xref: /openbmc/linux/drivers/iommu/iommu.c (revision d2574c33)
1 /*
2  * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3  * Author: Joerg Roedel <jroedel@suse.de>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published
7  * by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
17  */
18 
19 #define pr_fmt(fmt)    "iommu: " fmt
20 
21 #include <linux/device.h>
22 #include <linux/kernel.h>
23 #include <linux/bug.h>
24 #include <linux/types.h>
25 #include <linux/init.h>
26 #include <linux/export.h>
27 #include <linux/slab.h>
28 #include <linux/errno.h>
29 #include <linux/iommu.h>
30 #include <linux/idr.h>
31 #include <linux/notifier.h>
32 #include <linux/err.h>
33 #include <linux/pci.h>
34 #include <linux/bitops.h>
35 #include <linux/property.h>
36 #include <linux/fsl/mc.h>
37 #include <trace/events/iommu.h>
38 
39 static struct kset *iommu_group_kset;
40 static DEFINE_IDA(iommu_group_ida);
41 #ifdef CONFIG_IOMMU_DEFAULT_PASSTHROUGH
42 static unsigned int iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
43 #else
44 static unsigned int iommu_def_domain_type = IOMMU_DOMAIN_DMA;
45 #endif
46 static bool iommu_dma_strict __read_mostly = true;
47 
48 struct iommu_callback_data {
49 	const struct iommu_ops *ops;
50 };
51 
52 struct iommu_group {
53 	struct kobject kobj;
54 	struct kobject *devices_kobj;
55 	struct list_head devices;
56 	struct mutex mutex;
57 	struct blocking_notifier_head notifier;
58 	void *iommu_data;
59 	void (*iommu_data_release)(void *iommu_data);
60 	char *name;
61 	int id;
62 	struct iommu_domain *default_domain;
63 	struct iommu_domain *domain;
64 };
65 
66 struct group_device {
67 	struct list_head list;
68 	struct device *dev;
69 	char *name;
70 };
71 
72 struct iommu_group_attribute {
73 	struct attribute attr;
74 	ssize_t (*show)(struct iommu_group *group, char *buf);
75 	ssize_t (*store)(struct iommu_group *group,
76 			 const char *buf, size_t count);
77 };
78 
79 static const char * const iommu_group_resv_type_string[] = {
80 	[IOMMU_RESV_DIRECT]	= "direct",
81 	[IOMMU_RESV_RESERVED]	= "reserved",
82 	[IOMMU_RESV_MSI]	= "msi",
83 	[IOMMU_RESV_SW_MSI]	= "msi",
84 };
85 
86 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store)		\
87 struct iommu_group_attribute iommu_group_attr_##_name =		\
88 	__ATTR(_name, _mode, _show, _store)
89 
90 #define to_iommu_group_attr(_attr)	\
91 	container_of(_attr, struct iommu_group_attribute, attr)
92 #define to_iommu_group(_kobj)		\
93 	container_of(_kobj, struct iommu_group, kobj)
94 
95 static LIST_HEAD(iommu_device_list);
96 static DEFINE_SPINLOCK(iommu_device_lock);
97 
98 int iommu_device_register(struct iommu_device *iommu)
99 {
100 	spin_lock(&iommu_device_lock);
101 	list_add_tail(&iommu->list, &iommu_device_list);
102 	spin_unlock(&iommu_device_lock);
103 
104 	return 0;
105 }
106 
107 void iommu_device_unregister(struct iommu_device *iommu)
108 {
109 	spin_lock(&iommu_device_lock);
110 	list_del(&iommu->list);
111 	spin_unlock(&iommu_device_lock);
112 }
113 
114 int iommu_probe_device(struct device *dev)
115 {
116 	const struct iommu_ops *ops = dev->bus->iommu_ops;
117 	int ret = -EINVAL;
118 
119 	WARN_ON(dev->iommu_group);
120 
121 	if (ops)
122 		ret = ops->add_device(dev);
123 
124 	return ret;
125 }
126 
127 void iommu_release_device(struct device *dev)
128 {
129 	const struct iommu_ops *ops = dev->bus->iommu_ops;
130 
131 	if (dev->iommu_group)
132 		ops->remove_device(dev);
133 }
134 
135 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
136 						 unsigned type);
137 static int __iommu_attach_device(struct iommu_domain *domain,
138 				 struct device *dev);
139 static int __iommu_attach_group(struct iommu_domain *domain,
140 				struct iommu_group *group);
141 static void __iommu_detach_group(struct iommu_domain *domain,
142 				 struct iommu_group *group);
143 
144 static int __init iommu_set_def_domain_type(char *str)
145 {
146 	bool pt;
147 	int ret;
148 
149 	ret = kstrtobool(str, &pt);
150 	if (ret)
151 		return ret;
152 
153 	iommu_def_domain_type = pt ? IOMMU_DOMAIN_IDENTITY : IOMMU_DOMAIN_DMA;
154 	return 0;
155 }
156 early_param("iommu.passthrough", iommu_set_def_domain_type);
157 
158 static int __init iommu_dma_setup(char *str)
159 {
160 	return kstrtobool(str, &iommu_dma_strict);
161 }
162 early_param("iommu.strict", iommu_dma_setup);
163 
164 static ssize_t iommu_group_attr_show(struct kobject *kobj,
165 				     struct attribute *__attr, char *buf)
166 {
167 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
168 	struct iommu_group *group = to_iommu_group(kobj);
169 	ssize_t ret = -EIO;
170 
171 	if (attr->show)
172 		ret = attr->show(group, buf);
173 	return ret;
174 }
175 
176 static ssize_t iommu_group_attr_store(struct kobject *kobj,
177 				      struct attribute *__attr,
178 				      const char *buf, size_t count)
179 {
180 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
181 	struct iommu_group *group = to_iommu_group(kobj);
182 	ssize_t ret = -EIO;
183 
184 	if (attr->store)
185 		ret = attr->store(group, buf, count);
186 	return ret;
187 }
188 
189 static const struct sysfs_ops iommu_group_sysfs_ops = {
190 	.show = iommu_group_attr_show,
191 	.store = iommu_group_attr_store,
192 };
193 
194 static int iommu_group_create_file(struct iommu_group *group,
195 				   struct iommu_group_attribute *attr)
196 {
197 	return sysfs_create_file(&group->kobj, &attr->attr);
198 }
199 
200 static void iommu_group_remove_file(struct iommu_group *group,
201 				    struct iommu_group_attribute *attr)
202 {
203 	sysfs_remove_file(&group->kobj, &attr->attr);
204 }
205 
206 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
207 {
208 	return sprintf(buf, "%s\n", group->name);
209 }
210 
211 /**
212  * iommu_insert_resv_region - Insert a new region in the
213  * list of reserved regions.
214  * @new: new region to insert
215  * @regions: list of regions
216  *
217  * The new element is sorted by address with respect to the other
218  * regions of the same type. In case it overlaps with another
219  * region of the same type, regions are merged. In case it
220  * overlaps with another region of different type, regions are
221  * not merged.
