handler,
1223 					void *data)
1224 {
1225 	struct dev_iommu *param = dev->iommu;
1226 	int ret = 0;
1227 
1228 	if (!param)
1229 		return -EINVAL;
1230 
1231 	mutex_lock(&param->lock);
1232 	/* Only allow one fault handler registered for each device */
1233 	if (param->fault_param) {
1234 		ret = -EBUSY;
1235 		goto done_unlock;
1236 	}
1237 
1238 	get_device(dev);
1239 	param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL);
1240 	if (!param->fault_param) {
1241 		put_device(dev);
1242 		ret = -ENOMEM;
1243 		goto done_unlock;
1244 	}
1245 	param->fault_param->handler = handler;
1246 	param->fault_param->data = data;
1247 	mutex_init(&param->fault_param->lock);
1248 	INIT_LIST_HEAD(&param->fault_param->faults);
1249 
1250 done_unlock:
1251 	mutex_unlock(&param->lock);
1252 
1253 	return ret;
1254 }
1255 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler);
1256 
1257 /**
1258  * iommu_unregister_device_fault_handler() - Unregister the device fault handler
1259  * @dev: the device
1260  *
1261  * Remove the device fault handler installed with
1262  * iommu_register_device_fault_handler().
1263  *
1264  * Return 0 on success, or an error.
1265  */
1266 int iommu_unregister_device_fault_handler(struct device *dev)
1267 {
1268 	struct dev_iommu *param = dev->iommu;
1269 	int ret = 0;
1270 
1271 	if (!param)
1272 		return -EINVAL;
1273 
1274 	mutex_lock(&param->lock);
1275 
1276 	if (!param->fault_param)
1277 		goto unlock;
1278 
1279 	/* we cannot unregister handler if there are pending faults */
1280 	if (!list_empty(&param->fault_param->faults)) {
1281 		ret = -EBUSY;
1282 		goto unlock;
1283 	}
1284 
1285 	kfree(param->fault_param);
1286 	param->fault_param = NULL;
1287 	put_device(dev);
1288 unlock:
1289 	mutex_unlock(&param->lock);
1290 
1291 	return ret;
1292 }
1293 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler);
1294 
1295 /**
1296  * iommu_report_device_fault() - Report fault event to device driver
1297  * @dev: the device
1298  * @evt: fault event data
1299  *
1300  * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ
1301  * handler. When this function fails and the fault is recoverable, it is the
1302  * caller's responsibility to complete the fault.
1303  *
1304  * Return 0 on success, or an error.
1305  */
1306 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt)
1307 {
1308 	struct dev_iommu *param = dev->iommu;
1309 	struct iommu_fault_event *evt_pending = NULL;
1310 	struct iommu_fault_param *fparam;
1311 	int ret = 0;
1312 
1313 	if (!param || !evt)
1314 		return -EINVAL;
1315 
1316 	/* we only report device fault if there is a handler registered */
1317 	mutex_lock(&param->lock);
1318 	fparam = param->fault_param;
1319 	if (!fparam || !fparam->handler) {
1320 		ret = -EINVAL;
1321 		goto done_unlock;
1322 	}
1323 
1324 	if (evt->fault.type == IOMMU_FAULT_PAGE_REQ &&
1325 	    (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) {
1326 		evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event),
1327 				      GFP_KERNEL);
1328 		if (!evt_pending) {
1329 			ret = -ENOMEM;
1330 			goto done_unlock;
1331 		}
1332 		mutex_lock(&fparam->lock);
1333 		list_add_tail(&evt_pending->list, &fparam->faults);
1334 		mutex_unlock(&fparam->lock);
1335 	}
1336 
1337 	ret = fparam->handler(&evt->fault, fparam->data);
1338 	if (ret && evt_pending) {
1339 		mutex_lock(&fparam->lock);
1340 		list_del(&evt_pending->list);
1341 		mutex_unlock(&fparam->lock);
1342 		kfree(evt_pending);
1343 	}
1344 done_unlock:
1345 	mutex_unlock(&param->lock);
1346 	return ret;
1347 }
1348 EXPORT_SYMBOL_GPL(iommu_report_device_fault);
1349 
1350 int iommu_page_response(struct device *dev,
1351 			struct iommu_page_response *msg)
1352 {
1353 	bool needs_pasid;
1354 	int ret = -EINVAL;
1355 	struct iommu_fault_event *evt;
1356 	struct iommu_fault_page_request *prm;
1357 	struct dev_iommu *param = dev->iommu;
1358 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1359 	bool has_pasid = msg->flags & IOMMU_PAGE_RESP_PASID_VALID;
1360 
1361 	if (!ops->page_response)
1362 		return -ENODEV;
1363 
1364 	if (!param || !param->fault_param)
1365 		return -EINVAL;
1366 
1367 	if (msg->version != IOMMU_PAGE_RESP_VERSION_1 ||
1368 	    msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID)
1369 		return -EINVAL;
1370 
1371 	/* Only send response if there is a fault report pending */
1372 	mutex_lock(&param->fault_param->lock);
1373 	if (list_empty(&param->fault_param->faults)) {
1374 		dev_warn_ratelimited(dev, "no pending PRQ, drop response\n");
1375 		goto done_unlock;
1376 	}
1377 	/*
1378 	 * Check if we have a matching page request pending to respond,
1379 	 * otherwise return -EINVAL
1380 	 */
1381 	list_for_each_entry(evt, &param->fault_param->faults, list) {
1382 		prm = &evt->fault.prm;
1383 		if (prm->grpid != msg->grpid)
1384 			continue;
1385 
1386 		/*
1387 		 * If the PASID is required, the corresponding request is
1388 		 * matched using the group ID, the PASID valid bit and the PASID
1389 		 * value. Otherwise only the group ID matches request and
1390 		 * response.
1391 		 */
1392 		needs_pasid = prm->flags & IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID;
1393 		if (needs_pasid && (!has_pasid || msg->pasid != prm->pasid))
1394 			continue;
1395 
1396 		if (!needs_pasid && has_pasid) {
1397 			/* No big deal, just clear it. */
1398 			msg->flags &= ~IOMMU_PAGE_RESP_PASID_VALID;
1399 			msg->pasid = 0;
1400 		}
1401 
1402 		ret = ops->page_response(dev, evt, msg);
1403 		list_del(&evt->list);
1404 		kfree(evt);
1405 		break;
1406 	}
1407 
1408 done_unlock:
1409 	mutex_unlock(&param->fault_param->lock);
1410 	return ret;
1411 }
1412 EXPORT_SYMBOL_GPL(iommu_page_response);
1413 
1414 /**
1415  * iommu_group_id - Return ID for a group
1416  * @group: the group to ID
1417  *
1418  * Return the unique ID for the group matching the sysfs group number.
1419  */
1420 int iommu_group_id(struct iommu_group *group)
1421 {
1422 	return group->id;
1423 }
1424 EXPORT_SYMBOL_GPL(iommu_group_id);
1425 
1426 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1427 					       unsigned long *devfns);
1428 
1429 /*
1430  * To consider a PCI device isolated, we require ACS to support Source
1431  * Validation, Request Redirection, Completer Redirection, and Upstream
1432  * Forwarding.  This effectively means that devices cannot spoof their
1433  * requester ID, requests and completions cannot be redirected, and all
1434  * transactions are forwarded upstream, even as it passes through a
1435  * bridge where the target device is downstream.
1436  */
1437 #define REQ_ACS_FLAGS   (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1438 
1439 /*
1440  * For multifunction devices which are not isolated from each other, find
1441  * all the other non-isolated functions and look for existing groups.  For
1442  * each function, we also need to look for aliases to or from other devices
1443  * that may already have a group.
1444  */
1445 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1446 							unsigned long *devfns)
1447 {
1448 	struct pci_dev *tmp = NULL;
1449 	struct iommu_group *group;
1450 
1451 	if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1452 		return NULL;
1453 
1454 	for_each_pci_dev(tmp) {
1455 		if (tmp == pdev || tmp->bus != pdev->bus ||
1456 		    PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1457 		    pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1458 			continue;
1459 
1460 		group = get_pci_alias_group(tmp, devfns);
1461 		if (group) {
1462 			pci_dev_put(tmp);
1463 			return group;
1464 		}
1465 	}
1466 
1467 	return NULL;
1468 }
1469 
1470 /*
1471  * Look for aliases to or from the given device for existing groups. DMA
1472  * aliases are only supported on the same bus, therefore the search
1473  * space is quite small (especially since we're really only looking at pcie
1474  * device, and therefore only expect multiple slots on the root complex or
1475  * downstream switch ports).  It's conceivable though that a pair of
1476  * multifunction devices could have aliases between them that would cause a
1477  * loop.  To prevent this, we use a bitmap to track where we've been.
1478  */
1479 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1480 					       unsigned long *devfns)
1481 {
1482 	struct pci_dev *tmp = NULL;
1483 	struct iommu_group *group;
1484 
1485 	if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1486 		return NULL;
1487 
1488 	group = iommu_group_get(&pdev->dev);
1489 	if (group)
1490 		return group;
1491 
1492 	for_each_pci_dev(tmp) {
1493 		if (tmp == pdev || tmp->bus != pdev->bus)
1494 			continue;
1495 
1496 		/* We alias them or they alias us */
1497 		if (pci_devs_are_dma_aliases(pdev, tmp)) {
1498 			group = get_pci_alias_group(tmp, devfns);
1499 			if (group) {
1500 				pci_dev_put(tmp);
1501 				return group;
1502 			}
1503 
1504 			group = get_pci_function_alias_group(tmp, devfns);
1505 			if (group) {
1506 				pci_dev_put(tmp);
1507 				return group;
1508 			}
1509 		}
1510 	}
1511 
1512 	return NULL;
1513 }
1514 
1515 struct group_for_pci_data {
1516 	struct pci_dev *pdev;
1517 	struct iommu_group *group;
1518 };
1519 
1520 /*
1521  * DMA alias iterator callback, return the last seen device.  Stop and return
1522  * the IOMMU group if we find one along the way.
