1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc. 4 * Author: Joerg Roedel <jroedel@suse.de> 5 */ 6 7 #define pr_fmt(fmt) "iommu: " fmt 8 9 #include <linux/device.h> 10 #include <linux/kernel.h> 11 #include <linux/bug.h> 12 #include <linux/types.h> 13 #include <linux/init.h> 14 #include <linux/export.h> 15 #include <linux/slab.h> 16 #include <linux/errno.h> 17 #include <linux/iommu.h> 18 #include <linux/idr.h> 19 #include <linux/notifier.h> 20 #include <linux/err.h> 21 #include <linux/pci.h> 22 #include <linux/bitops.h> 23 #include <linux/property.h> 24 #include <linux/fsl/mc.h> 25 #include <linux/module.h> 26 #include <trace/events/iommu.h> 27 28 static struct kset *iommu_group_kset; 29 static DEFINE_IDA(iommu_group_ida); 30 31 static unsigned int iommu_def_domain_type __read_mostly; 32 static bool iommu_dma_strict __read_mostly = true; 33 static u32 iommu_cmd_line __read_mostly; 34 35 struct iommu_group { 36 struct kobject kobj; 37 struct kobject *devices_kobj; 38 struct list_head devices; 39 struct mutex mutex; 40 struct blocking_notifier_head notifier; 41 void *iommu_data; 42 void (*iommu_data_release)(void *iommu_data); 43 char *name; 44 int id; 45 struct iommu_domain *default_domain; 46 struct iommu_domain *domain; 47 struct list_head entry; 48 }; 49 50 struct group_device { 51 struct list_head list; 52 struct device *dev; 53 char *name; 54 }; 55 56 struct iommu_group_attribute { 57 struct attribute attr; 58 ssize_t (*show)(struct iommu_group *group, char *buf); 59 ssize_t (*store)(struct iommu_group *group, 60 const char *buf, size_t count); 61 }; 62 63 static const char * const iommu_group_resv_type_string[] = { 64 [IOMMU_RESV_DIRECT] = "direct", 65 [IOMMU_RESV_DIRECT_RELAXABLE] = "direct-relaxable", 66 [IOMMU_RESV_RESERVED] = "reserved", 67 [IOMMU_RESV_MSI] = "msi", 68 [IOMMU_RESV_SW_MSI] = "msi", 69 }; 70 71 #define IOMMU_CMD_LINE_DMA_API BIT(0) 72 73 static void iommu_set_cmd_line_dma_api(void) 74 { 75 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API; 76 } 77 78 static bool iommu_cmd_line_dma_api(void) 79 { 80 return !!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API); 81 } 82 83 static int iommu_alloc_default_domain(struct iommu_group *group, 84 struct device *dev); 85 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus, 86 unsigned type); 87 static int __iommu_attach_device(struct iommu_domain *domain, 88 struct device *dev); 89 static int __iommu_attach_group(struct iommu_domain *domain, 90 struct iommu_group *group); 91 static void __iommu_detach_group(struct iommu_domain *domain, 92 struct iommu_group *group); 93 static int iommu_create_device_direct_mappings(struct iommu_group *group, 94 struct device *dev); 95 static struct iommu_group *iommu_group_get_for_dev(struct device *dev); 96 97 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \ 98 struct iommu_group_attribute iommu_group_attr_##_name = \ 99 __ATTR(_name, _mode, _show, _store) 100 101 #define to_iommu_group_attr(_attr) \ 102 container_of(_attr, struct iommu_group_attribute, attr) 103 #define to_iommu_group(_kobj) \ 104 container_of(_kobj, struct iommu_group, kobj) 105 106 static LIST_HEAD(iommu_device_list); 107 static DEFINE_SPINLOCK(iommu_device_lock); 108 109 /* 110 * Use a function instead of an array here because the domain-type is a 111 * bit-field, so an array would waste memory. 112 */ 113 static const char *iommu_domain_type_str(unsigned int t) 114 { 115 switch (t) { 116 case IOMMU_DOMAIN_BLOCKED: 117 return "Blocked"; 118 case IOMMU_DOMAIN_IDENTITY: 119 return "Passthrough"; 120 case IOMMU_DOMAIN_UNMANAGED: 121 return "Unmanaged"; 122 case IOMMU_DOMAIN_DMA: 123 return "Translated"; 124 default: 125 return "Unknown"; 126 } 127 } 128 129 static int __init iommu_subsys_init(void) 130 { 131 bool cmd_line = iommu_cmd_line_dma_api(); 132 133 if (!cmd_line) { 134 if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH)) 135 iommu_set_default_passthrough(false); 136 else 137 iommu_set_default_translated(false); 138 139 if (iommu_default_passthrough() && mem_encrypt_active()) { 140 pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n"); 141 iommu_set_default_translated(false); 142 } 143 } 144 145 pr_info("Default domain type: %s %s\n", 146 iommu_domain_type_str(iommu_def_domain_type), 147 cmd_line ? "(set via kernel command line)" : ""); 148 149 return 0; 150 } 151 subsys_initcall(iommu_subsys_init); 152 153 int iommu_device_register(struct iommu_device *iommu) 154 { 155 spin_lock(&iommu_device_lock); 156 list_add_tail(&iommu->list, &iommu_device_list); 157 spin_unlock(&iommu_device_lock); 158 return 0; 159 } 160 EXPORT_SYMBOL_GPL(iommu_device_register); 161 162 void iommu_device_unregister(struct iommu_device *iommu) 163 { 164 spin_lock(&iommu_device_lock); 165 list_del(&iommu->list); 166 spin_unlock(&iommu_device_lock); 167 } 168 EXPORT_SYMBOL_GPL(iommu_device_unregister); 169 170 static struct dev_iommu *dev_iommu_get(struct device *dev) 171 { 172 struct dev_iommu *param = dev->iommu; 173 174 if (param) 175 return param; 176 177 param = kzalloc(sizeof(*param), GFP_KERNEL); 178 if (!param) 179 return NULL; 180 181 mutex_init(¶m->lock); 182 dev->iommu = param; 183 return param; 184 } 185 186 static void dev_iommu_free(struct device *dev) 187 { 188 iommu_fwspec_free(dev); 189 kfree(dev->iommu); 190 dev->iommu = NULL; 191 } 192 193 static int __iommu_probe_device(struct device *dev, struct list_head *group_list) 194 { 195 const struct iommu_ops *ops = dev->bus->iommu_ops; 196 struct iommu_device *iommu_dev; 197 struct iommu_group *group; 198 int ret; 199 200 if (!ops) 201 return -ENODEV; 202 203 if (!dev_iommu_get(dev)) 204 return -ENOMEM; 205 206 if (!try_module_get(ops->owner)) { 207 ret = -EINVAL; 208 goto err_free; 209 } 210 211 iommu_dev = ops->probe_device(dev); 212 if (IS_ERR(iommu_dev)) { 213 ret = PTR_ERR(iommu_dev); 214 goto out_module_put; 215 } 216 217 dev->iommu->iommu_dev = iommu_dev; 218 219 group = iommu_group_get_for_dev(dev); 220 if (IS_ERR(group)) { 221 ret = PTR_ERR(group); 222 goto out_release; 223 } 224 iommu_group_put(group); 225 226 if (group_list && !group->default_domain && list_empty(&group->entry)) 227 list_add_tail(&group->entry, group_list); 228 229 iommu_device_link(iommu_dev, dev); 230 231 return 0; 232 233 out_release: 234 ops->release_device(dev); 235 236 out_module_put: 237 module_put(ops->owner); 238 239 err_free: 240 dev_iommu_free(dev); 241 242 return ret; 243 } 244 245 int iommu_probe_device(struct device *dev) 246 { 247 const struct iommu_ops *ops = dev->bus->iommu_ops; 248 struct iommu_group *group; 249 int ret; 250 251 ret = __iommu_probe_device(dev, NULL); 252 if (ret) 253 goto err_out; 254 255 group = iommu_group_get(dev); 256 if (!group) 257 goto err_release; 258 259 /* 260 * Try to allocate a default domain - needs support from the 261 * IOMMU driver. There are still some drivers which don't 262 * support default domains, so the return value is not yet 263 * checked. 264 */ 265 iommu_alloc_default_domain(group, dev); 266 267 if (group->default_domain) 268 ret = __iommu_attach_device(group->default_domain, dev); 269 270 iommu_create_device_direct_mappings(group, dev); 271 272 iommu_group_put(group); 273 274 if (ret) 275 goto err_release; 276 277 if (ops->probe_finalize) 278 ops->probe_finalize(dev); 279 280 return 0; 281 282 err_release: 283 iommu_release_device(dev); 284 285 err_out: 286 return ret; 287 288 } 289 290 void iommu_release_device(struct device *dev) 291 { 292 const struct iommu_ops *ops = dev->bus->iommu_ops; 293 294 if (!dev->iommu) 295 return; 296 297 iommu_device_unlink(dev->iommu->iommu_dev, dev); 298 299 ops->release_device(dev); 300 301 iommu_group_remove_device(dev); 302 module_put(ops->owner); 303 dev_iommu_free(dev); 304 } 305 306 static int __init iommu_set_def_domain_type(char *str) 307 { 308 bool pt; 309 int ret; 310 311 ret = kstrtobool(str, &pt); 312 if (ret) 313 return ret; 314 315 if (pt) 316 iommu_set_default_passthrough(true); 317 else 318 iommu_set_default_translated(true); 319 320 return 0; 321 } 322 early_param("iommu.passthrough", iommu_set_def_domain_type); 323 324 static int __init iommu_dma_setup(char *str) 325 { 326 return kstrtobool(str, &iommu_dma_strict); 327 } 328 early_param("iommu.strict", iommu_dma_setup); 329 330 static ssize_t iommu_group_attr_show(struct kobject *kobj, 331 struct attribute *__attr, char *buf) 332 { 333 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 334 struct iommu_group *group = to_iommu_group(kobj); 335 ssize_t ret = -EIO; 336 337 if (attr->show) 338 ret = attr->show(group, buf); 339 return ret; 340 } 341 342 static ssize_t iommu_group_attr_store(struct kobject *kobj, 343 struct attribute *__attr, 344 const char *buf, size_t count) 345 { 346 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 347 struct iommu_group *group = to_iommu_group(kobj); 348 ssize_t ret = -EIO; 349 350 if (attr->store) 351 ret = attr->store(group, buf, count); 352 return ret; 353 } 354 355 static const struct sysfs_ops iommu_group_sysfs_ops = { 356 .show = iommu_group_attr_show, 357 .store = iommu_group_attr_store, 358 }; 359 360 static int iommu_group_create_file(struct iommu_group *group, 361 struct iommu_group_attribute *attr) 362 { 363 return sysfs_create_file(&group->kobj, &attr->attr); 364 } 365 366 static void iommu_group_remove_file(struct iommu_group *group, 367 struct iommu_group_attribute *attr) 368 { 369 sysfs_remove_file(&group->kobj, &attr->attr); 370 } 371 372 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf) 373 { 374 return sprintf(buf, "%s\n", group->name); 375 } 376 377 /** 378 * iommu_insert_resv_region - Insert a new region in the 379 * list of reserved regions. 380 * @new: new region to insert 381 * @regions: list of regions 382 * 383 * Elements are sorted by start address and overlapping segments 384 * of the same type are merged. 