xref: /openbmc/linux/drivers/iommu/iommu.c (revision a4fdd976)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  */
6 
7 #define pr_fmt(fmt)    "iommu: " fmt
8 
9 #include <linux/amba/bus.h>
10 #include <linux/device.h>
11 #include <linux/kernel.h>
12 #include <linux/bits.h>
13 #include <linux/bug.h>
14 #include <linux/types.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/host1x_context_bus.h>
20 #include <linux/iommu.h>
21 #include <linux/idr.h>
22 #include <linux/err.h>
23 #include <linux/pci.h>
24 #include <linux/pci-ats.h>
25 #include <linux/bitops.h>
26 #include <linux/platform_device.h>
27 #include <linux/property.h>
28 #include <linux/fsl/mc.h>
29 #include <linux/module.h>
30 #include <linux/cc_platform.h>
31 #include <linux/cdx/cdx_bus.h>
32 #include <trace/events/iommu.h>
33 #include <linux/sched/mm.h>
34 #include <linux/msi.h>
35 
36 #include "dma-iommu.h"
37 
38 #include "iommu-sva.h"
39 
40 static struct kset *iommu_group_kset;
41 static DEFINE_IDA(iommu_group_ida);
42 
43 static unsigned int iommu_def_domain_type __read_mostly;
44 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT);
45 static u32 iommu_cmd_line __read_mostly;
46 
47 struct iommu_group {
48 	struct kobject kobj;
49 	struct kobject *devices_kobj;
50 	struct list_head devices;
51 	struct xarray pasid_array;
52 	struct mutex mutex;
53 	void *iommu_data;
54 	void (*iommu_data_release)(void *iommu_data);
55 	char *name;
56 	int id;
57 	struct iommu_domain *default_domain;
58 	struct iommu_domain *blocking_domain;
59 	struct iommu_domain *domain;
60 	struct list_head entry;
61 	unsigned int owner_cnt;
62 	void *owner;
63 };
64 
65 struct group_device {
66 	struct list_head list;
67 	struct device *dev;
68 	char *name;
69 };
70 
71 struct iommu_group_attribute {
72 	struct attribute attr;
73 	ssize_t (*show)(struct iommu_group *group, char *buf);
74 	ssize_t (*store)(struct iommu_group *group,
75 			 const char *buf, size_t count);
76 };
77 
78 static const char * const iommu_group_resv_type_string[] = {
79 	[IOMMU_RESV_DIRECT]			= "direct",
80 	[IOMMU_RESV_DIRECT_RELAXABLE]		= "direct-relaxable",
81 	[IOMMU_RESV_RESERVED]			= "reserved",
82 	[IOMMU_RESV_MSI]			= "msi",
83 	[IOMMU_RESV_SW_MSI]			= "msi",
84 };
85 
86 #define IOMMU_CMD_LINE_DMA_API		BIT(0)
87 #define IOMMU_CMD_LINE_STRICT		BIT(1)
88 
89 static int iommu_bus_notifier(struct notifier_block *nb,
90 			      unsigned long action, void *data);
91 static void iommu_release_device(struct device *dev);
92 static int iommu_alloc_default_domain(struct iommu_group *group,
93 				      struct device *dev);
94 static struct iommu_domain *__iommu_domain_alloc(const struct bus_type *bus,
95 						 unsigned type);
96 static int __iommu_attach_device(struct iommu_domain *domain,
97 				 struct device *dev);
98 static int __iommu_attach_group(struct iommu_domain *domain,
99 				struct iommu_group *group);
100 static int __iommu_group_set_domain(struct iommu_group *group,
101 				    struct iommu_domain *new_domain);
102 static int iommu_create_device_direct_mappings(struct iommu_group *group,
103 					       struct device *dev);
104 static struct iommu_group *iommu_group_get_for_dev(struct device *dev);
105 static ssize_t iommu_group_store_type(struct iommu_group *group,
106 				      const char *buf, size_t count);
107 
108 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store)		\
109 struct iommu_group_attribute iommu_group_attr_##_name =		\
110 	__ATTR(_name, _mode, _show, _store)
111 
112 #define to_iommu_group_attr(_attr)	\
113 	container_of(_attr, struct iommu_group_attribute, attr)
114 #define to_iommu_group(_kobj)		\
115 	container_of(_kobj, struct iommu_group, kobj)
116 
117 static LIST_HEAD(iommu_device_list);
118 static DEFINE_SPINLOCK(iommu_device_lock);
119 
120 static struct bus_type * const iommu_buses[] = {
121 	&platform_bus_type,
122 #ifdef CONFIG_PCI
123 	&pci_bus_type,
124 #endif
125 #ifdef CONFIG_ARM_AMBA
126 	&amba_bustype,
127 #endif
128 #ifdef CONFIG_FSL_MC_BUS
129 	&fsl_mc_bus_type,
130 #endif
131 #ifdef CONFIG_TEGRA_HOST1X_CONTEXT_BUS
132 	&host1x_context_device_bus_type,
133 #endif
134 #ifdef CONFIG_CDX_BUS
135 	&cdx_bus_type,
136 #endif
137 };
138 
139 /*
140  * Use a function instead of an array here because the domain-type is a
141  * bit-field, so an array would waste memory.
142  */
143 static const char *iommu_domain_type_str(unsigned int t)
144 {
145 	switch (t) {
146 	case IOMMU_DOMAIN_BLOCKED:
147 		return "Blocked";
148 	case IOMMU_DOMAIN_IDENTITY:
149 		return "Passthrough";
150 	case IOMMU_DOMAIN_UNMANAGED:
151 		return "Unmanaged";
152 	case IOMMU_DOMAIN_DMA:
153 	case IOMMU_DOMAIN_DMA_FQ:
154 		return "Translated";
155 	default:
156 		return "Unknown";
157 	}
158 }
159 
160 static int __init iommu_subsys_init(void)
161 {
162 	struct notifier_block *nb;
163 
164 	if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) {
165 		if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH))
166 			iommu_set_default_passthrough(false);
167 		else
168 			iommu_set_default_translated(false);
169 
170 		if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) {
171 			pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n");
172 			iommu_set_default_translated(false);
173 		}
174 	}
175 
176 	if (!iommu_default_passthrough() && !iommu_dma_strict)
177 		iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ;
178 
179 	pr_info("Default domain type: %s %s\n",
180 		iommu_domain_type_str(iommu_def_domain_type),
181 		(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ?
182 			"(set via kernel command line)" : "");
183 
184 	if (!iommu_default_passthrough())
185 		pr_info("DMA domain TLB invalidation policy: %s mode %s\n",
186 			iommu_dma_strict ? "strict" : "lazy",
187 			(iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ?
188 				"(set via kernel command line)" : "");
189 
190 	nb = kcalloc(ARRAY_SIZE(iommu_buses), sizeof(*nb), GFP_KERNEL);
191 	if (!nb)
192 		return -ENOMEM;
193 
194 	for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) {
195 		nb[i].notifier_call = iommu_bus_notifier;
196 		bus_register_notifier(iommu_buses[i], &nb[i]);
197 	}
198 
199 	return 0;
200 }
201 subsys_initcall(iommu_subsys_init);
202 
203 static int remove_iommu_group(struct device *dev, void *data)
204 {
205 	if (dev->iommu && dev->iommu->iommu_dev == data)
206 		iommu_release_device(dev);
207 
208 	return 0;
209 }
210 
211 /**
212  * iommu_device_register() - Register an IOMMU hardware instance
213  * @iommu: IOMMU handle for the instance
214  * @ops:   IOMMU ops to associate with the instance
215  * @hwdev: (optional) actual instance device, used for fwnode lookup
216  *
217  * Return: 0 on success, or an error.
218  */
219 int iommu_device_register(struct iommu_device *iommu,
220 			  const struct iommu_ops *ops, struct device *hwdev)
221 {
222 	int err = 0;
223 
224 	/* We need to be able to take module references appropriately */
225 	if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner))
226 		return -EINVAL;
227 	/*
228 	 * Temporarily enforce global restriction to a single driver. This was
229 	 * already the de-facto behaviour, since any possible combination of
230 	 * existing drivers would compete for at least the PCI or platform bus.
231 	 */
232 	if (iommu_buses[0]->iommu_ops && iommu_buses[0]->iommu_ops != ops)
233 		return -EBUSY;
234 
235 	iommu->ops = ops;
236 	if (hwdev)
237 		iommu->fwnode = dev_fwnode(hwdev);
238 
239 	spin_lock(&iommu_device_lock);
240 	list_add_tail(&iommu->list, &iommu_device_list);
241 	spin_unlock(&iommu_device_lock);
242 
243 	for (int i = 0; i < ARRAY_SIZE(iommu_buses) && !err; i++) {
244 		iommu_buses[i]->iommu_ops = ops;
245 		err = bus_iommu_probe(iommu_buses[i]);
246 	}
247 	if (err)
248 		iommu_device_unregister(iommu);
249 	return err;
250 }
251 EXPORT_SYMBOL_GPL(iommu_device_register);
252 
253 void iommu_device_unregister(struct iommu_device *iommu)
254 {
255 	for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++)
256 		bus_for_each_dev(iommu_buses[i], NULL, iommu, remove_iommu_group);
257 
258 	spin_lock(&iommu_device_lock);
259 	list_del(&iommu->list);
260 	spin_unlock(&iommu_device_lock);
261 }
262 EXPORT_SYMBOL_GPL(iommu_device_unregister);
263 
264 static struct dev_iommu *dev_iommu_get(struct device *dev)
265 {
266 	struct dev_iommu *param = dev->iommu;
267 
268 	if (param)
269 		return param;
270 
271 	param = kzalloc(sizeof(*param), GFP_KERNEL);
272 	if (!param)
273 		return NULL;
274 
275 	mutex_init(&param->lock);
276 	dev->iommu = param;
277 	return param;
278 }
279 
280 static void dev_iommu_free(struct device *dev)
281 {
282 	struct dev_iommu *param = dev->iommu;
283 
284 	dev->iommu = NULL;
285 	if (param->fwspec) {
286 		fwnode_handle_put(param->fwspec->iommu_fwnode);
287 		kfree(param->fwspec);
288 	}
289 	kfree(param);
290 }
291 
292 static u32 dev_iommu_get_max_pasids(struct device *dev)
293 {
294 	u32 max_pasids = 0, bits = 0;
295 	int ret;
296 
297 	if (dev_is_pci(dev)) {
298 		ret = pci_max_pasids(to_pci_dev(dev));
299 		if (ret > 0)
300 			max_pasids = ret;
301 	} else {
302 		ret = device_property_read_u32(dev, "pasid-num-bits", &bits);
303 		if (!ret)
304 			max_pasids = 1UL << bits;
305 	}
306 
307 	return min_t(u32, max_pasids, dev->iommu->iommu_dev->max_pasids);
308 }
309 
310 static int __iommu_probe_device(struct device *dev, struct list_head *group_list)
311 {
312 	const struct iommu_ops *ops = dev->bus->iommu_ops;
313 	struct iommu_device *iommu_dev;
314 	struct iommu_group *group;
315 	static DEFINE_MUTEX(iommu_probe_device_lock);
316 	int ret;
317 
318 	if (!ops)
319 		return -ENODEV;
320 	/*
321 	 * Serialise to avoid races between IOMMU drivers registering in
322 	 * parallel and/or the "replay" calls from ACPI/OF code via client
323 	 * driver probe. Once the latter have been cleaned up we should
324 	 * probably be able to use device_lock() here to minimise the scope,
325 	 * but for now enforcing a simple global ordering is fine.
326 	 */
327 	mutex_lock(&iommu_probe_device_lock);
328 	if (!dev_iommu_get(dev)) {
329 		ret = -ENOMEM;
330 		goto err_unlock;
331 	}
332 
333 	if (!try_module_get(ops->owner)) {
334 		ret = -EINVAL;
335 		goto err_free;
336 	}
337 
338 	iommu_dev = ops->probe_device(dev);
339 	if (IS_ERR(iommu_dev)) {
340 		ret = PTR_ERR(iommu_dev);
341 		goto out_module_put;
342 	}
343 
344 	dev->iommu->iommu_dev = iommu_dev;
345 	dev->iommu->max_pasids = dev_iommu_get_max_pasids(dev);
346 
347 	group = iommu_group_get_for_dev(dev);
348 	if (IS_ERR(group)) {
349 		ret = PTR_ERR(group);
350 		goto out_release;
351 	}
352 
353 	mutex_lock(&group->mutex);
354 	if (group_list && !group->default_domain && list_empty(&group->entry))
355 		list_add_tail(&group->entry, group_list);
356 	mutex_unlock(&group->mutex);
357 	iommu_group_put(group);
358 
359 	mutex_unlock(&iommu_probe_device_lock);
360 	iommu_device_link(iommu_dev, dev);
361 
362 	return 0;
363 
364 out_release:
365 	if (ops->release_device)
366 		ops->release_device(dev);
367 
368 out_module_put:
369 	module_put(ops->owner);
370 
371 err_free:
372 	dev_iommu_free(dev);
373 
374 err_unlock:
375 	mutex_unlock(&iommu_probe_device_lock);
376 
377 	return ret;
378 }
379 
380 static bool iommu_is_attach_deferred(struct device *dev)
381 {
382 	const struct iommu_ops *ops = dev_iommu_ops(dev);
383 
384 	if (ops->is_attach_deferred)
385 		return ops->is_attach_deferred(dev);
386 
387 	return false;
388 }
389 
390 static int iommu_group_do_dma_first_attach(struct device *dev, void *data)
391 {
392 	struct iommu_domain *domain = data;
393 
394 	lockdep_assert_held(&dev->iommu_group->mutex);
395 
396 	if (iommu_is_attach_deferred(dev)) {
397 		dev->iommu->attach_deferred = 1;
398 		return 0;
399 	}
400 
401 	return __iommu_attach_device(domain, dev);
402 }
403 
404 int iommu_probe_device(struct device *dev)
405 {
406 	const struct iommu_ops *ops;
407 	struct iommu_group *group;
408 	int ret;
409 
410 	ret = __iommu_probe_device(dev, NULL);
411 	if (ret)
412 		goto err_out;
413 
414 	group = iommu_group_get(dev);
415 	if (!group) {
416 		ret = -ENODEV;
417 		goto err_release;
418 	}
419 
420 	/*
421 	 * Try to allocate a default domain - needs support from the
422 	 * IOMMU driver. There are still some drivers which don't
423 	 * support default domains, so the return value is not yet
424 	 * checked.