222  */
223 static int iommu_insert_resv_region(struct iommu_resv_region *new,
224 				    struct list_head *regions)
225 {
226 	struct iommu_resv_region *region;
227 	phys_addr_t start = new->start;
228 	phys_addr_t end = new->start + new->length - 1;
229 	struct list_head *pos = regions->next;
230 
231 	while (pos != regions) {
232 		struct iommu_resv_region *entry =
233 			list_entry(pos, struct iommu_resv_region, list);
234 		phys_addr_t a = entry->start;
235 		phys_addr_t b = entry->start + entry->length - 1;
236 		int type = entry->type;
237 
238 		if (end < a) {
239 			goto insert;
240 		} else if (start > b) {
241 			pos = pos->next;
242 		} else if ((start >= a) && (end <= b)) {
243 			if (new->type == type)
244 				goto done;
245 			else
246 				pos = pos->next;
247 		} else {
248 			if (new->type == type) {
249 				phys_addr_t new_start = min(a, start);
250 				phys_addr_t new_end = max(b, end);
251 
252 				list_del(&entry->list);
253 				entry->start = new_start;
254 				entry->length = new_end - new_start + 1;
255 				iommu_insert_resv_region(entry, regions);
256 			} else {
257 				pos = pos->next;
258 			}
259 		}
260 	}
261 insert:
262 	region = iommu_alloc_resv_region(new->start, new->length,
263 					 new->prot, new->type);
264 	if (!region)
265 		return -ENOMEM;
266 
267 	list_add_tail(&region->list, pos);
268 done:
269 	return 0;
270 }
271 
272 static int
273 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
274 				 struct list_head *group_resv_regions)
275 {
276 	struct iommu_resv_region *entry;
277 	int ret = 0;
278 
279 	list_for_each_entry(entry, dev_resv_regions, list) {
280 		ret = iommu_insert_resv_region(entry, group_resv_regions);
281 		if (ret)
282 			break;
283 	}
284 	return ret;
285 }
286 
287 int iommu_get_group_resv_regions(struct iommu_group *group,
288 				 struct list_head *head)
289 {
290 	struct group_device *device;
291 	int ret = 0;
292 
293 	mutex_lock(&group->mutex);
294 	list_for_each_entry(device, &group->devices, list) {
295 		struct list_head dev_resv_regions;
296 
297 		INIT_LIST_HEAD(&dev_resv_regions);
298 		iommu_get_resv_regions(device->dev, &dev_resv_regions);
299 		ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
300 		iommu_put_resv_regions(device->dev, &dev_resv_regions);
301 		if (ret)
302 			break;
303 	}
304 	mutex_unlock(&group->mutex);
305 	return ret;
306 }
307 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
308 
309 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
310 					     char *buf)
311 {
312 	struct iommu_resv_region *region, *next;
313 	struct list_head group_resv_regions;
314 	char *str = buf;
315 
316 	INIT_LIST_HEAD(&group_resv_regions);
317 	iommu_get_group_resv_regions(group, &group_resv_regions);
318 
319 	list_for_each_entry_safe(region, next, &group_resv_regions, list) {
320 		str += sprintf(str, "0x%016llx 0x%016llx %s\n",
321 			       (long long int)region->start,
322 			       (long long int)(region->start +
323 						region->length - 1),
324 			       iommu_group_resv_type_string[region->type]);
325 		kfree(region);
326 	}
327 
328 	return (str - buf);
329 }
330 
331 static ssize_t iommu_group_show_type(struct iommu_group *group,
332 				     char *buf)
333 {
334 	char *type = "unknown\n";
335 
336 	if (group->default_domain) {
337 		switch (group->default_domain->type) {
338 		case IOMMU_DOMAIN_BLOCKED:
339 			type = "blocked\n";
340 			break;
341 		case IOMMU_DOMAIN_IDENTITY:
342 			type = "identity\n";
343 			break;
344 		case IOMMU_DOMAIN_UNMANAGED:
345 			type = "unmanaged\n";
346 			break;
347 		case IOMMU_DOMAIN_DMA:
348 			type = "DMA";
349 			break;
350 		}
351 	}
352 	strcpy(buf, type);
353 
354 	return strlen(type);
355 }
356 
357 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
358 
359 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
360 			iommu_group_show_resv_regions, NULL);
361 
362 static IOMMU_GROUP_ATTR(type, 0444, iommu_group_show_type, NULL);
363 
364 static void iommu_group_release(struct kobject *kobj)
365 {
366 	struct iommu_group *group = to_iommu_group(kobj);
367 
368 	pr_debug("Releasing group %d\n", group->id);
369 
370 	if (group->iommu_data_release)
371 		group->iommu_data_release(group->iommu_data);
372 
373 	ida_simple_remove(&iommu_group_ida, group->id);
374 
375 	if (group->default_domain)
376 		iommu_domain_free(group->default_domain);
377 
378 	kfree(group->name);
379 	kfree(group);
380 }
381 
382 static struct kobj_type iommu_group_ktype = {
383 	.sysfs_ops = &iommu_group_sysfs_ops,
384 	.release = iommu_group_release,
385 };
386 
387 /**
388  * iommu_group_alloc - Allocate a new group
389  *
390  * This function is called by an iommu driver to allocate a new iommu
391  * group.  The iommu group represents the minimum granularity of the iommu.
392  * Upon successful return, the caller holds a reference to the supplied
393  * group in order to hold the group until devices are added.  Use
394  * iommu_group_put() to release this extra reference count, allowing the
395  * group to be automatically reclaimed once it has no devices or external
396  * references.
397  */
398 struct iommu_group *iommu_group_alloc(void)
399 {
400 	struct iommu_group *group;
401 	int ret;
402 
403 	group = kzalloc(sizeof(*group), GFP_KERNEL);
404 	if (!group)
405 		return ERR_PTR(-ENOMEM);
406 
407 	group->kobj.kset = iommu_group_kset;
408 	mutex_init(&group->mutex);
409 	INIT_LIST_HEAD(&group->devices);
410 	BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier);
411 
412 	ret = ida_simple_get(&iommu_group_ida, 0, 0, GFP_KERNEL);
413 	if (ret < 0) {
414 		kfree(group);
415 		return ERR_PTR(ret);
416 	}
417 	group->id = ret;
418 
419 	ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
420 				   NULL, "%d", group->id);
421 	if (ret) {
422 		ida_simple_remove(&iommu_group_ida, group->id);
423 		kfree(group);
424 		return ERR_PTR(ret);
425 	}
426 
427 	group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
428 	if (!group->devices_kobj) {
429 		kobject_put(&group->kobj); /* triggers .release & free */
430 		return ERR_PTR(-ENOMEM);
431 	}
432 
433 	/*
434 	 * The devices_kobj holds a reference on the group kobject, so
435 	 * as long as that exists so will the group.  We can therefore
436 	 * use the devices_kobj for reference counting.
437 	 */
438 	kobject_put(&group->kobj);
439 
440 	ret = iommu_group_create_file(group,
441 				      &iommu_group_attr_reserved_regions);
442 	if (ret)
443 		return ERR_PTR(ret);
444 
445 	ret = iommu_group_create_file(group, &iommu_group_attr_type);
446 	if (ret)
447 		return ERR_PTR(ret);
448 
449 	pr_debug("Allocated group %d\n", group->id);
450 
451 	return group;
452 }
453 EXPORT_SYMBOL_GPL(iommu_group_alloc);
454 
455 struct iommu_group *iommu_group_get_by_id(int id)
456 {
457 	struct kobject *group_kobj;
458 	struct iommu_group *group;
459 	const char *name;
460 
461 	if (!iommu_group_kset)
462 		return NULL;
463 
464 	name = kasprintf(GFP_KERNEL, "%d", id);
465 	if (!name)
466 		return NULL;
467 
468 	group_kobj = kset_find_obj(iommu_group_kset, name);
469 	kfree(name);
470 
471 	if (!group_kobj)
472 		return NULL;
473 
474 	group = container_of(group_kobj, struct iommu_group, kobj);
475 	BUG_ON(group->id != id);
476 
477 	kobject_get(group->devices_kobj);
478 	kobject_put(&group->kobj);
479 
480 	return group;
481 }
482 EXPORT_SYMBOL_GPL(iommu_group_get_by_id);
483 
484 /**
485  * iommu_group_get_iommudata - retrieve iommu_data registered for a group
486  * @group: the group
487  *
488  * iommu drivers can store data in the group for use when doing iommu
489  * operations.  This function provides a way to retrieve it.  Caller
490  * should hold a group reference.
491  */
492 void *iommu_group_get_iommudata(struct iommu_group *group)
493 {
494 	return group->iommu_data;
495 }
496 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
497 
498 /**
499  * iommu_group_set_iommudata - set iommu_data for a group
500  * @group: the group
501  * @iommu_data: new data
502  * @release: release function for iommu_data
503  *
504  * iommu drivers can store data in the group for use when doing iommu
505  * operations.  This function provides a way to set the data after
506  * the group has been allocated.  Caller should hold a group reference.
507  */
508 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
509 			       void (*release)(void *iommu_data))
510 {
511 	group->iommu_data = iommu_data;
512 	group->iommu_data_release = release;
513 }
514 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
515 
516 /**
517  * iommu_group_set_name - set name for a group
518  * @group: the group
519  * @name: name
520  *
521  * Allow iommu driver to set a name for a group.  When set it will
522  * appear in a name attribute file under the group in sysfs.