385 */ 386 int iommu_insert_resv_region(struct iommu_resv_region *new, 387 struct list_head *regions) 388 { 389 struct iommu_resv_region *iter, *tmp, *nr, *top; 390 LIST_HEAD(stack); 391 392 nr = iommu_alloc_resv_region(new->start, new->length, 393 new->prot, new->type); 394 if (!nr) 395 return -ENOMEM; 396 397 /* First add the new element based on start address sorting */ 398 list_for_each_entry(iter, regions, list) { 399 if (nr->start < iter->start || 400 (nr->start == iter->start && nr->type <= iter->type)) 401 break; 402 } 403 list_add_tail(&nr->list, &iter->list); 404 405 /* Merge overlapping segments of type nr->type in @regions, if any */ 406 list_for_each_entry_safe(iter, tmp, regions, list) { 407 phys_addr_t top_end, iter_end = iter->start + iter->length - 1; 408 409 /* no merge needed on elements of different types than @new */ 410 if (iter->type != new->type) { 411 list_move_tail(&iter->list, &stack); 412 continue; 413 } 414 415 /* look for the last stack element of same type as @iter */ 416 list_for_each_entry_reverse(top, &stack, list) 417 if (top->type == iter->type) 418 goto check_overlap; 419 420 list_move_tail(&iter->list, &stack); 421 continue; 422 423 check_overlap: 424 top_end = top->start + top->length - 1; 425 426 if (iter->start > top_end + 1) { 427 list_move_tail(&iter->list, &stack); 428 } else { 429 top->length = max(top_end, iter_end) - top->start + 1; 430 list_del(&iter->list); 431 kfree(iter); 432 } 433 } 434 list_splice(&stack, regions); 435 return 0; 436 } 437 438 static int 439 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions, 440 struct list_head *group_resv_regions) 441 { 442 struct iommu_resv_region *entry; 443 int ret = 0; 444 445 list_for_each_entry(entry, dev_resv_regions, list) { 446 ret = iommu_insert_resv_region(entry, group_resv_regions); 447 if (ret) 448 break; 449 } 450 return ret; 451 } 452 453 int iommu_get_group_resv_regions(struct iommu_group *group, 454 struct list_head *head) 455 { 456 struct group_device *device; 457 int ret = 0; 458 459 mutex_lock(&group->mutex); 460 list_for_each_entry(device, &group->devices, list) { 461 struct list_head dev_resv_regions; 462 463 INIT_LIST_HEAD(&dev_resv_regions); 464 iommu_get_resv_regions(device->dev, &dev_resv_regions); 465 ret = iommu_insert_device_resv_regions(&dev_resv_regions, head); 466 iommu_put_resv_regions(device->dev, &dev_resv_regions); 467 if (ret) 468 break; 469 } 470 mutex_unlock(&group->mutex); 471 return ret; 472 } 473 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions); 474 475 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group, 476 char *buf) 477 { 478 struct iommu_resv_region *region, *next; 479 struct list_head group_resv_regions; 480 char *str = buf; 481 482 INIT_LIST_HEAD(&group_resv_regions); 483 iommu_get_group_resv_regions(group, &group_resv_regions); 484 485 list_for_each_entry_safe(region, next, &group_resv_regions, list) { 486 str += sprintf(str, "0x%016llx 0x%016llx %s\n", 487 (long long int)region->start, 488 (long long int)(region->start + 489 region->length - 1), 490 iommu_group_resv_type_string[region->type]); 491 kfree(region); 492 } 493 494 return (str - buf); 495 } 496 497 static ssize_t iommu_group_show_type(struct iommu_group *group, 498 char *buf) 499 { 500 char *type = "unknown\n"; 501 502 if (group->default_domain) { 503 switch (group->default_domain->type) { 504 case IOMMU_DOMAIN_BLOCKED: 505 type = "blocked\n"; 506 break; 507 case IOMMU_DOMAIN_IDENTITY: 508 type = "identity\n"; 509 break; 510 case IOMMU_DOMAIN_UNMANAGED: 511 type = "unmanaged\n"; 512 break; 513 case IOMMU_DOMAIN_DMA: 514 type = "DMA\n"; 515 break; 516 } 517 } 518 strcpy(buf, type); 519 520 return strlen(type); 521 } 522 523 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL); 524 525 static IOMMU_GROUP_ATTR(reserved_regions, 0444, 526 iommu_group_show_resv_regions, NULL); 527 528 static IOMMU_GROUP_ATTR(type, 0444, iommu_group_show_type, NULL); 529 530 static void iommu_group_release(struct kobject *kobj) 531 { 532 struct iommu_group *group = to_iommu_group(kobj); 533 534 pr_debug("Releasing group %d\n", group->id); 535 536 if (group->iommu_data_release) 537 group->iommu_data_release(group->iommu_data); 538 539 ida_simple_remove(&iommu_group_ida, group->id); 540 541 if (group->default_domain) 542 iommu_domain_free(group->default_domain); 543 544 kfree(group->name); 545 kfree(group); 546 } 547 548 static struct kobj_type iommu_group_ktype = { 549 .sysfs_ops = &iommu_group_sysfs_ops, 550 .release = iommu_group_release, 551 }; 552 553 /** 554 * iommu_group_alloc - Allocate a new group 555 * 556 * This function is called by an iommu driver to allocate a new iommu 557 * group. The iommu group represents the minimum granularity of the iommu. 558 * Upon successful return, the caller holds a reference to the supplied 559 * group in order to hold the group until devices are added. Use 560 * iommu_group_put() to release this extra reference count, allowing the 561 * group to be automatically reclaimed once it has no devices or external 562 * references. 563 */ 564 struct iommu_group *iommu_group_alloc(void) 565 { 566 struct iommu_group *group; 567 int ret; 568 569 group = kzalloc(sizeof(*group), GFP_KERNEL); 570 if (!group) 571 return ERR_PTR(-ENOMEM); 572 573 group->kobj.kset = iommu_group_kset; 574 mutex_init(&group->mutex); 575 INIT_LIST_HEAD(&group->devices); 576 INIT_LIST_HEAD(&group->entry); 577 BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier); 578 579 ret = ida_simple_get(&iommu_group_ida, 0, 0, GFP_KERNEL); 580 if (ret < 0) { 581 kfree(group); 582 return ERR_PTR(ret); 583 } 584 group->id = ret; 585 586 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype, 587 NULL, "%d", group->id); 588 if (ret) { 589 ida_simple_remove(&iommu_group_ida, group->id); 590 kobject_put(&group->kobj); 591 return ERR_PTR(ret); 592 } 593 594 group->devices_kobj = kobject_create_and_add("devices", &group->kobj); 595 if (!group->devices_kobj) { 596 kobject_put(&group->kobj); /* triggers .release & free */ 597 return ERR_PTR(-ENOMEM); 598 } 599 600 /* 601 * The devices_kobj holds a reference on the group kobject, so 602 * as long as that exists so will the group. We can therefore 603 * use the devices_kobj for reference counting. 604 */ 605 kobject_put(&group->kobj); 606 607 ret = iommu_group_create_file(group, 608 &iommu_group_attr_reserved_regions); 609 if (ret) 610 return ERR_PTR(ret); 611 612 ret = iommu_group_create_file(group, &iommu_group_attr_type); 613 if (ret) 614 return ERR_PTR(ret); 615 616 pr_debug("Allocated group %d\n", group->id); 617 618 return group; 619 } 620 EXPORT_SYMBOL_GPL(iommu_group_alloc); 621 622 struct iommu_group *iommu_group_get_by_id(int id) 623 { 624 struct kobject *group_kobj; 625 struct iommu_group *group; 626 const char *name; 627 628 if (!iommu_group_kset) 629 return NULL; 630 631 name = kasprintf(GFP_KERNEL, "%d", id); 632 if (!name) 633 return NULL; 634 635 group_kobj = kset_find_obj(iommu_group_kset, name); 636 kfree(name); 637 638 if (!group_kobj) 639 return NULL; 640 641 group = container_of(group_kobj, struct iommu_group, kobj); 642 BUG_ON(group->id != id); 643 644 kobject_get(group->devices_kobj); 645 kobject_put(&group->kobj); 646 647 return group; 648 } 649 EXPORT_SYMBOL_GPL(iommu_group_get_by_id); 650 651 /** 652 * iommu_group_get_iommudata - retrieve iommu_data registered for a group 653 * @group: the group 654 * 655 * iommu drivers can store data in the group for use when doing iommu 656 * operations. This function provides a way to retrieve it. Caller 657 * should hold a group reference. 658 */ 659 void *iommu_group_get_iommudata(struct iommu_group *group) 660 { 661 return group->iommu_data; 662 } 663 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata); 664 665 /** 666 * iommu_group_set_iommudata - set iommu_data for a group 667 * @group: the group 668 * @iommu_data: new data 669 * @release: release function for iommu_data 670 * 671 * iommu drivers can store data in the group for use when doing iommu 672 * operations. This function provides a way to set the data after 673 * the group has been allocated. Caller should hold a group reference. 674 */ 675 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data, 676 void (*release)(void *iommu_data)) 677 { 678 group->iommu_data = iommu_data; 679 group->iommu_data_release = release; 680 } 681 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata); 682 683 /** 684 * iommu_group_set_name - set name for a group 685 * @group: the group 686 * @name: name 687 * 688 * Allow iommu driver to set a name for a group. When set it will 689 * appear in a name attribute file under the group in sysfs. 690 */ 691 int iommu_group_set_name(struct iommu_group *group, const char *name) 692 { 693 int ret; 694 695 if (group->name) { 696 iommu_group_remove_file(group, &iommu_group_attr_name); 697 kfree(group->name); 698 group->name = NULL; 699 if (!name) 700 return 0; 701 } 702 703 group->name = kstrdup(name, GFP_KERNEL); 704 if (!group->name) 705 return -ENOMEM; 706 707 ret = iommu_group_create_file(group, &iommu_group_attr_name); 708 if (ret) { 709 kfree(group->name); 710 group->name = NULL; 711 return ret; 712 } 713 714 return 0; 715 } 716 EXPORT_SYMBOL_GPL(iommu_group_set_name); 717 718 static int iommu_create_device_direct_mappings(struct iommu_group *group, 719 struct device *dev) 720 { 721 struct iommu_domain *domain = group->default_domain; 722 struct iommu_resv_region *entry; 723 struct list_head mappings; 724 unsigned long pg_size; 725 int ret = 0; 726 727 if (!domain || domain->type != IOMMU_DOMAIN_DMA) 728 return 0; 729 730 BUG_ON(!domain->pgsize_bitmap); 731 732 pg_size = 1UL << __ffs(domain->pgsize_bitmap); 733 INIT_LIST_HEAD(&mappings); 734 735 iommu_get_resv_regions(dev, &mappings); 736 737 /* We need to consider overlapping regions for different devices */ 738 list_for_each_entry(entry, &mappings, list) { 739 dma_addr_t start, end, addr; 740 741 if (domain->ops->apply_resv_region) 742 domain->ops->apply_resv_region(dev, domain, entry); 743 744 start = ALIGN(entry->start, pg_size); 745 end = ALIGN(entry->start + entry->length, pg_size); 746 747 if (entry->type != IOMMU_RESV_DIRECT && 748 entry->type != IOMMU_RESV_DIRECT_RELAXABLE) 749 continue; 750 751 for (addr = start; addr < end; addr += pg_size) { 752 phys_addr_t phys_addr; 753 754 phys_addr = iommu_iova_to_phys(domain, addr); 755 if (phys_addr) 756 continue; 757 758 ret = iommu_map(domain, addr, addr, pg_size, entry->prot); 759 if (ret) 760 goto out; 761 } 762 763 } 764 765 iommu_flush_tlb_all(domain); 766 767 out: 768 iommu_put_resv_regions(dev, &mappings); 769 770 return ret; 771 } 772 773 static bool iommu_is_attach_deferred(struct iommu_domain *domain, 774 struct device *dev) 775 { 776 if (domain->ops->is_attach_deferred) 777 return domain->ops->is_attach_deferred(domain, dev); 778 779 return false; 780 } 781 782 /** 783 * iommu_group_add_device - add a device to an iommu group 784 * @group: the group into which to add the device (reference should be held) 785 * @dev: the device 786 * 787 * This function is called by an iommu driver to add a device into a 788 * group. Adding a device increments the group reference count. 