1523  */
1524 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1525 {
1526 	struct group_for_pci_data *data = opaque;
1527 
1528 	data->pdev = pdev;
1529 	data->group = iommu_group_get(&pdev->dev);
1530 
1531 	return data->group != NULL;
1532 }
1533 
1534 /*
1535  * Generic device_group call-back function. It just allocates one
1536  * iommu-group per device.
1537  */
1538 struct iommu_group *generic_device_group(struct device *dev)
1539 {
1540 	return iommu_group_alloc();
1541 }
1542 EXPORT_SYMBOL_GPL(generic_device_group);
1543 
1544 /*
1545  * Use standard PCI bus topology, isolation features, and DMA alias quirks
1546  * to find or create an IOMMU group for a device.
1547  */
1548 struct iommu_group *pci_device_group(struct device *dev)
1549 {
1550 	struct pci_dev *pdev = to_pci_dev(dev);
1551 	struct group_for_pci_data data;
1552 	struct pci_bus *bus;
1553 	struct iommu_group *group = NULL;
1554 	u64 devfns[4] = { 0 };
1555 
1556 	if (WARN_ON(!dev_is_pci(dev)))
1557 		return ERR_PTR(-EINVAL);
1558 
1559 	/*
1560 	 * Find the upstream DMA alias for the device.  A device must not
1561 	 * be aliased due to topology in order to have its own IOMMU group.
1562 	 * If we find an alias along the way that already belongs to a
1563 	 * group, use it.
1564 	 */
1565 	if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1566 		return data.group;
1567 
1568 	pdev = data.pdev;
1569 
1570 	/*
1571 	 * Continue upstream from the point of minimum IOMMU granularity
1572 	 * due to aliases to the point where devices are protected from
1573 	 * peer-to-peer DMA by PCI ACS.  Again, if we find an existing
1574 	 * group, use it.
1575 	 */
1576 	for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1577 		if (!bus->self)
1578 			continue;
1579 
1580 		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1581 			break;
1582 
1583 		pdev = bus->self;
1584 
1585 		group = iommu_group_get(&pdev->dev);
1586 		if (group)
1587 			return group;
1588 	}
1589 
1590 	/*
1591 	 * Look for existing groups on device aliases.  If we alias another
1592 	 * device or another device aliases us, use the same group.
1593 	 */
1594 	group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1595 	if (group)
1596 		return group;
1597 
1598 	/*
1599 	 * Look for existing groups on non-isolated functions on the same
1600 	 * slot and aliases of those funcions, if any.  No need to clear
1601 	 * the search bitmap, the tested devfns are still valid.
1602 	 */
1603 	group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1604 	if (group)
1605 		return group;
1606 
1607 	/* No shared group found, allocate new */
1608 	return iommu_group_alloc();
1609 }
1610 EXPORT_SYMBOL_GPL(pci_device_group);
1611 
1612 /* Get the IOMMU group for device on fsl-mc bus */
1613 struct iommu_group *fsl_mc_device_group(struct device *dev)
1614 {
1615 	struct device *cont_dev = fsl_mc_cont_dev(dev);
1616 	struct iommu_group *group;
1617 
1618 	group = iommu_group_get(cont_dev);
1619 	if (!group)
1620 		group = iommu_group_alloc();
1621 	return group;
1622 }
1623 EXPORT_SYMBOL_GPL(fsl_mc_device_group);
1624 
1625 static int iommu_get_def_domain_type(struct device *dev)
1626 {
1627 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1628 
1629 	if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted)
1630 		return IOMMU_DOMAIN_DMA;
1631 
1632 	if (ops->def_domain_type)
1633 		return ops->def_domain_type(dev);
1634 
1635 	return 0;
1636 }
1637 
1638 static int iommu_group_alloc_default_domain(struct bus_type *bus,
1639 					    struct iommu_group *group,
1640 					    unsigned int type)
1641 {
1642 	struct iommu_domain *dom;
1643 
1644 	dom = __iommu_domain_alloc(bus, type);
1645 	if (!dom && type != IOMMU_DOMAIN_DMA) {
1646 		dom = __iommu_domain_alloc(bus, IOMMU_DOMAIN_DMA);
1647 		if (dom)
1648 			pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA",
1649 				type, group->name);
1650 	}
1651 
1652 	if (!dom)
1653 		return -ENOMEM;
1654 
1655 	group->default_domain = dom;
1656 	if (!group->domain)
1657 		group->domain = dom;
1658 	return 0;
1659 }
1660 
1661 static int iommu_alloc_default_domain(struct iommu_group *group,
1662 				      struct device *dev)
1663 {
1664 	unsigned int type;
1665 
1666 	if (group->default_domain)
1667 		return 0;
1668 
1669 	type = iommu_get_def_domain_type(dev) ? : iommu_def_domain_type;
1670 
1671 	return iommu_group_alloc_default_domain(dev->bus, group, type);
1672 }
1673 
1674 /**
1675  * iommu_group_get_for_dev - Find or create the IOMMU group for a device
1676  * @dev: target device
1677  *
1678  * This function is intended to be called by IOMMU drivers and extended to
1679  * support common, bus-defined algorithms when determining or creating the
1680  * IOMMU group for a device.  On success, the caller will hold a reference
1681  * to the returned IOMMU group, which will already include the provided
1682  * device.  The reference should be released with iommu_group_put().
1683  */
1684 static struct iommu_group *iommu_group_get_for_dev(struct device *dev)
1685 {
1686 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1687 	struct iommu_group *group;
1688 	int ret;
1689 
1690 	group = iommu_group_get(dev);
1691 	if (group)
1692 		return group;
1693 
1694 	group = ops->device_group(dev);
1695 	if (WARN_ON_ONCE(group == NULL))
1696 		return ERR_PTR(-EINVAL);
1697 
1698 	if (IS_ERR(group))
1699 		return group;
1700 
1701 	ret = iommu_group_add_device(group, dev);
1702 	if (ret)
1703 		goto out_put_group;
1704 
1705 	return group;
1706 
1707 out_put_group:
1708 	iommu_group_put(group);
1709 
1710 	return ERR_PTR(ret);
1711 }
1712 
1713 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1714 {
1715 	return group->default_domain;
1716 }
1717 
1718 static int probe_iommu_group(struct device *dev, void *data)
1719 {
1720 	struct list_head *group_list = data;
1721 	struct iommu_group *group;
1722 	int ret;
1723 
1724 	/* Device is probed already if in a group */
1725 	group = iommu_group_get(dev);
1726 	if (group) {
1727 		iommu_group_put(group);
1728 		return 0;
1729 	}
1730 
1731 	ret = __iommu_probe_device(dev, group_list);
1732 	if (ret == -ENODEV)
1733 		ret = 0;
1734 
1735 	return ret;
1736 }
1737 
1738 static int iommu_bus_notifier(struct notifier_block *nb,
1739 			      unsigned long action, void *data)
1740 {
1741 	struct device *dev = data;
1742 
1743 	if (action == BUS_NOTIFY_ADD_DEVICE) {
1744 		int ret;
1745 
1746 		ret = iommu_probe_device(dev);
1747 		return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1748 	} else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1749 		iommu_release_device(dev);
1750 		return NOTIFY_OK;
1751 	}
1752 
1753 	return 0;
1754 }
1755 
1756 struct __group_domain_type {
1757 	struct device *dev;
1758 	unsigned int type;
1759 };
1760 
1761 static int probe_get_default_domain_type(struct device *dev, void *data)
1762 {
1763 	struct __group_domain_type *gtype = data;
1764 	unsigned int type = iommu_get_def_domain_type(dev);
1765 
1766 	if (type) {
1767 		if (gtype->type && gtype->type != type) {
1768 			dev_warn(dev, "Device needs domain type %s, but device %s in the same iommu group requires type %s - using default\n",
1769 				 iommu_domain_type_str(type),
1770 				 dev_name(gtype->dev),
1771 				 iommu_domain_type_str(gtype->type));
1772 			gtype->type = 0;
1773 		}
1774 
1775 		if (!gtype->dev) {
1776 			gtype->dev  = dev;
1777 			gtype->type = type;
1778 		}
1779 	}
1780 
1781 	return 0;
1782 }
1783 
1784 static void probe_alloc_default_domain(struct bus_type *bus,
1785 				       struct iommu_group *group)
1786 {
1787 	struct __group_domain_type gtype;
1788 
1789 	memset(&gtype, 0, sizeof(gtype));
1790 
1791 	/* Ask for default domain requirements of all devices in the group */
1792 	__iommu_group_for_each_dev(group, &gtype,
1793 				   probe_get_default_domain_type);
1794 
1795 	if (!gtype.type)
1796 		gtype.type = iommu_def_domain_type;
1797 
1798 	iommu_group_alloc_default_domain(bus, group, gtype.type);
1799 
1800 }
1801 
1802 static int __iommu_group_dma_first_attach(struct iommu_group *group)
1803 {
1804 	return __iommu_group_for_each_dev(group, group->default_domain,
1805 					  iommu_group_do_dma_first_attach);
1806 }
1807 
1808 static int iommu_group_do_probe_finalize(struct device *dev, void *data)
1809 {
1810 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1811 
1812 	if (ops->probe_finalize)
1813 		ops->probe_finalize(dev);
1814 
1815 	return 0;
1816 }
1817 
1818 static void __iommu_group_dma_finalize(struct iommu_group *group)
1819 {
1820 	__iommu_group_for_each_dev(group, group->default_domain,
1821 				   iommu_group_do_probe_finalize);
1822 }
1823 
1824 static int iommu_do_create_direct_mappings(struct device *dev, void *data)
1825 {
1826 	struct iommu_group *group = data;
1827 
1828 	iommu_create_device_direct_mappings(group, dev);
1829 
1830 	return 0;
1831 }
1832 
1833 static int iommu_group_create_direct_mappings(struct iommu_group *group)
1834 {
1835 	return __iommu_group_for_each_dev(group, group,
1836 					  iommu_do_create_direct_mappings);
1837 }
1838 
1839 int bus_iommu_probe(struct bus_type *bus)
1840 {
1841 	struct iommu_group *group, *next;
1842 	LIST_HEAD(group_list);
1843 	int ret;
1844 
1845 	/*
1846 	 * This code-path does not allocate the default domain when
1847 	 * creating the iommu group, so do it after the groups are
1848 	 * created.