523  */
524 int iommu_group_set_name(struct iommu_group *group, const char *name)
525 {
526 	int ret;
527 
528 	if (group->name) {
529 		iommu_group_remove_file(group, &iommu_group_attr_name);
530 		kfree(group->name);
531 		group->name = NULL;
532 		if (!name)
533 			return 0;
534 	}
535 
536 	group->name = kstrdup(name, GFP_KERNEL);
537 	if (!group->name)
538 		return -ENOMEM;
539 
540 	ret = iommu_group_create_file(group, &iommu_group_attr_name);
541 	if (ret) {
542 		kfree(group->name);
543 		group->name = NULL;
544 		return ret;
545 	}
546 
547 	return 0;
548 }
549 EXPORT_SYMBOL_GPL(iommu_group_set_name);
550 
551 static int iommu_group_create_direct_mappings(struct iommu_group *group,
552 					      struct device *dev)
553 {
554 	struct iommu_domain *domain = group->default_domain;
555 	struct iommu_resv_region *entry;
556 	struct list_head mappings;
557 	unsigned long pg_size;
558 	int ret = 0;
559 
560 	if (!domain || domain->type != IOMMU_DOMAIN_DMA)
561 		return 0;
562 
563 	BUG_ON(!domain->pgsize_bitmap);
564 
565 	pg_size = 1UL << __ffs(domain->pgsize_bitmap);
566 	INIT_LIST_HEAD(&mappings);
567 
568 	iommu_get_resv_regions(dev, &mappings);
569 
570 	/* We need to consider overlapping regions for different devices */
571 	list_for_each_entry(entry, &mappings, list) {
572 		dma_addr_t start, end, addr;
573 
574 		if (domain->ops->apply_resv_region)
575 			domain->ops->apply_resv_region(dev, domain, entry);
576 
577 		start = ALIGN(entry->start, pg_size);
578 		end   = ALIGN(entry->start + entry->length, pg_size);
579 
580 		if (entry->type != IOMMU_RESV_DIRECT)
581 			continue;
582 
583 		for (addr = start; addr < end; addr += pg_size) {
584 			phys_addr_t phys_addr;
585 
586 			phys_addr = iommu_iova_to_phys(domain, addr);
587 			if (phys_addr)
588 				continue;
589 
590 			ret = iommu_map(domain, addr, addr, pg_size, entry->prot);
591 			if (ret)
592 				goto out;
593 		}
594 
595 	}
596 
597 	iommu_flush_tlb_all(domain);
598 
599 out:
600 	iommu_put_resv_regions(dev, &mappings);
601 
602 	return ret;
603 }
604 
605 /**
606  * iommu_group_add_device - add a device to an iommu group
607  * @group: the group into which to add the device (reference should be held)
608  * @dev: the device
609  *
610  * This function is called by an iommu driver to add a device into a
611  * group.  Adding a device increments the group reference count.
612  */
613 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
614 {
615 	int ret, i = 0;
616 	struct group_device *device;
617 
618 	device = kzalloc(sizeof(*device), GFP_KERNEL);
619 	if (!device)
620 		return -ENOMEM;
621 
622 	device->dev = dev;
623 
624 	ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
625 	if (ret)
626 		goto err_free_device;
627 
628 	device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
629 rename:
630 	if (!device->name) {
631 		ret = -ENOMEM;
632 		goto err_remove_link;
633 	}
634 
635 	ret = sysfs_create_link_nowarn(group->devices_kobj,
636 				       &dev->kobj, device->name);
637 	if (ret) {
638 		if (ret == -EEXIST && i >= 0) {
639 			/*
640 			 * Account for the slim chance of collision
641 			 * and append an instance to the name.
642 			 */
643 			kfree(device->name);
644 			device->name = kasprintf(GFP_KERNEL, "%s.%d",
645 						 kobject_name(&dev->kobj), i++);
646 			goto rename;
647 		}
648 		goto err_free_name;
649 	}
650 
651 	kobject_get(group->devices_kobj);
652 
653 	dev->iommu_group = group;
654 
655 	iommu_group_create_direct_mappings(group, dev);
656 
657 	mutex_lock(&group->mutex);
658 	list_add_tail(&device->list, &group->devices);
659 	if (group->domain)
660 		ret = __iommu_attach_device(group->domain, dev);
661 	mutex_unlock(&group->mutex);
662 	if (ret)
663 		goto err_put_group;
664 
665 	/* Notify any listeners about change to group. */
666 	blocking_notifier_call_chain(&group->notifier,
667 				     IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev);
668 
669 	trace_add_device_to_group(group->id, dev);
670 
671 	dev_info(dev, "Adding to iommu group %d\n", group->id);
672 
673 	return 0;
674 
675 err_put_group:
676 	mutex_lock(&group->mutex);
677 	list_del(&device->list);
678 	mutex_unlock(&group->mutex);
679 	dev->iommu_group = NULL;
680 	kobject_put(group->devices_kobj);
681 err_free_name:
682 	kfree(device->name);
683 err_remove_link:
684 	sysfs_remove_link(&dev->kobj, "iommu_group");
685 err_free_device:
686 	kfree(device);
687 	dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
688 	return ret;
689 }
690 EXPORT_SYMBOL_GPL(iommu_group_add_device);
691 
692 /**
693  * iommu_group_remove_device - remove a device from it's current group
694  * @dev: device to be removed
695  *
696  * This function is called by an iommu driver to remove the device from
697  * it's current group.  This decrements the iommu group reference count.
698  */
699 void iommu_group_remove_device(struct device *dev)
700 {
701 	struct iommu_group *group = dev->iommu_group;
702 	struct group_device *tmp_device, *device = NULL;
703 
704 	dev_info(dev, "Removing from iommu group %d\n", group->id);
705 
706 	/* Pre-notify listeners that a device is being removed. */
707 	blocking_notifier_call_chain(&group->notifier,
708 				     IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev);
709 
710 	mutex_lock(&group->mutex);
711 	list_for_each_entry(tmp_device, &group->devices, list) {
712 		if (tmp_device->dev == dev) {
713 			device = tmp_device;
714 			list_del(&device->list);
715 			break;
716 		}
717 	}
718 	mutex_unlock(&group->mutex);
719 
720 	if (!device)
721 		return;
722 
723 	sysfs_remove_link(group->devices_kobj, device->name);
724 	sysfs_remove_link(&dev->kobj, "iommu_group");
725 
726 	trace_remove_device_from_group(group->id, dev);
727 
728 	kfree(device->name);
729 	kfree(device);
730 	dev->iommu_group = NULL;
731 	kobject_put(group->devices_kobj);
732 }
733 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
734 
735 static int iommu_group_device_count(struct iommu_group *group)
736 {
737 	struct group_device *entry;
738 	int ret = 0;
739 
740 	list_for_each_entry(entry, &group->devices, list)
741 		ret++;
742 
743 	return ret;
744 }
745 
746 /**
747  * iommu_group_for_each_dev - iterate over each device in the group
748  * @group: the group
749  * @data: caller opaque data to be passed to callback function
750  * @fn: caller supplied callback function
751  *
752  * This function is called by group users to iterate over group devices.
753  * Callers should hold a reference count to the group during callback.
754  * The group->mutex is held across callbacks, which will block calls to
755  * iommu_group_add/remove_device.
756  */
757 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data,
758 				      int (*fn)(struct device *, void *))
759 {
760 	struct group_device *device;
761 	int ret = 0;
762 
763 	list_for_each_entry(device, &group->devices, list) {
764 		ret = fn(device->dev, data);
765 		if (ret)
766 			break;
767 	}
768 	return ret;
769 }
770 
771 
772 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
773 			     int (*fn)(struct device *, void *))
774 {
775 	int ret;
776 
777 	mutex_lock(&group->mutex);
778 	ret = __iommu_group_for_each_dev(group, data, fn);
779 	mutex_unlock(&group->mutex);
780 
781 	return ret;
782 }
783 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
784 
785 /**
786  * iommu_group_get - Return the group for a device and increment reference
787  * @dev: get the group that this device belongs to
788  *
789  * This function is called by iommu drivers and users to get the group
790  * for the specified device.  If found, the group is returned and the group
791  * reference in incremented, else NULL.