789 */ 790 int iommu_group_add_device(struct iommu_group *group, struct device *dev) 791 { 792 int ret, i = 0; 793 struct group_device *device; 794 795 device = kzalloc(sizeof(*device), GFP_KERNEL); 796 if (!device) 797 return -ENOMEM; 798 799 device->dev = dev; 800 801 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group"); 802 if (ret) 803 goto err_free_device; 804 805 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj)); 806 rename: 807 if (!device->name) { 808 ret = -ENOMEM; 809 goto err_remove_link; 810 } 811 812 ret = sysfs_create_link_nowarn(group->devices_kobj, 813 &dev->kobj, device->name); 814 if (ret) { 815 if (ret == -EEXIST && i >= 0) { 816 /* 817 * Account for the slim chance of collision 818 * and append an instance to the name. 819 */ 820 kfree(device->name); 821 device->name = kasprintf(GFP_KERNEL, "%s.%d", 822 kobject_name(&dev->kobj), i++); 823 goto rename; 824 } 825 goto err_free_name; 826 } 827 828 kobject_get(group->devices_kobj); 829 830 dev->iommu_group = group; 831 832 mutex_lock(&group->mutex); 833 list_add_tail(&device->list, &group->devices); 834 if (group->domain && !iommu_is_attach_deferred(group->domain, dev)) 835 ret = __iommu_attach_device(group->domain, dev); 836 mutex_unlock(&group->mutex); 837 if (ret) 838 goto err_put_group; 839 840 /* Notify any listeners about change to group. */ 841 blocking_notifier_call_chain(&group->notifier, 842 IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev); 843 844 trace_add_device_to_group(group->id, dev); 845 846 dev_info(dev, "Adding to iommu group %d\n", group->id); 847 848 return 0; 849 850 err_put_group: 851 mutex_lock(&group->mutex); 852 list_del(&device->list); 853 mutex_unlock(&group->mutex); 854 dev->iommu_group = NULL; 855 kobject_put(group->devices_kobj); 856 sysfs_remove_link(group->devices_kobj, device->name); 857 err_free_name: 858 kfree(device->name); 859 err_remove_link: 860 sysfs_remove_link(&dev->kobj, "iommu_group"); 861 err_free_device: 862 kfree(device); 863 dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret); 864 return ret; 865 } 866 EXPORT_SYMBOL_GPL(iommu_group_add_device); 867 868 /** 869 * iommu_group_remove_device - remove a device from it's current group 870 * @dev: device to be removed 871 * 872 * This function is called by an iommu driver to remove the device from 873 * it's current group. This decrements the iommu group reference count. 874 */ 875 void iommu_group_remove_device(struct device *dev) 876 { 877 struct iommu_group *group = dev->iommu_group; 878 struct group_device *tmp_device, *device = NULL; 879 880 dev_info(dev, "Removing from iommu group %d\n", group->id); 881 882 /* Pre-notify listeners that a device is being removed. */ 883 blocking_notifier_call_chain(&group->notifier, 884 IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev); 885 886 mutex_lock(&group->mutex); 887 list_for_each_entry(tmp_device, &group->devices, list) { 888 if (tmp_device->dev == dev) { 889 device = tmp_device; 890 list_del(&device->list); 891 break; 892 } 893 } 894 mutex_unlock(&group->mutex); 895 896 if (!device) 897 return; 898 899 sysfs_remove_link(group->devices_kobj, device->name); 900 sysfs_remove_link(&dev->kobj, "iommu_group"); 901 902 trace_remove_device_from_group(group->id, dev); 903 904 kfree(device->name); 905 kfree(device); 906 dev->iommu_group = NULL; 907 kobject_put(group->devices_kobj); 908 } 909 EXPORT_SYMBOL_GPL(iommu_group_remove_device); 910 911 static int iommu_group_device_count(struct iommu_group *group) 912 { 913 struct group_device *entry; 914 int ret = 0; 915 916 list_for_each_entry(entry, &group->devices, list) 917 ret++; 918 919 return ret; 920 } 921 922 /** 923 * iommu_group_for_each_dev - iterate over each device in the group 924 * @group: the group 925 * @data: caller opaque data to be passed to callback function 926 * @fn: caller supplied callback function 927 * 928 * This function is called by group users to iterate over group devices. 929 * Callers should hold a reference count to the group during callback. 930 * The group->mutex is held across callbacks, which will block calls to 931 * iommu_group_add/remove_device. 932 */ 933 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data, 934 int (*fn)(struct device *, void *)) 935 { 936 struct group_device *device; 937 int ret = 0; 938 939 list_for_each_entry(device, &group->devices, list) { 940 ret = fn(device->dev, data); 941 if (ret) 942 break; 943 } 944 return ret; 945 } 946 947 948 int iommu_group_for_each_dev(struct iommu_group *group, void *data, 949 int (*fn)(struct device *, void *)) 950 { 951 int ret; 952 953 mutex_lock(&group->mutex); 954 ret = __iommu_group_for_each_dev(group, data, fn); 955 mutex_unlock(&group->mutex); 956 957 return ret; 958 } 959 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev); 960 961 /** 962 * iommu_group_get - Return the group for a device and increment reference 963 * @dev: get the group that this device belongs to 964 * 965 * This function is called by iommu drivers and users to get the group 966 * for the specified device. If found, the group is returned and the group 967 * reference in incremented, else NULL. 968 */ 969 struct iommu_group *iommu_group_get(struct device *dev) 970 { 971 struct iommu_group *group = dev->iommu_group; 972 973 if (group) 974 kobject_get(group->devices_kobj); 975 976 return group; 977 } 978 EXPORT_SYMBOL_GPL(iommu_group_get); 979 980 /** 981 * iommu_group_ref_get - Increment reference on a group 982 * @group: the group to use, must not be NULL 983 * 984 * This function is called by iommu drivers to take additional references on an 985 * existing group. Returns the given group for convenience. 986 */ 987 struct iommu_group *iommu_group_ref_get(struct iommu_group *group) 988 { 989 kobject_get(group->devices_kobj); 990 return group; 991 } 992 EXPORT_SYMBOL_GPL(iommu_group_ref_get); 993 994 /** 995 * iommu_group_put - Decrement group reference 996 * @group: the group to use 997 * 998 * This function is called by iommu drivers and users to release the 999 * iommu group. Once the reference count is zero, the group is released. 1000 */ 1001 void iommu_group_put(struct iommu_group *group) 1002 { 1003 if (group) 1004 kobject_put(group->devices_kobj); 1005 } 1006 EXPORT_SYMBOL_GPL(iommu_group_put); 1007 1008 /** 1009 * iommu_group_register_notifier - Register a notifier for group changes 1010 * @group: the group to watch 1011 * @nb: notifier block to signal 1012 * 1013 * This function allows iommu group users to track changes in a group. 1014 * See include/linux/iommu.h for actions sent via this notifier. Caller 1015 * should hold a reference to the group throughout notifier registration. 1016 */ 1017 int iommu_group_register_notifier(struct iommu_group *group, 1018 struct notifier_block *nb) 1019 { 1020 return blocking_notifier_chain_register(&group->notifier, nb); 1021 } 1022 EXPORT_SYMBOL_GPL(iommu_group_register_notifier); 1023 1024 /** 1025 * iommu_group_unregister_notifier - Unregister a notifier 1026 * @group: the group to watch 1027 * @nb: notifier block to signal 1028 * 1029 * Unregister a previously registered group notifier block. 1030 */ 1031 int iommu_group_unregister_notifier(struct iommu_group *group, 1032 struct notifier_block *nb) 1033 { 1034 return blocking_notifier_chain_unregister(&group->notifier, nb); 1035 } 1036 EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier); 1037 1038 /** 1039 * iommu_register_device_fault_handler() - Register a device fault handler 1040 * @dev: the device 1041 * @handler: the fault handler 1042 * @data: private data passed as argument to the handler 1043 * 1044 * When an IOMMU fault event is received, this handler gets called with the 1045 * fault event and data as argument. The handler should return 0 on success. If 1046 * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also 1047 * complete the fault by calling iommu_page_response() with one of the following 1048 * response code: 1049 * - IOMMU_PAGE_RESP_SUCCESS: retry the translation 1050 * - IOMMU_PAGE_RESP_INVALID: terminate the fault 1051 * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting 1052 * page faults if possible. 1053 * 1054 * Return 0 if the fault handler was installed successfully, or an error. 1055 */ 1056 int iommu_register_device_fault_handler(struct device *dev, 1057 iommu_dev_fault_handler_t handler, 1058 void *data) 1059 { 1060 struct dev_iommu *param = dev->iommu; 1061 int ret = 0; 1062 1063 if (!param) 1064 return -EINVAL; 1065 1066 mutex_lock(¶m->lock); 1067 /* Only allow one fault handler registered for each device */ 1068 if (param->fault_param) { 1069 ret = -EBUSY; 1070 goto done_unlock; 1071 } 1072 1073 get_device(dev); 1074 param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL); 1075 if (!param->fault_param) { 1076 put_device(dev); 1077 ret = -ENOMEM; 1078 goto done_unlock; 1079 } 1080 param->fault_param->handler = handler; 1081 param->fault_param->data = data; 1082 mutex_init(¶m->fault_param->lock); 1083 INIT_LIST_HEAD(¶m->fault_param->faults); 1084 1085 done_unlock: 1086 mutex_unlock(¶m->lock); 1087 1088 return ret; 1089 } 1090 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler); 1091 1092 /** 1093 * iommu_unregister_device_fault_handler() - Unregister the device fault handler 1094 * @dev: the device 1095 * 1096 * Remove the device fault handler installed with 1097 * iommu_register_device_fault_handler(). 