1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc. 4 * Author: Joerg Roedel <jroedel@suse.de> 5 */ 6 7 #define pr_fmt(fmt) "iommu: " fmt 8 9 #include <linux/amba/bus.h> 10 #include <linux/device.h> 11 #include <linux/kernel.h> 12 #include <linux/bits.h> 13 #include <linux/bug.h> 14 #include <linux/types.h> 15 #include <linux/init.h> 16 #include <linux/export.h> 17 #include <linux/slab.h> 18 #include <linux/errno.h> 19 #include <linux/host1x_context_bus.h> 20 #include <linux/iommu.h> 21 #include <linux/idr.h> 22 #include <linux/err.h> 23 #include <linux/pci.h> 24 #include <linux/pci-ats.h> 25 #include <linux/bitops.h> 26 #include <linux/platform_device.h> 27 #include <linux/property.h> 28 #include <linux/fsl/mc.h> 29 #include <linux/module.h> 30 #include <linux/cc_platform.h> 31 #include <linux/cdx/cdx_bus.h> 32 #include <trace/events/iommu.h> 33 #include <linux/sched/mm.h> 34 #include <linux/msi.h> 35 36 #include "dma-iommu.h" 37 #include "iommu-priv.h" 38 39 #include "iommu-sva.h" 40 #include "iommu-priv.h" 41 42 static struct kset *iommu_group_kset; 43 static DEFINE_IDA(iommu_group_ida); 44 static DEFINE_IDA(iommu_global_pasid_ida); 45 46 static unsigned int iommu_def_domain_type __read_mostly; 47 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT); 48 static u32 iommu_cmd_line __read_mostly; 49 50 struct iommu_group { 51 struct kobject kobj; 52 struct kobject *devices_kobj; 53 struct list_head devices; 54 struct xarray pasid_array; 55 struct mutex mutex; 56 void *iommu_data; 57 void (*iommu_data_release)(void *iommu_data); 58 char *name; 59 int id; 60 struct iommu_domain *default_domain; 61 struct iommu_domain *blocking_domain; 62 struct iommu_domain *domain; 63 struct list_head entry; 64 unsigned int owner_cnt; 65 void *owner; 66 }; 67 68 struct group_device { 69 struct list_head list; 70 struct device *dev; 71 char *name; 72 }; 73 74 /* Iterate over each struct group_device in a struct iommu_group */ 75 #define for_each_group_device(group, pos) \ 76 list_for_each_entry(pos, &(group)->devices, list) 77 78 struct iommu_group_attribute { 79 struct attribute attr; 80 ssize_t (*show)(struct iommu_group *group, char *buf); 81 ssize_t (*store)(struct iommu_group *group, 82 const char *buf, size_t count); 83 }; 84 85 static const char * const iommu_group_resv_type_string[] = { 86 [IOMMU_RESV_DIRECT] = "direct", 87 [IOMMU_RESV_DIRECT_RELAXABLE] = "direct-relaxable", 88 [IOMMU_RESV_RESERVED] = "reserved", 89 [IOMMU_RESV_MSI] = "msi", 90 [IOMMU_RESV_SW_MSI] = "msi", 91 }; 92 93 #define IOMMU_CMD_LINE_DMA_API BIT(0) 94 #define IOMMU_CMD_LINE_STRICT BIT(1) 95 96 static int iommu_bus_notifier(struct notifier_block *nb, 97 unsigned long action, void *data); 98 static void iommu_release_device(struct device *dev); 99 static struct iommu_domain *__iommu_domain_alloc(const struct bus_type *bus, 100 unsigned type); 101 static int __iommu_attach_device(struct iommu_domain *domain, 102 struct device *dev); 103 static int __iommu_attach_group(struct iommu_domain *domain, 104 struct iommu_group *group); 105 106 enum { 107 IOMMU_SET_DOMAIN_MUST_SUCCEED = 1 << 0, 108 }; 109 110 static int __iommu_device_set_domain(struct iommu_group *group, 111 struct device *dev, 112 struct iommu_domain *new_domain, 113 unsigned int flags); 114 static int __iommu_group_set_domain_internal(struct iommu_group *group, 115 struct iommu_domain *new_domain, 116 unsigned int flags); 117 static int __iommu_group_set_domain(struct iommu_group *group, 118 struct iommu_domain *new_domain) 119 { 120 return __iommu_group_set_domain_internal(group, new_domain, 0); 121 } 122 static void __iommu_group_set_domain_nofail(struct iommu_group *group, 123 struct iommu_domain *new_domain) 124 { 125 WARN_ON(__iommu_group_set_domain_internal( 126 group, new_domain, IOMMU_SET_DOMAIN_MUST_SUCCEED)); 127 } 128 129 static int iommu_setup_default_domain(struct iommu_group *group, 130 int target_type); 131 static int iommu_create_device_direct_mappings(struct iommu_domain *domain, 132 struct device *dev); 133 static ssize_t iommu_group_store_type(struct iommu_group *group, 134 const char *buf, size_t count); 135 static struct group_device *iommu_group_alloc_device(struct iommu_group *group, 136 struct device *dev); 137 static void __iommu_group_free_device(struct iommu_group *group, 138 struct group_device *grp_dev); 139 140 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \ 141 struct iommu_group_attribute iommu_group_attr_##_name = \ 142 __ATTR(_name, _mode, _show, _store) 143 144 #define to_iommu_group_attr(_attr) \ 145 container_of(_attr, struct iommu_group_attribute, attr) 146 #define to_iommu_group(_kobj) \ 147 container_of(_kobj, struct iommu_group, kobj) 148 149 static LIST_HEAD(iommu_device_list); 150 static DEFINE_SPINLOCK(iommu_device_lock); 151 152 static struct bus_type * const iommu_buses[] = { 153 &platform_bus_type, 154 #ifdef CONFIG_PCI 155 &pci_bus_type, 156 #endif 157 #ifdef CONFIG_ARM_AMBA 158 &amba_bustype, 159 #endif 160 #ifdef CONFIG_FSL_MC_BUS 161 &fsl_mc_bus_type, 162 #endif 163 #ifdef CONFIG_TEGRA_HOST1X_CONTEXT_BUS 164 &host1x_context_device_bus_type, 165 #endif 166 #ifdef CONFIG_CDX_BUS 167 &cdx_bus_type, 168 #endif 169 }; 170 171 /* 172 * Use a function instead of an array here because the domain-type is a 173 * bit-field, so an array would waste memory. 174 */ 175 static const char *iommu_domain_type_str(unsigned int t) 176 { 177 switch (t) { 178 case IOMMU_DOMAIN_BLOCKED: 179 return "Blocked"; 180 case IOMMU_DOMAIN_IDENTITY: 181 return "Passthrough"; 182 case IOMMU_DOMAIN_UNMANAGED: 183 return "Unmanaged"; 184 case IOMMU_DOMAIN_DMA: 185 case IOMMU_DOMAIN_DMA_FQ: 186 return "Translated"; 187 default: 188 return "Unknown"; 189 } 190 } 191 192 static int __init iommu_subsys_init(void) 193 { 194 struct notifier_block *nb; 195 196 if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) { 197 if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH)) 198 iommu_set_default_passthrough(false); 199 else 200 iommu_set_default_translated(false); 201 202 if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) { 203 pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n"); 204 iommu_set_default_translated(false); 205 } 206 } 207 208 if (!iommu_default_passthrough() && !iommu_dma_strict) 209 iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ; 210 211 pr_info("Default domain type: %s%s\n", 212 iommu_domain_type_str(iommu_def_domain_type), 213 (iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ? 214 " (set via kernel command line)" : ""); 215 216 if (!iommu_default_passthrough()) 217 pr_info("DMA domain TLB invalidation policy: %s mode%s\n", 218 iommu_dma_strict ? "strict" : "lazy", 219 (iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ? 220 " (set via kernel command line)" : ""); 221 222 nb = kcalloc(ARRAY_SIZE(iommu_buses), sizeof(*nb), GFP_KERNEL); 223 if (!nb) 224 return -ENOMEM; 225 226 for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) { 227 nb[i].notifier_call = iommu_bus_notifier; 228 bus_register_notifier(iommu_buses[i], &nb[i]); 229 } 230 231 return 0; 232 } 233 subsys_initcall(iommu_subsys_init); 234 235 static int remove_iommu_group(struct device *dev, void *data) 236 { 237 if (dev->iommu && dev->iommu->iommu_dev == data) 238 iommu_release_device(dev); 239 240 return 0; 241 } 242 243 /** 244 * iommu_device_register() - Register an IOMMU hardware instance 245 * @iommu: IOMMU handle for the instance 246 * @ops: IOMMU ops to associate with the instance 247 * @hwdev: (optional) actual instance device, used for fwnode lookup 248 * 249 * Return: 0 on success, or an error. 250 */ 251 int iommu_device_register(struct iommu_device *iommu, 252 const struct iommu_ops *ops, struct device *hwdev) 253 { 254 int err = 0; 255 256 /* We need to be able to take module references appropriately */ 257 if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner)) 258 return -EINVAL; 259 /* 260 * Temporarily enforce global restriction to a single driver. This was 261 * already the de-facto behaviour, since any possible combination of 262 * existing drivers would compete for at least the PCI or platform bus. 263 */ 264 if (iommu_buses[0]->iommu_ops && iommu_buses[0]->iommu_ops != ops) 265 return -EBUSY; 266 267 iommu->ops = ops; 268 if (hwdev) 269 iommu->fwnode = dev_fwnode(hwdev); 270 271 spin_lock(&iommu_device_lock); 272 list_add_tail(&iommu->list, &iommu_device_list); 273 spin_unlock(&iommu_device_lock); 274 275 for (int i = 0; i < ARRAY_SIZE(iommu_buses) && !err; i++) { 276 iommu_buses[i]->iommu_ops = ops; 277 err = bus_iommu_probe(iommu_buses[i]); 278 } 279 if (err) 280 iommu_device_unregister(iommu); 281 return err; 282 } 283 EXPORT_SYMBOL_GPL(iommu_device_register); 284 285 void iommu_device_unregister(struct iommu_device *iommu) 286 { 287 for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) 288 bus_for_each_dev(iommu_buses[i], NULL, iommu, remove_iommu_group); 289 290 spin_lock(&iommu_device_lock); 291 list_del(&iommu->list); 292 spin_unlock(&iommu_device_lock); 293 } 294 EXPORT_SYMBOL_GPL(iommu_device_unregister); 295 296 #if IS_ENABLED(CONFIG_IOMMUFD_TEST) 297 void iommu_device_unregister_bus(struct iommu_device *iommu, 298 struct bus_type *bus, 299 struct notifier_block *nb) 300 { 301 bus_unregister_notifier(bus, nb); 302 iommu_device_unregister(iommu); 303 } 304 EXPORT_SYMBOL_GPL(iommu_device_unregister_bus); 305 306 /* 307 * Register an iommu driver against a single bus. This is only used by iommufd 308 * selftest to create a mock iommu driver. The caller must provide 309 * some memory to hold a notifier_block. 310 */ 311 int iommu_device_register_bus(struct iommu_device *iommu, 312 const struct iommu_ops *ops, struct bus_type *bus, 313 struct notifier_block *nb) 314 { 315 int err; 316 317 iommu->ops = ops; 318 nb->notifier_call = iommu_bus_notifier; 319 err = bus_register_notifier(bus, nb); 320 if (err) 321 return err; 322 323 spin_lock(&iommu_device_lock); 324 list_add_tail(&iommu->list, &iommu_device_list); 325 spin_unlock(&iommu_device_lock); 326 327 bus->iommu_ops = ops; 328 err = bus_iommu_probe(bus); 329 if (err) { 330 iommu_device_unregister_bus(iommu, bus, nb); 331 return err; 332 } 333 return 0; 334 } 335 EXPORT_SYMBOL_GPL(iommu_device_register_bus); 336 #endif 337 338 static struct dev_iommu *dev_iommu_get(struct device *dev) 339 { 340 struct dev_iommu *param = dev->iommu; 341 342 if (param) 343 return param; 344 345 param = kzalloc(sizeof(*param), GFP_KERNEL); 346 if (!param) 347 return NULL; 348 349 mutex_init(¶m->lock); 350 dev->iommu = param; 351 return param; 352 } 353 354 static void dev_iommu_free(struct device *dev) 355 { 356 struct dev_iommu *param = dev->iommu; 357 358 dev->iommu = NULL; 359 if (param->fwspec) { 360 fwnode_handle_put(param->fwspec->iommu_fwnode); 361 kfree(param->fwspec); 362 } 363 kfree(param); 364 } 365 366 static u32 dev_iommu_get_max_pasids(struct device *dev) 367 { 368 u32 max_pasids = 0, bits = 0; 369 int ret; 370 371 if (dev_is_pci(dev)) { 372 ret = pci_max_pasids(to_pci_dev(dev)); 373 if (ret > 0) 374 max_pasids = ret; 375 } else { 376 ret = device_property_read_u32(dev, "pasid-num-bits", &bits); 377 if (!ret) 378 max_pasids = 1UL << bits; 379 } 380 381 return min_t(u32, max_pasids, dev->iommu->iommu_dev->max_pasids); 382 } 383 384 /* 385 * Init the dev->iommu and dev->iommu_group in the struct device and get the 386 * driver probed 387 */ 388 static int iommu_init_device(struct device *dev, const struct iommu_ops *ops) 389 { 390 struct iommu_device *iommu_dev; 391 struct iommu_group *group; 392 int ret; 393 394 if (!dev_iommu_get(dev)) 395 return -ENOMEM; 396 397 if (!try_module_get(ops->owner)) { 398 ret = -EINVAL; 399 goto err_free; 400 } 401 402 iommu_dev = ops->probe_device(dev); 403 if (IS_ERR(iommu_dev)) { 404 ret = PTR_ERR(iommu_dev); 405 goto err_module_put; 406 } 407 408 ret = iommu_device_link(iommu_dev, dev); 409 if (ret) 410 goto err_release; 411 412 group = ops->device_group(dev); 413 if (WARN_ON_ONCE(group == NULL)) 414 group = ERR_PTR(-EINVAL); 415 if (IS_ERR(group)) { 416 ret = PTR_ERR(group); 417 goto err_unlink; 418 } 419 dev->iommu_group = group; 420 421 dev->iommu->iommu_dev = iommu_dev; 422 dev->iommu->max_pasids = dev_iommu_get_max_pasids(dev); 423 if (ops->is_attach_deferred) 424 dev->iommu->attach_deferred = ops->is_attach_deferred(dev); 425 return 0; 426 427 err_unlink: 428 iommu_device_unlink(iommu_dev, dev); 429 err_release: 430 if (ops->release_device) 431 ops->release_device(dev); 432 err_module_put: 433 module_put(ops->owner); 434 err_free: 435 dev_iommu_free(dev); 436 return ret; 437 } 438 439 static void iommu_deinit_device(struct device *dev) 440 { 441 struct iommu_group *group = dev->iommu_group; 442 const struct iommu_ops *ops = dev_iommu_ops(dev); 443 444 lockdep_assert_held(&group->mutex); 445 446 iommu_device_unlink(dev->iommu->iommu_dev, dev); 447 448 /* 449 * release_device() must stop using any attached domain on the device. 450 * If there are still other devices in the group they are not effected 451 * by this callback. 