xref: /openbmc/linux/drivers/iommu/iommu.c (revision d35ac6ac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  */
6 
7 #define pr_fmt(fmt)    "iommu: " fmt
8 
9 #include <linux/amba/bus.h>
10 #include <linux/device.h>
11 #include <linux/kernel.h>
12 #include <linux/bits.h>
13 #include <linux/bug.h>
14 #include <linux/types.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/host1x_context_bus.h>
20 #include <linux/iommu.h>
21 #include <linux/idr.h>
22 #include <linux/err.h>
23 #include <linux/pci.h>
24 #include <linux/pci-ats.h>
25 #include <linux/bitops.h>
26 #include <linux/platform_device.h>
27 #include <linux/property.h>
28 #include <linux/fsl/mc.h>
29 #include <linux/module.h>
30 #include <linux/cc_platform.h>
31 #include <linux/cdx/cdx_bus.h>
32 #include <trace/events/iommu.h>
33 #include <linux/sched/mm.h>
34 #include <linux/msi.h>
35 
36 #include "dma-iommu.h"
37 
38 #include "iommu-sva.h"
39 
40 static struct kset *iommu_group_kset;
41 static DEFINE_IDA(iommu_group_ida);
42 
43 static unsigned int iommu_def_domain_type __read_mostly;
44 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT);
45 static u32 iommu_cmd_line __read_mostly;
46 
47 struct iommu_group {
48 	struct kobject kobj;
49 	struct kobject *devices_kobj;
50 	struct list_head devices;
51 	struct xarray pasid_array;
52 	struct mutex mutex;
53 	void *iommu_data;
54 	void (*iommu_data_release)(void *iommu_data);
55 	char *name;
56 	int id;
57 	struct iommu_domain *default_domain;
58 	struct iommu_domain *blocking_domain;
59 	struct iommu_domain *domain;
60 	struct list_head entry;
61 	unsigned int owner_cnt;
62 	void *owner;
63 };
64 
65 struct group_device {
66 	struct list_head list;
67 	struct device *dev;
68 	char *name;
69 };
70 
71 /* Iterate over each struct group_device in a struct iommu_group */
72 #define for_each_group_device(group, pos) \
73 	list_for_each_entry(pos, &(group)->devices, list)
74 
75 struct iommu_group_attribute {
76 	struct attribute attr;
77 	ssize_t (*show)(struct iommu_group *group, char *buf);
78 	ssize_t (*store)(struct iommu_group *group,
79 			 const char *buf, size_t count);
80 };
81 
82 static const char * const iommu_group_resv_type_string[] = {
83 	[IOMMU_RESV_DIRECT]			= "direct",
84 	[IOMMU_RESV_DIRECT_RELAXABLE]		= "direct-relaxable",
85 	[IOMMU_RESV_RESERVED]			= "reserved",
86 	[IOMMU_RESV_MSI]			= "msi",
87 	[IOMMU_RESV_SW_MSI]			= "msi",
88 };
89 
90 #define IOMMU_CMD_LINE_DMA_API		BIT(0)
91 #define IOMMU_CMD_LINE_STRICT		BIT(1)
92 
93 static int iommu_bus_notifier(struct notifier_block *nb,
94 			      unsigned long action, void *data);
95 static void iommu_release_device(struct device *dev);
96 static struct iommu_domain *__iommu_domain_alloc(const struct bus_type *bus,
97 						 unsigned type);
98 static int __iommu_attach_device(struct iommu_domain *domain,
99 				 struct device *dev);
100 static int __iommu_attach_group(struct iommu_domain *domain,
101 				struct iommu_group *group);
102 
103 enum {
104 	IOMMU_SET_DOMAIN_MUST_SUCCEED = 1 << 0,
105 };
106 
107 static int __iommu_device_set_domain(struct iommu_group *group,
108 				     struct device *dev,
109 				     struct iommu_domain *new_domain,
110 				     unsigned int flags);
111 static int __iommu_group_set_domain_internal(struct iommu_group *group,
112 					     struct iommu_domain *new_domain,
113 					     unsigned int flags);
114 static int __iommu_group_set_domain(struct iommu_group *group,
115 				    struct iommu_domain *new_domain)
116 {
117 	return __iommu_group_set_domain_internal(group, new_domain, 0);
118 }
119 static void __iommu_group_set_domain_nofail(struct iommu_group *group,
120 					    struct iommu_domain *new_domain)
121 {
122 	WARN_ON(__iommu_group_set_domain_internal(
123 		group, new_domain, IOMMU_SET_DOMAIN_MUST_SUCCEED));
124 }
125 
126 static int iommu_setup_default_domain(struct iommu_group *group,
127 				      int target_type);
128 static int iommu_create_device_direct_mappings(struct iommu_domain *domain,
129 					       struct device *dev);
130 static struct iommu_group *iommu_group_get_for_dev(struct device *dev);
131 static ssize_t iommu_group_store_type(struct iommu_group *group,
132 				      const char *buf, size_t count);
133 
134 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store)		\
135 struct iommu_group_attribute iommu_group_attr_##_name =		\
136 	__ATTR(_name, _mode, _show, _store)
137 
138 #define to_iommu_group_attr(_attr)	\
139 	container_of(_attr, struct iommu_group_attribute, attr)
140 #define to_iommu_group(_kobj)		\
141 	container_of(_kobj, struct iommu_group, kobj)
142 
143 static LIST_HEAD(iommu_device_list);
144 static DEFINE_SPINLOCK(iommu_device_lock);
145 
146 static struct bus_type * const iommu_buses[] = {
147 	&platform_bus_type,
148 #ifdef CONFIG_PCI
149 	&pci_bus_type,
150 #endif
151 #ifdef CONFIG_ARM_AMBA
152 	&amba_bustype,
153 #endif
154 #ifdef CONFIG_FSL_MC_BUS
155 	&fsl_mc_bus_type,
156 #endif
157 #ifdef CONFIG_TEGRA_HOST1X_CONTEXT_BUS
158 	&host1x_context_device_bus_type,
159 #endif
160 #ifdef CONFIG_CDX_BUS
161 	&cdx_bus_type,
162 #endif
163 };
164 
165 /*
166  * Use a function instead of an array here because the domain-type is a
167  * bit-field, so an array would waste memory.
168  */
169 static const char *iommu_domain_type_str(unsigned int t)
170 {
171 	switch (t) {
172 	case IOMMU_DOMAIN_BLOCKED:
173 		return "Blocked";
174 	case IOMMU_DOMAIN_IDENTITY:
175 		return "Passthrough";
176 	case IOMMU_DOMAIN_UNMANAGED:
177 		return "Unmanaged";
178 	case IOMMU_DOMAIN_DMA:
179 	case IOMMU_DOMAIN_DMA_FQ:
180 		return "Translated";
181 	default:
182 		return "Unknown";
183 	}
184 }
185 
186 static int __init iommu_subsys_init(void)
187 {
188 	struct notifier_block *nb;
189 
190 	if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) {
191 		if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH))
192 			iommu_set_default_passthrough(false);
193 		else
194 			iommu_set_default_translated(false);
195 
196 		if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) {
197 			pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n");
198 			iommu_set_default_translated(false);
199 		}
200 	}
201 
202 	if (!iommu_default_passthrough() && !iommu_dma_strict)
203 		iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ;
204 
205 	pr_info("Default domain type: %s%s\n",
206 		iommu_domain_type_str(iommu_def_domain_type),
207 		(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ?
208 			" (set via kernel command line)" : "");
209 
210 	if (!iommu_default_passthrough())
211 		pr_info("DMA domain TLB invalidation policy: %s mode%s\n",
212 			iommu_dma_strict ? "strict" : "lazy",
213 			(iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ?
214 				" (set via kernel command line)" : "");
215 
216 	nb = kcalloc(ARRAY_SIZE(iommu_buses), sizeof(*nb), GFP_KERNEL);
217 	if (!nb)
218 		return -ENOMEM;
219 
220 	for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) {
221 		nb[i].notifier_call = iommu_bus_notifier;
222 		bus_register_notifier(iommu_buses[i], &nb[i]);
223 	}
224 
225 	return 0;
226 }
227 subsys_initcall(iommu_subsys_init);
228 
229 static int remove_iommu_group(struct device *dev, void *data)
230 {
231 	if (dev->iommu && dev->iommu->iommu_dev == data)
232 		iommu_release_device(dev);
233 
234 	return 0;
235 }
236 
237 /**
238  * iommu_device_register() - Register an IOMMU hardware instance
239  * @iommu: IOMMU handle for the instance
240  * @ops:   IOMMU ops to associate with the instance
241  * @hwdev: (optional) actual instance device, used for fwnode lookup
242  *
243  * Return: 0 on success, or an error.
244  */
245 int iommu_device_register(struct iommu_device *iommu,
246 			  const struct iommu_ops *ops, struct device *hwdev)
247 {
248 	int err = 0;
249 
250 	/* We need to be able to take module references appropriately */
251 	if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner))
252 		return -EINVAL;
253 	/*
254 	 * Temporarily enforce global restriction to a single driver. This was
255 	 * already the de-facto behaviour, since any possible combination of
256 	 * existing drivers would compete for at least the PCI or platform bus.
257 	 */
258 	if (iommu_buses[0]->iommu_ops && iommu_buses[0]->iommu_ops != ops)
259 		return -EBUSY;
260 
261 	iommu->ops = ops;
262 	if (hwdev)
263 		iommu->fwnode = dev_fwnode(hwdev);
264 
265 	spin_lock(&iommu_device_lock);
266 	list_add_tail(&iommu->list, &iommu_device_list);
267 	spin_unlock(&iommu_device_lock);
268 
269 	for (int i = 0; i < ARRAY_SIZE(iommu_buses) && !err; i++) {
270 		iommu_buses[i]->iommu_ops = ops;
271 		err = bus_iommu_probe(iommu_buses[i]);
272 	}
273 	if (err)
274 		iommu_device_unregister(iommu);
275 	return err;
276 }
277 EXPORT_SYMBOL_GPL(iommu_device_register);
278 
279 void iommu_device_unregister(struct iommu_device *iommu)
280 {
281 	for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++)
282 		bus_for_each_dev(iommu_buses[i], NULL, iommu, remove_iommu_group);
283 
284 	spin_lock(&iommu_device_lock);
285 	list_del(&iommu->list);
286 	spin_unlock(&iommu_device_lock);
287 }
288 EXPORT_SYMBOL_GPL(iommu_device_unregister);
289 
290 static struct dev_iommu *dev_iommu_get(struct device *dev)
291 {
292 	struct dev_iommu *param = dev->iommu;
293 
294 	if (param)
295 		return param;
296 
297 	param = kzalloc(sizeof(*param), GFP_KERNEL);
298 	if (!param)
299 		return NULL;
300 
301 	mutex_init(&param->lock);
302 	dev->iommu = param;
303 	return param;
304 }
305 
306 static void dev_iommu_free(struct device *dev)
307 {
308 	struct dev_iommu *param = dev->iommu;
309 
310 	dev->iommu = NULL;
311 	if (param->fwspec) {
312 		fwnode_handle_put(param->fwspec->iommu_fwnode);
313 		kfree(param->fwspec);
314 	}
315 	kfree(param);
316 }
317 
318 static u32 dev_iommu_get_max_pasids(struct device *dev)
319 {
320 	u32 max_pasids = 0, bits = 0;
321 	int ret;
322 
323 	if (dev_is_pci(dev)) {
324 		ret = pci_max_pasids(to_pci_dev(dev));
325 		if (ret > 0)
326 			max_pasids = ret;
327 	} else {
328 		ret = device_property_read_u32(dev, "pasid-num-bits", &bits);
329 		if (!ret)
330 			max_pasids = 1UL << bits;
331 	}
332 
333 	return min_t(u32, max_pasids, dev->iommu->iommu_dev->max_pasids);
334 }
335 
336 static int __iommu_probe_device(struct device *dev, struct list_head *group_list)
337 {
338 	const struct iommu_ops *ops = dev->bus->iommu_ops;
339 	struct iommu_device *iommu_dev;
340 	struct iommu_group *group;
341 	static DEFINE_MUTEX(iommu_probe_device_lock);
342 	int ret;
343 
344 	if (!ops)
345 		return -ENODEV;
346 	/*
347 	 * Serialise to avoid races between IOMMU drivers registering in
348 	 * parallel and/or the "replay" calls from ACPI/OF code via client
349 	 * driver probe. Once the latter have been cleaned up we should
350 	 * probably be able to use device_lock() here to minimise the scope,
351 	 * but for now enforcing a simple global ordering is fine.
352 	 */
353 	mutex_lock(&iommu_probe_device_lock);
354 	if (!dev_iommu_get(dev)) {
355 		ret = -ENOMEM;
356 		goto err_unlock;
357 	}
358 
359 	if (!try_module_get(ops->owner)) {
360 		ret = -EINVAL;
361 		goto err_free;
362 	}
363 
364 	iommu_dev = ops->probe_device(dev);
365 	if (IS_ERR(iommu_dev)) {
366 		ret = PTR_ERR(iommu_dev);
367 		goto out_module_put;
368 	}
369 
370 	dev->iommu->iommu_dev = iommu_dev;
371 	dev->iommu->max_pasids = dev_iommu_get_max_pasids(dev);
372 	if (ops->is_attach_deferred)
373 		dev->iommu->attach_deferred = ops->is_attach_deferred(dev);
374 
375 	group = iommu_group_get_for_dev(dev);
376 	if (IS_ERR(group)) {
377 		ret = PTR_ERR(group);
378 		goto out_release;
379 	}
380 
381 	mutex_lock(&group->mutex);
382 	if (group_list && !group->default_domain && list_empty(&group->entry))
383 		list_add_tail(&group->entry, group_list);
384 	mutex_unlock(&group->mutex);
385 	iommu_group_put(group);
386 
387 	mutex_unlock(&iommu_probe_device_lock);
388 	iommu_device_link(iommu_dev, dev);
389 
390 	return 0;
391 
392 out_release:
393 	if (ops->release_device)
394 		ops->release_device(dev);
395 
396 out_module_put:
397 	module_put(ops->owner);
398 
399 err_free:
400 	dev_iommu_free(dev);
401 
402 err_unlock:
403 	mutex_unlock(&iommu_probe_device_lock);
404 
405 	return ret;
406 }
407 
408 int iommu_probe_device(struct device *dev)
409 {
410 	const struct iommu_ops *ops;
411 	struct iommu_group *group;
412 	int ret;
413 
414 	ret = __iommu_probe_device(dev, NULL);
415 	if (ret)
416 		goto err_out;
417 
418 	group = iommu_group_get(dev);
419 	if (!group) {
420 		ret = -ENODEV;
421 		goto err_release;
422 	}
423 
424 	mutex_lock(&group->mutex);
425 
426 	if (group->default_domain)
427 		iommu_create_device_direct_mappings(group->default_domain, dev);
428 
429 	if (group->domain) {
430 		ret = __iommu_device_set_domain(group, dev, group->domain, 0);
431 		if (ret)
432 			goto err_unlock;
433 	} else if (!group->default_domain) {
434 		ret = iommu_setup_default_domain(group, 0);
435 		if (ret)
436 			goto err_unlock;
437 	}
438 
439 	mutex_unlock(&group->mutex);
440 	iommu_group_put(group);
441 
442 	ops = dev_iommu_ops(dev);
443 	if (ops->probe_finalize)
444 		ops->probe_finalize(dev);
445 
446 	return 0;
447 
448 err_unlock:
449 	mutex_unlock(&group->mutex);
450 	iommu_group_put(group);
451 err_release:
452 	iommu_release_device(dev);
453 
454 err_out:
455 	return ret;
456 
457 }
458 
459 /*
460  * Remove a device from a group's device list and return the group device
461  * if successful.