425 	 */
426 	mutex_lock(&group->mutex);
427 	iommu_alloc_default_domain(group, dev);
428 
429 	/*
430 	 * If device joined an existing group which has been claimed, don't
431 	 * attach the default domain.
432 	 */
433 	if (group->default_domain && !group->owner) {
434 		ret = iommu_group_do_dma_first_attach(dev, group->default_domain);
435 		if (ret) {
436 			mutex_unlock(&group->mutex);
437 			iommu_group_put(group);
438 			goto err_release;
439 		}
440 	}
441 
442 	iommu_create_device_direct_mappings(group, dev);
443 
444 	mutex_unlock(&group->mutex);
445 	iommu_group_put(group);
446 
447 	ops = dev_iommu_ops(dev);
448 	if (ops->probe_finalize)
449 		ops->probe_finalize(dev);
450 
451 	return 0;
452 
453 err_release:
454 	iommu_release_device(dev);
455 
456 err_out:
457 	return ret;
458 
459 }
460 
461 /*
462  * Remove a device from a group's device list and return the group device
463  * if successful.
464  */
465 static struct group_device *
466 __iommu_group_remove_device(struct iommu_group *group, struct device *dev)
467 {
468 	struct group_device *device;
469 
470 	lockdep_assert_held(&group->mutex);
471 	list_for_each_entry(device, &group->devices, list) {
472 		if (device->dev == dev) {
473 			list_del(&device->list);
474 			return device;
475 		}
476 	}
477 
478 	return NULL;
479 }
480 
481 /*
482  * Release a device from its group and decrements the iommu group reference
483  * count.
484  */
485 static void __iommu_group_release_device(struct iommu_group *group,
486 					 struct group_device *grp_dev)
487 {
488 	struct device *dev = grp_dev->dev;
489 
490 	sysfs_remove_link(group->devices_kobj, grp_dev->name);
491 	sysfs_remove_link(&dev->kobj, "iommu_group");
492 
493 	trace_remove_device_from_group(group->id, dev);
494 
495 	kfree(grp_dev->name);
496 	kfree(grp_dev);
497 	dev->iommu_group = NULL;
498 	kobject_put(group->devices_kobj);
499 }
500 
501 static void iommu_release_device(struct device *dev)
502 {
503 	struct iommu_group *group = dev->iommu_group;
504 	struct group_device *device;
505 	const struct iommu_ops *ops;
506 
507 	if (!dev->iommu || !group)
508 		return;
509 
510 	iommu_device_unlink(dev->iommu->iommu_dev, dev);
511 
512 	mutex_lock(&group->mutex);
513 	device = __iommu_group_remove_device(group, dev);
514 
515 	/*
516 	 * If the group has become empty then ownership must have been released,
517 	 * and the current domain must be set back to NULL or the default
518 	 * domain.
519 	 */
520 	if (list_empty(&group->devices))
521 		WARN_ON(group->owner_cnt ||
522 			group->domain != group->default_domain);
523 
524 	/*
525 	 * release_device() must stop using any attached domain on the device.
526 	 * If there are still other devices in the group they are not effected
527 	 * by this callback.
528 	 *
529 	 * The IOMMU driver must set the device to either an identity or
530 	 * blocking translation and stop using any domain pointer, as it is
531 	 * going to be freed.
532 	 */
533 	ops = dev_iommu_ops(dev);
534 	if (ops->release_device)
535 		ops->release_device(dev);
536 	mutex_unlock(&group->mutex);
537 
538 	if (device)
539 		__iommu_group_release_device(group, device);
540 
541 	module_put(ops->owner);
542 	dev_iommu_free(dev);
543 }
544 
545 static int __init iommu_set_def_domain_type(char *str)
546 {
547 	bool pt;
548 	int ret;
549 
550 	ret = kstrtobool(str, &pt);
551 	if (ret)
552 		return ret;
553 
554 	if (pt)
555 		iommu_set_default_passthrough(true);
556 	else
557 		iommu_set_default_translated(true);
558 
559 	return 0;
560 }
561 early_param("iommu.passthrough", iommu_set_def_domain_type);
562 
563 static int __init iommu_dma_setup(char *str)
564 {
565 	int ret = kstrtobool(str, &iommu_dma_strict);
566 
567 	if (!ret)
568 		iommu_cmd_line |= IOMMU_CMD_LINE_STRICT;
569 	return ret;
570 }
571 early_param("iommu.strict", iommu_dma_setup);
572 
573 void iommu_set_dma_strict(void)
574 {
575 	iommu_dma_strict = true;
576 	if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ)
577 		iommu_def_domain_type = IOMMU_DOMAIN_DMA;
578 }
579 
580 static ssize_t iommu_group_attr_show(struct kobject *kobj,
581 				     struct attribute *__attr, char *buf)
582 {
583 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
584 	struct iommu_group *group = to_iommu_group(kobj);
585 	ssize_t ret = -EIO;
586 
587 	if (attr->show)
588 		ret = attr->show(group, buf);
589 	return ret;
590 }
591 
592 static ssize_t iommu_group_attr_store(struct kobject *kobj,
593 				      struct attribute *__attr,
594 				      const char *buf, size_t count)
595 {
596 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
597 	struct iommu_group *group = to_iommu_group(kobj);
598 	ssize_t ret = -EIO;
599 
600 	if (attr->store)
601 		ret = attr->store(group, buf, count);
602 	return ret;
603 }
604 
605 static const struct sysfs_ops iommu_group_sysfs_ops = {
606 	.show = iommu_group_attr_show,
607 	.store = iommu_group_attr_store,
608 };
609 
610 static int iommu_group_create_file(struct iommu_group *group,
611 				   struct iommu_group_attribute *attr)
612 {
613 	return sysfs_create_file(&group->kobj, &attr->attr);
614 }
615 
616 static void iommu_group_remove_file(struct iommu_group *group,
617 				    struct iommu_group_attribute *attr)
618 {
619 	sysfs_remove_file(&group->kobj, &attr->attr);
620 }
621 
622 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
623 {
624 	return sysfs_emit(buf, "%s\n", group->name);
625 }
626 
627 /**
628  * iommu_insert_resv_region - Insert a new region in the
629  * list of reserved regions.
630  * @new: new region to insert
631  * @regions: list of regions
632  *
633  * Elements are sorted by start address and overlapping segments
634  * of the same type are merged.
635  */
636 static int iommu_insert_resv_region(struct iommu_resv_region *new,
637 				    struct list_head *regions)
638 {
639 	struct iommu_resv_region *iter, *tmp, *nr, *top;
640 	LIST_HEAD(stack);
641 
642 	nr = iommu_alloc_resv_region(new->start, new->length,
643 				     new->prot, new->type, GFP_KERNEL);
644 	if (!nr)
645 		return -ENOMEM;
646 
647 	/* First add the new element based on start address sorting */
648 	list_for_each_entry(iter, regions, list) {
649 		if (nr->start < iter->start ||
650 		    (nr->start == iter->start && nr->type <= iter->type))
651 			break;
652 	}
653 	list_add_tail(&nr->list, &iter->list);
654 
655 	/* Merge overlapping segments of type nr->type in @regions, if any */
656 	list_for_each_entry_safe(iter, tmp, regions, list) {
657 		phys_addr_t top_end, iter_end = iter->start + iter->length - 1;
658 
659 		/* no merge needed on elements of different types than @new */
660 		if (iter->type != new->type) {
661 			list_move_tail(&iter->list, &stack);
662 			continue;
663 		}
664 
665 		/* look for the last stack element of same type as @iter */
666 		list_for_each_entry_reverse(top, &stack, list)
667 			if (top->type == iter->type)
668 				goto check_overlap;
669 
670 		list_move_tail(&iter->list, &stack);
671 		continue;
672 
673 check_overlap:
674 		top_end = top->start + top->length - 1;
675 
676 		if (iter->start > top_end + 1) {
677 			list_move_tail(&iter->list, &stack);
678 		} else {
679 			top->length = max(top_end, iter_end) - top->start + 1;
680 			list_del(&iter->list);
681 			kfree(iter);
682 		}
683 	}
684 	list_splice(&stack, regions);
685 	return 0;
686 }
687 
688 static int
689 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
690 				 struct list_head *group_resv_regions)
691 {
692 	struct iommu_resv_region *entry;
693 	int ret = 0;
694 
695 	list_for_each_entry(entry, dev_resv_regions, list) {
696 		ret = iommu_insert_resv_region(entry, group_resv_regions);
697 		if (ret)
698 			break;
699 	}
700 	return ret;
701 }
702 
703 int iommu_get_group_resv_regions(struct iommu_group *group,
704 				 struct list_head *head)
705 {
706 	struct group_device *device;
707 	int ret = 0;
708 
709 	mutex_lock(&group->mutex);
710 	list_for_each_entry(device, &group->devices, list) {
711 		struct list_head dev_resv_regions;
712 
713 		/*
714 		 * Non-API groups still expose reserved_regions in sysfs,
715 		 * so filter out calls that get here that way.
716 		 */
717 		if (!device->dev->iommu)
718 			break;
719 
720 		INIT_LIST_HEAD(&dev_resv_regions);
721 		iommu_get_resv_regions(device->dev, &dev_resv_regions);
722 		ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
723 		iommu_put_resv_regions(device->dev, &dev_resv_regions);
724 		if (ret)
725 			break;
726 	}
727 	mutex_unlock(&group->mutex);
728 	return ret;
729 }
730 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
731 
732 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
733 					     char *buf)
734 {
735 	struct iommu_resv_region *region, *next;
736 	struct list_head group_resv_regions;
737 	int offset = 0;
738 
739 	INIT_LIST_HEAD(&group_resv_regions);
740 	iommu_get_group_resv_regions(group, &group_resv_regions);
741 
742 	list_for_each_entry_safe(region, next, &group_resv_regions, list) {
743 		offset += sysfs_emit_at(buf, offset, "0x%016llx 0x%016llx %s\n",
744 					(long long)region->start,
745 					(long long)(region->start +
746 						    region->length - 1),
747 					iommu_group_resv_type_string[region->type]);
748 		kfree(region);
749 	}
750 
751 	return offset;
752 }
753 
754 static ssize_t iommu_group_show_type(struct iommu_group *group,
755 				     char *buf)
756 {
757 	char *type = "unknown";
758 
759 	mutex_lock(&group->mutex);
760 	if (group->default_domain) {
761 		switch (group->default_domain->type) {
762 		case IOMMU_DOMAIN_BLOCKED:
763 			type = "blocked";
764 			break;
765 		case IOMMU_DOMAIN_IDENTITY:
766 			type = "identity";
767 			break;
768 		case IOMMU_DOMAIN_UNMANAGED:
769 			type = "unmanaged";
770 			break;
771 		case IOMMU_DOMAIN_DMA:
772 			type = "DMA";
773 			break;
774 		case IOMMU_DOMAIN_DMA_FQ:
775 			type = "DMA-FQ";
776 			break;
777 		}
778 	}
779 	mutex_unlock(&group->mutex);
780 
781 	return sysfs_emit(buf, "%s\n", type);
782 }
783 
784 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
785 
786 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
787 			iommu_group_show_resv_regions, NULL);
788 
789 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type,
790 			iommu_group_store_type);
791 
792 static void iommu_group_release(struct kobject *kobj)
793 {
794 	struct iommu_group *group = to_iommu_group(kobj);
795 
796 	pr_debug("Releasing group %d\n", group->id);
797 
798 	if (group->iommu_data_release)
799 		group->iommu_data_release(group->iommu_data);
800 
801 	ida_free(&iommu_group_ida, group->id);
802 
803 	if (group->default_domain)
804 		iommu_domain_free(group->default_domain);
805 	if (group->blocking_domain)
806 		iommu_domain_free(group->blocking_domain);
807 
808 	kfree(group->name);
809 	kfree(group);
810 }
811 
812 static const struct kobj_type iommu_group_ktype = {
813 	.sysfs_ops = &iommu_group_sysfs_ops,
814 	.release = iommu_group_release,
815 };
816 
817 /**
818  * iommu_group_alloc - Allocate a new group
819  *
820  * This function is called by an iommu driver to allocate a new iommu
821  * group.  The iommu group represents the minimum granularity of the iommu.
822  * Upon successful return, the caller holds a reference to the supplied
823  * group in order to hold the group until devices are added.  Use
824  * iommu_group_put() to release this extra reference count, allowing the
825  * group to be automatically reclaimed once it has no devices or external
826  * references.
827  */
828 struct iommu_group *iommu_group_alloc(void)
829 {
830 	struct iommu_group *group;
831 	int ret;
832 
833 	group = kzalloc(sizeof(*group), GFP_KERNEL);
834 	if (!group)
835 		return ERR_PTR(-ENOMEM);
836 
837 	group->kobj.kset = iommu_group_kset;
838 	mutex_init(&group->mutex);
839 	INIT_LIST_HEAD(&group->devices);
840 	INIT_LIST_HEAD(&group->entry);
841 	xa_init(&group->pasid_array);
842 
843 	ret = ida_alloc(&iommu_group_ida, GFP_KERNEL);
844 	if (ret < 0) {
845 		kfree(group);
846 		return ERR_PTR(ret);
847 	}
848 	group->id = ret;
849 
850 	ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
851 				   NULL, "%d", group->id);
852 	if (ret) {
853 		kobject_put(&group->kobj);
854 		return ERR_PTR(ret);
855 	}
856 
857 	group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
858 	if (!group->devices_kobj) {
859 		kobject_put(&group->kobj); /* triggers .release & free */
860 		return ERR_PTR(-ENOMEM);
861 	}
862 
863 	/*
864 	 * The devices_kobj holds a reference on the group kobject, so
865 	 * as long as that exists so will the group.  We can therefore
866 	 * use the devices_kobj for reference counting.