792  */
793 struct iommu_group *iommu_group_get(struct device *dev)
794 {
795 	struct iommu_group *group = dev->iommu_group;
796 
797 	if (group)
798 		kobject_get(group->devices_kobj);
799 
800 	return group;
801 }
802 EXPORT_SYMBOL_GPL(iommu_group_get);
803 
804 /**
805  * iommu_group_ref_get - Increment reference on a group
806  * @group: the group to use, must not be NULL
807  *
808  * This function is called by iommu drivers to take additional references on an
809  * existing group.  Returns the given group for convenience.
810  */
811 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
812 {
813 	kobject_get(group->devices_kobj);
814 	return group;
815 }
816 
817 /**
818  * iommu_group_put - Decrement group reference
819  * @group: the group to use
820  *
821  * This function is called by iommu drivers and users to release the
822  * iommu group.  Once the reference count is zero, the group is released.
823  */
824 void iommu_group_put(struct iommu_group *group)
825 {
826 	if (group)
827 		kobject_put(group->devices_kobj);
828 }
829 EXPORT_SYMBOL_GPL(iommu_group_put);
830 
831 /**
832  * iommu_group_register_notifier - Register a notifier for group changes
833  * @group: the group to watch
834  * @nb: notifier block to signal
835  *
836  * This function allows iommu group users to track changes in a group.
837  * See include/linux/iommu.h for actions sent via this notifier.  Caller
838  * should hold a reference to the group throughout notifier registration.
839  */
840 int iommu_group_register_notifier(struct iommu_group *group,
841 				  struct notifier_block *nb)
842 {
843 	return blocking_notifier_chain_register(&group->notifier, nb);
844 }
845 EXPORT_SYMBOL_GPL(iommu_group_register_notifier);
846 
847 /**
848  * iommu_group_unregister_notifier - Unregister a notifier
849  * @group: the group to watch
850  * @nb: notifier block to signal
851  *
852  * Unregister a previously registered group notifier block.
853  */
854 int iommu_group_unregister_notifier(struct iommu_group *group,
855 				    struct notifier_block *nb)
856 {
857 	return blocking_notifier_chain_unregister(&group->notifier, nb);
858 }
859 EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier);
860 
861 /**
862  * iommu_group_id - Return ID for a group
863  * @group: the group to ID
864  *
865  * Return the unique ID for the group matching the sysfs group number.
866  */
867 int iommu_group_id(struct iommu_group *group)
868 {
869 	return group->id;
870 }
871 EXPORT_SYMBOL_GPL(iommu_group_id);
872 
873 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
874 					       unsigned long *devfns);
875 
876 /*
877  * To consider a PCI device isolated, we require ACS to support Source
878  * Validation, Request Redirection, Completer Redirection, and Upstream
879  * Forwarding.  This effectively means that devices cannot spoof their
880  * requester ID, requests and completions cannot be redirected, and all
881  * transactions are forwarded upstream, even as it passes through a
882  * bridge where the target device is downstream.
883  */
884 #define REQ_ACS_FLAGS   (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
885 
886 /*
887  * For multifunction devices which are not isolated from each other, find
888  * all the other non-isolated functions and look for existing groups.  For
889  * each function, we also need to look for aliases to or from other devices
890  * that may already have a group.
891  */
892 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
893 							unsigned long *devfns)
894 {
895 	struct pci_dev *tmp = NULL;
896 	struct iommu_group *group;
897 
898 	if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
899 		return NULL;
900 
901 	for_each_pci_dev(tmp) {
902 		if (tmp == pdev || tmp->bus != pdev->bus ||
903 		    PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
904 		    pci_acs_enabled(tmp, REQ_ACS_FLAGS))
905 			continue;
906 
907 		group = get_pci_alias_group(tmp, devfns);
908 		if (group) {
909 			pci_dev_put(tmp);
910 			return group;
911 		}
912 	}
913 
914 	return NULL;
915 }
916 
917 /*
918  * Look for aliases to or from the given device for existing groups. DMA
919  * aliases are only supported on the same bus, therefore the search
920  * space is quite small (especially since we're really only looking at pcie
921  * device, and therefore only expect multiple slots on the root complex or
922  * downstream switch ports).  It's conceivable though that a pair of
923  * multifunction devices could have aliases between them that would cause a
924  * loop.  To prevent this, we use a bitmap to track where we've been.
925  */
926 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
927 					       unsigned long *devfns)
928 {
929 	struct pci_dev *tmp = NULL;
930 	struct iommu_group *group;
931 
932 	if (test_and_set_bit(pdev->devfn & 0xff, devfns))
933 		return NULL;
934 
935 	group = iommu_group_get(&pdev->dev);
936 	if (group)
937 		return group;
938 
939 	for_each_pci_dev(tmp) {
940 		if (tmp == pdev || tmp->bus != pdev->bus)
941 			continue;
942 
943 		/* We alias them or they alias us */
944 		if (pci_devs_are_dma_aliases(pdev, tmp)) {
945 			group = get_pci_alias_group(tmp, devfns);
946 			if (group) {
947 				pci_dev_put(tmp);
948 				return group;
949 			}
950 
951 			group = get_pci_function_alias_group(tmp, devfns);
952 			if (group) {
953 				pci_dev_put(tmp);
954 				return group;
955 			}
956 		}
957 	}
958 
959 	return NULL;
960 }
961 
962 struct group_for_pci_data {
963 	struct pci_dev *pdev;
964 	struct iommu_group *group;
965 };
966 
967 /*
968  * DMA alias iterator callback, return the last seen device.  Stop and return
969  * the IOMMU group if we find one along the way.
970  */
971 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
972 {
973 	struct group_for_pci_data *data = opaque;
974 
975 	data->pdev = pdev;
976 	data->group = iommu_group_get(&pdev->dev);
977 
978 	return data->group != NULL;
979 }
980 
981 /*
982  * Generic device_group call-back function. It just allocates one
983  * iommu-group per device.
984  */
985 struct iommu_group *generic_device_group(struct device *dev)
986 {
987 	return iommu_group_alloc();
988 }
989 
990 /*
991  * Use standard PCI bus topology, isolation features, and DMA alias quirks
992  * to find or create an IOMMU group for a device.
993  */
994 struct iommu_group *pci_device_group(struct device *dev)
995 {
996 	struct pci_dev *pdev = to_pci_dev(dev);
997 	struct group_for_pci_data data;
998 	struct pci_bus *bus;
999 	struct iommu_group *group = NULL;
1000 	u64 devfns[4] = { 0 };
1001 
1002 	if (WARN_ON(!dev_is_pci(dev)))
1003 		return ERR_PTR(-EINVAL);
1004 
1005 	/*
1006 	 * Find the upstream DMA alias for the device.  A device must not
1007 	 * be aliased due to topology in order to have its own IOMMU group.
1008 	 * If we find an alias along the way that already belongs to a
1009 	 * group, use it.
1010 	 */
1011 	if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1012 		return data.group;
1013 
1014 	pdev = data.pdev;
1015 
1016 	/*
1017 	 * Continue upstream from the point of minimum IOMMU granularity
1018 	 * due to aliases to the point where devices are protected from
1019 	 * peer-to-peer DMA by PCI ACS.  Again, if we find an existing
1020 	 * group, use it.
1021 	 */
1022 	for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1023 		if (!bus->self)
1024 			continue;
1025 
1026 		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1027 			break;
1028 
1029 		pdev = bus->self;
1030 
1031 		group = iommu_group_get(&pdev->dev);
1032 		if (group)
1033 			return group;
1034 	}
1035 
1036 	/*
1037 	 * Look for existing groups on device aliases.  If we alias another
1038 	 * device or another device aliases us, use the same group.
1039 	 */
1040 	group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1041 	if (group)
1042 		return group;
1043 
1044 	/*
1045 	 * Look for existing groups on non-isolated functions on the same
1046 	 * slot and aliases of those funcions, if any.  No need to clear
1047 	 * the search bitmap, the tested devfns are still valid.