462  */
463 static struct group_device *
464 __iommu_group_remove_device(struct iommu_group *group, struct device *dev)
465 {
466 	struct group_device *device;
467 
468 	lockdep_assert_held(&group->mutex);
469 	for_each_group_device(group, device) {
470 		if (device->dev == dev) {
471 			list_del(&device->list);
472 			return device;
473 		}
474 	}
475 
476 	return NULL;
477 }
478 
479 /*
480  * Release a device from its group and decrements the iommu group reference
481  * count.
482  */
483 static void __iommu_group_release_device(struct iommu_group *group,
484 					 struct group_device *grp_dev)
485 {
486 	struct device *dev = grp_dev->dev;
487 
488 	sysfs_remove_link(group->devices_kobj, grp_dev->name);
489 	sysfs_remove_link(&dev->kobj, "iommu_group");
490 
491 	trace_remove_device_from_group(group->id, dev);
492 
493 	kfree(grp_dev->name);
494 	kfree(grp_dev);
495 	dev->iommu_group = NULL;
496 	kobject_put(group->devices_kobj);
497 }
498 
499 static void iommu_release_device(struct device *dev)
500 {
501 	struct iommu_group *group = dev->iommu_group;
502 	struct group_device *device;
503 	const struct iommu_ops *ops;
504 
505 	if (!dev->iommu || !group)
506 		return;
507 
508 	iommu_device_unlink(dev->iommu->iommu_dev, dev);
509 
510 	mutex_lock(&group->mutex);
511 	device = __iommu_group_remove_device(group, dev);
512 
513 	/*
514 	 * If the group has become empty then ownership must have been released,
515 	 * and the current domain must be set back to NULL or the default
516 	 * domain.
517 	 */
518 	if (list_empty(&group->devices))
519 		WARN_ON(group->owner_cnt ||
520 			group->domain != group->default_domain);
521 
522 	/*
523 	 * release_device() must stop using any attached domain on the device.
524 	 * If there are still other devices in the group they are not effected
525 	 * by this callback.
526 	 *
527 	 * The IOMMU driver must set the device to either an identity or
528 	 * blocking translation and stop using any domain pointer, as it is
529 	 * going to be freed.
530 	 */
531 	ops = dev_iommu_ops(dev);
532 	if (ops->release_device)
533 		ops->release_device(dev);
534 	mutex_unlock(&group->mutex);
535 
536 	if (device)
537 		__iommu_group_release_device(group, device);
538 
539 	module_put(ops->owner);
540 	dev_iommu_free(dev);
541 }
542 
543 static int __init iommu_set_def_domain_type(char *str)
544 {
545 	bool pt;
546 	int ret;
547 
548 	ret = kstrtobool(str, &pt);
549 	if (ret)
550 		return ret;
551 
552 	if (pt)
553 		iommu_set_default_passthrough(true);
554 	else
555 		iommu_set_default_translated(true);
556 
557 	return 0;
558 }
559 early_param("iommu.passthrough", iommu_set_def_domain_type);
560 
561 static int __init iommu_dma_setup(char *str)
562 {
563 	int ret = kstrtobool(str, &iommu_dma_strict);
564 
565 	if (!ret)
566 		iommu_cmd_line |= IOMMU_CMD_LINE_STRICT;
567 	return ret;
568 }
569 early_param("iommu.strict", iommu_dma_setup);
570 
571 void iommu_set_dma_strict(void)
572 {
573 	iommu_dma_strict = true;
574 	if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ)
575 		iommu_def_domain_type = IOMMU_DOMAIN_DMA;
576 }
577 
578 static ssize_t iommu_group_attr_show(struct kobject *kobj,
579 				     struct attribute *__attr, char *buf)
580 {
581 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
582 	struct iommu_group *group = to_iommu_group(kobj);
583 	ssize_t ret = -EIO;
584 
585 	if (attr->show)
586 		ret = attr->show(group, buf);
587 	return ret;
588 }
589 
590 static ssize_t iommu_group_attr_store(struct kobject *kobj,
591 				      struct attribute *__attr,
592 				      const char *buf, size_t count)
593 {
594 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
595 	struct iommu_group *group = to_iommu_group(kobj);
596 	ssize_t ret = -EIO;
597 
598 	if (attr->store)
599 		ret = attr->store(group, buf, count);
600 	return ret;
601 }
602 
603 static const struct sysfs_ops iommu_group_sysfs_ops = {
604 	.show = iommu_group_attr_show,
605 	.store = iommu_group_attr_store,
606 };
607 
608 static int iommu_group_create_file(struct iommu_group *group,
609 				   struct iommu_group_attribute *attr)
610 {
611 	return sysfs_create_file(&group->kobj, &attr->attr);
612 }
613 
614 static void iommu_group_remove_file(struct iommu_group *group,
615 				    struct iommu_group_attribute *attr)
616 {
617 	sysfs_remove_file(&group->kobj, &attr->attr);
618 }
619 
620 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
621 {
622 	return sysfs_emit(buf, "%s\n", group->name);
623 }
624 
625 /**
626  * iommu_insert_resv_region - Insert a new region in the
627  * list of reserved regions.
628  * @new: new region to insert
629  * @regions: list of regions
630  *
631  * Elements are sorted by start address and overlapping segments
632  * of the same type are merged.
633  */
634 static int iommu_insert_resv_region(struct iommu_resv_region *new,
635 				    struct list_head *regions)
636 {
637 	struct iommu_resv_region *iter, *tmp, *nr, *top;
638 	LIST_HEAD(stack);
639 
640 	nr = iommu_alloc_resv_region(new->start, new->length,
641 				     new->prot, new->type, GFP_KERNEL);
642 	if (!nr)
643 		return -ENOMEM;
644 
645 	/* First add the new element based on start address sorting */
646 	list_for_each_entry(iter, regions, list) {
647 		if (nr->start < iter->start ||
648 		    (nr->start == iter->start && nr->type <= iter->type))
649 			break;
650 	}
651 	list_add_tail(&nr->list, &iter->list);
652 
653 	/* Merge overlapping segments of type nr->type in @regions, if any */
654 	list_for_each_entry_safe(iter, tmp, regions, list) {
655 		phys_addr_t top_end, iter_end = iter->start + iter->length - 1;
656 
657 		/* no merge needed on elements of different types than @new */
658 		if (iter->type != new->type) {
659 			list_move_tail(&iter->list, &stack);
660 			continue;
661 		}
662 
663 		/* look for the last stack element of same type as @iter */
664 		list_for_each_entry_reverse(top, &stack, list)
665 			if (top->type == iter->type)
666 				goto check_overlap;
667 
668 		list_move_tail(&iter->list, &stack);
669 		continue;
670 
671 check_overlap:
672 		top_end = top->start + top->length - 1;
673 
674 		if (iter->start > top_end + 1) {
675 			list_move_tail(&iter->list, &stack);
676 		} else {
677 			top->length = max(top_end, iter_end) - top->start + 1;
678 			list_del(&iter->list);
679 			kfree(iter);
680 		}
681 	}
682 	list_splice(&stack, regions);
683 	return 0;
684 }
685 
686 static int
687 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
688 				 struct list_head *group_resv_regions)
689 {
690 	struct iommu_resv_region *entry;
691 	int ret = 0;
692 
693 	list_for_each_entry(entry, dev_resv_regions, list) {
694 		ret = iommu_insert_resv_region(entry, group_resv_regions);
695 		if (ret)
696 			break;
697 	}
698 	return ret;
699 }
700 
701 int iommu_get_group_resv_regions(struct iommu_group *group,
702 				 struct list_head *head)
703 {
704 	struct group_device *device;
705 	int ret = 0;
706 
707 	mutex_lock(&group->mutex);
708 	for_each_group_device(group, device) {
709 		struct list_head dev_resv_regions;
710 
711 		/*
712 		 * Non-API groups still expose reserved_regions in sysfs,
713 		 * so filter out calls that get here that way.
714 		 */
715 		if (!device->dev->iommu)
716 			break;
717 
718 		INIT_LIST_HEAD(&dev_resv_regions);
719 		iommu_get_resv_regions(device->dev, &dev_resv_regions);
720 		ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
721 		iommu_put_resv_regions(device->dev, &dev_resv_regions);
722 		if (ret)
723 			break;
724 	}
725 	mutex_unlock(&group->mutex);
726 	return ret;
727 }
728 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
729 
730 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
731 					     char *buf)
732 {
733 	struct iommu_resv_region *region, *next;
734 	struct list_head group_resv_regions;
735 	int offset = 0;
736 
737 	INIT_LIST_HEAD(&group_resv_regions);
738 	iommu_get_group_resv_regions(group, &group_resv_regions);
739 
740 	list_for_each_entry_safe(region, next, &group_resv_regions, list) {
741 		offset += sysfs_emit_at(buf, offset, "0x%016llx 0x%016llx %s\n",
742 					(long long)region->start,
743 					(long long)(region->start +
744 						    region->length - 1),
745 					iommu_group_resv_type_string[region->type]);
746 		kfree(region);
747 	}
748 
749 	return offset;
750 }
751 
752 static ssize_t iommu_group_show_type(struct iommu_group *group,
753 				     char *buf)
754 {
755 	char *type = "unknown";
756 
757 	mutex_lock(&group->mutex);
758 	if (group->default_domain) {
759 		switch (group->default_domain->type) {
760 		case IOMMU_DOMAIN_BLOCKED:
761 			type = "blocked";
762 			break;
763 		case IOMMU_DOMAIN_IDENTITY:
764 			type = "identity";
765 			break;
766 		case IOMMU_DOMAIN_UNMANAGED:
767 			type = "unmanaged";
768 			break;
769 		case IOMMU_DOMAIN_DMA:
770 			type = "DMA";
771 			break;
772 		case IOMMU_DOMAIN_DMA_FQ:
773 			type = "DMA-FQ";
774 			break;
775 		}
776 	}
777 	mutex_unlock(&group->mutex);
778 
779 	return sysfs_emit(buf, "%s\n", type);
780 }
781 
782 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
783 
784 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
785 			iommu_group_show_resv_regions, NULL);
786 
787 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type,
788 			iommu_group_store_type);
789 
790 static void iommu_group_release(struct kobject *kobj)
791 {
792 	struct iommu_group *group = to_iommu_group(kobj);
793 
794 	pr_debug("Releasing group %d\n", group->id);
795 
796 	if (group->iommu_data_release)
797 		group->iommu_data_release(group->iommu_data);
798 
799 	ida_free(&iommu_group_ida, group->id);
800 
801 	if (group->default_domain)
802 		iommu_domain_free(group->default_domain);
803 	if (group->blocking_domain)
804 		iommu_domain_free(group->blocking_domain);
805 
806 	kfree(group->name);
807 	kfree(group);
808 }
809 
810 static const struct kobj_type iommu_group_ktype = {
811 	.sysfs_ops = &iommu_group_sysfs_ops,
812 	.release = iommu_group_release,
813 };
814 
815 /**
816  * iommu_group_alloc - Allocate a new group
817  *
818  * This function is called by an iommu driver to allocate a new iommu
819  * group.  The iommu group represents the minimum granularity of the iommu.
820  * Upon successful return, the caller holds a reference to the supplied
821  * group in order to hold the group until devices are added.  Use
822  * iommu_group_put() to release this extra reference count, allowing the
823  * group to be automatically reclaimed once it has no devices or external
824  * references.
825  */
826 struct iommu_group *iommu_group_alloc(void)
827 {
828 	struct iommu_group *group;
829 	int ret;
830 
831 	group = kzalloc(sizeof(*group), GFP_KERNEL);
832 	if (!group)
833 		return ERR_PTR(-ENOMEM);
834 
835 	group->kobj.kset = iommu_group_kset;
836 	mutex_init(&group->mutex);
837 	INIT_LIST_HEAD(&group->devices);
838 	INIT_LIST_HEAD(&group->entry);
839 	xa_init(&group->pasid_array);
840 
841 	ret = ida_alloc(&iommu_group_ida, GFP_KERNEL);
842 	if (ret < 0) {
843 		kfree(group);
844 		return ERR_PTR(ret);
845 	}
846 	group->id = ret;
847 
848 	ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
849 				   NULL, "%d", group->id);
850 	if (ret) {
851 		kobject_put(&group->kobj);
852 		return ERR_PTR(ret);
853 	}
854 
855 	group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
856 	if (!group->devices_kobj) {
857 		kobject_put(&group->kobj); /* triggers .release & free */
858 		return ERR_PTR(-ENOMEM);
859 	}
860 
861 	/*
862 	 * The devices_kobj holds a reference on the group kobject, so
863 	 * as long as that exists so will the group.  We can therefore
864 	 * use the devices_kobj for reference counting.
