1 /* 2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc. 3 * Author: Joerg Roedel <jroedel@suse.de> 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 as published 7 * by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 */ 18 19 #define pr_fmt(fmt) "iommu: " fmt 20 21 #include <linux/device.h> 22 #include <linux/kernel.h> 23 #include <linux/bug.h> 24 #include <linux/types.h> 25 #include <linux/module.h> 26 #include <linux/slab.h> 27 #include <linux/errno.h> 28 #include <linux/iommu.h> 29 #include <linux/idr.h> 30 #include <linux/notifier.h> 31 #include <linux/err.h> 32 #include <linux/pci.h> 33 #include <linux/bitops.h> 34 #include <linux/property.h> 35 #include <trace/events/iommu.h> 36 37 static struct kset *iommu_group_kset; 38 static DEFINE_IDA(iommu_group_ida); 39 #ifdef CONFIG_IOMMU_DEFAULT_PASSTHROUGH 40 static unsigned int iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY; 41 #else 42 static unsigned int iommu_def_domain_type = IOMMU_DOMAIN_DMA; 43 #endif 44 45 struct iommu_callback_data { 46 const struct iommu_ops *ops; 47 }; 48 49 struct iommu_group { 50 struct kobject kobj; 51 struct kobject *devices_kobj; 52 struct list_head devices; 53 struct mutex mutex; 54 struct blocking_notifier_head notifier; 55 void *iommu_data; 56 void (*iommu_data_release)(void *iommu_data); 57 char *name; 58 int id; 59 struct iommu_domain *default_domain; 60 struct iommu_domain *domain; 61 }; 62 63 struct group_device { 64 struct list_head list; 65 struct device *dev; 66 char *name; 67 }; 68 69 struct iommu_group_attribute { 70 struct attribute attr; 71 ssize_t (*show)(struct iommu_group *group, char *buf); 72 ssize_t (*store)(struct iommu_group *group, 73 const char *buf, size_t count); 74 }; 75 76 static const char * const iommu_group_resv_type_string[] = { 77 [IOMMU_RESV_DIRECT] = "direct", 78 [IOMMU_RESV_RESERVED] = "reserved", 79 [IOMMU_RESV_MSI] = "msi", 80 [IOMMU_RESV_SW_MSI] = "msi", 81 }; 82 83 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \ 84 struct iommu_group_attribute iommu_group_attr_##_name = \ 85 __ATTR(_name, _mode, _show, _store) 86 87 #define to_iommu_group_attr(_attr) \ 88 container_of(_attr, struct iommu_group_attribute, attr) 89 #define to_iommu_group(_kobj) \ 90 container_of(_kobj, struct iommu_group, kobj) 91 92 static LIST_HEAD(iommu_device_list); 93 static DEFINE_SPINLOCK(iommu_device_lock); 94 95 int iommu_device_register(struct iommu_device *iommu) 96 { 97 spin_lock(&iommu_device_lock); 98 list_add_tail(&iommu->list, &iommu_device_list); 99 spin_unlock(&iommu_device_lock); 100 101 return 0; 102 } 103 104 void iommu_device_unregister(struct iommu_device *iommu) 105 { 106 spin_lock(&iommu_device_lock); 107 list_del(&iommu->list); 108 spin_unlock(&iommu_device_lock); 109 } 110 111 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus, 112 unsigned type); 113 static int __iommu_attach_device(struct iommu_domain *domain, 114 struct device *dev); 115 static int __iommu_attach_group(struct iommu_domain *domain, 116 struct iommu_group *group); 117 static void __iommu_detach_group(struct iommu_domain *domain, 118 struct iommu_group *group); 119 120 static int __init iommu_set_def_domain_type(char *str) 121 { 122 bool pt; 123 int ret; 124 125 ret = kstrtobool(str, &pt); 126 if (ret) 127 return ret; 128 129 iommu_def_domain_type = pt ? IOMMU_DOMAIN_IDENTITY : IOMMU_DOMAIN_DMA; 130 return 0; 131 } 132 early_param("iommu.passthrough", iommu_set_def_domain_type); 133 134 static ssize_t iommu_group_attr_show(struct kobject *kobj, 135 struct attribute *__attr, char *buf) 136 { 137 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 138 struct iommu_group *group = to_iommu_group(kobj); 139 ssize_t ret = -EIO; 140 141 if (attr->show) 142 ret = attr->show(group, buf); 143 return ret; 144 } 145 146 static ssize_t iommu_group_attr_store(struct kobject *kobj, 147 struct attribute *__attr, 148 const char *buf, size_t count) 149 { 150 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 151 struct iommu_group *group = to_iommu_group(kobj); 152 ssize_t ret = -EIO; 153 154 if (attr->store) 155 ret = attr->store(group, buf, count); 156 return ret; 157 } 158 159 static const struct sysfs_ops iommu_group_sysfs_ops = { 160 .show = iommu_group_attr_show, 161 .store = iommu_group_attr_store, 162 }; 163 164 static int iommu_group_create_file(struct iommu_group *group, 165 struct iommu_group_attribute *attr) 166 { 167 return sysfs_create_file(&group->kobj, &attr->attr); 168 } 169 170 static void iommu_group_remove_file(struct iommu_group *group, 171 struct iommu_group_attribute *attr) 172 { 173 sysfs_remove_file(&group->kobj, &attr->attr); 174 } 175 176 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf) 177 { 178 return sprintf(buf, "%s\n", group->name); 179 } 180 181 /** 182 * iommu_insert_resv_region - Insert a new region in the 183 * list of reserved regions. 184 * @new: new region to insert 185 * @regions: list of regions 186 * 187 * The new element is sorted by address with respect to the other 188 * regions of the same type. In case it overlaps with another 189 * region of the same type, regions are merged. In case it 190 * overlaps with another region of different type, regions are 191 * not merged. 192 */ 193 static int iommu_insert_resv_region(struct iommu_resv_region *new, 194 struct list_head *regions) 195 { 196 struct iommu_resv_region *region; 197 phys_addr_t start = new->start; 198 phys_addr_t end = new->start + new->length - 1; 199 struct list_head *pos = regions->next; 200 201 while (pos != regions) { 202 struct iommu_resv_region *entry = 203 list_entry(pos, struct iommu_resv_region, list); 204 phys_addr_t a = entry->start; 205 phys_addr_t b = entry->start + entry->length - 1; 206 int type = entry->type; 207 208 if (end < a) { 209 goto insert; 210 } else if (start > b) { 211 pos = pos->next; 212 } else if ((start >= a) && (end <= b)) { 213 if (new->type == type) 214 goto done; 215 else 216 pos = pos->next; 217 } else { 218 if (new->type == type) { 219 phys_addr_t new_start = min(a, start); 220 phys_addr_t new_end = max(b, end); 221 222 list_del(&entry->list); 223 entry->start = new_start; 224 entry->length = new_end - new_start + 1; 225 iommu_insert_resv_region(entry, regions); 226 } else { 227 pos = pos->next; 228 } 229 } 230 } 231 insert: 232 region = iommu_alloc_resv_region(new->start, new->length, 233 new->prot, new->type); 234 if (!region) 235 return -ENOMEM; 236 237 list_add_tail(®ion->list, pos); 238 done: 239 return 0; 240 } 241 242 static int 243 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions, 244 struct list_head *group_resv_regions) 245 { 246 struct iommu_resv_region *entry; 247 int ret = 0; 248 249 list_for_each_entry(entry, dev_resv_regions, list) { 250 ret = iommu_insert_resv_region(entry, group_resv_regions); 251 if (ret) 252 break; 253 } 254 return ret; 255 } 256 257 int iommu_get_group_resv_regions(struct iommu_group *group, 258 struct list_head *head) 259 { 260 struct group_device *device; 261 int ret = 0; 262 263 mutex_lock(&group->mutex); 264 