1048 	 */
1049 	group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1050 	if (group)
1051 		return group;
1052 
1053 	/* No shared group found, allocate new */
1054 	return iommu_group_alloc();
1055 }
1056 
1057 /* Get the IOMMU group for device on fsl-mc bus */
1058 struct iommu_group *fsl_mc_device_group(struct device *dev)
1059 {
1060 	struct device *cont_dev = fsl_mc_cont_dev(dev);
1061 	struct iommu_group *group;
1062 
1063 	group = iommu_group_get(cont_dev);
1064 	if (!group)
1065 		group = iommu_group_alloc();
1066 	return group;
1067 }
1068 
1069 /**
1070  * iommu_group_get_for_dev - Find or create the IOMMU group for a device
1071  * @dev: target device
1072  *
1073  * This function is intended to be called by IOMMU drivers and extended to
1074  * support common, bus-defined algorithms when determining or creating the
1075  * IOMMU group for a device.  On success, the caller will hold a reference
1076  * to the returned IOMMU group, which will already include the provided
1077  * device.  The reference should be released with iommu_group_put().
1078  */
1079 struct iommu_group *iommu_group_get_for_dev(struct device *dev)
1080 {
1081 	const struct iommu_ops *ops = dev->bus->iommu_ops;
1082 	struct iommu_group *group;
1083 	int ret;
1084 
1085 	group = iommu_group_get(dev);
1086 	if (group)
1087 		return group;
1088 
1089 	if (!ops)
1090 		return ERR_PTR(-EINVAL);
1091 
1092 	group = ops->device_group(dev);
1093 	if (WARN_ON_ONCE(group == NULL))
1094 		return ERR_PTR(-EINVAL);
1095 
1096 	if (IS_ERR(group))
1097 		return group;
1098 
1099 	/*
1100 	 * Try to allocate a default domain - needs support from the
1101 	 * IOMMU driver.
1102 	 */
1103 	if (!group->default_domain) {
1104 		struct iommu_domain *dom;
1105 
1106 		dom = __iommu_domain_alloc(dev->bus, iommu_def_domain_type);
1107 		if (!dom && iommu_def_domain_type != IOMMU_DOMAIN_DMA) {
1108 			dev_warn(dev,
1109 				 "failed to allocate default IOMMU domain of type %u; falling back to IOMMU_DOMAIN_DMA",
1110 				 iommu_def_domain_type);
1111 			dom = __iommu_domain_alloc(dev->bus, IOMMU_DOMAIN_DMA);
1112 		}
1113 
1114 		group->default_domain = dom;
1115 		if (!group->domain)
1116 			group->domain = dom;
1117 
1118 		if (dom && !iommu_dma_strict) {
1119 			int attr = 1;
1120 			iommu_domain_set_attr(dom,
1121 					      DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE,
1122 					      &attr);
1123 		}
1124 	}
1125 
1126 	ret = iommu_group_add_device(group, dev);
1127 	if (ret) {
1128 		iommu_group_put(group);
1129 		return ERR_PTR(ret);
1130 	}
1131 
1132 	return group;
1133 }
1134 
1135 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1136 {
1137 	return group->default_domain;
1138 }
1139 
1140 static int add_iommu_group(struct device *dev, void *data)
1141 {
1142 	int ret = iommu_probe_device(dev);
1143 
1144 	/*
1145 	 * We ignore -ENODEV errors for now, as they just mean that the
1146 	 * device is not translated by an IOMMU. We still care about
1147 	 * other errors and fail to initialize when they happen.
1148 	 */
1149 	if (ret == -ENODEV)
1150 		ret = 0;
1151 
1152 	return ret;
1153 }
1154 
1155 static int remove_iommu_group(struct device *dev, void *data)
1156 {
1157 	iommu_release_device(dev);
1158 
1159 	return 0;
1160 }
1161 
1162 static int iommu_bus_notifier(struct notifier_block *nb,
1163 			      unsigned long action, void *data)
1164 {
1165 	unsigned long group_action = 0;
1166 	struct device *dev = data;
1167 	struct iommu_group *group;
1168 
1169 	/*
1170 	 * ADD/DEL call into iommu driver ops if provided, which may
1171 	 * result in ADD/DEL notifiers to group->notifier
1172 	 */
1173 	if (action == BUS_NOTIFY_ADD_DEVICE) {
1174 		int ret;
1175 
1176 		ret = iommu_probe_device(dev);
1177 		return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1178 	} else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1179 		iommu_release_device(dev);
1180 		return NOTIFY_OK;
1181 	}
1182 
1183 	/*
1184 	 * Remaining BUS_NOTIFYs get filtered and republished to the
1185 	 * group, if anyone is listening
1186 	 */
1187 	group = iommu_group_get(dev);
1188 	if (!group)
1189 		return 0;
1190 
1191 	switch (action) {
1192 	case BUS_NOTIFY_BIND_DRIVER:
1193 		group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER;
1194 		break;
1195 	case BUS_NOTIFY_BOUND_DRIVER:
1196 		group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER;
1197 		break;
1198 	case BUS_NOTIFY_UNBIND_DRIVER:
1199 		group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER;
1200 		break;
1201 	case BUS_NOTIFY_UNBOUND_DRIVER:
1202 		group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER;
1203 		break;
1204 	}
1205 
1206 	if (group_action)
1207 		blocking_notifier_call_chain(&group->notifier,
1208 					     group_action, dev);
1209 
1210 	iommu_group_put(group);
1211 	return 0;
1212 }
1213 
1214 static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops)
1215 {
1216 	int err;
1217 	struct notifier_block *nb;
1218 	struct iommu_callback_data cb = {
1219 		.ops = ops,
1220 	};
1221 
1222 	nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL);
1223 	if (!nb)
1224 		return -ENOMEM;
1225 
1226 	nb->notifier_call = iommu_bus_notifier;
1227 
1228 	err = bus_register_notifier(bus, nb);
1229 	if (err)
1230 		goto out_free;
1231 
1232 	err = bus_for_each_dev(bus, NULL, &cb, add_iommu_group);
1233 	if (err)
1234 		goto out_err;
1235 
1236 
1237 	return 0;
1238 
1239 out_err:
1240 	/* Clean up */
1241 	bus_for_each_dev(bus, NULL, &cb, remove_iommu_group);
1242 	bus_unregister_notifier(bus, nb);
1243 
1244 out_free:
1245 	kfree(nb);
1246 
1247 	return err;
1248 }
1249 
1250 /**
1251  * bus_set_iommu - set iommu-callbacks for the bus
1252  * @bus: bus.
1253  * @ops: the callbacks provided by the iommu-driver
1254  *
1255  * This function is called by an iommu driver to set the iommu methods
1256  * used for a particular bus. Drivers for devices on that bus can use
1257  * the iommu-api after these ops are registered.
1258  * This special function is needed because IOMMUs are usually devices on
1259  * the bus itself, so the iommu drivers are not initialized when the bus
1260  * is set up. With this function the iommu-driver can set the iommu-ops
1261  * afterwards.
1262  */
1263 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops)
1264 {
1265 	int err;
1266 
1267 	if (bus->iommu_ops != NULL)
1268 		return -EBUSY;
1269 
1270 	bus->iommu_ops = ops;
1271 
1272 	/* Do IOMMU specific setup for this bus-type */
1273 	err = iommu_bus_init(bus, ops);
1274 	if (err)
1275 		bus->iommu_ops = NULL;
1276 
1277 	return err;
1278 }
1279 EXPORT_SYMBOL_GPL(bus_set_iommu);
1280 
1281 bool iommu_present(struct bus_type *bus)
1282 {
1283 	return bus->iommu_ops != NULL;
1284 }
1285 EXPORT_SYMBOL_GPL(iommu_present);
1286 
1287 bool iommu_capable(struct bus_type *bus, enum iommu_cap cap)
1288 {
1289 	if (!bus->iommu_ops || !bus->iommu_ops->capable)
1290 		return false;
1291 
1292 	return bus->iommu_ops->capable(cap);
1293 }
1294 EXPORT_SYMBOL_GPL(iommu_capable);
1295 
1296 /**
1297  * iommu_set_fault_handler() - set a fault handler for an iommu domain
1298  * @domain: iommu domain
1299  * @handler: fault handler
1300  * @token: user data, will be passed back to the fault handler
1301  *
1302  * This function should be used by IOMMU users which want to be notified
1303  * whenever an IOMMU fault happens.