1098 * 1099 * Return 0 on success, or an error. 1100 */ 1101 int iommu_unregister_device_fault_handler(struct device *dev) 1102 { 1103 struct dev_iommu *param = dev->iommu; 1104 int ret = 0; 1105 1106 if (!param) 1107 return -EINVAL; 1108 1109 mutex_lock(¶m->lock); 1110 1111 if (!param->fault_param) 1112 goto unlock; 1113 1114 /* we cannot unregister handler if there are pending faults */ 1115 if (!list_empty(¶m->fault_param->faults)) { 1116 ret = -EBUSY; 1117 goto unlock; 1118 } 1119 1120 kfree(param->fault_param); 1121 param->fault_param = NULL; 1122 put_device(dev); 1123 unlock: 1124 mutex_unlock(¶m->lock); 1125 1126 return ret; 1127 } 1128 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler); 1129 1130 /** 1131 * iommu_report_device_fault() - Report fault event to device driver 1132 * @dev: the device 1133 * @evt: fault event data 1134 * 1135 * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ 1136 * handler. When this function fails and the fault is recoverable, it is the 1137 * caller's responsibility to complete the fault. 1138 * 1139 * Return 0 on success, or an error. 1140 */ 1141 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt) 1142 { 1143 struct dev_iommu *param = dev->iommu; 1144 struct iommu_fault_event *evt_pending = NULL; 1145 struct iommu_fault_param *fparam; 1146 int ret = 0; 1147 1148 if (!param || !evt) 1149 return -EINVAL; 1150 1151 /* we only report device fault if there is a handler registered */ 1152 mutex_lock(¶m->lock); 1153 fparam = param->fault_param; 1154 if (!fparam || !fparam->handler) { 1155 ret = -EINVAL; 1156 goto done_unlock; 1157 } 1158 1159 if (evt->fault.type == IOMMU_FAULT_PAGE_REQ && 1160 (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) { 1161 evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event), 1162 GFP_KERNEL); 1163 if (!evt_pending) { 1164 ret = -ENOMEM; 1165 goto done_unlock; 1166 } 1167 mutex_lock(&fparam->lock); 1168 list_add_tail(&evt_pending->list, &fparam->faults); 1169 mutex_unlock(&fparam->lock); 1170 } 1171 1172 ret = fparam->handler(&evt->fault, fparam->data); 1173 if (ret && evt_pending) { 1174 mutex_lock(&fparam->lock); 1175 list_del(&evt_pending->list); 1176 mutex_unlock(&fparam->lock); 1177 kfree(evt_pending); 1178 } 1179 done_unlock: 1180 mutex_unlock(¶m->lock); 1181 return ret; 1182 } 1183 EXPORT_SYMBOL_GPL(iommu_report_device_fault); 1184 1185 int iommu_page_response(struct device *dev, 1186 struct iommu_page_response *msg) 1187 { 1188 bool pasid_valid; 1189 int ret = -EINVAL; 1190 struct iommu_fault_event *evt; 1191 struct iommu_fault_page_request *prm; 1192 struct dev_iommu *param = dev->iommu; 1193 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1194 1195 if (!domain || !domain->ops->page_response) 1196 return -ENODEV; 1197 1198 if (!param || !param->fault_param) 1199 return -EINVAL; 1200 1201 if (msg->version != IOMMU_PAGE_RESP_VERSION_1 || 1202 msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID) 1203 return -EINVAL; 1204 1205 /* Only send response if there is a fault report pending */ 1206 mutex_lock(¶m->fault_param->lock); 1207 if (list_empty(¶m->fault_param->faults)) { 1208 dev_warn_ratelimited(dev, "no pending PRQ, drop response\n"); 1209 goto done_unlock; 1210 } 1211 /* 1212 * Check if we have a matching page request pending to respond, 1213 * otherwise return -EINVAL 1214 */ 1215 list_for_each_entry(evt, ¶m->fault_param->faults, list) { 1216 prm = &evt->fault.prm; 1217 pasid_valid = prm->flags & IOMMU_FAULT_PAGE_REQUEST_PASID_VALID; 1218 1219 if ((pasid_valid && prm->pasid != msg->pasid) || 1220 prm->grpid != msg->grpid) 1221 continue; 1222 1223 /* Sanitize the reply */ 1224 msg->flags = pasid_valid ? IOMMU_PAGE_RESP_PASID_VALID : 0; 1225 1226 ret = domain->ops->page_response(dev, evt, msg); 1227 list_del(&evt->list); 1228 kfree(evt); 1229 break; 1230 } 1231 1232 done_unlock: 1233 mutex_unlock(¶m->fault_param->lock); 1234 return ret; 1235 } 1236 EXPORT_SYMBOL_GPL(iommu_page_response); 1237 1238 /** 1239 * iommu_group_id - Return ID for a group 1240 * @group: the group to ID 1241 * 1242 * Return the unique ID for the group matching the sysfs group number. 1243 */ 1244 int iommu_group_id(struct iommu_group *group) 1245 { 1246 return group->id; 1247 } 1248 EXPORT_SYMBOL_GPL(iommu_group_id); 1249 1250 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1251 unsigned long *devfns); 1252 1253 /* 1254 * To consider a PCI device isolated, we require ACS to support Source 1255 * Validation, Request Redirection, Completer Redirection, and Upstream 1256 * Forwarding. This effectively means that devices cannot spoof their 1257 * requester ID, requests and completions cannot be redirected, and all 1258 * transactions are forwarded upstream, even as it passes through a 1259 * bridge where the target device is downstream. 1260 */ 1261 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF) 1262 1263 /* 1264 * For multifunction devices which are not isolated from each other, find 1265 * all the other non-isolated functions and look for existing groups. For 1266 * each function, we also need to look for aliases to or from other devices 1267 * that may already have a group. 1268 */ 1269 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev, 1270 unsigned long *devfns) 1271 { 1272 struct pci_dev *tmp = NULL; 1273 struct iommu_group *group; 1274 1275 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS)) 1276 return NULL; 1277 1278 for_each_pci_dev(tmp) { 1279 if (tmp == pdev || tmp->bus != pdev->bus || 1280 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) || 1281 pci_acs_enabled(tmp, REQ_ACS_FLAGS)) 1282 continue; 1283 1284 group = get_pci_alias_group(tmp, devfns); 1285 if (group) { 1286 pci_dev_put(tmp); 1287 return group; 1288 } 1289 } 1290 1291 return NULL; 1292 } 1293 1294 /* 1295 * Look for aliases to or from the given device for existing groups. DMA 1296 * aliases are only supported on the same bus, therefore the search 1297 * space is quite small (especially since we're really only looking at pcie 1298 * device, and therefore only expect multiple slots on the root complex or 1299 * downstream switch ports). It's conceivable though that a pair of 1300 * multifunction devices could have aliases between them that would cause a 1301 * loop. To prevent this, we use a bitmap to track where we've been. 1302 */ 1303 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1304 unsigned long *devfns) 1305 { 1306 struct pci_dev *tmp = NULL; 1307 struct iommu_group *group; 1308 1309 if (test_and_set_bit(pdev->devfn & 0xff, devfns)) 1310 return NULL; 1311 1312 group = iommu_group_get(&pdev->dev); 1313 if (group) 1314 return group; 1315 1316 for_each_pci_dev(tmp) { 1317 if (tmp == pdev || tmp->bus != pdev->bus) 1318 continue; 1319 1320 /* We alias them or they alias us */ 1321 if (pci_devs_are_dma_aliases(pdev, tmp)) { 1322 group = get_pci_alias_group(tmp, devfns); 1323 if (group) { 1324 pci_dev_put(tmp); 1325 return group; 1326 } 1327 1328 group = get_pci_function_alias_group(tmp, devfns); 1329 if (group) { 1330 pci_dev_put(tmp); 1331 return group; 1332 } 1333 } 1334 } 1335 1336 return NULL; 1337 } 1338 1339 struct group_for_pci_data { 1340 struct pci_dev *pdev; 1341 struct iommu_group *group; 1342 }; 1343 1344 /* 1345 * DMA alias iterator callback, return the last seen device. Stop and return 1346 * the IOMMU group if we find one along the way. 1347 */ 1348 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque) 1349 { 1350 struct group_for_pci_data *data = opaque; 1351 1352 data->pdev = pdev; 1353 data->group = iommu_group_get(&pdev->dev); 1354 1355 return data->group != NULL; 1356 } 1357 1358 /* 1359 * Generic device_group call-back function. It just allocates one 1360 * iommu-group per device. 1361 */ 1362 struct iommu_group *generic_device_group(struct device *dev) 1363 { 1364 return iommu_group_alloc(); 1365 } 1366 EXPORT_SYMBOL_GPL(generic_device_group); 1367 1368 /* 1369 * Use standard PCI bus topology, isolation features, and DMA alias quirks 1370 * to find or create an IOMMU group for a device. 1371 */ 1372 struct iommu_group *pci_device_group(struct device *dev) 1373 { 1374 struct pci_dev *pdev = to_pci_dev(dev); 1375 struct group_for_pci_data data; 1376 struct pci_bus *bus; 1377 struct iommu_group *group = NULL; 1378 u64 devfns[4] = { 0 }; 1379 1380 if (WARN_ON(!dev_is_pci(dev))) 1381 return ERR_PTR(-EINVAL); 1382 1383 /* 1384 * Find the upstream DMA alias for the device. A device must not 1385 * be aliased due to topology in order to have its own IOMMU group. 1386 * If we find an alias along the way that already belongs to a 1387 * group, use it. 1388 */ 1389 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data)) 1390 return data.group; 1391 1392 pdev = data.pdev; 1393 1394 /* 1395 * Continue upstream from the point of minimum IOMMU granularity 1396 * due to aliases to the point where devices are protected from 1397 * peer-to-peer DMA by PCI ACS. Again, if we find an existing 1398 * group, use it. 1399 */ 1400 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) { 1401 if (!bus->self) 1402 continue; 1403 1404 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS)) 1405 break; 1406 1407 pdev = bus->self; 1408 1409 group = iommu_group_get(&pdev->dev); 1410 if (group) 1411 return group; 1412 } 1413 1414 /* 1415 * Look for existing groups on device aliases. If we alias another 1416 * device or another device aliases us, use the same group. 