1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc. 4 * Author: Joerg Roedel <jroedel@suse.de> 5 */ 6 7 #define pr_fmt(fmt) "iommu: " fmt 8 9 #include <linux/device.h> 10 #include <linux/kernel.h> 11 #include <linux/bug.h> 12 #include <linux/types.h> 13 #include <linux/init.h> 14 #include <linux/export.h> 15 #include <linux/slab.h> 16 #include <linux/errno.h> 17 #include <linux/iommu.h> 18 #include <linux/idr.h> 19 #include <linux/notifier.h> 20 #include <linux/err.h> 21 #include <linux/pci.h> 22 #include <linux/bitops.h> 23 #include <linux/property.h> 24 #include <linux/fsl/mc.h> 25 #include <linux/module.h> 26 #include <trace/events/iommu.h> 27 28 static struct kset *iommu_group_kset; 29 static DEFINE_IDA(iommu_group_ida); 30 31 static unsigned int iommu_def_domain_type __read_mostly; 32 static bool iommu_dma_strict __read_mostly = true; 33 static u32 iommu_cmd_line __read_mostly; 34 35 struct iommu_group { 36 struct kobject kobj; 37 struct kobject *devices_kobj; 38 struct list_head devices; 39 struct mutex mutex; 40 struct blocking_notifier_head notifier; 41 void *iommu_data; 42 void (*iommu_data_release)(void *iommu_data); 43 char *name; 44 int id; 45 struct iommu_domain *default_domain; 46 struct iommu_domain *domain; 47 struct list_head entry; 48 }; 49 50 struct group_device { 51 struct list_head list; 52 struct device *dev; 53 char *name; 54 }; 55 56 struct iommu_group_attribute { 57 struct attribute attr; 58 ssize_t (*show)(struct iommu_group *group, char *buf); 59 ssize_t (*store)(struct iommu_group *group, 60 const char *buf, size_t count); 61 }; 62 63 static const char * const iommu_group_resv_type_string[] = { 64 [IOMMU_RESV_DIRECT] = "direct", 65 [IOMMU_RESV_DIRECT_RELAXABLE] = "direct-relaxable", 66 [IOMMU_RESV_RESERVED] = "reserved", 67 [IOMMU_RESV_MSI] = "msi", 68 [IOMMU_RESV_SW_MSI] = "msi", 69 }; 70 71 #define IOMMU_CMD_LINE_DMA_API BIT(0) 72 73 static void iommu_set_cmd_line_dma_api(void) 74 { 75 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API; 76 } 77 78 static bool iommu_cmd_line_dma_api(void) 79 { 80 return !!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API); 81 } 82 83 static int iommu_alloc_default_domain(struct iommu_group *group, 84 struct device *dev); 85 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus, 86 unsigned type); 87 static int __iommu_attach_device(struct iommu_domain *domain, 88 struct device *dev); 89 static int __iommu_attach_group(struct iommu_domain *domain, 90 struct iommu_group *group); 91 static void __iommu_detach_group(struct iommu_domain *domain, 92 struct iommu_group *group); 93 static int iommu_create_device_direct_mappings(struct iommu_group *group, 94 struct device *dev); 95 static struct iommu_group *iommu_group_get_for_dev(struct device *dev); 96 97 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \ 98 struct iommu_group_attribute iommu_group_attr_##_name = \ 99 __ATTR(_name, _mode, _show, _store) 100 101 #define to_iommu_group_attr(_attr) \ 102 container_of(_attr, struct iommu_group_attribute, attr) 103 #define to_iommu_group(_kobj) \ 104 container_of(_kobj, struct iommu_group, kobj) 105 106 static LIST_HEAD(iommu_device_list); 107 static DEFINE_SPINLOCK(iommu_device_lock); 108 109 /* 110 * Use a function instead of an array here because the domain-type is a 111 * bit-field, so an array would waste memory. 