452 * 453 * The IOMMU driver must set the device to either an identity or 454 * blocking translation and stop using any domain pointer, as it is 455 * going to be freed. 456 */ 457 if (ops->release_device) 458 ops->release_device(dev); 459 460 /* 461 * If this is the last driver to use the group then we must free the 462 * domains before we do the module_put(). 463 */ 464 if (list_empty(&group->devices)) { 465 if (group->default_domain) { 466 iommu_domain_free(group->default_domain); 467 group->default_domain = NULL; 468 } 469 if (group->blocking_domain) { 470 iommu_domain_free(group->blocking_domain); 471 group->blocking_domain = NULL; 472 } 473 group->domain = NULL; 474 } 475 476 /* Caller must put iommu_group */ 477 dev->iommu_group = NULL; 478 module_put(ops->owner); 479 dev_iommu_free(dev); 480 } 481 482 DEFINE_MUTEX(iommu_probe_device_lock); 483 484 static int __iommu_probe_device(struct device *dev, struct list_head *group_list) 485 { 486 const struct iommu_ops *ops = dev->bus->iommu_ops; 487 struct iommu_group *group; 488 struct group_device *gdev; 489 int ret; 490 491 if (!ops) 492 return -ENODEV; 493 /* 494 * Serialise to avoid races between IOMMU drivers registering in 495 * parallel and/or the "replay" calls from ACPI/OF code via client 496 * driver probe. Once the latter have been cleaned up we should 497 * probably be able to use device_lock() here to minimise the scope, 498 * but for now enforcing a simple global ordering is fine. 499 */ 500 lockdep_assert_held(&iommu_probe_device_lock); 501 502 /* Device is probed already if in a group */ 503 if (dev->iommu_group) 504 return 0; 505 506 ret = iommu_init_device(dev, ops); 507 if (ret) 508 return ret; 509 510 group = dev->iommu_group; 511 gdev = iommu_group_alloc_device(group, dev); 512 mutex_lock(&group->mutex); 513 if (IS_ERR(gdev)) { 514 ret = PTR_ERR(gdev); 515 goto err_put_group; 516 } 517 518 /* 519 * The gdev must be in the list before calling 520 * iommu_setup_default_domain() 521 */ 522 list_add_tail(&gdev->list, &group->devices); 523 WARN_ON(group->default_domain && !group->domain); 524 if (group->default_domain) 525 iommu_create_device_direct_mappings(group->default_domain, dev); 526 if (group->domain) { 527 ret = __iommu_device_set_domain(group, dev, group->domain, 0); 528 if (ret) 529 goto err_remove_gdev; 530 } else if (!group->default_domain && !group_list) { 531 ret = iommu_setup_default_domain(group, 0); 532 if (ret) 533 goto err_remove_gdev; 534 } else if (!group->default_domain) { 535 /* 536 * With a group_list argument we defer the default_domain setup 537 * to the caller by providing a de-duplicated list of groups 538 * that need further setup. 539 */ 540 if (list_empty(&group->entry)) 541 list_add_tail(&group->entry, group_list); 542 } 543 mutex_unlock(&group->mutex); 544 545 if (dev_is_pci(dev)) 546 iommu_dma_set_pci_32bit_workaround(dev); 547 548 return 0; 549 550 err_remove_gdev: 551 list_del(&gdev->list); 552 __iommu_group_free_device(group, gdev); 553 err_put_group: 554 iommu_deinit_device(dev); 555 mutex_unlock(&group->mutex); 556 iommu_group_put(group); 557 558 return ret; 559 } 560 561 int iommu_probe_device(struct device *dev) 562 { 563 const struct iommu_ops *ops; 564 int ret; 565 566 mutex_lock(&iommu_probe_device_lock); 567 ret = __iommu_probe_device(dev, NULL); 568 mutex_unlock(&iommu_probe_device_lock); 569 if (ret) 570 return ret; 571 572 ops = dev_iommu_ops(dev); 573 if (ops->probe_finalize) 574 ops->probe_finalize(dev); 575 576 return 0; 577 } 578 579 static void __iommu_group_free_device(struct iommu_group *group, 580 struct group_device *grp_dev) 581 { 582 struct device *dev = grp_dev->dev; 583 584 sysfs_remove_link(group->devices_kobj, grp_dev->name); 585 sysfs_remove_link(&dev->kobj, "iommu_group"); 586 587 trace_remove_device_from_group(group->id, dev); 588 589 /* 590 * If the group has become empty then ownership must have been 591 * released, and the current domain must be set back to NULL or 592 * the default domain. 593 */ 594 if (list_empty(&group->devices)) 595 WARN_ON(group->owner_cnt || 596 group->domain != group->default_domain); 597 598 kfree(grp_dev->name); 599 kfree(grp_dev); 600 } 601 602 /* Remove the iommu_group from the struct device. */ 603 static void __iommu_group_remove_device(struct device *dev) 604 { 605 struct iommu_group *group = dev->iommu_group; 606 struct group_device *device; 607 608 mutex_lock(&group->mutex); 609 for_each_group_device(group, device) { 610 if (device->dev != dev) 611 continue; 612 613 list_del(&device->list); 614 __iommu_group_free_device(group, device); 615 if (dev->iommu && dev->iommu->iommu_dev) 616 iommu_deinit_device(dev); 617 else 618 dev->iommu_group = NULL; 619 break; 620 } 621 mutex_unlock(&group->mutex); 622 623 /* 624 * Pairs with the get in iommu_init_device() or 625 * iommu_group_add_device() 626 */ 627 iommu_group_put(group); 628 } 629 630 static void iommu_release_device(struct device *dev) 631 { 632 struct iommu_group *group = dev->iommu_group; 633 634 if (group) 635 __iommu_group_remove_device(dev); 636 637 /* Free any fwspec if no iommu_driver was ever attached */ 638 if (dev->iommu) 639 dev_iommu_free(dev); 640 } 641 642 static int __init iommu_set_def_domain_type(char *str) 643 { 644 bool pt; 645 int ret; 646 647 ret = kstrtobool(str, &pt); 648 if (ret) 649 return ret; 650 651 if (pt) 652 iommu_set_default_passthrough(true); 653 else 654 iommu_set_default_translated(true); 655 656 return 0; 657 } 658 early_param("iommu.passthrough", iommu_set_def_domain_type); 659 660 static int __init iommu_dma_setup(char *str) 661 { 662 int ret = kstrtobool(str, &iommu_dma_strict); 663 664 if (!ret) 665 iommu_cmd_line |= IOMMU_CMD_LINE_STRICT; 666 return ret; 667 } 668 early_param("iommu.strict", iommu_dma_setup); 669 670 void iommu_set_dma_strict(void) 671 { 672 iommu_dma_strict = true; 673 if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ) 674 iommu_def_domain_type = IOMMU_DOMAIN_DMA; 675 } 676 677 static ssize_t iommu_group_attr_show(struct kobject *kobj, 678 struct attribute *__attr, char *buf) 679 { 680 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 681 struct iommu_group *group = to_iommu_group(kobj); 682 ssize_t ret = -EIO; 683 684 if (attr->show) 685 ret = attr->show(group, buf); 686 return ret; 687 } 688 689 static ssize_t iommu_group_attr_store(struct kobject *kobj, 690 struct attribute *__attr, 691 const char *buf, size_t count) 692 { 693 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 694 struct iommu_group *group = to_iommu_group(kobj); 695 ssize_t ret = -EIO; 696 697 if (attr->store) 698 ret = attr->store(group, buf, count); 699 return ret; 700 } 701 702 static const struct sysfs_ops iommu_group_sysfs_ops = { 703 .show = iommu_group_attr_show, 704 .store = iommu_group_attr_store, 705 }; 706 707 static int iommu_group_create_file(struct iommu_group *group, 708 struct iommu_group_attribute *attr) 709 { 710 return sysfs_create_file(&group->kobj, &attr->attr); 711 } 712 713 static void iommu_group_remove_file(struct iommu_group *group, 714 struct iommu_group_attribute *attr) 715 { 716 sysfs_remove_file(&group->kobj, &attr->attr); 717 } 718 719 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf) 720 { 721 return sysfs_emit(buf, "%s\n", group->name); 722 } 723 724 /** 725 * iommu_insert_resv_region - Insert a new region in the 726 * list of reserved regions. 727 * @new: new region to insert 728 * @regions: list of regions 729 * 730 * Elements are sorted by start address and overlapping segments 731 * of the same type are merged. 732 */ 733 static int iommu_insert_resv_region(struct iommu_resv_region *new, 734 struct list_head *regions) 735 { 736 struct iommu_resv_region *iter, *tmp, *nr, *top; 737 LIST_HEAD(stack); 738 739 nr = iommu_alloc_resv_region(new->start, new->length, 740 new->prot, new->type, GFP_KERNEL); 741 if (!nr) 742 return -ENOMEM; 743 744 /* First add the new element based on start address sorting */ 745 list_for_each_entry(iter, regions, list) { 746 if (nr->start < iter->start || 747 (nr->start == iter->start && nr->type <= iter->type)) 748 break; 749 } 750 list_add_tail(&nr->list, &iter->list); 751 752 /* Merge overlapping segments of type nr->type in @regions, if any */ 753 list_for_each_entry_safe(iter, tmp, regions, list) { 754 phys_addr_t top_end, iter_end = iter->start + iter->length - 1; 755 756 /* no merge needed on elements of different types than @new */ 757 if (iter->type != new->type) { 758 list_move_tail(&iter->list, &stack); 759 continue; 760 } 761 762 /* look for the last stack element of same type as @iter */ 763 list_for_each_entry_reverse(top, &stack, list) 764 if (top->type == iter->type) 765 goto check_overlap; 766 767 list_move_tail(&iter->list, &stack); 768 continue; 769 770 check_overlap: 771 top_end = top->start + top->length - 1; 772 773 if (iter->start > top_end + 1) { 774 list_move_tail(&iter->list, &stack); 775 } else { 776 top->length = max(top_end, iter_end) - top->start + 1; 777 list_del(&iter->list); 778 kfree(iter); 779 } 780 } 781 list_splice(&stack, regions); 782 return 0; 783 } 784 785 static int 786 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions, 787 struct list_head *group_resv_regions) 788 { 789 struct iommu_resv_region *entry; 790 int ret = 0; 791 792 list_for_each_entry(entry, dev_resv_regions, list) { 793 ret = iommu_insert_resv_region(entry, group_resv_regions); 794 if (ret) 795 break; 796 } 797 return ret; 798 } 799 800 int iommu_get_group_resv_regions(struct iommu_group *group, 801 struct list_head *head) 802 { 803 struct group_device *device; 804 int ret = 0; 805 806 mutex_lock(&group->mutex); 807 for_each_group_device(group, device) { 808 struct list_head dev_resv_regions; 809 810 /* 811 * Non-API groups still expose reserved_regions in sysfs, 812 * so filter out calls that get here that way. 813 */ 814 if (!device->dev->iommu) 815 break; 816 817 INIT_LIST_HEAD(&dev_resv_regions); 818 iommu_get_resv_regions(device->dev, &dev_resv_regions); 819 ret = iommu_insert_device_resv_regions(&dev_resv_regions, head); 820 iommu_put_resv_regions(device->dev, &dev_resv_regions); 821 if (ret) 822 break; 823 } 824 mutex_unlock(&group->mutex); 825 return ret; 826 } 827 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions); 828 829 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group, 830 char *buf) 831 { 832 struct iommu_resv_region *region, *next; 833 struct list_head group_resv_regions; 834 int offset = 0; 835 836 INIT_LIST_HEAD(&group_resv_regions); 837 iommu_get_group_resv_regions(group, &group_resv_regions); 838 839 list_for_each_entry_safe(region, next, &group_resv_regions, list) { 840 offset += sysfs_emit_at(buf, offset, "0x%016llx 0x%016llx %s\n", 841 (long long)region->start, 842 (long long)(region->start + 843 region->length - 1), 844 iommu_group_resv_type_string[region->type]); 845 kfree(region); 846 } 847 848 return offset; 849 } 850 851 static ssize_t iommu_group_show_type(struct iommu_group *group, 852 char *buf) 853 { 854 char *type = "unknown"; 855 856 mutex_lock(&group->mutex); 857 if (group->default_domain) { 858 switch (group->default_domain->type) { 859 case IOMMU_DOMAIN_BLOCKED: 860 type = "blocked"; 861 break; 862 case IOMMU_DOMAIN_IDENTITY: 863 type = "identity"; 864 break; 865 case IOMMU_DOMAIN_UNMANAGED: 866 type = "unmanaged"; 867 break; 868 case IOMMU_DOMAIN_DMA: 869 type = "DMA"; 870 break; 871 case IOMMU_DOMAIN_DMA_FQ: 872 type = "DMA-FQ"; 873 break; 874 } 875 } 876 mutex_unlock(&group->mutex); 877 878 return sysfs_emit(buf, "%s\n", type); 879 } 880 881 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL); 882 883 static IOMMU_GROUP_ATTR(reserved_regions, 0444, 884 iommu_group_show_resv_regions, NULL); 885 886 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type, 887 iommu_group_store_type); 888 889 static void iommu_group_release(struct kobject *kobj) 890 { 891 struct iommu_group *group = to_iommu_group(kobj); 892 893 pr_debug("Releasing group %d\n", group->id); 894 895 if (group->iommu_data_release) 896 group->iommu_data_release(group->iommu_data); 897 898 ida_free(&iommu_group_ida, group->id); 899 900 /* Domains are free'd by iommu_deinit_device() */ 901 WARN_ON(group->default_domain); 902 WARN_ON(group->blocking_domain); 903 904 kfree(group->name); 905 kfree(group); 906 } 907 908 static const struct kobj_type iommu_group_ktype = { 909 .sysfs_ops = &iommu_group_sysfs_ops, 910 .release = iommu_group_release, 911 }; 912 913 /** 914 * iommu_group_alloc - Allocate a new group 915 * 916 * This function is called by an iommu driver to allocate a new iommu 917 * group. The iommu group represents the minimum granularity of the iommu. 918 * Upon successful return, the caller holds a reference to the supplied 919 * group in order to hold the group until devices are added. Use 920 * iommu_group_put() to release this extra reference count, allowing the 921 * group to be automatically reclaimed once it has no devices or external 922 * references. 