1417 */ 1418 group = get_pci_alias_group(pdev, (unsigned long *)devfns); 1419 if (group) 1420 return group; 1421 1422 /* 1423 * Look for existing groups on non-isolated functions on the same 1424 * slot and aliases of those funcions, if any. No need to clear 1425 * the search bitmap, the tested devfns are still valid. 1426 */ 1427 group = get_pci_function_alias_group(pdev, (unsigned long *)devfns); 1428 if (group) 1429 return group; 1430 1431 /* No shared group found, allocate new */ 1432 return iommu_group_alloc(); 1433 } 1434 EXPORT_SYMBOL_GPL(pci_device_group); 1435 1436 /* Get the IOMMU group for device on fsl-mc bus */ 1437 struct iommu_group *fsl_mc_device_group(struct device *dev) 1438 { 1439 struct device *cont_dev = fsl_mc_cont_dev(dev); 1440 struct iommu_group *group; 1441 1442 group = iommu_group_get(cont_dev); 1443 if (!group) 1444 group = iommu_group_alloc(); 1445 return group; 1446 } 1447 EXPORT_SYMBOL_GPL(fsl_mc_device_group); 1448 1449 static int iommu_get_def_domain_type(struct device *dev) 1450 { 1451 const struct iommu_ops *ops = dev->bus->iommu_ops; 1452 unsigned int type = 0; 1453 1454 if (ops->def_domain_type) 1455 type = ops->def_domain_type(dev); 1456 1457 return (type == 0) ? iommu_def_domain_type : type; 1458 } 1459 1460 static int iommu_group_alloc_default_domain(struct bus_type *bus, 1461 struct iommu_group *group, 1462 unsigned int type) 1463 { 1464 struct iommu_domain *dom; 1465 1466 dom = __iommu_domain_alloc(bus, type); 1467 if (!dom && type != IOMMU_DOMAIN_DMA) { 1468 dom = __iommu_domain_alloc(bus, IOMMU_DOMAIN_DMA); 1469 if (dom) 1470 pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA", 1471 type, group->name); 1472 } 1473 1474 if (!dom) 1475 return -ENOMEM; 1476 1477 group->default_domain = dom; 1478 if (!group->domain) 1479 group->domain = dom; 1480 1481 if (!iommu_dma_strict) { 1482 int attr = 1; 1483 iommu_domain_set_attr(dom, 1484 DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, 1485 &attr); 1486 } 1487 1488 return 0; 1489 } 1490 1491 static int iommu_alloc_default_domain(struct iommu_group *group, 1492 struct device *dev) 1493 { 1494 unsigned int type; 1495 1496 if (group->default_domain) 1497 return 0; 1498 1499 type = iommu_get_def_domain_type(dev); 1500 1501 return iommu_group_alloc_default_domain(dev->bus, group, type); 1502 } 1503 1504 /** 1505 * iommu_group_get_for_dev - Find or create the IOMMU group for a device 1506 * @dev: target device 1507 * 1508 * This function is intended to be called by IOMMU drivers and extended to 1509 * support common, bus-defined algorithms when determining or creating the 1510 * IOMMU group for a device. On success, the caller will hold a reference 1511 * to the returned IOMMU group, which will already include the provided 1512 * device. The reference should be released with iommu_group_put(). 1513 */ 1514 static struct iommu_group *iommu_group_get_for_dev(struct device *dev) 1515 { 1516 const struct iommu_ops *ops = dev->bus->iommu_ops; 1517 struct iommu_group *group; 1518 int ret; 1519 1520 group = iommu_group_get(dev); 1521 if (group) 1522 return group; 1523 1524 if (!ops) 1525 return ERR_PTR(-EINVAL); 1526 1527 group = ops->device_group(dev); 1528 if (WARN_ON_ONCE(group == NULL)) 1529 return ERR_PTR(-EINVAL); 1530 1531 if (IS_ERR(group)) 1532 return group; 1533 1534 ret = iommu_group_add_device(group, dev); 1535 if (ret) 1536 goto out_put_group; 1537 1538 return group; 1539 1540 out_put_group: 1541 iommu_group_put(group); 1542 1543 return ERR_PTR(ret); 1544 } 1545 1546 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group) 1547 { 1548 return group->default_domain; 1549 } 1550 1551 static int probe_iommu_group(struct device *dev, void *data) 1552 { 1553 struct list_head *group_list = data; 1554 struct iommu_group *group; 1555 int ret; 1556 1557 /* Device is probed already if in a group */ 1558 group = iommu_group_get(dev); 1559 if (group) { 1560 iommu_group_put(group); 1561 return 0; 1562 } 1563 1564 ret = __iommu_probe_device(dev, group_list); 1565 if (ret == -ENODEV) 1566 ret = 0; 1567 1568 return ret; 1569 } 1570 1571 static int remove_iommu_group(struct device *dev, void *data) 1572 { 1573 iommu_release_device(dev); 1574 1575 return 0; 1576 } 1577 1578 static int iommu_bus_notifier(struct notifier_block *nb, 1579 unsigned long action, void *data) 1580 { 1581 unsigned long group_action = 0; 1582 struct device *dev = data; 1583 struct iommu_group *group; 1584 1585 /* 1586 * ADD/DEL call into iommu driver ops if provided, which may 1587 * result in ADD/DEL notifiers to group->notifier 1588 */ 1589 if (action == BUS_NOTIFY_ADD_DEVICE) { 1590 int ret; 1591 1592 ret = iommu_probe_device(dev); 1593 return (ret) ? NOTIFY_DONE : NOTIFY_OK; 1594 } else if (action == BUS_NOTIFY_REMOVED_DEVICE) { 1595 iommu_release_device(dev); 1596 return NOTIFY_OK; 1597 } 1598 1599 /* 1600 * Remaining BUS_NOTIFYs get filtered and republished to the 1601 * group, if anyone is listening 1602 */ 1603 group = iommu_group_get(dev); 1604 if (!group) 1605 return 0; 1606 1607 switch (action) { 1608 case BUS_NOTIFY_BIND_DRIVER: 1609 group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER; 1610 break; 1611 case BUS_NOTIFY_BOUND_DRIVER: 1612 group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER; 1613 break; 1614 case BUS_NOTIFY_UNBIND_DRIVER: 1615 group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER; 1616 break; 1617 case BUS_NOTIFY_UNBOUND_DRIVER: 1618 group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER; 1619 break; 1620 } 1621 1622 if (group_action) 1623 blocking_notifier_call_chain(&group->notifier, 1624 group_action, dev); 1625 1626 iommu_group_put(group); 1627 return 0; 1628 } 1629 1630 struct __group_domain_type { 1631 struct device *dev; 1632 unsigned int type; 1633 }; 1634 1635 static int probe_get_default_domain_type(struct device *dev, void *data) 1636 { 1637 const struct iommu_ops *ops = dev->bus->iommu_ops; 1638 struct __group_domain_type *gtype = data; 1639 unsigned int type = 0; 1640 1641 if (ops->def_domain_type) 1642 type = ops->def_domain_type(dev); 1643 1644 if (type) { 1645 if (gtype->type && gtype->type != type) { 1646 dev_warn(dev, "Device needs domain type %s, but device %s in the same iommu group requires type %s - using default\n", 1647 iommu_domain_type_str(type), 1648 dev_name(gtype->dev), 1649 iommu_domain_type_str(gtype->type)); 1650 gtype->type = 0; 1651 } 1652 1653 if (!gtype->dev) { 1654 gtype->dev = dev; 1655 gtype->type = type; 1656 } 1657 } 1658 1659 return 0; 1660 } 1661 1662 static void probe_alloc_default_domain(struct bus_type *bus, 1663 struct iommu_group *group) 1664 { 1665 struct __group_domain_type gtype; 1666 1667 memset(>ype, 0, sizeof(gtype)); 1668 1669 /* Ask for default domain requirements of all devices in the group */ 1670 __iommu_group_for_each_dev(group, >ype, 1671 probe_get_default_domain_type); 1672 1673 if (!gtype.type) 1674 gtype.type = iommu_def_domain_type; 1675 1676 iommu_group_alloc_default_domain(bus, group, gtype.type); 1677 1678 } 1679 1680 static int iommu_group_do_dma_attach(struct device *dev, void *data) 1681 { 1682 struct iommu_domain *domain = data; 1683 int ret = 0; 1684 1685 if (!iommu_is_attach_deferred(domain, dev)) 1686 ret = __iommu_attach_device(domain, dev); 1687 1688 return ret; 1689 } 1690 1691 static int __iommu_group_dma_attach(struct iommu_group *group) 1692 { 1693 return __iommu_group_for_each_dev(group, group->default_domain, 1694 iommu_group_do_dma_attach); 1695 } 1696 1697 static int iommu_group_do_probe_finalize(struct device *dev, void *data) 1698 { 1699 struct iommu_domain *domain = data; 1700 1701 if (domain->ops->probe_finalize) 1702 domain->ops->probe_finalize(dev); 1703 1704 return 0; 1705 } 1706 1707 static void __iommu_group_dma_finalize(struct iommu_group *group) 1708 { 1709 __iommu_group_for_each_dev(group, group->default_domain, 1710 iommu_group_do_probe_finalize); 1711 } 1712 1713 static int iommu_do_create_direct_mappings(struct device *dev, void *data) 1714 { 1715 struct iommu_group *group = data; 1716 1717 iommu_create_device_direct_mappings(group, dev); 1718 1719 return 0; 1720 } 1721 1722 static int iommu_group_create_direct_mappings(struct iommu_group *group) 1723 { 1724 return __iommu_group_for_each_dev(group, group, 1725 iommu_do_create_direct_mappings); 1726 } 1727 1728 int bus_iommu_probe(struct bus_type *bus) 1729 { 1730 struct iommu_group *group, *next; 1731 LIST_HEAD(group_list); 1732 int ret; 1733 1734 /* 1735 * This code-path does not allocate the default domain when 1736 * creating the iommu group, so do it after the groups are 1737 * created. 1738 */ 1739 ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group); 1740 if (ret) 1741 return ret; 1742 1743 list_for_each_entry_safe(group, next, &group_list, entry) { 1744 /* Remove item from the list */ 1745 list_del_init(&group->entry); 1746 1747 mutex_lock(&group->mutex); 1748 1749 /* Try to allocate default domain */ 1750 probe_alloc_default_domain(bus, group); 1751 1752 if (!group->default_domain) { 1753 mutex_unlock(&group->mutex); 1754 continue; 1755 } 1756 1757 iommu_group_create_direct_mappings(group); 1758 1759 ret = __iommu_group_dma_attach(group); 1760 1761 mutex_unlock(&group->mutex); 1762 1763 if (ret) 1764 break; 1765 1766 __iommu_group_dma_finalize(group); 1767 } 1768 1769 return ret; 1770 } 1771 1772 static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops) 1773 { 1774 struct notifier_block *nb; 1775 int err; 1776 1777 nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL); 1778 if (!nb) 1779 return -ENOMEM; 1780 1781 nb->notifier_call = iommu_bus_notifier; 1782 1783 err = bus_register_notifier(bus, nb); 1784 if (err) 1785 goto out_free; 1786 1787 err = bus_iommu_probe(bus); 1788 if (err) 1789 goto out_err; 1790 1791 1792 return 0; 1793 1794 out_err: 1795 /* Clean up */ 1796 bus_for_each_dev(bus, NULL, NULL, remove_iommu_group); 1797 bus_unregister_notifier(bus, nb); 1798 1799 out_free: 1800 kfree(nb); 1801 1802 return err; 1803 } 1804 1805 /** 1806 * bus_set_iommu - set iommu-callbacks for the bus 1807 * @bus: bus. 1808 * @ops: the callbacks provided by the iommu-driver 1809 * 1810 * This function is called by an iommu driver to set the iommu methods 1811 * used for a particular bus. Drivers for devices on that bus can use 1812 * the iommu-api after these ops are registered. 