1 /* 2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc. 3 * Author: Joerg Roedel <jroedel@suse.de> 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 as published 7 * by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 */ 18 19 #define pr_fmt(fmt) "iommu: " fmt 20 21 #include <linux/device.h> 22 #include <linux/kernel.h> 23 #include <linux/bug.h> 24 #include <linux/types.h> 25 #include <linux/module.h> 26 #include <linux/slab.h> 27 #include <linux/errno.h> 28 #include <linux/iommu.h> 29 #include <linux/idr.h> 30 #include <linux/notifier.h> 31 #include <linux/err.h> 32 #include <linux/pci.h> 33 #include <linux/bitops.h> 34 #include <linux/property.h> 35 #include <trace/events/iommu.h> 36 37 static struct kset *iommu_group_kset; 38 static DEFINE_IDA(iommu_group_ida); 39 static unsigned int iommu_def_domain_type = IOMMU_DOMAIN_DMA; 40 41 struct iommu_callback_data { 42 const struct iommu_ops *ops; 43 }; 44 45 struct iommu_group { 46 struct kobject kobj; 47 struct kobject *devices_kobj; 48 struct list_head devices; 49 struct mutex mutex; 50 struct blocking_notifier_head notifier; 51 void *iommu_data; 52 void (*iommu_data_release)(void *iommu_data); 53 char *name; 54 int id; 55 struct iommu_domain *default_domain; 56 struct iommu_domain *domain; 57 }; 58 59 struct group_device { 60 struct list_head list; 61 struct device *dev; 62 char *name; 63 }; 64 65 struct iommu_group_attribute { 66 struct attribute attr; 67 ssize_t (*show)(struct iommu_group *group, char *buf); 68 ssize_t (*store)(struct iommu_group *group, 69 const char *buf, size_t count); 70 }; 71 72 static const char * const iommu_group_resv_type_string[] = { 73 [IOMMU_RESV_DIRECT] = "direct", 74 [IOMMU_RESV_RESERVED] = "reserved", 75 [IOMMU_RESV_MSI] = "msi", 76 [IOMMU_RESV_SW_MSI] = "msi", 77 }; 78 79 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \ 80 struct iommu_group_attribute iommu_group_attr_##_name = \ 81 __ATTR(_name, _mode, _show, _store) 82 83 #define to_iommu_group_attr(_attr) \ 84 container_of(_attr, struct iommu_group_attribute, attr) 85 #define to_iommu_group(_kobj) \ 86 container_of(_kobj, struct iommu_group, kobj) 87 88 static LIST_HEAD(iommu_device_list); 89 static DEFINE_SPINLOCK(iommu_device_lock); 90 91 int iommu_device_register(struct iommu_device *iommu) 92 { 93 spin_lock(&iommu_device_lock); 94 list_add_tail(&iommu->list, &iommu_device_list); 95 spin_unlock(&iommu_device_lock); 96 97 return 0; 98 } 99 100 void iommu_device_unregister(struct iommu_device *iommu) 101 { 102 spin_lock(&iommu_device_lock); 103 list_del(&iommu->list); 104 spin_unlock(&iommu_device_lock); 105 } 106 107 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus, 108 unsigned type); 109 static int __iommu_attach_device(struct iommu_domain *domain, 110 struct device *dev); 111 static int __iommu_attach_group(struct iommu_domain *domain, 112 struct iommu_group *group); 113 static void __iommu_detach_group(struct iommu_domain *domain, 114 struct iommu_group *group); 115 116 static int __init iommu_set_def_domain_type(char *str) 117 { 118 bool pt; 119 120 if (!str || strtobool(str, &pt)) 121 return -EINVAL; 122 123 iommu_def_domain_type = pt ? IOMMU_DOMAIN_IDENTITY : IOMMU_DOMAIN_DMA; 124 return 0; 125 } 126 early_param("iommu.passthrough", iommu_set_def_domain_type); 127 128 static ssize_t iommu_group_attr_show(struct kobject *kobj, 129 struct attribute *__attr, char *buf) 130 { 131 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 132 struct iommu_group *group = to_iommu_group(kobj); 133 ssize_t ret = -EIO; 134 135 if (attr->show) 136 ret = attr->show(group, buf); 137 return ret; 138 } 139 140 static ssize_t iommu_group_attr_store(struct kobject *kobj, 141 struct attribute *__attr, 142 const char *buf, size_t count) 143 { 144 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 145 struct iommu_group *group = to_iommu_group(kobj); 146 ssize_t ret = -EIO; 147 148 if (attr->store) 149 ret = attr->store(group, buf, count); 150 return ret; 151 } 152 153 static const struct sysfs_ops iommu_group_sysfs_ops = { 154 .show = iommu_group_attr_show, 155 .store = iommu_group_attr_store, 156 }; 157 158 static int iommu_group_create_file(struct iommu_group *group, 159 struct iommu_group_attribute *attr) 160 { 161 return sysfs_create_file(&group->kobj, &attr->attr); 162 } 163 164 static void iommu_group_remove_file(struct iommu_group *group, 165 struct iommu_group_attribute *attr) 166 { 167 sysfs_remove_file(&group->kobj, &attr->attr); 168 } 169 170 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf) 171 { 172 return sprintf(buf, "%s\n", group->name); 173 } 174 175 /** 176 * iommu_insert_resv_region - Insert a new region in the 177 * list of reserved regions. 178 * @new: new region to insert 179 * @regions: list of regions 180 * 181 * The new element is sorted by address with respect to the other 182 * regions of the same type. In case it overlaps with another 183 * region of the same type, regions are merged. In case it 184 * overlaps with another region of different type, regions are 185 * not merged. 186 */ 187 static int iommu_insert_resv_region(struct iommu_resv_region *new, 188 struct list_head *regions) 189 { 190 struct iommu_resv_region *region; 191 phys_addr_t start = new->start; 192 phys_addr_t end = new->start + new->length - 1; 193 struct list_head *pos = regions->next; 194 195 while (pos != regions) { 196 struct iommu_resv_region *entry = 197 list_entry(pos, struct iommu_resv_region, list); 198 phys_addr_t a = entry->start; 199 phys_addr_t b = entry->start + entry->length - 1; 200 int type = entry->type; 201 202 if (end < a) { 203 goto insert; 204 } else if (start > b) { 205 pos = pos->next; 206 } else if ((start >= a) && (end <= b)) { 207 if (new->type == type) 208 goto done; 209 else 210 pos = pos->next; 211 } else { 212 if (new->type == type) { 213 phys_addr_t new_start = min(a, start); 214 phys_addr_t new_end = max(b, end); 215 216 list_del(&entry->list); 217 entry->start = new_start; 218 entry->length = new_end - new_start + 1; 219 iommu_insert_resv_region(entry, regions); 220 } else { 221 pos = pos->next; 222 } 223 } 224 } 225 insert: 226 region = iommu_alloc_resv_region(new->start, new->length, 227 new->prot, new->type); 228 if (!region) 229 return -ENOMEM; 230 231 list_add_tail(®ion->list, pos); 232 done: 233 return 0; 234 } 235 236 static int 237 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions, 238 struct list_head *group_resv_regions) 239 { 240 struct iommu_resv_region *entry; 241 int ret = 0; 242 243 list_for_each_entry(entry, dev_resv_regions, list) { 244 ret = iommu_insert_resv_region(entry, group_resv_regions); 245 if (ret) 246 break; 247 } 248 return ret; 249 } 250 251 int iommu_get_group_resv_regions(struct iommu_group *group, 252 struct list_head *head) 253 { 254 struct group_device *device; 255 int ret = 0; 256 257 mutex_lock(&group->mutex); 