865 	 */
866 	kobject_put(&group->kobj);
867 
868 	ret = iommu_group_create_file(group,
869 				      &iommu_group_attr_reserved_regions);
870 	if (ret) {
871 		kobject_put(group->devices_kobj);
872 		return ERR_PTR(ret);
873 	}
874 
875 	ret = iommu_group_create_file(group, &iommu_group_attr_type);
876 	if (ret) {
877 		kobject_put(group->devices_kobj);
878 		return ERR_PTR(ret);
879 	}
880 
881 	pr_debug("Allocated group %d\n", group->id);
882 
883 	return group;
884 }
885 EXPORT_SYMBOL_GPL(iommu_group_alloc);
886 
887 /**
888  * iommu_group_get_iommudata - retrieve iommu_data registered for a group
889  * @group: the group
890  *
891  * iommu drivers can store data in the group for use when doing iommu
892  * operations.  This function provides a way to retrieve it.  Caller
893  * should hold a group reference.
894  */
895 void *iommu_group_get_iommudata(struct iommu_group *group)
896 {
897 	return group->iommu_data;
898 }
899 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
900 
901 /**
902  * iommu_group_set_iommudata - set iommu_data for a group
903  * @group: the group
904  * @iommu_data: new data
905  * @release: release function for iommu_data
906  *
907  * iommu drivers can store data in the group for use when doing iommu
908  * operations.  This function provides a way to set the data after
909  * the group has been allocated.  Caller should hold a group reference.
910  */
911 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
912 			       void (*release)(void *iommu_data))
913 {
914 	group->iommu_data = iommu_data;
915 	group->iommu_data_release = release;
916 }
917 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
918 
919 /**
920  * iommu_group_set_name - set name for a group
921  * @group: the group
922  * @name: name
923  *
924  * Allow iommu driver to set a name for a group.  When set it will
925  * appear in a name attribute file under the group in sysfs.
926  */
927 int iommu_group_set_name(struct iommu_group *group, const char *name)
928 {
929 	int ret;
930 
931 	if (group->name) {
932 		iommu_group_remove_file(group, &iommu_group_attr_name);
933 		kfree(group->name);
934 		group->name = NULL;
935 		if (!name)
936 			return 0;
937 	}
938 
939 	group->name = kstrdup(name, GFP_KERNEL);
940 	if (!group->name)
941 		return -ENOMEM;
942 
943 	ret = iommu_group_create_file(group, &iommu_group_attr_name);
944 	if (ret) {
945 		kfree(group->name);
946 		group->name = NULL;
947 		return ret;
948 	}
949 
950 	return 0;
951 }
952 EXPORT_SYMBOL_GPL(iommu_group_set_name);
953 
954 static int iommu_create_device_direct_mappings(struct iommu_domain *domain,
955 					       struct device *dev)
956 {
957 	struct iommu_resv_region *entry;
958 	struct list_head mappings;
959 	unsigned long pg_size;
960 	int ret = 0;
961 
962 	if (!iommu_is_dma_domain(domain))
963 		return 0;
964 
965 	BUG_ON(!domain->pgsize_bitmap);
966 
967 	pg_size = 1UL << __ffs(domain->pgsize_bitmap);
968 	INIT_LIST_HEAD(&mappings);
969 
970 	iommu_get_resv_regions(dev, &mappings);
971 
972 	/* We need to consider overlapping regions for different devices */
973 	list_for_each_entry(entry, &mappings, list) {
974 		dma_addr_t start, end, addr;
975 		size_t map_size = 0;
976 
977 		start = ALIGN(entry->start, pg_size);
978 		end   = ALIGN(entry->start + entry->length, pg_size);
979 
980 		if (entry->type != IOMMU_RESV_DIRECT &&
981 		    entry->type != IOMMU_RESV_DIRECT_RELAXABLE)
982 			continue;
983 
984 		for (addr = start; addr <= end; addr += pg_size) {
985 			phys_addr_t phys_addr;
986 
987 			if (addr == end)
988 				goto map_end;
989 
990 			phys_addr = iommu_iova_to_phys(domain, addr);
991 			if (!phys_addr) {
992 				map_size += pg_size;
993 				continue;
994 			}
995 
996 map_end:
997 			if (map_size) {
998 				ret = iommu_map(domain, addr - map_size,
999 						addr - map_size, map_size,
1000 						entry->prot, GFP_KERNEL);
1001 				if (ret)
1002 					goto out;
1003 				map_size = 0;
1004 			}
1005 		}
1006 
1007 	}
1008 
1009 	iommu_flush_iotlb_all(domain);
1010 
1011 out:
1012 	iommu_put_resv_regions(dev, &mappings);
1013 
1014 	return ret;
1015 }
1016 
1017 /**
1018  * iommu_group_add_device - add a device to an iommu group
1019  * @group: the group into which to add the device (reference should be held)
1020  * @dev: the device
1021  *
1022  * This function is called by an iommu driver to add a device into a
1023  * group.  Adding a device increments the group reference count.
1024  */
1025 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
1026 {
1027 	int ret, i = 0;
1028 	struct group_device *device;
1029 
1030 	device = kzalloc(sizeof(*device), GFP_KERNEL);
1031 	if (!device)
1032 		return -ENOMEM;
1033 
1034 	device->dev = dev;
1035 
1036 	ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
1037 	if (ret)
1038 		goto err_free_device;
1039 
1040 	device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
1041 rename:
1042 	if (!device->name) {
1043 		ret = -ENOMEM;
1044 		goto err_remove_link;
1045 	}
1046 
1047 	ret = sysfs_create_link_nowarn(group->devices_kobj,
1048 				       &dev->kobj, device->name);
1049 	if (ret) {
1050 		if (ret == -EEXIST && i >= 0) {
1051 			/*
1052 			 * Account for the slim chance of collision
1053 			 * and append an instance to the name.
1054 			 */
1055 			kfree(device->name);
1056 			device->name = kasprintf(GFP_KERNEL, "%s.%d",
1057 						 kobject_name(&dev->kobj), i++);
1058 			goto rename;
1059 		}
1060 		goto err_free_name;
1061 	}
1062 
1063 	kobject_get(group->devices_kobj);
1064 
1065 	dev->iommu_group = group;
1066 
1067 	mutex_lock(&group->mutex);
1068 	list_add_tail(&device->list, &group->devices);
1069 	mutex_unlock(&group->mutex);
1070 	trace_add_device_to_group(group->id, dev);
1071 
1072 	dev_info(dev, "Adding to iommu group %d\n", group->id);
1073 
1074 	return 0;
1075 
1076 err_free_name:
1077 	kfree(device->name);
1078 err_remove_link:
1079 	sysfs_remove_link(&dev->kobj, "iommu_group");
1080 err_free_device:
1081 	kfree(device);
1082 	dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
1083 	return ret;
1084 }
1085 EXPORT_SYMBOL_GPL(iommu_group_add_device);
1086 
1087 /**
1088  * iommu_group_remove_device - remove a device from it's current group
1089  * @dev: device to be removed
1090  *
1091  * This function is called by an iommu driver to remove the device from
1092  * it's current group.  This decrements the iommu group reference count.
1093  */
1094 void iommu_group_remove_device(struct device *dev)
1095 {
1096 	struct iommu_group *group = dev->iommu_group;
1097 	struct group_device *device;
1098 
1099 	if (!group)
1100 		return;
1101 
1102 	dev_info(dev, "Removing from iommu group %d\n", group->id);
1103 
1104 	mutex_lock(&group->mutex);
1105 	device = __iommu_group_remove_device(group, dev);
1106 	mutex_unlock(&group->mutex);
1107 
1108 	if (device)
1109 		__iommu_group_release_device(group, device);
1110 }
1111 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
1112 
1113 /**
1114  * iommu_group_for_each_dev - iterate over each device in the group
1115  * @group: the group
1116  * @data: caller opaque data to be passed to callback function
1117  * @fn: caller supplied callback function
1118  *
1119  * This function is called by group users to iterate over group devices.
1120  * Callers should hold a reference count to the group during callback.
1121  * The group->mutex is held across callbacks, which will block calls to
1122  * iommu_group_add/remove_device.
1123  */
1124 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
1125 			     int (*fn)(struct device *, void *))
1126 {
1127 	struct group_device *device;
1128 	int ret = 0;
1129 
1130 	mutex_lock(&group->mutex);
1131 	for_each_group_device(group, device) {
1132 		ret = fn(device->dev, data);
1133 		if (ret)
1134 			break;
1135 	}
1136 	mutex_unlock(&group->mutex);
1137 
1138 	return ret;
1139 }
1140 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
1141 
1142 /**
1143  * iommu_group_get - Return the group for a device and increment reference
1144  * @dev: get the group that this device belongs to
1145  *
1146  * This function is called by iommu drivers and users to get the group
1147  * for the specified device.  If found, the group is returned and the group
1148  * reference in incremented, else NULL.
1149  */
1150 struct iommu_group *iommu_group_get(struct device *dev)
1151 {
1152 	struct iommu_group *group = dev->iommu_group;
1153 
1154 	if (group)
1155 		kobject_get(group->devices_kobj);
1156 
1157 	return group;
1158 }
1159 EXPORT_SYMBOL_GPL(iommu_group_get);
1160 
1161 /**
1162  * iommu_group_ref_get - Increment reference on a group
1163  * @group: the group to use, must not be NULL
1164  *
1165  * This function is called by iommu drivers to take additional references on an
1166  * existing group.  Returns the given group for convenience.
1167  */
1168 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
1169 {
1170 	kobject_get(group->devices_kobj);
1171 	return group;
1172 }
1173 EXPORT_SYMBOL_GPL(iommu_group_ref_get);
1174 
1175 /**
1176  * iommu_group_put - Decrement group reference
1177  * @group: the group to use
1178  *
1179  * This function is called by iommu drivers and users to release the
1180  * iommu group.  Once the reference count is zero, the group is released.
1181  */
1182 void iommu_group_put(struct iommu_group *group)
1183 {
1184 	if (group)
1185 		kobject_put(group->devices_kobj);
1186 }
1187 EXPORT_SYMBOL_GPL(iommu_group_put);
1188 
1189 /**
1190  * iommu_register_device_fault_handler() - Register a device fault handler
1191  * @dev: the device
1192  * @handler: the fault handler
1193  * @data: private data passed as argument to the handler
1194  *
1195  * When an IOMMU fault event is received, this handler gets called with the
1196  * fault event and data as argument. The handler should return 0 on success. If
1197  * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also
1198  * complete the fault by calling iommu_page_response() with one of the following
1199  * response code:
1200  * - IOMMU_PAGE_RESP_SUCCESS: retry the translation
1201  * - IOMMU_PAGE_RESP_INVALID: terminate the fault
1202  * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting
1203  *   page faults if possible.
1204  *
1205  * Return 0 if the fault handler was installed successfully, or an error.
1206  */
1207 int iommu_register_device_fault_handler(struct device *dev,
1208 					iommu_dev_fault_handler_t handler,
1209 					void *data)
1210 {
1211 	struct dev_iommu *param = dev->iommu;
1212 	int ret = 0;
1213 
1214 	if (!param)
1215 		return -EINVAL;
1216 
1217 	mutex_lock(&param->lock);
1218 	/* Only allow one fault handler registered for each device */
1219 	if (param->fault_param) {
1220 		ret = -EBUSY;
1221 		goto done_unlock;
1222 	}
1223 
1224 	get_device(dev);
1225 	param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL);
1226 	if (!param->fault_param) {
1227 		put_device(dev);
1228 		ret = -ENOMEM;
1229 		goto done_unlock;
1230 	}
1231 	param->fault_param->handler = handler;
1232 	param->fault_param->data = data;
1233 	mutex_init(&param->fault_param->lock);
1234 	INIT_LIST_HEAD(&param->fault_param->faults);
1235 
1236 done_unlock:
1237 	mutex_unlock(&param->lock);
1238 
1239 	return ret;
1240 }
1241 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler);
1242 
1243 /**
1244  * iommu_unregister_device_fault_handler() - Unregister the device fault handler
1245  * @dev: the device
1246  *
1247  * Remove the device fault handler installed with
1248  * iommu_register_device_fault_handler().
1249  *
1250  * Return 0 on success, or an error.
1251  */
1252 int iommu_unregister_device_fault_handler(struct device *dev)
1253 {
1254 	struct dev_iommu *param = dev->iommu;
1255 	int ret = 0;
1256 
1257 	if (!param)
1258 		return -EINVAL;
1259 
1260 	mutex_lock(&param->lock);
1261 
1262 	if (!param->fault_param)
1263 		goto unlock;
1264 
1265 	/* we cannot unregister handler if there are pending faults */
1266 	if (!list_empty(&param->fault_param->faults)) {
1267 		ret = -EBUSY;
1268 		goto unlock;
1269 	}
1270 
1271 	kfree(param->fault_param);
1272 	param->fault_param = NULL;
1273 	put_device(dev);
1274 unlock:
1275 	mutex_unlock(&param->lock);
1276 
1277 	return ret;
1278 }
1279 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler);
1280 
1281 /**
1282  * iommu_report_device_fault() - Report fault event to device driver
1283  * @dev: the device
1284  * @evt: fault event data
1285  *
1286  * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ
1287  * handler. When this function fails and the fault is recoverable, it is the
1288  * caller's responsibility to complete the fault.
1289  *
1290  * Return 0 on success, or an error.