1849 	 */
1850 	ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group);
1851 	if (ret)
1852 		return ret;
1853 
1854 	list_for_each_entry_safe(group, next, &group_list, entry) {
1855 		mutex_lock(&group->mutex);
1856 
1857 		/* Remove item from the list */
1858 		list_del_init(&group->entry);
1859 
1860 		/* Try to allocate default domain */
1861 		probe_alloc_default_domain(bus, group);
1862 
1863 		if (!group->default_domain) {
1864 			mutex_unlock(&group->mutex);
1865 			continue;
1866 		}
1867 
1868 		iommu_group_create_direct_mappings(group);
1869 
1870 		ret = __iommu_group_dma_first_attach(group);
1871 
1872 		mutex_unlock(&group->mutex);
1873 
1874 		if (ret)
1875 			break;
1876 
1877 		__iommu_group_dma_finalize(group);
1878 	}
1879 
1880 	return ret;
1881 }
1882 
1883 bool iommu_present(struct bus_type *bus)
1884 {
1885 	return bus->iommu_ops != NULL;
1886 }
1887 EXPORT_SYMBOL_GPL(iommu_present);
1888 
1889 /**
1890  * device_iommu_capable() - check for a general IOMMU capability
1891  * @dev: device to which the capability would be relevant, if available
1892  * @cap: IOMMU capability
1893  *
1894  * Return: true if an IOMMU is present and supports the given capability
1895  * for the given device, otherwise false.
1896  */
1897 bool device_iommu_capable(struct device *dev, enum iommu_cap cap)
1898 {
1899 	const struct iommu_ops *ops;
1900 
1901 	if (!dev->iommu || !dev->iommu->iommu_dev)
1902 		return false;
1903 
1904 	ops = dev_iommu_ops(dev);
1905 	if (!ops->capable)
1906 		return false;
1907 
1908 	return ops->capable(dev, cap);
1909 }
1910 EXPORT_SYMBOL_GPL(device_iommu_capable);
1911 
1912 /**
1913  * iommu_group_has_isolated_msi() - Compute msi_device_has_isolated_msi()
1914  *       for a group
1915  * @group: Group to query
1916  *
1917  * IOMMU groups should not have differing values of
1918  * msi_device_has_isolated_msi() for devices in a group. However nothing
1919  * directly prevents this, so ensure mistakes don't result in isolation failures
1920  * by checking that all the devices are the same.
1921  */
1922 bool iommu_group_has_isolated_msi(struct iommu_group *group)
1923 {
1924 	struct group_device *group_dev;
1925 	bool ret = true;
1926 
1927 	mutex_lock(&group->mutex);
1928 	list_for_each_entry(group_dev, &group->devices, list)
1929 		ret &= msi_device_has_isolated_msi(group_dev->dev);
1930 	mutex_unlock(&group->mutex);
1931 	return ret;
1932 }
1933 EXPORT_SYMBOL_GPL(iommu_group_has_isolated_msi);
1934 
1935 /**
1936  * iommu_set_fault_handler() - set a fault handler for an iommu domain
1937  * @domain: iommu domain
1938  * @handler: fault handler
1939  * @token: user data, will be passed back to the fault handler
1940  *
1941  * This function should be used by IOMMU users which want to be notified
1942  * whenever an IOMMU fault happens.
1943  *
1944  * The fault handler itself should return 0 on success, and an appropriate
1945  * error code otherwise.
1946  */
1947 void iommu_set_fault_handler(struct iommu_domain *domain,
1948 					iommu_fault_handler_t handler,
1949 					void *token)
1950 {
1951 	BUG_ON(!domain);
1952 
1953 	domain->handler = handler;
1954 	domain->handler_token = token;
1955 }
1956 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1957 
1958 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
1959 						 unsigned type)
1960 {
1961 	struct iommu_domain *domain;
1962 
1963 	if (bus == NULL || bus->iommu_ops == NULL)
1964 		return NULL;
1965 
1966 	domain = bus->iommu_ops->domain_alloc(type);
1967 	if (!domain)
1968 		return NULL;
1969 
1970 	domain->type = type;
1971 	/* Assume all sizes by default; the driver may override this later */
1972 	domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap;
1973 	if (!domain->ops)
1974 		domain->ops = bus->iommu_ops->default_domain_ops;
1975 
1976 	if (iommu_is_dma_domain(domain) && iommu_get_dma_cookie(domain)) {
1977 		iommu_domain_free(domain);
1978 		domain = NULL;
1979 	}
1980 	return domain;
1981 }
1982 
1983 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus)
1984 {
1985 	return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED);
1986 }
1987 EXPORT_SYMBOL_GPL(iommu_domain_alloc);
1988 
1989 void iommu_domain_free(struct iommu_domain *domain)
1990 {
1991 	if (domain->type == IOMMU_DOMAIN_SVA)
1992 		mmdrop(domain->mm);
1993 	iommu_put_dma_cookie(domain);
1994 	domain->ops->free(domain);
1995 }
1996 EXPORT_SYMBOL_GPL(iommu_domain_free);
1997 
1998 /*
1999  * Put the group's domain back to the appropriate core-owned domain - either the
2000  * standard kernel-mode DMA configuration or an all-DMA-blocked domain.
2001  */
2002 static void __iommu_group_set_core_domain(struct iommu_group *group)
2003 {
2004 	struct iommu_domain *new_domain;
2005 	int ret;
2006 
2007 	if (group->owner)
2008 		new_domain = group->blocking_domain;
2009 	else
2010 		new_domain = group->default_domain;
2011 
2012 	ret = __iommu_group_set_domain(group, new_domain);
2013 	WARN(ret, "iommu driver failed to attach the default/blocking domain");
2014 }
2015 
2016 static int __iommu_attach_device(struct iommu_domain *domain,
2017 				 struct device *dev)
2018 {
2019 	int ret;
2020 
2021 	if (unlikely(domain->ops->attach_dev == NULL))
2022 		return -ENODEV;
2023 
2024 	ret = domain->ops->attach_dev(domain, dev);
2025 	if (ret)
2026 		return ret;
2027 	dev->iommu->attach_deferred = 0;
2028 	trace_attach_device_to_domain(dev);
2029 	return 0;
2030 }
2031 
2032 /**
2033  * iommu_attach_device - Attach an IOMMU domain to a device
2034  * @domain: IOMMU domain to attach
2035  * @dev: Device that will be attached
2036  *
2037  * Returns 0 on success and error code on failure
2038  *
2039  * Note that EINVAL can be treated as a soft failure, indicating
2040  * that certain configuration of the domain is incompatible with
2041  * the device. In this case attaching a different domain to the
2042  * device may succeed.
2043  */
2044 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
2045 {
2046 	struct iommu_group *group;
2047 	int ret;
2048 
2049 	group = iommu_group_get(dev);
2050 	if (!group)
2051 		return -ENODEV;
2052 
2053 	/*
2054 	 * Lock the group to make sure the device-count doesn't
2055 	 * change while we are attaching
2056 	 */
2057 	mutex_lock(&group->mutex);
2058 	ret = -EINVAL;
2059 	if (iommu_group_device_count(group) != 1)
2060 		goto out_unlock;
2061 
2062 	ret = __iommu_attach_group(domain, group);
2063 
2064 out_unlock:
2065 	mutex_unlock(&group->mutex);
2066 	iommu_group_put(group);
2067 
2068 	return ret;
2069 }
2070 EXPORT_SYMBOL_GPL(iommu_attach_device);
2071 
2072 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain)
2073 {
2074 	if (dev->iommu && dev->iommu->attach_deferred)
2075 		return __iommu_attach_device(domain, dev);
2076 
2077 	return 0;
2078 }
2079 
2080 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
2081 {
2082 	struct iommu_group *group;
2083 
2084 	group = iommu_group_get(dev);
2085 	if (!group)
2086 		return;
2087 
2088 	mutex_lock(&group->mutex);
2089 	if (WARN_ON(domain != group->domain) ||
2090 	    WARN_ON(iommu_group_device_count(group) != 1))
2091 		goto out_unlock;
2092 	__iommu_group_set_core_domain(group);
2093 
2094 out_unlock:
2095 	mutex_unlock(&group->mutex);
2096 	iommu_group_put(group);
2097 }
2098 EXPORT_SYMBOL_GPL(iommu_detach_device);
2099 
2100 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
2101 {
2102 	struct iommu_domain *domain;
2103 	struct iommu_group *group;
2104 
2105 	group = iommu_group_get(dev);
2106 	if (!group)
2107 		return NULL;
2108 
2109 	domain = group->domain;
2110 
2111 	iommu_group_put(group);
2112 
2113 	return domain;
2114 }
2115 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
2116 
2117 /*
2118  * For IOMMU_DOMAIN_DMA implementations which already provide their own
2119  * guarantees that the group and its default domain are valid and correct.