258 list_for_each_entry(device, &group->devices, list) { 259 struct list_head dev_resv_regions; 260 261 INIT_LIST_HEAD(&dev_resv_regions); 262 iommu_get_resv_regions(device->dev, &dev_resv_regions); 263 ret = iommu_insert_device_resv_regions(&dev_resv_regions, head); 264 iommu_put_resv_regions(device->dev, &dev_resv_regions); 265 if (ret) 266 break; 267 } 268 mutex_unlock(&group->mutex); 269 return ret; 270 } 271 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions); 272 273 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group, 274 char *buf) 275 { 276 struct iommu_resv_region *region, *next; 277 struct list_head group_resv_regions; 278 char *str = buf; 279 280 INIT_LIST_HEAD(&group_resv_regions); 281 iommu_get_group_resv_regions(group, &group_resv_regions); 282 283 list_for_each_entry_safe(region, next, &group_resv_regions, list) { 284 str += sprintf(str, "0x%016llx 0x%016llx %s\n", 285 (long long int)region->start, 286 (long long int)(region->start + 287 region->length - 1), 288 iommu_group_resv_type_string[region->type]); 289 kfree(region); 290 } 291 292 return (str - buf); 293 } 294 295 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL); 296 297 static IOMMU_GROUP_ATTR(reserved_regions, 0444, 298 iommu_group_show_resv_regions, NULL); 299 300 static void iommu_group_release(struct kobject *kobj) 301 { 302 struct iommu_group *group = to_iommu_group(kobj); 303 304 pr_debug("Releasing group %d\n", group->id); 305 306 if (group->iommu_data_release) 307 group->iommu_data_release(group->iommu_data); 308 309 ida_simple_remove(&iommu_group_ida, group->id); 310 311 if (group->default_domain) 312 iommu_domain_free(group->default_domain); 313 314 kfree(group->name); 315 kfree(group); 316 } 317 318 static struct kobj_type iommu_group_ktype = { 319 .sysfs_ops = &iommu_group_sysfs_ops, 320 .release = iommu_group_release, 321 }; 322 323 /** 324 * iommu_group_alloc - Allocate a new group 325 * @name: Optional name to associate with group, visible in sysfs 326 * 327 * This function is called by an iommu driver to allocate a new iommu 328 * group. The iommu group represents the minimum granularity of the iommu. 329 * Upon successful return, the caller holds a reference to the supplied 330 * group in order to hold the group until devices are added. Use 331 * iommu_group_put() to release this extra reference count, allowing the 332 * group to be automatically reclaimed once it has no devices or external 333 * references. 334 */ 335 struct iommu_group *iommu_group_alloc(void) 336 { 337 struct iommu_group *group; 338 int ret; 339 340 group = kzalloc(sizeof(*group), GFP_KERNEL); 341 if (!group) 342 return ERR_PTR(-ENOMEM); 343 344 group->kobj.kset = iommu_group_kset; 345 mutex_init(&group->mutex); 346 INIT_LIST_HEAD(&group->devices); 347 BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier); 348 349 ret = ida_simple_get(&iommu_group_ida, 0, 0, GFP_KERNEL); 350 if (ret < 0) { 351 kfree(group); 352 return ERR_PTR(ret); 353 } 354 group->id = ret; 355 356 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype, 357 NULL, "%d", group->id); 358 if (ret) { 359 ida_simple_remove(&iommu_group_ida, group->id); 360 kfree(group); 361 return ERR_PTR(ret); 362 } 363 364 group->devices_kobj = kobject_create_and_add("devices", &group->kobj); 365 if (!group->devices_kobj) { 366 kobject_put(&group->kobj); /* triggers .release & free */ 367 return ERR_PTR(-ENOMEM); 368 } 369 370 /* 371 * The devices_kobj holds a reference on the group kobject, so 372 * as long as that exists so will the group. We can therefore 373 * use the devices_kobj for reference counting. 374 */ 375 kobject_put(&group->kobj); 376 377 ret = iommu_group_create_file(group, 378 &iommu_group_attr_reserved_regions); 379 if (ret) 380 return ERR_PTR(ret); 381 382 pr_debug("Allocated group %d\n", group->id); 383 384 return group; 385 } 386 EXPORT_SYMBOL_GPL(iommu_group_alloc); 387 388 struct iommu_group *iommu_group_get_by_id(int id) 389 { 390 struct kobject *group_kobj; 391 struct iommu_group *group; 392 const char *name; 393 394 if (!iommu_group_kset) 395 return NULL; 396 397 name = kasprintf(GFP_KERNEL, "%d", id); 398 if (!name) 399 return NULL; 400 401 group_kobj = kset_find_obj(iommu_group_kset, name); 402 kfree(name); 403 404 if (!group_kobj) 405 return NULL; 406 407 group = container_of(group_kobj, struct iommu_group, kobj); 408 BUG_ON(group->id != id); 409 410 kobject_get(group->devices_kobj); 411 kobject_put(&group->kobj); 412 413 return group; 414 } 415 EXPORT_SYMBOL_GPL(iommu_group_get_by_id); 416 417 /** 418 * iommu_group_get_iommudata - retrieve iommu_data registered for a group 419 * @group: the group 420 * 421 * iommu drivers can store data in the group for use when doing iommu 422 * operations. This function provides a way to retrieve it. Caller 423 * should hold a group reference. 424 */ 425 void *iommu_group_get_iommudata(struct iommu_group *group) 426 { 427 return group->iommu_data; 428 } 429 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata); 430 431 /** 432 * iommu_group_set_iommudata - set iommu_data for a group 433 * @group: the group 434 * @iommu_data: new data 435 * @release: release function for iommu_data 436 * 437 * iommu drivers can store data in the group for use when doing iommu 438 * operations. This function provides a way to set the data after 439 * the group has been allocated. Caller should hold a group reference. 440 */ 441 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data, 442 void (*release)(void *iommu_data)) 443 { 444 group->iommu_data = iommu_data; 445 group->iommu_data_release = release; 446 } 447 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata); 448 449 /** 450 * iommu_group_set_name - set name for a group 451 * @group: the group 452 * @name: name 453 * 454 * Allow iommu driver to set a name for a group. When set it will 455 * appear in a name attribute file under the group in sysfs. 