1813 * This special function is needed because IOMMUs are usually devices on 1814 * the bus itself, so the iommu drivers are not initialized when the bus 1815 * is set up. With this function the iommu-driver can set the iommu-ops 1816 * afterwards. 1817 */ 1818 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops) 1819 { 1820 int err; 1821 1822 if (ops == NULL) { 1823 bus->iommu_ops = NULL; 1824 return 0; 1825 } 1826 1827 if (bus->iommu_ops != NULL) 1828 return -EBUSY; 1829 1830 bus->iommu_ops = ops; 1831 1832 /* Do IOMMU specific setup for this bus-type */ 1833 err = iommu_bus_init(bus, ops); 1834 if (err) 1835 bus->iommu_ops = NULL; 1836 1837 return err; 1838 } 1839 EXPORT_SYMBOL_GPL(bus_set_iommu); 1840 1841 bool iommu_present(struct bus_type *bus) 1842 { 1843 return bus->iommu_ops != NULL; 1844 } 1845 EXPORT_SYMBOL_GPL(iommu_present); 1846 1847 bool iommu_capable(struct bus_type *bus, enum iommu_cap cap) 1848 { 1849 if (!bus->iommu_ops || !bus->iommu_ops->capable) 1850 return false; 1851 1852 return bus->iommu_ops->capable(cap); 1853 } 1854 EXPORT_SYMBOL_GPL(iommu_capable); 1855 1856 /** 1857 * iommu_set_fault_handler() - set a fault handler for an iommu domain 1858 * @domain: iommu domain 1859 * @handler: fault handler 1860 * @token: user data, will be passed back to the fault handler 1861 * 1862 * This function should be used by IOMMU users which want to be notified 1863 * whenever an IOMMU fault happens. 1864 * 1865 * The fault handler itself should return 0 on success, and an appropriate 1866 * error code otherwise. 1867 */ 1868 void iommu_set_fault_handler(struct iommu_domain *domain, 1869 iommu_fault_handler_t handler, 1870 void *token) 1871 { 1872 BUG_ON(!domain); 1873 1874 domain->handler = handler; 1875 domain->handler_token = token; 1876 } 1877 EXPORT_SYMBOL_GPL(iommu_set_fault_handler); 1878 1879 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus, 1880 unsigned type) 1881 { 1882 struct iommu_domain *domain; 1883 1884 if (bus == NULL || bus->iommu_ops == NULL) 1885 return NULL; 1886 1887 domain = bus->iommu_ops->domain_alloc(type); 1888 if (!domain) 1889 return NULL; 1890 1891 domain->ops = bus->iommu_ops; 1892 domain->type = type; 1893 /* Assume all sizes by default; the driver may override this later */ 1894 domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap; 1895 1896 return domain; 1897 } 1898 1899 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus) 1900 { 1901 return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED); 1902 } 1903 EXPORT_SYMBOL_GPL(iommu_domain_alloc); 1904 1905 void iommu_domain_free(struct iommu_domain *domain) 1906 { 1907 domain->ops->domain_free(domain); 1908 } 1909 EXPORT_SYMBOL_GPL(iommu_domain_free); 1910 1911 static int __iommu_attach_device(struct iommu_domain *domain, 1912 struct device *dev) 1913 { 1914 int ret; 1915 1916 if (unlikely(domain->ops->attach_dev == NULL)) 1917 return -ENODEV; 1918 1919 ret = domain->ops->attach_dev(domain, dev); 1920 if (!ret) 1921 trace_attach_device_to_domain(dev); 1922 return ret; 1923 } 1924 1925 int iommu_attach_device(struct iommu_domain *domain, struct device *dev) 1926 { 1927 struct iommu_group *group; 1928 int ret; 1929 1930 group = iommu_group_get(dev); 1931 if (!group) 1932 return -ENODEV; 1933 1934 /* 1935 * Lock the group to make sure the device-count doesn't 1936 * change while we are attaching 1937 */ 1938 mutex_lock(&group->mutex); 1939 ret = -EINVAL; 1940 if (iommu_group_device_count(group) != 1) 1941 goto out_unlock; 1942 1943 ret = __iommu_attach_group(domain, group); 1944 1945 out_unlock: 1946 mutex_unlock(&group->mutex); 1947 iommu_group_put(group); 1948 1949 return ret; 1950 } 1951 EXPORT_SYMBOL_GPL(iommu_attach_device); 1952 1953 int iommu_cache_invalidate(struct iommu_domain *domain, struct device *dev, 1954 struct iommu_cache_invalidate_info *inv_info) 1955 { 1956 if (unlikely(!domain->ops->cache_invalidate)) 1957 return -ENODEV; 1958 1959 return domain->ops->cache_invalidate(domain, dev, inv_info); 1960 } 1961 EXPORT_SYMBOL_GPL(iommu_cache_invalidate); 1962 1963 int iommu_sva_bind_gpasid(struct iommu_domain *domain, 1964 struct device *dev, struct iommu_gpasid_bind_data *data) 1965 { 1966 if (unlikely(!domain->ops->sva_bind_gpasid)) 1967 return -ENODEV; 1968 1969 return domain->ops->sva_bind_gpasid(domain, dev, data); 1970 } 1971 EXPORT_SYMBOL_GPL(iommu_sva_bind_gpasid); 1972 1973 int iommu_sva_unbind_gpasid(struct iommu_domain *domain, struct device *dev, 1974 ioasid_t pasid) 1975 { 1976 if (unlikely(!domain->ops->sva_unbind_gpasid)) 1977 return -ENODEV; 1978 1979 return domain->ops->sva_unbind_gpasid(dev, pasid); 1980 } 1981 EXPORT_SYMBOL_GPL(iommu_sva_unbind_gpasid); 1982 1983 static void __iommu_detach_device(struct iommu_domain *domain, 1984 struct device *dev) 1985 { 1986 if (iommu_is_attach_deferred(domain, dev)) 1987 return; 1988 1989 if (unlikely(domain->ops->detach_dev == NULL)) 1990 return; 1991 1992 domain->ops->detach_dev(domain, dev); 1993 trace_detach_device_from_domain(dev); 1994 } 1995 1996 void iommu_detach_device(struct iommu_domain *domain, struct device *dev) 1997 { 1998 struct iommu_group *group; 1999 2000 group = iommu_group_get(dev); 2001 if (!group) 2002 return; 2003 2004 mutex_lock(&group->mutex); 2005 if (iommu_group_device_count(group) != 1) { 2006 WARN_ON(1); 2007 goto out_unlock; 2008 } 2009 2010 __iommu_detach_group(domain, group); 2011 2012 out_unlock: 2013 mutex_unlock(&group->mutex); 2014 iommu_group_put(group); 2015 } 2016 EXPORT_SYMBOL_GPL(iommu_detach_device); 2017 2018 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev) 2019 { 2020 struct iommu_domain *domain; 2021 struct iommu_group *group; 2022 2023 group = iommu_group_get(dev); 2024 if (!group) 2025 return NULL; 2026 2027 domain = group->domain; 2028 2029 iommu_group_put(group); 2030 2031 return domain; 2032 } 2033 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev); 2034 2035 /* 2036 * For IOMMU_DOMAIN_DMA implementations which already provide their own 2037 * guarantees that the group and its default domain are valid and correct. 2038 */ 2039 struct iommu_domain *iommu_get_dma_domain(struct device *dev) 2040 { 2041 return dev->iommu_group->default_domain; 2042 } 2043 2044 /* 2045 * IOMMU groups are really the natural working unit of the IOMMU, but 2046 * the IOMMU API works on domains and devices. Bridge that gap by 2047 * iterating over the devices in a group. Ideally we'd have a single 2048 * device which represents the requestor ID of the group, but we also 2049 * allow IOMMU drivers to create policy defined minimum sets, where 2050 * the physical hardware may be able to distiguish members, but we 2051 * wish to group them at a higher level (ex. untrusted multi-function 2052 * PCI devices). Thus we attach each device. 2053 */ 2054 static int iommu_group_do_attach_device(struct device *dev, void *data) 2055 { 2056 struct iommu_domain *domain = data; 2057 2058 return __iommu_attach_device(domain, dev); 2059 } 2060 2061 static int __iommu_attach_group(struct iommu_domain *domain, 2062 struct iommu_group *group) 2063 { 2064 int ret; 2065 2066 if (group->default_domain && group->domain != group->default_domain) 2067 return -EBUSY; 2068 2069 ret = __iommu_group_for_each_dev(group, domain, 2070 iommu_group_do_attach_device); 2071 if (ret == 0) 2072 group->domain = domain; 2073 2074 return ret; 2075 } 2076 2077 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group) 2078 { 2079 int ret; 2080 2081 mutex_lock(&group->mutex); 2082 ret = __iommu_attach_group(domain, group); 2083 mutex_unlock(&group->mutex); 2084 2085 return ret; 2086 } 2087 EXPORT_SYMBOL_GPL(iommu_attach_group); 2088 2089 static int iommu_group_do_detach_device(struct device *dev, void *data) 2090 { 2091 struct iommu_domain *domain = data; 2092 2093 __iommu_detach_device(domain, dev); 2094 2095 return 0; 2096 } 2097 2098 static void __iommu_detach_group(struct iommu_domain *domain, 2099 struct iommu_group *group) 2100 { 2101 int ret; 2102 2103 if (!group->default_domain) { 2104 __iommu_group_for_each_dev(group, domain, 2105 iommu_group_do_detach_device); 2106 group->domain = NULL; 2107 return; 2108 } 2109 2110 if (group->domain == group->default_domain) 2111 return; 2112 2113 /* Detach by re-attaching to the default domain */ 2114 ret = __iommu_group_for_each_dev(group, group->default_domain, 2115 iommu_group_do_attach_device); 2116 if (ret != 0) 2117 WARN_ON(1); 2118 else 2119 group->domain = group->default_domain; 2120 } 2121 2122 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group) 2123 { 2124 mutex_lock(&group->mutex); 2125 __iommu_detach_group(domain, group); 2126 mutex_unlock(&group->mutex); 2127 } 2128 EXPORT_SYMBOL_GPL(iommu_detach_group); 2129 2130 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) 2131 { 2132 if (unlikely(domain->ops->iova_to_phys == NULL)) 2133 return 0; 2134 2135 return domain->ops->iova_to_phys(domain, iova); 2136 } 2137 EXPORT_SYMBOL_GPL(iommu_iova_to_phys); 2138 2139 static size_t iommu_pgsize(struct iommu_domain *domain, 2140 unsigned long addr_merge, size_t size) 2141 { 2142 unsigned int pgsize_idx; 2143 size_t pgsize; 2144 2145 /* Max page size that still fits into 'size' */ 2146 pgsize_idx = __fls(size); 2147 2148 /* need to consider alignment requirements ? */ 2149 if (likely(addr_merge)) { 2150 /* Max page size allowed by address */ 2151 unsigned int align_pgsize_idx = __ffs(addr_merge); 2152 pgsize_idx = min(pgsize_idx, align_pgsize_idx); 2153 } 2154 2155 /* build a mask of acceptable page sizes */ 2156 pgsize = (1UL << (pgsize_idx + 1)) - 1; 2157 2158 /* throw away page sizes not supported by the hardware */ 2159 pgsize &= domain->pgsize_bitmap; 2160 2161 /* make sure we're still sane */ 2162 BUG_ON(!pgsize); 2163 2164 /* pick the biggest page */ 2165 pgsize_idx = __fls(pgsize); 