list_for_each_entry(device, &group->devices, list) { 265 struct list_head dev_resv_regions; 266 267 INIT_LIST_HEAD(&dev_resv_regions); 268 iommu_get_resv_regions(device->dev, &dev_resv_regions); 269 ret = iommu_insert_device_resv_regions(&dev_resv_regions, head); 270 iommu_put_resv_regions(device->dev, &dev_resv_regions); 271 if (ret) 272 break; 273 } 274 mutex_unlock(&group->mutex); 275 return ret; 276 } 277 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions); 278 279 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group, 280 char *buf) 281 { 282 struct iommu_resv_region *region, *next; 283 struct list_head group_resv_regions; 284 char *str = buf; 285 286 INIT_LIST_HEAD(&group_resv_regions); 287 iommu_get_group_resv_regions(group, &group_resv_regions); 288 289 list_for_each_entry_safe(region, next, &group_resv_regions, list) { 290 str += sprintf(str, "0x%016llx 0x%016llx %s\n", 291 (long long int)region->start, 292 (long long int)(region->start + 293 region->length - 1), 294 iommu_group_resv_type_string[region->type]); 295 kfree(region); 296 } 297 298 return (str - buf); 299 } 300 301 static ssize_t iommu_group_show_type(struct iommu_group *group, 302 char *buf) 303 { 304 char *type = "unknown\n"; 305 306 if (group->default_domain) { 307 switch (group->default_domain->type) { 308 case IOMMU_DOMAIN_BLOCKED: 309 type = "blocked\n"; 310 break; 311 case IOMMU_DOMAIN_IDENTITY: 312 type = "identity\n"; 313 break; 314 case IOMMU_DOMAIN_UNMANAGED: 315 type = "unmanaged\n"; 316 break; 317 case IOMMU_DOMAIN_DMA: 318 type = "DMA"; 319 break; 320 } 321 } 322 strcpy(buf, type); 323 324 return strlen(type); 325 } 326 327 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL); 328 329 static IOMMU_GROUP_ATTR(reserved_regions, 0444, 330 iommu_group_show_resv_regions, NULL); 331 332 static IOMMU_GROUP_ATTR(type, 0444, iommu_group_show_type, NULL); 333 334 static void iommu_group_release(struct kobject *kobj) 335 { 336 struct iommu_group *group = to_iommu_group(kobj); 337 338 pr_debug("Releasing group %d\n", group->id); 339 340 if (group->iommu_data_release) 341 group->iommu_data_release(group->iommu_data); 342 343 ida_simple_remove(&iommu_group_ida, group->id); 344 345 if (group->default_domain) 346 iommu_domain_free(group->default_domain); 347 348 kfree(group->name); 349 kfree(group); 350 } 351 352 static struct kobj_type iommu_group_ktype = { 353 .sysfs_ops = &iommu_group_sysfs_ops, 354 .release = iommu_group_release, 355 }; 356 357 /** 358 * iommu_group_alloc - Allocate a new group 359 * 360 * This function is called by an iommu driver to allocate a new iommu 361 * group. The iommu group represents the minimum granularity of the iommu. 362 * Upon successful return, the caller holds a reference to the supplied 363 * group in order to hold the group until devices are added. Use 364 * iommu_group_put() to release this extra reference count, allowing the 365 * group to be automatically reclaimed once it has no devices or external 366 * references. 367 */ 368 struct iommu_group *iommu_group_alloc(void) 369 { 370 struct iommu_group *group; 371 int ret; 372 373 group = kzalloc(sizeof(*group), GFP_KERNEL); 374 if (!group) 375 return ERR_PTR(-ENOMEM); 376 377 group->kobj.kset = iommu_group_kset; 378 mutex_init(&group->mutex); 379 INIT_LIST_HEAD(&group->devices); 380 BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier); 381 382 ret = ida_simple_get(&iommu_group_ida, 0, 0, GFP_KERNEL); 383 if (ret < 0) { 384 kfree(group); 385 return ERR_PTR(ret); 386 } 387 group->id = ret; 388 389 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype, 390 NULL, "%d", group->id); 391 if (ret) { 392 ida_simple_remove(&iommu_group_ida, group->id); 393 kfree(group); 394 return ERR_PTR(ret); 395 } 396 397 group->devices_kobj = kobject_create_and_add("devices", &group->kobj); 398 if (!group->devices_kobj) { 399 kobject_put(&group->kobj); /* triggers .release & free */ 400 return ERR_PTR(-ENOMEM); 401 } 402 403 /* 404 * The devices_kobj holds a reference on the group kobject, so 405 * as long as that exists so will the group. We can therefore 406 * use the devices_kobj for reference counting. 407 */ 408 kobject_put(&group->kobj); 409 410 ret = iommu_group_create_file(group, 411 &iommu_group_attr_reserved_regions); 412 if (ret) 413 return ERR_PTR(ret); 414 415 ret = iommu_group_create_file(group, &iommu_group_attr_type); 416 if (ret) 417 return ERR_PTR(ret); 418 419 pr_debug("Allocated group %d\n", group->id); 420 421 return group; 422 } 423 EXPORT_SYMBOL_GPL(iommu_group_alloc); 424 425 struct iommu_group *iommu_group_get_by_id(int id) 426 { 427 struct kobject *group_kobj; 428 struct iommu_group *group; 429 const char *name; 430 431 if (!iommu_group_kset) 432 return NULL; 433 434 name = kasprintf(GFP_KERNEL, "%d", id); 435 if (!name) 436 return NULL; 437 438 group_kobj = kset_find_obj(iommu_group_kset, name); 439 kfree(name); 440 441 if (!group_kobj) 442 return NULL; 443 444 group = container_of(group_kobj, struct iommu_group, kobj); 445 BUG_ON(group->id != id); 446 447 kobject_get(group->devices_kobj); 448 kobject_put(&group->kobj); 449 450 return group; 451 } 452 EXPORT_SYMBOL_GPL(iommu_group_get_by_id); 453 454 /** 455 * iommu_group_get_iommudata - retrieve iommu_data registered for a group 456 * @group: the group 457 * 458 * iommu drivers can store data in the group for use when doing iommu 459 * operations. This function provides a way to retrieve it. Caller 460 * should hold a group reference. 461 */ 462 void *iommu_group_get_iommudata(struct iommu_group *group) 463 { 464 return group->iommu_data; 465 } 466 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata); 467 468 /** 469 * iommu_group_set_iommudata - set iommu_data for a group 470 * @group: the group 471 * @iommu_data: new data 472 * @release: release function for iommu_data 473 * 474 * iommu drivers can store data in the group for use when doing iommu 475 * operations. This function provides a way to set the data after 476 * the group has been allocated. Caller should hold a group reference. 477 */ 478 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data, 479 void (*release)(void *iommu_data)) 480 { 481 group->iommu_data = iommu_data; 482 group->iommu_data_release = release; 483 } 484 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata); 485 486 /** 487 * iommu_group_set_name - set name for a group 488 * @group: the group 489 * @name: name 490 * 491 * Allow iommu driver to set a name for a group. When set it will 492 * appear in a name attribute file under the group in sysfs. 