456 */ 457 int iommu_group_set_name(struct iommu_group *group, const char *name) 458 { 459 int ret; 460 461 if (group->name) { 462 iommu_group_remove_file(group, &iommu_group_attr_name); 463 kfree(group->name); 464 group->name = NULL; 465 if (!name) 466 return 0; 467 } 468 469 group->name = kstrdup(name, GFP_KERNEL); 470 if (!group->name) 471 return -ENOMEM; 472 473 ret = iommu_group_create_file(group, &iommu_group_attr_name); 474 if (ret) { 475 kfree(group->name); 476 group->name = NULL; 477 return ret; 478 } 479 480 return 0; 481 } 482 EXPORT_SYMBOL_GPL(iommu_group_set_name); 483 484 static int iommu_group_create_direct_mappings(struct iommu_group *group, 485 struct device *dev) 486 { 487 struct iommu_domain *domain = group->default_domain; 488 struct iommu_resv_region *entry; 489 struct list_head mappings; 490 unsigned long pg_size; 491 int ret = 0; 492 493 if (!domain || domain->type != IOMMU_DOMAIN_DMA) 494 return 0; 495 496 BUG_ON(!domain->pgsize_bitmap); 497 498 pg_size = 1UL << __ffs(domain->pgsize_bitmap); 499 INIT_LIST_HEAD(&mappings); 500 501 iommu_get_resv_regions(dev, &mappings); 502 503 /* We need to consider overlapping regions for different devices */ 504 list_for_each_entry(entry, &mappings, list) { 505 dma_addr_t start, end, addr; 506 507 if (domain->ops->apply_resv_region) 508 domain->ops->apply_resv_region(dev, domain, entry); 509 510 start = ALIGN(entry->start, pg_size); 511 end = ALIGN(entry->start + entry->length, pg_size); 512 513 if (entry->type != IOMMU_RESV_DIRECT) 514 continue; 515 516 for (addr = start; addr < end; addr += pg_size) { 517 phys_addr_t phys_addr; 518 519 phys_addr = iommu_iova_to_phys(domain, addr); 520 if (phys_addr) 521 continue; 522 523 ret = iommu_map(domain, addr, addr, pg_size, entry->prot); 524 if (ret) 525 goto out; 526 } 527 528 } 529 530 out: 531 iommu_put_resv_regions(dev, &mappings); 532 533 return ret; 534 } 535 536 /** 537 * iommu_group_add_device - add a device to an iommu group 538 * @group: the group into which to add the device (reference should be held) 539 * @dev: the device 540 * 541 * This function is called by an iommu driver to add a device into a 542 * group. Adding a device increments the group reference count. 543 */ 544 int iommu_group_add_device(struct iommu_group *group, struct device *dev) 545 { 546 int ret, i = 0; 547 struct group_device *device; 548 549 device = kzalloc(sizeof(*device), GFP_KERNEL); 550 if (!device) 551 return -ENOMEM; 552 553 device->dev = dev; 554 555 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group"); 556 if (ret) 557 goto err_free_device; 558 559 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj)); 560 rename: 561 if (!device->name) { 562 ret = -ENOMEM; 563 goto err_remove_link; 564 } 565 566 ret = sysfs_create_link_nowarn(group->devices_kobj, 567 &dev->kobj, device->name); 568 if (ret) { 569 if (ret == -EEXIST && i >= 0) { 570 /* 571 * Account for the slim chance of collision 572 * and append an instance to the name. 573 */ 574 kfree(device->name); 575 device->name = kasprintf(GFP_KERNEL, "%s.%d", 576 kobject_name(&dev->kobj), i++); 577 goto rename; 578 } 579 goto err_free_name; 580 } 581 582 kobject_get(group->devices_kobj); 583 584 dev->iommu_group = group; 585 586 iommu_group_create_direct_mappings(group, dev); 587 588 mutex_lock(&group->mutex); 589 list_add_tail(&device->list, &group->devices); 590 if (group->domain) 591 ret = __iommu_attach_device(group->domain, dev); 592 mutex_unlock(&group->mutex); 593 if (ret) 594 goto err_put_group; 595 596 /* Notify any listeners about change to group. */ 597 blocking_notifier_call_chain(&group->notifier, 598 IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev); 599 600 trace_add_device_to_group(group->id, dev); 601 602 pr_info("Adding device %s to group %d\n", dev_name(dev), group->id); 603 604 return 0; 605 606 err_put_group: 607 mutex_lock(&group->mutex); 608 list_del(&device->list); 609 mutex_unlock(&group->mutex); 610 dev->iommu_group = NULL; 611 kobject_put(group->devices_kobj); 612 err_free_name: 613 kfree(device->name); 614 err_remove_link: 615 sysfs_remove_link(&dev->kobj, "iommu_group"); 616 err_free_device: 617 kfree(device); 618 pr_err("Failed to add device %s to group %d: %d\n", dev_name(dev), group->id, ret); 619 return ret; 620 } 621 EXPORT_SYMBOL_GPL(iommu_group_add_device); 622 623 /** 624 * iommu_group_remove_device - remove a device from it's current group 625 * @dev: device to be removed 626 * 627 * This function is called by an iommu driver to remove the device from 628 * it's current group. This decrements the iommu group reference count. 629 */ 630 void iommu_group_remove_device(struct device *dev) 631 { 632 struct iommu_group *group = dev->iommu_group; 633 struct group_device *tmp_device, *device = NULL; 634 635 pr_info("Removing device %s from group %d\n", dev_name(dev), group->id); 636 637 /* Pre-notify listeners that a device is being removed. */ 638 blocking_notifier_call_chain(&group->notifier, 639 IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev); 640 641 mutex_lock(&group->mutex); 642 list_for_each_entry(tmp_device, &group->devices, list) { 643 if (tmp_device->dev == dev) { 644 device = tmp_device; 645 list_del(&device->list); 646 break; 647 } 648 } 649 mutex_unlock(&group->mutex); 650 651 if (!device) 652 return; 653 654 sysfs_remove_link(group->devices_kobj, device->name); 655 sysfs_remove_link(&dev->kobj, "iommu_group"); 656 657 trace_remove_device_from_group(group->id, dev); 658 659 kfree(device->name); 660 kfree(device); 661 dev->iommu_group = NULL; 662 kobject_put(group->devices_kobj); 663 } 664 EXPORT_SYMBOL_GPL(iommu_group_remove_device); 665 666 static int iommu_group_device_count(struct iommu_group *group) 667 { 668 struct group_device *entry; 669 int ret = 0; 670 671 list_for_each_entry(entry, &group->devices, list) 672 ret++; 673 674 return ret; 675 } 676 677 /** 678 * iommu_group_for_each_dev - iterate over each device in the group 679 * @group: the group 680 * @data: caller opaque data to be passed to callback function 681 * @fn: caller supplied callback function 682 * 683 * This function is called by group users to iterate over group devices. 684 * Callers should hold a reference count to the group during callback. 685 * The group->mutex is held across callbacks, which will block calls to 686 * iommu_group_add/remove_device. 687 */ 688 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data, 689 int (*fn)(struct device *, void *)) 690 { 691 struct group_device *device; 692 int ret = 0; 693 694 list_for_each_entry(device, &group->devices, list) { 695 ret = fn(device->dev, data); 696 if (ret) 697 break; 698 } 699 return ret; 700 } 701 702 703 int iommu_group_for_each_dev(struct iommu_group *group, void *data, 704 int (*fn)(struct device *, void *)) 705 { 706 int ret; 707 708 mutex_lock(&group->mutex); 709 ret = __iommu_group_for_each_dev(group, data, fn); 710 mutex_unlock(&group->mutex); 711 712 return ret; 713 } 714 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev); 715 716 /** 717 * iommu_group_get - Return the group for a device and increment reference 718 * @dev: get the group that this device belongs to 719 * 720 * This function is called by iommu drivers and users to get the group 721 * for the specified device. If found, the group is returned and the group 722 * reference in incremented, else NULL. 723 */ 724 struct iommu_group *iommu_group_get(struct device *dev) 725 { 726 struct iommu_group *group = dev->iommu_group; 727 728 if (group) 729 kobject_get(group->devices_kobj); 730 731 return group; 732 } 733 EXPORT_SYMBOL_GPL(iommu_group_get); 734 735 /** 736 * iommu_group_ref_get - Increment reference on a group 737 * @group: the group to use, must not be NULL 738 * 739 * This function is called by iommu drivers to take additional references on an 740 * existing group. Returns the given group for convenience. 