2120  */
2121 struct iommu_domain *iommu_get_dma_domain(struct device *dev)
2122 {
2123 	return dev->iommu_group->default_domain;
2124 }
2125 
2126 /*
2127  * IOMMU groups are really the natural working unit of the IOMMU, but
2128  * the IOMMU API works on domains and devices.  Bridge that gap by
2129  * iterating over the devices in a group.  Ideally we'd have a single
2130  * device which represents the requestor ID of the group, but we also
2131  * allow IOMMU drivers to create policy defined minimum sets, where
2132  * the physical hardware may be able to distiguish members, but we
2133  * wish to group them at a higher level (ex. untrusted multi-function
2134  * PCI devices).  Thus we attach each device.
2135  */
2136 static int iommu_group_do_attach_device(struct device *dev, void *data)
2137 {
2138 	struct iommu_domain *domain = data;
2139 
2140 	return __iommu_attach_device(domain, dev);
2141 }
2142 
2143 static int __iommu_attach_group(struct iommu_domain *domain,
2144 				struct iommu_group *group)
2145 {
2146 	int ret;
2147 
2148 	if (group->domain && group->domain != group->default_domain &&
2149 	    group->domain != group->blocking_domain)
2150 		return -EBUSY;
2151 
2152 	ret = __iommu_group_for_each_dev(group, domain,
2153 					 iommu_group_do_attach_device);
2154 	if (ret == 0) {
2155 		group->domain = domain;
2156 	} else {
2157 		/*
2158 		 * To recover from the case when certain device within the
2159 		 * group fails to attach to the new domain, we need force
2160 		 * attaching all devices back to the old domain. The old
2161 		 * domain is compatible for all devices in the group,
2162 		 * hence the iommu driver should always return success.
2163 		 */
2164 		struct iommu_domain *old_domain = group->domain;
2165 
2166 		group->domain = NULL;
2167 		WARN(__iommu_group_set_domain(group, old_domain),
2168 		     "iommu driver failed to attach a compatible domain");
2169 	}
2170 
2171 	return ret;
2172 }
2173 
2174 /**
2175  * iommu_attach_group - Attach an IOMMU domain to an IOMMU group
2176  * @domain: IOMMU domain to attach
2177  * @group: IOMMU group that will be attached
2178  *
2179  * Returns 0 on success and error code on failure
2180  *
2181  * Note that EINVAL can be treated as a soft failure, indicating
2182  * that certain configuration of the domain is incompatible with
2183  * the group. In this case attaching a different domain to the
2184  * group may succeed.
2185  */
2186 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
2187 {
2188 	int ret;
2189 
2190 	mutex_lock(&group->mutex);
2191 	ret = __iommu_attach_group(domain, group);
2192 	mutex_unlock(&group->mutex);
2193 
2194 	return ret;
2195 }
2196 EXPORT_SYMBOL_GPL(iommu_attach_group);
2197 
2198 static int iommu_group_do_set_platform_dma(struct device *dev, void *data)
2199 {
2200 	const struct iommu_ops *ops = dev_iommu_ops(dev);
2201 
2202 	if (!WARN_ON(!ops->set_platform_dma_ops))
2203 		ops->set_platform_dma_ops(dev);
2204 
2205 	return 0;
2206 }
2207 
2208 static int __iommu_group_set_domain(struct iommu_group *group,
2209 				    struct iommu_domain *new_domain)
2210 {
2211 	int ret;
2212 
2213 	if (group->domain == new_domain)
2214 		return 0;
2215 
2216 	/*
2217 	 * New drivers should support default domains, so set_platform_dma()
2218 	 * op will never be called. Otherwise the NULL domain represents some
2219 	 * platform specific behavior.
2220 	 */
2221 	if (!new_domain) {
2222 		__iommu_group_for_each_dev(group, NULL,
2223 					   iommu_group_do_set_platform_dma);
2224 		group->domain = NULL;
2225 		return 0;
2226 	}
2227 
2228 	/*
2229 	 * Changing the domain is done by calling attach_dev() on the new
2230 	 * domain. This switch does not have to be atomic and DMA can be
2231 	 * discarded during the transition. DMA must only be able to access
2232 	 * either new_domain or group->domain, never something else.
2233 	 *
2234 	 * Note that this is called in error unwind paths, attaching to a
2235 	 * domain that has already been attached cannot fail.
2236 	 */
2237 	ret = __iommu_group_for_each_dev(group, new_domain,
2238 					 iommu_group_do_attach_device);
2239 	if (ret)
2240 		return ret;
2241 	group->domain = new_domain;
2242 	return 0;
2243 }
2244 
2245 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
2246 {
2247 	mutex_lock(&group->mutex);
2248 	__iommu_group_set_core_domain(group);
2249 	mutex_unlock(&group->mutex);
2250 }
2251 EXPORT_SYMBOL_GPL(iommu_detach_group);
2252 
2253 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
2254 {
2255 	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2256 		return iova;
2257 
2258 	if (domain->type == IOMMU_DOMAIN_BLOCKED)
2259 		return 0;
2260 
2261 	return domain->ops->iova_to_phys(domain, iova);
2262 }
2263 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
2264 
2265 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova,
2266 			   phys_addr_t paddr, size_t size, size_t *count)
2267 {
2268 	unsigned int pgsize_idx, pgsize_idx_next;
2269 	unsigned long pgsizes;
2270 	size_t offset, pgsize, pgsize_next;
2271 	unsigned long addr_merge = paddr | iova;
2272 
2273 	/* Page sizes supported by the hardware and small enough for @size */
2274 	pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0);
2275 
2276 	/* Constrain the page sizes further based on the maximum alignment */
2277 	if (likely(addr_merge))
2278 		pgsizes &= GENMASK(__ffs(addr_merge), 0);
2279 
2280 	/* Make sure we have at least one suitable page size */
2281 	BUG_ON(!pgsizes);
2282 
2283 	/* Pick the biggest page size remaining */
2284 	pgsize_idx = __fls(pgsizes);
2285 	pgsize = BIT(pgsize_idx);
2286 	if (!count)
2287 		return pgsize;
2288 
2289 	/* Find the next biggest support page size, if it exists */
2290 	pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0);
2291 	if (!pgsizes)
2292 		goto out_set_count;
2293 
2294 	pgsize_idx_next = __ffs(pgsizes);
2295 	pgsize_next = BIT(pgsize_idx_next);
2296 
2297 	/*
2298 	 * There's no point trying a bigger page size unless the virtual
2299 	 * and physical addresses are similarly offset within the larger page.
2300 	 */
2301 	if ((iova ^ paddr) & (pgsize_next - 1))
2302 		goto out_set_count;
2303 
2304 	/* Calculate the offset to the next page size alignment boundary */
2305 	offset = pgsize_next - (addr_merge & (pgsize_next - 1));
2306 
2307 	/*
2308 	 * If size is big enough to accommodate the larger page, reduce
2309 	 * the number of smaller pages.
2310 	 */
2311 	if (offset + pgsize_next <= size)
2312 		size = offset;
2313 
2314 out_set_count:
2315 	*count = size >> pgsize_idx;
2316 	return pgsize;
2317 }
2318 
2319 static int __iommu_map_pages(struct iommu_domain *domain, unsigned long iova,
2320 			     phys_addr_t paddr, size_t size, int prot,
2321 			     gfp_t gfp, size_t *mapped)
2322 {
2323 	const struct iommu_domain_ops *ops = domain->ops;
2324 	size_t pgsize, count;
2325 	int ret;
2326 
2327 	pgsize = iommu_pgsize(domain, iova, paddr, size, &count);
2328 
2329 	pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n",
2330 		 iova, &paddr, pgsize, count);
2331 
2332 	if (ops->map_pages) {
2333 		ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot,
2334 				     gfp, mapped);
2335 	} else {
2336 		ret = ops->map(domain, iova, paddr, pgsize, prot, gfp);
2337 		*mapped = ret ? 0 : pgsize;
2338 	}
2339 
2340 	return ret;
2341 }
2342 
2343 static int __iommu_map(struct iommu_domain *domain, unsigned long iova,
2344 		       phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2345 {
2346 	const struct iommu_domain_ops *ops = domain->ops;
2347 	unsigned long orig_iova = iova;
2348 	unsigned int min_pagesz;
2349 	size_t orig_size = size;
2350 	phys_addr_t orig_paddr = paddr;
2351 	int ret = 0;
2352 
2353 	if (unlikely(!(ops->map || ops->map_pages) ||
2354 		     domain->pgsize_bitmap == 0UL))
2355 		return -ENODEV;
2356 
2357 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2358 		return -EINVAL;
2359 
2360 	/* find out the minimum page size supported */
2361 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2362 
2363 	/*
2364 	 * both the virtual address and the physical one, as well as
2365 	 * the size of the mapping, must be aligned (at least) to the
2366 	 * size of the smallest page supported by the hardware
2367 	 */
2368 	if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
2369 		pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
2370 		       iova, &paddr, size, min_pagesz);
2371 		return -EINVAL;
2372 	}
2373 
2374 	pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
2375 
2376 	while (size) {
2377 		size_t mapped = 0;
2378 
2379 		ret = __iommu_map_pages(domain, iova, paddr, size, prot, gfp,
2380 					&mapped);
2381 		/*
2382 		 * Some pages may have been mapped, even if an error occurred,
2383 		 * so we should account for those so they can be unmapped.