867 	 */
868 	kobject_put(&group->kobj);
869 
870 	ret = iommu_group_create_file(group,
871 				      &iommu_group_attr_reserved_regions);
872 	if (ret) {
873 		kobject_put(group->devices_kobj);
874 		return ERR_PTR(ret);
875 	}
876 
877 	ret = iommu_group_create_file(group, &iommu_group_attr_type);
878 	if (ret) {
879 		kobject_put(group->devices_kobj);
880 		return ERR_PTR(ret);
881 	}
882 
883 	pr_debug("Allocated group %d\n", group->id);
884 
885 	return group;
886 }
887 EXPORT_SYMBOL_GPL(iommu_group_alloc);
888 
889 /**
890  * iommu_group_get_iommudata - retrieve iommu_data registered for a group
891  * @group: the group
892  *
893  * iommu drivers can store data in the group for use when doing iommu
894  * operations.  This function provides a way to retrieve it.  Caller
895  * should hold a group reference.
896  */
897 void *iommu_group_get_iommudata(struct iommu_group *group)
898 {
899 	return group->iommu_data;
900 }
901 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
902 
903 /**
904  * iommu_group_set_iommudata - set iommu_data for a group
905  * @group: the group
906  * @iommu_data: new data
907  * @release: release function for iommu_data
908  *
909  * iommu drivers can store data in the group for use when doing iommu
910  * operations.  This function provides a way to set the data after
911  * the group has been allocated.  Caller should hold a group reference.
912  */
913 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
914 			       void (*release)(void *iommu_data))
915 {
916 	group->iommu_data = iommu_data;
917 	group->iommu_data_release = release;
918 }
919 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
920 
921 /**
922  * iommu_group_set_name - set name for a group
923  * @group: the group
924  * @name: name
925  *
926  * Allow iommu driver to set a name for a group.  When set it will
927  * appear in a name attribute file under the group in sysfs.
928  */
929 int iommu_group_set_name(struct iommu_group *group, const char *name)
930 {
931 	int ret;
932 
933 	if (group->name) {
934 		iommu_group_remove_file(group, &iommu_group_attr_name);
935 		kfree(group->name);
936 		group->name = NULL;
937 		if (!name)
938 			return 0;
939 	}
940 
941 	group->name = kstrdup(name, GFP_KERNEL);
942 	if (!group->name)
943 		return -ENOMEM;
944 
945 	ret = iommu_group_create_file(group, &iommu_group_attr_name);
946 	if (ret) {
947 		kfree(group->name);
948 		group->name = NULL;
949 		return ret;
950 	}
951 
952 	return 0;
953 }
954 EXPORT_SYMBOL_GPL(iommu_group_set_name);
955 
956 static int iommu_create_device_direct_mappings(struct iommu_group *group,
957 					       struct device *dev)
958 {
959 	struct iommu_domain *domain = group->default_domain;
960 	struct iommu_resv_region *entry;
961 	struct list_head mappings;
962 	unsigned long pg_size;
963 	int ret = 0;
964 
965 	if (!domain || !iommu_is_dma_domain(domain))
966 		return 0;
967 
968 	BUG_ON(!domain->pgsize_bitmap);
969 
970 	pg_size = 1UL << __ffs(domain->pgsize_bitmap);
971 	INIT_LIST_HEAD(&mappings);
972 
973 	iommu_get_resv_regions(dev, &mappings);
974 
975 	/* We need to consider overlapping regions for different devices */
976 	list_for_each_entry(entry, &mappings, list) {
977 		dma_addr_t start, end, addr;
978 		size_t map_size = 0;
979 
980 		start = ALIGN(entry->start, pg_size);
981 		end   = ALIGN(entry->start + entry->length, pg_size);
982 
983 		if (entry->type != IOMMU_RESV_DIRECT &&
984 		    entry->type != IOMMU_RESV_DIRECT_RELAXABLE)
985 			continue;
986 
987 		for (addr = start; addr <= end; addr += pg_size) {
988 			phys_addr_t phys_addr;
989 
990 			if (addr == end)
991 				goto map_end;
992 
993 			phys_addr = iommu_iova_to_phys(domain, addr);
994 			if (!phys_addr) {
995 				map_size += pg_size;
996 				continue;
997 			}
998 
999 map_end:
1000 			if (map_size) {
1001 				ret = iommu_map(domain, addr - map_size,
1002 						addr - map_size, map_size,
1003 						entry->prot, GFP_KERNEL);
1004 				if (ret)
1005 					goto out;
1006 				map_size = 0;
1007 			}
1008 		}
1009 
1010 	}
1011 
1012 	iommu_flush_iotlb_all(domain);
1013 
1014 out:
1015 	iommu_put_resv_regions(dev, &mappings);
1016 
1017 	return ret;
1018 }
1019 
1020 /**
1021  * iommu_group_add_device - add a device to an iommu group
1022  * @group: the group into which to add the device (reference should be held)
1023  * @dev: the device
1024  *
1025  * This function is called by an iommu driver to add a device into a
1026  * group.  Adding a device increments the group reference count.
1027  */
1028 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
1029 {
1030 	int ret, i = 0;
1031 	struct group_device *device;
1032 
1033 	device = kzalloc(sizeof(*device), GFP_KERNEL);
1034 	if (!device)
1035 		return -ENOMEM;
1036 
1037 	device->dev = dev;
1038 
1039 	ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
1040 	if (ret)
1041 		goto err_free_device;
1042 
1043 	device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
1044 rename:
1045 	if (!device->name) {
1046 		ret = -ENOMEM;
1047 		goto err_remove_link;
1048 	}
1049 
1050 	ret = sysfs_create_link_nowarn(group->devices_kobj,
1051 				       &dev->kobj, device->name);
1052 	if (ret) {
1053 		if (ret == -EEXIST && i >= 0) {
1054 			/*
1055 			 * Account for the slim chance of collision
1056 			 * and append an instance to the name.
1057 			 */
1058 			kfree(device->name);
1059 			device->name = kasprintf(GFP_KERNEL, "%s.%d",
1060 						 kobject_name(&dev->kobj), i++);
1061 			goto rename;
1062 		}
1063 		goto err_free_name;
1064 	}
1065 
1066 	kobject_get(group->devices_kobj);
1067 
1068 	dev->iommu_group = group;
1069 
1070 	mutex_lock(&group->mutex);
1071 	list_add_tail(&device->list, &group->devices);
1072 	if (group->domain)
1073 		ret = iommu_group_do_dma_first_attach(dev, group->domain);
1074 	mutex_unlock(&group->mutex);
1075 	if (ret)
1076 		goto err_put_group;
1077 
1078 	trace_add_device_to_group(group->id, dev);
1079 
1080 	dev_info(dev, "Adding to iommu group %d\n", group->id);
1081 
1082 	return 0;
1083 
1084 err_put_group:
1085 	mutex_lock(&group->mutex);
1086 	list_del(&device->list);
1087 	mutex_unlock(&group->mutex);
1088 	dev->iommu_group = NULL;
1089 	kobject_put(group->devices_kobj);
1090 	sysfs_remove_link(group->devices_kobj, device->name);
1091 err_free_name:
1092 	kfree(device->name);
1093 err_remove_link:
1094 	sysfs_remove_link(&dev->kobj, "iommu_group");
1095 err_free_device:
1096 	kfree(device);
1097 	dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
1098 	return ret;
1099 }
1100 EXPORT_SYMBOL_GPL(iommu_group_add_device);
1101 
1102 /**
1103  * iommu_group_remove_device - remove a device from it's current group
1104  * @dev: device to be removed
1105  *
1106  * This function is called by an iommu driver to remove the device from
1107  * it's current group.  This decrements the iommu group reference count.
1108  */
1109 void iommu_group_remove_device(struct device *dev)
1110 {
1111 	struct iommu_group *group = dev->iommu_group;
1112 	struct group_device *device;
1113 
1114 	if (!group)
1115 		return;
1116 
1117 	dev_info(dev, "Removing from iommu group %d\n", group->id);
1118 
1119 	mutex_lock(&group->mutex);
1120 	device = __iommu_group_remove_device(group, dev);
1121 	mutex_unlock(&group->mutex);
1122 
1123 	if (device)
1124 		__iommu_group_release_device(group, device);
1125 }
1126 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
1127 
1128 static int iommu_group_device_count(struct iommu_group *group)
1129 {
1130 	struct group_device *entry;
1131 	int ret = 0;
1132 
1133 	list_for_each_entry(entry, &group->devices, list)
1134 		ret++;
1135 
1136 	return ret;
1137 }
1138 
1139 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data,
1140 				      int (*fn)(struct device *, void *))
1141 {
1142 	struct group_device *device;
1143 	int ret = 0;
1144 
1145 	list_for_each_entry(device, &group->devices, list) {
1146 		ret = fn(device->dev, data);
1147 		if (ret)
1148 			break;
1149 	}
1150 	return ret;
1151 }
1152 
1153 /**
1154  * iommu_group_for_each_dev - iterate over each device in the group
1155  * @group: the group
1156  * @data: caller opaque data to be passed to callback function
1157  * @fn: caller supplied callback function
1158  *
1159  * This function is called by group users to iterate over group devices.
1160  * Callers should hold a reference count to the group during callback.
1161  * The group->mutex is held across callbacks, which will block calls to
1162  * iommu_group_add/remove_device.
1163  */
1164 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
1165 			     int (*fn)(struct device *, void *))
1166 {
1167 	int ret;
1168 
1169 	mutex_lock(&group->mutex);
1170 	ret = __iommu_group_for_each_dev(group, data, fn);
1171 	mutex_unlock(&group->mutex);
1172 
1173 	return ret;
1174 }
1175 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
1176 
1177 /**
1178  * iommu_group_get - Return the group for a device and increment reference
1179  * @dev: get the group that this device belongs to
1180  *
1181  * This function is called by iommu drivers and users to get the group
1182  * for the specified device.  If found, the group is returned and the group
1183  * reference in incremented, else NULL.
1184  */
1185 struct iommu_group *iommu_group_get(struct device *dev)
1186 {
1187 	struct iommu_group *group = dev->iommu_group;
1188 
1189 	if (group)
1190 		kobject_get(group->devices_kobj);
1191 
1192 	return group;
1193 }
1194 EXPORT_SYMBOL_GPL(iommu_group_get);
1195 
1196 /**
1197  * iommu_group_ref_get - Increment reference on a group
1198  * @group: the group to use, must not be NULL
1199  *
1200  * This function is called by iommu drivers to take additional references on an
1201  * existing group.  Returns the given group for convenience.
1202  */
1203 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
1204 {
1205 	kobject_get(group->devices_kobj);
1206 	return group;
1207 }
1208 EXPORT_SYMBOL_GPL(iommu_group_ref_get);
1209 
1210 /**
1211  * iommu_group_put - Decrement group reference
1212  * @group: the group to use
1213  *
1214  * This function is called by iommu drivers and users to release the
1215  * iommu group.  Once the reference count is zero, the group is released.
1216  */
1217 void iommu_group_put(struct iommu_group *group)
1218 {
1219 	if (group)
1220 		kobject_put(group->devices_kobj);
1221 }
1222 EXPORT_SYMBOL_GPL(iommu_group_put);
1223 
1224 /**
1225  * iommu_register_device_fault_handler() - Register a device fault handler
1226  * @dev: the device
1227  * @handler: the fault handler
1228  * @data: private data passed as argument to the handler
1229  *
1230  * When an IOMMU fault event is received, this handler gets called with the
1231  * fault event and data as argument. The handler should return 0 on success. If
1232  * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also
1233  * complete the fault by calling iommu_page_response() with one of the following
1234  * response code:
1235  * - IOMMU_PAGE_RESP_SUCCESS: retry the translation
1236  * - IOMMU_PAGE_RESP_INVALID: terminate the fault
1237  * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting
1238  *   page faults if possible.
1239  *
1240  * Return 0 if the fault handler was installed successfully, or an error.
1241  */
1242 int iommu_register_device_fault_handler(struct device *dev,
1243 					iommu_dev_fault_handler_t handler,
1244 					void *data)
1245 {
1246 	struct dev_iommu *param = dev->iommu;
1247 	int ret = 0;
1248 
1249 	if (!param)
1250 		return -EINVAL;
1251 
1252 	mutex_lock(&param->lock);
1253 	/* Only allow one fault handler registered for each device */
1254 	if (param->fault_param) {
1255 		ret = -EBUSY;
1256 		goto done_unlock;
1257 	}
1258 
1259 	get_device(dev);
1260 	param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL);
1261 	if (!param->fault_param) {
1262 		put_device(dev);
1263 		ret = -ENOMEM;
1264 		goto done_unlock;
1265 	}
1266 	param->fault_param->handler = handler;
1267 	param->fault_param->data = data;
1268 	mutex_init(&param->fault_param->lock);
1269 	INIT_LIST_HEAD(&param->fault_param->faults);
1270 
1271 done_unlock:
1272 	mutex_unlock(&param->lock);
1273 
1274 	return ret;
1275 }
1276 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler);
1277 
1278 /**
1279  * iommu_unregister_device_fault_handler() - Unregister the device fault handler
1280  * @dev: the device
1281  *
1282  * Remove the device fault handler installed with
1283  * iommu_register_device_fault_handler().
1284  *
1285  * Return 0 on success, or an error.
1286  */
1287 int iommu_unregister_device_fault_handler(struct device *dev)
1288 {
1289 	struct dev_iommu *param = dev->iommu;
1290 	int ret = 0;
1291 
1292 	if (!param)
1293 		return -EINVAL;
1294 
1295 	mutex_lock(&param->lock);
1296 
1297 	if (!param->fault_param)
1298 		goto unlock;
1299 
1300 	/* we cannot unregister handler if there are pending faults */
1301 	if (!list_empty(&param->fault_param->faults)) {
1302 		ret = -EBUSY;
1303 		goto unlock;
1304 	}
1305 
1306 	kfree(param->fault_param);
1307 	param->fault_param = NULL;
1308 	put_device(dev);
1309 unlock:
1310 	mutex_unlock(&param->lock);
1311 
1312 	return ret;
1313 }
1314 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler);
1315 
1316 /**
1317  * iommu_report_device_fault() - Report fault event to device driver
1318  * @dev: the device
1319  * @evt: fault event data
1320  *
1321  * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ
1322  * handler. When this function fails and the fault is recoverable, it is the
1323  * caller's responsibility to complete the fault.