1304  *
1305  * The fault handler itself should return 0 on success, and an appropriate
1306  * error code otherwise.
1307  */
1308 void iommu_set_fault_handler(struct iommu_domain *domain,
1309 					iommu_fault_handler_t handler,
1310 					void *token)
1311 {
1312 	BUG_ON(!domain);
1313 
1314 	domain->handler = handler;
1315 	domain->handler_token = token;
1316 }
1317 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1318 
1319 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
1320 						 unsigned type)
1321 {
1322 	struct iommu_domain *domain;
1323 
1324 	if (bus == NULL || bus->iommu_ops == NULL)
1325 		return NULL;
1326 
1327 	domain = bus->iommu_ops->domain_alloc(type);
1328 	if (!domain)
1329 		return NULL;
1330 
1331 	domain->ops  = bus->iommu_ops;
1332 	domain->type = type;
1333 	/* Assume all sizes by default; the driver may override this later */
1334 	domain->pgsize_bitmap  = bus->iommu_ops->pgsize_bitmap;
1335 
1336 	return domain;
1337 }
1338 
1339 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus)
1340 {
1341 	return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED);
1342 }
1343 EXPORT_SYMBOL_GPL(iommu_domain_alloc);
1344 
1345 void iommu_domain_free(struct iommu_domain *domain)
1346 {
1347 	domain->ops->domain_free(domain);
1348 }
1349 EXPORT_SYMBOL_GPL(iommu_domain_free);
1350 
1351 static int __iommu_attach_device(struct iommu_domain *domain,
1352 				 struct device *dev)
1353 {
1354 	int ret;
1355 	if ((domain->ops->is_attach_deferred != NULL) &&
1356 	    domain->ops->is_attach_deferred(domain, dev))
1357 		return 0;
1358 
1359 	if (unlikely(domain->ops->attach_dev == NULL))
1360 		return -ENODEV;
1361 
1362 	ret = domain->ops->attach_dev(domain, dev);
1363 	if (!ret)
1364 		trace_attach_device_to_domain(dev);
1365 	return ret;
1366 }
1367 
1368 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
1369 {
1370 	struct iommu_group *group;
1371 	int ret;
1372 
1373 	group = iommu_group_get(dev);
1374 	if (!group)
1375 		return -ENODEV;
1376 
1377 	/*
1378 	 * Lock the group to make sure the device-count doesn't
1379 	 * change while we are attaching
1380 	 */
1381 	mutex_lock(&group->mutex);
1382 	ret = -EINVAL;
1383 	if (iommu_group_device_count(group) != 1)
1384 		goto out_unlock;
1385 
1386 	ret = __iommu_attach_group(domain, group);
1387 
1388 out_unlock:
1389 	mutex_unlock(&group->mutex);
1390 	iommu_group_put(group);
1391 
1392 	return ret;
1393 }
1394 EXPORT_SYMBOL_GPL(iommu_attach_device);
1395 
1396 static void __iommu_detach_device(struct iommu_domain *domain,
1397 				  struct device *dev)
1398 {
1399 	if ((domain->ops->is_attach_deferred != NULL) &&
1400 	    domain->ops->is_attach_deferred(domain, dev))
1401 		return;
1402 
1403 	if (unlikely(domain->ops->detach_dev == NULL))
1404 		return;
1405 
1406 	domain->ops->detach_dev(domain, dev);
1407 	trace_detach_device_from_domain(dev);
1408 }
1409 
1410 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
1411 {
1412 	struct iommu_group *group;
1413 
1414 	group = iommu_group_get(dev);
1415 	if (!group)
1416 		return;
1417 
1418 	mutex_lock(&group->mutex);
1419 	if (iommu_group_device_count(group) != 1) {
1420 		WARN_ON(1);
1421 		goto out_unlock;
1422 	}
1423 
1424 	__iommu_detach_group(domain, group);
1425 
1426 out_unlock:
1427 	mutex_unlock(&group->mutex);
1428 	iommu_group_put(group);
1429 }
1430 EXPORT_SYMBOL_GPL(iommu_detach_device);
1431 
1432 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
1433 {
1434 	struct iommu_domain *domain;
1435 	struct iommu_group *group;
1436 
1437 	group = iommu_group_get(dev);
1438 	if (!group)
1439 		return NULL;
1440 
1441 	domain = group->domain;
1442 
1443 	iommu_group_put(group);
1444 
1445 	return domain;
1446 }
1447 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
1448 
1449 /*
1450  * For IOMMU_DOMAIN_DMA implementations which already provide their own
1451  * guarantees that the group and its default domain are valid and correct.
1452  */
1453 struct iommu_domain *iommu_get_dma_domain(struct device *dev)
1454 {
1455 	return dev->iommu_group->default_domain;
1456 }
1457 
1458 /*
1459  * IOMMU groups are really the natural working unit of the IOMMU, but
1460  * the IOMMU API works on domains and devices.  Bridge that gap by
1461  * iterating over the devices in a group.  Ideally we'd have a single
1462  * device which represents the requestor ID of the group, but we also
1463  * allow IOMMU drivers to create policy defined minimum sets, where
1464  * the physical hardware may be able to distiguish members, but we
1465  * wish to group them at a higher level (ex. untrusted multi-function
1466  * PCI devices).  Thus we attach each device.
1467  */
1468 static int iommu_group_do_attach_device(struct device *dev, void *data)
1469 {
1470 	struct iommu_domain *domain = data;
1471 
1472 	return __iommu_attach_device(domain, dev);
1473 }
1474 
1475 static int __iommu_attach_group(struct iommu_domain *domain,
1476 				struct iommu_group *group)
1477 {
1478 	int ret;
1479 
1480 	if (group->default_domain && group->domain != group->default_domain)
1481 		return -EBUSY;
1482 
1483 	ret = __iommu_group_for_each_dev(group, domain,
1484 					 iommu_group_do_attach_device);
1485 	if (ret == 0)
1486 		group->domain = domain;
1487 
1488 	return ret;
1489 }
1490 
1491 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
1492 {
1493 	int ret;
1494 
1495 	mutex_lock(&group->mutex);
1496 	ret = __iommu_attach_group(domain, group);
1497 	mutex_unlock(&group->mutex);
1498 
1499 	return ret;
1500 }
1501 EXPORT_SYMBOL_GPL(iommu_attach_group);
1502 
1503 static int iommu_group_do_detach_device(struct device *dev, void *data)
1504 {
1505 	struct iommu_domain *domain = data;
1506 
1507 	__iommu_detach_device(domain, dev);
1508 
1509 	return 0;
1510 }
1511 
1512 static void __iommu_detach_group(struct iommu_domain *domain,
1513 				 struct iommu_group *group)
1514 {
1515 	int ret;
1516 
1517 	if (!group->default_domain) {
1518 		__iommu_group_for_each_dev(group, domain,
1519 					   iommu_group_do_detach_device);
1520 		group->domain = NULL;
1521 		return;
1522 	}
1523 
1524 	if (group->domain == group->default_domain)
1525 		return;
1526 
1527 	/* Detach by re-attaching to the default domain */
1528 	ret = __iommu_group_for_each_dev(group, group->default_domain,
1529 					 iommu_group_do_attach_device);
1530 	if (ret != 0)
1531 		WARN_ON(1);
1532 	else
1533 		group->domain = group->default_domain;
1534 }
1535 
1536 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
1537 {
1538 	mutex_lock(&group->mutex);
1539 	__iommu_detach_group(domain, group);
1540 	mutex_unlock(&group->mutex);
1541 }
1542 EXPORT_SYMBOL_GPL(iommu_detach_group);
1543 
1544 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1545 {
1546 	if (unlikely(domain->ops->iova_to_phys == NULL))
1547 		return 0;
1548 
1549 	return domain->ops->iova_to_phys(domain, iova);
1550 }
1551 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
1552 
1553 static size_t iommu_pgsize(struct iommu_domain *domain,
1554 			   unsigned long addr_merge, size_t size)