2384 		 */
2385 		size -= mapped;
2386 
2387 		if (ret)
2388 			break;
2389 
2390 		iova += mapped;
2391 		paddr += mapped;
2392 	}
2393 
2394 	/* unroll mapping in case something went wrong */
2395 	if (ret)
2396 		iommu_unmap(domain, orig_iova, orig_size - size);
2397 	else
2398 		trace_map(orig_iova, orig_paddr, orig_size);
2399 
2400 	return ret;
2401 }
2402 
2403 int iommu_map(struct iommu_domain *domain, unsigned long iova,
2404 	      phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2405 {
2406 	const struct iommu_domain_ops *ops = domain->ops;
2407 	int ret;
2408 
2409 	might_sleep_if(gfpflags_allow_blocking(gfp));
2410 
2411 	/* Discourage passing strange GFP flags */
2412 	if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 |
2413 				__GFP_HIGHMEM)))
2414 		return -EINVAL;
2415 
2416 	ret = __iommu_map(domain, iova, paddr, size, prot, gfp);
2417 	if (ret == 0 && ops->iotlb_sync_map)
2418 		ops->iotlb_sync_map(domain, iova, size);
2419 
2420 	return ret;
2421 }
2422 EXPORT_SYMBOL_GPL(iommu_map);
2423 
2424 static size_t __iommu_unmap_pages(struct iommu_domain *domain,
2425 				  unsigned long iova, size_t size,
2426 				  struct iommu_iotlb_gather *iotlb_gather)
2427 {
2428 	const struct iommu_domain_ops *ops = domain->ops;
2429 	size_t pgsize, count;
2430 
2431 	pgsize = iommu_pgsize(domain, iova, iova, size, &count);
2432 	return ops->unmap_pages ?
2433 	       ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather) :
2434 	       ops->unmap(domain, iova, pgsize, iotlb_gather);
2435 }
2436 
2437 static size_t __iommu_unmap(struct iommu_domain *domain,
2438 			    unsigned long iova, size_t size,
2439 			    struct iommu_iotlb_gather *iotlb_gather)
2440 {
2441 	const struct iommu_domain_ops *ops = domain->ops;
2442 	size_t unmapped_page, unmapped = 0;
2443 	unsigned long orig_iova = iova;
2444 	unsigned int min_pagesz;
2445 
2446 	if (unlikely(!(ops->unmap || ops->unmap_pages) ||
2447 		     domain->pgsize_bitmap == 0UL))
2448 		return 0;
2449 
2450 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2451 		return 0;
2452 
2453 	/* find out the minimum page size supported */
2454 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2455 
2456 	/*
2457 	 * The virtual address, as well as the size of the mapping, must be
2458 	 * aligned (at least) to the size of the smallest page supported
2459 	 * by the hardware
2460 	 */
2461 	if (!IS_ALIGNED(iova | size, min_pagesz)) {
2462 		pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
2463 		       iova, size, min_pagesz);
2464 		return 0;
2465 	}
2466 
2467 	pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
2468 
2469 	/*
2470 	 * Keep iterating until we either unmap 'size' bytes (or more)
2471 	 * or we hit an area that isn't mapped.
2472 	 */
2473 	while (unmapped < size) {
2474 		unmapped_page = __iommu_unmap_pages(domain, iova,
2475 						    size - unmapped,
2476 						    iotlb_gather);
2477 		if (!unmapped_page)
2478 			break;
2479 
2480 		pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
2481 			 iova, unmapped_page);
2482 
2483 		iova += unmapped_page;
2484 		unmapped += unmapped_page;
2485 	}
2486 
2487 	trace_unmap(orig_iova, size, unmapped);
2488 	return unmapped;
2489 }
2490 
2491 size_t iommu_unmap(struct iommu_domain *domain,
2492 		   unsigned long iova, size_t size)
2493 {
2494 	struct iommu_iotlb_gather iotlb_gather;
2495 	size_t ret;
2496 
2497 	iommu_iotlb_gather_init(&iotlb_gather);
2498 	ret = __iommu_unmap(domain, iova, size, &iotlb_gather);
2499 	iommu_iotlb_sync(domain, &iotlb_gather);
2500 
2501 	return ret;
2502 }
2503 EXPORT_SYMBOL_GPL(iommu_unmap);
2504 
2505 size_t iommu_unmap_fast(struct iommu_domain *domain,
2506 			unsigned long iova, size_t size,
2507 			struct iommu_iotlb_gather *iotlb_gather)
2508 {
2509 	return __iommu_unmap(domain, iova, size, iotlb_gather);
2510 }
2511 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
2512 
2513 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2514 		     struct scatterlist *sg, unsigned int nents, int prot,
2515 		     gfp_t gfp)
2516 {
2517 	const struct iommu_domain_ops *ops = domain->ops;
2518 	size_t len = 0, mapped = 0;
2519 	phys_addr_t start;
2520 	unsigned int i = 0;
2521 	int ret;
2522 
2523 	might_sleep_if(gfpflags_allow_blocking(gfp));
2524 
2525 	/* Discourage passing strange GFP flags */
2526 	if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 |
2527 				__GFP_HIGHMEM)))
2528 		return -EINVAL;
2529 
2530 	while (i <= nents) {
2531 		phys_addr_t s_phys = sg_phys(sg);
2532 
2533 		if (len && s_phys != start + len) {
2534 			ret = __iommu_map(domain, iova + mapped, start,
2535 					len, prot, gfp);
2536 
2537 			if (ret)
2538 				goto out_err;
2539 
2540 			mapped += len;
2541 			len = 0;
2542 		}
2543 
2544 		if (sg_is_dma_bus_address(sg))
2545 			goto next;
2546 
2547 		if (len) {
2548 			len += sg->length;
2549 		} else {
2550 			len = sg->length;
2551 			start = s_phys;
2552 		}
2553 
2554 next:
2555 		if (++i < nents)
2556 			sg = sg_next(sg);
2557 	}
2558 
2559 	if (ops->iotlb_sync_map)
2560 		ops->iotlb_sync_map(domain, iova, mapped);
2561 	return mapped;
2562 
2563 out_err:
2564 	/* undo mappings already done */
2565 	iommu_unmap(domain, iova, mapped);
2566 
2567 	return ret;
2568 }
2569 EXPORT_SYMBOL_GPL(iommu_map_sg);
2570 
2571 /**
2572  * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2573  * @domain: the iommu domain where the fault has happened
2574  * @dev: the device where the fault has happened
2575  * @iova: the faulting address
2576  * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2577  *
2578  * This function should be called by the low-level IOMMU implementations
2579  * whenever IOMMU faults happen, to allow high-level users, that are
2580  * interested in such events, to know about them.
2581  *
2582  * This event may be useful for several possible use cases:
2583  * - mere logging of the event
2584  * - dynamic TLB/PTE loading
2585  * - if restarting of the faulting device is required
2586  *
2587  * Returns 0 on success and an appropriate error code otherwise (if dynamic
2588  * PTE/TLB loading will one day be supported, implementations will be able
2589  * to tell whether it succeeded or not according to this return value).
2590  *
2591  * Specifically, -ENOSYS is returned if a fault handler isn't installed
2592  * (though fault handlers can also return -ENOSYS, in case they want to
2593  * elicit the default behavior of the IOMMU drivers).
2594  */
2595 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2596 		       unsigned long iova, int flags)
2597 {
2598 	int ret = -ENOSYS;
2599 
2600 	/*
2601 	 * if upper layers showed interest and installed a fault handler,
2602 	 * invoke it.
2603 	 */
2604 	if (domain->handler)
2605 		ret = domain->handler(domain, dev, iova, flags,
2606 						domain->handler_token);
2607 
2608 	trace_io_page_fault(dev, iova, flags);
2609 	return ret;
2610 }
2611 EXPORT_SYMBOL_GPL(report_iommu_fault);
2612 
2613 static int __init iommu_init(void)
2614 {
2615 	iommu_group_kset = kset_create_and_add("iommu_groups",
2616 					       NULL, kernel_kobj);
2617 	BUG_ON(!iommu_group_kset);
2618 
2619 	iommu_debugfs_setup();
2620 
2621 	return 0;
2622 }
2623 core_initcall(iommu_init);
2624 
2625 int iommu_enable_nesting(struct iommu_domain *domain)
2626 {
2627 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2628 		return -EINVAL;
2629 	if (!domain->ops->enable_nesting)
2630 		return -EINVAL;
2631 	return domain->ops->enable_nesting(domain);
2632 }
2633 EXPORT_SYMBOL_GPL(iommu_enable_nesting);
2634 
2635 int iommu_set_pgtable_quirks(struct iommu_domain *domain,
2636 		unsigned long quirk)
2637 {
2638 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2639 		return -EINVAL;
2640 	if (!domain->ops->set_pgtable_quirks)
2641 		return -EINVAL;
2642 	return domain->ops->set_pgtable_quirks(domain, quirk);
2643 }
2644 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks);
2645 
2646 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2647 {
2648 	const struct iommu_ops *ops = dev_iommu_ops(dev);
2649 
2650 	if (ops->get_resv_regions)
2651 		ops->get_resv_regions(dev, list);
2652 }
2653 
2654 /**
2655  * iommu_put_resv_regions - release resered regions
2656  * @dev: device for which to free reserved regions
2657  * @list: reserved region list for device
2658  *
2659  * This releases a reserved region list acquired by iommu_get_resv_regions().