493 */ 494 int iommu_group_set_name(struct iommu_group *group, const char *name) 495 { 496 int ret; 497 498 if (group->name) { 499 iommu_group_remove_file(group, &iommu_group_attr_name); 500 kfree(group->name); 501 group->name = NULL; 502 if (!name) 503 return 0; 504 } 505 506 group->name = kstrdup(name, GFP_KERNEL); 507 if (!group->name) 508 return -ENOMEM; 509 510 ret = iommu_group_create_file(group, &iommu_group_attr_name); 511 if (ret) { 512 kfree(group->name); 513 group->name = NULL; 514 return ret; 515 } 516 517 return 0; 518 } 519 EXPORT_SYMBOL_GPL(iommu_group_set_name); 520 521 static int iommu_group_create_direct_mappings(struct iommu_group *group, 522 struct device *dev) 523 { 524 struct iommu_domain *domain = group->default_domain; 525 struct iommu_resv_region *entry; 526 struct list_head mappings; 527 unsigned long pg_size; 528 int ret = 0; 529 530 if (!domain || domain->type != IOMMU_DOMAIN_DMA) 531 return 0; 532 533 BUG_ON(!domain->pgsize_bitmap); 534 535 pg_size = 1UL << __ffs(domain->pgsize_bitmap); 536 INIT_LIST_HEAD(&mappings); 537 538 iommu_get_resv_regions(dev, &mappings); 539 540 /* We need to consider overlapping regions for different devices */ 541 list_for_each_entry(entry, &mappings, list) { 542 dma_addr_t start, end, addr; 543 544 if (domain->ops->apply_resv_region) 545 domain->ops->apply_resv_region(dev, domain, entry); 546 547 start = ALIGN(entry->start, pg_size); 548 end = ALIGN(entry->start + entry->length, pg_size); 549 550 if (entry->type != IOMMU_RESV_DIRECT) 551 continue; 552 553 for (addr = start; addr < end; addr += pg_size) { 554 phys_addr_t phys_addr; 555 556 phys_addr = iommu_iova_to_phys(domain, addr); 557 if (phys_addr) 558 continue; 559 560 ret = iommu_map(domain, addr, addr, pg_size, entry->prot); 561 if (ret) 562 goto out; 563 } 564 565 } 566 567 iommu_flush_tlb_all(domain); 568 569 out: 570 iommu_put_resv_regions(dev, &mappings); 571 572 return ret; 573 } 574 575 /** 576 * iommu_group_add_device - add a device to an iommu group 577 * @group: the group into which to add the device (reference should be held) 578 * @dev: the device 579 * 580 * This function is called by an iommu driver to add a device into a 581 * group. Adding a device increments the group reference count. 582 */ 583 int iommu_group_add_device(struct iommu_group *group, struct device *dev) 584 { 585 int ret, i = 0; 586 struct group_device *device; 587 588 device = kzalloc(sizeof(*device), GFP_KERNEL); 589 if (!device) 590 return -ENOMEM; 591 592 device->dev = dev; 593 594 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group"); 595 if (ret) 596 goto err_free_device; 597 598 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj)); 599 rename: 600 if (!device->name) { 601 ret = -ENOMEM; 602 goto err_remove_link; 603 } 604 605 ret = sysfs_create_link_nowarn(group->devices_kobj, 606 &dev->kobj, device->name); 607 if (ret) { 608 if (ret == -EEXIST && i >= 0) { 609 /* 610 * Account for the slim chance of collision 611 * and append an instance to the name. 612 */ 613 kfree(device->name); 614 device->name = kasprintf(GFP_KERNEL, "%s.%d", 615 kobject_name(&dev->kobj), i++); 616 goto rename; 617 } 618 goto err_free_name; 619 } 620 621 kobject_get(group->devices_kobj); 622 623 dev->iommu_group = group; 624 625 iommu_group_create_direct_mappings(group, dev); 626 627 mutex_lock(&group->mutex); 628 list_add_tail(&device->list, &group->devices); 629 if (group->domain) 630 ret = __iommu_attach_device(group->domain, dev); 631 mutex_unlock(&group->mutex); 632 if (ret) 633 goto err_put_group; 634 635 /* Notify any listeners about change to group. */ 636 blocking_notifier_call_chain(&group->notifier, 637 IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev); 638 639 trace_add_device_to_group(group->id, dev); 640 641 pr_info("Adding device %s to group %d\n", dev_name(dev), group->id); 642 643 return 0; 644 645 err_put_group: 646 mutex_lock(&group->mutex); 647 list_del(&device->list); 648 mutex_unlock(&group->mutex); 649 dev->iommu_group = NULL; 650 kobject_put(group->devices_kobj); 651 err_free_name: 652 kfree(device->name); 653 err_remove_link: 654 sysfs_remove_link(&dev->kobj, "iommu_group"); 655 err_free_device: 656 kfree(device); 657 pr_err("Failed to add device %s to group %d: %d\n", dev_name(dev), group->id, ret); 658 return ret; 659 } 660 EXPORT_SYMBOL_GPL(iommu_group_add_device); 661 662 /** 663 * iommu_group_remove_device - remove a device from it's current group 664 * @dev: device to be removed 665 * 666 * This function is called by an iommu driver to remove the device from 667 * it's current group. This decrements the iommu group reference count. 668 */ 669 void iommu_group_remove_device(struct device *dev) 670 { 671 struct iommu_group *group = dev->iommu_group; 672 struct group_device *tmp_device, *device = NULL; 673 674 pr_info("Removing device %s from group %d\n", dev_name(dev), group->id); 675 676 /* Pre-notify listeners that a device is being removed. */ 677 blocking_notifier_call_chain(&group->notifier, 678 IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev); 679 680 mutex_lock(&group->mutex); 681 list_for_each_entry(tmp_device, &group->devices, list) { 682 if (tmp_device->dev == dev) { 683 device = tmp_device; 684 list_del(&device->list); 685 break; 686 } 687 } 688 mutex_unlock(&group->mutex); 689 690 if (!device) 691 return; 692 693 sysfs_remove_link(group->devices_kobj, device->name); 694 sysfs_remove_link(&dev->kobj, "iommu_group"); 695 696 trace_remove_device_from_group(group->id, dev); 697 698 kfree(device->name); 699 kfree(device); 700 dev->iommu_group = NULL; 701 kobject_put(group->devices_kobj); 702 } 703 EXPORT_SYMBOL_GPL(iommu_group_remove_device); 704 705 static int iommu_group_device_count(struct iommu_group *group) 706 { 707 struct group_device *entry; 708 int ret = 0; 709 710 list_for_each_entry(entry, &group->devices, list) 711 ret++; 712 713 return ret; 714 } 715 716 /** 717 * iommu_group_for_each_dev - iterate over each device in the group 718 * @group: the group 719 * @data: caller opaque data to be passed to callback function 720 * @fn: caller supplied callback function 721 * 722 * This function is called by group users to iterate over group devices. 723 * Callers should hold a reference count to the group during callback. 724 * The group->mutex is held across callbacks, which will block calls to 725 * iommu_group_add/remove_device. 726 */ 727 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data, 728 int (*fn)(struct device *, void *)) 729 { 730 struct group_device *device; 731 int ret = 0; 732 733 list_for_each_entry(device, &group->devices, list) { 734 ret = fn(device->dev, data); 735 if (ret) 736 break; 737 } 738 return ret; 739 } 740 741 742 int iommu_group_for_each_dev(struct iommu_group *group, void *data, 743 int (*fn)(struct device *, void *)) 744 { 745 int ret; 746 747 mutex_lock(&group->mutex); 748 ret = __iommu_group_for_each_dev(group, data, fn); 749 mutex_unlock(&group->mutex); 750 751 return ret; 752 } 753 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev); 754 755 /** 756 * iommu_group_get - Return the group for a device and increment reference 757 * @dev: get the group that this device belongs to 758 * 759 * This function is called by iommu drivers and users to get the group 760 * for the specified device. If found, the group is returned and the group 761 * reference in incremented, else NULL. 762 */ 763 struct iommu_group *iommu_group_get(struct device *dev) 764 { 765 struct iommu_group *group = dev->iommu_group; 766 767 if (group) 768 kobject_get(group->devices_kobj); 769 770 return group; 771 } 772 EXPORT_SYMBOL_GPL(iommu_group_get); 773 774 /** 775 * iommu_group_ref_get - Increment reference on a group 776 * @group: the group to use, must not be NULL 777 * 778 * This function is called by iommu drivers to take additional references on an 779 * existing group. Returns the given group for convenience. 