2166 pgsize = 1UL << pgsize_idx; 2167 2168 return pgsize; 2169 } 2170 2171 int __iommu_map(struct iommu_domain *domain, unsigned long iova, 2172 phys_addr_t paddr, size_t size, int prot, gfp_t gfp) 2173 { 2174 const struct iommu_ops *ops = domain->ops; 2175 unsigned long orig_iova = iova; 2176 unsigned int min_pagesz; 2177 size_t orig_size = size; 2178 phys_addr_t orig_paddr = paddr; 2179 int ret = 0; 2180 2181 if (unlikely(ops->map == NULL || 2182 domain->pgsize_bitmap == 0UL)) 2183 return -ENODEV; 2184 2185 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 2186 return -EINVAL; 2187 2188 /* find out the minimum page size supported */ 2189 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 2190 2191 /* 2192 * both the virtual address and the physical one, as well as 2193 * the size of the mapping, must be aligned (at least) to the 2194 * size of the smallest page supported by the hardware 2195 */ 2196 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) { 2197 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n", 2198 iova, &paddr, size, min_pagesz); 2199 return -EINVAL; 2200 } 2201 2202 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size); 2203 2204 while (size) { 2205 size_t pgsize = iommu_pgsize(domain, iova | paddr, size); 2206 2207 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx\n", 2208 iova, &paddr, pgsize); 2209 ret = ops->map(domain, iova, paddr, pgsize, prot, gfp); 2210 2211 if (ret) 2212 break; 2213 2214 iova += pgsize; 2215 paddr += pgsize; 2216 size -= pgsize; 2217 } 2218 2219 if (ops->iotlb_sync_map) 2220 ops->iotlb_sync_map(domain); 2221 2222 /* unroll mapping in case something went wrong */ 2223 if (ret) 2224 iommu_unmap(domain, orig_iova, orig_size - size); 2225 else 2226 trace_map(orig_iova, orig_paddr, orig_size); 2227 2228 return ret; 2229 } 2230 2231 int iommu_map(struct iommu_domain *domain, unsigned long iova, 2232 phys_addr_t paddr, size_t size, int prot) 2233 { 2234 might_sleep(); 2235 return __iommu_map(domain, iova, paddr, size, prot, GFP_KERNEL); 2236 } 2237 EXPORT_SYMBOL_GPL(iommu_map); 2238 2239 int iommu_map_atomic(struct iommu_domain *domain, unsigned long iova, 2240 phys_addr_t paddr, size_t size, int prot) 2241 { 2242 return __iommu_map(domain, iova, paddr, size, prot, GFP_ATOMIC); 2243 } 2244 EXPORT_SYMBOL_GPL(iommu_map_atomic); 2245 2246 static size_t __iommu_unmap(struct iommu_domain *domain, 2247 unsigned long iova, size_t size, 2248 struct iommu_iotlb_gather *iotlb_gather) 2249 { 2250 const struct iommu_ops *ops = domain->ops; 2251 size_t unmapped_page, unmapped = 0; 2252 unsigned long orig_iova = iova; 2253 unsigned int min_pagesz; 2254 2255 if (unlikely(ops->unmap == NULL || 2256 domain->pgsize_bitmap == 0UL)) 2257 return 0; 2258 2259 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 2260 return 0; 2261 2262 /* find out the minimum page size supported */ 2263 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 2264 2265 /* 2266 * The virtual address, as well as the size of the mapping, must be 2267 * aligned (at least) to the size of the smallest page supported 2268 * by the hardware 2269 */ 2270 if (!IS_ALIGNED(iova | size, min_pagesz)) { 2271 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n", 2272 iova, size, min_pagesz); 2273 return 0; 2274 } 2275 2276 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size); 2277 2278 /* 2279 * Keep iterating until we either unmap 'size' bytes (or more) 2280 * or we hit an area that isn't mapped. 2281 */ 2282 while (unmapped < size) { 2283 size_t pgsize = iommu_pgsize(domain, iova, size - unmapped); 2284 2285 unmapped_page = ops->unmap(domain, iova, pgsize, iotlb_gather); 2286 if (!unmapped_page) 2287 break; 2288 2289 pr_debug("unmapped: iova 0x%lx size 0x%zx\n", 2290 iova, unmapped_page); 2291 2292 iova += unmapped_page; 2293 unmapped += unmapped_page; 2294 } 2295 2296 trace_unmap(orig_iova, size, unmapped); 2297 return unmapped; 2298 } 2299 2300 size_t iommu_unmap(struct iommu_domain *domain, 2301 unsigned long iova, size_t size) 2302 { 2303 struct iommu_iotlb_gather iotlb_gather; 2304 size_t ret; 2305 2306 iommu_iotlb_gather_init(&iotlb_gather); 2307 ret = __iommu_unmap(domain, iova, size, &iotlb_gather); 2308 iommu_tlb_sync(domain, &iotlb_gather); 2309 2310 return ret; 2311 } 2312 EXPORT_SYMBOL_GPL(iommu_unmap); 2313 2314 size_t iommu_unmap_fast(struct iommu_domain *domain, 2315 unsigned long iova, size_t size, 2316 struct iommu_iotlb_gather *iotlb_gather) 2317 { 2318 return __iommu_unmap(domain, iova, size, iotlb_gather); 2319 } 2320 EXPORT_SYMBOL_GPL(iommu_unmap_fast); 2321 2322 size_t __iommu_map_sg(struct iommu_domain *domain, unsigned long iova, 2323 struct scatterlist *sg, unsigned int nents, int prot, 2324 gfp_t gfp) 2325 { 2326 size_t len = 0, mapped = 0; 2327 phys_addr_t start; 2328 unsigned int i = 0; 2329 int ret; 2330 2331 while (i <= nents) { 2332 phys_addr_t s_phys = sg_phys(sg); 2333 2334 if (len && s_phys != start + len) { 2335 ret = __iommu_map(domain, iova + mapped, start, 2336 len, prot, gfp); 2337 2338 if (ret) 2339 goto out_err; 2340 2341 mapped += len; 2342 len = 0; 2343 } 2344 2345 if (len) { 2346 len += sg->length; 2347 } else { 2348 len = sg->length; 2349 start = s_phys; 2350 } 2351 2352 if (++i < nents) 2353 sg = sg_next(sg); 2354 } 2355 2356 return mapped; 2357 2358 out_err: 2359 /* undo mappings already done */ 2360 iommu_unmap(domain, iova, mapped); 2361 2362 return 0; 2363 2364 } 2365 2366 size_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova, 2367 struct scatterlist *sg, unsigned int nents, int prot) 2368 { 2369 might_sleep(); 2370 return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_KERNEL); 2371 } 2372 EXPORT_SYMBOL_GPL(iommu_map_sg); 2373 2374 size_t iommu_map_sg_atomic(struct iommu_domain *domain, unsigned long iova, 2375 struct scatterlist *sg, unsigned int nents, int prot) 2376 { 2377 return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC); 2378 } 2379 EXPORT_SYMBOL_GPL(iommu_map_sg_atomic); 2380 2381 int iommu_domain_window_enable(struct iommu_domain *domain, u32 wnd_nr, 2382 phys_addr_t paddr, u64 size, int prot) 2383 { 2384 if (unlikely(domain->ops->domain_window_enable == NULL)) 2385 return -ENODEV; 2386 2387 return domain->ops->domain_window_enable(domain, wnd_nr, paddr, size, 2388 prot); 2389 } 2390 EXPORT_SYMBOL_GPL(iommu_domain_window_enable); 2391 2392 void iommu_domain_window_disable(struct iommu_domain *domain, u32 wnd_nr) 2393 { 2394 if (unlikely(domain->ops->domain_window_disable == NULL)) 2395 return; 2396 2397 return domain->ops->domain_window_disable(domain, wnd_nr); 2398 } 2399 EXPORT_SYMBOL_GPL(iommu_domain_window_disable); 2400 2401 /** 2402 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework 2403 * @domain: the iommu domain where the fault has happened 2404 * @dev: the device where the fault has happened 2405 * @iova: the faulting address 2406 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...) 2407 * 2408 * This function should be called by the low-level IOMMU implementations 2409 * whenever IOMMU faults happen, to allow high-level users, that are 2410 * interested in such events, to know about them. 2411 * 2412 * This event may be useful for several possible use cases: 2413 * - mere logging of the event 2414 * - dynamic TLB/PTE loading 2415 * - if restarting of the faulting device is required 2416 * 2417 * Returns 0 on success and an appropriate error code otherwise (if dynamic 2418 * PTE/TLB loading will one day be supported, implementations will be able 2419 * to tell whether it succeeded or not according to this return value). 2420 * 2421 * Specifically, -ENOSYS is returned if a fault handler isn't installed 2422 * (though fault handlers can also return -ENOSYS, in case they want to 2423 * elicit the default behavior of the IOMMU drivers). 2424 */ 2425 int report_iommu_fault(struct iommu_domain *domain, struct device *dev, 2426 unsigned long iova, int flags) 2427 { 2428 int ret = -ENOSYS; 2429 2430 /* 2431 * if upper layers showed interest and installed a fault handler, 2432 * invoke it. 2433 */ 2434 if (domain->handler) 2435 ret = domain->handler(domain, dev, iova, flags, 2436 domain->handler_token); 2437 2438 trace_io_page_fault(dev, iova, flags); 2439 return ret; 2440 } 2441 EXPORT_SYMBOL_GPL(report_iommu_fault); 2442 2443 static int __init iommu_init(void) 2444 { 2445 iommu_group_kset = kset_create_and_add("iommu_groups", 2446 NULL, kernel_kobj); 2447 BUG_ON(!iommu_group_kset); 2448 2449 iommu_debugfs_setup(); 2450 2451 return 0; 2452 } 2453 core_initcall(iommu_init); 2454 2455 int iommu_domain_get_attr(struct iommu_domain *domain, 2456 enum iommu_attr attr, void *data) 2457 { 2458 struct iommu_domain_geometry *geometry; 2459 bool *paging; 2460 int ret = 0; 2461 2462 switch (attr) { 2463 case DOMAIN_ATTR_GEOMETRY: 2464 geometry = data; 2465 *geometry = domain->geometry; 2466 2467 break; 2468 case DOMAIN_ATTR_PAGING: 2469 paging = data; 2470 *paging = (domain->pgsize_bitmap != 0UL); 2471 break; 2472 default: 2473 if (!domain->ops->domain_get_attr) 2474 return -EINVAL; 2475 2476 ret = domain->ops->domain_get_attr(domain, attr, data); 2477 } 2478 2479 return ret; 2480 } 2481 EXPORT_SYMBOL_GPL(iommu_domain_get_attr); 2482 2483 int iommu_domain_set_attr(struct iommu_domain *domain, 2484 enum iommu_attr attr, void *data) 2485 { 2486 int ret = 0; 2487 2488 switch (attr) { 2489 default: 2490 if (domain->ops->domain_set_attr == NULL) 2491 return -EINVAL; 2492 2493 ret = domain->ops->domain_set_attr(domain, attr, data); 2494 } 2495 2496 return ret; 2497 } 2498 EXPORT_SYMBOL_GPL(iommu_domain_set_attr); 2499 2500 void iommu_get_resv_regions(struct device *dev, struct list_head *list) 2501 { 2502 const struct iommu_ops *ops = dev->bus->iommu_ops; 2503 2504 if (ops && ops->get_resv_regions) 2505 ops->get_resv_regions(dev, list); 2506 } 2507 2508 void iommu_put_resv_regions(struct device *dev, struct list_head *list) 2509 { 2510 const struct iommu_ops *ops = dev->bus->iommu_ops; 2511 2512 if (ops && ops->put_resv_regions) 2513 ops->put_resv_regions(dev, list); 2514 } 2515 2516 /** 2517 * generic_iommu_put_resv_regions - Reserved region driver helper 2518 * @dev: device for which to free reserved regions 2519 * @list: reserved region list for device 2520 * 2521 * IOMMU drivers can use this to implement their .put_resv_regions() callback 2522 * for simple reservations. Memory allocated for each reserved region will be 2523 * freed. If an IOMMU driver allocates additional resources per region, it is 2524 * going to have to implement a custom callback. 