1291  */
1292 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt)
1293 {
1294 	struct dev_iommu *param = dev->iommu;
1295 	struct iommu_fault_event *evt_pending = NULL;
1296 	struct iommu_fault_param *fparam;
1297 	int ret = 0;
1298 
1299 	if (!param || !evt)
1300 		return -EINVAL;
1301 
1302 	/* we only report device fault if there is a handler registered */
1303 	mutex_lock(&param->lock);
1304 	fparam = param->fault_param;
1305 	if (!fparam || !fparam->handler) {
1306 		ret = -EINVAL;
1307 		goto done_unlock;
1308 	}
1309 
1310 	if (evt->fault.type == IOMMU_FAULT_PAGE_REQ &&
1311 	    (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) {
1312 		evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event),
1313 				      GFP_KERNEL);
1314 		if (!evt_pending) {
1315 			ret = -ENOMEM;
1316 			goto done_unlock;
1317 		}
1318 		mutex_lock(&fparam->lock);
1319 		list_add_tail(&evt_pending->list, &fparam->faults);
1320 		mutex_unlock(&fparam->lock);
1321 	}
1322 
1323 	ret = fparam->handler(&evt->fault, fparam->data);
1324 	if (ret && evt_pending) {
1325 		mutex_lock(&fparam->lock);
1326 		list_del(&evt_pending->list);
1327 		mutex_unlock(&fparam->lock);
1328 		kfree(evt_pending);
1329 	}
1330 done_unlock:
1331 	mutex_unlock(&param->lock);
1332 	return ret;
1333 }
1334 EXPORT_SYMBOL_GPL(iommu_report_device_fault);
1335 
1336 int iommu_page_response(struct device *dev,
1337 			struct iommu_page_response *msg)
1338 {
1339 	bool needs_pasid;
1340 	int ret = -EINVAL;
1341 	struct iommu_fault_event *evt;
1342 	struct iommu_fault_page_request *prm;
1343 	struct dev_iommu *param = dev->iommu;
1344 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1345 	bool has_pasid = msg->flags & IOMMU_PAGE_RESP_PASID_VALID;
1346 
1347 	if (!ops->page_response)
1348 		return -ENODEV;
1349 
1350 	if (!param || !param->fault_param)
1351 		return -EINVAL;
1352 
1353 	if (msg->version != IOMMU_PAGE_RESP_VERSION_1 ||
1354 	    msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID)
1355 		return -EINVAL;
1356 
1357 	/* Only send response if there is a fault report pending */
1358 	mutex_lock(&param->fault_param->lock);
1359 	if (list_empty(&param->fault_param->faults)) {
1360 		dev_warn_ratelimited(dev, "no pending PRQ, drop response\n");
1361 		goto done_unlock;
1362 	}
1363 	/*
1364 	 * Check if we have a matching page request pending to respond,
1365 	 * otherwise return -EINVAL
1366 	 */
1367 	list_for_each_entry(evt, &param->fault_param->faults, list) {
1368 		prm = &evt->fault.prm;
1369 		if (prm->grpid != msg->grpid)
1370 			continue;
1371 
1372 		/*
1373 		 * If the PASID is required, the corresponding request is
1374 		 * matched using the group ID, the PASID valid bit and the PASID
1375 		 * value. Otherwise only the group ID matches request and
1376 		 * response.
1377 		 */
1378 		needs_pasid = prm->flags & IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID;
1379 		if (needs_pasid && (!has_pasid || msg->pasid != prm->pasid))
1380 			continue;
1381 
1382 		if (!needs_pasid && has_pasid) {
1383 			/* No big deal, just clear it. */
1384 			msg->flags &= ~IOMMU_PAGE_RESP_PASID_VALID;
1385 			msg->pasid = 0;
1386 		}
1387 
1388 		ret = ops->page_response(dev, evt, msg);
1389 		list_del(&evt->list);
1390 		kfree(evt);
1391 		break;
1392 	}
1393 
1394 done_unlock:
1395 	mutex_unlock(&param->fault_param->lock);
1396 	return ret;
1397 }
1398 EXPORT_SYMBOL_GPL(iommu_page_response);
1399 
1400 /**
1401  * iommu_group_id - Return ID for a group
1402  * @group: the group to ID
1403  *
1404  * Return the unique ID for the group matching the sysfs group number.
1405  */
1406 int iommu_group_id(struct iommu_group *group)
1407 {
1408 	return group->id;
1409 }
1410 EXPORT_SYMBOL_GPL(iommu_group_id);
1411 
1412 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1413 					       unsigned long *devfns);
1414 
1415 /*
1416  * To consider a PCI device isolated, we require ACS to support Source
1417  * Validation, Request Redirection, Completer Redirection, and Upstream
1418  * Forwarding.  This effectively means that devices cannot spoof their
1419  * requester ID, requests and completions cannot be redirected, and all
1420  * transactions are forwarded upstream, even as it passes through a
1421  * bridge where the target device is downstream.
1422  */
1423 #define REQ_ACS_FLAGS   (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1424 
1425 /*
1426  * For multifunction devices which are not isolated from each other, find
1427  * all the other non-isolated functions and look for existing groups.  For
1428  * each function, we also need to look for aliases to or from other devices
1429  * that may already have a group.
1430  */
1431 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1432 							unsigned long *devfns)
1433 {
1434 	struct pci_dev *tmp = NULL;
1435 	struct iommu_group *group;
1436 
1437 	if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1438 		return NULL;
1439 
1440 	for_each_pci_dev(tmp) {
1441 		if (tmp == pdev || tmp->bus != pdev->bus ||
1442 		    PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1443 		    pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1444 			continue;
1445 
1446 		group = get_pci_alias_group(tmp, devfns);
1447 		if (group) {
1448 			pci_dev_put(tmp);
1449 			return group;
1450 		}
1451 	}
1452 
1453 	return NULL;
1454 }
1455 
1456 /*
1457  * Look for aliases to or from the given device for existing groups. DMA
1458  * aliases are only supported on the same bus, therefore the search
1459  * space is quite small (especially since we're really only looking at pcie
1460  * device, and therefore only expect multiple slots on the root complex or
1461  * downstream switch ports).  It's conceivable though that a pair of
1462  * multifunction devices could have aliases between them that would cause a
1463  * loop.  To prevent this, we use a bitmap to track where we've been.
1464  */
1465 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1466 					       unsigned long *devfns)
1467 {
1468 	struct pci_dev *tmp = NULL;
1469 	struct iommu_group *group;
1470 
1471 	if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1472 		return NULL;
1473 
1474 	group = iommu_group_get(&pdev->dev);
1475 	if (group)
1476 		return group;
1477 
1478 	for_each_pci_dev(tmp) {
1479 		if (tmp == pdev || tmp->bus != pdev->bus)
1480 			continue;
1481 
1482 		/* We alias them or they alias us */
1483 		if (pci_devs_are_dma_aliases(pdev, tmp)) {
1484 			group = get_pci_alias_group(tmp, devfns);
1485 			if (group) {
1486 				pci_dev_put(tmp);
1487 				return group;
1488 			}
1489 
1490 			group = get_pci_function_alias_group(tmp, devfns);
1491 			if (group) {
1492 				pci_dev_put(tmp);
1493 				return group;
1494 			}
1495 		}
1496 	}
1497 
1498 	return NULL;
1499 }
1500 
1501 struct group_for_pci_data {
1502 	struct pci_dev *pdev;
1503 	struct iommu_group *group;
1504 };
1505 
1506 /*
1507  * DMA alias iterator callback, return the last seen device.  Stop and return
1508  * the IOMMU group if we find one along the way.
1509  */
1510 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1511 {
1512 	struct group_for_pci_data *data = opaque;
1513 
1514 	data->pdev = pdev;
1515 	data->group = iommu_group_get(&pdev->dev);
1516 
1517 	return data->group != NULL;
1518 }
1519 
1520 /*
1521  * Generic device_group call-back function. It just allocates one
1522  * iommu-group per device.
1523  */
1524 struct iommu_group *generic_device_group(struct device *dev)
1525 {
1526 	return iommu_group_alloc();
1527 }
1528 EXPORT_SYMBOL_GPL(generic_device_group);
1529 
1530 /*
1531  * Use standard PCI bus topology, isolation features, and DMA alias quirks
1532  * to find or create an IOMMU group for a device.
1533  */
1534 struct iommu_group *pci_device_group(struct device *dev)
1535 {
1536 	struct pci_dev *pdev = to_pci_dev(dev);
1537 	struct group_for_pci_data data;
1538 	struct pci_bus *bus;
1539 	struct iommu_group *group = NULL;
1540 	u64 devfns[4] = { 0 };
1541 
1542 	if (WARN_ON(!dev_is_pci(dev)))
1543 		return ERR_PTR(-EINVAL);
1544 
1545 	/*
1546 	 * Find the upstream DMA alias for the device.  A device must not
1547 	 * be aliased due to topology in order to have its own IOMMU group.
1548 	 * If we find an alias along the way that already belongs to a
1549 	 * group, use it.
1550 	 */
1551 	if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1552 		return data.group;
1553 
1554 	pdev = data.pdev;
1555 
1556 	/*
1557 	 * Continue upstream from the point of minimum IOMMU granularity
1558 	 * due to aliases to the point where devices are protected from
1559 	 * peer-to-peer DMA by PCI ACS.  Again, if we find an existing
1560 	 * group, use it.
1561 	 */
1562 	for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1563 		if (!bus->self)
1564 			continue;
1565 
1566 		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1567 			break;
1568 
1569 		pdev = bus->self;
1570 
1571 		group = iommu_group_get(&pdev->dev);
1572 		if (group)
1573 			return group;
1574 	}
1575 
1576 	/*
1577 	 * Look for existing groups on device aliases.  If we alias another
1578 	 * device or another device aliases us, use the same group.
1579 	 */
1580 	group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1581 	if (group)
1582 		return group;
1583 
1584 	/*
1585 	 * Look for existing groups on non-isolated functions on the same
1586 	 * slot and aliases of those funcions, if any.  No need to clear
1587 	 * the search bitmap, the tested devfns are still valid.
1588 	 */
1589 	group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1590 	if (group)
1591 		return group;
1592 
1593 	/* No shared group found, allocate new */
1594 	return iommu_group_alloc();
1595 }
1596 EXPORT_SYMBOL_GPL(pci_device_group);
1597 
1598 /* Get the IOMMU group for device on fsl-mc bus */
1599 struct iommu_group *fsl_mc_device_group(struct device *dev)
1600 {
1601 	struct device *cont_dev = fsl_mc_cont_dev(dev);
1602 	struct iommu_group *group;
1603 
1604 	group = iommu_group_get(cont_dev);
1605 	if (!group)
1606 		group = iommu_group_alloc();
1607 	return group;
1608 }
1609 EXPORT_SYMBOL_GPL(fsl_mc_device_group);
1610 
1611 static int iommu_get_def_domain_type(struct device *dev)
1612 {
1613 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1614 
1615 	if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted)
1616 		return IOMMU_DOMAIN_DMA;
1617 
1618 	if (ops->def_domain_type)
1619 		return ops->def_domain_type(dev);
1620 
1621 	return 0;
1622 }
1623 
1624 static struct iommu_domain *
1625 __iommu_group_alloc_default_domain(const struct bus_type *bus,
1626 				   struct iommu_group *group, int req_type)
1627 {
1628 	if (group->default_domain && group->default_domain->type == req_type)
1629 		return group->default_domain;
1630 	return __iommu_domain_alloc(bus, req_type);
1631 }
1632 
1633 /*
1634  * req_type of 0 means "auto" which means to select a domain based on
1635  * iommu_def_domain_type or what the driver actually supports.
1636  */
1637 static struct iommu_domain *
1638 iommu_group_alloc_default_domain(struct iommu_group *group, int req_type)
1639 {
1640 	const struct bus_type *bus =
1641 		list_first_entry(&group->devices, struct group_device, list)
1642 			->dev->bus;
1643 	struct iommu_domain *dom;
1644 
1645 	lockdep_assert_held(&group->mutex);
1646 
1647 	if (req_type)
1648 		return __iommu_group_alloc_default_domain(bus, group, req_type);
1649 
1650 	/* The driver gave no guidance on what type to use, try the default */
1651 	dom = __iommu_group_alloc_default_domain(bus, group, iommu_def_domain_type);
1652 	if (dom)
1653 		return dom;
1654 
1655 	/* Otherwise IDENTITY and DMA_FQ defaults will try DMA */
1656 	if (iommu_def_domain_type == IOMMU_DOMAIN_DMA)
1657 		return NULL;
1658 	dom = __iommu_group_alloc_default_domain(bus, group, IOMMU_DOMAIN_DMA);
1659 	if (!dom)
1660 		return NULL;
1661 
1662 	pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA",
1663 		iommu_def_domain_type, group->name);
1664 	return dom;
1665 }
1666 
1667 /**
1668  * iommu_group_get_for_dev - Find or create the IOMMU group for a device
1669  * @dev: target device
1670  *
1671  * This function is intended to be called by IOMMU drivers and extended to
1672  * support common, bus-defined algorithms when determining or creating the
1673  * IOMMU group for a device.  On success, the caller will hold a reference
1674  * to the returned IOMMU group, which will already include the provided
1675  * device.  The reference should be released with iommu_group_put().
1676  */
1677 static struct iommu_group *iommu_group_get_for_dev(struct device *dev)
1678 {
1679 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1680 	struct iommu_group *group;
1681 	int ret;
1682 
1683 	group = iommu_group_get(dev);
1684 	if (group)
1685 		return group;
1686 
1687 	group = ops->device_group(dev);
1688 	if (WARN_ON_ONCE(group == NULL))
1689 		return ERR_PTR(-EINVAL);
1690 
1691 	if (IS_ERR(group))
1692 		return group;
1693 
1694 	ret = iommu_group_add_device(group, dev);
1695 	if (ret)
1696 		goto out_put_group;
1697 
1698 	return group;
1699 
1700 out_put_group:
1701 	iommu_group_put(group);
1702 
1703 	return ERR_PTR(ret);
1704 }
1705 
1706 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1707 {
1708 	return group->default_domain;
1709 }
1710 
1711 static int probe_iommu_group(struct device *dev, void *data)
1712 {
1713 	struct list_head *group_list = data;
1714 	struct iommu_group *group;
1715 	int ret;
1716 
1717 	/* Device is probed already if in a group */
1718 	group = iommu_group_get(dev);
1719 	if (group) {
1720 		iommu_group_put(group);
1721 		return 0;
1722 	}
1723 
1724 	ret = __iommu_probe_device(dev, group_list);
1725 	if (ret == -ENODEV)
1726 		ret = 0;
1727 
1728 	return ret;
1729 }
1730 
1731 static int iommu_bus_notifier(struct notifier_block *nb,
1732 			      unsigned long action, void *data)
1733 {
1734 	struct device *dev = data;
1735 
1736 	if (action == BUS_NOTIFY_ADD_DEVICE) {
1737 		int ret;
1738 
1739 		ret = iommu_probe_device(dev);
1740 		return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1741 	} else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1742 		iommu_release_device(dev);
1743 		return NOTIFY_OK;
1744 	}
1745 
1746 	return 0;
1747 }
1748 
1749 /* A target_type of 0 will select the best domain type and cannot fail */
1750 static int iommu_get_default_domain_type(struct iommu_group *group,
1751 					 int target_type)
1752 {
1753 	int best_type = target_type;
1754 	struct group_device *gdev;
1755 	struct device *last_dev;
1756 
1757 	lockdep_assert_held(&group->mutex);
1758 
1759 	for_each_group_device(group, gdev) {
1760 		unsigned int type = iommu_get_def_domain_type(gdev->dev);
1761 
1762 		if (best_type && type && best_type != type) {
1763 			if (target_type) {
1764 				dev_err_ratelimited(
1765 					gdev->dev,
1766 					"Device cannot be in %s domain\n",
1767 					iommu_domain_type_str(target_type));
1768 				return -1;
1769 			}
1770 
1771 			dev_warn(
1772 				gdev->dev,
1773 				"Device needs domain type %s, but device %s in the same iommu group requires type %s - using default\n",
1774 				iommu_domain_type_str(type), dev_name(last_dev),
1775 				iommu_domain_type_str(best_type));
1776 			return 0;
1777 		}
1778 		if (!best_type)
1779 			best_type = type;
1780 		last_dev = gdev->dev;
1781 	}
1782 	return best_type;
1783 }
1784 
1785 static void iommu_group_do_probe_finalize(struct device *dev)
1786 {
1787 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1788 
1789 	if (ops->probe_finalize)
1790 		ops->probe_finalize(dev);
1791 }
1792 
1793 int bus_iommu_probe(const struct bus_type *bus)
1794 {
1795 	struct iommu_group *group, *next;
1796 	LIST_HEAD(group_list);
1797 	int ret;
1798 
1799 	/*
1800 	 * This code-path does not allocate the default domain when
1801 	 * creating the iommu group, so do it after the groups are
1802 	 * created.