741 */ 742 struct iommu_group *iommu_group_ref_get(struct iommu_group *group) 743 { 744 kobject_get(group->devices_kobj); 745 return group; 746 } 747 748 /** 749 * iommu_group_put - Decrement group reference 750 * @group: the group to use 751 * 752 * This function is called by iommu drivers and users to release the 753 * iommu group. Once the reference count is zero, the group is released. 754 */ 755 void iommu_group_put(struct iommu_group *group) 756 { 757 if (group) 758 kobject_put(group->devices_kobj); 759 } 760 EXPORT_SYMBOL_GPL(iommu_group_put); 761 762 /** 763 * iommu_group_register_notifier - Register a notifier for group changes 764 * @group: the group to watch 765 * @nb: notifier block to signal 766 * 767 * This function allows iommu group users to track changes in a group. 768 * See include/linux/iommu.h for actions sent via this notifier. Caller 769 * should hold a reference to the group throughout notifier registration. 770 */ 771 int iommu_group_register_notifier(struct iommu_group *group, 772 struct notifier_block *nb) 773 { 774 return blocking_notifier_chain_register(&group->notifier, nb); 775 } 776 EXPORT_SYMBOL_GPL(iommu_group_register_notifier); 777 778 /** 779 * iommu_group_unregister_notifier - Unregister a notifier 780 * @group: the group to watch 781 * @nb: notifier block to signal 782 * 783 * Unregister a previously registered group notifier block. 784 */ 785 int iommu_group_unregister_notifier(struct iommu_group *group, 786 struct notifier_block *nb) 787 { 788 return blocking_notifier_chain_unregister(&group->notifier, nb); 789 } 790 EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier); 791 792 /** 793 * iommu_group_id - Return ID for a group 794 * @group: the group to ID 795 * 796 * Return the unique ID for the group matching the sysfs group number. 797 */ 798 int iommu_group_id(struct iommu_group *group) 799 { 800 return group->id; 801 } 802 EXPORT_SYMBOL_GPL(iommu_group_id); 803 804 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 805 unsigned long *devfns); 806 807 /* 808 * To consider a PCI device isolated, we require ACS to support Source 809 * Validation, Request Redirection, Completer Redirection, and Upstream 810 * Forwarding. This effectively means that devices cannot spoof their 811 * requester ID, requests and completions cannot be redirected, and all 812 * transactions are forwarded upstream, even as it passes through a 813 * bridge where the target device is downstream. 814 */ 815 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF) 816 817 /* 818 * For multifunction devices which are not isolated from each other, find 819 * all the other non-isolated functions and look for existing groups. For 820 * each function, we also need to look for aliases to or from other devices 821 * that may already have a group. 822 */ 823 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev, 824 unsigned long *devfns) 825 { 826 struct pci_dev *tmp = NULL; 827 struct iommu_group *group; 828 829 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS)) 830 return NULL; 831 832 for_each_pci_dev(tmp) { 833 if (tmp == pdev || tmp->bus != pdev->bus || 834 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) || 835 pci_acs_enabled(tmp, REQ_ACS_FLAGS)) 836 continue; 837 838 group = get_pci_alias_group(tmp, devfns); 839 if (group) { 840 pci_dev_put(tmp); 841 return group; 842 } 843 } 844 845 return NULL; 846 } 847 848 /* 849 * Look for aliases to or from the given device for existing groups. DMA 850 * aliases are only supported on the same bus, therefore the search 851 * space is quite small (especially since we're really only looking at pcie 852 * device, and therefore only expect multiple slots on the root complex or 853 * downstream switch ports). It's conceivable though that a pair of 854 * multifunction devices could have aliases between them that would cause a 855 * loop. To prevent this, we use a bitmap to track where we've been. 856 */ 857 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 858 unsigned long *devfns) 859 { 860 struct pci_dev *tmp = NULL; 861 struct iommu_group *group; 862 863 if (test_and_set_bit(pdev->devfn & 0xff, devfns)) 864 return NULL; 865 866 group = iommu_group_get(&pdev->dev); 867 if (group) 868 return group; 869 870 for_each_pci_dev(tmp) { 871 if (tmp == pdev || tmp->bus != pdev->bus) 872 continue; 873 874 /* We alias them or they alias us */ 875 if (pci_devs_are_dma_aliases(pdev, tmp)) { 876 group = get_pci_alias_group(tmp, devfns); 877 if (group) { 878 pci_dev_put(tmp); 879 return group; 880 } 881 882 group = get_pci_function_alias_group(tmp, devfns); 883 if (group) { 884 pci_dev_put(tmp); 885 return group; 886 } 887 } 888 } 889 890 return NULL; 891 } 892 893 struct group_for_pci_data { 894 struct pci_dev *pdev; 895 struct iommu_group *group; 896 }; 897 898 /* 899 * DMA alias iterator callback, return the last seen device. Stop and return 900 * the IOMMU group if we find one along the way. 901 */ 902 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque) 903 { 904 struct group_for_pci_data *data = opaque; 905 906 data->pdev = pdev; 907 data->group = iommu_group_get(&pdev->dev); 908 909 return data->group != NULL; 910 } 911 912 /* 913 * Generic device_group call-back function. It just allocates one 914 * iommu-group per device. 915 */ 916 struct iommu_group *generic_device_group(struct device *dev) 917 { 918 return iommu_group_alloc(); 919 } 920 921 /* 922 * Use standard PCI bus topology, isolation features, and DMA alias quirks 923 * to find or create an IOMMU group for a device. 924 */ 925 struct iommu_group *pci_device_group(struct device *dev) 926 { 927 struct pci_dev *pdev = to_pci_dev(dev); 928 struct group_for_pci_data data; 929 struct pci_bus *bus; 930 struct iommu_group *group = NULL; 931 u64 devfns[4] = { 0 }; 932 933 if (WARN_ON(!dev_is_pci(dev))) 934 return ERR_PTR(-EINVAL); 935 936 /* 937 * Find the upstream DMA alias for the device. A device must not 938 * be aliased due to topology in order to have its own IOMMU group. 939 * If we find an alias along the way that already belongs to a 940 * group, use it. 941 */ 942 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data)) 943 return data.group; 944 945 pdev = data.pdev; 946 947 /* 948 * Continue upstream from the point of minimum IOMMU granularity 949 * due to aliases to the point where devices are protected from 950 * peer-to-peer DMA by PCI ACS. Again, if we find an existing 951 * group, use it. 952 */ 953 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) { 954 if (!bus->self) 955 continue; 956 957 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS)) 958 break; 959 960 pdev = bus->self; 961 962 group = iommu_group_get(&pdev->dev); 963 if (group) 964 return group; 965 } 966 967 /* 968 * Look for existing groups on device aliases. If we alias another 969 * device or another device aliases us, use the same group. 