923 */ 924 struct iommu_group *iommu_group_alloc(void) 925 { 926 struct iommu_group *group; 927 int ret; 928 929 group = kzalloc(sizeof(*group), GFP_KERNEL); 930 if (!group) 931 return ERR_PTR(-ENOMEM); 932 933 group->kobj.kset = iommu_group_kset; 934 mutex_init(&group->mutex); 935 INIT_LIST_HEAD(&group->devices); 936 INIT_LIST_HEAD(&group->entry); 937 xa_init(&group->pasid_array); 938 939 ret = ida_alloc(&iommu_group_ida, GFP_KERNEL); 940 if (ret < 0) { 941 kfree(group); 942 return ERR_PTR(ret); 943 } 944 group->id = ret; 945 946 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype, 947 NULL, "%d", group->id); 948 if (ret) { 949 kobject_put(&group->kobj); 950 return ERR_PTR(ret); 951 } 952 953 group->devices_kobj = kobject_create_and_add("devices", &group->kobj); 954 if (!group->devices_kobj) { 955 kobject_put(&group->kobj); /* triggers .release & free */ 956 return ERR_PTR(-ENOMEM); 957 } 958 959 /* 960 * The devices_kobj holds a reference on the group kobject, so 961 * as long as that exists so will the group. We can therefore 962 * use the devices_kobj for reference counting. 963 */ 964 kobject_put(&group->kobj); 965 966 ret = iommu_group_create_file(group, 967 &iommu_group_attr_reserved_regions); 968 if (ret) { 969 kobject_put(group->devices_kobj); 970 return ERR_PTR(ret); 971 } 972 973 ret = iommu_group_create_file(group, &iommu_group_attr_type); 974 if (ret) { 975 kobject_put(group->devices_kobj); 976 return ERR_PTR(ret); 977 } 978 979 pr_debug("Allocated group %d\n", group->id); 980 981 return group; 982 } 983 EXPORT_SYMBOL_GPL(iommu_group_alloc); 984 985 /** 986 * iommu_group_get_iommudata - retrieve iommu_data registered for a group 987 * @group: the group 988 * 989 * iommu drivers can store data in the group for use when doing iommu 990 * operations. This function provides a way to retrieve it. Caller 991 * should hold a group reference. 992 */ 993 void *iommu_group_get_iommudata(struct iommu_group *group) 994 { 995 return group->iommu_data; 996 } 997 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata); 998 999 /** 1000 * iommu_group_set_iommudata - set iommu_data for a group 1001 * @group: the group 1002 * @iommu_data: new data 1003 * @release: release function for iommu_data 1004 * 1005 * iommu drivers can store data in the group for use when doing iommu 1006 * operations. This function provides a way to set the data after 1007 * the group has been allocated. Caller should hold a group reference. 1008 */ 1009 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data, 1010 void (*release)(void *iommu_data)) 1011 { 1012 group->iommu_data = iommu_data; 1013 group->iommu_data_release = release; 1014 } 1015 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata); 1016 1017 /** 1018 * iommu_group_set_name - set name for a group 1019 * @group: the group 1020 * @name: name 1021 * 1022 * Allow iommu driver to set a name for a group. When set it will 1023 * appear in a name attribute file under the group in sysfs. 1024 */ 1025 int iommu_group_set_name(struct iommu_group *group, const char *name) 1026 { 1027 int ret; 1028 1029 if (group->name) { 1030 iommu_group_remove_file(group, &iommu_group_attr_name); 1031 kfree(group->name); 1032 group->name = NULL; 1033 if (!name) 1034 return 0; 1035 } 1036 1037 group->name = kstrdup(name, GFP_KERNEL); 1038 if (!group->name) 1039 return -ENOMEM; 1040 1041 ret = iommu_group_create_file(group, &iommu_group_attr_name); 1042 if (ret) { 1043 kfree(group->name); 1044 group->name = NULL; 1045 return ret; 1046 } 1047 1048 return 0; 1049 } 1050 EXPORT_SYMBOL_GPL(iommu_group_set_name); 1051 1052 static int iommu_create_device_direct_mappings(struct iommu_domain *domain, 1053 struct device *dev) 1054 { 1055 struct iommu_resv_region *entry; 1056 struct list_head mappings; 1057 unsigned long pg_size; 1058 int ret = 0; 1059 1060 pg_size = domain->pgsize_bitmap ? 1UL << __ffs(domain->pgsize_bitmap) : 0; 1061 INIT_LIST_HEAD(&mappings); 1062 1063 if (WARN_ON_ONCE(iommu_is_dma_domain(domain) && !pg_size)) 1064 return -EINVAL; 1065 1066 iommu_get_resv_regions(dev, &mappings); 1067 1068 /* We need to consider overlapping regions for different devices */ 1069 list_for_each_entry(entry, &mappings, list) { 1070 dma_addr_t start, end, addr; 1071 size_t map_size = 0; 1072 1073 if (entry->type == IOMMU_RESV_DIRECT) 1074 dev->iommu->require_direct = 1; 1075 1076 if ((entry->type != IOMMU_RESV_DIRECT && 1077 entry->type != IOMMU_RESV_DIRECT_RELAXABLE) || 1078 !iommu_is_dma_domain(domain)) 1079 continue; 1080 1081 start = ALIGN(entry->start, pg_size); 1082 end = ALIGN(entry->start + entry->length, pg_size); 1083 1084 for (addr = start; addr <= end; addr += pg_size) { 1085 phys_addr_t phys_addr; 1086 1087 if (addr == end) 1088 goto map_end; 1089 1090 phys_addr = iommu_iova_to_phys(domain, addr); 1091 if (!phys_addr) { 1092 map_size += pg_size; 1093 continue; 1094 } 1095 1096 map_end: 1097 if (map_size) { 1098 ret = iommu_map(domain, addr - map_size, 1099 addr - map_size, map_size, 1100 entry->prot, GFP_KERNEL); 1101 if (ret) 1102 goto out; 1103 map_size = 0; 1104 } 1105 } 1106 1107 } 1108 1109 if (!list_empty(&mappings) && iommu_is_dma_domain(domain)) 1110 iommu_flush_iotlb_all(domain); 1111 1112 out: 1113 iommu_put_resv_regions(dev, &mappings); 1114 1115 return ret; 1116 } 1117 1118 /* This is undone by __iommu_group_free_device() */ 1119 static struct group_device *iommu_group_alloc_device(struct iommu_group *group, 1120 struct device *dev) 1121 { 1122 int ret, i = 0; 1123 struct group_device *device; 1124 1125 device = kzalloc(sizeof(*device), GFP_KERNEL); 1126 if (!device) 1127 return ERR_PTR(-ENOMEM); 1128 1129 device->dev = dev; 1130 1131 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group"); 1132 if (ret) 1133 goto err_free_device; 1134 1135 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj)); 1136 rename: 1137 if (!device->name) { 1138 ret = -ENOMEM; 1139 goto err_remove_link; 1140 } 1141 1142 ret = sysfs_create_link_nowarn(group->devices_kobj, 1143 &dev->kobj, device->name); 1144 if (ret) { 1145 if (ret == -EEXIST && i >= 0) { 1146 /* 1147 * Account for the slim chance of collision 1148 * and append an instance to the name. 1149 */ 1150 kfree(device->name); 1151 device->name = kasprintf(GFP_KERNEL, "%s.%d", 1152 kobject_name(&dev->kobj), i++); 1153 goto rename; 1154 } 1155 goto err_free_name; 1156 } 1157 1158 trace_add_device_to_group(group->id, dev); 1159 1160 dev_info(dev, "Adding to iommu group %d\n", group->id); 1161 1162 return device; 1163 1164 err_free_name: 1165 kfree(device->name); 1166 err_remove_link: 1167 sysfs_remove_link(&dev->kobj, "iommu_group"); 1168 err_free_device: 1169 kfree(device); 1170 dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret); 1171 return ERR_PTR(ret); 1172 } 1173 1174 /** 1175 * iommu_group_add_device - add a device to an iommu group 1176 * @group: the group into which to add the device (reference should be held) 1177 * @dev: the device 1178 * 1179 * This function is called by an iommu driver to add a device into a 1180 * group. Adding a device increments the group reference count. 1181 */ 1182 int iommu_group_add_device(struct iommu_group *group, struct device *dev) 1183 { 1184 struct group_device *gdev; 1185 1186 gdev = iommu_group_alloc_device(group, dev); 1187 if (IS_ERR(gdev)) 1188 return PTR_ERR(gdev); 1189 1190 iommu_group_ref_get(group); 1191 dev->iommu_group = group; 1192 1193 mutex_lock(&group->mutex); 1194 list_add_tail(&gdev->list, &group->devices); 1195 mutex_unlock(&group->mutex); 1196 return 0; 1197 } 1198 EXPORT_SYMBOL_GPL(iommu_group_add_device); 1199 1200 /** 1201 * iommu_group_remove_device - remove a device from it's current group 1202 * @dev: device to be removed 1203 * 1204 * This function is called by an iommu driver to remove the device from 1205 * it's current group. This decrements the iommu group reference count. 1206 */ 1207 void iommu_group_remove_device(struct device *dev) 1208 { 1209 struct iommu_group *group = dev->iommu_group; 1210 1211 if (!group) 1212 return; 1213 1214 dev_info(dev, "Removing from iommu group %d\n", group->id); 1215 1216 __iommu_group_remove_device(dev); 1217 } 1218 EXPORT_SYMBOL_GPL(iommu_group_remove_device); 1219 1220 /** 1221 * iommu_group_for_each_dev - iterate over each device in the group 1222 * @group: the group 1223 * @data: caller opaque data to be passed to callback function 1224 * @fn: caller supplied callback function 1225 * 1226 * This function is called by group users to iterate over group devices. 1227 * Callers should hold a reference count to the group during callback. 1228 * The group->mutex is held across callbacks, which will block calls to 1229 * iommu_group_add/remove_device. 1230 */ 1231 int iommu_group_for_each_dev(struct iommu_group *group, void *data, 1232 int (*fn)(struct device *, void *)) 1233 { 1234 struct group_device *device; 1235 int ret = 0; 1236 1237 mutex_lock(&group->mutex); 1238 for_each_group_device(group, device) { 1239 ret = fn(device->dev, data); 1240 if (ret) 1241 break; 1242 } 1243 mutex_unlock(&group->mutex); 1244 1245 return ret; 1246 } 1247 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev); 1248 1249 /** 1250 * iommu_group_get - Return the group for a device and increment reference 1251 * @dev: get the group that this device belongs to 1252 * 1253 * This function is called by iommu drivers and users to get the group 1254 * for the specified device. If found, the group is returned and the group 1255 * reference in incremented, else NULL. 1256 */ 1257 struct iommu_group *iommu_group_get(struct device *dev) 1258 { 1259 struct iommu_group *group = dev->iommu_group; 1260 1261 if (group) 1262 kobject_get(group->devices_kobj); 1263 1264 return group; 1265 } 1266 EXPORT_SYMBOL_GPL(iommu_group_get); 1267 1268 /** 1269 * iommu_group_ref_get - Increment reference on a group 1270 * @group: the group to use, must not be NULL 1271 * 1272 * This function is called by iommu drivers to take additional references on an 1273 * existing group. Returns the given group for convenience. 1274 */ 1275 struct iommu_group *iommu_group_ref_get(struct iommu_group *group) 1276 { 1277 kobject_get(group->devices_kobj); 1278 return group; 1279 } 1280 EXPORT_SYMBOL_GPL(iommu_group_ref_get); 1281 1282 /** 1283 * iommu_group_put - Decrement group reference 1284 * @group: the group to use 1285 * 1286 * This function is called by iommu drivers and users to release the 1287 * iommu group. Once the reference count is zero, the group is released. 1288 */ 1289 void iommu_group_put(struct iommu_group *group) 1290 { 1291 if (group) 1292 kobject_put(group->devices_kobj); 1293 } 1294 EXPORT_SYMBOL_GPL(iommu_group_put); 1295 1296 /** 1297 * iommu_register_device_fault_handler() - Register a device fault handler 1298 * @dev: the device 1299 * @handler: the fault handler 1300 * @data: private data passed as argument to the handler 1301 * 1302 * When an IOMMU fault event is received, this handler gets called with the 1303 * fault event and data as argument. The handler should return 0 on success. If 1304 * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also 1305 * complete the fault by calling iommu_page_response() with one of the following 1306 * response code: 1307 * - IOMMU_PAGE_RESP_SUCCESS: retry the translation 1308 * - IOMMU_PAGE_RESP_INVALID: terminate the fault 1309 * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting 1310 * page faults if possible. 1311 * 1312 * Return 0 if the fault handler was installed successfully, or an error. 1313 */ 1314 int iommu_register_device_fault_handler(struct device *dev, 1315 iommu_dev_fault_handler_t handler, 1316 void *data) 1317 { 1318 struct dev_iommu *param = dev->iommu; 1319 int ret = 0; 1320 1321 if (!param) 1322 return -EINVAL; 1323 1324 mutex_lock(¶m->lock); 1325 /* Only allow one fault handler registered for each device */ 1326 if (param->fault_param) { 1327 ret = -EBUSY; 1328 goto done_unlock; 1329 } 1330 1331 get_device(dev); 1332 param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL); 1333 if (!param->fault_param) { 1334 put_device(dev); 1335 ret = -ENOMEM; 1336 goto done_unlock; 1337 } 1338 param->fault_param->handler = handler; 1339 param->fault_param->data = data; 1340 mutex_init(¶m->fault_param->lock); 1341 INIT_LIST_HEAD(¶m->fault_param->faults); 1342 1343 done_unlock: 1344 mutex_unlock(¶m->lock); 1345 1346 return ret; 1347 } 1348 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler); 1349 1350 /** 1351 * iommu_unregister_device_fault_handler() - Unregister the device fault handler 1352 * @dev: the device 1353 * 1354 * Remove the device fault handler installed with 1355 * iommu_register_device_fault_handler(). 1356 * 1357 * Return 0 on success, or an error. 