1803 	 */
1804 	ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group);
1805 	if (ret)
1806 		return ret;
1807 
1808 	list_for_each_entry_safe(group, next, &group_list, entry) {
1809 		struct group_device *gdev;
1810 
1811 		mutex_lock(&group->mutex);
1812 
1813 		/* Remove item from the list */
1814 		list_del_init(&group->entry);
1815 
1816 		ret = iommu_setup_default_domain(group, 0);
1817 		if (ret) {
1818 			mutex_unlock(&group->mutex);
1819 			return ret;
1820 		}
1821 		mutex_unlock(&group->mutex);
1822 
1823 		/*
1824 		 * FIXME: Mis-locked because the ops->probe_finalize() call-back
1825 		 * of some IOMMU drivers calls arm_iommu_attach_device() which
1826 		 * in-turn might call back into IOMMU core code, where it tries
1827 		 * to take group->mutex, resulting in a deadlock.
1828 		 */
1829 		for_each_group_device(group, gdev)
1830 			iommu_group_do_probe_finalize(gdev->dev);
1831 	}
1832 
1833 	return 0;
1834 }
1835 
1836 bool iommu_present(const struct bus_type *bus)
1837 {
1838 	return bus->iommu_ops != NULL;
1839 }
1840 EXPORT_SYMBOL_GPL(iommu_present);
1841 
1842 /**
1843  * device_iommu_capable() - check for a general IOMMU capability
1844  * @dev: device to which the capability would be relevant, if available
1845  * @cap: IOMMU capability
1846  *
1847  * Return: true if an IOMMU is present and supports the given capability
1848  * for the given device, otherwise false.
1849  */
1850 bool device_iommu_capable(struct device *dev, enum iommu_cap cap)
1851 {
1852 	const struct iommu_ops *ops;
1853 
1854 	if (!dev->iommu || !dev->iommu->iommu_dev)
1855 		return false;
1856 
1857 	ops = dev_iommu_ops(dev);
1858 	if (!ops->capable)
1859 		return false;
1860 
1861 	return ops->capable(dev, cap);
1862 }
1863 EXPORT_SYMBOL_GPL(device_iommu_capable);
1864 
1865 /**
1866  * iommu_group_has_isolated_msi() - Compute msi_device_has_isolated_msi()
1867  *       for a group
1868  * @group: Group to query
1869  *
1870  * IOMMU groups should not have differing values of
1871  * msi_device_has_isolated_msi() for devices in a group. However nothing
1872  * directly prevents this, so ensure mistakes don't result in isolation failures
1873  * by checking that all the devices are the same.
1874  */
1875 bool iommu_group_has_isolated_msi(struct iommu_group *group)
1876 {
1877 	struct group_device *group_dev;
1878 	bool ret = true;
1879 
1880 	mutex_lock(&group->mutex);
1881 	for_each_group_device(group, group_dev)
1882 		ret &= msi_device_has_isolated_msi(group_dev->dev);
1883 	mutex_unlock(&group->mutex);
1884 	return ret;
1885 }
1886 EXPORT_SYMBOL_GPL(iommu_group_has_isolated_msi);
1887 
1888 /**
1889  * iommu_set_fault_handler() - set a fault handler for an iommu domain
1890  * @domain: iommu domain
1891  * @handler: fault handler
1892  * @token: user data, will be passed back to the fault handler
1893  *
1894  * This function should be used by IOMMU users which want to be notified
1895  * whenever an IOMMU fault happens.
1896  *
1897  * The fault handler itself should return 0 on success, and an appropriate
1898  * error code otherwise.
1899  */
1900 void iommu_set_fault_handler(struct iommu_domain *domain,
1901 					iommu_fault_handler_t handler,
1902 					void *token)
1903 {
1904 	BUG_ON(!domain);
1905 
1906 	domain->handler = handler;
1907 	domain->handler_token = token;
1908 }
1909 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1910 
1911 static struct iommu_domain *__iommu_domain_alloc(const struct bus_type *bus,
1912 						 unsigned type)
1913 {
1914 	struct iommu_domain *domain;
1915 	unsigned int alloc_type = type & IOMMU_DOMAIN_ALLOC_FLAGS;
1916 
1917 	if (bus == NULL || bus->iommu_ops == NULL)
1918 		return NULL;
1919 
1920 	domain = bus->iommu_ops->domain_alloc(alloc_type);
1921 	if (!domain)
1922 		return NULL;
1923 
1924 	domain->type = type;
1925 	/*
1926 	 * If not already set, assume all sizes by default; the driver
1927 	 * may override this later
1928 	 */
1929 	if (!domain->pgsize_bitmap)
1930 		domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap;
1931 
1932 	if (!domain->ops)
1933 		domain->ops = bus->iommu_ops->default_domain_ops;
1934 
1935 	if (iommu_is_dma_domain(domain) && iommu_get_dma_cookie(domain)) {
1936 		iommu_domain_free(domain);
1937 		domain = NULL;
1938 	}
1939 	return domain;
1940 }
1941 
1942 struct iommu_domain *iommu_domain_alloc(const struct bus_type *bus)
1943 {
1944 	return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED);
1945 }
1946 EXPORT_SYMBOL_GPL(iommu_domain_alloc);
1947 
1948 void iommu_domain_free(struct iommu_domain *domain)
1949 {
1950 	if (domain->type == IOMMU_DOMAIN_SVA)
1951 		mmdrop(domain->mm);
1952 	iommu_put_dma_cookie(domain);
1953 	domain->ops->free(domain);
1954 }
1955 EXPORT_SYMBOL_GPL(iommu_domain_free);
1956 
1957 /*
1958  * Put the group's domain back to the appropriate core-owned domain - either the
1959  * standard kernel-mode DMA configuration or an all-DMA-blocked domain.
1960  */
1961 static void __iommu_group_set_core_domain(struct iommu_group *group)
1962 {
1963 	struct iommu_domain *new_domain;
1964 
1965 	if (group->owner)
1966 		new_domain = group->blocking_domain;
1967 	else
1968 		new_domain = group->default_domain;
1969 
1970 	__iommu_group_set_domain_nofail(group, new_domain);
1971 }
1972 
1973 static int __iommu_attach_device(struct iommu_domain *domain,
1974 				 struct device *dev)
1975 {
1976 	int ret;
1977 
1978 	if (unlikely(domain->ops->attach_dev == NULL))
1979 		return -ENODEV;
1980 
1981 	ret = domain->ops->attach_dev(domain, dev);
1982 	if (ret)
1983 		return ret;
1984 	dev->iommu->attach_deferred = 0;
1985 	trace_attach_device_to_domain(dev);
1986 	return 0;
1987 }
1988 
1989 /**
1990  * iommu_attach_device - Attach an IOMMU domain to a device
1991  * @domain: IOMMU domain to attach
1992  * @dev: Device that will be attached
1993  *
1994  * Returns 0 on success and error code on failure
1995  *
1996  * Note that EINVAL can be treated as a soft failure, indicating
1997  * that certain configuration of the domain is incompatible with
1998  * the device. In this case attaching a different domain to the
1999  * device may succeed.
2000  */
2001 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
2002 {
2003 	struct iommu_group *group;
2004 	int ret;
2005 
2006 	group = iommu_group_get(dev);
2007 	if (!group)
2008 		return -ENODEV;
2009 
2010 	/*
2011 	 * Lock the group to make sure the device-count doesn't
2012 	 * change while we are attaching
2013 	 */
2014 	mutex_lock(&group->mutex);
2015 	ret = -EINVAL;
2016 	if (list_count_nodes(&group->devices) != 1)
2017 		goto out_unlock;
2018 
2019 	ret = __iommu_attach_group(domain, group);
2020 
2021 out_unlock:
2022 	mutex_unlock(&group->mutex);
2023 	iommu_group_put(group);
2024 
2025 	return ret;
2026 }
2027 EXPORT_SYMBOL_GPL(iommu_attach_device);
2028 
2029 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain)
2030 {
2031 	if (dev->iommu && dev->iommu->attach_deferred)
2032 		return __iommu_attach_device(domain, dev);
2033 
2034 	return 0;
2035 }
2036 
2037 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
2038 {
2039 	struct iommu_group *group;
2040 
2041 	group = iommu_group_get(dev);
2042 	if (!group)
2043 		return;
2044 
2045 	mutex_lock(&group->mutex);
2046 	if (WARN_ON(domain != group->domain) ||
2047 	    WARN_ON(list_count_nodes(&group->devices) != 1))
2048 		goto out_unlock;
2049 	__iommu_group_set_core_domain(group);
2050 
2051 out_unlock:
2052 	mutex_unlock(&group->mutex);
2053 	iommu_group_put(group);
2054 }
2055 EXPORT_SYMBOL_GPL(iommu_detach_device);
2056 
2057 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
2058 {
2059 	struct iommu_domain *domain;
2060 	struct iommu_group *group;
2061 
2062 	group = iommu_group_get(dev);
2063 	if (!group)
2064 		return NULL;
2065 
2066 	domain = group->domain;
2067 
2068 	iommu_group_put(group);
2069 
2070 	return domain;
2071 }
2072 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
2073 
2074 /*
2075  * For IOMMU_DOMAIN_DMA implementations which already provide their own
2076  * guarantees that the group and its default domain are valid and correct.
2077  */
2078 struct iommu_domain *iommu_get_dma_domain(struct device *dev)
2079 {
2080 	return dev->iommu_group->default_domain;
2081 }
2082 
2083 static int __iommu_attach_group(struct iommu_domain *domain,
2084 				struct iommu_group *group)
2085 {
2086 	if (group->domain && group->domain != group->default_domain &&
2087 	    group->domain != group->blocking_domain)
2088 		return -EBUSY;
2089 
2090 	return __iommu_group_set_domain(group, domain);
2091 }
2092 
2093 /**
2094  * iommu_attach_group - Attach an IOMMU domain to an IOMMU group
2095  * @domain: IOMMU domain to attach
2096  * @group: IOMMU group that will be attached
2097  *
2098  * Returns 0 on success and error code on failure
2099  *
2100  * Note that EINVAL can be treated as a soft failure, indicating
2101  * that certain configuration of the domain is incompatible with
2102  * the group. In this case attaching a different domain to the
2103  * group may succeed.
2104  */
2105 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
2106 {
2107 	int ret;
2108 
2109 	mutex_lock(&group->mutex);
2110 	ret = __iommu_attach_group(domain, group);
2111 	mutex_unlock(&group->mutex);
2112 
2113 	return ret;
2114 }
2115 EXPORT_SYMBOL_GPL(iommu_attach_group);
2116 
2117 static int __iommu_device_set_domain(struct iommu_group *group,
2118 				     struct device *dev,
2119 				     struct iommu_domain *new_domain,
2120 				     unsigned int flags)
2121 {
2122 	int ret;
2123 
2124 	if (dev->iommu->attach_deferred) {
2125 		if (new_domain == group->default_domain)
2126 			return 0;
2127 		dev->iommu->attach_deferred = 0;
2128 	}
2129 
2130 	ret = __iommu_attach_device(new_domain, dev);
2131 	if (ret) {
2132 		/*
2133 		 * If we have a blocking domain then try to attach that in hopes
2134 		 * of avoiding a UAF. Modern drivers should implement blocking
2135 		 * domains as global statics that cannot fail.
2136 		 */
2137 		if ((flags & IOMMU_SET_DOMAIN_MUST_SUCCEED) &&
2138 		    group->blocking_domain &&
2139 		    group->blocking_domain != new_domain)
2140 			__iommu_attach_device(group->blocking_domain, dev);
2141 		return ret;
2142 	}
2143 	return 0;
2144 }
2145 
2146 /*
2147  * If 0 is returned the group's domain is new_domain. If an error is returned
2148  * then the group's domain will be set back to the existing domain unless
2149  * IOMMU_SET_DOMAIN_MUST_SUCCEED, otherwise an error is returned and the group's
2150  * domains is left inconsistent. This is a driver bug to fail attach with a
2151  * previously good domain. We try to avoid a kernel UAF because of this.
2152  *
2153  * IOMMU groups are really the natural working unit of the IOMMU, but the IOMMU
2154  * API works on domains and devices.  Bridge that gap by iterating over the
2155  * devices in a group.  Ideally we'd have a single device which represents the
2156  * requestor ID of the group, but we also allow IOMMU drivers to create policy
2157  * defined minimum sets, where the physical hardware may be able to distiguish
2158  * members, but we wish to group them at a higher level (ex. untrusted
2159  * multi-function PCI devices).  Thus we attach each device.
2160  */
2161 static int __iommu_group_set_domain_internal(struct iommu_group *group,
2162 					     struct iommu_domain *new_domain,
2163 					     unsigned int flags)
2164 {
2165 	struct group_device *last_gdev;
2166 	struct group_device *gdev;
2167 	int result;
2168 	int ret;
2169 
2170 	lockdep_assert_held(&group->mutex);
2171 
2172 	if (group->domain == new_domain)
2173 		return 0;
2174 
2175 	/*
2176 	 * New drivers should support default domains, so set_platform_dma()
2177 	 * op will never be called. Otherwise the NULL domain represents some
2178 	 * platform specific behavior.