1324  *
1325  * Return 0 on success, or an error.
1326  */
1327 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt)
1328 {
1329 	struct dev_iommu *param = dev->iommu;
1330 	struct iommu_fault_event *evt_pending = NULL;
1331 	struct iommu_fault_param *fparam;
1332 	int ret = 0;
1333 
1334 	if (!param || !evt)
1335 		return -EINVAL;
1336 
1337 	/* we only report device fault if there is a handler registered */
1338 	mutex_lock(&param->lock);
1339 	fparam = param->fault_param;
1340 	if (!fparam || !fparam->handler) {
1341 		ret = -EINVAL;
1342 		goto done_unlock;
1343 	}
1344 
1345 	if (evt->fault.type == IOMMU_FAULT_PAGE_REQ &&
1346 	    (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) {
1347 		evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event),
1348 				      GFP_KERNEL);
1349 		if (!evt_pending) {
1350 			ret = -ENOMEM;
1351 			goto done_unlock;
1352 		}
1353 		mutex_lock(&fparam->lock);
1354 		list_add_tail(&evt_pending->list, &fparam->faults);
1355 		mutex_unlock(&fparam->lock);
1356 	}
1357 
1358 	ret = fparam->handler(&evt->fault, fparam->data);
1359 	if (ret && evt_pending) {
1360 		mutex_lock(&fparam->lock);
1361 		list_del(&evt_pending->list);
1362 		mutex_unlock(&fparam->lock);
1363 		kfree(evt_pending);
1364 	}
1365 done_unlock:
1366 	mutex_unlock(&param->lock);
1367 	return ret;
1368 }
1369 EXPORT_SYMBOL_GPL(iommu_report_device_fault);
1370 
1371 int iommu_page_response(struct device *dev,
1372 			struct iommu_page_response *msg)
1373 {
1374 	bool needs_pasid;
1375 	int ret = -EINVAL;
1376 	struct iommu_fault_event *evt;
1377 	struct iommu_fault_page_request *prm;
1378 	struct dev_iommu *param = dev->iommu;
1379 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1380 	bool has_pasid = msg->flags & IOMMU_PAGE_RESP_PASID_VALID;
1381 
1382 	if (!ops->page_response)
1383 		return -ENODEV;
1384 
1385 	if (!param || !param->fault_param)
1386 		return -EINVAL;
1387 
1388 	if (msg->version != IOMMU_PAGE_RESP_VERSION_1 ||
1389 	    msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID)
1390 		return -EINVAL;
1391 
1392 	/* Only send response if there is a fault report pending */
1393 	mutex_lock(&param->fault_param->lock);
1394 	if (list_empty(&param->fault_param->faults)) {
1395 		dev_warn_ratelimited(dev, "no pending PRQ, drop response\n");
1396 		goto done_unlock;
1397 	}
1398 	/*
1399 	 * Check if we have a matching page request pending to respond,
1400 	 * otherwise return -EINVAL
1401 	 */
1402 	list_for_each_entry(evt, &param->fault_param->faults, list) {
1403 		prm = &evt->fault.prm;
1404 		if (prm->grpid != msg->grpid)
1405 			continue;
1406 
1407 		/*
1408 		 * If the PASID is required, the corresponding request is
1409 		 * matched using the group ID, the PASID valid bit and the PASID
1410 		 * value. Otherwise only the group ID matches request and
1411 		 * response.
1412 		 */
1413 		needs_pasid = prm->flags & IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID;
1414 		if (needs_pasid && (!has_pasid || msg->pasid != prm->pasid))
1415 			continue;
1416 
1417 		if (!needs_pasid && has_pasid) {
1418 			/* No big deal, just clear it. */
1419 			msg->flags &= ~IOMMU_PAGE_RESP_PASID_VALID;
1420 			msg->pasid = 0;
1421 		}
1422 
1423 		ret = ops->page_response(dev, evt, msg);
1424 		list_del(&evt->list);
1425 		kfree(evt);
1426 		break;
1427 	}
1428 
1429 done_unlock:
1430 	mutex_unlock(&param->fault_param->lock);
1431 	return ret;
1432 }
1433 EXPORT_SYMBOL_GPL(iommu_page_response);
1434 
1435 /**
1436  * iommu_group_id - Return ID for a group
1437  * @group: the group to ID
1438  *
1439  * Return the unique ID for the group matching the sysfs group number.
1440  */
1441 int iommu_group_id(struct iommu_group *group)
1442 {
1443 	return group->id;
1444 }
1445 EXPORT_SYMBOL_GPL(iommu_group_id);
1446 
1447 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1448 					       unsigned long *devfns);
1449 
1450 /*
1451  * To consider a PCI device isolated, we require ACS to support Source
1452  * Validation, Request Redirection, Completer Redirection, and Upstream
1453  * Forwarding.  This effectively means that devices cannot spoof their
1454  * requester ID, requests and completions cannot be redirected, and all
1455  * transactions are forwarded upstream, even as it passes through a
1456  * bridge where the target device is downstream.
1457  */
1458 #define REQ_ACS_FLAGS   (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1459 
1460 /*
1461  * For multifunction devices which are not isolated from each other, find
1462  * all the other non-isolated functions and look for existing groups.  For
1463  * each function, we also need to look for aliases to or from other devices
1464  * that may already have a group.
1465  */
1466 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1467 							unsigned long *devfns)
1468 {
1469 	struct pci_dev *tmp = NULL;
1470 	struct iommu_group *group;
1471 
1472 	if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1473 		return NULL;
1474 
1475 	for_each_pci_dev(tmp) {
1476 		if (tmp == pdev || tmp->bus != pdev->bus ||
1477 		    PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1478 		    pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1479 			continue;
1480 
1481 		group = get_pci_alias_group(tmp, devfns);
1482 		if (group) {
1483 			pci_dev_put(tmp);
1484 			return group;
1485 		}
1486 	}
1487 
1488 	return NULL;
1489 }
1490 
1491 /*
1492  * Look for aliases to or from the given device for existing groups. DMA
1493  * aliases are only supported on the same bus, therefore the search
1494  * space is quite small (especially since we're really only looking at pcie
1495  * device, and therefore only expect multiple slots on the root complex or
1496  * downstream switch ports).  It's conceivable though that a pair of
1497  * multifunction devices could have aliases between them that would cause a
1498  * loop.  To prevent this, we use a bitmap to track where we've been.
1499  */
1500 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1501 					       unsigned long *devfns)
1502 {
1503 	struct pci_dev *tmp = NULL;
1504 	struct iommu_group *group;
1505 
1506 	if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1507 		return NULL;
1508 
1509 	group = iommu_group_get(&pdev->dev);
1510 	if (group)
1511 		return group;
1512 
1513 	for_each_pci_dev(tmp) {
1514 		if (tmp == pdev || tmp->bus != pdev->bus)
1515 			continue;
1516 
1517 		/* We alias them or they alias us */
1518 		if (pci_devs_are_dma_aliases(pdev, tmp)) {
1519 			group = get_pci_alias_group(tmp, devfns);
1520 			if (group) {
1521 				pci_dev_put(tmp);
1522 				return group;
1523 			}
1524 
1525 			group = get_pci_function_alias_group(tmp, devfns);
1526 			if (group) {
1527 				pci_dev_put(tmp);
1528 				return group;
1529 			}
1530 		}
1531 	}
1532 
1533 	return NULL;
1534 }
1535 
1536 struct group_for_pci_data {
1537 	struct pci_dev *pdev;
1538 	struct iommu_group *group;
1539 };
1540 
1541 /*
1542  * DMA alias iterator callback, return the last seen device.  Stop and return
1543  * the IOMMU group if we find one along the way.
1544  */
1545 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1546 {
1547 	struct group_for_pci_data *data = opaque;
1548 
1549 	data->pdev = pdev;
1550 	data->group = iommu_group_get(&pdev->dev);
1551 
1552 	return data->group != NULL;
1553 }
1554 
1555 /*
1556  * Generic device_group call-back function. It just allocates one
1557  * iommu-group per device.
1558  */
1559 struct iommu_group *generic_device_group(struct device *dev)
1560 {
1561 	return iommu_group_alloc();
1562 }
1563 EXPORT_SYMBOL_GPL(generic_device_group);
1564 
1565 /*
1566  * Use standard PCI bus topology, isolation features, and DMA alias quirks
1567  * to find or create an IOMMU group for a device.
1568  */
1569 struct iommu_group *pci_device_group(struct device *dev)
1570 {
1571 	struct pci_dev *pdev = to_pci_dev(dev);
1572 	struct group_for_pci_data data;
1573 	struct pci_bus *bus;
1574 	struct iommu_group *group = NULL;
1575 	u64 devfns[4] = { 0 };
1576 
1577 	if (WARN_ON(!dev_is_pci(dev)))
1578 		return ERR_PTR(-EINVAL);
1579 
1580 	/*
1581 	 * Find the upstream DMA alias for the device.  A device must not
1582 	 * be aliased due to topology in order to have its own IOMMU group.
1583 	 * If we find an alias along the way that already belongs to a
1584 	 * group, use it.
1585 	 */
1586 	if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1587 		return data.group;
1588 
1589 	pdev = data.pdev;
1590 
1591 	/*
1592 	 * Continue upstream from the point of minimum IOMMU granularity
1593 	 * due to aliases to the point where devices are protected from
1594 	 * peer-to-peer DMA by PCI ACS.  Again, if we find an existing
1595 	 * group, use it.
1596 	 */
1597 	for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1598 		if (!bus->self)
1599 			continue;
1600 
1601 		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1602 			break;
1603 
1604 		pdev = bus->self;
1605 
1606 		group = iommu_group_get(&pdev->dev);
1607 		if (group)
1608 			return group;
1609 	}
1610 
1611 	/*
1612 	 * Look for existing groups on device aliases.  If we alias another
1613 	 * device or another device aliases us, use the same group.
1614 	 */
1615 	group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1616 	if (group)
1617 		return group;
1618 
1619 	/*
1620 	 * Look for existing groups on non-isolated functions on the same
1621 	 * slot and aliases of those funcions, if any.  No need to clear
1622 	 * the search bitmap, the tested devfns are still valid.
1623 	 */
1624 	group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1625 	if (group)
1626 		return group;
1627 
1628 	/* No shared group found, allocate new */
1629 	return iommu_group_alloc();
1630 }
1631 EXPORT_SYMBOL_GPL(pci_device_group);
1632 
1633 /* Get the IOMMU group for device on fsl-mc bus */
1634 struct iommu_group *fsl_mc_device_group(struct device *dev)
1635 {
1636 	struct device *cont_dev = fsl_mc_cont_dev(dev);
1637 	struct iommu_group *group;
1638 
1639 	group = iommu_group_get(cont_dev);
1640 	if (!group)
1641 		group = iommu_group_alloc();
1642 	return group;
1643 }
1644 EXPORT_SYMBOL_GPL(fsl_mc_device_group);
1645 
1646 static int iommu_get_def_domain_type(struct device *dev)
1647 {
1648 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1649 
1650 	if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted)
1651 		return IOMMU_DOMAIN_DMA;
1652 
1653 	if (ops->def_domain_type)
1654 		return ops->def_domain_type(dev);
1655 
1656 	return 0;
1657 }
1658 
1659 static int iommu_group_alloc_default_domain(const struct bus_type *bus,
1660 					    struct iommu_group *group,
1661 					    unsigned int type)
1662 {
1663 	struct iommu_domain *dom;
1664 
1665 	dom = __iommu_domain_alloc(bus, type);
1666 	if (!dom && type != IOMMU_DOMAIN_DMA) {
1667 		dom = __iommu_domain_alloc(bus, IOMMU_DOMAIN_DMA);
1668 		if (dom)
1669 			pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA",
1670 				type, group->name);
1671 	}
1672 
1673 	if (!dom)
1674 		return -ENOMEM;
1675 
1676 	group->default_domain = dom;
1677 	if (!group->domain)
1678 		group->domain = dom;
1679 	return 0;
1680 }
1681 
1682 static int iommu_alloc_default_domain(struct iommu_group *group,
1683 				      struct device *dev)
1684 {
1685 	unsigned int type;
1686 
1687 	if (group->default_domain)
1688 		return 0;
1689 
1690 	type = iommu_get_def_domain_type(dev) ? : iommu_def_domain_type;
1691 
1692 	return iommu_group_alloc_default_domain(dev->bus, group, type);
1693 }
1694 
1695 /**
1696  * iommu_group_get_for_dev - Find or create the IOMMU group for a device
1697  * @dev: target device
1698  *
1699  * This function is intended to be called by IOMMU drivers and extended to
1700  * support common, bus-defined algorithms when determining or creating the
1701  * IOMMU group for a device.  On success, the caller will hold a reference
1702  * to the returned IOMMU group, which will already include the provided
1703  * device.  The reference should be released with iommu_group_put().