780 */ 781 struct iommu_group *iommu_group_ref_get(struct iommu_group *group) 782 { 783 kobject_get(group->devices_kobj); 784 return group; 785 } 786 787 /** 788 * iommu_group_put - Decrement group reference 789 * @group: the group to use 790 * 791 * This function is called by iommu drivers and users to release the 792 * iommu group. Once the reference count is zero, the group is released. 793 */ 794 void iommu_group_put(struct iommu_group *group) 795 { 796 if (group) 797 kobject_put(group->devices_kobj); 798 } 799 EXPORT_SYMBOL_GPL(iommu_group_put); 800 801 /** 802 * iommu_group_register_notifier - Register a notifier for group changes 803 * @group: the group to watch 804 * @nb: notifier block to signal 805 * 806 * This function allows iommu group users to track changes in a group. 807 * See include/linux/iommu.h for actions sent via this notifier. Caller 808 * should hold a reference to the group throughout notifier registration. 809 */ 810 int iommu_group_register_notifier(struct iommu_group *group, 811 struct notifier_block *nb) 812 { 813 return blocking_notifier_chain_register(&group->notifier, nb); 814 } 815 EXPORT_SYMBOL_GPL(iommu_group_register_notifier); 816 817 /** 818 * iommu_group_unregister_notifier - Unregister a notifier 819 * @group: the group to watch 820 * @nb: notifier block to signal 821 * 822 * Unregister a previously registered group notifier block. 823 */ 824 int iommu_group_unregister_notifier(struct iommu_group *group, 825 struct notifier_block *nb) 826 { 827 return blocking_notifier_chain_unregister(&group->notifier, nb); 828 } 829 EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier); 830 831 /** 832 * iommu_group_id - Return ID for a group 833 * @group: the group to ID 834 * 835 * Return the unique ID for the group matching the sysfs group number. 836 */ 837 int iommu_group_id(struct iommu_group *group) 838 { 839 return group->id; 840 } 841 EXPORT_SYMBOL_GPL(iommu_group_id); 842 843 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 844 unsigned long *devfns); 845 846 /* 847 * To consider a PCI device isolated, we require ACS to support Source 848 * Validation, Request Redirection, Completer Redirection, and Upstream 849 * Forwarding. This effectively means that devices cannot spoof their 850 * requester ID, requests and completions cannot be redirected, and all 851 * transactions are forwarded upstream, even as it passes through a 852 * bridge where the target device is downstream. 853 */ 854 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF) 855 856 /* 857 * For multifunction devices which are not isolated from each other, find 858 * all the other non-isolated functions and look for existing groups. For 859 * each function, we also need to look for aliases to or from other devices 860 * that may already have a group. 861 */ 862 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev, 863 unsigned long *devfns) 864 { 865 struct pci_dev *tmp = NULL; 866 struct iommu_group *group; 867 868 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS)) 869 return NULL; 870 871 for_each_pci_dev(tmp) { 872 if (tmp == pdev || tmp->bus != pdev->bus || 873 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) || 874 pci_acs_enabled(tmp, REQ_ACS_FLAGS)) 875 continue; 876 877 group = get_pci_alias_group(tmp, devfns); 878 if (group) { 879 pci_dev_put(tmp); 880 return group; 881 } 882 } 883 884 return NULL; 885 } 886 887 /* 888 * Look for aliases to or from the given device for existing groups. DMA 889 * aliases are only supported on the same bus, therefore the search 890 * space is quite small (especially since we're really only looking at pcie 891 * device, and therefore only expect multiple slots on the root complex or 892 * downstream switch ports). It's conceivable though that a pair of 893 * multifunction devices could have aliases between them that would cause a 894 * loop. To prevent this, we use a bitmap to track where we've been. 895 */ 896 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 897 unsigned long *devfns) 898 { 899 struct pci_dev *tmp = NULL; 900 struct iommu_group *group; 901 902 if (test_and_set_bit(pdev->devfn & 0xff, devfns)) 903 return NULL; 904 905 group = iommu_group_get(&pdev->dev); 906 if (group) 907 return group; 908 909 for_each_pci_dev(tmp) { 910 if (tmp == pdev || tmp->bus != pdev->bus) 911 continue; 912 913 /* We alias them or they alias us */ 914 if (pci_devs_are_dma_aliases(pdev, tmp)) { 915 group = get_pci_alias_group(tmp, devfns); 916 if (group) { 917 pci_dev_put(tmp); 918 return group; 919 } 920 921 group = get_pci_function_alias_group(tmp, devfns); 922 if (group) { 923 pci_dev_put(tmp); 924 return group; 925 } 926 } 927 } 928 929 return NULL; 930 } 931 932 struct group_for_pci_data { 933 struct pci_dev *pdev; 934 struct iommu_group *group; 935 }; 936 937 /* 938 * DMA alias iterator callback, return the last seen device. Stop and return 939 * the IOMMU group if we find one along the way. 940 */ 941 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque) 942 { 943 struct group_for_pci_data *data = opaque; 944 945 data->pdev = pdev; 946 data->group = iommu_group_get(&pdev->dev); 947 948 return data->group != NULL; 949 } 950 951 /* 952 * Generic device_group call-back function. It just allocates one 953 * iommu-group per device. 954 */ 955 struct iommu_group *generic_device_group(struct device *dev) 956 { 957 return iommu_group_alloc(); 958 } 959 960 /* 961 * Use standard PCI bus topology, isolation features, and DMA alias quirks 962 * to find or create an IOMMU group for a device. 963 */ 964 struct iommu_group *pci_device_group(struct device *dev) 965 { 966 struct pci_dev *pdev = to_pci_dev(dev); 967 struct group_for_pci_data data; 968 struct pci_bus *bus; 969 struct iommu_group *group = NULL; 970 u64 devfns[4] = { 0 }; 971 972 if (WARN_ON(!dev_is_pci(dev))) 973 return ERR_PTR(-EINVAL); 974 975 /* 976 * Find the upstream DMA alias for the device. A device must not 977 * be aliased due to topology in order to have its own IOMMU group. 978 * If we find an alias along the way that already belongs to a 979 * group, use it. 980 */ 981 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data)) 982 return data.group; 983 984 pdev = data.pdev; 985 986 /* 987 * Continue upstream from the point of minimum IOMMU granularity 988 * due to aliases to the point where devices are protected from 989 * peer-to-peer DMA by PCI ACS. Again, if we find an existing 990 * group, use it. 991 */ 992 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) { 993 if (!bus->self) 994 continue; 995 996 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS)) 997 break; 998 999 pdev = bus->self; 1000 1001 group = iommu_group_get(&pdev->dev); 1002 if (group) 1003 return group; 1004 } 1005 1006 /* 1007 * Look for existing groups on device aliases. If we alias another 1008 * device or another device aliases us, use the same group. 