970 */ 971 group = get_pci_alias_group(pdev, (unsigned long *)devfns); 972 if (group) 973 return group; 974 975 /* 976 * Look for existing groups on non-isolated functions on the same 977 * slot and aliases of those funcions, if any. No need to clear 978 * the search bitmap, the tested devfns are still valid. 979 */ 980 group = get_pci_function_alias_group(pdev, (unsigned long *)devfns); 981 if (group) 982 return group; 983 984 /* No shared group found, allocate new */ 985 return iommu_group_alloc(); 986 } 987 988 /** 989 * iommu_group_get_for_dev - Find or create the IOMMU group for a device 990 * @dev: target device 991 * 992 * This function is intended to be called by IOMMU drivers and extended to 993 * support common, bus-defined algorithms when determining or creating the 994 * IOMMU group for a device. On success, the caller will hold a reference 995 * to the returned IOMMU group, which will already include the provided 996 * device. The reference should be released with iommu_group_put(). 997 */ 998 struct iommu_group *iommu_group_get_for_dev(struct device *dev) 999 { 1000 const struct iommu_ops *ops = dev->bus->iommu_ops; 1001 struct iommu_group *group; 1002 int ret; 1003 1004 group = iommu_group_get(dev); 1005 if (group) 1006 return group; 1007 1008 group = ERR_PTR(-EINVAL); 1009 1010 if (ops && ops->device_group) 1011 group = ops->device_group(dev); 1012 1013 if (WARN_ON_ONCE(group == NULL)) 1014 return ERR_PTR(-EINVAL); 1015 1016 if (IS_ERR(group)) 1017 return group; 1018 1019 /* 1020 * Try to allocate a default domain - needs support from the 1021 * IOMMU driver. 1022 */ 1023 if (!group->default_domain) { 1024 struct iommu_domain *dom; 1025 1026 dom = __iommu_domain_alloc(dev->bus, iommu_def_domain_type); 1027 if (!dom && iommu_def_domain_type != IOMMU_DOMAIN_DMA) { 1028 dev_warn(dev, 1029 "failed to allocate default IOMMU domain of type %u; falling back to IOMMU_DOMAIN_DMA", 1030 iommu_def_domain_type); 1031 dom = __iommu_domain_alloc(dev->bus, IOMMU_DOMAIN_DMA); 1032 } 1033 1034 group->default_domain = dom; 1035 if (!group->domain) 1036 group->domain = dom; 1037 } 1038 1039 ret = iommu_group_add_device(group, dev); 1040 if (ret) { 1041 iommu_group_put(group); 1042 return ERR_PTR(ret); 1043 } 1044 1045 return group; 1046 } 1047 1048 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group) 1049 { 1050 return group->default_domain; 1051 } 1052 1053 static int add_iommu_group(struct device *dev, void *data) 1054 { 1055 struct iommu_callback_data *cb = data; 1056 const struct iommu_ops *ops = cb->ops; 1057 int ret; 1058 1059 if (!ops->add_device) 1060 return 0; 1061 1062 WARN_ON(dev->iommu_group); 1063 1064 ret = ops->add_device(dev); 1065 1066 /* 1067 * We ignore -ENODEV errors for now, as they just mean that the 1068 * device is not translated by an IOMMU. We still care about 1069 * other errors and fail to initialize when they happen. 1070 */ 1071 if (ret == -ENODEV) 1072 ret = 0; 1073 1074 return ret; 1075 } 1076 1077 static int remove_iommu_group(struct device *dev, void *data) 1078 { 1079 struct iommu_callback_data *cb = data; 1080 const struct iommu_ops *ops = cb->ops; 1081 1082 if (ops->remove_device && dev->iommu_group) 1083 ops->remove_device(dev); 1084 1085 return 0; 1086 } 1087 1088 static int iommu_bus_notifier(struct notifier_block *nb, 1089 unsigned long action, void *data) 1090 { 1091 struct device *dev = data; 1092 const struct iommu_ops *ops = dev->bus->iommu_ops; 1093 struct iommu_group *group; 1094 unsigned long group_action = 0; 1095 1096 /* 1097 * ADD/DEL call into iommu driver ops if provided, which may 1098 * result in ADD/DEL notifiers to group->notifier 1099 */ 1100 if (action == BUS_NOTIFY_ADD_DEVICE) { 1101 if (ops->add_device) { 1102 int ret; 1103 1104 ret = ops->add_device(dev); 1105 return (ret) ? NOTIFY_DONE : NOTIFY_OK; 1106 } 1107 } else if (action == BUS_NOTIFY_REMOVED_DEVICE) { 1108 if (ops->remove_device && dev->iommu_group) { 1109 ops->remove_device(dev); 1110 return 0; 1111 } 1112 } 1113 1114 /* 1115 * Remaining BUS_NOTIFYs get filtered and republished to the 1116 * group, if anyone is listening 1117 */ 1118 group = iommu_group_get(dev); 1119 if (!group) 1120 return 0; 1121 1122 switch (action) { 1123 case BUS_NOTIFY_BIND_DRIVER: 1124 group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER; 1125 break; 1126 case BUS_NOTIFY_BOUND_DRIVER: 1127 group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER; 1128 break; 1129 case BUS_NOTIFY_UNBIND_DRIVER: 1130 group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER; 1131 break; 1132 case BUS_NOTIFY_UNBOUND_DRIVER: 1133 group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER; 1134 break; 1135 } 1136 1137 if (group_action) 1138 blocking_notifier_call_chain(&group->notifier, 1139 group_action, dev); 1140 1141 iommu_group_put(group); 1142 return 0; 1143 } 1144 1145 static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops) 1146 { 1147 int err; 1148 struct notifier_block *nb; 1149 struct iommu_callback_data cb = { 1150 .ops = ops, 1151 }; 1152 1153 nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL); 1154 if (!nb) 1155 return -ENOMEM; 1156 1157 nb->notifier_call = iommu_bus_notifier; 1158 1159 err = bus_register_notifier(bus, nb); 1160 if (err) 1161 goto out_free; 1162 1163 err = bus_for_each_dev(bus, NULL, &cb, add_iommu_group); 1164 if (err) 1165 goto out_err; 1166 1167 1168 return 0; 1169 1170 out_err: 1171 /* Clean up */ 1172 bus_for_each_dev(bus, NULL, &cb, remove_iommu_group); 1173 bus_unregister_notifier(bus, nb); 1174 1175 out_free: 1176 kfree(nb); 1177 1178 return err; 1179 } 1180 1181 /** 1182 * bus_set_iommu - set iommu-callbacks for the bus 1183 * @bus: bus. 1184 * @ops: the callbacks provided by the iommu-driver 1185 * 1186 * This function is called by an iommu driver to set the iommu methods 1187 * used for a particular bus. Drivers for devices on that bus can use 1188 * the iommu-api after these ops are registered. 1189 * This special function is needed because IOMMUs are usually devices on 1190 * the bus itself, so the iommu drivers are not initialized when the bus 1191 * is set up. With this function the iommu-driver can set the iommu-ops 1192 * afterwards. 1193 */ 1194 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops) 1195 { 1196 int err; 1197 1198 if (bus->iommu_ops != NULL) 1199 return -EBUSY; 1200 1201 bus->iommu_ops = ops; 1202 1203 /* Do IOMMU specific setup for this bus-type */ 1204 err = iommu_bus_init(bus, ops); 1205 if (err) 1206 bus->iommu_ops = NULL; 1207 1208 return err; 1209 } 1210 EXPORT_SYMBOL_GPL(bus_set_iommu); 1211 1212 bool iommu_present(struct bus_type *bus) 1213 { 1214 return bus->iommu_ops != NULL; 1215 } 1216 EXPORT_SYMBOL_GPL(iommu_present); 1217 1218 bool iommu_capable(struct bus_type *bus, enum iommu_cap cap) 1219 { 1220 if (!bus->iommu_ops || !bus->iommu_ops->capable) 1221 return false; 1222 1223 return bus->iommu_ops->capable(cap); 1224 } 1225 EXPORT_SYMBOL_GPL(iommu_capable); 1226 1227 /** 1228 * iommu_set_fault_handler() - set a fault handler for an iommu domain 1229 * @domain: iommu domain 1230 * @handler: fault handler 1231 * @token: user data, will be passed back to the fault handler 1232 * 1233 * This function should be used by IOMMU users which want to be notified 1234 * whenever an IOMMU fault happens. 