2179 	 */
2180 	if (!new_domain) {
2181 		for_each_group_device(group, gdev) {
2182 			const struct iommu_ops *ops = dev_iommu_ops(gdev->dev);
2183 
2184 			if (!WARN_ON(!ops->set_platform_dma_ops))
2185 				ops->set_platform_dma_ops(gdev->dev);
2186 		}
2187 		group->domain = NULL;
2188 		return 0;
2189 	}
2190 
2191 	/*
2192 	 * Changing the domain is done by calling attach_dev() on the new
2193 	 * domain. This switch does not have to be atomic and DMA can be
2194 	 * discarded during the transition. DMA must only be able to access
2195 	 * either new_domain or group->domain, never something else.
2196 	 */
2197 	result = 0;
2198 	for_each_group_device(group, gdev) {
2199 		ret = __iommu_device_set_domain(group, gdev->dev, new_domain,
2200 						flags);
2201 		if (ret) {
2202 			result = ret;
2203 			/*
2204 			 * Keep trying the other devices in the group. If a
2205 			 * driver fails attach to an otherwise good domain, and
2206 			 * does not support blocking domains, it should at least
2207 			 * drop its reference on the current domain so we don't
2208 			 * UAF.
2209 			 */
2210 			if (flags & IOMMU_SET_DOMAIN_MUST_SUCCEED)
2211 				continue;
2212 			goto err_revert;
2213 		}
2214 	}
2215 	group->domain = new_domain;
2216 	return result;
2217 
2218 err_revert:
2219 	/*
2220 	 * This is called in error unwind paths. A well behaved driver should
2221 	 * always allow us to attach to a domain that was already attached.
2222 	 */
2223 	last_gdev = gdev;
2224 	for_each_group_device(group, gdev) {
2225 		const struct iommu_ops *ops = dev_iommu_ops(gdev->dev);
2226 
2227 		/*
2228 		 * If set_platform_dma_ops is not present a NULL domain can
2229 		 * happen only for first probe, in which case we leave
2230 		 * group->domain as NULL and let release clean everything up.
2231 		 */
2232 		if (group->domain)
2233 			WARN_ON(__iommu_device_set_domain(
2234 				group, gdev->dev, group->domain,
2235 				IOMMU_SET_DOMAIN_MUST_SUCCEED));
2236 		else if (ops->set_platform_dma_ops)
2237 			ops->set_platform_dma_ops(gdev->dev);
2238 		if (gdev == last_gdev)
2239 			break;
2240 	}
2241 	return ret;
2242 }
2243 
2244 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
2245 {
2246 	mutex_lock(&group->mutex);
2247 	__iommu_group_set_core_domain(group);
2248 	mutex_unlock(&group->mutex);
2249 }
2250 EXPORT_SYMBOL_GPL(iommu_detach_group);
2251 
2252 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
2253 {
2254 	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2255 		return iova;
2256 
2257 	if (domain->type == IOMMU_DOMAIN_BLOCKED)
2258 		return 0;
2259 
2260 	return domain->ops->iova_to_phys(domain, iova);
2261 }
2262 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
2263 
2264 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova,
2265 			   phys_addr_t paddr, size_t size, size_t *count)
2266 {
2267 	unsigned int pgsize_idx, pgsize_idx_next;
2268 	unsigned long pgsizes;
2269 	size_t offset, pgsize, pgsize_next;
2270 	unsigned long addr_merge = paddr | iova;
2271 
2272 	/* Page sizes supported by the hardware and small enough for @size */
2273 	pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0);
2274 
2275 	/* Constrain the page sizes further based on the maximum alignment */
2276 	if (likely(addr_merge))
2277 		pgsizes &= GENMASK(__ffs(addr_merge), 0);
2278 
2279 	/* Make sure we have at least one suitable page size */
2280 	BUG_ON(!pgsizes);
2281 
2282 	/* Pick the biggest page size remaining */
2283 	pgsize_idx = __fls(pgsizes);
2284 	pgsize = BIT(pgsize_idx);
2285 	if (!count)
2286 		return pgsize;
2287 
2288 	/* Find the next biggest support page size, if it exists */
2289 	pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0);
2290 	if (!pgsizes)
2291 		goto out_set_count;
2292 
2293 	pgsize_idx_next = __ffs(pgsizes);
2294 	pgsize_next = BIT(pgsize_idx_next);
2295 
2296 	/*
2297 	 * There's no point trying a bigger page size unless the virtual
2298 	 * and physical addresses are similarly offset within the larger page.
2299 	 */
2300 	if ((iova ^ paddr) & (pgsize_next - 1))
2301 		goto out_set_count;
2302 
2303 	/* Calculate the offset to the next page size alignment boundary */
2304 	offset = pgsize_next - (addr_merge & (pgsize_next - 1));
2305 
2306 	/*
2307 	 * If size is big enough to accommodate the larger page, reduce
2308 	 * the number of smaller pages.
2309 	 */
2310 	if (offset + pgsize_next <= size)
2311 		size = offset;
2312 
2313 out_set_count:
2314 	*count = size >> pgsize_idx;
2315 	return pgsize;
2316 }
2317 
2318 static int __iommu_map_pages(struct iommu_domain *domain, unsigned long iova,
2319 			     phys_addr_t paddr, size_t size, int prot,
2320 			     gfp_t gfp, size_t *mapped)
2321 {
2322 	const struct iommu_domain_ops *ops = domain->ops;
2323 	size_t pgsize, count;
2324 	int ret;
2325 
2326 	pgsize = iommu_pgsize(domain, iova, paddr, size, &count);
2327 
2328 	pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n",
2329 		 iova, &paddr, pgsize, count);
2330 
2331 	if (ops->map_pages) {
2332 		ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot,
2333 				     gfp, mapped);
2334 	} else {
2335 		ret = ops->map(domain, iova, paddr, pgsize, prot, gfp);
2336 		*mapped = ret ? 0 : pgsize;
2337 	}
2338 
2339 	return ret;
2340 }
2341 
2342 static int __iommu_map(struct iommu_domain *domain, unsigned long iova,
2343 		       phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2344 {
2345 	const struct iommu_domain_ops *ops = domain->ops;
2346 	unsigned long orig_iova = iova;
2347 	unsigned int min_pagesz;
2348 	size_t orig_size = size;
2349 	phys_addr_t orig_paddr = paddr;
2350 	int ret = 0;
2351 
2352 	if (unlikely(!(ops->map || ops->map_pages) ||
2353 		     domain->pgsize_bitmap == 0UL))
2354 		return -ENODEV;
2355 
2356 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2357 		return -EINVAL;
2358 
2359 	/* find out the minimum page size supported */
2360 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2361 
2362 	/*
2363 	 * both the virtual address and the physical one, as well as
2364 	 * the size of the mapping, must be aligned (at least) to the
2365 	 * size of the smallest page supported by the hardware
2366 	 */
2367 	if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
2368 		pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
2369 		       iova, &paddr, size, min_pagesz);
2370 		return -EINVAL;
2371 	}
2372 
2373 	pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
2374 
2375 	while (size) {
2376 		size_t mapped = 0;
2377 
2378 		ret = __iommu_map_pages(domain, iova, paddr, size, prot, gfp,
2379 					&mapped);
2380 		/*
2381 		 * Some pages may have been mapped, even if an error occurred,
2382 		 * so we should account for those so they can be unmapped.
2383 		 */
2384 		size -= mapped;
2385 
2386 		if (ret)
2387 			break;
2388 
2389 		iova += mapped;
2390 		paddr += mapped;
2391 	}
2392 
2393 	/* unroll mapping in case something went wrong */
2394 	if (ret)
2395 		iommu_unmap(domain, orig_iova, orig_size - size);
2396 	else
2397 		trace_map(orig_iova, orig_paddr, orig_size);
2398 
2399 	return ret;
2400 }
2401 
2402 int iommu_map(struct iommu_domain *domain, unsigned long iova,
2403 	      phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2404 {
2405 	const struct iommu_domain_ops *ops = domain->ops;
2406 	int ret;
2407 
2408 	might_sleep_if(gfpflags_allow_blocking(gfp));
2409 
2410 	/* Discourage passing strange GFP flags */
2411 	if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 |
2412 				__GFP_HIGHMEM)))
2413 		return -EINVAL;
2414 
2415 	ret = __iommu_map(domain, iova, paddr, size, prot, gfp);
2416 	if (ret == 0 && ops->iotlb_sync_map)
2417 		ops->iotlb_sync_map(domain, iova, size);
2418 
2419 	return ret;
2420 }
2421 EXPORT_SYMBOL_GPL(iommu_map);
2422 
2423 static size_t __iommu_unmap_pages(struct iommu_domain *domain,
2424 				  unsigned long iova, size_t size,
2425 				  struct iommu_iotlb_gather *iotlb_gather)
2426 {
2427 	const struct iommu_domain_ops *ops = domain->ops;
2428 	size_t pgsize, count;
2429 
2430 	pgsize = iommu_pgsize(domain, iova, iova, size, &count);
2431 	return ops->unmap_pages ?
2432 	       ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather) :
2433 	       ops->unmap(domain, iova, pgsize, iotlb_gather);
2434 }
2435 
2436 static size_t __iommu_unmap(struct iommu_domain *domain,
2437 			    unsigned long iova, size_t size,
2438 			    struct iommu_iotlb_gather *iotlb_gather)
2439 {
2440 	const struct iommu_domain_ops *ops = domain->ops;
2441 	size_t unmapped_page, unmapped = 0;
2442 	unsigned long orig_iova = iova;
2443 	unsigned int min_pagesz;
2444 
2445 	if (unlikely(!(ops->unmap || ops->unmap_pages) ||
2446 		     domain->pgsize_bitmap == 0UL))
2447 		return 0;
2448 
2449 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2450 		return 0;
2451 
2452 	/* find out the minimum page size supported */
2453 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2454 
2455 	/*
2456 	 * The virtual address, as well as the size of the mapping, must be
2457 	 * aligned (at least) to the size of the smallest page supported
2458 	 * by the hardware
2459 	 */
2460 	if (!IS_ALIGNED(iova | size, min_pagesz)) {
2461 		pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
2462 		       iova, size, min_pagesz);
2463 		return 0;
2464 	}
2465 
2466 	pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
2467 
2468 	/*
2469 	 * Keep iterating until we either unmap 'size' bytes (or more)
2470 	 * or we hit an area that isn't mapped.
2471 	 */
2472 	while (unmapped < size) {
2473 		unmapped_page = __iommu_unmap_pages(domain, iova,
2474 						    size - unmapped,
2475 						    iotlb_gather);
2476 		if (!unmapped_page)
2477 			break;
2478 
2479 		pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
2480 			 iova, unmapped_page);
2481 
2482 		iova += unmapped_page;
2483 		unmapped += unmapped_page;
2484 	}
2485 
2486 	trace_unmap(orig_iova, size, unmapped);
2487 	return unmapped;
2488 }
2489 
2490 size_t iommu_unmap(struct iommu_domain *domain,
2491 		   unsigned long iova, size_t size)
2492 {
2493 	struct iommu_iotlb_gather iotlb_gather;
2494 	size_t ret;
2495 
2496 	iommu_iotlb_gather_init(&iotlb_gather);
2497 	ret = __iommu_unmap(domain, iova, size, &iotlb_gather);
2498 	iommu_iotlb_sync(domain, &iotlb_gather);
2499 
2500 	return ret;
2501 }
2502 EXPORT_SYMBOL_GPL(iommu_unmap);
2503 
2504 size_t iommu_unmap_fast(struct iommu_domain *domain,
2505 			unsigned long iova, size_t size,
2506 			struct iommu_iotlb_gather *iotlb_gather)
2507 {
2508 	return __iommu_unmap(domain, iova, size, iotlb_gather);
2509 }
2510 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
2511 
2512 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2513 		     struct scatterlist *sg, unsigned int nents, int prot,
2514 		     gfp_t gfp)
2515 {
2516 	const struct iommu_domain_ops *ops = domain->ops;
2517 	size_t len = 0, mapped = 0;
2518 	phys_addr_t start;
2519 	unsigned int i = 0;
2520 	int ret;
2521 
2522 	might_sleep_if(gfpflags_allow_blocking(gfp));
2523 
2524 	/* Discourage passing strange GFP flags */
2525 	if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 |
2526 				__GFP_HIGHMEM)))
2527 		return -EINVAL;
2528 
2529 	while (i <= nents) {
2530 		phys_addr_t s_phys = sg_phys(sg);
2531 
2532 		if (len && s_phys != start + len) {
2533 			ret = __iommu_map(domain, iova + mapped, start,
2534 					len, prot, gfp);
2535 
2536 			if (ret)
2537 				goto out_err;
2538 
2539 			mapped += len;
2540 			len = 0;
2541 		}
2542 
2543 		if (sg_dma_is_bus_address(sg))
2544 			goto next;
2545 
2546 		if (len) {
2547 			len += sg->length;
2548 		} else {
2549 			len = sg->length;
2550 			start = s_phys;
2551 		}
2552 
2553 next:
2554 		if (++i < nents)
2555 			sg = sg_next(sg);
2556 	}
2557 
2558 	if (ops->iotlb_sync_map)
2559 		ops->iotlb_sync_map(domain, iova, mapped);
2560 	return mapped;
2561 
2562 out_err:
2563 	/* undo mappings already done */
2564 	iommu_unmap(domain, iova, mapped);
2565 
2566 	return ret;
2567 }
2568 EXPORT_SYMBOL_GPL(iommu_map_sg);
2569 
2570 /**
2571  * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2572  * @domain: the iommu domain where the fault has happened
2573  * @dev: the device where the fault has happened
2574  * @iova: the faulting address
2575  * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2576  *
2577  * This function should be called by the low-level IOMMU implementations
2578  * whenever IOMMU faults happen, to allow high-level users, that are
2579  * interested in such events, to know about them.
2580  *
2581  * This event may be useful for several possible use cases:
2582  * - mere logging of the event
2583  * - dynamic TLB/PTE loading
2584  * - if restarting of the faulting device is required
2585  *
2586  * Returns 0 on success and an appropriate error code otherwise (if dynamic
2587  * PTE/TLB loading will one day be supported, implementations will be able
2588  * to tell whether it succeeded or not according to this return value).