1009 */ 1010 group = get_pci_alias_group(pdev, (unsigned long *)devfns); 1011 if (group) 1012 return group; 1013 1014 /* 1015 * Look for existing groups on non-isolated functions on the same 1016 * slot and aliases of those funcions, if any. No need to clear 1017 * the search bitmap, the tested devfns are still valid. 1018 */ 1019 group = get_pci_function_alias_group(pdev, (unsigned long *)devfns); 1020 if (group) 1021 return group; 1022 1023 /* No shared group found, allocate new */ 1024 return iommu_group_alloc(); 1025 } 1026 1027 /** 1028 * iommu_group_get_for_dev - Find or create the IOMMU group for a device 1029 * @dev: target device 1030 * 1031 * This function is intended to be called by IOMMU drivers and extended to 1032 * support common, bus-defined algorithms when determining or creating the 1033 * IOMMU group for a device. On success, the caller will hold a reference 1034 * to the returned IOMMU group, which will already include the provided 1035 * device. The reference should be released with iommu_group_put(). 1036 */ 1037 struct iommu_group *iommu_group_get_for_dev(struct device *dev) 1038 { 1039 const struct iommu_ops *ops = dev->bus->iommu_ops; 1040 struct iommu_group *group; 1041 int ret; 1042 1043 group = iommu_group_get(dev); 1044 if (group) 1045 return group; 1046 1047 if (!ops) 1048 return ERR_PTR(-EINVAL); 1049 1050 group = ops->device_group(dev); 1051 if (WARN_ON_ONCE(group == NULL)) 1052 return ERR_PTR(-EINVAL); 1053 1054 if (IS_ERR(group)) 1055 return group; 1056 1057 /* 1058 * Try to allocate a default domain - needs support from the 1059 * IOMMU driver. 1060 */ 1061 if (!group->default_domain) { 1062 struct iommu_domain *dom; 1063 1064 dom = __iommu_domain_alloc(dev->bus, iommu_def_domain_type); 1065 if (!dom && iommu_def_domain_type != IOMMU_DOMAIN_DMA) { 1066 dev_warn(dev, 1067 "failed to allocate default IOMMU domain of type %u; falling back to IOMMU_DOMAIN_DMA", 1068 iommu_def_domain_type); 1069 dom = __iommu_domain_alloc(dev->bus, IOMMU_DOMAIN_DMA); 1070 } 1071 1072 group->default_domain = dom; 1073 if (!group->domain) 1074 group->domain = dom; 1075 } 1076 1077 ret = iommu_group_add_device(group, dev); 1078 if (ret) { 1079 iommu_group_put(group); 1080 return ERR_PTR(ret); 1081 } 1082 1083 return group; 1084 } 1085 1086 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group) 1087 { 1088 return group->default_domain; 1089 } 1090 1091 static int add_iommu_group(struct device *dev, void *data) 1092 { 1093 struct iommu_callback_data *cb = data; 1094 const struct iommu_ops *ops = cb->ops; 1095 int ret; 1096 1097 if (!ops->add_device) 1098 return 0; 1099 1100 WARN_ON(dev->iommu_group); 1101 1102 ret = ops->add_device(dev); 1103 1104 /* 1105 * We ignore -ENODEV errors for now, as they just mean that the 1106 * device is not translated by an IOMMU. We still care about 1107 * other errors and fail to initialize when they happen. 1108 */ 1109 if (ret == -ENODEV) 1110 ret = 0; 1111 1112 return ret; 1113 } 1114 1115 static int remove_iommu_group(struct device *dev, void *data) 1116 { 1117 struct iommu_callback_data *cb = data; 1118 const struct iommu_ops *ops = cb->ops; 1119 1120 if (ops->remove_device && dev->iommu_group) 1121 ops->remove_device(dev); 1122 1123 return 0; 1124 } 1125 1126 static int iommu_bus_notifier(struct notifier_block *nb, 1127 unsigned long action, void *data) 1128 { 1129 struct device *dev = data; 1130 const struct iommu_ops *ops = dev->bus->iommu_ops; 1131 struct iommu_group *group; 1132 unsigned long group_action = 0; 1133 1134 /* 1135 * ADD/DEL call into iommu driver ops if provided, which may 1136 * result in ADD/DEL notifiers to group->notifier 1137 */ 1138 if (action == BUS_NOTIFY_ADD_DEVICE) { 1139 if (ops->add_device) { 1140 int ret; 1141 1142 ret = ops->add_device(dev); 1143 return (ret) ? NOTIFY_DONE : NOTIFY_OK; 1144 } 1145 } else if (action == BUS_NOTIFY_REMOVED_DEVICE) { 1146 if (ops->remove_device && dev->iommu_group) { 1147 ops->remove_device(dev); 1148 return 0; 1149 } 1150 } 1151 1152 /* 1153 * Remaining BUS_NOTIFYs get filtered and republished to the 1154 * group, if anyone is listening 1155 */ 1156 group = iommu_group_get(dev); 1157 if (!group) 1158 return 0; 1159 1160 switch (action) { 1161 case BUS_NOTIFY_BIND_DRIVER: 1162 group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER; 1163 break; 1164 case BUS_NOTIFY_BOUND_DRIVER: 1165 group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER; 1166 break; 1167 case BUS_NOTIFY_UNBIND_DRIVER: 1168 group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER; 1169 break; 1170 case BUS_NOTIFY_UNBOUND_DRIVER: 1171 group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER; 1172 break; 1173 } 1174 1175 if (group_action) 1176 blocking_notifier_call_chain(&group->notifier, 1177 group_action, dev); 1178 1179 iommu_group_put(group); 1180 return 0; 1181 } 1182 1183 static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops) 1184 { 1185 int err; 1186 struct notifier_block *nb; 1187 struct iommu_callback_data cb = { 1188 .ops = ops, 1189 }; 1190 1191 nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL); 1192 if (!nb) 1193 return -ENOMEM; 1194 1195 nb->notifier_call = iommu_bus_notifier; 1196 1197 err = bus_register_notifier(bus, nb); 1198 if (err) 1199 goto out_free; 1200 1201 err = bus_for_each_dev(bus, NULL, &cb, add_iommu_group); 1202 if (err) 1203 goto out_err; 1204 1205 1206 return 0; 1207 1208 out_err: 1209 /* Clean up */ 1210 bus_for_each_dev(bus, NULL, &cb, remove_iommu_group); 1211 bus_unregister_notifier(bus, nb); 1212 1213 out_free: 1214 kfree(nb); 1215 1216 return err; 1217 } 1218 1219 /** 1220 * bus_set_iommu - set iommu-callbacks for the bus 1221 * @bus: bus. 1222 * @ops: the callbacks provided by the iommu-driver 1223 * 1224 * This function is called by an iommu driver to set the iommu methods 1225 * used for a particular bus. Drivers for devices on that bus can use 1226 * the iommu-api after these ops are registered. 1227 * This special function is needed because IOMMUs are usually devices on 1228 * the bus itself, so the iommu drivers are not initialized when the bus 1229 * is set up. With this function the iommu-driver can set the iommu-ops 1230 * afterwards. 1231 */ 1232 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops) 1233 { 1234 int err; 1235 1236 if (bus->iommu_ops != NULL) 1237 return -EBUSY; 1238 1239 bus->iommu_ops = ops; 1240 1241 /* Do IOMMU specific setup for this bus-type */ 1242 err = iommu_bus_init(bus, ops); 1243 if (err) 1244 bus->iommu_ops = NULL; 1245 1246 return err; 1247 } 1248 EXPORT_SYMBOL_GPL(bus_set_iommu); 1249 1250 bool iommu_present(struct bus_type *bus) 1251 { 1252 return bus->iommu_ops != NULL; 1253 } 1254 EXPORT_SYMBOL_GPL(iommu_present); 1255 1256 bool iommu_capable(struct bus_type *bus, enum iommu_cap cap) 1257 { 1258 if (!bus->iommu_ops || !bus->iommu_ops->capable) 1259 return false; 1260 1261 return bus->iommu_ops->capable(cap); 1262 } 1263 EXPORT_SYMBOL_GPL(iommu_capable); 1264 1265 /** 1266 * iommu_set_fault_handler() - set a fault handler for an iommu domain 1267 * @domain: iommu domain 1268 * @handler: fault handler 1269 * @token: user data, will be passed back to the fault handler 1270 * 1271 * This function should be used by IOMMU users which want to be notified 1272 * whenever an IOMMU fault happens. 