1235 * 1236 * The fault handler itself should return 0 on success, and an appropriate 1237 * error code otherwise. 1238 */ 1239 void iommu_set_fault_handler(struct iommu_domain *domain, 1240 iommu_fault_handler_t handler, 1241 void *token) 1242 { 1243 BUG_ON(!domain); 1244 1245 domain->handler = handler; 1246 domain->handler_token = token; 1247 } 1248 EXPORT_SYMBOL_GPL(iommu_set_fault_handler); 1249 1250 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus, 1251 unsigned type) 1252 { 1253 struct iommu_domain *domain; 1254 1255 if (bus == NULL || bus->iommu_ops == NULL) 1256 return NULL; 1257 1258 domain = bus->iommu_ops->domain_alloc(type); 1259 if (!domain) 1260 return NULL; 1261 1262 domain->ops = bus->iommu_ops; 1263 domain->type = type; 1264 /* Assume all sizes by default; the driver may override this later */ 1265 domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap; 1266 1267 return domain; 1268 } 1269 1270 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus) 1271 { 1272 return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED); 1273 } 1274 EXPORT_SYMBOL_GPL(iommu_domain_alloc); 1275 1276 void iommu_domain_free(struct iommu_domain *domain) 1277 { 1278 domain->ops->domain_free(domain); 1279 } 1280 EXPORT_SYMBOL_GPL(iommu_domain_free); 1281 1282 static int __iommu_attach_device(struct iommu_domain *domain, 1283 struct device *dev) 1284 { 1285 int ret; 1286 if (unlikely(domain->ops->attach_dev == NULL)) 1287 return -ENODEV; 1288 1289 ret = domain->ops->attach_dev(domain, dev); 1290 if (!ret) 1291 trace_attach_device_to_domain(dev); 1292 return ret; 1293 } 1294 1295 int iommu_attach_device(struct iommu_domain *domain, struct device *dev) 1296 { 1297 struct iommu_group *group; 1298 int ret; 1299 1300 group = iommu_group_get(dev); 1301 /* FIXME: Remove this when groups a mandatory for iommu drivers */ 1302 if (group == NULL) 1303 return __iommu_attach_device(domain, dev); 1304 1305 /* 1306 * We have a group - lock it to make sure the device-count doesn't 1307 * change while we are attaching 1308 */ 1309 mutex_lock(&group->mutex); 1310 ret = -EINVAL; 1311 if (iommu_group_device_count(group) != 1) 1312 goto out_unlock; 1313 1314 ret = __iommu_attach_group(domain, group); 1315 1316 out_unlock: 1317 mutex_unlock(&group->mutex); 1318 iommu_group_put(group); 1319 1320 return ret; 1321 } 1322 EXPORT_SYMBOL_GPL(iommu_attach_device); 1323 1324 static void __iommu_detach_device(struct iommu_domain *domain, 1325 struct device *dev) 1326 { 1327 if (unlikely(domain->ops->detach_dev == NULL)) 1328 return; 1329 1330 domain->ops->detach_dev(domain, dev); 1331 trace_detach_device_from_domain(dev); 1332 } 1333 1334 void iommu_detach_device(struct iommu_domain *domain, struct device *dev) 1335 { 1336 struct iommu_group *group; 1337 1338 group = iommu_group_get(dev); 1339 /* FIXME: Remove this when groups a mandatory for iommu drivers */ 1340 if (group == NULL) 1341 return __iommu_detach_device(domain, dev); 1342 1343 mutex_lock(&group->mutex); 1344 if (iommu_group_device_count(group) != 1) { 1345 WARN_ON(1); 1346 goto out_unlock; 1347 } 1348 1349 __iommu_detach_group(domain, group); 1350 1351 out_unlock: 1352 mutex_unlock(&group->mutex); 1353 iommu_group_put(group); 1354 } 1355 EXPORT_SYMBOL_GPL(iommu_detach_device); 1356 1357 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev) 1358 { 1359 struct iommu_domain *domain; 1360 struct iommu_group *group; 1361 1362 group = iommu_group_get(dev); 1363 /* FIXME: Remove this when groups a mandatory for iommu drivers */ 1364 if (group == NULL) 1365 return NULL; 1366 1367 domain = group->domain; 1368 1369 iommu_group_put(group); 1370 1371 return domain; 1372 } 1373 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev); 1374 1375 /* 1376 * IOMMU groups are really the natrual working unit of the IOMMU, but 1377 * the IOMMU API works on domains and devices. Bridge that gap by 1378 * iterating over the devices in a group. Ideally we'd have a single 1379 * device which represents the requestor ID of the group, but we also 1380 * allow IOMMU drivers to create policy defined minimum sets, where 1381 * the physical hardware may be able to distiguish members, but we 1382 * wish to group them at a higher level (ex. untrusted multi-function 1383 * PCI devices). Thus we attach each device. 1384 */ 1385 static int iommu_group_do_attach_device(struct device *dev, void *data) 1386 { 1387 struct iommu_domain *domain = data; 1388 1389 return __iommu_attach_device(domain, dev); 1390 } 1391 1392 static int __iommu_attach_group(struct iommu_domain *domain, 1393 struct iommu_group *group) 1394 { 1395 int ret; 1396 1397 if (group->default_domain && group->domain != group->default_domain) 1398 return -EBUSY; 1399 1400 ret = __iommu_group_for_each_dev(group, domain, 1401 iommu_group_do_attach_device); 1402 if (ret == 0) 1403 group->domain = domain; 1404 1405 return ret; 1406 } 1407 1408 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group) 1409 { 1410 int ret; 1411 1412 mutex_lock(&group->mutex); 1413 ret = __iommu_attach_group(domain, group); 1414 mutex_unlock(&group->mutex); 1415 1416 return ret; 1417 } 1418 EXPORT_SYMBOL_GPL(iommu_attach_group); 1419 1420 static int iommu_group_do_detach_device(struct device *dev, void *data) 1421 { 1422 struct iommu_domain *domain = data; 1423 1424 __iommu_detach_device(domain, dev); 1425 1426 return 0; 1427 } 1428 1429 static void __iommu_detach_group(struct iommu_domain *domain, 1430 struct iommu_group *group) 1431 { 1432 int ret; 1433 1434 if (!group->default_domain) { 1435 __iommu_group_for_each_dev(group, domain, 1436 iommu_group_do_detach_device); 1437 group->domain = NULL; 1438 return; 1439 } 1440 1441 if (group->domain == group->default_domain) 1442 return; 1443 1444 /* Detach by re-attaching to the default domain */ 1445 ret = __iommu_group_for_each_dev(group, group->default_domain, 1446 iommu_group_do_attach_device); 1447 if (ret != 0) 1448 WARN_ON(1); 1449 else 1450 group->domain = group->default_domain; 1451 } 1452 1453 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group) 1454 { 1455 mutex_lock(&group->mutex); 1456 __iommu_detach_group(domain, group); 1457 mutex_unlock(&group->mutex); 1458 } 1459 EXPORT_SYMBOL_GPL(iommu_detach_group); 1460 1461 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) 1462 { 1463 if (unlikely(domain->ops->iova_to_phys == NULL)) 