2525 */ 2526 void generic_iommu_put_resv_regions(struct device *dev, struct list_head *list) 2527 { 2528 struct iommu_resv_region *entry, *next; 2529 2530 list_for_each_entry_safe(entry, next, list, list) 2531 kfree(entry); 2532 } 2533 EXPORT_SYMBOL(generic_iommu_put_resv_regions); 2534 2535 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start, 2536 size_t length, int prot, 2537 enum iommu_resv_type type) 2538 { 2539 struct iommu_resv_region *region; 2540 2541 region = kzalloc(sizeof(*region), GFP_KERNEL); 2542 if (!region) 2543 return NULL; 2544 2545 INIT_LIST_HEAD(®ion->list); 2546 region->start = start; 2547 region->length = length; 2548 region->prot = prot; 2549 region->type = type; 2550 return region; 2551 } 2552 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region); 2553 2554 void iommu_set_default_passthrough(bool cmd_line) 2555 { 2556 if (cmd_line) 2557 iommu_set_cmd_line_dma_api(); 2558 2559 iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY; 2560 } 2561 2562 void iommu_set_default_translated(bool cmd_line) 2563 { 2564 if (cmd_line) 2565 iommu_set_cmd_line_dma_api(); 2566 2567 iommu_def_domain_type = IOMMU_DOMAIN_DMA; 2568 } 2569 2570 bool iommu_default_passthrough(void) 2571 { 2572 return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY; 2573 } 2574 EXPORT_SYMBOL_GPL(iommu_default_passthrough); 2575 2576 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode) 2577 { 2578 const struct iommu_ops *ops = NULL; 2579 struct iommu_device *iommu; 2580 2581 spin_lock(&iommu_device_lock); 2582 list_for_each_entry(iommu, &iommu_device_list, list) 2583 if (iommu->fwnode == fwnode) { 2584 ops = iommu->ops; 2585 break; 2586 } 2587 spin_unlock(&iommu_device_lock); 2588 return ops; 2589 } 2590 2591 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode, 2592 const struct iommu_ops *ops) 2593 { 2594 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2595 2596 if (fwspec) 2597 return ops == fwspec->ops ? 0 : -EINVAL; 2598 2599 if (!dev_iommu_get(dev)) 2600 return -ENOMEM; 2601 2602 /* Preallocate for the overwhelmingly common case of 1 ID */ 2603 fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL); 2604 if (!fwspec) 2605 return -ENOMEM; 2606 2607 of_node_get(to_of_node(iommu_fwnode)); 2608 fwspec->iommu_fwnode = iommu_fwnode; 2609 fwspec->ops = ops; 2610 dev_iommu_fwspec_set(dev, fwspec); 2611 return 0; 2612 } 2613 EXPORT_SYMBOL_GPL(iommu_fwspec_init); 2614 2615 void iommu_fwspec_free(struct device *dev) 2616 { 2617 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2618 2619 if (fwspec) { 2620 fwnode_handle_put(fwspec->iommu_fwnode); 2621 kfree(fwspec); 2622 dev_iommu_fwspec_set(dev, NULL); 2623 } 2624 } 2625 EXPORT_SYMBOL_GPL(iommu_fwspec_free); 2626 2627 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids) 2628 { 2629 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2630 int i, new_num; 2631 2632 if (!fwspec) 2633 return -EINVAL; 2634 2635 new_num = fwspec->num_ids + num_ids; 2636 if (new_num > 1) { 2637 fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num), 2638 GFP_KERNEL); 2639 if (!fwspec) 2640 return -ENOMEM; 2641 2642 dev_iommu_fwspec_set(dev, fwspec); 2643 } 2644 2645 for (i = 0; i < num_ids; i++) 2646 fwspec->ids[fwspec->num_ids + i] = ids[i]; 2647 2648 fwspec->num_ids = new_num; 2649 return 0; 2650 } 2651 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids); 2652 2653 /* 2654 * Per device IOMMU features. 2655 */ 2656 bool iommu_dev_has_feature(struct device *dev, enum iommu_dev_features feat) 2657 { 2658 const struct iommu_ops *ops = dev->bus->iommu_ops; 2659 2660 if (ops && ops->dev_has_feat) 2661 return ops->dev_has_feat(dev, feat); 2662 2663 return false; 2664 } 2665 EXPORT_SYMBOL_GPL(iommu_dev_has_feature); 2666 2667 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat) 2668 { 2669 const struct iommu_ops *ops = dev->bus->iommu_ops; 2670 2671 if (ops && ops->dev_enable_feat) 2672 return ops->dev_enable_feat(dev, feat); 2673 2674 return -ENODEV; 2675 } 2676 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature); 2677 2678 /* 2679 * The device drivers should do the necessary cleanups before calling this. 2680 * For example, before disabling the aux-domain feature, the device driver 2681 * should detach all aux-domains. Otherwise, this will return -EBUSY. 2682 */ 2683 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat) 2684 { 2685 const struct iommu_ops *ops = dev->bus->iommu_ops; 2686 2687 if (ops && ops->dev_disable_feat) 2688 return ops->dev_disable_feat(dev, feat); 2689 2690 return -EBUSY; 2691 } 2692 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature); 2693 2694 bool iommu_dev_feature_enabled(struct device *dev, enum iommu_dev_features feat) 2695 { 2696 const struct iommu_ops *ops = dev->bus->iommu_ops; 2697 2698 if (ops && ops->dev_feat_enabled) 2699 return ops->dev_feat_enabled(dev, feat); 2700 2701 return false; 2702 } 2703 EXPORT_SYMBOL_GPL(iommu_dev_feature_enabled); 2704 2705 /* 2706 * Aux-domain specific attach/detach. 2707 * 2708 * Only works if iommu_dev_feature_enabled(dev, IOMMU_DEV_FEAT_AUX) returns 2709 * true. Also, as long as domains are attached to a device through this 2710 * interface, any tries to call iommu_attach_device() should fail 2711 * (iommu_detach_device() can't fail, so we fail when trying to re-attach). 2712 * This should make us safe against a device being attached to a guest as a 2713 * whole while there are still pasid users on it (aux and sva). 2714 */ 2715 int iommu_aux_attach_device(struct iommu_domain *domain, struct device *dev) 2716 { 2717 int ret = -ENODEV; 2718 2719 if (domain->ops->aux_attach_dev) 2720 ret = domain->ops->aux_attach_dev(domain, dev); 2721 2722 if (!ret) 2723 trace_attach_device_to_domain(dev); 2724 2725 return ret; 2726 } 2727 EXPORT_SYMBOL_GPL(iommu_aux_attach_device); 2728 2729 void iommu_aux_detach_device(struct iommu_domain *domain, struct device *dev) 2730 { 2731 if (domain->ops->aux_detach_dev) { 2732 domain->ops->aux_detach_dev(domain, dev); 2733 trace_detach_device_from_domain(dev); 2734 } 2735 } 2736 EXPORT_SYMBOL_GPL(iommu_aux_detach_device); 2737 2738 int iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev) 2739 { 2740 int ret = -ENODEV; 2741 2742 if (domain->ops->aux_get_pasid) 2743 ret = domain->ops->aux_get_pasid(domain, dev); 2744 2745 return ret; 2746 } 2747 EXPORT_SYMBOL_GPL(iommu_aux_get_pasid); 2748 2749 /** 2750 * iommu_sva_bind_device() - Bind a process address space to a device 2751 * @dev: the device 2752 * @mm: the mm to bind, caller must hold a reference to it 2753 * 2754 * Create a bond between device and address space, allowing the device to access 2755 * the mm using the returned PASID. If a bond already exists between @device and 2756 * @mm, it is returned and an additional reference is taken. Caller must call 2757 * iommu_sva_unbind_device() to release each reference. 2758 * 2759 * iommu_dev_enable_feature(dev, IOMMU_DEV_FEAT_SVA) must be called first, to 2760 * initialize the required SVA features. 2761 * 2762 * On error, returns an ERR_PTR value. 2763 */ 2764 struct iommu_sva * 2765 iommu_sva_bind_device(struct device *dev, struct mm_struct *mm, void *drvdata) 2766 { 2767 struct iommu_group *group; 2768 struct iommu_sva *handle = ERR_PTR(-EINVAL); 2769 const struct iommu_ops *ops = dev->bus->iommu_ops; 2770 2771 if (!ops || !ops->sva_bind) 2772 return ERR_PTR(-ENODEV); 2773 2774 group = iommu_group_get(dev); 2775 if (!group) 2776 return ERR_PTR(-ENODEV); 2777 2778 /* Ensure device count and domain don't change while we're binding */ 2779 mutex_lock(&group->mutex); 2780 2781 /* 2782 * To keep things simple, SVA currently doesn't support IOMMU groups 2783 * with more than one device. Existing SVA-capable systems are not 2784 * affected by the problems that required IOMMU groups (lack of ACS 2785 * isolation, device ID aliasing and other hardware issues). 2786 */ 2787 if (iommu_group_device_count(group) != 1) 2788 goto out_unlock; 2789 2790 handle = ops->sva_bind(dev, mm, drvdata); 2791 2792 out_unlock: 2793 mutex_unlock(&group->mutex); 2794 iommu_group_put(group); 2795 2796 return handle; 2797 } 2798 EXPORT_SYMBOL_GPL(iommu_sva_bind_device); 2799 2800 /** 2801 * iommu_sva_unbind_device() - Remove a bond created with iommu_sva_bind_device 2802 * @handle: the handle returned by iommu_sva_bind_device() 2803 * 2804 * Put reference to a bond between device and address space. The device should 2805 * not be issuing any more transaction for this PASID. All outstanding page 2806 * requests for this PASID must have been flushed to the IOMMU. 2807 * 2808 * Returns 0 on success, or an error value 2809 */ 2810 void iommu_sva_unbind_device(struct iommu_sva *handle) 2811 { 2812 struct iommu_group *group; 2813 struct device *dev = handle->dev; 2814 const struct iommu_ops *ops = dev->bus->iommu_ops; 2815 2816 if (!ops || !ops->sva_unbind) 2817 return; 2818 2819 group = iommu_group_get(dev); 2820 if (!group) 2821 return; 2822 2823 mutex_lock(&group->mutex); 2824 ops->sva_unbind(handle); 2825 mutex_unlock(&group->mutex); 2826 2827 iommu_group_put(group); 2828 } 2829 EXPORT_SYMBOL_GPL(iommu_sva_unbind_device); 2830 2831 int iommu_sva_get_pasid(struct iommu_sva *handle) 2832 { 2833 const struct iommu_ops *ops = handle->dev->bus->iommu_ops; 2834 2835 if (!ops || !ops->sva_get_pasid) 2836 return IOMMU_PASID_INVALID; 2837 2838 return ops->sva_get_pasid(handle); 2839 } 2840 EXPORT_SYMBOL_GPL(iommu_sva_get_pasid); 2841