112 */ 113 static const char *iommu_domain_type_str(unsigned int t) 114 { 115 switch (t) { 116 case IOMMU_DOMAIN_BLOCKED: 117 return "Blocked"; 118 case IOMMU_DOMAIN_IDENTITY: 119 return "Passthrough"; 120 case IOMMU_DOMAIN_UNMANAGED: 121 return "Unmanaged"; 122 case IOMMU_DOMAIN_DMA: 123 return "Translated"; 124 default: 125 return "Unknown"; 126 } 127 } 128 129 static int __init iommu_subsys_init(void) 130 { 131 bool cmd_line = iommu_cmd_line_dma_api(); 132 133 if (!cmd_line) { 134 if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH)) 135 iommu_set_default_passthrough(false); 136 else 137 iommu_set_default_translated(false); 138 139 if (iommu_default_passthrough() && mem_encrypt_active()) { 140 pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n"); 141 iommu_set_default_translated(false); 142 } 143 } 144 145 pr_info("Default domain type: %s %s\n", 146 iommu_domain_type_str(iommu_def_domain_type), 147 cmd_line ? "(set via kernel command line)" : ""); 148 149 return 0; 150 } 151 subsys_initcall(iommu_subsys_init); 152 153 int iommu_device_register(struct iommu_device *iommu) 154 { 155 spin_lock(&iommu_device_lock); 156 list_add_tail(&iommu->list, &iommu_device_list); 157 spin_unlock(&iommu_device_lock); 158 return 0; 159 } 160 EXPORT_SYMBOL_GPL(iommu_device_register); 161 162 void iommu_device_unregister(struct iommu_device *iommu) 163 { 164 spin_lock(&iommu_device_lock); 165 list_del(&iommu->list); 166 spin_unlock(&iommu_device_lock); 167 } 168 EXPORT_SYMBOL_GPL(iommu_device_unregister); 169 170 static struct dev_iommu *dev_iommu_get(struct device *dev) 171 { 172 struct dev_iommu *param = dev->iommu; 173 174 if (param) 175 return param; 176 177 param = kzalloc(sizeof(*param), GFP_KERNEL); 178 if (!param) 179 return NULL; 180 181 mutex_init(¶m->lock); 182 dev->iommu = param; 183 return param; 184 } 185 186 static void dev_iommu_free(struct device *dev) 187 { 188 iommu_fwspec_free(dev); 189 kfree(dev->iommu); 190 dev->iommu = NULL; 191 } 192 193 static int __iommu_probe_device(struct device *dev, struct list_head *group_list) 194 { 195 const struct iommu_ops *ops = dev->bus->iommu_ops; 196 struct iommu_device *iommu_dev; 197 struct iommu_group *group; 198 int ret; 199 200 if (!ops) 201 return -ENODEV; 202 203 if (!dev_iommu_get(dev)) 204 return -ENOMEM; 205 206 if (!try_module_get(ops->owner)) { 207 ret = -EINVAL; 208 goto err_free; 209 } 210 211 iommu_dev = ops->probe_device(dev); 212 if (IS_ERR(iommu_dev)) { 213 ret = PTR_ERR(iommu_dev); 214 goto out_module_put; 215 } 216 217 dev->iommu->iommu_dev = iommu_dev; 218 219 group = iommu_group_get_for_dev(dev); 220 if (IS_ERR(group)) { 221 ret = PTR_ERR(group); 222 goto out_release; 223 } 224 iommu_group_put(group); 225 226 if (group_list && !group->default_domain && list_empty(&group->entry)) 227 list_add_tail(&group->entry, group_list); 228 229 iommu_device_link(iommu_dev, dev); 230 231 return 0; 232 233 out_release: 234 ops->release_device(dev); 235 236 out_module_put: 237 module_put(ops->owner); 238 239 err_free: 240 dev_iommu_free(dev); 241 242 return ret; 243 } 244 245 int iommu_probe_device(struct device *dev) 246 { 247 const struct iommu_ops *ops = dev->bus->iommu_ops; 248 struct iommu_group *group; 249 int ret; 250 251 ret = __iommu_probe_device(dev, NULL); 252 if (ret) 253 goto err_out; 254 255 group = iommu_group_get(dev); 256 if (!group) 257 goto err_release; 258 259 /* 260 * Try to allocate a default domain - needs support from the 261 * IOMMU driver. There are still some drivers which don't 262 * support default domains, so the return value is not yet 263 * checked. 264 */ 265 iommu_alloc_default_domain(group, dev); 266 267 if (group->default_domain) 268 ret = __iommu_attach_device(group->default_domain, dev); 269 270 iommu_create_device_direct_mappings(group, dev); 271 272 iommu_group_put(group); 273 274 if (ret) 275 goto err_release; 276 277 if (ops->probe_finalize) 278 ops->probe_finalize(dev); 279 280 return 0; 281 282 err_release: 283 iommu_release_device(dev); 284 285 err_out: 286 return ret; 287 288 } 289 290 void iommu_release_device(struct device *dev) 291 { 292 const struct iommu_ops *ops = dev->bus->iommu_ops; 293 294 if (!dev->iommu) 295 return; 296 297 iommu_device_unlink(dev->iommu->iommu_dev, dev); 298 299 ops->release_device(dev); 300 301 