1464 return 0; 1465 1466 return domain->ops->iova_to_phys(domain, iova); 1467 } 1468 EXPORT_SYMBOL_GPL(iommu_iova_to_phys); 1469 1470 static size_t iommu_pgsize(struct iommu_domain *domain, 1471 unsigned long addr_merge, size_t size) 1472 { 1473 unsigned int pgsize_idx; 1474 size_t pgsize; 1475 1476 /* Max page size that still fits into 'size' */ 1477 pgsize_idx = __fls(size); 1478 1479 /* need to consider alignment requirements ? */ 1480 if (likely(addr_merge)) { 1481 /* Max page size allowed by address */ 1482 unsigned int align_pgsize_idx = __ffs(addr_merge); 1483 pgsize_idx = min(pgsize_idx, align_pgsize_idx); 1484 } 1485 1486 /* build a mask of acceptable page sizes */ 1487 pgsize = (1UL << (pgsize_idx + 1)) - 1; 1488 1489 /* throw away page sizes not supported by the hardware */ 1490 pgsize &= domain->pgsize_bitmap; 1491 1492 /* make sure we're still sane */ 1493 BUG_ON(!pgsize); 1494 1495 /* pick the biggest page */ 1496 pgsize_idx = __fls(pgsize); 1497 pgsize = 1UL << pgsize_idx; 1498 1499 return pgsize; 1500 } 1501 1502 int iommu_map(struct iommu_domain *domain, unsigned long iova, 1503 phys_addr_t paddr, size_t size, int prot) 1504 { 1505 unsigned long orig_iova = iova; 1506 unsigned int min_pagesz; 1507 size_t orig_size = size; 1508 phys_addr_t orig_paddr = paddr; 1509 int ret = 0; 1510 1511 if (unlikely(domain->ops->map == NULL || 1512 domain->pgsize_bitmap == 0UL)) 1513 return -ENODEV; 1514 1515 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 1516 return -EINVAL; 1517 1518 /* find out the minimum page size supported */ 1519 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 1520 1521 /* 1522 * both the virtual address and the physical one, as well as 1523 * the size of the mapping, must be aligned (at least) to the 1524 * size of the smallest page supported by the hardware 1525 */ 1526 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) { 1527 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n", 1528 iova, &paddr, size, min_pagesz); 1529 return -EINVAL; 1530 } 1531 1532 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size); 1533 1534 while (size) { 1535 size_t pgsize = iommu_pgsize(domain, iova | paddr, size); 1536 1537 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx\n", 1538 iova, &paddr, pgsize); 1539 1540 ret = domain->ops->map(domain, iova, paddr, pgsize, prot); 1541 if (ret) 1542 break; 1543 1544 iova += pgsize; 1545 paddr += pgsize; 1546 size -= pgsize; 1547 } 1548 1549 /* unroll mapping in case something went wrong */ 1550 if (ret) 1551 iommu_unmap(domain, orig_iova, orig_size - size); 1552 else 1553 trace_map(orig_iova, orig_paddr, orig_size); 1554 1555 return ret; 1556 } 1557 EXPORT_SYMBOL_GPL(iommu_map); 1558 1559 size_t iommu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size) 1560 { 1561 size_t unmapped_page, unmapped = 0; 1562 unsigned int min_pagesz; 1563 unsigned long orig_iova = iova; 1564 1565 if (unlikely(domain->ops->unmap == NULL || 1566 domain->pgsize_bitmap == 0UL)) 1567 return -ENODEV; 1568 1569 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 1570 return -EINVAL; 1571 1572 /* find out the minimum page size supported */ 1573 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 1574 1575 /* 1576 * The virtual address, as well as the size of the mapping, must be 1577 * aligned (at least) to the size of the smallest page supported 1578 * by the hardware 1579 */ 1580 if (!IS_ALIGNED(iova | size, min_pagesz)) { 1581 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n", 1582 iova, size, min_pagesz); 1583 return -EINVAL; 1584 } 1585 1586 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size); 1587 1588 /* 1589 * Keep iterating until we either unmap 'size' bytes (or more) 1590 * or we hit an area that isn't mapped. 1591 */ 1592 while (unmapped < size) { 1593 size_t pgsize = iommu_pgsize(domain, iova, size - unmapped); 1594 1595 unmapped_page = domain->ops->unmap(domain, iova, pgsize); 1596 if (!unmapped_page) 1597 break; 1598 1599 pr_debug("unmapped: iova 0x%lx size 0x%zx\n", 1600 iova, unmapped_page); 1601 1602 iova += unmapped_page; 1603 unmapped += unmapped_page; 1604 } 1605 1606 trace_unmap(orig_iova, size, unmapped); 1607 return unmapped; 1608 } 1609 EXPORT_SYMBOL_GPL(iommu_unmap); 1610 1611 size_t default_iommu_map_sg(struct iommu_domain *domain, unsigned long iova, 1612 struct scatterlist *sg, unsigned int nents, int prot) 1613 { 1614 struct scatterlist *s; 1615 size_t mapped = 0; 1616 unsigned int i, min_pagesz; 1617 int ret; 1618 1619 if (unlikely(domain->pgsize_bitmap == 0UL)) 1620 return 0; 1621 1622 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 1623 1624 for_each_sg(sg, s, nents, i) { 1625 phys_addr_t phys = page_to_phys(sg_page(s)) + s->offset; 1626 1627 /* 1628 * We are mapping on IOMMU page boundaries, so offset within 1629 * the page must be 0. However, the IOMMU may support pages 1630 * smaller than PAGE_SIZE, so s->offset may still represent 1631 * an offset of that boundary within the CPU page. 1632 */ 1633 if (!IS_ALIGNED(s->offset, min_pagesz)) 1634 goto out_err; 1635 1636 ret = iommu_map(domain, iova + mapped, phys, s->length, prot); 1637 if (ret) 1638 goto out_err; 1639 1640 mapped += s->length; 1641 } 1642 1643 return mapped; 1644 1645 out_err: 1646 /* undo mappings already done */ 1647 iommu_unmap(domain, iova, mapped); 1648 1649 return 0; 1650 1651 } 1652 EXPORT_SYMBOL_GPL(default_iommu_map_sg); 1653 1654 int iommu_domain_window_enable(struct iommu_domain *domain, u32 wnd_nr, 1655 phys_addr_t paddr, u64 size, int prot) 1656 { 1657 if (unlikely(domain->ops->domain_window_enable == NULL)) 1658 return -ENODEV; 1659 1660 return domain->ops->domain_window_enable(domain, wnd_nr, paddr, size, 1661 prot); 1662 } 1663 EXPORT_SYMBOL_GPL(iommu_domain_window_enable); 1664 1665 void iommu_domain_window_disable(struct iommu_domain *domain, u32 wnd_nr) 1666 { 1667 if (unlikely(domain->ops->domain_window_disable == NULL)) 1668 return; 1669 1670 return domain->ops->domain_window_disable(domain, wnd_nr); 1671 } 1672 EXPORT_SYMBOL_GPL(iommu_domain_window_disable); 1673 1674 /** 1675 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework 1676 * @domain: the iommu domain where the fault has happened 1677 * @dev: the device where the fault has happened 1678 * @iova: the faulting address 1679 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...) 1680 * 1681 * This function should be called by the low-level IOMMU implementations 1682 * whenever IOMMU faults happen, to allow high-level users, that are 1683 * interested in such events, to know about them. 1684 * 1685 * This event may be useful for several possible use cases: 1686 * - mere logging of the event 1687 * - dynamic TLB/PTE loading 1688 * - if restarting of the faulting device is required 1689 * 1690 * Returns 0 on success and an appropriate error code otherwise (if dynamic 1691 * PTE/TLB loading will one day be supported, implementations will be able 1692 * to tell whether it succeeded or not according to this return value). 