2589  *
2590  * Specifically, -ENOSYS is returned if a fault handler isn't installed
2591  * (though fault handlers can also return -ENOSYS, in case they want to
2592  * elicit the default behavior of the IOMMU drivers).
2593  */
2594 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2595 		       unsigned long iova, int flags)
2596 {
2597 	int ret = -ENOSYS;
2598 
2599 	/*
2600 	 * if upper layers showed interest and installed a fault handler,
2601 	 * invoke it.
2602 	 */
2603 	if (domain->handler)
2604 		ret = domain->handler(domain, dev, iova, flags,
2605 						domain->handler_token);
2606 
2607 	trace_io_page_fault(dev, iova, flags);
2608 	return ret;
2609 }
2610 EXPORT_SYMBOL_GPL(report_iommu_fault);
2611 
2612 static int __init iommu_init(void)
2613 {
2614 	iommu_group_kset = kset_create_and_add("iommu_groups",
2615 					       NULL, kernel_kobj);
2616 	BUG_ON(!iommu_group_kset);
2617 
2618 	iommu_debugfs_setup();
2619 
2620 	return 0;
2621 }
2622 core_initcall(iommu_init);
2623 
2624 int iommu_enable_nesting(struct iommu_domain *domain)
2625 {
2626 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2627 		return -EINVAL;
2628 	if (!domain->ops->enable_nesting)
2629 		return -EINVAL;
2630 	return domain->ops->enable_nesting(domain);
2631 }
2632 EXPORT_SYMBOL_GPL(iommu_enable_nesting);
2633 
2634 int iommu_set_pgtable_quirks(struct iommu_domain *domain,
2635 		unsigned long quirk)
2636 {
2637 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2638 		return -EINVAL;
2639 	if (!domain->ops->set_pgtable_quirks)
2640 		return -EINVAL;
2641 	return domain->ops->set_pgtable_quirks(domain, quirk);
2642 }
2643 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks);
2644 
2645 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2646 {
2647 	const struct iommu_ops *ops = dev_iommu_ops(dev);
2648 
2649 	if (ops->get_resv_regions)
2650 		ops->get_resv_regions(dev, list);
2651 }
2652 
2653 /**
2654  * iommu_put_resv_regions - release resered regions
2655  * @dev: device for which to free reserved regions
2656  * @list: reserved region list for device
2657  *
2658  * This releases a reserved region list acquired by iommu_get_resv_regions().
2659  */
2660 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2661 {
2662 	struct iommu_resv_region *entry, *next;
2663 
2664 	list_for_each_entry_safe(entry, next, list, list) {
2665 		if (entry->free)
2666 			entry->free(dev, entry);
2667 		else
2668 			kfree(entry);
2669 	}
2670 }
2671 EXPORT_SYMBOL(iommu_put_resv_regions);
2672 
2673 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2674 						  size_t length, int prot,
2675 						  enum iommu_resv_type type,
2676 						  gfp_t gfp)
2677 {
2678 	struct iommu_resv_region *region;
2679 
2680 	region = kzalloc(sizeof(*region), gfp);
2681 	if (!region)
2682 		return NULL;
2683 
2684 	INIT_LIST_HEAD(&region->list);
2685 	region->start = start;
2686 	region->length = length;
2687 	region->prot = prot;
2688 	region->type = type;
2689 	return region;
2690 }
2691 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region);
2692 
2693 void iommu_set_default_passthrough(bool cmd_line)
2694 {
2695 	if (cmd_line)
2696 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2697 	iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
2698 }
2699 
2700 void iommu_set_default_translated(bool cmd_line)
2701 {
2702 	if (cmd_line)
2703 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2704 	iommu_def_domain_type = IOMMU_DOMAIN_DMA;
2705 }
2706 
2707 bool iommu_default_passthrough(void)
2708 {
2709 	return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY;
2710 }
2711 EXPORT_SYMBOL_GPL(iommu_default_passthrough);
2712 
2713 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode)
2714 {
2715 	const struct iommu_ops *ops = NULL;
2716 	struct iommu_device *iommu;
2717 
2718 	spin_lock(&iommu_device_lock);
2719 	list_for_each_entry(iommu, &iommu_device_list, list)
2720 		if (iommu->fwnode == fwnode) {
2721 			ops = iommu->ops;
2722 			break;
2723 		}
2724 	spin_unlock(&iommu_device_lock);
2725 	return ops;
2726 }
2727 
2728 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
2729 		      const struct iommu_ops *ops)
2730 {
2731 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2732 
2733 	if (fwspec)
2734 		return ops == fwspec->ops ? 0 : -EINVAL;
2735 
2736 	if (!dev_iommu_get(dev))
2737 		return -ENOMEM;
2738 
2739 	/* Preallocate for the overwhelmingly common case of 1 ID */
2740 	fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL);
2741 	if (!fwspec)
2742 		return -ENOMEM;
2743 
2744 	of_node_get(to_of_node(iommu_fwnode));
2745 	fwspec->iommu_fwnode = iommu_fwnode;
2746 	fwspec->ops = ops;
2747 	dev_iommu_fwspec_set(dev, fwspec);
2748 	return 0;
2749 }
2750 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2751 
2752 void iommu_fwspec_free(struct device *dev)
2753 {
2754 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2755 
2756 	if (fwspec) {
2757 		fwnode_handle_put(fwspec->iommu_fwnode);
2758 		kfree(fwspec);
2759 		dev_iommu_fwspec_set(dev, NULL);
2760 	}
2761 }
2762 EXPORT_SYMBOL_GPL(iommu_fwspec_free);
2763 
2764 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids)
2765 {
2766 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2767 	int i, new_num;
2768 
2769 	if (!fwspec)
2770 		return -EINVAL;
2771 
2772 	new_num = fwspec->num_ids + num_ids;
2773 	if (new_num > 1) {
2774 		fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num),
2775 				  GFP_KERNEL);
2776 		if (!fwspec)
2777 			return -ENOMEM;
2778 
2779 		dev_iommu_fwspec_set(dev, fwspec);
2780 	}
2781 
2782 	for (i = 0; i < num_ids; i++)
2783 		fwspec->ids[fwspec->num_ids + i] = ids[i];
2784 
2785 	fwspec->num_ids = new_num;
2786 	return 0;
2787 }
2788 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2789 
2790 /*
2791  * Per device IOMMU features.
2792  */
2793 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat)
2794 {
2795 	if (dev->iommu && dev->iommu->iommu_dev) {
2796 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2797 
2798 		if (ops->dev_enable_feat)
2799 			return ops->dev_enable_feat(dev, feat);
2800 	}
2801 
2802 	return -ENODEV;
2803 }
2804 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature);
2805 
2806 /*
2807  * The device drivers should do the necessary cleanups before calling this.
2808  */
2809 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat)
2810 {
2811 	if (dev->iommu && dev->iommu->iommu_dev) {
2812 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2813 
2814 		if (ops->dev_disable_feat)
2815 			return ops->dev_disable_feat(dev, feat);
2816 	}
2817 
2818 	return -EBUSY;
2819 }
2820 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature);
2821 
2822 /**
2823  * iommu_setup_default_domain - Set the default_domain for the group
2824  * @group: Group to change
2825  * @target_type: Domain type to set as the default_domain
2826  *
2827  * Allocate a default domain and set it as the current domain on the group. If
2828  * the group already has a default domain it will be changed to the target_type.
2829  * When target_type is 0 the default domain is selected based on driver and
2830  * system preferences.
2831  */
2832 static int iommu_setup_default_domain(struct iommu_group *group,
2833 				      int target_type)
2834 {
2835 	struct iommu_domain *old_dom = group->default_domain;
2836 	struct group_device *gdev;
2837 	struct iommu_domain *dom;
2838 	bool direct_failed;
2839 	int req_type;
2840 	int ret;
2841 
2842 	lockdep_assert_held(&group->mutex);
2843 
2844 	req_type = iommu_get_default_domain_type(group, target_type);
2845 	if (req_type < 0)
2846 		return -EINVAL;
2847 
2848 	/*
2849 	 * There are still some drivers which don't support default domains, so
2850 	 * we ignore the failure and leave group->default_domain NULL.
2851 	 *
2852 	 * We assume that the iommu driver starts up the device in
2853 	 * 'set_platform_dma_ops' mode if it does not support default domains.
2854 	 */
2855 	dom = iommu_group_alloc_default_domain(group, req_type);
2856 	if (!dom) {
2857 		/* Once in default_domain mode we never leave */
2858 		if (group->default_domain)
2859 			return -ENODEV;
2860 		group->default_domain = NULL;
2861 		return 0;
2862 	}
2863 
2864 	if (group->default_domain == dom)
2865 		return 0;
2866 
2867 	/*
2868 	 * IOMMU_RESV_DIRECT and IOMMU_RESV_DIRECT_RELAXABLE regions must be
2869 	 * mapped before their device is attached, in order to guarantee
2870 	 * continuity with any FW activity
2871 	 */
2872 	direct_failed = false;
2873 	for_each_group_device(group, gdev) {
2874 		if (iommu_create_device_direct_mappings(dom, gdev->dev)) {
2875 			direct_failed = true;
2876 			dev_warn_once(
2877 				gdev->dev->iommu->iommu_dev->dev,
2878 				"IOMMU driver was not able to establish FW requested direct mapping.");
2879 		}
2880 	}
2881 
2882 	/* We must set default_domain early for __iommu_device_set_domain */
2883 	group->default_domain = dom;
2884 	if (!group->domain) {
2885 		/*
2886 		 * Drivers are not allowed to fail the first domain attach.
2887 		 * The only way to recover from this is to fail attaching the
2888 		 * iommu driver and call ops->release_device. Put the domain
2889 		 * in group->default_domain so it is freed after.
2890 		 */
2891 		ret = __iommu_group_set_domain_internal(
2892 			group, dom, IOMMU_SET_DOMAIN_MUST_SUCCEED);
2893 		if (WARN_ON(ret))
2894 			goto out_free;
2895 	} else {
2896 		ret = __iommu_group_set_domain(group, dom);
2897 		if (ret) {
2898 			iommu_domain_free(dom);
2899 			group->default_domain = old_dom;
2900 			return ret;
2901 		}
2902 	}
2903 
2904 	/*
2905 	 * Drivers are supposed to allow mappings to be installed in a domain
2906 	 * before device attachment, but some don't. Hack around this defect by
2907 	 * trying again after attaching. If this happens it means the device
2908 	 * will not continuously have the IOMMU_RESV_DIRECT map.
2909 	 */
2910 	if (direct_failed) {
2911 		for_each_group_device(group, gdev) {
2912 			ret = iommu_create_device_direct_mappings(dom, gdev->dev);
2913 			if (ret)
2914 				goto err_restore;
2915 		}
2916 	}
2917 
2918 err_restore:
2919 	if (old_dom) {
2920 		__iommu_group_set_domain_internal(
2921 			group, old_dom, IOMMU_SET_DOMAIN_MUST_SUCCEED);
2922 		iommu_domain_free(dom);
2923 		old_dom = NULL;
2924 	}
2925 out_free:
2926 	if (old_dom)
2927 		iommu_domain_free(old_dom);
2928 	return ret;
2929 }
2930 
2931 /*
2932  * Changing the default domain through sysfs requires the users to unbind the
2933  * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ
2934  * transition. Return failure if this isn't met.
2935  *
2936  * We need to consider the race between this and the device release path.
2937  * group->mutex is used here to guarantee that the device release path
2938  * will not be entered at the same time.
2939  */
2940 static ssize_t iommu_group_store_type(struct iommu_group *group,
2941 				      const char *buf, size_t count)
2942 {
2943 	struct group_device *gdev;
2944 	int ret, req_type;
2945 
2946 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
2947 		return -EACCES;
2948 
2949 	if (WARN_ON(!group) || !group->default_domain)
2950 		return -EINVAL;
2951 
2952 	if (sysfs_streq(buf, "identity"))
2953 		req_type = IOMMU_DOMAIN_IDENTITY;
2954 	else if (sysfs_streq(buf, "DMA"))
2955 		req_type = IOMMU_DOMAIN_DMA;
2956 	else if (sysfs_streq(buf, "DMA-FQ"))
2957 		req_type = IOMMU_DOMAIN_DMA_FQ;
2958 	else if (sysfs_streq(buf, "auto"))
2959 		req_type = 0;
2960 	else
2961 		return -EINVAL;
2962 
2963 	mutex_lock(&group->mutex);
2964 	/* We can bring up a flush queue without tearing down the domain. */
2965 	if (req_type == IOMMU_DOMAIN_DMA_FQ &&
2966 	    group->default_domain->type == IOMMU_DOMAIN_DMA) {
2967 		ret = iommu_dma_init_fq(group->default_domain);
2968 		if (ret)
2969 			goto out_unlock;
2970 
2971 		group->default_domain->type = IOMMU_DOMAIN_DMA_FQ;
2972 		ret = count;
2973 		goto out_unlock;
2974 	}
2975 
2976 	/* Otherwise, ensure that device exists and no driver is bound. */
2977 	if (list_empty(&group->devices) || group->owner_cnt) {
2978 		ret = -EPERM;
2979 		goto out_unlock;
2980 	}
2981 
2982 	ret = iommu_setup_default_domain(group, req_type);
2983 	if (ret)
2984 		goto out_unlock;
2985 
2986 	/*
2987 	 * Release the mutex here because ops->probe_finalize() call-back of
2988 	 * some vendor IOMMU drivers calls arm_iommu_attach_device() which
2989 	 * in-turn might call back into IOMMU core code, where it tries to take
2990 	 * group->mutex, resulting in a deadlock.
2991 	 */
2992 	mutex_unlock(&group->mutex);
2993 
2994 	/* Make sure dma_ops is appropriatley set */
2995 	for_each_group_device(group, gdev)
2996 		iommu_group_do_probe_finalize(gdev->dev);
2997 	return count;
2998 
2999 out_unlock:
3000 	mutex_unlock(&group->mutex);
3001 	return ret ?: count;
3002 }
3003 
3004 static bool iommu_is_default_domain(struct iommu_group *group)
3005 {
3006 	if (group->domain == group->default_domain)
3007 		return true;
3008 
3009 	/*
3010 	 * If the default domain was set to identity and it is still an identity
3011 	 * domain then we consider this a pass. This happens because of
3012 	 * amd_iommu_init_device() replacing the default idenytity domain with an
3013 	 * identity domain that has a different configuration for AMDGPU.