1358 */ 1359 int iommu_unregister_device_fault_handler(struct device *dev) 1360 { 1361 struct dev_iommu *param = dev->iommu; 1362 int ret = 0; 1363 1364 if (!param) 1365 return -EINVAL; 1366 1367 mutex_lock(¶m->lock); 1368 1369 if (!param->fault_param) 1370 goto unlock; 1371 1372 /* we cannot unregister handler if there are pending faults */ 1373 if (!list_empty(¶m->fault_param->faults)) { 1374 ret = -EBUSY; 1375 goto unlock; 1376 } 1377 1378 kfree(param->fault_param); 1379 param->fault_param = NULL; 1380 put_device(dev); 1381 unlock: 1382 mutex_unlock(¶m->lock); 1383 1384 return ret; 1385 } 1386 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler); 1387 1388 /** 1389 * iommu_report_device_fault() - Report fault event to device driver 1390 * @dev: the device 1391 * @evt: fault event data 1392 * 1393 * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ 1394 * handler. When this function fails and the fault is recoverable, it is the 1395 * caller's responsibility to complete the fault. 1396 * 1397 * Return 0 on success, or an error. 1398 */ 1399 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt) 1400 { 1401 struct dev_iommu *param = dev->iommu; 1402 struct iommu_fault_event *evt_pending = NULL; 1403 struct iommu_fault_param *fparam; 1404 int ret = 0; 1405 1406 if (!param || !evt) 1407 return -EINVAL; 1408 1409 /* we only report device fault if there is a handler registered */ 1410 mutex_lock(¶m->lock); 1411 fparam = param->fault_param; 1412 if (!fparam || !fparam->handler) { 1413 ret = -EINVAL; 1414 goto done_unlock; 1415 } 1416 1417 if (evt->fault.type == IOMMU_FAULT_PAGE_REQ && 1418 (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) { 1419 evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event), 1420 GFP_KERNEL); 1421 if (!evt_pending) { 1422 ret = -ENOMEM; 1423 goto done_unlock; 1424 } 1425 mutex_lock(&fparam->lock); 1426 list_add_tail(&evt_pending->list, &fparam->faults); 1427 mutex_unlock(&fparam->lock); 1428 } 1429 1430 ret = fparam->handler(&evt->fault, fparam->data); 1431 if (ret && evt_pending) { 1432 mutex_lock(&fparam->lock); 1433 list_del(&evt_pending->list); 1434 mutex_unlock(&fparam->lock); 1435 kfree(evt_pending); 1436 } 1437 done_unlock: 1438 mutex_unlock(¶m->lock); 1439 return ret; 1440 } 1441 EXPORT_SYMBOL_GPL(iommu_report_device_fault); 1442 1443 int iommu_page_response(struct device *dev, 1444 struct iommu_page_response *msg) 1445 { 1446 bool needs_pasid; 1447 int ret = -EINVAL; 1448 struct iommu_fault_event *evt; 1449 struct iommu_fault_page_request *prm; 1450 struct dev_iommu *param = dev->iommu; 1451 const struct iommu_ops *ops = dev_iommu_ops(dev); 1452 bool has_pasid = msg->flags & IOMMU_PAGE_RESP_PASID_VALID; 1453 1454 if (!ops->page_response) 1455 return -ENODEV; 1456 1457 if (!param || !param->fault_param) 1458 return -EINVAL; 1459 1460 if (msg->version != IOMMU_PAGE_RESP_VERSION_1 || 1461 msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID) 1462 return -EINVAL; 1463 1464 /* Only send response if there is a fault report pending */ 1465 mutex_lock(¶m->fault_param->lock); 1466 if (list_empty(¶m->fault_param->faults)) { 1467 dev_warn_ratelimited(dev, "no pending PRQ, drop response\n"); 1468 goto done_unlock; 1469 } 1470 /* 1471 * Check if we have a matching page request pending to respond, 1472 * otherwise return -EINVAL 1473 */ 1474 list_for_each_entry(evt, ¶m->fault_param->faults, list) { 1475 prm = &evt->fault.prm; 1476 if (prm->grpid != msg->grpid) 1477 continue; 1478 1479 /* 1480 * If the PASID is required, the corresponding request is 1481 * matched using the group ID, the PASID valid bit and the PASID 1482 * value. Otherwise only the group ID matches request and 1483 * response. 1484 */ 1485 needs_pasid = prm->flags & IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID; 1486 if (needs_pasid && (!has_pasid || msg->pasid != prm->pasid)) 1487 continue; 1488 1489 if (!needs_pasid && has_pasid) { 1490 /* No big deal, just clear it. */ 1491 msg->flags &= ~IOMMU_PAGE_RESP_PASID_VALID; 1492 msg->pasid = 0; 1493 } 1494 1495 ret = ops->page_response(dev, evt, msg); 1496 list_del(&evt->list); 1497 kfree(evt); 1498 break; 1499 } 1500 1501 done_unlock: 1502 mutex_unlock(¶m->fault_param->lock); 1503 return ret; 1504 } 1505 EXPORT_SYMBOL_GPL(iommu_page_response); 1506 1507 /** 1508 * iommu_group_id - Return ID for a group 1509 * @group: the group to ID 1510 * 1511 * Return the unique ID for the group matching the sysfs group number. 1512 */ 1513 int iommu_group_id(struct iommu_group *group) 1514 { 1515 return group->id; 1516 } 1517 EXPORT_SYMBOL_GPL(iommu_group_id); 1518 1519 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1520 unsigned long *devfns); 1521 1522 /* 1523 * To consider a PCI device isolated, we require ACS to support Source 1524 * Validation, Request Redirection, Completer Redirection, and Upstream 1525 * Forwarding. This effectively means that devices cannot spoof their 1526 * requester ID, requests and completions cannot be redirected, and all 1527 * transactions are forwarded upstream, even as it passes through a 1528 * bridge where the target device is downstream. 1529 */ 1530 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF) 1531 1532 /* 1533 * For multifunction devices which are not isolated from each other, find 1534 * all the other non-isolated functions and look for existing groups. For 1535 * each function, we also need to look for aliases to or from other devices 1536 * that may already have a group. 1537 */ 1538 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev, 1539 unsigned long *devfns) 1540 { 1541 struct pci_dev *tmp = NULL; 1542 struct iommu_group *group; 1543 1544 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS)) 1545 return NULL; 1546 1547 for_each_pci_dev(tmp) { 1548 if (tmp == pdev || tmp->bus != pdev->bus || 1549 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) || 1550 pci_acs_enabled(tmp, REQ_ACS_FLAGS)) 1551 continue; 1552 1553 group = get_pci_alias_group(tmp, devfns); 1554 if (group) { 1555 pci_dev_put(tmp); 1556 return group; 1557 } 1558 } 1559 1560 return NULL; 1561 } 1562 1563 /* 1564 * Look for aliases to or from the given device for existing groups. DMA 1565 * aliases are only supported on the same bus, therefore the search 1566 * space is quite small (especially since we're really only looking at pcie 1567 * device, and therefore only expect multiple slots on the root complex or 1568 * downstream switch ports). It's conceivable though that a pair of 1569 * multifunction devices could have aliases between them that would cause a 1570 * loop. To prevent this, we use a bitmap to track where we've been. 1571 */ 1572 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1573 unsigned long *devfns) 1574 { 1575 struct pci_dev *tmp = NULL; 1576 struct iommu_group *group; 1577 1578 if (test_and_set_bit(pdev->devfn & 0xff, devfns)) 1579 return NULL; 1580 1581 group = iommu_group_get(&pdev->dev); 1582 if (group) 1583 return group; 1584 1585 for_each_pci_dev(tmp) { 1586 if (tmp == pdev || tmp->bus != pdev->bus) 1587 continue; 1588 1589 /* We alias them or they alias us */ 1590 if (pci_devs_are_dma_aliases(pdev, tmp)) { 1591 group = get_pci_alias_group(tmp, devfns); 1592 if (group) { 1593 pci_dev_put(tmp); 1594 return group; 1595 } 1596 1597 group = get_pci_function_alias_group(tmp, devfns); 1598 if (group) { 1599 pci_dev_put(tmp); 1600 return group; 1601 } 1602 } 1603 } 1604 1605 return NULL; 1606 } 1607 1608 struct group_for_pci_data { 1609 struct pci_dev *pdev; 1610 struct iommu_group *group; 1611 }; 1612 1613 /* 1614 * DMA alias iterator callback, return the last seen device. Stop and return 1615 * the IOMMU group if we find one along the way. 1616 */ 1617 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque) 1618 { 1619 struct group_for_pci_data *data = opaque; 1620 1621 data->pdev = pdev; 1622 data->group = iommu_group_get(&pdev->dev); 1623 1624 return data->group != NULL; 1625 } 1626 1627 /* 1628 * Generic device_group call-back function. It just allocates one 1629 * iommu-group per device. 1630 */ 1631 struct iommu_group *generic_device_group(struct device *dev) 1632 { 1633 return iommu_group_alloc(); 1634 } 1635 EXPORT_SYMBOL_GPL(generic_device_group); 1636 1637 /* 1638 * Use standard PCI bus topology, isolation features, and DMA alias quirks 1639 * to find or create an IOMMU group for a device. 1640 */ 1641 struct iommu_group *pci_device_group(struct device *dev) 1642 { 1643 struct pci_dev *pdev = to_pci_dev(dev); 1644 struct group_for_pci_data data; 1645 struct pci_bus *bus; 1646 struct iommu_group *group = NULL; 1647 u64 devfns[4] = { 0 }; 1648 1649 if (WARN_ON(!dev_is_pci(dev))) 1650 return ERR_PTR(-EINVAL); 1651 1652 /* 1653 * Find the upstream DMA alias for the device. A device must not 1654 * be aliased due to topology in order to have its own IOMMU group. 1655 * If we find an alias along the way that already belongs to a 1656 * group, use it. 1657 */ 1658 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data)) 1659 return data.group; 1660 1661 pdev = data.pdev; 1662 1663 /* 1664 * Continue upstream from the point of minimum IOMMU granularity 1665 * due to aliases to the point where devices are protected from 1666 * peer-to-peer DMA by PCI ACS. Again, if we find an existing 1667 * group, use it. 1668 */ 1669 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) { 1670 if (!bus->self) 1671 continue; 1672 1673 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS)) 1674 break; 1675 1676 pdev = bus->self; 1677 1678 group = iommu_group_get(&pdev->dev); 1679 if (group) 1680 return group; 1681 } 1682 1683 /* 1684 * Look for existing groups on device aliases. If we alias another 1685 * device or another device aliases us, use the same group. 1686 */ 1687 group = get_pci_alias_group(pdev, (unsigned long *)devfns); 1688 if (group) 1689 return group; 1690 1691 /* 1692 * Look for existing groups on non-isolated functions on the same 1693 * slot and aliases of those funcions, if any. No need to clear 1694 * the search bitmap, the tested devfns are still valid. 1695 */ 1696 group = get_pci_function_alias_group(pdev, (unsigned long *)devfns); 1697 if (group) 1698 return group; 1699 1700 /* No shared group found, allocate new */ 1701 return iommu_group_alloc(); 1702 } 1703 EXPORT_SYMBOL_GPL(pci_device_group); 1704 1705 /* Get the IOMMU group for device on fsl-mc bus */ 1706 struct iommu_group *fsl_mc_device_group(struct device *dev) 1707 { 1708 struct device *cont_dev = fsl_mc_cont_dev(dev); 1709 struct iommu_group *group; 1710 1711 group = iommu_group_get(cont_dev); 1712 if (!group) 1713 group = iommu_group_alloc(); 1714 return group; 1715 } 1716 EXPORT_SYMBOL_GPL(fsl_mc_device_group); 1717 1718 static int iommu_get_def_domain_type(struct device *dev) 1719 { 1720 const struct iommu_ops *ops = dev_iommu_ops(dev); 1721 1722 if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted) 1723 return IOMMU_DOMAIN_DMA; 1724 1725 if (ops->def_domain_type) 1726 return ops->def_domain_type(dev); 1727 1728 return 0; 1729 } 1730 1731 static struct iommu_domain * 1732 __iommu_group_alloc_default_domain(const struct bus_type *bus, 1733 struct iommu_group *group, int req_type) 1734 { 1735 if (group->default_domain && group->default_domain->type == req_type) 1736 return group->default_domain; 1737 return __iommu_domain_alloc(bus, req_type); 1738 } 1739 1740 /* 1741 * req_type of 0 means "auto" which means to select a domain based on 1742 * iommu_def_domain_type or what the driver actually supports. 1743 */ 1744 static struct iommu_domain * 1745 iommu_group_alloc_default_domain(struct iommu_group *group, int req_type) 1746 { 1747 const struct bus_type *bus = 1748 list_first_entry(&group->devices, struct group_device, list) 1749 ->dev->bus; 1750 struct iommu_domain *dom; 1751 1752 lockdep_assert_held(&group->mutex); 1753 1754 if (req_type) 1755 return __iommu_group_alloc_default_domain(bus, group, req_type); 1756 1757 /* The driver gave no guidance on what type to use, try the default */ 1758 dom = __iommu_group_alloc_default_domain(bus, group, iommu_def_domain_type); 1759 if (dom) 1760 return dom; 1761 1762 /* Otherwise IDENTITY and DMA_FQ defaults will try DMA */ 1763 if (iommu_def_domain_type == IOMMU_DOMAIN_DMA) 1764 return NULL; 1765 dom = __iommu_group_alloc_default_domain(bus, group, IOMMU_DOMAIN_DMA); 1766 if (!dom) 1767 return NULL; 1768 1769 pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA", 1770 iommu_def_domain_type, group->name); 1771 return dom; 1772 } 1773 1774 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group) 1775 { 1776 return group->default_domain; 1777 } 1778 1779 static int probe_iommu_group(struct device *dev, void *data) 1780 { 1781 struct list_head *group_list = data; 1782 int ret; 1783 1784 mutex_lock(&iommu_probe_device_lock); 1785 ret = __iommu_probe_device(dev, group_list); 1786 mutex_unlock(&iommu_probe_device_lock); 1787 if (ret == -ENODEV) 1788 ret = 0; 1789 1790 return ret; 1791 } 1792 1793 static int iommu_bus_notifier(struct notifier_block *nb, 1794 unsigned long action, void *data) 1795 { 1796 struct device *dev = data; 1797 1798 if (action == BUS_NOTIFY_ADD_DEVICE) { 1799 int ret; 1800 1801 ret = iommu_probe_device(dev); 1802 return (ret) ? NOTIFY_DONE : NOTIFY_OK; 1803 } else if (action == BUS_NOTIFY_REMOVED_DEVICE) { 1804 iommu_release_device(dev); 1805 return NOTIFY_OK; 1806 } 1807 1808 return 0; 1809 } 1810 1811 /* A target_type of 0 will select the best domain type and cannot fail */ 1812 static int iommu_get_default_domain_type(struct iommu_group *group, 1813 int target_type) 1814 { 1815 int best_type = target_type; 1816 struct group_device *gdev; 1817 struct device *last_dev; 1818 1819 lockdep_assert_held(&group->mutex); 1820 1821 for_each_group_device(group, gdev) { 1822 unsigned int type = iommu_get_def_domain_type(gdev->dev); 1823 1824 if (best_type && type && best_type != type) { 1825 if (target_type) { 1826 dev_err_ratelimited( 1827 gdev->dev, 1828 "Device cannot be in %s domain\n", 1829 iommu_domain_type_str(target_type)); 1830 return -1; 1831 } 1832 1833 dev_warn( 1834 gdev->dev, 1835 "Device needs domain type %s, but device %s in the same iommu group requires type %s - using default\n", 1836 iommu_domain_type_str(type), dev_name(last_dev), 1837 iommu_domain_type_str(best_type)); 1838 return 0; 1839 } 1840 if (!best_type) 1841 best_type = type; 1842 last_dev = gdev->dev; 1843 } 1844 return best_type; 1845 } 1846 1847 static void iommu_group_do_probe_finalize(struct device *dev) 1848 { 1849 const struct iommu_ops *ops = dev_iommu_ops(dev); 1850 1851 if (ops->probe_finalize) 1852 ops->probe_finalize(dev); 1853 } 1854 1855 int bus_iommu_probe(const struct bus_type *bus) 1856 { 1857 struct iommu_group *group, *next; 1858 LIST_HEAD(group_list); 1859 int ret; 1860 1861 ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group); 1862 if (ret) 1863 return ret; 1864 1865 list_for_each_entry_safe(group, next, &group_list, entry) { 1866 struct group_device *gdev; 1867 1868 mutex_lock(&group->mutex); 1869 1870 /* Remove item from the list */ 1871 list_del_init(&group->entry); 1872 1873 /* 1874 * We go to the trouble of deferred default domain creation so 1875 * that the cross-group default domain type and the setup of the 1876 * IOMMU_RESV_DIRECT will work correctly in non-hotpug scenarios. 