iommu_group_remove_device(dev); 302 module_put(ops->owner); 303 dev_iommu_free(dev); 304 } 305 306 static int __init iommu_set_def_domain_type(char *str) 307 { 308 bool pt; 309 int ret; 310 311 ret = kstrtobool(str, &pt); 312 if (ret) 313 return ret; 314 315 if (pt) 316 iommu_set_default_passthrough(true); 317 else 318 iommu_set_default_translated(true); 319 320 return 0; 321 } 322 early_param("iommu.passthrough", iommu_set_def_domain_type); 323 324 static int __init iommu_dma_setup(char *str) 325 { 326 return kstrtobool(str, &iommu_dma_strict); 327 } 328 early_param("iommu.strict", iommu_dma_setup); 329 330 static ssize_t iommu_group_attr_show(struct kobject *kobj, 331 struct attribute *__attr, char *buf) 332 { 333 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 334 struct iommu_group *group = to_iommu_group(kobj); 335 ssize_t ret = -EIO; 336 337 if (attr->show) 338 ret = attr->show(group, buf); 339 return ret; 340 } 341 342 static ssize_t iommu_group_attr_store(struct kobject *kobj, 343 struct attribute *__attr, 344 const char *buf, size_t count) 345 { 346 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 347 struct iommu_group *group = to_iommu_group(kobj); 348 ssize_t ret = -EIO; 349 350 if (attr->store) 351 ret = attr->store(group, buf, count); 352 return ret; 353 } 354 355 static const struct sysfs_ops iommu_group_sysfs_ops = { 356 .show = iommu_group_attr_show, 357 .store = iommu_group_attr_store, 358 }; 359 360 static int iommu_group_create_file(struct iommu_group *group, 361 struct iommu_group_attribute *attr) 362 { 363 return sysfs_create_file(&group->kobj, &attr->attr); 364 } 365 366 static void iommu_group_remove_file(struct iommu_group *group, 367 struct iommu_group_attribute *attr) 368 { 369 sysfs_remove_file(&group->kobj, &attr->attr); 370 } 371 372 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf) 373 { 374 return sprintf(buf, "%s\n", group->name); 375 } 376 377 /** 378 * iommu_insert_resv_region - Insert a new region in the 379 * list of reserved regions. 380 * @new: new region to insert 381 * @regions: list of regions 382 * 383 * Elements are sorted by start address and overlapping segments 384 * of the same type are merged. 385 */ 386 static int iommu_insert_resv_region(struct iommu_resv_region *new, 387 struct list_head *regions) 388 { 389 struct iommu_resv_region *iter, *tmp, *nr, *top; 390 LIST_HEAD(stack); 391 392 nr = iommu_alloc_resv_region(new->start, new->length, 393 new->prot, new->type); 394 if (!nr) 395 return -ENOMEM; 396 397 /* First add the new element based on start address sorting */ 398 list_for_each_entry(iter, regions, list) { 399 if (nr->start < iter->start || 400 (nr->start == iter->start && nr->type <= iter->type)) 401 break; 402 } 403 list_add_tail(&nr->list, &iter->list); 404 405 /* Merge overlapping segments of type nr->type in @regions, if any */ 406 list_for_each_entry_safe(iter, tmp, regions, list) { 407 phys_addr_t top_end, iter_end = iter->start + iter->length - 1; 408 409 /* no merge needed on elements of different types than @new */ 410 if (iter->type != new->type) { 411 list_move_tail(&iter->list, &stack); 412 continue; 413 } 414 415 /* look for the last stack element of same type as @iter */ 416 list_for_each_entry_reverse(top, &stack, list) 417 if (top->type == iter->type) 418 goto check_overlap; 419 420 list_move_tail(&iter->list, &stack); 421 continue; 422 423 check_overlap: 424 top_end = top->start + top->length - 1; 425 426 if (iter->start > top_end + 1) { 427 list_move_tail(&iter->list, &stack); 428 } else { 429 top->length = max(top_end, iter_end) - top->start + 1; 430 list_del(&iter->list); 431 kfree(iter); 432 } 433 } 434 list_splice(&stack, regions); 435 return 0; 436 } 437 438 static int 439 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions, 440 struct list_head *group_resv_regions) 441 { 442 struct iommu_resv_region *entry; 443 int ret = 0; 444 445 list_for_each_entry(entry, dev_resv_regions, list) { 446 ret = iommu_insert_resv_region(entry, group_resv_regions); 447 if (ret) 448 break; 449 } 450 return ret; 451 } 452 453 int iommu_get_group_resv_regions(struct iommu_group *group, 454 struct list_head *head) 455 { 456 struct group_device *device; 457 int ret = 0; 458 459 mutex_lock(&group->mutex); 460 list_for_each_entry(device, &group->devices, list) { 461 struct list_head dev_resv_regions; 462 463 INIT_LIST_HEAD(&dev_resv_regions); 464 iommu_get_resv_regions(device->dev, &dev_resv_regions); 465 ret = iommu_insert_device_resv_regions(&dev_resv_regions, head); 466 iommu_put_resv_regions(device->dev, &dev_resv_regions); 467 if (ret) 468 break; 469 } 470 mutex_unlock(&group->mutex); 471 return ret; 472 } 473 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions); 474 475 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group, 476 char *buf) 477 { 478 struct iommu_resv_region *region, *next; 479 struct list_head group_resv_regions; 480 char *str = buf; 481 482 INIT_LIST_HEAD(&group_resv_regions); 483 iommu_get_group_resv_regions(group, &group_resv_regions); 484 485 list_for_each_entry_safe(region, next, &group_resv_regions, list) { 486 str += sprintf(str, "0x%016llx 0x%016llx %s\n", 487 (long long int)region->start, 488 (long long int)(region->start + 489 region->length - 1), 490 iommu_group_resv_type_string[region->type]); 491 kfree(region); 492 } 493 494 return (str - buf); 495 } 496 497 static ssize_t iommu_group_show_type(struct iommu_group *group, 498 char *buf) 499 { 500 char *type = "unknown\n"; 501 502 if (group->default_domain) { 503 switch (group->default_domain->type) { 504 case IOMMU_DOMAIN_BLOCKED: 505 type = "blocked\n"; 506 break; 507 case IOMMU_DOMAIN_IDENTITY: 508 type = "identity\n"; 509 break; 510 case IOMMU_DOMAIN_UNMANAGED: 511 type = "unmanaged\n"; 512 break; 513 case IOMMU_DOMAIN_DMA: 514 type = "DMA\n"; 515 break; 516 } 517 } 518 strcpy(buf, type); 519 520 return strlen(type); 521 } 522 523 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL); 524 525 static IOMMU_GROUP_ATTR(reserved_regions, 0444, 526 iommu_group_show_resv_regions, NULL); 527 528 static IOMMU_GROUP_ATTR(type, 0444, iommu_group_show_type, NULL); 529 530 static void iommu_group_release(struct kobject *kobj) 531 { 532 struct iommu_group *group = to_iommu_group(kobj); 533 534 pr_debug("Releasing group %d\n", group->id); 535 536 if (group->iommu_data_release) 537 group->iommu_data_release(group->iommu_data); 538 539 ida_simple_remove(&iommu_group_ida, group->id); 540 541 if (group->default_domain) 542 iommu_domain_free(group->default_domain); 543 544 kfree(group->name); 545 kfree(group); 546 } 547 548 static struct kobj_type iommu_group_ktype = { 549 .sysfs_ops = &iommu_group_sysfs_ops, 550 .release = iommu_group_release, 551 }; 552 553 /** 554 * iommu_group_alloc - Allocate a new group 555 * 556 * This function is called by an iommu driver to allocate a new iommu 557 * group. The iommu group represents the minimum granularity of the iommu. 558 * Upon successful return, the caller holds a reference to the supplied 559 * group in order to hold the group until devices are added. Use 560 * iommu_group_put() to release this extra reference count, allowing the 561 * group to be automatically reclaimed once it has no devices or external 562 * references. 