1273 * 1274 * The fault handler itself should return 0 on success, and an appropriate 1275 * error code otherwise. 1276 */ 1277 void iommu_set_fault_handler(struct iommu_domain *domain, 1278 iommu_fault_handler_t handler, 1279 void *token) 1280 { 1281 BUG_ON(!domain); 1282 1283 domain->handler = handler; 1284 domain->handler_token = token; 1285 } 1286 EXPORT_SYMBOL_GPL(iommu_set_fault_handler); 1287 1288 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus, 1289 unsigned type) 1290 { 1291 struct iommu_domain *domain; 1292 1293 if (bus == NULL || bus->iommu_ops == NULL) 1294 return NULL; 1295 1296 domain = bus->iommu_ops->domain_alloc(type); 1297 if (!domain) 1298 return NULL; 1299 1300 domain->ops = bus->iommu_ops; 1301 domain->type = type; 1302 /* Assume all sizes by default; the driver may override this later */ 1303 domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap; 1304 1305 return domain; 1306 } 1307 1308 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus) 1309 { 1310 return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED); 1311 } 1312 EXPORT_SYMBOL_GPL(iommu_domain_alloc); 1313 1314 void iommu_domain_free(struct iommu_domain *domain) 1315 { 1316 domain->ops->domain_free(domain); 1317 } 1318 EXPORT_SYMBOL_GPL(iommu_domain_free); 1319 1320 static int __iommu_attach_device(struct iommu_domain *domain, 1321 struct device *dev) 1322 { 1323 int ret; 1324 if ((domain->ops->is_attach_deferred != NULL) && 1325 domain->ops->is_attach_deferred(domain, dev)) 1326 return 0; 1327 1328 if (unlikely(domain->ops->attach_dev == NULL)) 1329 return -ENODEV; 1330 1331 ret = domain->ops->attach_dev(domain, dev); 1332 if (!ret) 1333 trace_attach_device_to_domain(dev); 1334 return ret; 1335 } 1336 1337 int iommu_attach_device(struct iommu_domain *domain, struct device *dev) 1338 { 1339 struct iommu_group *group; 1340 int ret; 1341 1342 group = iommu_group_get(dev); 1343 if (!group) 1344 return -ENODEV; 1345 1346 /* 1347 * Lock the group to make sure the device-count doesn't 1348 * change while we are attaching 1349 */ 1350 mutex_lock(&group->mutex); 1351 ret = -EINVAL; 1352 if (iommu_group_device_count(group) != 1) 1353 goto out_unlock; 1354 1355 ret = __iommu_attach_group(domain, group); 1356 1357 out_unlock: 1358 mutex_unlock(&group->mutex); 1359 iommu_group_put(group); 1360 1361 return ret; 1362 } 1363 EXPORT_SYMBOL_GPL(iommu_attach_device); 1364 1365 static void __iommu_detach_device(struct iommu_domain *domain, 1366 struct device *dev) 1367 { 1368 if ((domain->ops->is_attach_deferred != NULL) && 1369 domain->ops->is_attach_deferred(domain, dev)) 1370 return; 1371 1372 if (unlikely(domain->ops->detach_dev == NULL)) 1373 return; 1374 1375 domain->ops->detach_dev(domain, dev); 1376 trace_detach_device_from_domain(dev); 1377 } 1378 1379 void iommu_detach_device(struct iommu_domain *domain, struct device *dev) 1380 { 1381 struct iommu_group *group; 1382 1383 group = iommu_group_get(dev); 1384 if (!group) 1385 return; 1386 1387 mutex_lock(&group->mutex); 1388 if (iommu_group_device_count(group) != 1) { 1389 WARN_ON(1); 1390 goto out_unlock; 1391 } 1392 1393 __iommu_detach_group(domain, group); 1394 1395 out_unlock: 1396 mutex_unlock(&group->mutex); 1397 iommu_group_put(group); 1398 } 1399 EXPORT_SYMBOL_GPL(iommu_detach_device); 1400 1401 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev) 1402 { 1403 struct iommu_domain *domain; 1404 struct iommu_group *group; 1405 1406 group = iommu_group_get(dev); 1407 if (!group) 1408 return NULL; 1409 1410 domain = group->domain; 1411 1412 iommu_group_put(group); 1413 1414 return domain; 1415 } 1416 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev); 1417 1418 /* 1419 * IOMMU groups are really the natrual working unit of the IOMMU, but 1420 * the IOMMU API works on domains and devices. Bridge that gap by 1421 * iterating over the devices in a group. Ideally we'd have a single 1422 * device which represents the requestor ID of the group, but we also 1423 * allow IOMMU drivers to create policy defined minimum sets, where 1424 * the physical hardware may be able to distiguish members, but we 1425 * wish to group them at a higher level (ex. untrusted multi-function 1426 * PCI devices). Thus we attach each device. 1427 */ 1428 static int iommu_group_do_attach_device(struct device *dev, void *data) 1429 { 1430 struct iommu_domain *domain = data; 1431 1432 return __iommu_attach_device(domain, dev); 1433 } 1434 1435 static int __iommu_attach_group(struct iommu_domain *domain, 1436 struct iommu_group *group) 1437 { 1438 int ret; 1439 1440 if (group->default_domain && group->domain != group->default_domain) 1441 return -EBUSY; 1442 1443 ret = __iommu_group_for_each_dev(group, domain, 1444 iommu_group_do_attach_device); 1445 if (ret == 0) 1446 group->domain = domain; 1447 1448 return ret; 1449 } 1450 1451 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group) 1452 { 1453 int ret; 1454 1455 mutex_lock(&group->mutex); 1456 ret = __iommu_attach_group(domain, group); 1457 mutex_unlock(&group->mutex); 1458 1459 return ret; 1460 } 1461 EXPORT_SYMBOL_GPL(iommu_attach_group); 1462 1463 static int iommu_group_do_detach_device(struct device *dev, void *data) 1464 { 1465 struct iommu_domain *domain = data; 1466 1467 __iommu_detach_device(domain, dev); 1468 1469 return 0; 1470 } 1471 1472 static void __iommu_detach_group(struct iommu_domain *domain, 1473 struct iommu_group *group) 1474 { 1475 int ret; 1476 1477 if (!group->default_domain) { 1478 __iommu_group_for_each_dev(group, domain, 1479 iommu_group_do_detach_device); 1480 group->domain = NULL; 1481 return; 1482 } 1483 1484 if (group->domain == group->default_domain) 1485 return; 1486 1487 /* Detach by re-attaching to the default domain */ 1488 ret = __iommu_group_for_each_dev(group, group->default_domain, 1489 iommu_group_do_attach_device); 1490 if (ret != 0) 1491 WARN_ON(1); 1492 else 1493 group->domain = group->default_domain; 1494 } 1495 1496 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group) 1497 { 1498 mutex_lock(&group->mutex); 1499 __iommu_detach_group(domain, group); 1500 mutex_unlock(&group->mutex); 1501 } 1502 EXPORT_SYMBOL_GPL(iommu_detach_group); 1503 1504 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) 1505 { 1506 if (unlikely(domain->ops->iova_to_phys == NULL)) 1507 return 0; 1508 1509 return domain->ops->iova_to_phys(domain, iova); 1510 } 1511 EXPORT_SYMBOL_GPL(iommu_iova_to_phys); 1512 1513 static size_t iommu_pgsize(struct iommu_domain *domain, 1514 unsigned long addr_merge, size_t size) 1515 { 1516 