2660  */
2661 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2662 {
2663 	struct iommu_resv_region *entry, *next;
2664 
2665 	list_for_each_entry_safe(entry, next, list, list) {
2666 		if (entry->free)
2667 			entry->free(dev, entry);
2668 		else
2669 			kfree(entry);
2670 	}
2671 }
2672 EXPORT_SYMBOL(iommu_put_resv_regions);
2673 
2674 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2675 						  size_t length, int prot,
2676 						  enum iommu_resv_type type,
2677 						  gfp_t gfp)
2678 {
2679 	struct iommu_resv_region *region;
2680 
2681 	region = kzalloc(sizeof(*region), gfp);
2682 	if (!region)
2683 		return NULL;
2684 
2685 	INIT_LIST_HEAD(&region->list);
2686 	region->start = start;
2687 	region->length = length;
2688 	region->prot = prot;
2689 	region->type = type;
2690 	return region;
2691 }
2692 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region);
2693 
2694 void iommu_set_default_passthrough(bool cmd_line)
2695 {
2696 	if (cmd_line)
2697 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2698 	iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
2699 }
2700 
2701 void iommu_set_default_translated(bool cmd_line)
2702 {
2703 	if (cmd_line)
2704 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2705 	iommu_def_domain_type = IOMMU_DOMAIN_DMA;
2706 }
2707 
2708 bool iommu_default_passthrough(void)
2709 {
2710 	return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY;
2711 }
2712 EXPORT_SYMBOL_GPL(iommu_default_passthrough);
2713 
2714 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode)
2715 {
2716 	const struct iommu_ops *ops = NULL;
2717 	struct iommu_device *iommu;
2718 
2719 	spin_lock(&iommu_device_lock);
2720 	list_for_each_entry(iommu, &iommu_device_list, list)
2721 		if (iommu->fwnode == fwnode) {
2722 			ops = iommu->ops;
2723 			break;
2724 		}
2725 	spin_unlock(&iommu_device_lock);
2726 	return ops;
2727 }
2728 
2729 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
2730 		      const struct iommu_ops *ops)
2731 {
2732 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2733 
2734 	if (fwspec)
2735 		return ops == fwspec->ops ? 0 : -EINVAL;
2736 
2737 	if (!dev_iommu_get(dev))
2738 		return -ENOMEM;
2739 
2740 	/* Preallocate for the overwhelmingly common case of 1 ID */
2741 	fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL);
2742 	if (!fwspec)
2743 		return -ENOMEM;
2744 
2745 	of_node_get(to_of_node(iommu_fwnode));
2746 	fwspec->iommu_fwnode = iommu_fwnode;
2747 	fwspec->ops = ops;
2748 	dev_iommu_fwspec_set(dev, fwspec);
2749 	return 0;
2750 }
2751 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2752 
2753 void iommu_fwspec_free(struct device *dev)
2754 {
2755 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2756 
2757 	if (fwspec) {
2758 		fwnode_handle_put(fwspec->iommu_fwnode);
2759 		kfree(fwspec);
2760 		dev_iommu_fwspec_set(dev, NULL);
2761 	}
2762 }
2763 EXPORT_SYMBOL_GPL(iommu_fwspec_free);
2764 
2765 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids)
2766 {
2767 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2768 	int i, new_num;
2769 
2770 	if (!fwspec)
2771 		return -EINVAL;
2772 
2773 	new_num = fwspec->num_ids + num_ids;
2774 	if (new_num > 1) {
2775 		fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num),
2776 				  GFP_KERNEL);
2777 		if (!fwspec)
2778 			return -ENOMEM;
2779 
2780 		dev_iommu_fwspec_set(dev, fwspec);
2781 	}
2782 
2783 	for (i = 0; i < num_ids; i++)
2784 		fwspec->ids[fwspec->num_ids + i] = ids[i];
2785 
2786 	fwspec->num_ids = new_num;
2787 	return 0;
2788 }
2789 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2790 
2791 /*
2792  * Per device IOMMU features.
2793  */
2794 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat)
2795 {
2796 	if (dev->iommu && dev->iommu->iommu_dev) {
2797 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2798 
2799 		if (ops->dev_enable_feat)
2800 			return ops->dev_enable_feat(dev, feat);
2801 	}
2802 
2803 	return -ENODEV;
2804 }
2805 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature);
2806 
2807 /*
2808  * The device drivers should do the necessary cleanups before calling this.
2809  */
2810 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat)
2811 {
2812 	if (dev->iommu && dev->iommu->iommu_dev) {
2813 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2814 
2815 		if (ops->dev_disable_feat)
2816 			return ops->dev_disable_feat(dev, feat);
2817 	}
2818 
2819 	return -EBUSY;
2820 }
2821 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature);
2822 
2823 /*
2824  * Changes the default domain of an iommu group that has *only* one device
2825  *
2826  * @group: The group for which the default domain should be changed
2827  * @prev_dev: The device in the group (this is used to make sure that the device
2828  *	 hasn't changed after the caller has called this function)
2829  * @type: The type of the new default domain that gets associated with the group
2830  *
2831  * Returns 0 on success and error code on failure
2832  *
2833  * Note:
2834  * 1. Presently, this function is called only when user requests to change the
2835  *    group's default domain type through /sys/kernel/iommu_groups/<grp_id>/type
2836  *    Please take a closer look if intended to use for other purposes.
2837  */
2838 static int iommu_change_dev_def_domain(struct iommu_group *group,
2839 				       struct device *prev_dev, int type)
2840 {
2841 	struct iommu_domain *prev_dom;
2842 	struct group_device *grp_dev;
2843 	int ret, dev_def_dom;
2844 	struct device *dev;
2845 
2846 	mutex_lock(&group->mutex);
2847 
2848 	if (group->default_domain != group->domain) {
2849 		dev_err_ratelimited(prev_dev, "Group not assigned to default domain\n");
2850 		ret = -EBUSY;
2851 		goto out;
2852 	}
2853 
2854 	/*
2855 	 * iommu group wasn't locked while acquiring device lock in
2856 	 * iommu_group_store_type(). So, make sure that the device count hasn't
2857 	 * changed while acquiring device lock.
2858 	 *
2859 	 * Changing default domain of an iommu group with two or more devices
2860 	 * isn't supported because there could be a potential deadlock. Consider
2861 	 * the following scenario. T1 is trying to acquire device locks of all
2862 	 * the devices in the group and before it could acquire all of them,
2863 	 * there could be another thread T2 (from different sub-system and use
2864 	 * case) that has already acquired some of the device locks and might be
2865 	 * waiting for T1 to release other device locks.
2866 	 */
2867 	if (iommu_group_device_count(group) != 1) {
2868 		dev_err_ratelimited(prev_dev, "Cannot change default domain: Group has more than one device\n");
2869 		ret = -EINVAL;
2870 		goto out;
2871 	}
2872 
2873 	/* Since group has only one device */
2874 	grp_dev = list_first_entry(&group->devices, struct group_device, list);
2875 	dev = grp_dev->dev;
2876 
2877 	if (prev_dev != dev) {
2878 		dev_err_ratelimited(prev_dev, "Cannot change default domain: Device has been changed\n");
2879 		ret = -EBUSY;
2880 		goto out;
2881 	}
2882 
2883 	prev_dom = group->default_domain;
2884 	if (!prev_dom) {
2885 		ret = -EINVAL;
2886 		goto out;
2887 	}
2888 
2889 	dev_def_dom = iommu_get_def_domain_type(dev);
2890 	if (!type) {
2891 		/*
2892 		 * If the user hasn't requested any specific type of domain and
2893 		 * if the device supports both the domains, then default to the
2894 		 * domain the device was booted with
2895 		 */
2896 		type = dev_def_dom ? : iommu_def_domain_type;
2897 	} else if (dev_def_dom && type != dev_def_dom) {
2898 		dev_err_ratelimited(prev_dev, "Device cannot be in %s domain\n",
2899 				    iommu_domain_type_str(type));
2900 		ret = -EINVAL;
2901 		goto out;
2902 	}
2903 
2904 	/*
2905 	 * Switch to a new domain only if the requested domain type is different
2906 	 * from the existing default domain type
2907 	 */
2908 	if (prev_dom->type == type) {
2909 		ret = 0;
2910 		goto out;
2911 	}
2912 
2913 	/* We can bring up a flush queue without tearing down the domain */
2914 	if (type == IOMMU_DOMAIN_DMA_FQ && prev_dom->type == IOMMU_DOMAIN_DMA) {
2915 		ret = iommu_dma_init_fq(prev_dom);
2916 		if (!ret)
2917 			prev_dom->type = IOMMU_DOMAIN_DMA_FQ;
2918 		goto out;
2919 	}
2920 
2921 	/* Sets group->default_domain to the newly allocated domain */
2922 	ret = iommu_group_alloc_default_domain(dev->bus, group, type);
2923 	if (ret)
2924 		goto out;
2925 
2926 	ret = iommu_create_device_direct_mappings(group, dev);
2927 	if (ret)
2928 		goto free_new_domain;
2929 
2930 	ret = __iommu_attach_device(group->default_domain, dev);
2931 	if (ret)
2932 		goto free_new_domain;
2933 
2934 	group->domain = group->default_domain;
2935 
2936 	/*
2937 	 * Release the mutex here because ops->probe_finalize() call-back of
2938 	 * some vendor IOMMU drivers calls arm_iommu_attach_device() which
2939 	 * in-turn might call back into IOMMU core code, where it tries to take
2940 	 * group->mutex, resulting in a deadlock.