563 */ 564 struct iommu_group *iommu_group_alloc(void) 565 { 566 struct iommu_group *group; 567 int ret; 568 569 group = kzalloc(sizeof(*group), GFP_KERNEL); 570 if (!group) 571 return ERR_PTR(-ENOMEM); 572 573 group->kobj.kset = iommu_group_kset; 574 mutex_init(&group->mutex); 575 INIT_LIST_HEAD(&group->devices); 576 INIT_LIST_HEAD(&group->entry); 577 BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier); 578 579 ret = ida_simple_get(&iommu_group_ida, 0, 0, GFP_KERNEL); 580 if (ret < 0) { 581 kfree(group); 582 return ERR_PTR(ret); 583 } 584 group->id = ret; 585 586 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype, 587 NULL, "%d", group->id); 588 if (ret) { 589 ida_simple_remove(&iommu_group_ida, group->id); 590 kobject_put(&group->kobj); 591 return ERR_PTR(ret); 592 } 593 594 group->devices_kobj = kobject_create_and_add("devices", &group->kobj); 595 if (!group->devices_kobj) { 596 kobject_put(&group->kobj); /* triggers .release & free */ 597 return ERR_PTR(-ENOMEM); 598 } 599 600 /* 601 * The devices_kobj holds a reference on the group kobject, so 602 * as long as that exists so will the group. We can therefore 603 * use the devices_kobj for reference counting. 604 */ 605 kobject_put(&group->kobj); 606 607 ret = iommu_group_create_file(group, 608 &iommu_group_attr_reserved_regions); 609 if (ret) 610 return ERR_PTR(ret); 611 612 ret = iommu_group_create_file(group, &iommu_group_attr_type); 613 if (ret) 614 return ERR_PTR(ret); 615 616 pr_debug("Allocated group %d\n", group->id); 617 618 return group; 619 } 620 EXPORT_SYMBOL_GPL(iommu_group_alloc); 621 622 struct iommu_group *iommu_group_get_by_id(int id) 623 { 624 struct kobject *group_kobj; 625 struct iommu_group *group; 626 const char *name; 627 628 if (!iommu_group_kset) 629 return NULL; 630 631 name = kasprintf(GFP_KERNEL, "%d", id); 632 if (!name) 633 return NULL; 634 635 group_kobj = kset_find_obj(iommu_group_kset, name); 636 kfree(name); 637 638 if (!group_kobj) 639 return NULL; 640 641 group = container_of(group_kobj, struct iommu_group, kobj); 642 BUG_ON(group->id != id); 643 644 kobject_get(group->devices_kobj); 645 kobject_put(&group->kobj); 646 647 return group; 648 } 649 EXPORT_SYMBOL_GPL(iommu_group_get_by_id); 650 651 /** 652 * iommu_group_get_iommudata - retrieve iommu_data registered for a group 653 * @group: the group 654 * 655 * iommu drivers can store data in the group for use when doing iommu 656 * operations. This function provides a way to retrieve it. Caller 657 * should hold a group reference. 658 */ 659 void *iommu_group_get_iommudata(struct iommu_group *group) 660 { 661 return group->iommu_data; 662 } 663 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata); 664 665 /** 666 * iommu_group_set_iommudata - set iommu_data for a group 667 * @group: the group 668 * @iommu_data: new data 669 * @release: release function for iommu_data 670 * 671 * iommu drivers can store data in the group for use when doing iommu 672 * operations. This function provides a way to set the data after 673 * the group has been allocated. Caller should hold a group reference. 674 */ 675 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data, 676 void (*release)(void *iommu_data)) 677 { 678 group->iommu_data = iommu_data; 679 group->iommu_data_release = release; 680 } 681 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata); 682 683 /** 684 * iommu_group_set_name - set name for a group 685 * @group: the group 686 * @name: name 687 * 688 * Allow iommu driver to set a name for a group. When set it will 689 * appear in a name attribute file under the group in sysfs. 690 */ 691 int iommu_group_set_name(struct iommu_group *group, const char *name) 692 { 693 int ret; 694 695 if (group->name) { 696 iommu_group_remove_file(group, &iommu_group_attr_name); 697 kfree(group->name); 698 group->name = NULL; 699 if (!name) 700 return 0; 701 } 702 703 group->name = kstrdup(name, GFP_KERNEL); 704 if (!group->name) 705 return -ENOMEM; 706 707 ret = iommu_group_create_file(group, &iommu_group_attr_name); 708 if (ret) { 709 kfree(group->name); 710 group->name = NULL; 711 return ret; 712 } 713 714 return 0; 715 } 716 EXPORT_SYMBOL_GPL(iommu_group_set_name); 717 718 static int