1704  */
1705 static struct iommu_group *iommu_group_get_for_dev(struct device *dev)
1706 {
1707 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1708 	struct iommu_group *group;
1709 	int ret;
1710 
1711 	group = iommu_group_get(dev);
1712 	if (group)
1713 		return group;
1714 
1715 	group = ops->device_group(dev);
1716 	if (WARN_ON_ONCE(group == NULL))
1717 		return ERR_PTR(-EINVAL);
1718 
1719 	if (IS_ERR(group))
1720 		return group;
1721 
1722 	ret = iommu_group_add_device(group, dev);
1723 	if (ret)
1724 		goto out_put_group;
1725 
1726 	return group;
1727 
1728 out_put_group:
1729 	iommu_group_put(group);
1730 
1731 	return ERR_PTR(ret);
1732 }
1733 
1734 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1735 {
1736 	return group->default_domain;
1737 }
1738 
1739 static int probe_iommu_group(struct device *dev, void *data)
1740 {
1741 	struct list_head *group_list = data;
1742 	struct iommu_group *group;
1743 	int ret;
1744 
1745 	/* Device is probed already if in a group */
1746 	group = iommu_group_get(dev);
1747 	if (group) {
1748 		iommu_group_put(group);
1749 		return 0;
1750 	}
1751 
1752 	ret = __iommu_probe_device(dev, group_list);
1753 	if (ret == -ENODEV)
1754 		ret = 0;
1755 
1756 	return ret;
1757 }
1758 
1759 static int iommu_bus_notifier(struct notifier_block *nb,
1760 			      unsigned long action, void *data)
1761 {
1762 	struct device *dev = data;
1763 
1764 	if (action == BUS_NOTIFY_ADD_DEVICE) {
1765 		int ret;
1766 
1767 		ret = iommu_probe_device(dev);
1768 		return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1769 	} else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1770 		iommu_release_device(dev);
1771 		return NOTIFY_OK;
1772 	}
1773 
1774 	return 0;
1775 }
1776 
1777 struct __group_domain_type {
1778 	struct device *dev;
1779 	unsigned int type;
1780 };
1781 
1782 static int probe_get_default_domain_type(struct device *dev, void *data)
1783 {
1784 	struct __group_domain_type *gtype = data;
1785 	unsigned int type = iommu_get_def_domain_type(dev);
1786 
1787 	if (type) {
1788 		if (gtype->type && gtype->type != type) {
1789 			dev_warn(dev, "Device needs domain type %s, but device %s in the same iommu group requires type %s - using default\n",
1790 				 iommu_domain_type_str(type),
1791 				 dev_name(gtype->dev),
1792 				 iommu_domain_type_str(gtype->type));
1793 			gtype->type = 0;
1794 		}
1795 
1796 		if (!gtype->dev) {
1797 			gtype->dev  = dev;
1798 			gtype->type = type;
1799 		}
1800 	}
1801 
1802 	return 0;
1803 }
1804 
1805 static void probe_alloc_default_domain(const struct bus_type *bus,
1806 				       struct iommu_group *group)
1807 {
1808 	struct __group_domain_type gtype;
1809 
1810 	memset(&gtype, 0, sizeof(gtype));
1811 
1812 	/* Ask for default domain requirements of all devices in the group */
1813 	__iommu_group_for_each_dev(group, &gtype,
1814 				   probe_get_default_domain_type);
1815 
1816 	if (!gtype.type)
1817 		gtype.type = iommu_def_domain_type;
1818 
1819 	iommu_group_alloc_default_domain(bus, group, gtype.type);
1820 
1821 }
1822 
1823 static int __iommu_group_dma_first_attach(struct iommu_group *group)
1824 {
1825 	return __iommu_group_for_each_dev(group, group->default_domain,
1826 					  iommu_group_do_dma_first_attach);
1827 }
1828 
1829 static int iommu_group_do_probe_finalize(struct device *dev, void *data)
1830 {
1831 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1832 
1833 	if (ops->probe_finalize)
1834 		ops->probe_finalize(dev);
1835 
1836 	return 0;
1837 }
1838 
1839 static void __iommu_group_dma_finalize(struct iommu_group *group)
1840 {
1841 	__iommu_group_for_each_dev(group, group->default_domain,
1842 				   iommu_group_do_probe_finalize);
1843 }
1844 
1845 static int iommu_do_create_direct_mappings(struct device *dev, void *data)
1846 {
1847 	struct iommu_group *group = data;
1848 
1849 	iommu_create_device_direct_mappings(group, dev);
1850 
1851 	return 0;
1852 }
1853 
1854 static int iommu_group_create_direct_mappings(struct iommu_group *group)
1855 {
1856 	return __iommu_group_for_each_dev(group, group,
1857 					  iommu_do_create_direct_mappings);
1858 }
1859 
1860 int bus_iommu_probe(const struct bus_type *bus)
1861 {
1862 	struct iommu_group *group, *next;
1863 	LIST_HEAD(group_list);
1864 	int ret;
1865 
1866 	/*
1867 	 * This code-path does not allocate the default domain when
1868 	 * creating the iommu group, so do it after the groups are
1869 	 * created.
1870 	 */
1871 	ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group);
1872 	if (ret)
1873 		return ret;
1874 
1875 	list_for_each_entry_safe(group, next, &group_list, entry) {
1876 		mutex_lock(&group->mutex);
1877 
1878 		/* Remove item from the list */
1879 		list_del_init(&group->entry);
1880 
1881 		/* Try to allocate default domain */
1882 		probe_alloc_default_domain(bus, group);
1883 
1884 		if (!group->default_domain) {
1885 			mutex_unlock(&group->mutex);
1886 			continue;
1887 		}
1888 
1889 		iommu_group_create_direct_mappings(group);
1890 
1891 		ret = __iommu_group_dma_first_attach(group);
1892 
1893 		mutex_unlock(&group->mutex);
1894 
1895 		if (ret)
1896 			break;
1897 
1898 		__iommu_group_dma_finalize(group);
1899 	}
1900 
1901 	return ret;
1902 }
1903 
1904 bool iommu_present(const struct bus_type *bus)
1905 {
1906 	return bus->iommu_ops != NULL;
1907 }
1908 EXPORT_SYMBOL_GPL(iommu_present);
1909 
1910 /**
1911  * device_iommu_capable() - check for a general IOMMU capability
1912  * @dev: device to which the capability would be relevant, if available
1913  * @cap: IOMMU capability
1914  *
1915  * Return: true if an IOMMU is present and supports the given capability
1916  * for the given device, otherwise false.
1917  */
1918 bool device_iommu_capable(struct device *dev, enum iommu_cap cap)
1919 {
1920 	const struct iommu_ops *ops;
1921 
1922 	if (!dev->iommu || !dev->iommu->iommu_dev)
1923 		return false;
1924 
1925 	ops = dev_iommu_ops(dev);
1926 	if (!ops->capable)
1927 		return false;
1928 
1929 	return ops->capable(dev, cap);
1930 }
1931 EXPORT_SYMBOL_GPL(device_iommu_capable);
1932 
1933 /**
1934  * iommu_group_has_isolated_msi() - Compute msi_device_has_isolated_msi()
1935  *       for a group
1936  * @group: Group to query
1937  *
1938  * IOMMU groups should not have differing values of
1939  * msi_device_has_isolated_msi() for devices in a group. However nothing
1940  * directly prevents this, so ensure mistakes don't result in isolation failures
1941  * by checking that all the devices are the same.
1942  */
1943 bool iommu_group_has_isolated_msi(struct iommu_group *group)
1944 {
1945 	struct group_device *group_dev;
1946 	bool ret = true;
1947 
1948 	mutex_lock(&group->mutex);
1949 	list_for_each_entry(group_dev, &group->devices, list)
1950 		ret &= msi_device_has_isolated_msi(group_dev->dev);
1951 	mutex_unlock(&group->mutex);
1952 	return ret;
1953 }
1954 EXPORT_SYMBOL_GPL(iommu_group_has_isolated_msi);
1955 
1956 /**
1957  * iommu_set_fault_handler() - set a fault handler for an iommu domain
1958  * @domain: iommu domain
1959  * @handler: fault handler
1960  * @token: user data, will be passed back to the fault handler
1961  *
1962  * This function should be used by IOMMU users which want to be notified
1963  * whenever an IOMMU fault happens.
1964  *
1965  * The fault handler itself should return 0 on success, and an appropriate
1966  * error code otherwise.
1967  */
1968 void iommu_set_fault_handler(struct iommu_domain *domain,
1969 					iommu_fault_handler_t handler,
1970 					void *token)
1971 {
1972 	BUG_ON(!domain);
1973 
1974 	domain->handler = handler;
1975 	domain->handler_token = token;
1976 }
1977 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1978 
1979 static struct iommu_domain *__iommu_domain_alloc(const struct bus_type *bus,
1980 						 unsigned type)
1981 {
1982 	struct iommu_domain *domain;
1983 	unsigned int alloc_type = type & IOMMU_DOMAIN_ALLOC_FLAGS;
1984 
1985 	if (bus == NULL || bus->iommu_ops == NULL)
1986 		return NULL;
1987 
1988 	domain = bus->iommu_ops->domain_alloc(alloc_type);
1989 	if (!domain)
1990 		return NULL;
1991 
1992 	domain->type = type;
1993 	/*
1994 	 * If not already set, assume all sizes by default; the driver
1995 	 * may override this later
1996 	 */
1997 	if (!domain->pgsize_bitmap)
1998 		domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap;
1999 
2000 	if (!domain->ops)
2001 		domain->ops = bus->iommu_ops->default_domain_ops;
2002 
2003 	if (iommu_is_dma_domain(domain) && iommu_get_dma_cookie(domain)) {
2004 		iommu_domain_free(domain);
2005 		domain = NULL;
2006 	}
2007 	return domain;
2008 }
2009 
2010 struct iommu_domain *iommu_domain_alloc(const struct bus_type *bus)
2011 {
2012 	return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED);
2013 }
2014 EXPORT_SYMBOL_GPL(iommu_domain_alloc);
2015 
2016 void iommu_domain_free(struct iommu_domain *domain)
2017 {
2018 	if (domain->type == IOMMU_DOMAIN_SVA)
2019 		mmdrop(domain->mm);
2020 	iommu_put_dma_cookie(domain);
2021 	domain->ops->free(domain);
2022 }
2023 EXPORT_SYMBOL_GPL(iommu_domain_free);
2024 
2025 /*
2026  * Put the group's domain back to the appropriate core-owned domain - either the
2027  * standard kernel-mode DMA configuration or an all-DMA-blocked domain.
2028  */
2029 static void __iommu_group_set_core_domain(struct iommu_group *group)
2030 {
2031 	struct iommu_domain *new_domain;
2032 	int ret;
2033 
2034 	if (group->owner)
2035 		new_domain = group->blocking_domain;
2036 	else
2037 		new_domain = group->default_domain;
2038 
2039 	ret = __iommu_group_set_domain(group, new_domain);
2040 	WARN(ret, "iommu driver failed to attach the default/blocking domain");
2041 }
2042 
2043 static int __iommu_attach_device(struct iommu_domain *domain,
2044 				 struct device *dev)
2045 {
2046 	int ret;
2047 
2048 	if (unlikely(domain->ops->attach_dev == NULL))
2049 		return -ENODEV;
2050 
2051 	ret = domain->ops->attach_dev(domain, dev);
2052 	if (ret)
2053 		return ret;
2054 	dev->iommu->attach_deferred = 0;
2055 	trace_attach_device_to_domain(dev);
2056 	return 0;
2057 }
2058 
2059 /**
2060  * iommu_attach_device - Attach an IOMMU domain to a device
2061  * @domain: IOMMU domain to attach
2062  * @dev: Device that will be attached
2063  *
2064  * Returns 0 on success and error code on failure
2065  *
2066  * Note that EINVAL can be treated as a soft failure, indicating
2067  * that certain configuration of the domain is incompatible with
2068  * the device. In this case attaching a different domain to the
2069  * device may succeed.
2070  */
2071 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
2072 {
2073 	struct iommu_group *group;
2074 	int ret;
2075 
2076 	group = iommu_group_get(dev);
2077 	if (!group)
2078 		return -ENODEV;
2079 
2080 	/*
2081 	 * Lock the group to make sure the device-count doesn't
2082 	 * change while we are attaching
2083 	 */
2084 	mutex_lock(&group->mutex);
2085 	ret = -EINVAL;
2086 	if (iommu_group_device_count(group) != 1)
2087 		goto out_unlock;
2088 
2089 	ret = __iommu_attach_group(domain, group);
2090 
2091 out_unlock:
2092 	mutex_unlock(&group->mutex);
2093 	iommu_group_put(group);
2094 
2095 	return ret;
2096 }
2097 EXPORT_SYMBOL_GPL(iommu_attach_device);
2098 
2099 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain)
2100 {
2101 	if (dev->iommu && dev->iommu->attach_deferred)
2102 		return __iommu_attach_device(domain, dev);
2103 
2104 	return 0;
2105 }
2106 
2107 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
2108 {
2109 	struct iommu_group *group;
2110 
2111 	group = iommu_group_get(dev);
2112 	if (!group)
2113 		return;
2114 
2115 	mutex_lock(&group->mutex);
2116 	if (WARN_ON(domain != group->domain) ||
2117 	    WARN_ON(iommu_group_device_count(group) != 1))
2118 		goto out_unlock;
2119 	__iommu_group_set_core_domain(group);
2120 
2121 out_unlock:
2122 	mutex_unlock(&group->mutex);
2123 	iommu_group_put(group);
2124 }
2125 EXPORT_SYMBOL_GPL(iommu_detach_device);
2126 
2127 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
2128 {
2129 	struct iommu_domain *domain;
2130 	struct iommu_group *group;
2131 
2132 	group = iommu_group_get(dev);
2133 	if (!group)
2134 		return NULL;
2135 
2136 	domain = group->domain;
2137 
2138 	iommu_group_put(group);
2139 
2140 	return domain;
2141 }
2142 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
2143 
2144 /*
2145  * For IOMMU_DOMAIN_DMA implementations which already provide their own
2146  * guarantees that the group and its default domain are valid and correct.
2147  */
2148 struct iommu_domain *iommu_get_dma_domain(struct device *dev)
2149 {
2150 	return dev->iommu_group->default_domain;
2151 }
2152 
2153 /*
2154  * IOMMU groups are really the natural working unit of the IOMMU, but
2155  * the IOMMU API works on domains and devices.  Bridge that gap by
2156  * iterating over the devices in a group.  Ideally we'd have a single
2157  * device which represents the requestor ID of the group, but we also
2158  * allow IOMMU drivers to create policy defined minimum sets, where
2159  * the physical hardware may be able to distiguish members, but we
2160  * wish to group them at a higher level (ex. untrusted multi-function
2161  * PCI devices).  Thus we attach each device.