1877 */ 1878 ret = iommu_setup_default_domain(group, 0); 1879 if (ret) { 1880 mutex_unlock(&group->mutex); 1881 return ret; 1882 } 1883 mutex_unlock(&group->mutex); 1884 1885 /* 1886 * FIXME: Mis-locked because the ops->probe_finalize() call-back 1887 * of some IOMMU drivers calls arm_iommu_attach_device() which 1888 * in-turn might call back into IOMMU core code, where it tries 1889 * to take group->mutex, resulting in a deadlock. 1890 */ 1891 for_each_group_device(group, gdev) 1892 iommu_group_do_probe_finalize(gdev->dev); 1893 } 1894 1895 return 0; 1896 } 1897 1898 bool iommu_present(const struct bus_type *bus) 1899 { 1900 return bus->iommu_ops != NULL; 1901 } 1902 EXPORT_SYMBOL_GPL(iommu_present); 1903 1904 /** 1905 * device_iommu_capable() - check for a general IOMMU capability 1906 * @dev: device to which the capability would be relevant, if available 1907 * @cap: IOMMU capability 1908 * 1909 * Return: true if an IOMMU is present and supports the given capability 1910 * for the given device, otherwise false. 1911 */ 1912 bool device_iommu_capable(struct device *dev, enum iommu_cap cap) 1913 { 1914 const struct iommu_ops *ops; 1915 1916 if (!dev->iommu || !dev->iommu->iommu_dev) 1917 return false; 1918 1919 ops = dev_iommu_ops(dev); 1920 if (!ops->capable) 1921 return false; 1922 1923 return ops->capable(dev, cap); 1924 } 1925 EXPORT_SYMBOL_GPL(device_iommu_capable); 1926 1927 /** 1928 * iommu_group_has_isolated_msi() - Compute msi_device_has_isolated_msi() 1929 * for a group 1930 * @group: Group to query 1931 * 1932 * IOMMU groups should not have differing values of 1933 * msi_device_has_isolated_msi() for devices in a group. However nothing 1934 * directly prevents this, so ensure mistakes don't result in isolation failures 1935 * by checking that all the devices are the same. 1936 */ 1937 bool iommu_group_has_isolated_msi(struct iommu_group *group) 1938 { 1939 struct group_device *group_dev; 1940 bool ret = true; 1941 1942 mutex_lock(&group->mutex); 1943 for_each_group_device(group, group_dev) 1944 ret &= msi_device_has_isolated_msi(group_dev->dev); 1945 mutex_unlock(&group->mutex); 1946 return ret; 1947 } 1948 EXPORT_SYMBOL_GPL(iommu_group_has_isolated_msi); 1949 1950 /** 1951 * iommu_set_fault_handler() - set a fault handler for an iommu domain 1952 * @domain: iommu domain 1953 * @handler: fault handler 1954 * @token: user data, will be passed back to the fault handler 1955 * 1956 * This function should be used by IOMMU users which want to be notified 1957 * whenever an IOMMU fault happens. 1958 * 1959 * The fault handler itself should return 0 on success, and an appropriate 1960 * error code otherwise. 1961 */ 1962 void iommu_set_fault_handler(struct iommu_domain *domain, 1963 iommu_fault_handler_t handler, 1964 void *token) 1965 { 1966 BUG_ON(!domain); 1967 1968 domain->handler = handler; 1969 domain->handler_token = token; 1970 } 1971 EXPORT_SYMBOL_GPL(iommu_set_fault_handler); 1972 1973 static struct iommu_domain *__iommu_domain_alloc(const struct bus_type *bus, 1974 unsigned type) 1975 { 1976 struct iommu_domain *domain; 1977 unsigned int alloc_type = type & IOMMU_DOMAIN_ALLOC_FLAGS; 1978 1979 if (bus == NULL || bus->iommu_ops == NULL) 1980 return NULL; 1981 1982 domain = bus->iommu_ops->domain_alloc(alloc_type); 1983 if (!domain) 1984 return NULL; 1985 1986 domain->type = type; 1987 /* 1988 * If not already set, assume all sizes by default; the driver 1989 * may override this later 1990 */ 1991 if (!domain->pgsize_bitmap) 1992 domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap; 1993 1994 if (!domain->ops) 1995 domain->ops = bus->iommu_ops->default_domain_ops; 1996 1997 if (iommu_is_dma_domain(domain) && iommu_get_dma_cookie(domain)) { 1998 iommu_domain_free(domain); 1999 domain = NULL; 2000 } 2001 return domain; 2002 } 2003 2004 struct iommu_domain *iommu_domain_alloc(const struct bus_type *bus) 2005 { 2006 return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED); 2007 } 2008 EXPORT_SYMBOL_GPL(iommu_domain_alloc); 2009 2010 void iommu_domain_free(struct iommu_domain *domain) 2011 { 2012 if (domain->type == IOMMU_DOMAIN_SVA) 2013 mmdrop(domain->mm); 2014 iommu_put_dma_cookie(domain); 2015 domain->ops->free(domain); 2016 } 2017 EXPORT_SYMBOL_GPL(iommu_domain_free); 2018 2019 /* 2020 * Put the group's domain back to the appropriate core-owned domain - either the 2021 * standard kernel-mode DMA configuration or an all-DMA-blocked domain. 2022 */ 2023 static void __iommu_group_set_core_domain(struct iommu_group *group) 2024 { 2025 struct iommu_domain *new_domain; 2026 2027 if (group->owner) 2028 new_domain = group->blocking_domain; 2029 else 2030 new_domain = group->default_domain; 2031 2032 __iommu_group_set_domain_nofail(group, new_domain); 2033 } 2034 2035 static int __iommu_attach_device(struct iommu_domain *domain, 2036 struct device *dev) 2037 { 2038 int ret; 2039 2040 if (unlikely(domain->ops->attach_dev == NULL)) 2041 return -ENODEV; 2042 2043 ret = domain->ops->attach_dev(domain, dev); 2044 if (ret) 2045 return ret; 2046 dev->iommu->attach_deferred = 0; 2047 trace_attach_device_to_domain(dev); 2048 return 0; 2049 } 2050 2051 /** 2052 * iommu_attach_device - Attach an IOMMU domain to a device 2053 * @domain: IOMMU domain to attach 2054 * @dev: Device that will be attached 2055 * 2056 * Returns 0 on success and error code on failure 2057 * 2058 * Note that EINVAL can be treated as a soft failure, indicating 2059 * that certain configuration of the domain is incompatible with 2060 * the device. In this case attaching a different domain to the 2061 * device may succeed. 2062 */ 2063 int iommu_attach_device(struct iommu_domain *domain, struct device *dev) 2064 { 2065 struct iommu_group *group; 2066 int ret; 2067 2068 group = iommu_group_get(dev); 2069 if (!group) 2070 return -ENODEV; 2071 2072 /* 2073 * Lock the group to make sure the device-count doesn't 2074 * change while we are attaching 2075 */ 2076 mutex_lock(&group->mutex); 2077 ret = -EINVAL; 2078 if (list_count_nodes(&group->devices) != 1) 2079 goto out_unlock; 2080 2081 ret = __iommu_attach_group(domain, group); 2082 2083 out_unlock: 2084 mutex_unlock(&group->mutex); 2085 iommu_group_put(group); 2086 2087 return ret; 2088 } 2089 EXPORT_SYMBOL_GPL(iommu_attach_device); 2090 2091 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain) 2092 { 2093 if (dev->iommu && dev->iommu->attach_deferred) 2094 return __iommu_attach_device(domain, dev); 2095 2096 return 0; 2097 } 2098 2099 void iommu_detach_device(struct iommu_domain *domain, struct device *dev) 2100 { 2101 struct iommu_group *group; 2102 2103 group = iommu_group_get(dev); 2104 if (!group) 2105 return; 2106 2107 mutex_lock(&group->mutex); 2108 if (WARN_ON(domain != group->domain) || 2109 WARN_ON(list_count_nodes(&group->devices) != 1)) 2110 goto out_unlock; 2111 __iommu_group_set_core_domain(group); 2112 2113 out_unlock: 2114 mutex_unlock(&group->mutex); 2115 iommu_group_put(group); 2116 } 2117 EXPORT_SYMBOL_GPL(iommu_detach_device); 2118 2119 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev) 2120 { 2121 struct iommu_domain *domain; 2122 struct iommu_group *group; 2123 2124 group = iommu_group_get(dev); 2125 if (!group) 2126 return NULL; 2127 2128 domain = group->domain; 2129 2130 iommu_group_put(group); 2131 2132 return domain; 2133 } 2134 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev); 2135 2136 /* 2137 * For IOMMU_DOMAIN_DMA implementations which already provide their own 2138 * guarantees that the group and its default domain are valid and correct. 2139 */ 2140 struct iommu_domain *iommu_get_dma_domain(struct device *dev) 2141 { 2142 return dev->iommu_group->default_domain; 2143 } 2144 2145 static int __iommu_attach_group(struct iommu_domain *domain, 2146 struct iommu_group *group) 2147 { 2148 if (group->domain && group->domain != group->default_domain && 2149 group->domain != group->blocking_domain) 2150 return -EBUSY; 2151 2152 return __iommu_group_set_domain(group, domain); 2153 } 2154 2155 /** 2156 * iommu_attach_group - Attach an IOMMU domain to an IOMMU group 2157 * @domain: IOMMU domain to attach 2158 * @group: IOMMU group that will be attached 2159 * 2160 * Returns 0 on success and error code on failure 2161 * 2162 * Note that EINVAL can be treated as a soft failure, indicating 2163 * that certain configuration of the domain is incompatible with 2164 * the group. In this case attaching a different domain to the 2165 * group may succeed. 2166 */ 2167 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group) 2168 { 2169 int ret; 2170 2171 mutex_lock(&group->mutex); 2172 ret = __iommu_attach_group(domain, group); 2173 mutex_unlock(&group->mutex); 2174 2175 return ret; 2176 } 2177 EXPORT_SYMBOL_GPL(iommu_attach_group); 2178 2179 /** 2180 * iommu_group_replace_domain - replace the domain that a group is attached to 2181 * @new_domain: new IOMMU domain to replace with 2182 * @group: IOMMU group that will be attached to the new domain 2183 * 2184 * This API allows the group to switch domains without being forced to go to 2185 * the blocking domain in-between. 2186 * 2187 * If the currently attached domain is a core domain (e.g. a default_domain), 2188 * it will act just like the iommu_attach_group(). 2189 */ 2190 int iommu_group_replace_domain(struct iommu_group *group, 2191 struct iommu_domain *new_domain) 2192 { 2193 int ret; 2194 2195 if (!new_domain) 2196 return -EINVAL; 2197 2198 mutex_lock(&group->mutex); 2199 ret = __iommu_group_set_domain(group, new_domain); 2200 mutex_unlock(&group->mutex); 2201 return ret; 2202 } 2203 EXPORT_SYMBOL_NS_GPL(iommu_group_replace_domain, IOMMUFD_INTERNAL); 2204 2205 static int __iommu_device_set_domain(struct iommu_group *group, 2206 struct device *dev, 2207 struct iommu_domain *new_domain, 2208 unsigned int flags) 2209 { 2210 int ret; 2211 2212 /* 2213 * If the device requires IOMMU_RESV_DIRECT then we cannot allow 2214 * the blocking domain to be attached as it does not contain the 2215 * required 1:1 mapping. This test effectively excludes the device 2216 * being used with iommu_group_claim_dma_owner() which will block 2217 * vfio and iommufd as well. 2218 */ 2219 if (dev->iommu->require_direct && 2220 (new_domain->type == IOMMU_DOMAIN_BLOCKED || 2221 new_domain == group->blocking_domain)) { 2222 dev_warn(dev, 2223 "Firmware has requested this device have a 1:1 IOMMU mapping, rejecting configuring the device without a 1:1 mapping. Contact your platform vendor.