1693 * 1694 * Specifically, -ENOSYS is returned if a fault handler isn't installed 1695 * (though fault handlers can also return -ENOSYS, in case they want to 1696 * elicit the default behavior of the IOMMU drivers). 1697 */ 1698 int report_iommu_fault(struct iommu_domain *domain, struct device *dev, 1699 unsigned long iova, int flags) 1700 { 1701 int ret = -ENOSYS; 1702 1703 /* 1704 * if upper layers showed interest and installed a fault handler, 1705 * invoke it. 1706 */ 1707 if (domain->handler) 1708 ret = domain->handler(domain, dev, iova, flags, 1709 domain->handler_token); 1710 1711 trace_io_page_fault(dev, iova, flags); 1712 return ret; 1713 } 1714 EXPORT_SYMBOL_GPL(report_iommu_fault); 1715 1716 static int __init iommu_init(void) 1717 { 1718 iommu_group_kset = kset_create_and_add("iommu_groups", 1719 NULL, kernel_kobj); 1720 BUG_ON(!iommu_group_kset); 1721 1722 return 0; 1723 } 1724 core_initcall(iommu_init); 1725 1726 int iommu_domain_get_attr(struct iommu_domain *domain, 1727 enum iommu_attr attr, void *data) 1728 { 1729 struct iommu_domain_geometry *geometry; 1730 bool *paging; 1731 int ret = 0; 1732 u32 *count; 1733 1734 switch (attr) { 1735 case DOMAIN_ATTR_GEOMETRY: 1736 geometry = data; 1737 *geometry = domain->geometry; 1738 1739 break; 1740 case DOMAIN_ATTR_PAGING: 1741 paging = data; 1742 *paging = (domain->pgsize_bitmap != 0UL); 1743 break; 1744 case DOMAIN_ATTR_WINDOWS: 1745 count = data; 1746 1747 if (domain->ops->domain_get_windows != NULL) 1748 *count = domain->ops->domain_get_windows(domain); 1749 else 1750 ret = -ENODEV; 1751 1752 break; 1753 default: 1754 if (!domain->ops->domain_get_attr) 1755 return -EINVAL; 1756 1757 ret = domain->ops->domain_get_attr(domain, attr, data); 1758 } 1759 1760 return ret; 1761 } 1762 EXPORT_SYMBOL_GPL(iommu_domain_get_attr); 1763 1764 int iommu_domain_set_attr(struct iommu_domain *domain, 1765 enum iommu_attr attr, void *data) 1766 { 1767 int ret = 0; 1768 u32 *count; 1769 1770 switch (attr) { 1771 case DOMAIN_ATTR_WINDOWS: 1772 count = data; 1773 1774 if (domain->ops->domain_set_windows != NULL) 1775 ret = domain->ops->domain_set_windows(domain, *count); 1776 else 1777 ret = -ENODEV; 1778 1779 break; 1780 default: 1781 if (domain->ops->domain_set_attr == NULL) 1782 return -EINVAL; 1783 1784 ret = domain->ops->domain_set_attr(domain, attr, data); 1785 } 1786 1787 return ret; 1788 } 1789 EXPORT_SYMBOL_GPL(iommu_domain_set_attr); 1790 1791 void iommu_get_resv_regions(struct device *dev, struct list_head *list) 1792 { 1793 const struct iommu_ops *ops = dev->bus->iommu_ops; 1794 1795 if (ops && ops->get_resv_regions) 1796 ops->get_resv_regions(dev, list); 1797 } 1798 1799 void iommu_put_resv_regions(struct device *dev, struct list_head *list) 1800 { 1801 const struct iommu_ops *ops = dev->bus->iommu_ops; 1802 1803 if (ops && ops->put_resv_regions) 1804 ops->put_resv_regions(dev, list); 1805 } 1806 1807 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start, 1808 size_t length, int prot, 1809 enum iommu_resv_type type) 1810 { 1811 struct iommu_resv_region *region; 1812 1813 region = kzalloc(sizeof(*region), GFP_KERNEL); 1814 if (!region) 1815 return NULL; 1816 1817 INIT_LIST_HEAD(®ion->list); 1818 region->start = start; 1819 region->length = length; 1820 region->prot = prot; 1821 region->type = type; 1822 return region; 1823 } 1824 1825 /* Request that a device is direct mapped by the IOMMU */ 1826 int iommu_request_dm_for_dev(struct device *dev) 1827 { 1828 struct iommu_domain *dm_domain; 1829 struct iommu_group *group; 1830 int ret; 1831 1832 /* Device must already be in a group before calling this function */ 1833 group = iommu_group_get_for_dev(dev); 1834 if (IS_ERR(group)) 1835 return PTR_ERR(group); 1836 1837 mutex_lock(&group->mutex); 1838 1839 /* Check if the default domain is already direct mapped */ 1840 ret = 0; 1841 if (group->default_domain && 1842 group->default_domain->type == IOMMU_DOMAIN_IDENTITY) 1843 goto out; 1844 1845 /* Don't change mappings of existing devices */ 1846 ret = -EBUSY; 1847 if (iommu_group_device_count(group) != 1) 1848 goto out; 1849 1850 /* Allocate a direct mapped domain */ 1851 ret = -ENOMEM; 1852 dm_domain = __iommu_domain_alloc(dev->bus, IOMMU_DOMAIN_IDENTITY); 1853 if (!dm_domain) 1854 goto out; 1855 1856 /* Attach the device to the domain */ 1857 ret = __iommu_attach_group(dm_domain, group); 1858 if (ret) { 1859 iommu_domain_free(dm_domain); 1860 goto out; 1861 } 1862 1863 /* Make the direct mapped domain the default for this group */ 1864 if (group->default_domain) 1865 iommu_domain_free(group->default_domain); 1866 group->default_domain = dm_domain; 1867 1868 pr_info("Using direct mapping for device %s\n", dev_name(dev)); 1869 1870 ret = 0; 1871 out: 1872 mutex_unlock(&group->mutex); 1873 iommu_group_put(group); 1874 1875 return ret; 1876 } 1877 1878 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode) 1879 { 1880 const struct iommu_ops *ops = NULL; 1881 struct iommu_device *iommu; 1882 1883 spin_lock(&iommu_device_lock); 1884 list_for_each_entry(iommu, &iommu_device_list, list) 1885 if (iommu->fwnode == fwnode) { 1886 ops = iommu->ops; 1887 break; 1888 } 1889 spin_unlock(&iommu_device_lock); 1890 return ops; 1891 } 1892 1893 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode, 1894 const struct iommu_ops *ops) 1895 { 1896 struct iommu_fwspec *fwspec = dev->iommu_fwspec; 1897 1898 if (fwspec) 1899 return ops == fwspec->ops ? 0 : -EINVAL; 1900 1901 fwspec = kzalloc(sizeof(*fwspec), GFP_KERNEL); 1902 if (!fwspec) 1903 return -ENOMEM; 1904 1905 of_node_get(to_of_node(iommu_fwnode)); 1906 fwspec->iommu_fwnode = iommu_fwnode; 1907 fwspec->ops = ops; 1908 dev->iommu_fwspec = fwspec; 1909 return 0; 1910 } 1911 EXPORT_SYMBOL_GPL(iommu_fwspec_init); 1912 1913 void iommu_fwspec_free(struct device *dev) 1914 { 1915 struct iommu_fwspec *fwspec = dev->iommu_fwspec; 1916 1917 if (fwspec) { 1918 fwnode_handle_put(fwspec->iommu_fwnode); 1919 kfree(fwspec); 1920 dev->iommu_fwspec = NULL; 1921 } 1922 } 1923 EXPORT_SYMBOL_GPL(iommu_fwspec_free); 1924 1925 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids) 1926 { 1927 struct iommu_fwspec *fwspec = dev->iommu_fwspec; 1928 size_t size; 1929 int i; 1930 1931 if (!fwspec) 1932 return -EINVAL; 1933 1934 size = offsetof(struct iommu_fwspec, ids[fwspec->num_ids + num_ids]); 1935 if (size > sizeof(*fwspec)) { 1936 fwspec = krealloc(dev->iommu_fwspec, size, GFP_KERNEL); 1937 if (!fwspec) 1938 return -ENOMEM; 1939 1940 dev->iommu_fwspec = fwspec; 1941 } 1942 1943 for (i = 0; i < num_ids; i++) 1944 fwspec->ids[fwspec->num_ids + i] = ids[i]; 1945 1946 fwspec->num_ids += num_ids; 1947 return 0; 1948 } 1949 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids); 1950