2162  */
2163 static int iommu_group_do_attach_device(struct device *dev, void *data)
2164 {
2165 	struct iommu_domain *domain = data;
2166 
2167 	return __iommu_attach_device(domain, dev);
2168 }
2169 
2170 static int __iommu_attach_group(struct iommu_domain *domain,
2171 				struct iommu_group *group)
2172 {
2173 	int ret;
2174 
2175 	if (group->domain && group->domain != group->default_domain &&
2176 	    group->domain != group->blocking_domain)
2177 		return -EBUSY;
2178 
2179 	ret = __iommu_group_for_each_dev(group, domain,
2180 					 iommu_group_do_attach_device);
2181 	if (ret == 0) {
2182 		group->domain = domain;
2183 	} else {
2184 		/*
2185 		 * To recover from the case when certain device within the
2186 		 * group fails to attach to the new domain, we need force
2187 		 * attaching all devices back to the old domain. The old
2188 		 * domain is compatible for all devices in the group,
2189 		 * hence the iommu driver should always return success.
2190 		 */
2191 		struct iommu_domain *old_domain = group->domain;
2192 
2193 		group->domain = NULL;
2194 		WARN(__iommu_group_set_domain(group, old_domain),
2195 		     "iommu driver failed to attach a compatible domain");
2196 	}
2197 
2198 	return ret;
2199 }
2200 
2201 /**
2202  * iommu_attach_group - Attach an IOMMU domain to an IOMMU group
2203  * @domain: IOMMU domain to attach
2204  * @group: IOMMU group that will be attached
2205  *
2206  * Returns 0 on success and error code on failure
2207  *
2208  * Note that EINVAL can be treated as a soft failure, indicating
2209  * that certain configuration of the domain is incompatible with
2210  * the group. In this case attaching a different domain to the
2211  * group may succeed.
2212  */
2213 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
2214 {
2215 	int ret;
2216 
2217 	mutex_lock(&group->mutex);
2218 	ret = __iommu_attach_group(domain, group);
2219 	mutex_unlock(&group->mutex);
2220 
2221 	return ret;
2222 }
2223 EXPORT_SYMBOL_GPL(iommu_attach_group);
2224 
2225 static int iommu_group_do_set_platform_dma(struct device *dev, void *data)
2226 {
2227 	const struct iommu_ops *ops = dev_iommu_ops(dev);
2228 
2229 	if (!WARN_ON(!ops->set_platform_dma_ops))
2230 		ops->set_platform_dma_ops(dev);
2231 
2232 	return 0;
2233 }
2234 
2235 static int __iommu_group_set_domain(struct iommu_group *group,
2236 				    struct iommu_domain *new_domain)
2237 {
2238 	int ret;
2239 
2240 	if (group->domain == new_domain)
2241 		return 0;
2242 
2243 	/*
2244 	 * New drivers should support default domains, so set_platform_dma()
2245 	 * op will never be called. Otherwise the NULL domain represents some
2246 	 * platform specific behavior.
2247 	 */
2248 	if (!new_domain) {
2249 		__iommu_group_for_each_dev(group, NULL,
2250 					   iommu_group_do_set_platform_dma);
2251 		group->domain = NULL;
2252 		return 0;
2253 	}
2254 
2255 	/*
2256 	 * Changing the domain is done by calling attach_dev() on the new
2257 	 * domain. This switch does not have to be atomic and DMA can be
2258 	 * discarded during the transition. DMA must only be able to access
2259 	 * either new_domain or group->domain, never something else.
2260 	 *
2261 	 * Note that this is called in error unwind paths, attaching to a
2262 	 * domain that has already been attached cannot fail.
2263 	 */
2264 	ret = __iommu_group_for_each_dev(group, new_domain,
2265 					 iommu_group_do_attach_device);
2266 	if (ret)
2267 		return ret;
2268 	group->domain = new_domain;
2269 	return 0;
2270 }
2271 
2272 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
2273 {
2274 	mutex_lock(&group->mutex);
2275 	__iommu_group_set_core_domain(group);
2276 	mutex_unlock(&group->mutex);
2277 }
2278 EXPORT_SYMBOL_GPL(iommu_detach_group);
2279 
2280 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
2281 {
2282 	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2283 		return iova;
2284 
2285 	if (domain->type == IOMMU_DOMAIN_BLOCKED)
2286 		return 0;
2287 
2288 	return domain->ops->iova_to_phys(domain, iova);
2289 }
2290 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
2291 
2292 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova,
2293 			   phys_addr_t paddr, size_t size, size_t *count)
2294 {
2295 	unsigned int pgsize_idx, pgsize_idx_next;
2296 	unsigned long pgsizes;
2297 	size_t offset, pgsize, pgsize_next;
2298 	unsigned long addr_merge = paddr | iova;
2299 
2300 	/* Page sizes supported by the hardware and small enough for @size */
2301 	pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0);
2302 
2303 	/* Constrain the page sizes further based on the maximum alignment */
2304 	if (likely(addr_merge))
2305 		pgsizes &= GENMASK(__ffs(addr_merge), 0);
2306 
2307 	/* Make sure we have at least one suitable page size */
2308 	BUG_ON(!pgsizes);
2309 
2310 	/* Pick the biggest page size remaining */
2311 	pgsize_idx = __fls(pgsizes);
2312 	pgsize = BIT(pgsize_idx);
2313 	if (!count)
2314 		return pgsize;
2315 
2316 	/* Find the next biggest support page size, if it exists */
2317 	pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0);
2318 	if (!pgsizes)
2319 		goto out_set_count;
2320 
2321 	pgsize_idx_next = __ffs(pgsizes);
2322 	pgsize_next = BIT(pgsize_idx_next);
2323 
2324 	/*
2325 	 * There's no point trying a bigger page size unless the virtual
2326 	 * and physical addresses are similarly offset within the larger page.
2327 	 */
2328 	if ((iova ^ paddr) & (pgsize_next - 1))
2329 		goto out_set_count;
2330 
2331 	/* Calculate the offset to the next page size alignment boundary */
2332 	offset = pgsize_next - (addr_merge & (pgsize_next - 1));
2333 
2334 	/*
2335 	 * If size is big enough to accommodate the larger page, reduce
2336 	 * the number of smaller pages.
2337 	 */
2338 	if (offset + pgsize_next <= size)
2339 		size = offset;
2340 
2341 out_set_count:
2342 	*count = size >> pgsize_idx;
2343 	return pgsize;
2344 }
2345 
2346 static int __iommu_map_pages(struct iommu_domain *domain, unsigned long iova,
2347 			     phys_addr_t paddr, size_t size, int prot,
2348 			     gfp_t gfp, size_t *mapped)
2349 {
2350 	const struct iommu_domain_ops *ops = domain->ops;
2351 	size_t pgsize, count;
2352 	int ret;
2353 
2354 	pgsize = iommu_pgsize(domain, iova, paddr, size, &count);
2355 
2356 	pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n",
2357 		 iova, &paddr, pgsize, count);
2358 
2359 	if (ops->map_pages) {
2360 		ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot,
2361 				     gfp, mapped);
2362 	} else {
2363 		ret = ops->map(domain, iova, paddr, pgsize, prot, gfp);
2364 		*mapped = ret ? 0 : pgsize;
2365 	}
2366 
2367 	return ret;
2368 }
2369 
2370 static int __iommu_map(struct iommu_domain *domain, unsigned long iova,
2371 		       phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2372 {
2373 	const struct iommu_domain_ops *ops = domain->ops;
2374 	unsigned long orig_iova = iova;
2375 	unsigned int min_pagesz;
2376 	size_t orig_size = size;
2377 	phys_addr_t orig_paddr = paddr;
2378 	int ret = 0;
2379 
2380 	if (unlikely(!(ops->map || ops->map_pages) ||
2381 		     domain->pgsize_bitmap == 0UL))
2382 		return -ENODEV;
2383 
2384 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2385 		return -EINVAL;
2386 
2387 	/* find out the minimum page size supported */
2388 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2389 
2390 	/*
2391 	 * both the virtual address and the physical one, as well as
2392 	 * the size of the mapping, must be aligned (at least) to the
2393 	 * size of the smallest page supported by the hardware
2394 	 */
2395 	if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
2396 		pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
2397 		       iova, &paddr, size, min_pagesz);
2398 		return -EINVAL;
2399 	}
2400 
2401 	pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
2402 
2403 	while (size) {
2404 		size_t mapped = 0;
2405 
2406 		ret = __iommu_map_pages(domain, iova, paddr, size, prot, gfp,
2407 					&mapped);
2408 		/*
2409 		 * Some pages may have been mapped, even if an error occurred,
2410 		 * so we should account for those so they can be unmapped.
2411 		 */
2412 		size -= mapped;
2413 
2414 		if (ret)
2415 			break;
2416 
2417 		iova += mapped;
2418 		paddr += mapped;
2419 	}
2420 
2421 	/* unroll mapping in case something went wrong */
2422 	if (ret)
2423 		iommu_unmap(domain, orig_iova, orig_size - size);
2424 	else
2425 		trace_map(orig_iova, orig_paddr, orig_size);
2426 
2427 	return ret;
2428 }
2429 
2430 int iommu_map(struct iommu_domain *domain, unsigned long iova,
2431 	      phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2432 {
2433 	const struct iommu_domain_ops *ops = domain->ops;
2434 	int ret;
2435 
2436 	might_sleep_if(gfpflags_allow_blocking(gfp));
2437 
2438 	/* Discourage passing strange GFP flags */
2439 	if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 |
2440 				__GFP_HIGHMEM)))
2441 		return -EINVAL;
2442 
2443 	ret = __iommu_map(domain, iova, paddr, size, prot, gfp);
2444 	if (ret == 0 && ops->iotlb_sync_map)
2445 		ops->iotlb_sync_map(domain, iova, size);
2446 
2447 	return ret;
2448 }
2449 EXPORT_SYMBOL_GPL(iommu_map);
2450 
2451 static size_t __iommu_unmap_pages(struct iommu_domain *domain,
2452 				  unsigned long iova, size_t size,
2453 				  struct iommu_iotlb_gather *iotlb_gather)
2454 {
2455 	const struct iommu_domain_ops *ops = domain->ops;
2456 	size_t pgsize, count;
2457 
2458 	pgsize = iommu_pgsize(domain, iova, iova, size, &count);
2459 	return ops->unmap_pages ?
2460 	       ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather) :
2461 	       ops->unmap(domain, iova, pgsize, iotlb_gather);
2462 }
2463 
2464 static size_t __iommu_unmap(struct iommu_domain *domain,
2465 			    unsigned long iova, size_t size,
2466 			    struct iommu_iotlb_gather *iotlb_gather)
2467 {
2468 	const struct iommu_domain_ops *ops = domain->ops;
2469 	size_t unmapped_page, unmapped = 0;
2470 	unsigned long orig_iova = iova;
2471 	unsigned int min_pagesz;
2472 
2473 	if (unlikely(!(ops->unmap || ops->unmap_pages) ||
2474 		     domain->pgsize_bitmap == 0UL))
2475 		return 0;
2476 
2477 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2478 		return 0;
2479 
2480 	/* find out the minimum page size supported */
2481 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2482 
2483 	/*
2484 	 * The virtual address, as well as the size of the mapping, must be
2485 	 * aligned (at least) to the size of the smallest page supported
2486 	 * by the hardware
2487 	 */
2488 	if (!IS_ALIGNED(iova | size, min_pagesz)) {
2489 		pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
2490 		       iova, size, min_pagesz);
2491 		return 0;
2492 	}
2493 
2494 	pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
2495 
2496 	/*
2497 	 * Keep iterating until we either unmap 'size' bytes (or more)
2498 	 * or we hit an area that isn't mapped.
2499 	 */
2500 	while (unmapped < size) {
2501 		unmapped_page = __iommu_unmap_pages(domain, iova,
2502 						    size - unmapped,
2503 						    iotlb_gather);
2504 		if (!unmapped_page)
2505 			break;
2506 
2507 		pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
2508 			 iova, unmapped_page);
2509 
2510 		iova += unmapped_page;
2511 		unmapped += unmapped_page;
2512 	}
2513 
2514 	trace_unmap(orig_iova, size, unmapped);
2515 	return unmapped;
2516 }
2517 
2518 size_t iommu_unmap(struct iommu_domain *domain,
2519 		   unsigned long iova, size_t size)
2520 {
2521 	struct iommu_iotlb_gather iotlb_gather;
2522 	size_t ret;
2523 
2524 	iommu_iotlb_gather_init(&iotlb_gather);
2525 	ret = __iommu_unmap(domain, iova, size, &iotlb_gather);
2526 	iommu_iotlb_sync(domain, &iotlb_gather);
2527 
2528 	return ret;
2529 }
2530 EXPORT_SYMBOL_GPL(iommu_unmap);
2531 
2532 size_t iommu_unmap_fast(struct iommu_domain *domain,
2533 			unsigned long iova, size_t size,
2534 			struct iommu_iotlb_gather *iotlb_gather)
2535 {
2536 	return __iommu_unmap(domain, iova, size, iotlb_gather);
2537 }
2538 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
2539 
2540 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2541 		     struct scatterlist *sg, unsigned int nents, int prot,
2542 		     gfp_t gfp)
2543 {
2544 	const struct iommu_domain_ops *ops = domain->ops;
2545 	size_t len = 0, mapped = 0;
2546 	phys_addr_t start;
2547 	unsigned int i = 0;
2548 	int ret;
2549 
2550 	might_sleep_if(gfpflags_allow_blocking(gfp));
2551 
2552 	/* Discourage passing strange GFP flags */
2553 	if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 |
2554 				__GFP_HIGHMEM)))
2555 		return -EINVAL;
2556 
2557 	while (i <= nents) {
2558 		phys_addr_t s_phys = sg_phys(sg);
2559 
2560 		if (len && s_phys != start + len) {
2561 			ret = __iommu_map(domain, iova + mapped, start,
2562 					len, prot, gfp);
2563 
2564 			if (ret)
2565 				goto out_err;
2566 
2567 			mapped += len;
2568 			len = 0;
2569 		}
2570 
2571 		if (sg_is_dma_bus_address(sg))
2572 			goto next;
2573 
2574 		if (len) {
2575 			len += sg->length;
2576 		} else {
2577 			len = sg->length;
2578 			start = s_phys;
2579 		}
2580 
2581 next:
2582 		if (++i < nents)
2583 			sg = sg_next(sg);
2584 	}
2585 
2586 	if (ops->iotlb_sync_map)
2587 		ops->iotlb_sync_map(domain, iova, mapped);
2588 	return mapped;
2589 
2590 out_err:
2591 	/* undo mappings already done */
2592 	iommu_unmap(domain, iova, mapped);
2593 
2594 	return ret;
2595 }
2596 EXPORT_SYMBOL_GPL(iommu_map_sg);
2597 
2598 /**
2599  * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2600  * @domain: the iommu domain where the fault has happened
2601  * @dev: the device where the fault has happened
2602  * @iova: the faulting address
2603  * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2604  *
2605  * This function should be called by the low-level IOMMU implementations
2606  * whenever IOMMU faults happen, to allow high-level users, that are
2607  * interested in such events, to know about them.