\n"); 2224 return -EINVAL; 2225 } 2226 2227 if (dev->iommu->attach_deferred) { 2228 if (new_domain == group->default_domain) 2229 return 0; 2230 dev->iommu->attach_deferred = 0; 2231 } 2232 2233 ret = __iommu_attach_device(new_domain, dev); 2234 if (ret) { 2235 /* 2236 * If we have a blocking domain then try to attach that in hopes 2237 * of avoiding a UAF. Modern drivers should implement blocking 2238 * domains as global statics that cannot fail. 2239 */ 2240 if ((flags & IOMMU_SET_DOMAIN_MUST_SUCCEED) && 2241 group->blocking_domain && 2242 group->blocking_domain != new_domain) 2243 __iommu_attach_device(group->blocking_domain, dev); 2244 return ret; 2245 } 2246 return 0; 2247 } 2248 2249 /* 2250 * If 0 is returned the group's domain is new_domain. If an error is returned 2251 * then the group's domain will be set back to the existing domain unless 2252 * IOMMU_SET_DOMAIN_MUST_SUCCEED, otherwise an error is returned and the group's 2253 * domains is left inconsistent. This is a driver bug to fail attach with a 2254 * previously good domain. We try to avoid a kernel UAF because of this. 2255 * 2256 * IOMMU groups are really the natural working unit of the IOMMU, but the IOMMU 2257 * API works on domains and devices. Bridge that gap by iterating over the 2258 * devices in a group. Ideally we'd have a single device which represents the 2259 * requestor ID of the group, but we also allow IOMMU drivers to create policy 2260 * defined minimum sets, where the physical hardware may be able to distiguish 2261 * members, but we wish to group them at a higher level (ex. untrusted 2262 * multi-function PCI devices). Thus we attach each device. 2263 */ 2264 static int __iommu_group_set_domain_internal(struct iommu_group *group, 2265 struct iommu_domain *new_domain, 2266 unsigned int flags) 2267 { 2268 struct group_device *last_gdev; 2269 struct group_device *gdev; 2270 int result; 2271 int ret; 2272 2273 lockdep_assert_held(&group->mutex); 2274 2275 if (group->domain == new_domain) 2276 return 0; 2277 2278 /* 2279 * New drivers should support default domains, so set_platform_dma() 2280 * op will never be called. Otherwise the NULL domain represents some 2281 * platform specific behavior. 2282 */ 2283 if (!new_domain) { 2284 for_each_group_device(group, gdev) { 2285 const struct iommu_ops *ops = dev_iommu_ops(gdev->dev); 2286 2287 if (!WARN_ON(!ops->set_platform_dma_ops)) 2288 ops->set_platform_dma_ops(gdev->dev); 2289 } 2290 group->domain = NULL; 2291 return 0; 2292 } 2293 2294 /* 2295 * Changing the domain is done by calling attach_dev() on the new 2296 * domain. This switch does not have to be atomic and DMA can be 2297 * discarded during the transition. DMA must only be able to access 2298 * either new_domain or group->domain, never something else. 2299 */ 2300 result = 0; 2301 for_each_group_device(group, gdev) { 2302 ret = __iommu_device_set_domain(group, gdev->dev, new_domain, 2303 flags); 2304 if (ret) { 2305 result = ret; 2306 /* 2307 * Keep trying the other devices in the group. If a 2308 * driver fails attach to an otherwise good domain, and 2309 * does not support blocking domains, it should at least 2310 * drop its reference on the current domain so we don't 2311 * UAF. 2312 */ 2313 if (flags & IOMMU_SET_DOMAIN_MUST_SUCCEED) 2314 continue; 2315 goto err_revert; 2316 } 2317 } 2318 group->domain = new_domain; 2319 return result; 2320 2321 err_revert: 2322 /* 2323 * This is called in error unwind paths. A well behaved driver should 2324 * always allow us to attach to a domain that was already attached. 2325 */ 2326 last_gdev = gdev; 2327 for_each_group_device(group, gdev) { 2328 const struct iommu_ops *ops = dev_iommu_ops(gdev->dev); 2329 2330 /* 2331 * If set_platform_dma_ops is not present a NULL domain can 2332 * happen only for first probe, in which case we leave 2333 * group->domain as NULL and let release clean everything up. 2334 */ 2335 if (group->domain) 2336 WARN_ON(__iommu_device_set_domain( 2337 group, gdev->dev, group->domain, 2338 IOMMU_SET_DOMAIN_MUST_SUCCEED)); 2339 else if (ops->set_platform_dma_ops) 2340 ops->set_platform_dma_ops(gdev->dev); 2341 if (gdev == last_gdev) 2342 break; 2343 } 2344 return ret; 2345 } 2346 2347 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group) 2348 { 2349 mutex_lock(&group->mutex); 2350 __iommu_group_set_core_domain(group); 2351 mutex_unlock(&group->mutex); 2352 } 2353 EXPORT_SYMBOL_GPL(iommu_detach_group); 2354 2355 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) 2356 { 2357 if (domain->type == IOMMU_DOMAIN_IDENTITY) 2358 return iova; 2359 2360 if (domain->type == IOMMU_DOMAIN_BLOCKED) 2361 return 0; 2362 2363 return domain->ops->iova_to_phys(domain, iova); 2364 } 2365 EXPORT_SYMBOL_GPL(iommu_iova_to_phys); 2366 2367 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova, 2368 phys_addr_t paddr, size_t size, size_t *count) 2369 { 2370 unsigned int pgsize_idx, pgsize_idx_next; 2371 unsigned long pgsizes; 2372 size_t offset, pgsize, pgsize_next; 2373 unsigned long addr_merge = paddr | iova; 2374 2375 /* Page sizes supported by the hardware and small enough for @size */ 2376 pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0); 2377 2378 /* Constrain the page sizes further based on the maximum alignment */ 2379 if (likely(addr_merge)) 2380 pgsizes &= GENMASK(__ffs(addr_merge), 0); 2381 2382 /* Make sure we have at least one suitable page size */ 2383 BUG_ON(!pgsizes); 2384 2385 /* Pick the biggest page size remaining */ 2386 pgsize_idx = __fls(pgsizes); 2387 pgsize = BIT(pgsize_idx); 2388 if (!count) 2389 return pgsize; 2390 2391 /* Find the next biggest support page size, if it exists */ 2392 pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0); 2393 if (!pgsizes) 2394 goto out_set_count; 2395 2396 pgsize_idx_next = __ffs(pgsizes); 2397 pgsize_next = BIT(pgsize_idx_next); 2398 2399 /* 2400 * There's no point trying a bigger page size unless the virtual 2401 * and physical addresses are similarly offset within the larger page. 2402 */ 2403 if ((iova ^ paddr) & (pgsize_next - 1)) 2404 goto out_set_count; 2405 2406 /* Calculate the offset to the next page size alignment boundary */ 2407 offset = pgsize_next - (addr_merge & (pgsize_next - 1)); 2408 2409 /* 2410 * If size is big enough to accommodate the larger page, reduce 2411 * the number of smaller pages. 2412 */ 2413 if (offset + pgsize_next <= size) 2414 size = offset; 2415 2416 out_set_count: 2417 *count = size >> pgsize_idx; 2418 return pgsize; 2419 } 2420 2421 static int __iommu_map_pages(struct iommu_domain *domain, unsigned long iova, 2422 phys_addr_t paddr, size_t size, int prot, 2423 gfp_t gfp, size_t *mapped) 2424 { 2425 const struct iommu_domain_ops *ops = domain->ops; 2426 size_t pgsize, count; 2427 int ret; 2428 2429 pgsize = iommu_pgsize(domain, iova, paddr, size, &count); 2430 2431 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n", 2432 iova, &paddr, pgsize, count); 2433 2434 if (ops->map_pages) { 2435 ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot, 2436 gfp, mapped); 2437 } else { 2438 ret = ops->map(domain, iova, paddr, pgsize, prot, gfp); 2439 *mapped = ret ? 0 : pgsize; 2440 } 2441 2442 return ret; 2443 } 2444 2445 static int __iommu_map(struct iommu_domain *domain, unsigned long iova, 2446 phys_addr_t paddr, size_t size, int prot, gfp_t gfp) 2447 { 2448 const struct iommu_domain_ops *ops = domain->ops; 2449 unsigned long orig_iova = iova; 2450 unsigned int min_pagesz; 2451 size_t orig_size = size; 2452 phys_addr_t orig_paddr = paddr; 2453 int ret = 0; 2454 2455 if (unlikely(!(ops->map || ops->map_pages) || 2456 domain->pgsize_bitmap == 0UL)) 2457 return -ENODEV; 2458 2459 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 2460 return -EINVAL; 2461 2462 /* find out the minimum page size supported */ 2463 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 2464 2465 /* 2466 * both the virtual address and the physical one, as well as 2467 * the size of the mapping, must be aligned (at least) to the 2468 * size of the smallest page supported by the hardware 2469 */ 2470 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) { 2471 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n", 2472 iova, &paddr, size, min_pagesz); 2473 return -EINVAL; 2474 } 2475 2476 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size); 2477 2478 while (size) { 2479 size_t mapped = 0; 2480 2481 ret = __iommu_map_pages(domain, iova, paddr, size, prot, gfp, 2482 &mapped); 2483 /* 2484 * Some pages may have been mapped, even if an error occurred, 2485 * so we should account for those so they can be unmapped. 2486 */ 2487 size -= mapped; 2488 2489 if (ret) 2490 break; 2491 2492 iova += mapped; 2493 paddr += mapped; 2494 } 2495 2496 /* unroll mapping in case something went wrong */ 2497 if (ret) 2498 iommu_unmap(domain, orig_iova, orig_size - size); 2499 else 2500 trace_map(orig_iova, orig_paddr, orig_size); 2501 2502 return ret; 2503 } 2504 2505 int iommu_map(struct iommu_domain *domain, unsigned long iova, 2506 phys_addr_t paddr, size_t size, int prot, gfp_t gfp) 2507 { 2508 const struct iommu_domain_ops *ops = domain->ops; 2509 int ret; 2510 2511 might_sleep_if(gfpflags_allow_blocking(gfp)); 2512 2513 /* Discourage passing strange GFP flags */ 2514 if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 | 2515 __GFP_HIGHMEM))) 2516 return -EINVAL; 2517 2518 ret = __iommu_map(domain, iova, paddr, size, prot, gfp); 2519 if (ret == 0 && ops->iotlb_sync_map) 2520 ops->iotlb_sync_map(domain, iova, size); 2521 2522 return ret; 2523 } 2524 EXPORT_SYMBOL_GPL(iommu_map); 2525 2526 static size_t __iommu_unmap_pages(struct iommu_domain *domain, 2527 unsigned long iova, size_t size, 2528 struct iommu_iotlb_gather *iotlb_gather) 2529 { 2530 const struct iommu_domain_ops *ops = domain->ops; 2531 size_t pgsize, count; 2532 2533 pgsize = iommu_pgsize(domain, iova, iova, size, &count); 2534 return ops->unmap_pages ? 2535 ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather) : 2536 ops->unmap(domain, iova, pgsize, iotlb_gather); 2537 } 2538 2539 static size_t __iommu_unmap(struct iommu_domain *domain, 2540 unsigned long iova, size_t size, 2541 struct iommu_iotlb_gather *iotlb_gather) 2542 { 2543 const struct iommu_domain_ops *ops = domain->ops; 2544 size_t unmapped_page, unmapped = 0; 2545 unsigned long orig_iova = iova; 2546 unsigned int min_pagesz; 2547 2548 if (unlikely(!(ops->unmap || ops->unmap_pages) || 2549 domain->pgsize_bitmap == 0UL)) 2550 return 0; 2551 2552 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 2553 return 0; 2554 2555 /* find out the minimum page size supported */ 2556 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 2557 2558 /* 2559 * The virtual address, as well as the size of the mapping, must be 2560 * aligned (at least) to the size of the smallest page supported 2561 * by the hardware 2562 */ 2563 if (!IS_ALIGNED(iova | size, min_pagesz)) { 2564 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n", 2565 iova, size, min_pagesz); 2566 return 0; 2567 } 2568 2569 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size); 2570 2571 /* 2572 * Keep iterating until we either unmap 'size' bytes (or more) 2573 * or we hit an area that isn't mapped. 2574 */ 2575 while (unmapped < size) { 2576 unmapped_page = __iommu_unmap_pages(domain, iova, 2577 size - unmapped, 2578 iotlb_gather); 2579 if (!unmapped_page) 2580 break; 2581 2582 pr_debug("unmapped: iova 0x%lx size 0x%zx\n", 2583 iova, unmapped_page); 2584 2585 iova += unmapped_page; 2586 unmapped += unmapped_page; 2587 } 2588 2589 trace_unmap(orig_iova, size, unmapped); 2590 return unmapped; 2591 } 2592 2593 size_t iommu_unmap(struct iommu_domain *domain, 2594 unsigned long iova, size_t size) 2595 { 2596 struct iommu_iotlb_gather iotlb_gather; 2597 size_t ret; 2598 2599 iommu_iotlb_gather_init(&iotlb_gather); 2600 ret = __iommu_unmap(domain, iova, size, &iotlb_gather); 2601 iommu_iotlb_sync(domain, &iotlb_gather); 2602 2603 return ret; 2604 } 2605 EXPORT_SYMBOL_GPL(iommu_unmap); 2606 2607 size_t iommu_unmap_fast(struct iommu_domain *domain, 2608 unsigned long iova, size_t size, 2609 struct iommu_iotlb_gather *iotlb_gather) 2610 { 2611 return __iommu_unmap(domain, iova, size, iotlb_gather); 2612 } 2613 EXPORT_SYMBOL_GPL(iommu_unmap_fast); 2614 2615 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova, 2616 struct scatterlist *sg, unsigned int nents, int prot, 2617 gfp_t gfp) 2618 { 2619 const struct iommu_domain_ops *ops = domain->ops; 2620 size_t len = 0, mapped = 0; 2621 phys_addr_t start; 2622 unsigned int i = 0; 2623 int ret; 2624 2625 might_sleep_if(gfpflags_allow_blocking(gfp)); 2626 2627 /* Discourage passing strange GFP flags */ 2628 if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 | 2629 __GFP_HIGHMEM))) 2630 return -EINVAL; 2631 2632 while (i <= nents) { 2633 phys_addr_t s_phys = sg_phys(sg); 2634 2635 if (len && s_phys != start + len) { 2636 ret = __iommu_map(domain, iova + mapped, start, 2637 len, prot, gfp); 2638 2639 if (ret) 2640 goto out_err; 2641 2642 mapped += len; 2643 len = 0; 2644 } 2645 2646 if (sg_dma_is_bus_address(sg)) 2647 goto next; 2648 2649 if (len) { 2650 len += sg->length; 2651 } else { 2652 len = sg->length; 2653 start = s_phys; 2654 } 2655 2656 next: 2657 if (++i < nents) 2658 sg = sg_next(sg); 2659 } 2660 2661 if (ops->iotlb_sync_map) 2662 ops->iotlb_sync_map(domain, iova, mapped); 2663 return mapped; 2664 2665 out_err: 2666 /* undo mappings already done */ 2667 iommu_unmap(domain, iova, mapped); 2668 2669 return ret; 2670 } 2671 EXPORT_SYMBOL_GPL(iommu_map_sg); 2672 2673 /** 2674 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework 2675 * @domain: the iommu domain where the fault has happened 2676 * @dev: the device where the fault has happened 2677 * @iova: the faulting address 2678 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...) 