2941 	 */
2942 	mutex_unlock(&group->mutex);
2943 
2944 	/* Make sure dma_ops is appropriatley set */
2945 	iommu_group_do_probe_finalize(dev, group->default_domain);
2946 	iommu_domain_free(prev_dom);
2947 	return 0;
2948 
2949 free_new_domain:
2950 	iommu_domain_free(group->default_domain);
2951 	group->default_domain = prev_dom;
2952 	group->domain = prev_dom;
2953 
2954 out:
2955 	mutex_unlock(&group->mutex);
2956 
2957 	return ret;
2958 }
2959 
2960 /*
2961  * Changing the default domain through sysfs requires the users to unbind the
2962  * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ
2963  * transition. Return failure if this isn't met.
2964  *
2965  * We need to consider the race between this and the device release path.
2966  * device_lock(dev) is used here to guarantee that the device release path
2967  * will not be entered at the same time.
2968  */
2969 static ssize_t iommu_group_store_type(struct iommu_group *group,
2970 				      const char *buf, size_t count)
2971 {
2972 	struct group_device *grp_dev;
2973 	struct device *dev;
2974 	int ret, req_type;
2975 
2976 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
2977 		return -EACCES;
2978 
2979 	if (WARN_ON(!group) || !group->default_domain)
2980 		return -EINVAL;
2981 
2982 	if (sysfs_streq(buf, "identity"))
2983 		req_type = IOMMU_DOMAIN_IDENTITY;
2984 	else if (sysfs_streq(buf, "DMA"))
2985 		req_type = IOMMU_DOMAIN_DMA;
2986 	else if (sysfs_streq(buf, "DMA-FQ"))
2987 		req_type = IOMMU_DOMAIN_DMA_FQ;
2988 	else if (sysfs_streq(buf, "auto"))
2989 		req_type = 0;
2990 	else
2991 		return -EINVAL;
2992 
2993 	/*
2994 	 * Lock/Unlock the group mutex here before device lock to
2995 	 * 1. Make sure that the iommu group has only one device (this is a
2996 	 *    prerequisite for step 2)
2997 	 * 2. Get struct *dev which is needed to lock device
2998 	 */
2999 	mutex_lock(&group->mutex);
3000 	if (iommu_group_device_count(group) != 1) {
3001 		mutex_unlock(&group->mutex);
3002 		pr_err_ratelimited("Cannot change default domain: Group has more than one device\n");
3003 		return -EINVAL;
3004 	}
3005 
3006 	/* Since group has only one device */
3007 	grp_dev = list_first_entry(&group->devices, struct group_device, list);
3008 	dev = grp_dev->dev;
3009 	get_device(dev);
3010 
3011 	/*
3012 	 * Don't hold the group mutex because taking group mutex first and then
3013 	 * the device lock could potentially cause a deadlock as below. Assume
3014 	 * two threads T1 and T2. T1 is trying to change default domain of an
3015 	 * iommu group and T2 is trying to hot unplug a device or release [1] VF
3016 	 * of a PCIe device which is in the same iommu group. T1 takes group
3017 	 * mutex and before it could take device lock assume T2 has taken device
3018 	 * lock and is yet to take group mutex. Now, both the threads will be
3019 	 * waiting for the other thread to release lock. Below, lock order was
3020 	 * suggested.
3021 	 * device_lock(dev);
3022 	 *	mutex_lock(&group->mutex);
3023 	 *		iommu_change_dev_def_domain();
3024 	 *	mutex_unlock(&group->mutex);
3025 	 * device_unlock(dev);
3026 	 *
3027 	 * [1] Typical device release path
3028 	 * device_lock() from device/driver core code
3029 	 *  -> bus_notifier()
3030 	 *   -> iommu_bus_notifier()
3031 	 *    -> iommu_release_device()
3032 	 *     -> ops->release_device() vendor driver calls back iommu core code
3033 	 *      -> mutex_lock() from iommu core code
3034 	 */
3035 	mutex_unlock(&group->mutex);
3036 
3037 	/* Check if the device in the group still has a driver bound to it */
3038 	device_lock(dev);
3039 	if (device_is_bound(dev) && !(req_type == IOMMU_DOMAIN_DMA_FQ &&
3040 	    group->default_domain->type == IOMMU_DOMAIN_DMA)) {
3041 		pr_err_ratelimited("Device is still bound to driver\n");
3042 		ret = -EBUSY;
3043 		goto out;
3044 	}
3045 
3046 	ret = iommu_change_dev_def_domain(group, dev, req_type);
3047 	ret = ret ?: count;
3048 
3049 out:
3050 	device_unlock(dev);
3051 	put_device(dev);
3052 
3053 	return ret;
3054 }
3055 
3056 static bool iommu_is_default_domain(struct iommu_group *group)
3057 {
3058 	if (group->domain == group->default_domain)
3059 		return true;
3060 
3061 	/*
3062 	 * If the default domain was set to identity and it is still an identity
3063 	 * domain then we consider this a pass. This happens because of
3064 	 * amd_iommu_init_device() replacing the default idenytity domain with an
3065 	 * identity domain that has a different configuration for AMDGPU.
3066 	 */
3067 	if (group->default_domain &&
3068 	    group->default_domain->type == IOMMU_DOMAIN_IDENTITY &&
3069 	    group->domain && group->domain->type == IOMMU_DOMAIN_IDENTITY)
3070 		return true;
3071 	return false;
3072 }
3073 
3074 /**
3075  * iommu_device_use_default_domain() - Device driver wants to handle device
3076  *                                     DMA through the kernel DMA API.
3077  * @dev: The device.
3078  *
3079  * The device driver about to bind @dev wants to do DMA through the kernel
3080  * DMA API. Return 0 if it is allowed, otherwise an error.
3081  */
3082 int iommu_device_use_default_domain(struct device *dev)
3083 {
3084 	struct iommu_group *group = iommu_group_get(dev);
3085 	int ret = 0;
3086 
3087 	if (!group)
3088 		return 0;
3089 
3090 	mutex_lock(&group->mutex);
3091 	if (group->owner_cnt) {
3092 		if (group->owner || !iommu_is_default_domain(group) ||
3093 		    !xa_empty(&group->pasid_array)) {
3094 			ret = -EBUSY;
3095 			goto unlock_out;
3096 		}
3097 	}
3098 
3099 	group->owner_cnt++;
3100 
3101 unlock_out:
3102 	mutex_unlock(&group->mutex);
3103 	iommu_group_put(group);
3104 
3105 	return ret;
3106 }
3107 
3108 /**
3109  * iommu_device_unuse_default_domain() - Device driver stops handling device
3110  *                                       DMA through the kernel DMA API.
3111  * @dev: The device.
3112  *
3113  * The device driver doesn't want to do DMA through kernel DMA API anymore.
3114  * It must be called after iommu_device_use_default_domain().
3115  */
3116 void iommu_device_unuse_default_domain(struct device *dev)
3117 {
3118 	struct iommu_group *group = iommu_group_get(dev);
3119 
3120 	if (!group)
3121 		return;
3122 
3123 	mutex_lock(&group->mutex);
3124 	if (!WARN_ON(!group->owner_cnt || !xa_empty(&group->pasid_array)))
3125 		group->owner_cnt--;
3126 
3127 	mutex_unlock(&group->mutex);
3128 	iommu_group_put(group);
3129 }
3130 
3131 static int __iommu_group_alloc_blocking_domain(struct iommu_group *group)
3132 {
3133 	struct group_device *dev =
3134 		list_first_entry(&group->devices, struct group_device, list);
3135 
3136 	if (group->blocking_domain)
3137 		return 0;
3138 
3139 	group->blocking_domain =
3140 		__iommu_domain_alloc(dev->dev->bus, IOMMU_DOMAIN_BLOCKED);
3141 	if (!group->blocking_domain) {
3142 		/*
3143 		 * For drivers that do not yet understand IOMMU_DOMAIN_BLOCKED
3144 		 * create an empty domain instead.
3145 		 */
3146 		group->blocking_domain = __iommu_domain_alloc(
3147 			dev->dev->bus, IOMMU_DOMAIN_UNMANAGED);
3148 		if (!group->blocking_domain)
3149 			return -EINVAL;
3150 	}
3151 	return 0;
3152 }
3153 
3154 static int __iommu_take_dma_ownership(struct iommu_group *group, void *owner)
3155 {
3156 	int ret;
3157 
3158 	if ((group->domain && group->domain != group->default_domain) ||
3159 	    !xa_empty(&group->pasid_array))
3160 		return -EBUSY;
3161 
3162 	ret = __iommu_group_alloc_blocking_domain(group);
3163 	if (ret)
3164 		return ret;
3165 	ret = __iommu_group_set_domain(group, group->blocking_domain);
3166 	if (ret)
3167 		return ret;
3168 
3169 	group->owner = owner;
3170 	group->owner_cnt++;
3171 	return 0;
3172 }
3173 
3174 /**
3175  * iommu_group_claim_dma_owner() - Set DMA ownership of a group
3176  * @group: The group.
3177  * @owner: Caller specified pointer. Used for exclusive ownership.
3178  *
3179  * This is to support backward compatibility for vfio which manages the dma
3180  * ownership in iommu_group level. New invocations on this interface should be
3181  * prohibited. Only a single owner may exist for a group.
3182  */
3183 int iommu_group_claim_dma_owner(struct iommu_group *group, void *owner)
3184 {
3185 	int ret = 0;
3186 
3187 	if (WARN_ON(!owner))
3188 		return -EINVAL;
3189 
3190 	mutex_lock(&group->mutex);
3191 	if (group->owner_cnt) {
3192 		ret = -EPERM;
3193 		goto unlock_out;
3194 	}
3195 
3196 	ret = __iommu_take_dma_ownership(group, owner);
3197 unlock_out:
3198 	mutex_unlock(&group->mutex);
3199 
3200 	return ret;
3201 }
3202 EXPORT_SYMBOL_GPL(iommu_group_claim_dma_owner);
3203 
3204 /**
3205  * iommu_device_claim_dma_owner() - Set DMA ownership of a device
3206  * @dev: The device.