iommu_create_device_direct_mappings(struct iommu_group *group, 719 struct device *dev) 720 { 721 struct iommu_domain *domain = group->default_domain; 722 struct iommu_resv_region *entry; 723 struct list_head mappings; 724 unsigned long pg_size; 725 int ret = 0; 726 727 if (!domain || domain->type != IOMMU_DOMAIN_DMA) 728 return 0; 729 730 BUG_ON(!domain->pgsize_bitmap); 731 732 pg_size = 1UL << __ffs(domain->pgsize_bitmap); 733 INIT_LIST_HEAD(&mappings); 734 735 iommu_get_resv_regions(dev, &mappings); 736 737 /* We need to consider overlapping regions for different devices */ 738 list_for_each_entry(entry, &mappings, list) { 739 dma_addr_t start, end, addr; 740 741 if (domain->ops->apply_resv_region) 742 domain->ops->apply_resv_region(dev, domain, entry); 743 744 start = ALIGN(entry->start, pg_size); 745 end = ALIGN(entry->start + entry->length, pg_size); 746 747 if (entry->type != IOMMU_RESV_DIRECT && 748 entry->type != IOMMU_RESV_DIRECT_RELAXABLE) 749 continue; 750 751 for (addr = start; addr < end; addr += pg_size) { 752 phys_addr_t phys_addr; 753 754 phys_addr = iommu_iova_to_phys(domain, addr); 755 if (phys_addr) 756 continue; 757 758 ret = iommu_map(domain, addr, addr, pg_size, entry->prot); 759 if (ret) 760 goto out; 761 } 762 763 } 764 765 iommu_flush_tlb_all(domain); 766 767 out: 768 iommu_put_resv_regions(dev, &mappings); 769 770 return ret; 771 } 772 773 static bool iommu_is_attach_deferred(struct iommu_domain *domain, 774 struct device *dev) 775 { 776 if (domain->ops->is_attach_deferred) 777 return domain->ops->is_attach_deferred(domain, dev); 778 779 return false; 780 } 781 782 /** 783 * iommu_group_add_device - add a device to an iommu group 784 * @group: the group into which to add the device (reference should be held) 785 * @dev: the device 786 * 787 * This function is called by an iommu driver to add a device into a 788 * group. Adding a device increments the group reference count. 789 */ 790 int iommu_group_add_device(struct iommu_group *group, struct device *dev) 791 { 792 int ret, i = 0; 793 struct group_device *device; 794 795 device = kzalloc(sizeof(*device), GFP_KERNEL); 796 if (!device) 797 return -ENOMEM; 798 799 device->dev = dev; 800 801 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group"); 802 if (ret) 803 goto err_free_device; 804 805 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj)); 806 rename: 807 if (!device->name) { 808 ret = -ENOMEM; 809 goto err_remove_link; 810 } 811 812 ret = sysfs_create_link_nowarn(group->devices_kobj, 813 &dev->kobj, device->name); 814 if (ret) { 815 if (ret == -EEXIST && i >= 0) { 816 /* 817 * Account for the slim chance of collision 818 * and append an instance to the name. 819 */ 820 kfree(device->name); 821 device->name = kasprintf(GFP_KERNEL, "%s.%d", 822 kobject_name(&dev->kobj), i++); 823 goto rename; 824 } 825 goto err_free_name; 826 } 827 828 kobject_get(group->devices_kobj); 829 830 dev->iommu_group = group; 831 832 mutex_lock(&group->mutex); 833 list_add_tail(&device->list, &group->devices); 834 if (group->domain && !iommu_is_attach_deferred(group->domain, dev)) 835 ret = __iommu_attach_device(group->domain, dev); 836 mutex_unlock(&group->mutex); 837 if (ret) 838 goto err_put_group; 839 840 /* Notify any listeners about change to group. */ 841 blocking_notifier_call_chain(&group->notifier, 842 IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev); 843 844 trace_add_device_to_group(group->id, dev); 845 846 dev_info(dev, "Adding to iommu group %d\n", group->id); 847 848 return 0; 849 850 err_put_group: 851 mutex_lock(&group->mutex); 852 list_del(&device->list); 853 mutex_unlock(&group->mutex); 854 dev->iommu_group = NULL; 855 kobject_put(group->devices_kobj); 856 sysfs_remove_link(group->devices_kobj, device->name); 857 err_free_name: 858 kfree(device->name); 859 err_remove_link: 860 sysfs_remove_link(&dev->kobj, "iommu_group"); 861 err_free_device: 862 kfree(device); 863 dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret); 864 return ret; 865 } 866 EXPORT_SYMBOL_GPL(iommu_group_add_device); 867 868 /** 869 * iommu_group_remove_device - remove a device from it's current group 870 * @dev: device to be removed 871 * 872 * This function is called by an iommu driver to remove the device from 873 * it's current group. This decrements the iommu group reference count. 