1555 {
1556 	unsigned int pgsize_idx;
1557 	size_t pgsize;
1558 
1559 	/* Max page size that still fits into 'size' */
1560 	pgsize_idx = __fls(size);
1561 
1562 	/* need to consider alignment requirements ? */
1563 	if (likely(addr_merge)) {
1564 		/* Max page size allowed by address */
1565 		unsigned int align_pgsize_idx = __ffs(addr_merge);
1566 		pgsize_idx = min(pgsize_idx, align_pgsize_idx);
1567 	}
1568 
1569 	/* build a mask of acceptable page sizes */
1570 	pgsize = (1UL << (pgsize_idx + 1)) - 1;
1571 
1572 	/* throw away page sizes not supported by the hardware */
1573 	pgsize &= domain->pgsize_bitmap;
1574 
1575 	/* make sure we're still sane */
1576 	BUG_ON(!pgsize);
1577 
1578 	/* pick the biggest page */
1579 	pgsize_idx = __fls(pgsize);
1580 	pgsize = 1UL << pgsize_idx;
1581 
1582 	return pgsize;
1583 }
1584 
1585 int iommu_map(struct iommu_domain *domain, unsigned long iova,
1586 	      phys_addr_t paddr, size_t size, int prot)
1587 {
1588 	const struct iommu_ops *ops = domain->ops;
1589 	unsigned long orig_iova = iova;
1590 	unsigned int min_pagesz;
1591 	size_t orig_size = size;
1592 	phys_addr_t orig_paddr = paddr;
1593 	int ret = 0;
1594 
1595 	if (unlikely(ops->map == NULL ||
1596 		     domain->pgsize_bitmap == 0UL))
1597 		return -ENODEV;
1598 
1599 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
1600 		return -EINVAL;
1601 
1602 	/* find out the minimum page size supported */
1603 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
1604 
1605 	/*
1606 	 * both the virtual address and the physical one, as well as
1607 	 * the size of the mapping, must be aligned (at least) to the
1608 	 * size of the smallest page supported by the hardware
1609 	 */
1610 	if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
1611 		pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
1612 		       iova, &paddr, size, min_pagesz);
1613 		return -EINVAL;
1614 	}
1615 
1616 	pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
1617 
1618 	while (size) {
1619 		size_t pgsize = iommu_pgsize(domain, iova | paddr, size);
1620 
1621 		pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx\n",
1622 			 iova, &paddr, pgsize);
1623 
1624 		ret = ops->map(domain, iova, paddr, pgsize, prot);
1625 		if (ret)
1626 			break;
1627 
1628 		iova += pgsize;
1629 		paddr += pgsize;
1630 		size -= pgsize;
1631 	}
1632 
1633 	if (ops->iotlb_sync_map)
1634 		ops->iotlb_sync_map(domain);
1635 
1636 	/* unroll mapping in case something went wrong */
1637 	if (ret)
1638 		iommu_unmap(domain, orig_iova, orig_size - size);
1639 	else
1640 		trace_map(orig_iova, orig_paddr, orig_size);
1641 
1642 	return ret;
1643 }
1644 EXPORT_SYMBOL_GPL(iommu_map);
1645 
1646 static size_t __iommu_unmap(struct iommu_domain *domain,
1647 			    unsigned long iova, size_t size,
1648 			    bool sync)
1649 {
1650 	const struct iommu_ops *ops = domain->ops;
1651 	size_t unmapped_page, unmapped = 0;
1652 	unsigned long orig_iova = iova;
1653 	unsigned int min_pagesz;
1654 
1655 	if (unlikely(ops->unmap == NULL ||
1656 		     domain->pgsize_bitmap == 0UL))
1657 		return 0;
1658 
1659 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
1660 		return 0;
1661 
1662 	/* find out the minimum page size supported */
1663 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
1664 
1665 	/*
1666 	 * The virtual address, as well as the size of the mapping, must be
1667 	 * aligned (at least) to the size of the smallest page supported
1668 	 * by the hardware
1669 	 */
1670 	if (!IS_ALIGNED(iova | size, min_pagesz)) {
1671 		pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
1672 		       iova, size, min_pagesz);
1673 		return 0;
1674 	}
1675 
1676 	pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
1677 
1678 	/*
1679 	 * Keep iterating until we either unmap 'size' bytes (or more)
1680 	 * or we hit an area that isn't mapped.
1681 	 */
1682 	while (unmapped < size) {
1683 		size_t pgsize = iommu_pgsize(domain, iova, size - unmapped);
1684 
1685 		unmapped_page = ops->unmap(domain, iova, pgsize);
1686 		if (!unmapped_page)
1687 			break;
1688 
1689 		if (sync && ops->iotlb_range_add)
1690 			ops->iotlb_range_add(domain, iova, pgsize);
1691 
1692 		pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
1693 			 iova, unmapped_page);
1694 
1695 		iova += unmapped_page;
1696 		unmapped += unmapped_page;
1697 	}
1698 
1699 	if (sync && ops->iotlb_sync)
1700 		ops->iotlb_sync(domain);
1701 
1702 	trace_unmap(orig_iova, size, unmapped);
1703 	return unmapped;
1704 }
1705 
1706 size_t iommu_unmap(struct iommu_domain *domain,
1707 		   unsigned long iova, size_t size)
1708 {
1709 	return __iommu_unmap(domain, iova, size, true);
1710 }
1711 EXPORT_SYMBOL_GPL(iommu_unmap);
1712 
1713 size_t iommu_unmap_fast(struct iommu_domain *domain,
1714 			unsigned long iova, size_t size)
1715 {
1716 	return __iommu_unmap(domain, iova, size, false);
1717 }
1718 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
1719 
1720 size_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
1721 		    struct scatterlist *sg, unsigned int nents, int prot)
1722 {
1723 	size_t len = 0, mapped = 0;
1724 	phys_addr_t start;
1725 	unsigned int i = 0;
1726 	int ret;
1727 
1728 	while (i <= nents) {
1729 		phys_addr_t s_phys = sg_phys(sg);
1730 
1731 		if (len && s_phys != start + len) {
1732 			ret = iommu_map(domain, iova + mapped, start, len, prot);
1733 			if (ret)
1734 				goto out_err;
1735 
1736 			mapped += len;
1737 			len = 0;
1738 		}
1739 
1740 		if (len) {
1741 			len += sg->length;
1742 		} else {
1743 			len = sg->length;
1744 			start = s_phys;
1745 		}
1746 
1747 		if (++i < nents)
1748 			sg = sg_next(sg);
1749 	}
1750 
1751 	return mapped;
1752 
1753 out_err:
1754 	/* undo mappings already done */
1755 	iommu_unmap(domain, iova, mapped);
1756 
1757 	return 0;
1758 
1759 }
1760 EXPORT_SYMBOL_GPL(iommu_map_sg);
1761 
1762 int iommu_domain_window_enable(struct iommu_domain *domain, u32 wnd_nr,
1763 			       phys_addr_t paddr, u64 size, int prot)
1764 {
1765 	if (unlikely(domain->ops->domain_window_enable == NULL))
1766 		return -ENODEV;
1767 
1768 	return domain->ops->domain_window_enable(domain, wnd_nr, paddr, size,
1769 						 prot);
1770 }
1771 EXPORT_SYMBOL_GPL(iommu_domain_window_enable);
1772 
1773 void iommu_domain_window_disable(struct iommu_domain *domain, u32 wnd_nr)
1774 {
1775 	if (unlikely(domain->ops->domain_window_disable == NULL))
1776 		return;
1777 
1778 	return domain->ops->domain_window_disable(domain, wnd_nr);
1779 }
1780 EXPORT_SYMBOL_GPL(iommu_domain_window_disable);
1781 
1782 /**
1783  * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
1784  * @domain: the iommu domain where the fault has happened
1785  * @dev: the device where the fault has happened
1786  * @iova: the faulting address
1787  * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
1788  *
1789  * This function should be called by the low-level IOMMU implementations
1790  * whenever IOMMU faults happen, to allow high-level users, that are
1791  * interested in such events, to know about them.