3207  * @owner: Caller specified pointer. Used for exclusive ownership.
3208  *
3209  * Claim the DMA ownership of a device. Multiple devices in the same group may
3210  * concurrently claim ownership if they present the same owner value. Returns 0
3211  * on success and error code on failure
3212  */
3213 int iommu_device_claim_dma_owner(struct device *dev, void *owner)
3214 {
3215 	struct iommu_group *group;
3216 	int ret = 0;
3217 
3218 	if (WARN_ON(!owner))
3219 		return -EINVAL;
3220 
3221 	group = iommu_group_get(dev);
3222 	if (!group)
3223 		return -ENODEV;
3224 
3225 	mutex_lock(&group->mutex);
3226 	if (group->owner_cnt) {
3227 		if (group->owner != owner) {
3228 			ret = -EPERM;
3229 			goto unlock_out;
3230 		}
3231 		group->owner_cnt++;
3232 		goto unlock_out;
3233 	}
3234 
3235 	ret = __iommu_take_dma_ownership(group, owner);
3236 unlock_out:
3237 	mutex_unlock(&group->mutex);
3238 	iommu_group_put(group);
3239 
3240 	return ret;
3241 }
3242 EXPORT_SYMBOL_GPL(iommu_device_claim_dma_owner);
3243 
3244 static void __iommu_release_dma_ownership(struct iommu_group *group)
3245 {
3246 	int ret;
3247 
3248 	if (WARN_ON(!group->owner_cnt || !group->owner ||
3249 		    !xa_empty(&group->pasid_array)))
3250 		return;
3251 
3252 	group->owner_cnt = 0;
3253 	group->owner = NULL;
3254 	ret = __iommu_group_set_domain(group, group->default_domain);
3255 	WARN(ret, "iommu driver failed to attach the default domain");
3256 }
3257 
3258 /**
3259  * iommu_group_release_dma_owner() - Release DMA ownership of a group
3260  * @dev: The device
3261  *
3262  * Release the DMA ownership claimed by iommu_group_claim_dma_owner().
3263  */
3264 void iommu_group_release_dma_owner(struct iommu_group *group)
3265 {
3266 	mutex_lock(&group->mutex);
3267 	__iommu_release_dma_ownership(group);
3268 	mutex_unlock(&group->mutex);
3269 }
3270 EXPORT_SYMBOL_GPL(iommu_group_release_dma_owner);
3271 
3272 /**
3273  * iommu_device_release_dma_owner() - Release DMA ownership of a device
3274  * @group: The device.
3275  *
3276  * Release the DMA ownership claimed by iommu_device_claim_dma_owner().
3277  */
3278 void iommu_device_release_dma_owner(struct device *dev)
3279 {
3280 	struct iommu_group *group = iommu_group_get(dev);
3281 
3282 	mutex_lock(&group->mutex);
3283 	if (group->owner_cnt > 1)
3284 		group->owner_cnt--;
3285 	else
3286 		__iommu_release_dma_ownership(group);
3287 	mutex_unlock(&group->mutex);
3288 	iommu_group_put(group);
3289 }
3290 EXPORT_SYMBOL_GPL(iommu_device_release_dma_owner);
3291 
3292 /**
3293  * iommu_group_dma_owner_claimed() - Query group dma ownership status
3294  * @group: The group.
3295  *
3296  * This provides status query on a given group. It is racy and only for
3297  * non-binding status reporting.
3298  */
3299 bool iommu_group_dma_owner_claimed(struct iommu_group *group)
3300 {
3301 	unsigned int user;
3302 
3303 	mutex_lock(&group->mutex);
3304 	user = group->owner_cnt;
3305 	mutex_unlock(&group->mutex);
3306 
3307 	return user;
3308 }
3309 EXPORT_SYMBOL_GPL(iommu_group_dma_owner_claimed);
3310 
3311 static int __iommu_set_group_pasid(struct iommu_domain *domain,
3312 				   struct iommu_group *group, ioasid_t pasid)
3313 {
3314 	struct group_device *device;
3315 	int ret = 0;
3316 
3317 	list_for_each_entry(device, &group->devices, list) {
3318 		ret = domain->ops->set_dev_pasid(domain, device->dev, pasid);
3319 		if (ret)
3320 			break;
3321 	}
3322 
3323 	return ret;
3324 }
3325 
3326 static void __iommu_remove_group_pasid(struct iommu_group *group,
3327 				       ioasid_t pasid)
3328 {
3329 	struct group_device *device;
3330 	const struct iommu_ops *ops;
3331 
3332 	list_for_each_entry(device, &group->devices, list) {
3333 		ops = dev_iommu_ops(device->dev);
3334 		ops->remove_dev_pasid(device->dev, pasid);
3335 	}
3336 }
3337 
3338 /*
3339  * iommu_attach_device_pasid() - Attach a domain to pasid of device
3340  * @domain: the iommu domain.
3341  * @dev: the attached device.
3342  * @pasid: the pasid of the device.
3343  *
3344  * Return: 0 on success, or an error.
3345  */
3346 int iommu_attach_device_pasid(struct iommu_domain *domain,
3347 			      struct device *dev, ioasid_t pasid)
3348 {
3349 	struct iommu_group *group;
3350 	void *curr;
3351 	int ret;
3352 
3353 	if (!domain->ops->set_dev_pasid)
3354 		return -EOPNOTSUPP;
3355 
3356 	group = iommu_group_get(dev);
3357 	if (!group)
3358 		return -ENODEV;
3359 
3360 	mutex_lock(&group->mutex);
3361 	curr = xa_cmpxchg(&group->pasid_array, pasid, NULL, domain, GFP_KERNEL);
3362 	if (curr) {
3363 		ret = xa_err(curr) ? : -EBUSY;
3364 		goto out_unlock;
3365 	}
3366 
3367 	ret = __iommu_set_group_pasid(domain, group, pasid);
3368 	if (ret) {
3369 		__iommu_remove_group_pasid(group, pasid);
3370 		xa_erase(&group->pasid_array, pasid);
3371 	}
3372 out_unlock:
3373 	mutex_unlock(&group->mutex);
3374 	iommu_group_put(group);
3375 
3376 	return ret;
3377 }
3378 EXPORT_SYMBOL_GPL(iommu_attach_device_pasid);
3379 
3380 /*
3381  * iommu_detach_device_pasid() - Detach the domain from pasid of device
3382  * @domain: the iommu domain.
3383  * @dev: the attached device.
3384  * @pasid: the pasid of the device.
3385  *
3386  * The @domain must have been attached to @pasid of the @dev with
3387  * iommu_attach_device_pasid().
3388  */
3389 void iommu_detach_device_pasid(struct iommu_domain *domain, struct device *dev,
3390 			       ioasid_t pasid)
3391 {
3392 	struct iommu_group *group = iommu_group_get(dev);
3393 
3394 	mutex_lock(&group->mutex);
3395 	__iommu_remove_group_pasid(group, pasid);
3396 	WARN_ON(xa_erase(&group->pasid_array, pasid) != domain);
3397 	mutex_unlock(&group->mutex);
3398 
3399 	iommu_group_put(group);
3400 }
3401 EXPORT_SYMBOL_GPL(iommu_detach_device_pasid);
3402 
3403 /*
3404  * iommu_get_domain_for_dev_pasid() - Retrieve domain for @pasid of @dev
3405  * @dev: the queried device
3406  * @pasid: the pasid of the device
3407  * @type: matched domain type, 0 for any match
3408  *
3409  * This is a variant of iommu_get_domain_for_dev(). It returns the existing
3410  * domain attached to pasid of a device. Callers must hold a lock around this
3411  * function, and both iommu_attach/detach_dev_pasid() whenever a domain of
3412  * type is being manipulated. This API does not internally resolve races with
3413  * attach/detach.
3414  *
3415  * Return: attached domain on success, NULL otherwise.
3416  */
3417 struct iommu_domain *iommu_get_domain_for_dev_pasid(struct device *dev,
3418 						    ioasid_t pasid,
3419 						    unsigned int type)
3420 {
3421 	struct iommu_domain *domain;
3422 	struct iommu_group *group;
3423 
3424 	group = iommu_group_get(dev);
3425 	if (!group)
3426 		return NULL;
3427 
3428 	xa_lock(&group->pasid_array);
3429 	domain = xa_load(&group->pasid_array, pasid);
3430 	if (type && domain && domain->type != type)
3431 		domain = ERR_PTR(-EBUSY);
3432 	xa_unlock(&group->pasid_array);
3433 	iommu_group_put(group);
3434 
3435 	return domain;
3436 }
3437 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev_pasid);
3438 
3439 struct iommu_domain *iommu_sva_domain_alloc(struct device *dev,
3440 					    struct mm_struct *mm)
3441 {
3442 	const struct iommu_ops *ops = dev_iommu_ops(dev);
3443 	struct iommu_domain *domain;
3444 
3445 	domain = ops->domain_alloc(IOMMU_DOMAIN_SVA);
3446 	if (!domain)
3447 		return NULL;
3448 
3449 	domain->type = IOMMU_DOMAIN_SVA;
3450 	mmgrab(mm);
3451 	domain->mm = mm;
3452 	domain->iopf_handler = iommu_sva_handle_iopf;
3453 	domain->fault_data = mm;
3454 
3455 	return domain;
3456 }
3457