874 */ 875 void iommu_group_remove_device(struct device *dev) 876 { 877 struct iommu_group *group = dev->iommu_group; 878 struct group_device *tmp_device, *device = NULL; 879 880 dev_info(dev, "Removing from iommu group %d\n", group->id); 881 882 /* Pre-notify listeners that a device is being removed. */ 883 blocking_notifier_call_chain(&group->notifier, 884 IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev); 885 886 mutex_lock(&group->mutex); 887 list_for_each_entry(tmp_device, &group->devices, list) { 888 if (tmp_device->dev == dev) { 889 device = tmp_device; 890 list_del(&device->list); 891 break; 892 } 893 } 894 mutex_unlock(&group->mutex); 895 896 if (!device) 897 return; 898 899 sysfs_remove_link(group->devices_kobj, device->name); 900 sysfs_remove_link(&dev->kobj, "iommu_group"); 901 902 trace_remove_device_from_group(group->id, dev); 903 904 kfree(device->name); 905 kfree(device); 906 dev->iommu_group = NULL; 907 kobject_put(group->devices_kobj); 908 } 909 EXPORT_SYMBOL_GPL(iommu_group_remove_device); 910 911 static int iommu_group_device_count(struct iommu_group *group) 912 { 913 struct group_device *entry; 914 int ret = 0; 915 916 list_for_each_entry(entry, &group->devices, list) 917 ret++; 918 919 return ret; 920 } 921 922 /** 923 * iommu_group_for_each_dev - iterate over each device in the group 924 * @group: the group 925 * @data: caller opaque data to be passed to callback function 926 * @fn: caller supplied callback function 927 * 928 * This function is called by group users to iterate over group devices. 929 * Callers should hold a reference count to the group during callback. 930 * The group->mutex is held across callbacks, which will block calls to 931 * iommu_group_add/remove_device. 932 */ 933 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data, 934 int (*fn)(struct device *, void *)) 935 { 936 struct group_device *device; 937 int ret = 0; 938 939 list_for_each_entry(device, &group->devices, list) { 940 ret = fn(device->dev, data); 941 if (ret) 942 break; 943 } 944 return ret; 945 } 946 947 948 int iommu_group_for_each_dev(struct iommu_group *group, void *data, 949 int (*fn)(struct device *, void *)) 950 { 951 int ret; 952 953 mutex_lock(&group->mutex); 954 ret = __iommu_group_for_each_dev(group, data, fn); 955 mutex_unlock(&group->mutex); 956 957 return ret; 958 } 959 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev); 960 961 /** 962 * iommu_group_get - Return the group for a device and increment reference 963 * @dev: get the group that this device belongs to 964 * 965 * This function is called by iommu drivers and users to get the group 966 * for the specified device. If found, the group is returned and the group 967 * reference in incremented, else NULL. 968 */ 969 struct iommu_group *iommu_group_get(struct device *dev) 970 { 971 struct iommu_group *group = dev->iommu_group; 972 973 if (group) 974 kobject_get(group->devices_kobj); 975 976 return group; 977 } 978 EXPORT_SYMBOL_GPL(iommu_group_get); 979 980 /** 981 * iommu_group_ref_get - Increment reference on a group 982 * @group: the group to use, must not be NULL 983 * 984 * This function is called by iommu drivers to take additional references on an 985 * existing group. Returns the given group for convenience. 