3014 	 */
3015 	if (group->default_domain &&
3016 	    group->default_domain->type == IOMMU_DOMAIN_IDENTITY &&
3017 	    group->domain && group->domain->type == IOMMU_DOMAIN_IDENTITY)
3018 		return true;
3019 	return false;
3020 }
3021 
3022 /**
3023  * iommu_device_use_default_domain() - Device driver wants to handle device
3024  *                                     DMA through the kernel DMA API.
3025  * @dev: The device.
3026  *
3027  * The device driver about to bind @dev wants to do DMA through the kernel
3028  * DMA API. Return 0 if it is allowed, otherwise an error.
3029  */
3030 int iommu_device_use_default_domain(struct device *dev)
3031 {
3032 	struct iommu_group *group = iommu_group_get(dev);
3033 	int ret = 0;
3034 
3035 	if (!group)
3036 		return 0;
3037 
3038 	mutex_lock(&group->mutex);
3039 	if (group->owner_cnt) {
3040 		if (group->owner || !iommu_is_default_domain(group) ||
3041 		    !xa_empty(&group->pasid_array)) {
3042 			ret = -EBUSY;
3043 			goto unlock_out;
3044 		}
3045 	}
3046 
3047 	group->owner_cnt++;
3048 
3049 unlock_out:
3050 	mutex_unlock(&group->mutex);
3051 	iommu_group_put(group);
3052 
3053 	return ret;
3054 }
3055 
3056 /**
3057  * iommu_device_unuse_default_domain() - Device driver stops handling device
3058  *                                       DMA through the kernel DMA API.
3059  * @dev: The device.
3060  *
3061  * The device driver doesn't want to do DMA through kernel DMA API anymore.
3062  * It must be called after iommu_device_use_default_domain().
3063  */
3064 void iommu_device_unuse_default_domain(struct device *dev)
3065 {
3066 	struct iommu_group *group = iommu_group_get(dev);
3067 
3068 	if (!group)
3069 		return;
3070 
3071 	mutex_lock(&group->mutex);
3072 	if (!WARN_ON(!group->owner_cnt || !xa_empty(&group->pasid_array)))
3073 		group->owner_cnt--;
3074 
3075 	mutex_unlock(&group->mutex);
3076 	iommu_group_put(group);
3077 }
3078 
3079 static int __iommu_group_alloc_blocking_domain(struct iommu_group *group)
3080 {
3081 	struct group_device *dev =
3082 		list_first_entry(&group->devices, struct group_device, list);
3083 
3084 	if (group->blocking_domain)
3085 		return 0;
3086 
3087 	group->blocking_domain =
3088 		__iommu_domain_alloc(dev->dev->bus, IOMMU_DOMAIN_BLOCKED);
3089 	if (!group->blocking_domain) {
3090 		/*
3091 		 * For drivers that do not yet understand IOMMU_DOMAIN_BLOCKED
3092 		 * create an empty domain instead.
3093 		 */
3094 		group->blocking_domain = __iommu_domain_alloc(
3095 			dev->dev->bus, IOMMU_DOMAIN_UNMANAGED);
3096 		if (!group->blocking_domain)
3097 			return -EINVAL;
3098 	}
3099 	return 0;
3100 }
3101 
3102 static int __iommu_take_dma_ownership(struct iommu_group *group, void *owner)
3103 {
3104 	int ret;
3105 
3106 	if ((group->domain && group->domain != group->default_domain) ||
3107 	    !xa_empty(&group->pasid_array))
3108 		return -EBUSY;
3109 
3110 	ret = __iommu_group_alloc_blocking_domain(group);
3111 	if (ret)
3112 		return ret;
3113 	ret = __iommu_group_set_domain(group, group->blocking_domain);
3114 	if (ret)
3115 		return ret;
3116 
3117 	group->owner = owner;
3118 	group->owner_cnt++;
3119 	return 0;
3120 }
3121 
3122 /**
3123  * iommu_group_claim_dma_owner() - Set DMA ownership of a group
3124  * @group: The group.
3125  * @owner: Caller specified pointer. Used for exclusive ownership.
3126  *
3127  * This is to support backward compatibility for vfio which manages the dma
3128  * ownership in iommu_group level. New invocations on this interface should be
3129  * prohibited. Only a single owner may exist for a group.
3130  */
3131 int iommu_group_claim_dma_owner(struct iommu_group *group, void *owner)
3132 {
3133 	int ret = 0;
3134 
3135 	if (WARN_ON(!owner))
3136 		return -EINVAL;
3137 
3138 	mutex_lock(&group->mutex);
3139 	if (group->owner_cnt) {
3140 		ret = -EPERM;
3141 		goto unlock_out;
3142 	}
3143 
3144 	ret = __iommu_take_dma_ownership(group, owner);
3145 unlock_out:
3146 	mutex_unlock(&group->mutex);
3147 
3148 	return ret;
3149 }
3150 EXPORT_SYMBOL_GPL(iommu_group_claim_dma_owner);
3151 
3152 /**
3153  * iommu_device_claim_dma_owner() - Set DMA ownership of a device
3154  * @dev: The device.
3155  * @owner: Caller specified pointer. Used for exclusive ownership.
3156  *
3157  * Claim the DMA ownership of a device. Multiple devices in the same group may
3158  * concurrently claim ownership if they present the same owner value. Returns 0
3159  * on success and error code on failure
3160  */
3161 int iommu_device_claim_dma_owner(struct device *dev, void *owner)
3162 {
3163 	struct iommu_group *group;
3164 	int ret = 0;
3165 
3166 	if (WARN_ON(!owner))
3167 		return -EINVAL;
3168 
3169 	group = iommu_group_get(dev);
3170 	if (!group)
3171 		return -ENODEV;
3172 
3173 	mutex_lock(&group->mutex);
3174 	if (group->owner_cnt) {
3175 		if (group->owner != owner) {
3176 			ret = -EPERM;
3177 			goto unlock_out;
3178 		}
3179 		group->owner_cnt++;
3180 		goto unlock_out;
3181 	}
3182 
3183 	ret = __iommu_take_dma_ownership(group, owner);
3184 unlock_out:
3185 	mutex_unlock(&group->mutex);
3186 	iommu_group_put(group);
3187 
3188 	return ret;
3189 }
3190 EXPORT_SYMBOL_GPL(iommu_device_claim_dma_owner);
3191 
3192 static void __iommu_release_dma_ownership(struct iommu_group *group)
3193 {
3194 	if (WARN_ON(!group->owner_cnt || !group->owner ||
3195 		    !xa_empty(&group->pasid_array)))
3196 		return;
3197 
3198 	group->owner_cnt = 0;
3199 	group->owner = NULL;
3200 	__iommu_group_set_domain_nofail(group, group->default_domain);
3201 }
3202 
3203 /**
3204  * iommu_group_release_dma_owner() - Release DMA ownership of a group
3205  * @dev: The device
3206  *
3207  * Release the DMA ownership claimed by iommu_group_claim_dma_owner().
3208  */
3209 void iommu_group_release_dma_owner(struct iommu_group *group)
3210 {
3211 	mutex_lock(&group->mutex);
3212 	__iommu_release_dma_ownership(group);
3213 	mutex_unlock(&group->mutex);
3214 }
3215 EXPORT_SYMBOL_GPL(iommu_group_release_dma_owner);
3216 
3217 /**
3218  * iommu_device_release_dma_owner() - Release DMA ownership of a device
3219  * @group: The device.
3220  *
3221  * Release the DMA ownership claimed by iommu_device_claim_dma_owner().
3222  */
3223 void iommu_device_release_dma_owner(struct device *dev)
3224 {
3225 	struct iommu_group *group = iommu_group_get(dev);
3226 
3227 	mutex_lock(&group->mutex);
3228 	if (group->owner_cnt > 1)
3229 		group->owner_cnt--;
3230 	else
3231 		__iommu_release_dma_ownership(group);
3232 	mutex_unlock(&group->mutex);
3233 	iommu_group_put(group);
3234 }
3235 EXPORT_SYMBOL_GPL(iommu_device_release_dma_owner);
3236 
3237 /**
3238  * iommu_group_dma_owner_claimed() - Query group dma ownership status
3239  * @group: The group.
3240  *
3241  * This provides status query on a given group. It is racy and only for
3242  * non-binding status reporting.
3243  */
3244 bool iommu_group_dma_owner_claimed(struct iommu_group *group)
3245 {
3246 	unsigned int user;
3247 
3248 	mutex_lock(&group->mutex);
3249 	user = group->owner_cnt;
3250 	mutex_unlock(&group->mutex);
3251 
3252 	return user;
3253 }
3254 EXPORT_SYMBOL_GPL(iommu_group_dma_owner_claimed);
3255 
3256 static int __iommu_set_group_pasid(struct iommu_domain *domain,
3257 				   struct iommu_group *group, ioasid_t pasid)
3258 {
3259 	struct group_device *device;
3260 	int ret = 0;
3261 
3262 	for_each_group_device(group, device) {
3263 		ret = domain->ops->set_dev_pasid(domain, device->dev, pasid);
3264 		if (ret)
3265 			break;
3266 	}
3267 
3268 	return ret;
3269 }
3270 
3271 static void __iommu_remove_group_pasid(struct iommu_group *group,
3272 				       ioasid_t pasid)
3273 {
3274 	struct group_device *device;
3275 	const struct iommu_ops *ops;
3276 
3277 	for_each_group_device(group, device) {
3278 		ops = dev_iommu_ops(device->dev);
3279 		ops->remove_dev_pasid(device->dev, pasid);
3280 	}
3281 }
3282 
3283 /*
3284  * iommu_attach_device_pasid() - Attach a domain to pasid of device
3285  * @domain: the iommu domain.
3286  * @dev: the attached device.
3287  * @pasid: the pasid of the device.
3288  *
3289  * Return: 0 on success, or an error.
3290  */
3291 int iommu_attach_device_pasid(struct iommu_domain *domain,
3292 			      struct device *dev, ioasid_t pasid)
3293 {
3294 	struct iommu_group *group;
3295 	void *curr;
3296 	int ret;
3297 
3298 	if (!domain->ops->set_dev_pasid)
3299 		return -EOPNOTSUPP;
3300 
3301 	group = iommu_group_get(dev);
3302 	if (!group)
3303 		return -ENODEV;
3304 
3305 	mutex_lock(&group->mutex);
3306 	curr = xa_cmpxchg(&group->pasid_array, pasid, NULL, domain, GFP_KERNEL);
3307 	if (curr) {
3308 		ret = xa_err(curr) ? : -EBUSY;
3309 		goto out_unlock;
3310 	}
3311 
3312 	ret = __iommu_set_group_pasid(domain, group, pasid);
3313 	if (ret) {
3314 		__iommu_remove_group_pasid(group, pasid);
3315 		xa_erase(&group->pasid_array, pasid);
3316 	}
3317 out_unlock:
3318 	mutex_unlock(&group->mutex);
3319 	iommu_group_put(group);
3320 
3321 	return ret;
3322 }
3323 EXPORT_SYMBOL_GPL(iommu_attach_device_pasid);
3324 
3325 /*
3326  * iommu_detach_device_pasid() - Detach the domain from pasid of device
3327  * @domain: the iommu domain.
3328  * @dev: the attached device.
3329  * @pasid: the pasid of the device.
3330  *
3331  * The @domain must have been attached to @pasid of the @dev with
3332  * iommu_attach_device_pasid().
3333  */
3334 void iommu_detach_device_pasid(struct iommu_domain *domain, struct device *dev,
3335 			       ioasid_t pasid)
3336 {
3337 	struct iommu_group *group = iommu_group_get(dev);
3338 
3339 	mutex_lock(&group->mutex);
3340 	__iommu_remove_group_pasid(group, pasid);
3341 	WARN_ON(xa_erase(&group->pasid_array, pasid) != domain);
3342 	mutex_unlock(&group->mutex);
3343 
3344 	iommu_group_put(group);
3345 }
3346 EXPORT_SYMBOL_GPL(iommu_detach_device_pasid);
3347 
3348 /*
3349  * iommu_get_domain_for_dev_pasid() - Retrieve domain for @pasid of @dev
3350  * @dev: the queried device
3351  * @pasid: the pasid of the device
3352  * @type: matched domain type, 0 for any match
3353  *
3354  * This is a variant of iommu_get_domain_for_dev(). It returns the existing
3355  * domain attached to pasid of a device. Callers must hold a lock around this
3356  * function, and both iommu_attach/detach_dev_pasid() whenever a domain of
3357  * type is being manipulated. This API does not internally resolve races with
3358  * attach/detach.
3359  *
3360  * Return: attached domain on success, NULL otherwise.
3361  */
3362 struct iommu_domain *iommu_get_domain_for_dev_pasid(struct device *dev,
3363 						    ioasid_t pasid,
3364 						    unsigned int type)
3365 {
3366 	struct iommu_domain *domain;
3367 	struct iommu_group *group;
3368 
3369 	group = iommu_group_get(dev);
3370 	if (!group)
3371 		return NULL;
3372 
3373 	xa_lock(&group->pasid_array);
3374 	domain = xa_load(&group->pasid_array, pasid);
3375 	if (type && domain && domain->type != type)
3376 		domain = ERR_PTR(-EBUSY);
3377 	xa_unlock(&group->pasid_array);
3378 	iommu_group_put(group);
3379 
3380 	return domain;
3381 }
3382 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev_pasid);
3383 
3384 struct iommu_domain *iommu_sva_domain_alloc(struct device *dev,
3385 					    struct mm_struct *mm)
3386 {
3387 	const struct iommu_ops *ops = dev_iommu_ops(dev);
3388 	struct iommu_domain *domain;
3389 
3390 	domain = ops->domain_alloc(IOMMU_DOMAIN_SVA);
3391 	if (!domain)
3392 		return NULL;
3393 
3394 	domain->type = IOMMU_DOMAIN_SVA;
3395 	mmgrab(mm);
3396 	domain->mm = mm;
3397 	domain->iopf_handler = iommu_sva_handle_iopf;
3398 	domain->fault_data = mm;
3399 
3400 	return domain;
3401 }
3402