2679 * 2680 * This function should be called by the low-level IOMMU implementations 2681 * whenever IOMMU faults happen, to allow high-level users, that are 2682 * interested in such events, to know about them. 2683 * 2684 * This event may be useful for several possible use cases: 2685 * - mere logging of the event 2686 * - dynamic TLB/PTE loading 2687 * - if restarting of the faulting device is required 2688 * 2689 * Returns 0 on success and an appropriate error code otherwise (if dynamic 2690 * PTE/TLB loading will one day be supported, implementations will be able 2691 * to tell whether it succeeded or not according to this return value). 2692 * 2693 * Specifically, -ENOSYS is returned if a fault handler isn't installed 2694 * (though fault handlers can also return -ENOSYS, in case they want to 2695 * elicit the default behavior of the IOMMU drivers). 2696 */ 2697 int report_iommu_fault(struct iommu_domain *domain, struct device *dev, 2698 unsigned long iova, int flags) 2699 { 2700 int ret = -ENOSYS; 2701 2702 /* 2703 * if upper layers showed interest and installed a fault handler, 2704 * invoke it. 2705 */ 2706 if (domain->handler) 2707 ret = domain->handler(domain, dev, iova, flags, 2708 domain->handler_token); 2709 2710 trace_io_page_fault(dev, iova, flags); 2711 return ret; 2712 } 2713 EXPORT_SYMBOL_GPL(report_iommu_fault); 2714 2715 static int __init iommu_init(void) 2716 { 2717 iommu_group_kset = kset_create_and_add("iommu_groups", 2718 NULL, kernel_kobj); 2719 BUG_ON(!iommu_group_kset); 2720 2721 iommu_debugfs_setup(); 2722 2723 return 0; 2724 } 2725 core_initcall(iommu_init); 2726 2727 int iommu_enable_nesting(struct iommu_domain *domain) 2728 { 2729 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 2730 return -EINVAL; 2731 if (!domain->ops->enable_nesting) 2732 return -EINVAL; 2733 return domain->ops->enable_nesting(domain); 2734 } 2735 EXPORT_SYMBOL_GPL(iommu_enable_nesting); 2736 2737 int iommu_set_pgtable_quirks(struct iommu_domain *domain, 2738 unsigned long quirk) 2739 { 2740 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 2741 return -EINVAL; 2742 if (!domain->ops->set_pgtable_quirks) 2743 return -EINVAL; 2744 return domain->ops->set_pgtable_quirks(domain, quirk); 2745 } 2746 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks); 2747 2748 /** 2749 * iommu_get_resv_regions - get reserved regions 2750 * @dev: device for which to get reserved regions 2751 * @list: reserved region list for device 2752 * 2753 * This returns a list of reserved IOVA regions specific to this device. 2754 * A domain user should not map IOVA in these ranges. 2755 */ 2756 void iommu_get_resv_regions(struct device *dev, struct list_head *list) 2757 { 2758 const struct iommu_ops *ops = dev_iommu_ops(dev); 2759 2760 if (ops->get_resv_regions) 2761 ops->get_resv_regions(dev, list); 2762 } 2763 EXPORT_SYMBOL_GPL(iommu_get_resv_regions); 2764 2765 /** 2766 * iommu_put_resv_regions - release reserved regions 2767 * @dev: device for which to free reserved regions 2768 * @list: reserved region list for device 2769 * 2770 * This releases a reserved region list acquired by iommu_get_resv_regions(). 2771 */ 2772 void iommu_put_resv_regions(struct device *dev, struct list_head *list) 2773 { 2774 struct iommu_resv_region *entry, *next; 2775 2776 list_for_each_entry_safe(entry, next, list, list) { 2777 if (entry->free) 2778 entry->free(dev, entry); 2779 else 2780 kfree(entry); 2781 } 2782 } 2783 EXPORT_SYMBOL(iommu_put_resv_regions); 2784 2785 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start, 2786 size_t length, int prot, 2787 enum iommu_resv_type type, 2788 gfp_t gfp) 2789 { 2790 struct iommu_resv_region *region; 2791 2792 region = kzalloc(sizeof(*region), gfp); 2793 if (!region) 2794 return NULL; 2795 2796 INIT_LIST_HEAD(®ion->list); 2797 region->start = start; 2798 region->length = length; 2799 region->prot = prot; 2800 region->type = type; 2801 return region; 2802 } 2803 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region); 2804 2805 void iommu_set_default_passthrough(bool cmd_line) 2806 { 2807 if (cmd_line) 2808 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API; 2809 iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY; 2810 } 2811 2812 void iommu_set_default_translated(bool cmd_line) 2813 { 2814 if (cmd_line) 2815 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API; 2816 iommu_def_domain_type = IOMMU_DOMAIN_DMA; 2817 } 2818 2819 bool iommu_default_passthrough(void) 2820 { 2821 return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY; 2822 } 2823 EXPORT_SYMBOL_GPL(iommu_default_passthrough); 2824 2825 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode) 2826 { 2827 const struct iommu_ops *ops = NULL; 2828 struct iommu_device *iommu; 2829 2830 spin_lock(&iommu_device_lock); 2831 list_for_each_entry(iommu, &iommu_device_list, list) 2832 if (iommu->fwnode == fwnode) { 2833 ops = iommu->ops; 2834 break; 2835 } 2836 spin_unlock(&iommu_device_lock); 2837 return ops; 2838 } 2839 2840 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode, 2841 const struct iommu_ops *ops) 2842 { 2843 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2844 2845 if (fwspec) 2846 return ops == fwspec->ops ? 0 : -EINVAL; 2847 2848 if (!dev_iommu_get(dev)) 2849 return -ENOMEM; 2850 2851 /* Preallocate for the overwhelmingly common case of 1 ID */ 2852 fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL); 2853 if (!fwspec) 2854 return -ENOMEM; 2855 2856 of_node_get(to_of_node(iommu_fwnode)); 2857 fwspec->iommu_fwnode = iommu_fwnode; 2858 fwspec->ops = ops; 2859 dev_iommu_fwspec_set(dev, fwspec); 2860 return 0; 2861 } 2862 EXPORT_SYMBOL_GPL(iommu_fwspec_init); 2863 2864 void iommu_fwspec_free(struct device *dev) 2865 { 2866 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2867 2868 if (fwspec) { 2869 fwnode_handle_put(fwspec->iommu_fwnode); 2870 kfree(fwspec); 2871 dev_iommu_fwspec_set(dev, NULL); 2872 } 2873 } 2874 EXPORT_SYMBOL_GPL(iommu_fwspec_free); 2875 2876 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids) 2877 { 2878 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2879 int i, new_num; 2880 2881 if (!fwspec) 2882 return -EINVAL; 2883 2884 new_num = fwspec->num_ids + num_ids; 2885 if (new_num > 1) { 2886 fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num), 2887 GFP_KERNEL); 2888 if (!fwspec) 2889 return -ENOMEM; 2890 2891 dev_iommu_fwspec_set(dev, fwspec); 2892 } 2893 2894 for (i = 0; i < num_ids; i++) 2895 fwspec->ids[fwspec->num_ids + i] = ids[i]; 2896 2897 fwspec->num_ids = new_num; 2898 return 0; 2899 } 2900 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids); 2901 2902 /* 2903 * Per device IOMMU features. 2904 */ 2905 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat) 2906 { 2907 if (dev->iommu && dev->iommu->iommu_dev) { 2908 const struct iommu_ops *ops = dev->iommu->iommu_dev->ops; 2909 2910 if (ops->dev_enable_feat) 2911 return ops->dev_enable_feat(dev, feat); 2912 } 2913 2914 return -ENODEV; 2915 } 2916 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature); 2917 2918 /* 2919 * The device drivers should do the necessary cleanups before calling this. 2920 */ 2921 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat) 2922 { 2923 if (dev->iommu && dev->iommu->iommu_dev) { 2924 const struct iommu_ops *ops = dev->iommu->iommu_dev->ops; 2925 2926 if (ops->dev_disable_feat) 2927 return ops->dev_disable_feat(dev, feat); 2928 } 2929 2930 return -EBUSY; 2931 } 2932 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature); 2933 2934 /** 2935 * iommu_setup_default_domain - Set the default_domain for the group 2936 * @group: Group to change 2937 * @target_type: Domain type to set as the default_domain 2938 * 2939 * Allocate a default domain and set it as the current domain on the group. If 2940 * the group already has a default domain it will be changed to the target_type. 2941 * When target_type is 0 the default domain is selected based on driver and 2942 * system preferences. 2943 */ 2944 static int iommu_setup_default_domain(struct iommu_group *group, 2945 int target_type) 2946 { 2947 struct iommu_domain *old_dom = group->default_domain; 2948 struct group_device *gdev; 2949 struct iommu_domain *dom; 2950 bool direct_failed; 2951 int req_type; 2952 int ret; 2953 2954 lockdep_assert_held(&group->mutex); 2955 2956 req_type = iommu_get_default_domain_type(group, target_type); 2957 if (req_type < 0) 2958 return -EINVAL; 2959 2960 /* 2961 * There are still some drivers which don't support default domains, so 2962 * we ignore the failure and leave group->default_domain NULL. 2963 * 2964 * We assume that the iommu driver starts up the device in 2965 * 'set_platform_dma_ops' mode if it does not support default domains. 2966 */ 2967 dom = iommu_group_alloc_default_domain(group, req_type); 2968 if (!dom) { 2969 /* Once in default_domain mode we never leave */ 2970 if (group->default_domain) 2971 return -ENODEV; 2972 group->default_domain = NULL; 2973 return 0; 2974 } 2975 2976 if (group->default_domain == dom) 2977 return 0; 2978 2979 /* 2980 * IOMMU_RESV_DIRECT and IOMMU_RESV_DIRECT_RELAXABLE regions must be 2981 * mapped before their device is attached, in order to guarantee 2982 * continuity with any FW activity 2983 */ 2984 direct_failed = false; 2985 for_each_group_device(group, gdev) { 2986 if (iommu_create_device_direct_mappings(dom, gdev->dev)) { 2987 direct_failed = true; 2988 dev_warn_once( 2989 gdev->dev->iommu->iommu_dev->dev, 2990 "IOMMU driver was not able to establish FW requested direct mapping."); 2991 } 2992 } 2993 2994 /* We must set default_domain early for __iommu_device_set_domain */ 2995 group->default_domain = dom; 2996 if (!group->domain) { 2997 /* 2998 * Drivers are not allowed to fail the first domain attach. 2999 * The only way to recover from this is to fail attaching the 3000 * iommu driver and call ops->release_device. Put the domain 3001 * in group->default_domain so it is freed after. 3002 */ 3003 ret = __iommu_group_set_domain_internal( 3004 group, dom, IOMMU_SET_DOMAIN_MUST_SUCCEED); 3005 if (WARN_ON(ret)) 3006 goto out_free_old; 3007 } else { 3008 ret = __iommu_group_set_domain(group, dom); 3009 if (ret) 3010 goto err_restore_def_domain; 3011 } 3012 3013 /* 3014 * Drivers are supposed to allow mappings to be installed in a domain 3015 * before device attachment, but some don't. Hack around this defect by 3016 * trying again after attaching. If this happens it means the device 3017 * will not continuously have the IOMMU_RESV_DIRECT map. 3018 */ 3019 if (direct_failed) { 3020 for_each_group_device(group, gdev) { 3021 ret = iommu_create_device_direct_mappings(dom, gdev->dev); 3022 if (ret) 3023 goto err_restore_domain; 3024 } 3025 } 3026 3027 out_free_old: 3028 if (old_dom) 3029 iommu_domain_free(old_dom); 3030 return ret; 3031 3032 err_restore_domain: 3033 if (old_dom) 3034 __iommu_group_set_domain_internal( 3035 group, old_dom, IOMMU_SET_DOMAIN_MUST_SUCCEED); 3036 err_restore_def_domain: 3037 if (old_dom) { 3038 iommu_domain_free(dom); 3039 group->default_domain = old_dom; 3040 } 3041 return ret; 3042 } 3043 3044 /* 3045 * Changing the default domain through sysfs requires the users to unbind the 3046 * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ 3047 * transition. Return failure if this isn't met. 3048 * 3049 * We need to consider the race between this and the device release path. 3050 * group->mutex is used here to guarantee that the device release path 3051 * will not be entered at the same time. 3052 */ 3053 static ssize_t iommu_group_store_type(struct iommu_group *group, 3054 const char *buf, size_t count) 3055 { 3056 struct group_device *gdev; 3057 int ret, req_type; 3058 3059 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) 3060 return -EACCES; 3061 3062 if (WARN_ON(!group) || !group->default_domain) 3063 return -EINVAL; 3064 3065 if (sysfs_streq(buf, "identity")) 3066 req_type = IOMMU_DOMAIN_IDENTITY; 3067 else if (sysfs_streq(buf, "DMA")) 3068 req_type = IOMMU_DOMAIN_DMA; 3069 else if (sysfs_streq(buf, "DMA-FQ")) 3070 req_type = IOMMU_DOMAIN_DMA_FQ; 3071 else if (sysfs_streq(buf, "auto")) 3072 req_type = 0; 3073 else 3074 return -EINVAL; 3075 3076 mutex_lock(&group->mutex); 3077 /* We can bring up a flush queue without tearing down the domain. */ 3078 if (req_type == IOMMU_DOMAIN_DMA_FQ && 3079 group->default_domain->type == IOMMU_DOMAIN_DMA) { 3080 ret = iommu_dma_init_fq(group->default_domain); 3081 if (ret) 3082 goto out_unlock; 3083 3084 group->default_domain->type = IOMMU_DOMAIN_DMA_FQ; 3085 ret = count; 3086 goto out_unlock; 3087 } 3088 3089 /* Otherwise, ensure that device exists and no driver is bound. */ 3090 if (list_empty(&group->devices) || group->owner_cnt) { 3091 ret = -EPERM; 3092 goto out_unlock; 3093 } 3094 3095 ret = iommu_setup_default_domain(group, req_type); 3096 if (ret) 3097 goto out_unlock; 3098 3099 /* 3100 * Release the mutex here because ops->probe_finalize() call-back of 3101 * some vendor IOMMU drivers calls arm_iommu_attach_device() which 3102 * in-turn might call back into IOMMU core code, where it tries to take 3103 * group->mutex, resulting in a deadlock. 