2608  *
2609  * This event may be useful for several possible use cases:
2610  * - mere logging of the event
2611  * - dynamic TLB/PTE loading
2612  * - if restarting of the faulting device is required
2613  *
2614  * Returns 0 on success and an appropriate error code otherwise (if dynamic
2615  * PTE/TLB loading will one day be supported, implementations will be able
2616  * to tell whether it succeeded or not according to this return value).
2617  *
2618  * Specifically, -ENOSYS is returned if a fault handler isn't installed
2619  * (though fault handlers can also return -ENOSYS, in case they want to
2620  * elicit the default behavior of the IOMMU drivers).
2621  */
2622 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2623 		       unsigned long iova, int flags)
2624 {
2625 	int ret = -ENOSYS;
2626 
2627 	/*
2628 	 * if upper layers showed interest and installed a fault handler,
2629 	 * invoke it.
2630 	 */
2631 	if (domain->handler)
2632 		ret = domain->handler(domain, dev, iova, flags,
2633 						domain->handler_token);
2634 
2635 	trace_io_page_fault(dev, iova, flags);
2636 	return ret;
2637 }
2638 EXPORT_SYMBOL_GPL(report_iommu_fault);
2639 
2640 static int __init iommu_init(void)
2641 {
2642 	iommu_group_kset = kset_create_and_add("iommu_groups",
2643 					       NULL, kernel_kobj);
2644 	BUG_ON(!iommu_group_kset);
2645 
2646 	iommu_debugfs_setup();
2647 
2648 	return 0;
2649 }
2650 core_initcall(iommu_init);
2651 
2652 int iommu_enable_nesting(struct iommu_domain *domain)
2653 {
2654 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2655 		return -EINVAL;
2656 	if (!domain->ops->enable_nesting)
2657 		return -EINVAL;
2658 	return domain->ops->enable_nesting(domain);
2659 }
2660 EXPORT_SYMBOL_GPL(iommu_enable_nesting);
2661 
2662 int iommu_set_pgtable_quirks(struct iommu_domain *domain,
2663 		unsigned long quirk)
2664 {
2665 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2666 		return -EINVAL;
2667 	if (!domain->ops->set_pgtable_quirks)
2668 		return -EINVAL;
2669 	return domain->ops->set_pgtable_quirks(domain, quirk);
2670 }
2671 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks);
2672 
2673 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2674 {
2675 	const struct iommu_ops *ops = dev_iommu_ops(dev);
2676 
2677 	if (ops->get_resv_regions)
2678 		ops->get_resv_regions(dev, list);
2679 }
2680 
2681 /**
2682  * iommu_put_resv_regions - release resered regions
2683  * @dev: device for which to free reserved regions
2684  * @list: reserved region list for device
2685  *
2686  * This releases a reserved region list acquired by iommu_get_resv_regions().
2687  */
2688 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2689 {
2690 	struct iommu_resv_region *entry, *next;
2691 
2692 	list_for_each_entry_safe(entry, next, list, list) {
2693 		if (entry->free)
2694 			entry->free(dev, entry);
2695 		else
2696 			kfree(entry);
2697 	}
2698 }
2699 EXPORT_SYMBOL(iommu_put_resv_regions);
2700 
2701 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2702 						  size_t length, int prot,
2703 						  enum iommu_resv_type type,
2704 						  gfp_t gfp)
2705 {
2706 	struct iommu_resv_region *region;
2707 
2708 	region = kzalloc(sizeof(*region), gfp);
2709 	if (!region)
2710 		return NULL;
2711 
2712 	INIT_LIST_HEAD(&region->list);
2713 	region->start = start;
2714 	region->length = length;
2715 	region->prot = prot;
2716 	region->type = type;
2717 	return region;
2718 }
2719 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region);
2720 
2721 void iommu_set_default_passthrough(bool cmd_line)
2722 {
2723 	if (cmd_line)
2724 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2725 	iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
2726 }
2727 
2728 void iommu_set_default_translated(bool cmd_line)
2729 {
2730 	if (cmd_line)
2731 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2732 	iommu_def_domain_type = IOMMU_DOMAIN_DMA;
2733 }
2734 
2735 bool iommu_default_passthrough(void)
2736 {
2737 	return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY;
2738 }
2739 EXPORT_SYMBOL_GPL(iommu_default_passthrough);
2740 
2741 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode)
2742 {
2743 	const struct iommu_ops *ops = NULL;
2744 	struct iommu_device *iommu;
2745 
2746 	spin_lock(&iommu_device_lock);
2747 	list_for_each_entry(iommu, &iommu_device_list, list)
2748 		if (iommu->fwnode == fwnode) {
2749 			ops = iommu->ops;
2750 			break;
2751 		}
2752 	spin_unlock(&iommu_device_lock);
2753 	return ops;
2754 }
2755 
2756 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
2757 		      const struct iommu_ops *ops)
2758 {
2759 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2760 
2761 	if (fwspec)
2762 		return ops == fwspec->ops ? 0 : -EINVAL;
2763 
2764 	if (!dev_iommu_get(dev))
2765 		return -ENOMEM;
2766 
2767 	/* Preallocate for the overwhelmingly common case of 1 ID */
2768 	fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL);
2769 	if (!fwspec)
2770 		return -ENOMEM;
2771 
2772 	of_node_get(to_of_node(iommu_fwnode));
2773 	fwspec->iommu_fwnode = iommu_fwnode;
2774 	fwspec->ops = ops;
2775 	dev_iommu_fwspec_set(dev, fwspec);
2776 	return 0;
2777 }
2778 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2779 
2780 void iommu_fwspec_free(struct device *dev)
2781 {
2782 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2783 
2784 	if (fwspec) {
2785 		fwnode_handle_put(fwspec->iommu_fwnode);
2786 		kfree(fwspec);
2787 		dev_iommu_fwspec_set(dev, NULL);
2788 	}
2789 }
2790 EXPORT_SYMBOL_GPL(iommu_fwspec_free);
2791 
2792 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids)
2793 {
2794 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2795 	int i, new_num;
2796 
2797 	if (!fwspec)
2798 		return -EINVAL;
2799 
2800 	new_num = fwspec->num_ids + num_ids;
2801 	if (new_num > 1) {
2802 		fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num),
2803 				  GFP_KERNEL);
2804 		if (!fwspec)
2805 			return -ENOMEM;
2806 
2807 		dev_iommu_fwspec_set(dev, fwspec);
2808 	}
2809 
2810 	for (i = 0; i < num_ids; i++)
2811 		fwspec->ids[fwspec->num_ids + i] = ids[i];
2812 
2813 	fwspec->num_ids = new_num;
2814 	return 0;
2815 }
2816 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2817 
2818 /*
2819  * Per device IOMMU features.
2820  */
2821 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat)
2822 {
2823 	if (dev->iommu && dev->iommu->iommu_dev) {
2824 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2825 
2826 		if (ops->dev_enable_feat)
2827 			return ops->dev_enable_feat(dev, feat);
2828 	}
2829 
2830 	return -ENODEV;
2831 }
2832 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature);
2833 
2834 /*
2835  * The device drivers should do the necessary cleanups before calling this.
2836  */
2837 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat)
2838 {
2839 	if (dev->iommu && dev->iommu->iommu_dev) {
2840 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2841 
2842 		if (ops->dev_disable_feat)
2843 			return ops->dev_disable_feat(dev, feat);
2844 	}
2845 
2846 	return -EBUSY;
2847 }
2848 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature);
2849 
2850 /*
2851  * Changes the default domain of an iommu group
2852  *
2853  * @group: The group for which the default domain should be changed
2854  * @dev: The first device in the group
2855  * @type: The type of the new default domain that gets associated with the group
2856  *
2857  * Returns 0 on success and error code on failure
2858  *
2859  * Note:
2860  * 1. Presently, this function is called only when user requests to change the
2861  *    group's default domain type through /sys/kernel/iommu_groups/<grp_id>/type
2862  *    Please take a closer look if intended to use for other purposes.
2863  */
2864 static int iommu_change_dev_def_domain(struct iommu_group *group,
2865 				       struct device *dev, int type)
2866 {
2867 	struct __group_domain_type gtype = {NULL, 0};
2868 	struct iommu_domain *prev_dom;
2869 	int ret;
2870 
2871 	lockdep_assert_held(&group->mutex);
2872 
2873 	prev_dom = group->default_domain;
2874 	__iommu_group_for_each_dev(group, &gtype,
2875 				   probe_get_default_domain_type);
2876 	if (!type) {
2877 		/*
2878 		 * If the user hasn't requested any specific type of domain and
2879 		 * if the device supports both the domains, then default to the
2880 		 * domain the device was booted with
2881 		 */
2882 		type = gtype.type ? : iommu_def_domain_type;
2883 	} else if (gtype.type && type != gtype.type) {
2884 		dev_err_ratelimited(dev, "Device cannot be in %s domain\n",
2885 				    iommu_domain_type_str(type));
2886 		return -EINVAL;
2887 	}
2888 
2889 	/*
2890 	 * Switch to a new domain only if the requested domain type is different
2891 	 * from the existing default domain type
2892 	 */
2893 	if (prev_dom->type == type)
2894 		return 0;
2895 
2896 	group->default_domain = NULL;
2897 	group->domain = NULL;
2898 
2899 	/* Sets group->default_domain to the newly allocated domain */
2900 	ret = iommu_group_alloc_default_domain(dev->bus, group, type);
2901 	if (ret)
2902 		goto restore_old_domain;
2903 
2904 	ret = iommu_group_create_direct_mappings(group);
2905 	if (ret)
2906 		goto free_new_domain;
2907 
2908 	ret = __iommu_attach_group(group->default_domain, group);
2909 	if (ret)
2910 		goto free_new_domain;
2911 
2912 	iommu_domain_free(prev_dom);
2913 
2914 	return 0;
2915 
2916 free_new_domain:
2917 	iommu_domain_free(group->default_domain);
2918 restore_old_domain:
2919 	group->default_domain = prev_dom;
2920 	group->domain = prev_dom;
2921 
2922 	return ret;
2923 }
2924 
2925 /*
2926  * Changing the default domain through sysfs requires the users to unbind the
2927  * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ
2928  * transition. Return failure if this isn't met.
2929  *
2930  * We need to consider the race between this and the device release path.
2931  * group->mutex is used here to guarantee that the device release path
2932  * will not be entered at the same time.
2933  */
2934 static ssize_t iommu_group_store_type(struct iommu_group *group,
2935 				      const char *buf, size_t count)
2936 {
2937 	struct group_device *grp_dev;
2938 	struct device *dev;
2939 	int ret, req_type;
2940 
2941 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
2942 		return -EACCES;
2943 
2944 	if (WARN_ON(!group) || !group->default_domain)
2945 		return -EINVAL;
2946 
2947 	if (sysfs_streq(buf, "identity"))
2948 		req_type = IOMMU_DOMAIN_IDENTITY;
2949 	else if (sysfs_streq(buf, "DMA"))
2950 		req_type = IOMMU_DOMAIN_DMA;
2951 	else if (sysfs_streq(buf, "DMA-FQ"))
2952 		req_type = IOMMU_DOMAIN_DMA_FQ;
2953 	else if (sysfs_streq(buf, "auto"))
2954 		req_type = 0;
2955 	else
2956 		return -EINVAL;
2957 
2958 	mutex_lock(&group->mutex);
2959 	/* We can bring up a flush queue without tearing down the domain. */
2960 	if (req_type == IOMMU_DOMAIN_DMA_FQ &&
2961 	    group->default_domain->type == IOMMU_DOMAIN_DMA) {
2962 		ret = iommu_dma_init_fq(group->default_domain);
2963 		if (!ret)
2964 			group->default_domain->type = IOMMU_DOMAIN_DMA_FQ;
2965 		mutex_unlock(&group->mutex);
2966 
2967 		return ret ?: count;
2968 	}
2969 
2970 	/* Otherwise, ensure that device exists and no driver is bound. */
2971 	if (list_empty(&group->devices) || group->owner_cnt) {
2972 		mutex_unlock(&group->mutex);
2973 		return -EPERM;
2974 	}
2975 
2976 	grp_dev = list_first_entry(&group->devices, struct group_device, list);
2977 	dev = grp_dev->dev;
2978 
2979 	ret = iommu_change_dev_def_domain(group, dev, req_type);
2980 
2981 	/*
2982 	 * Release the mutex here because ops->probe_finalize() call-back of
2983 	 * some vendor IOMMU drivers calls arm_iommu_attach_device() which
2984 	 * in-turn might call back into IOMMU core code, where it tries to take
2985 	 * group->mutex, resulting in a deadlock.
2986 	 */
2987 	mutex_unlock(&group->mutex);
2988 
2989 	/* Make sure dma_ops is appropriatley set */
2990 	if (!ret)
2991 		__iommu_group_dma_finalize(group);
2992 
2993 	return ret ?: count;
2994 }
2995 
2996 static bool iommu_is_default_domain(struct iommu_group *group)
2997 {
2998 	if (group->domain == group->default_domain)
2999 		return true;
3000 
3001 	/*
3002 	 * If the default domain was set to identity and it is still an identity
3003 	 * domain then we consider this a pass. This happens because of
3004 	 * amd_iommu_init_device() replacing the default idenytity domain with an
3005 	 * identity domain that has a different configuration for AMDGPU.