unsigned int pgsize_idx; 1517 size_t pgsize; 1518 1519 /* Max page size that still fits into 'size' */ 1520 pgsize_idx = __fls(size); 1521 1522 /* need to consider alignment requirements ? */ 1523 if (likely(addr_merge)) { 1524 /* Max page size allowed by address */ 1525 unsigned int align_pgsize_idx = __ffs(addr_merge); 1526 pgsize_idx = min(pgsize_idx, align_pgsize_idx); 1527 } 1528 1529 /* build a mask of acceptable page sizes */ 1530 pgsize = (1UL << (pgsize_idx + 1)) - 1; 1531 1532 /* throw away page sizes not supported by the hardware */ 1533 pgsize &= domain->pgsize_bitmap; 1534 1535 /* make sure we're still sane */ 1536 BUG_ON(!pgsize); 1537 1538 /* pick the biggest page */ 1539 pgsize_idx = __fls(pgsize); 1540 pgsize = 1UL << pgsize_idx; 1541 1542 return pgsize; 1543 } 1544 1545 int iommu_map(struct iommu_domain *domain, unsigned long iova, 1546 phys_addr_t paddr, size_t size, int prot) 1547 { 1548 unsigned long orig_iova = iova; 1549 unsigned int min_pagesz; 1550 size_t orig_size = size; 1551 phys_addr_t orig_paddr = paddr; 1552 int ret = 0; 1553 1554 if (unlikely(domain->ops->map == NULL || 1555 domain->pgsize_bitmap == 0UL)) 1556 return -ENODEV; 1557 1558 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 1559 return -EINVAL; 1560 1561 /* find out the minimum page size supported */ 1562 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 1563 1564 /* 1565 * both the virtual address and the physical one, as well as 1566 * the size of the mapping, must be aligned (at least) to the 1567 * size of the smallest page supported by the hardware 1568 */ 1569 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) { 1570 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n", 1571 iova, &paddr, size, min_pagesz); 1572 return -EINVAL; 1573 } 1574 1575 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size); 1576 1577 while (size) { 1578 size_t pgsize = iommu_pgsize(domain, iova | paddr, size); 1579 1580 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx\n", 1581 iova, &paddr, pgsize); 1582 1583 ret = domain->ops->map(domain, iova, paddr, pgsize, prot); 1584 if (ret) 1585 break; 1586 1587 iova += pgsize; 1588 paddr += pgsize; 1589 size -= pgsize; 1590 } 1591 1592 /* unroll mapping in case something went wrong */ 1593 if (ret) 1594 iommu_unmap(domain, orig_iova, orig_size - size); 1595 else 1596 trace_map(orig_iova, orig_paddr, orig_size); 1597 1598 return ret; 1599 } 1600 EXPORT_SYMBOL_GPL(iommu_map); 1601 1602 static size_t __iommu_unmap(struct iommu_domain *domain, 1603 unsigned long iova, size_t size, 1604 bool sync) 1605 { 1606 const struct iommu_ops *ops = domain->ops; 1607 size_t unmapped_page, unmapped = 0; 1608 unsigned long orig_iova = iova; 1609 unsigned int min_pagesz; 1610 1611 if (unlikely(ops->unmap == NULL || 1612 domain->pgsize_bitmap == 0UL)) 1613 return 0; 1614 1615 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 1616 return 0; 1617 1618 /* find out the minimum page size supported */ 1619 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 1620 1621 /* 1622 * The virtual address, as well as the size of the mapping, must be 1623 * aligned (at least) to the size of the smallest page supported 1624 * by the hardware 1625 */ 1626 if (!IS_ALIGNED(iova | size, min_pagesz)) { 1627 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n", 1628 iova, size, min_pagesz); 1629 return 0; 1630 } 1631 1632 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size); 1633 1634 /* 1635 * Keep iterating until we either unmap 'size' bytes (or more) 1636 * or we hit an area that isn't mapped. 1637 */ 1638 while (unmapped < size) { 1639 size_t pgsize = iommu_pgsize(domain, iova, size - unmapped); 1640 1641 unmapped_page = ops->unmap(domain, iova, pgsize); 1642 if (!unmapped_page) 1643 break; 1644 1645 if (sync && ops->iotlb_range_add) 1646 ops->iotlb_range_add(domain, iova, pgsize); 1647 1648 pr_debug("unmapped: iova 0x%lx size 0x%zx\n", 1649 iova, unmapped_page); 1650 1651 iova += unmapped_page; 1652 unmapped += unmapped_page; 1653 } 1654 1655 if (sync && ops->iotlb_sync) 1656 ops->iotlb_sync(domain); 1657 1658 trace_unmap(orig_iova, size, unmapped); 1659 return unmapped; 1660 } 1661 1662 size_t iommu_unmap(struct iommu_domain *domain, 1663 unsigned long iova, size_t size) 1664 { 1665 return __iommu_unmap(domain, iova, size, true); 1666 } 1667 EXPORT_SYMBOL_GPL(iommu_unmap); 1668 1669 size_t iommu_unmap_fast(struct iommu_domain *domain, 1670 unsigned long iova, size_t size) 1671 { 1672 return __iommu_unmap(domain, iova, size, false); 1673 } 1674 EXPORT_SYMBOL_GPL(iommu_unmap_fast); 1675 1676 size_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova, 1677 struct scatterlist *sg, unsigned int nents, int prot) 1678 { 1679 struct scatterlist *s; 1680 size_t mapped = 0; 1681 unsigned int i, min_pagesz; 1682 int ret; 1683 1684 if (unlikely(domain->pgsize_bitmap == 0UL)) 1685 return 0; 1686 1687 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 1688 1689 for_each_sg(sg, s, nents, i) { 1690 phys_addr_t phys = page_to_phys(sg_page(s)) + s->offset; 1691 1692 /* 1693 * We are mapping on IOMMU page boundaries, so offset within 1694 * the page must be 0. However, the IOMMU may support pages 1695 * smaller than PAGE_SIZE, so s->offset may still represent 1696 * an offset of that boundary within the CPU page. 1697 */ 1698 if (!IS_ALIGNED(s->offset, min_pagesz)) 1699 goto out_err; 1700 1701 ret = iommu_map(domain, iova + mapped, phys, s->length, prot); 1702 if (ret) 1703 goto out_err; 1704 1705 mapped += s->length; 1706 } 1707 1708 return mapped; 1709 1710 out_err: 1711 /* undo mappings already done */ 1712 iommu_unmap(domain, iova, mapped); 1713 1714 return 0; 1715 1716 } 1717 EXPORT_SYMBOL_GPL(iommu_map_sg); 1718 1719 int iommu_domain_window_enable(struct iommu_domain *domain, u32 wnd_nr, 1720 phys_addr_t paddr, u64 size, int prot) 1721 { 1722 if (unlikely(domain->ops->domain_window_enable == NULL)) 1723 return -ENODEV; 1724 1725 return domain->ops->domain_window_enable(domain, wnd_nr, paddr, size, 1726 prot); 1727 } 1728 EXPORT_SYMBOL_GPL(iommu_domain_window_enable); 1729 1730 void iommu_domain_window_disable(struct iommu_domain *domain, u32 wnd_nr) 1731 { 1732 if (unlikely(domain->ops->domain_window_disable == NULL)) 1733 return; 1734 1735 return domain->ops->domain_window_disable(domain, wnd_nr); 1736 } 1737 EXPORT_SYMBOL_GPL(iommu_domain_window_disable); 1738 1739 /** 1740 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework 1741 * @domain: the iommu domain where the fault has happened 1742 * @dev: the device where the fault has happened 1743 * @iova: the faulting address 1744 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...) 1745 * 1746 * This function should be called by the low-level IOMMU implementations 1747 * whenever IOMMU faults happen, to allow high-level users, that are 1748 * interested in such events, to know about them. 1749 * 1750 * This event may be useful for several possible use cases: 1751 * - mere logging of the event 1752 * - dynamic TLB/PTE loading 1753 * - if restarting of the faulting device is required 1754 * 1755 * Returns 0 on success and an appropriate error code otherwise (if dynamic 1756 * PTE/TLB loading will one day be supported, implementations will be able 1757 * to tell whether it succeeded or not according to this return value). 