1792  *
1793  * This event may be useful for several possible use cases:
1794  * - mere logging of the event
1795  * - dynamic TLB/PTE loading
1796  * - if restarting of the faulting device is required
1797  *
1798  * Returns 0 on success and an appropriate error code otherwise (if dynamic
1799  * PTE/TLB loading will one day be supported, implementations will be able
1800  * to tell whether it succeeded or not according to this return value).
1801  *
1802  * Specifically, -ENOSYS is returned if a fault handler isn't installed
1803  * (though fault handlers can also return -ENOSYS, in case they want to
1804  * elicit the default behavior of the IOMMU drivers).
1805  */
1806 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
1807 		       unsigned long iova, int flags)
1808 {
1809 	int ret = -ENOSYS;
1810 
1811 	/*
1812 	 * if upper layers showed interest and installed a fault handler,
1813 	 * invoke it.
1814 	 */
1815 	if (domain->handler)
1816 		ret = domain->handler(domain, dev, iova, flags,
1817 						domain->handler_token);
1818 
1819 	trace_io_page_fault(dev, iova, flags);
1820 	return ret;
1821 }
1822 EXPORT_SYMBOL_GPL(report_iommu_fault);
1823 
1824 static int __init iommu_init(void)
1825 {
1826 	iommu_group_kset = kset_create_and_add("iommu_groups",
1827 					       NULL, kernel_kobj);
1828 	BUG_ON(!iommu_group_kset);
1829 
1830 	iommu_debugfs_setup();
1831 
1832 	return 0;
1833 }
1834 core_initcall(iommu_init);
1835 
1836 int iommu_domain_get_attr(struct iommu_domain *domain,
1837 			  enum iommu_attr attr, void *data)
1838 {
1839 	struct iommu_domain_geometry *geometry;
1840 	bool *paging;
1841 	int ret = 0;
1842 
1843 	switch (attr) {
1844 	case DOMAIN_ATTR_GEOMETRY:
1845 		geometry  = data;
1846 		*geometry = domain->geometry;
1847 
1848 		break;
1849 	case DOMAIN_ATTR_PAGING:
1850 		paging  = data;
1851 		*paging = (domain->pgsize_bitmap != 0UL);
1852 		break;
1853 	default:
1854 		if (!domain->ops->domain_get_attr)
1855 			return -EINVAL;
1856 
1857 		ret = domain->ops->domain_get_attr(domain, attr, data);
1858 	}
1859 
1860 	return ret;
1861 }
1862 EXPORT_SYMBOL_GPL(iommu_domain_get_attr);
1863 
1864 int iommu_domain_set_attr(struct iommu_domain *domain,
1865 			  enum iommu_attr attr, void *data)
1866 {
1867 	int ret = 0;
1868 
1869 	switch (attr) {
1870 	default:
1871 		if (domain->ops->domain_set_attr == NULL)
1872 			return -EINVAL;
1873 
1874 		ret = domain->ops->domain_set_attr(domain, attr, data);
1875 	}
1876 
1877 	return ret;
1878 }
1879 EXPORT_SYMBOL_GPL(iommu_domain_set_attr);
1880 
1881 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
1882 {
1883 	const struct iommu_ops *ops = dev->bus->iommu_ops;
1884 
1885 	if (ops && ops->get_resv_regions)
1886 		ops->get_resv_regions(dev, list);
1887 }
1888 
1889 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
1890 {
1891 	const struct iommu_ops *ops = dev->bus->iommu_ops;
1892 
1893 	if (ops && ops->put_resv_regions)
1894 		ops->put_resv_regions(dev, list);
1895 }
1896 
1897 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
1898 						  size_t length, int prot,
1899 						  enum iommu_resv_type type)
1900 {
1901 	struct iommu_resv_region *region;
1902 
1903 	region = kzalloc(sizeof(*region), GFP_KERNEL);
1904 	if (!region)
1905 		return NULL;
1906 
1907 	INIT_LIST_HEAD(&region->list);
1908 	region->start = start;
1909 	region->length = length;
1910 	region->prot = prot;
1911 	region->type = type;
1912 	return region;
1913 }
1914 
1915 /* Request that a device is direct mapped by the IOMMU */
1916 int iommu_request_dm_for_dev(struct device *dev)
1917 {
1918 	struct iommu_domain *dm_domain;
1919 	struct iommu_group *group;
1920 	int ret;
1921 
1922 	/* Device must already be in a group before calling this function */
1923 	group = iommu_group_get_for_dev(dev);
1924 	if (IS_ERR(group))
1925 		return PTR_ERR(group);
1926 
1927 	mutex_lock(&group->mutex);
1928 
1929 	/* Check if the default domain is already direct mapped */
1930 	ret = 0;
1931 	if (group->default_domain &&
1932 	    group->default_domain->type == IOMMU_DOMAIN_IDENTITY)
1933 		goto out;
1934 
1935 	/* Don't change mappings of existing devices */
1936 	ret = -EBUSY;
1937 	if (iommu_group_device_count(group) != 1)
1938 		goto out;
1939 
1940 	/* Allocate a direct mapped domain */
1941 	ret = -ENOMEM;
1942 	dm_domain = __iommu_domain_alloc(dev->bus, IOMMU_DOMAIN_IDENTITY);
1943 	if (!dm_domain)
1944 		goto out;
1945 
1946 	/* Attach the device to the domain */
1947 	ret = __iommu_attach_group(dm_domain, group);
1948 	if (ret) {
1949 		iommu_domain_free(dm_domain);
1950 		goto out;
1951 	}
1952 
1953 	/* Make the direct mapped domain the default for this group */
1954 	if (group->default_domain)
1955 		iommu_domain_free(group->default_domain);
1956 	group->default_domain = dm_domain;
1957 
1958 	dev_info(dev, "Using iommu direct mapping\n");
1959 
1960 	ret = 0;
1961 out:
1962 	mutex_unlock(&group->mutex);
1963 	iommu_group_put(group);
1964 
1965 	return ret;
1966 }
1967 
1968 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode)
1969 {
1970 	const struct iommu_ops *ops = NULL;
1971 	struct iommu_device *iommu;
1972 
1973 	spin_lock(&iommu_device_lock);
1974 	list_for_each_entry(iommu, &iommu_device_list, list)
1975 		if (iommu->fwnode == fwnode) {
1976 			ops = iommu->ops;
1977 			break;
1978 		}
1979 	spin_unlock(&iommu_device_lock);
1980 	return ops;
1981 }
1982 
1983 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
1984 		      const struct iommu_ops *ops)
1985 {
1986 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1987 
1988 	if (fwspec)
1989 		return ops == fwspec->ops ? 0 : -EINVAL;
1990 
1991 	fwspec = kzalloc(sizeof(*fwspec), GFP_KERNEL);
1992 	if (!fwspec)
1993 		return -ENOMEM;
1994 
1995 	of_node_get(to_of_node(iommu_fwnode));
1996 	fwspec->iommu_fwnode = iommu_fwnode;
1997 	fwspec->ops = ops;
1998 	dev_iommu_fwspec_set(dev, fwspec);
1999 	return 0;
2000 }
2001 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2002 
2003 void iommu_fwspec_free(struct device *dev)
2004 {
2005 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2006 
2007 	if (fwspec) {
2008 		fwnode_handle_put(fwspec->iommu_fwnode);
2009 		kfree(fwspec);
2010 		dev_iommu_fwspec_set(dev, NULL);
2011 	}
2012 }
2013 EXPORT_SYMBOL_GPL(iommu_fwspec_free);
2014 
2015 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids)
2016 {
2017 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2018 	size_t size;
2019 	int i;
2020 
2021 	if (!fwspec)
2022 		return -EINVAL;
2023 
2024 	size = offsetof(struct iommu_fwspec, ids[fwspec->num_ids + num_ids]);
2025 	if (size > sizeof(*fwspec)) {
2026 		fwspec = krealloc(fwspec, size, GFP_KERNEL);
2027 		if (!fwspec)
2028 			return -ENOMEM;
2029 
2030 		dev_iommu_fwspec_set(dev, fwspec);
2031 	}
2032 
2033 	for (i = 0; i < num_ids; i++)
2034 		fwspec->ids[fwspec->num_ids + i] = ids[i];
2035 
2036 	fwspec->num_ids += num_ids;
2037 	return 0;
2038 }
2039 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2040