3006 	 */
3007 	if (group->default_domain &&
3008 	    group->default_domain->type == IOMMU_DOMAIN_IDENTITY &&
3009 	    group->domain && group->domain->type == IOMMU_DOMAIN_IDENTITY)
3010 		return true;
3011 	return false;
3012 }
3013 
3014 /**
3015  * iommu_device_use_default_domain() - Device driver wants to handle device
3016  *                                     DMA through the kernel DMA API.
3017  * @dev: The device.
3018  *
3019  * The device driver about to bind @dev wants to do DMA through the kernel
3020  * DMA API. Return 0 if it is allowed, otherwise an error.
3021  */
3022 int iommu_device_use_default_domain(struct device *dev)
3023 {
3024 	struct iommu_group *group = iommu_group_get(dev);
3025 	int ret = 0;
3026 
3027 	if (!group)
3028 		return 0;
3029 
3030 	mutex_lock(&group->mutex);
3031 	if (group->owner_cnt) {
3032 		if (group->owner || !iommu_is_default_domain(group) ||
3033 		    !xa_empty(&group->pasid_array)) {
3034 			ret = -EBUSY;
3035 			goto unlock_out;
3036 		}
3037 	}
3038 
3039 	group->owner_cnt++;
3040 
3041 unlock_out:
3042 	mutex_unlock(&group->mutex);
3043 	iommu_group_put(group);
3044 
3045 	return ret;
3046 }
3047 
3048 /**
3049  * iommu_device_unuse_default_domain() - Device driver stops handling device
3050  *                                       DMA through the kernel DMA API.
3051  * @dev: The device.
3052  *
3053  * The device driver doesn't want to do DMA through kernel DMA API anymore.
3054  * It must be called after iommu_device_use_default_domain().
3055  */
3056 void iommu_device_unuse_default_domain(struct device *dev)
3057 {
3058 	struct iommu_group *group = iommu_group_get(dev);
3059 
3060 	if (!group)
3061 		return;
3062 
3063 	mutex_lock(&group->mutex);
3064 	if (!WARN_ON(!group->owner_cnt || !xa_empty(&group->pasid_array)))
3065 		group->owner_cnt--;
3066 
3067 	mutex_unlock(&group->mutex);
3068 	iommu_group_put(group);
3069 }
3070 
3071 static int __iommu_group_alloc_blocking_domain(struct iommu_group *group)
3072 {
3073 	struct group_device *dev =
3074 		list_first_entry(&group->devices, struct group_device, list);
3075 
3076 	if (group->blocking_domain)
3077 		return 0;
3078 
3079 	group->blocking_domain =
3080 		__iommu_domain_alloc(dev->dev->bus, IOMMU_DOMAIN_BLOCKED);
3081 	if (!group->blocking_domain) {
3082 		/*
3083 		 * For drivers that do not yet understand IOMMU_DOMAIN_BLOCKED
3084 		 * create an empty domain instead.
3085 		 */
3086 		group->blocking_domain = __iommu_domain_alloc(
3087 			dev->dev->bus, IOMMU_DOMAIN_UNMANAGED);
3088 		if (!group->blocking_domain)
3089 			return -EINVAL;
3090 	}
3091 	return 0;
3092 }
3093 
3094 static int __iommu_take_dma_ownership(struct iommu_group *group, void *owner)
3095 {
3096 	int ret;
3097 
3098 	if ((group->domain && group->domain != group->default_domain) ||
3099 	    !xa_empty(&group->pasid_array))
3100 		return -EBUSY;
3101 
3102 	ret = __iommu_group_alloc_blocking_domain(group);
3103 	if (ret)
3104 		return ret;
3105 	ret = __iommu_group_set_domain(group, group->blocking_domain);
3106 	if (ret)
3107 		return ret;
3108 
3109 	group->owner = owner;
3110 	group->owner_cnt++;
3111 	return 0;
3112 }
3113 
3114 /**
3115  * iommu_group_claim_dma_owner() - Set DMA ownership of a group
3116  * @group: The group.
3117  * @owner: Caller specified pointer. Used for exclusive ownership.
3118  *
3119  * This is to support backward compatibility for vfio which manages the dma
3120  * ownership in iommu_group level. New invocations on this interface should be
3121  * prohibited. Only a single owner may exist for a group.
3122  */
3123 int iommu_group_claim_dma_owner(struct iommu_group *group, void *owner)
3124 {
3125 	int ret = 0;
3126 
3127 	if (WARN_ON(!owner))
3128 		return -EINVAL;
3129 
3130 	mutex_lock(&group->mutex);
3131 	if (group->owner_cnt) {
3132 		ret = -EPERM;
3133 		goto unlock_out;
3134 	}
3135 
3136 	ret = __iommu_take_dma_ownership(group, owner);
3137 unlock_out:
3138 	mutex_unlock(&group->mutex);
3139 
3140 	return ret;
3141 }
3142 EXPORT_SYMBOL_GPL(iommu_group_claim_dma_owner);
3143 
3144 /**
3145  * iommu_device_claim_dma_owner() - Set DMA ownership of a device
3146  * @dev: The device.
3147  * @owner: Caller specified pointer. Used for exclusive ownership.
3148  *
3149  * Claim the DMA ownership of a device. Multiple devices in the same group may
3150  * concurrently claim ownership if they present the same owner value. Returns 0
3151  * on success and error code on failure
3152  */
3153 int iommu_device_claim_dma_owner(struct device *dev, void *owner)
3154 {
3155 	struct iommu_group *group;
3156 	int ret = 0;
3157 
3158 	if (WARN_ON(!owner))
3159 		return -EINVAL;
3160 
3161 	group = iommu_group_get(dev);
3162 	if (!group)
3163 		return -ENODEV;
3164 
3165 	mutex_lock(&group->mutex);
3166 	if (group->owner_cnt) {
3167 		if (group->owner != owner) {
3168 			ret = -EPERM;
3169 			goto unlock_out;
3170 		}
3171 		group->owner_cnt++;
3172 		goto unlock_out;
3173 	}
3174 
3175 	ret = __iommu_take_dma_ownership(group, owner);
3176 unlock_out:
3177 	mutex_unlock(&group->mutex);
3178 	iommu_group_put(group);
3179 
3180 	return ret;
3181 }
3182 EXPORT_SYMBOL_GPL(iommu_device_claim_dma_owner);
3183 
3184 static void __iommu_release_dma_ownership(struct iommu_group *group)
3185 {
3186 	int ret;
3187 
3188 	if (WARN_ON(!group->owner_cnt || !group->owner ||
3189 		    !xa_empty(&group->pasid_array)))
3190 		return;
3191 
3192 	group->owner_cnt = 0;
3193 	group->owner = NULL;
3194 	ret = __iommu_group_set_domain(group, group->default_domain);
3195 	WARN(ret, "iommu driver failed to attach the default domain");
3196 }
3197 
3198 /**
3199  * iommu_group_release_dma_owner() - Release DMA ownership of a group
3200  * @dev: The device
3201  *
3202  * Release the DMA ownership claimed by iommu_group_claim_dma_owner().
3203  */
3204 void iommu_group_release_dma_owner(struct iommu_group *group)
3205 {
3206 	mutex_lock(&group->mutex);
3207 	__iommu_release_dma_ownership(group);
3208 	mutex_unlock(&group->mutex);
3209 }
3210 EXPORT_SYMBOL_GPL(iommu_group_release_dma_owner);
3211 
3212 /**
3213  * iommu_device_release_dma_owner() - Release DMA ownership of a device
3214  * @group: The device.
3215  *
3216  * Release the DMA ownership claimed by iommu_device_claim_dma_owner().
3217  */
3218 void iommu_device_release_dma_owner(struct device *dev)
3219 {
3220 	struct iommu_group *group = iommu_group_get(dev);
3221 
3222 	mutex_lock(&group->mutex);
3223 	if (group->owner_cnt > 1)
3224 		group->owner_cnt--;
3225 	else
3226 		__iommu_release_dma_ownership(group);
3227 	mutex_unlock(&group->mutex);
3228 	iommu_group_put(group);
3229 }
3230 EXPORT_SYMBOL_GPL(iommu_device_release_dma_owner);
3231 
3232 /**
3233  * iommu_group_dma_owner_claimed() - Query group dma ownership status
3234  * @group: The group.
3235  *
3236  * This provides status query on a given group. It is racy and only for
3237  * non-binding status reporting.
3238  */
3239 bool iommu_group_dma_owner_claimed(struct iommu_group *group)
3240 {
3241 	unsigned int user;
3242 
3243 	mutex_lock(&group->mutex);
3244 	user = group->owner_cnt;
3245 	mutex_unlock(&group->mutex);
3246 
3247 	return user;
3248 }
3249 EXPORT_SYMBOL_GPL(iommu_group_dma_owner_claimed);
3250 
3251 static int __iommu_set_group_pasid(struct iommu_domain *domain,
3252 				   struct iommu_group *group, ioasid_t pasid)
3253 {
3254 	struct group_device *device;
3255 	int ret = 0;
3256 
3257 	list_for_each_entry(device, &group->devices, list) {
3258 		ret = domain->ops->set_dev_pasid(domain, device->dev, pasid);
3259 		if (ret)
3260 			break;
3261 	}
3262 
3263 	return ret;
3264 }
3265 
3266 static void __iommu_remove_group_pasid(struct iommu_group *group,
3267 				       ioasid_t pasid)
3268 {
3269 	struct group_device *device;
3270 	const struct iommu_ops *ops;
3271 
3272 	list_for_each_entry(device, &group->devices, list) {
3273 		ops = dev_iommu_ops(device->dev);
3274 		ops->remove_dev_pasid(device->dev, pasid);
3275 	}
3276 }
3277 
3278 /*
3279  * iommu_attach_device_pasid() - Attach a domain to pasid of device
3280  * @domain: the iommu domain.
3281  * @dev: the attached device.
3282  * @pasid: the pasid of the device.
3283  *
3284  * Return: 0 on success, or an error.
3285  */
3286 int iommu_attach_device_pasid(struct iommu_domain *domain,
3287 			      struct device *dev, ioasid_t pasid)
3288 {
3289 	struct iommu_group *group;
3290 	void *curr;
3291 	int ret;
3292 
3293 	if (!domain->ops->set_dev_pasid)
3294 		return -EOPNOTSUPP;
3295 
3296 	group = iommu_group_get(dev);
3297 	if (!group)
3298 		return -ENODEV;
3299 
3300 	mutex_lock(&group->mutex);
3301 	curr = xa_cmpxchg(&group->pasid_array, pasid, NULL, domain, GFP_KERNEL);
3302 	if (curr) {
3303 		ret = xa_err(curr) ? : -EBUSY;
3304 		goto out_unlock;
3305 	}
3306 
3307 	ret = __iommu_set_group_pasid(domain, group, pasid);
3308 	if (ret) {
3309 		__iommu_remove_group_pasid(group, pasid);
3310 		xa_erase(&group->pasid_array, pasid);
3311 	}
3312 out_unlock:
3313 	mutex_unlock(&group->mutex);
3314 	iommu_group_put(group);
3315 
3316 	return ret;
3317 }
3318 EXPORT_SYMBOL_GPL(iommu_attach_device_pasid);
3319 
3320 /*
3321  * iommu_detach_device_pasid() - Detach the domain from pasid of device
3322  * @domain: the iommu domain.
3323  * @dev: the attached device.
3324  * @pasid: the pasid of the device.
3325  *
3326  * The @domain must have been attached to @pasid of the @dev with
3327  * iommu_attach_device_pasid().
3328  */
3329 void iommu_detach_device_pasid(struct iommu_domain *domain, struct device *dev,
3330 			       ioasid_t pasid)
3331 {
3332 	struct iommu_group *group = iommu_group_get(dev);
3333 
3334 	mutex_lock(&group->mutex);
3335 	__iommu_remove_group_pasid(group, pasid);
3336 	WARN_ON(xa_erase(&group->pasid_array, pasid) != domain);
3337 	mutex_unlock(&group->mutex);
3338 
3339 	iommu_group_put(group);
3340 }
3341 EXPORT_SYMBOL_GPL(iommu_detach_device_pasid);
3342 
3343 /*
3344  * iommu_get_domain_for_dev_pasid() - Retrieve domain for @pasid of @dev
3345  * @dev: the queried device
3346  * @pasid: the pasid of the device
3347  * @type: matched domain type, 0 for any match
3348  *
3349  * This is a variant of iommu_get_domain_for_dev(). It returns the existing
3350  * domain attached to pasid of a device. Callers must hold a lock around this
3351  * function, and both iommu_attach/detach_dev_pasid() whenever a domain of
3352  * type is being manipulated. This API does not internally resolve races with
3353  * attach/detach.
3354  *
3355  * Return: attached domain on success, NULL otherwise.
3356  */
3357 struct iommu_domain *iommu_get_domain_for_dev_pasid(struct device *dev,
3358 						    ioasid_t pasid,
3359 						    unsigned int type)
3360 {
3361 	struct iommu_domain *domain;
3362 	struct iommu_group *group;
3363 
3364 	group = iommu_group_get(dev);
3365 	if (!group)
3366 		return NULL;
3367 
3368 	xa_lock(&group->pasid_array);
3369 	domain = xa_load(&group->pasid_array, pasid);
3370 	if (type && domain && domain->type != type)
3371 		domain = ERR_PTR(-EBUSY);
3372 	xa_unlock(&group->pasid_array);
3373 	iommu_group_put(group);
3374 
3375 	return domain;
3376 }
3377 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev_pasid);
3378 
3379 struct iommu_domain *iommu_sva_domain_alloc(struct device *dev,
3380 					    struct mm_struct *mm)
3381 {
3382 	const struct iommu_ops *ops = dev_iommu_ops(dev);
3383 	struct iommu_domain *domain;
3384 
3385 	domain = ops->domain_alloc(IOMMU_DOMAIN_SVA);
3386 	if (!domain)
3387 		return NULL;
3388 
3389 	domain->type = IOMMU_DOMAIN_SVA;
3390 	mmgrab(mm);
3391 	domain->mm = mm;
3392 	domain->iopf_handler = iommu_sva_handle_iopf;
3393 	domain->fault_data = mm;
3394 
3395 	return domain;
3396 }
3397