1758 * 1759 * Specifically, -ENOSYS is returned if a fault handler isn't installed 1760 * (though fault handlers can also return -ENOSYS, in case they want to 1761 * elicit the default behavior of the IOMMU drivers). 1762 */ 1763 int report_iommu_fault(struct iommu_domain *domain, struct device *dev, 1764 unsigned long iova, int flags) 1765 { 1766 int ret = -ENOSYS; 1767 1768 /* 1769 * if upper layers showed interest and installed a fault handler, 1770 * invoke it. 1771 */ 1772 if (domain->handler) 1773 ret = domain->handler(domain, dev, iova, flags, 1774 domain->handler_token); 1775 1776 trace_io_page_fault(dev, iova, flags); 1777 return ret; 1778 } 1779 EXPORT_SYMBOL_GPL(report_iommu_fault); 1780 1781 static int __init iommu_init(void) 1782 { 1783 iommu_group_kset = kset_create_and_add("iommu_groups", 1784 NULL, kernel_kobj); 1785 BUG_ON(!iommu_group_kset); 1786 1787 iommu_debugfs_setup(); 1788 1789 return 0; 1790 } 1791 core_initcall(iommu_init); 1792 1793 int iommu_domain_get_attr(struct iommu_domain *domain, 1794 enum iommu_attr attr, void *data) 1795 { 1796 struct iommu_domain_geometry *geometry; 1797 bool *paging; 1798 int ret = 0; 1799 u32 *count; 1800 1801 switch (attr) { 1802 case DOMAIN_ATTR_GEOMETRY: 1803 geometry = data; 1804 *geometry = domain->geometry; 1805 1806 break; 1807 case DOMAIN_ATTR_PAGING: 1808 paging = data; 1809 *paging = (domain->pgsize_bitmap != 0UL); 1810 break; 1811 case DOMAIN_ATTR_WINDOWS: 1812 count = data; 1813 1814 if (domain->ops->domain_get_windows != NULL) 1815 *count = domain->ops->domain_get_windows(domain); 1816 else 1817 ret = -ENODEV; 1818 1819 break; 1820 default: 1821 if (!domain->ops->domain_get_attr) 1822 return -EINVAL; 1823 1824 ret = domain->ops->domain_get_attr(domain, attr, data); 1825 } 1826 1827 return ret; 1828 } 1829 EXPORT_SYMBOL_GPL(iommu_domain_get_attr); 1830 1831 int iommu_domain_set_attr(struct iommu_domain *domain, 1832 enum iommu_attr attr, void *data) 1833 { 1834 int ret = 0; 1835 u32 *count; 1836 1837 switch (attr) { 1838 case DOMAIN_ATTR_WINDOWS: 1839 count = data; 1840 1841 if (domain->ops->domain_set_windows != NULL) 1842 ret = domain->ops->domain_set_windows(domain, *count); 1843 else 1844 ret = -ENODEV; 1845 1846 break; 1847 default: 1848 if (domain->ops->domain_set_attr == NULL) 1849 return -EINVAL; 1850 1851 ret = domain->ops->domain_set_attr(domain, attr, data); 1852 } 1853 1854 return ret; 1855 } 1856 EXPORT_SYMBOL_GPL(iommu_domain_set_attr); 1857 1858 void iommu_get_resv_regions(struct device *dev, struct list_head *list) 1859 { 1860 const struct iommu_ops *ops = dev->bus->iommu_ops; 1861 1862 if (ops && ops->get_resv_regions) 1863 ops->get_resv_regions(dev, list); 1864 } 1865 1866 void iommu_put_resv_regions(struct device *dev, struct list_head *list) 1867 { 1868 const struct iommu_ops *ops = dev->bus->iommu_ops; 1869 1870 if (ops && ops->put_resv_regions) 1871 ops->put_resv_regions(dev, list); 1872 } 1873 1874 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start, 1875 size_t length, int prot, 1876 enum iommu_resv_type type) 1877 { 1878 struct iommu_resv_region *region; 1879 1880 region = kzalloc(sizeof(*region), GFP_KERNEL); 1881 if (!region) 1882 return NULL; 1883 1884 INIT_LIST_HEAD(®ion->list); 1885 region->start = start; 1886 region->length = length; 1887 region->prot = prot; 1888 region->type = type; 1889 return region; 1890 } 1891 1892 /* Request that a device is direct mapped by the IOMMU */ 1893 int iommu_request_dm_for_dev(struct device *dev) 1894 { 1895 struct iommu_domain *dm_domain; 1896 struct iommu_group *group; 1897 int ret; 1898 1899 /* Device must already be in a group before calling this function */ 1900 group = iommu_group_get_for_dev(dev); 1901 if (IS_ERR(group)) 1902 return PTR_ERR(group); 1903 1904 mutex_lock(&group->mutex); 1905 1906 /* Check if the default domain is already direct mapped */ 1907 ret = 0; 1908 if (group->default_domain && 1909 group->default_domain->type == IOMMU_DOMAIN_IDENTITY) 1910 goto out; 1911 1912 /* Don't change mappings of existing devices */ 1913 ret = -EBUSY; 1914 if (iommu_group_device_count(group) != 1) 1915 goto out; 1916 1917 /* Allocate a direct mapped domain */ 1918 ret = -ENOMEM; 1919 dm_domain = __iommu_domain_alloc(dev->bus, IOMMU_DOMAIN_IDENTITY); 1920 if (!dm_domain) 1921 goto out; 1922 1923 /* Attach the device to the domain */ 1924 ret = __iommu_attach_group(dm_domain, group); 1925 if (ret) { 1926 iommu_domain_free(dm_domain); 1927 goto out; 1928 } 1929 1930 /* Make the direct mapped domain the default for this group */ 1931 if (group->default_domain) 1932 iommu_domain_free(group->default_domain); 1933 group->default_domain = dm_domain; 1934 1935 pr_info("Using direct mapping for device %s\n", dev_name(dev)); 1936 1937 ret = 0; 1938 out: 1939 mutex_unlock(&group->mutex); 1940 iommu_group_put(group); 1941 1942 return ret; 1943 } 1944 1945 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode) 1946 { 1947 const struct iommu_ops *ops = NULL; 1948 struct iommu_device *iommu; 1949 1950 spin_lock(&iommu_device_lock); 1951 list_for_each_entry(iommu, &iommu_device_list, list) 1952 if (iommu->fwnode == fwnode) { 1953 ops = iommu->ops; 1954 break; 1955 } 1956 spin_unlock(&iommu_device_lock); 1957 return ops; 1958 } 1959 1960 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode, 1961 const struct iommu_ops *ops) 1962 { 1963 struct iommu_fwspec *fwspec = dev->iommu_fwspec; 1964 1965 if (fwspec) 1966 return ops == fwspec->ops ? 0 : -EINVAL; 1967 1968 fwspec = kzalloc(sizeof(*fwspec), GFP_KERNEL); 1969 if (!fwspec) 1970 return -ENOMEM; 1971 1972 of_node_get(to_of_node(iommu_fwnode)); 1973 fwspec->iommu_fwnode = iommu_fwnode; 1974 fwspec->ops = ops; 1975 dev->iommu_fwspec = fwspec; 1976 return 0; 1977 } 1978 EXPORT_SYMBOL_GPL(iommu_fwspec_init); 1979 1980 void iommu_fwspec_free(struct device *dev) 1981 { 1982 struct iommu_fwspec *fwspec = dev->iommu_fwspec; 1983 1984 if (fwspec) { 1985 fwnode_handle_put(fwspec->iommu_fwnode); 1986 kfree(fwspec); 1987 dev->iommu_fwspec = NULL; 1988 } 1989 } 1990 EXPORT_SYMBOL_GPL(iommu_fwspec_free); 1991 1992 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids) 1993 { 1994 struct iommu_fwspec *fwspec = dev->iommu_fwspec; 1995 size_t size; 1996 int i; 1997 1998 if (!fwspec) 1999 return -EINVAL; 2000 2001 size = offsetof(struct iommu_fwspec, ids[fwspec->num_ids + num_ids]); 2002 if (size > sizeof(*fwspec)) { 2003 fwspec = krealloc(dev->iommu_fwspec, size, GFP_KERNEL); 2004 if (!fwspec) 2005 return -ENOMEM; 2006 2007 dev->iommu_fwspec = fwspec; 2008 } 2009 2010 for (i = 0; i < num_ids; i++) 2011 fwspec->ids[fwspec->num_ids + i] = ids[i]; 2012 2013 fwspec->num_ids += num_ids; 2014 return 0; 2015 } 2016 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids); 2017