3104 */ 3105 mutex_unlock(&group->mutex); 3106 3107 /* Make sure dma_ops is appropriatley set */ 3108 for_each_group_device(group, gdev) 3109 iommu_group_do_probe_finalize(gdev->dev); 3110 return count; 3111 3112 out_unlock: 3113 mutex_unlock(&group->mutex); 3114 return ret ?: count; 3115 } 3116 3117 static bool iommu_is_default_domain(struct iommu_group *group) 3118 { 3119 if (group->domain == group->default_domain) 3120 return true; 3121 3122 /* 3123 * If the default domain was set to identity and it is still an identity 3124 * domain then we consider this a pass. This happens because of 3125 * amd_iommu_init_device() replacing the default idenytity domain with an 3126 * identity domain that has a different configuration for AMDGPU. 3127 */ 3128 if (group->default_domain && 3129 group->default_domain->type == IOMMU_DOMAIN_IDENTITY && 3130 group->domain && group->domain->type == IOMMU_DOMAIN_IDENTITY) 3131 return true; 3132 return false; 3133 } 3134 3135 /** 3136 * iommu_device_use_default_domain() - Device driver wants to handle device 3137 * DMA through the kernel DMA API. 3138 * @dev: The device. 3139 * 3140 * The device driver about to bind @dev wants to do DMA through the kernel 3141 * DMA API. Return 0 if it is allowed, otherwise an error. 3142 */ 3143 int iommu_device_use_default_domain(struct device *dev) 3144 { 3145 struct iommu_group *group = iommu_group_get(dev); 3146 int ret = 0; 3147 3148 if (!group) 3149 return 0; 3150 3151 mutex_lock(&group->mutex); 3152 if (group->owner_cnt) { 3153 if (group->owner || !iommu_is_default_domain(group) || 3154 !xa_empty(&group->pasid_array)) { 3155 ret = -EBUSY; 3156 goto unlock_out; 3157 } 3158 } 3159 3160 group->owner_cnt++; 3161 3162 unlock_out: 3163 mutex_unlock(&group->mutex); 3164 iommu_group_put(group); 3165 3166 return ret; 3167 } 3168 3169 /** 3170 * iommu_device_unuse_default_domain() - Device driver stops handling device 3171 * DMA through the kernel DMA API. 3172 * @dev: The device. 3173 * 3174 * The device driver doesn't want to do DMA through kernel DMA API anymore. 3175 * It must be called after iommu_device_use_default_domain(). 3176 */ 3177 void iommu_device_unuse_default_domain(struct device *dev) 3178 { 3179 struct iommu_group *group = iommu_group_get(dev); 3180 3181 if (!group) 3182 return; 3183 3184 mutex_lock(&group->mutex); 3185 if (!WARN_ON(!group->owner_cnt || !xa_empty(&group->pasid_array))) 3186 group->owner_cnt--; 3187 3188 mutex_unlock(&group->mutex); 3189 iommu_group_put(group); 3190 } 3191 3192 static int __iommu_group_alloc_blocking_domain(struct iommu_group *group) 3193 { 3194 struct group_device *dev = 3195 list_first_entry(&group->devices, struct group_device, list); 3196 3197 if (group->blocking_domain) 3198 return 0; 3199 3200 group->blocking_domain = 3201 __iommu_domain_alloc(dev->dev->bus, IOMMU_DOMAIN_BLOCKED); 3202 if (!group->blocking_domain) { 3203 /* 3204 * For drivers that do not yet understand IOMMU_DOMAIN_BLOCKED 3205 * create an empty domain instead. 3206 */ 3207 group->blocking_domain = __iommu_domain_alloc( 3208 dev->dev->bus, IOMMU_DOMAIN_UNMANAGED); 3209 if (!group->blocking_domain) 3210 return -EINVAL; 3211 } 3212 return 0; 3213 } 3214 3215 static int __iommu_take_dma_ownership(struct iommu_group *group, void *owner) 3216 { 3217 int ret; 3218 3219 if ((group->domain && group->domain != group->default_domain) || 3220 !xa_empty(&group->pasid_array)) 3221 return -EBUSY; 3222 3223 ret = __iommu_group_alloc_blocking_domain(group); 3224 if (ret) 3225 return ret; 3226 ret = __iommu_group_set_domain(group, group->blocking_domain); 3227 if (ret) 3228 return ret; 3229 3230 group->owner = owner; 3231 group->owner_cnt++; 3232 return 0; 3233 } 3234 3235 /** 3236 * iommu_group_claim_dma_owner() - Set DMA ownership of a group 3237 * @group: The group. 3238 * @owner: Caller specified pointer. Used for exclusive ownership. 3239 * 3240 * This is to support backward compatibility for vfio which manages the dma 3241 * ownership in iommu_group level. New invocations on this interface should be 3242 * prohibited. Only a single owner may exist for a group. 3243 */ 3244 int iommu_group_claim_dma_owner(struct iommu_group *group, void *owner) 3245 { 3246 int ret = 0; 3247 3248 if (WARN_ON(!owner)) 3249 return -EINVAL; 3250 3251 mutex_lock(&group->mutex); 3252 if (group->owner_cnt) { 3253 ret = -EPERM; 3254 goto unlock_out; 3255 } 3256 3257 ret = __iommu_take_dma_ownership(group, owner); 3258 unlock_out: 3259 mutex_unlock(&group->mutex); 3260 3261 return ret; 3262 } 3263 EXPORT_SYMBOL_GPL(iommu_group_claim_dma_owner); 3264 3265 /** 3266 * iommu_device_claim_dma_owner() - Set DMA ownership of a device 3267 * @dev: The device. 3268 * @owner: Caller specified pointer. Used for exclusive ownership. 3269 * 3270 * Claim the DMA ownership of a device. Multiple devices in the same group may 3271 * concurrently claim ownership if they present the same owner value. Returns 0 3272 * on success and error code on failure 3273 */ 3274 int iommu_device_claim_dma_owner(struct device *dev, void *owner) 3275 { 3276 struct iommu_group *group; 3277 int ret = 0; 3278 3279 if (WARN_ON(!owner)) 3280 return -EINVAL; 3281 3282 group = iommu_group_get(dev); 3283 if (!group) 3284 return -ENODEV; 3285 3286 mutex_lock(&group->mutex); 3287 if (group->owner_cnt) { 3288 if (group->owner != owner) { 3289 ret = -EPERM; 3290 goto unlock_out; 3291 } 3292 group->owner_cnt++; 3293 goto unlock_out; 3294 } 3295 3296 ret = __iommu_take_dma_ownership(group, owner); 3297 unlock_out: 3298 mutex_unlock(&group->mutex); 3299 iommu_group_put(group); 3300 3301 return ret; 3302 } 3303 EXPORT_SYMBOL_GPL(iommu_device_claim_dma_owner); 3304 3305 static void __iommu_release_dma_ownership(struct iommu_group *group) 3306 { 3307 if (WARN_ON(!group->owner_cnt || !group->owner || 3308 !xa_empty(&group->pasid_array))) 3309 return; 3310 3311 group->owner_cnt = 0; 3312 group->owner = NULL; 3313 __iommu_group_set_domain_nofail(group, group->default_domain); 3314 } 3315 3316 /** 3317 * iommu_group_release_dma_owner() - Release DMA ownership of a group 3318 * @group: The group 3319 * 3320 * Release the DMA ownership claimed by iommu_group_claim_dma_owner(). 3321 */ 3322 void iommu_group_release_dma_owner(struct iommu_group *group) 3323 { 3324 mutex_lock(&group->mutex); 3325 __iommu_release_dma_ownership(group); 3326 mutex_unlock(&group->mutex); 3327 } 3328 EXPORT_SYMBOL_GPL(iommu_group_release_dma_owner); 3329 3330 /** 3331 * iommu_device_release_dma_owner() - Release DMA ownership of a device 3332 * @dev: The device. 3333 * 3334 * Release the DMA ownership claimed by iommu_device_claim_dma_owner(). 3335 */ 3336 void iommu_device_release_dma_owner(struct device *dev) 3337 { 3338 struct iommu_group *group = iommu_group_get(dev); 3339 3340 mutex_lock(&group->mutex); 3341 if (group->owner_cnt > 1) 3342 group->owner_cnt--; 3343 else 3344 __iommu_release_dma_ownership(group); 3345 mutex_unlock(&group->mutex); 3346 iommu_group_put(group); 3347 } 3348 EXPORT_SYMBOL_GPL(iommu_device_release_dma_owner); 3349 3350 /** 3351 * iommu_group_dma_owner_claimed() - Query group dma ownership status 3352 * @group: The group. 3353 * 3354 * This provides status query on a given group. It is racy and only for 3355 * non-binding status reporting. 3356 */ 3357 bool iommu_group_dma_owner_claimed(struct iommu_group *group) 3358 { 3359 unsigned int user; 3360 3361 mutex_lock(&group->mutex); 3362 user = group->owner_cnt; 3363 mutex_unlock(&group->mutex); 3364 3365 return user; 3366 } 3367 EXPORT_SYMBOL_GPL(iommu_group_dma_owner_claimed); 3368 3369 static int __iommu_set_group_pasid(struct iommu_domain *domain, 3370 struct iommu_group *group, ioasid_t pasid) 3371 { 3372 struct group_device *device, *last_gdev; 3373 int ret; 3374 3375 for_each_group_device(group, device) { 3376 ret = domain->ops->set_dev_pasid(domain, device->dev, pasid); 3377 if (ret) 3378 goto err_revert; 3379 } 3380 3381 return 0; 3382 3383 err_revert: 3384 last_gdev = device; 3385 for_each_group_device(group, device) { 3386 const struct iommu_ops *ops = dev_iommu_ops(device->dev); 3387 3388 if (device == last_gdev) 3389 break; 3390 ops->remove_dev_pasid(device->dev, pasid); 3391 } 3392 return ret; 3393 } 3394 3395 static void __iommu_remove_group_pasid(struct iommu_group *group, 3396 ioasid_t pasid) 3397 { 3398 struct group_device *device; 3399 const struct iommu_ops *ops; 3400 3401 for_each_group_device(group, device) { 3402 ops = dev_iommu_ops(device->dev); 3403 ops->remove_dev_pasid(device->dev, pasid); 3404 } 3405 } 3406 3407 /* 3408 * iommu_attach_device_pasid() - Attach a domain to pasid of device 3409 * @domain: the iommu domain. 3410 * @dev: the attached device. 3411 * @pasid: the pasid of the device. 3412 * 3413 * Return: 0 on success, or an error. 3414 */ 3415 int iommu_attach_device_pasid(struct iommu_domain *domain, 3416 struct device *dev, ioasid_t pasid) 3417 { 3418 struct iommu_group *group; 3419 void *curr; 3420 int ret; 3421 3422 if (!domain->ops->set_dev_pasid) 3423 return -EOPNOTSUPP; 3424 3425 group = iommu_group_get(dev); 3426 if (!group) 3427 return -ENODEV; 3428 3429 mutex_lock(&group->mutex); 3430 curr = xa_cmpxchg(&group->pasid_array, pasid, NULL, domain, GFP_KERNEL); 3431 if (curr) { 3432 ret = xa_err(curr) ? : -EBUSY; 3433 goto out_unlock; 3434 } 3435 3436 ret = __iommu_set_group_pasid(domain, group, pasid); 3437 if (ret) 3438 xa_erase(&group->pasid_array, pasid); 3439 out_unlock: 3440 mutex_unlock(&group->mutex); 3441 iommu_group_put(group); 3442 3443 return ret; 3444 } 3445 EXPORT_SYMBOL_GPL(iommu_attach_device_pasid); 3446 3447 /* 3448 * iommu_detach_device_pasid() - Detach the domain from pasid of device 3449 * @domain: the iommu domain. 3450 * @dev: the attached device. 3451 * @pasid: the pasid of the device. 3452 * 3453 * The @domain must have been attached to @pasid of the @dev with 3454 * iommu_attach_device_pasid(). 3455 */ 3456 void iommu_detach_device_pasid(struct iommu_domain *domain, struct device *dev, 3457 ioasid_t pasid) 3458 { 3459 struct iommu_group *group = iommu_group_get(dev); 3460 3461 mutex_lock(&group->mutex); 3462 __iommu_remove_group_pasid(group, pasid); 3463 WARN_ON(xa_erase(&group->pasid_array, pasid) != domain); 3464 mutex_unlock(&group->mutex); 3465 3466 iommu_group_put(group); 3467 } 3468 EXPORT_SYMBOL_GPL(iommu_detach_device_pasid); 3469 3470 /* 3471 * iommu_get_domain_for_dev_pasid() - Retrieve domain for @pasid of @dev 3472 * @dev: the queried device 3473 * @pasid: the pasid of the device 3474 * @type: matched domain type, 0 for any match 3475 * 3476 * This is a variant of iommu_get_domain_for_dev(). It returns the existing 3477 * domain attached to pasid of a device. Callers must hold a lock around this 3478 * function, and both iommu_attach/detach_dev_pasid() whenever a domain of 3479 * type is being manipulated. This API does not internally resolve races with 3480 * attach/detach. 3481 * 3482 * Return: attached domain on success, NULL otherwise. 3483 */ 3484 struct iommu_domain *iommu_get_domain_for_dev_pasid(struct device *dev, 3485 ioasid_t pasid, 3486 unsigned int type) 3487 { 3488 struct iommu_domain *domain; 3489 struct iommu_group *group; 3490 3491 group = iommu_group_get(dev); 3492 if (!group) 3493 return NULL; 3494 3495 xa_lock(&group->pasid_array); 3496 domain = xa_load(&group->pasid_array, pasid); 3497 if (type && domain && domain->type != type) 3498 domain = ERR_PTR(-EBUSY); 3499 xa_unlock(&group->pasid_array); 3500 iommu_group_put(group); 3501 3502 return domain; 3503 } 3504 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev_pasid); 3505 3506 struct iommu_domain *iommu_sva_domain_alloc(struct device *dev, 3507 struct mm_struct *mm) 3508 { 3509 const struct iommu_ops *ops = dev_iommu_ops(dev); 3510 struct iommu_domain *domain; 3511 3512 domain = ops->domain_alloc(IOMMU_DOMAIN_SVA); 3513 if (!domain) 3514 return NULL; 3515 3516 domain->type = IOMMU_DOMAIN_SVA; 3517 mmgrab(mm); 3518 domain->mm = mm; 3519 domain->iopf_handler = iommu_sva_handle_iopf; 3520 domain->fault_data = mm; 3521 3522 return domain; 3523 } 3524 3525 ioasid_t iommu_alloc_global_pasid(struct device *dev) 3526 { 3527 int ret; 3528 3529 /* max_pasids == 0 means that the device does not support PASID */ 3530 if (!dev->iommu->max_pasids) 3531 return IOMMU_PASID_INVALID; 3532 3533 /* 3534 * max_pasids is set up by vendor driver based on number of PASID bits 3535 * supported but the IDA allocation is inclusive. 3536 */ 3537 ret = ida_alloc_range(&iommu_global_pasid_ida, IOMMU_FIRST_GLOBAL_PASID, 3538 dev->iommu->max_pasids - 1, GFP_KERNEL); 3539 return ret < 0 ? IOMMU_PASID_INVALID : ret; 3540 } 3541 EXPORT_SYMBOL_GPL(iommu_alloc_global_pasid); 3542 3543 void iommu_free_global_pasid(ioasid_t pasid) 3544 { 3545 if (WARN_ON(pasid == IOMMU_PASID_INVALID)) 3546 return; 3547 3548 ida_free(&iommu_global_pasid_ida, pasid); 3549 } 3550 EXPORT_SYMBOL_GPL(iommu_free_global_pasid); 3551