986 */ 987 struct iommu_group *iommu_group_ref_get(struct iommu_group *group) 988 { 989 kobject_get(group->devices_kobj); 990 return group; 991 } 992 EXPORT_SYMBOL_GPL(iommu_group_ref_get); 993 994 /** 995 * iommu_group_put - Decrement group reference 996 * @group: the group to use 997 * 998 * This function is called by iommu drivers and users to release the 999 * iommu group. Once the reference count is zero, the group is released. 1000 */ 1001 void iommu_group_put(struct iommu_group *group) 1002 { 1003 if (group) 1004 kobject_put(group->devices_kobj); 1005 } 1006 EXPORT_SYMBOL_GPL(iommu_group_put); 1007 1008 /** 1009 * iommu_group_register_notifier - Register a notifier for group changes 1010 * @group: the group to watch 1011 * @nb: notifier block to signal 1012 * 1013 * This function allows iommu group users to track changes in a group. 1014 * See include/linux/iommu.h for actions sent via this notifier. Caller 1015 * should hold a reference to the group throughout notifier registration. 1016 */ 1017 int iommu_group_register_notifier(struct iommu_group *group, 1018 struct notifier_block *nb) 1019 { 1020 return blocking_notifier_chain_register(&group->notifier, nb); 1021 } 1022 EXPORT_SYMBOL_GPL(iommu_group_register_notifier); 1023 1024 /** 1025 * iommu_group_unregister_notifier - Unregister a notifier 1026 * @group: the group to watch 1027 * @nb: notifier block to signal 1028 * 1029 * Unregister a previously registered group notifier block. 1030 */ 1031 int iommu_group_unregister_notifier(struct iommu_group *group, 1032 struct notifier_block *nb) 1033 { 1034 return blocking_notifier_chain_unregister(&group->notifier, nb); 1035 } 1036 EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier); 1037 1038 /** 1039 * iommu_register_device_fault_handler() - Register a device fault handler 1040 * @dev: the device 1041 * @handler: the fault handler 1042 * @data: private data passed as argument to the handler 1043 * 1044 * When an IOMMU fault event is received, this handler gets called with the 1045 * fault event and data as argument. The handler should return 0 on success. If 1046 * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also 1047 * complete the fault by calling iommu_page_response() with one of the following 1048 * response code: 1049 * - IOMMU_PAGE_RESP_SUCCESS: retry the translation 1050 * - IOMMU_PAGE_RESP_INVALID: terminate the fault 1051 * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting 1052 * page faults if possible. 1053 * 1054 * Return 0 if the fault handler was installed successfully, or an error. 1055 */ 1056 int iommu_register_device_fault_handler(struct device *dev, 1057 iommu_dev_fault_handler_t handler, 1058 void *data) 1059 { 1060 struct dev_iommu *param = dev->iommu; 1061 int ret = 0; 1062 1063 if (!param) 1064 return -EINVAL; 1065 1066 mutex_lock(¶m->lock); 1067 /* Only allow one fault handler registered for each device */ 1068 if (param->fault_param) { 1069 ret = -EBUSY; 1070 goto done_unlock; 1071 } 1072 1073 get_device(dev); 1074 param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL); 1075 if (!param->fault_param) { 1076 put_device(dev); 1077 ret = -ENOMEM; 1078 goto done_unlock; 1079 } 1080 param->fault_param->handler = handler; 1081 param->fault_param->data = data; 1082 mutex_init(¶m->fault_param->lock); 1083 INIT_LIST_HEAD(¶m->fault_param->faults); 1084 1085 done_unlock: 1086 mutex_unlock(¶m->lock); 1087 1088 return ret; 1089 } 1090 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler); 1091 1092 /** 1093 * iommu_unregister_device_fault_handler() - Unregister the device fault handler 1094 * @dev: the device 1095 * 1096 * Remove the device fault handler installed with 1097 * iommu_register_device_fault_handler(). 1098 * 1099 * Return 0 on success, or an error. 1100 */ 1101 int iommu_unregister_device_fault_handler(struct device *dev) 1102 { 1103 struct dev_iommu *param = dev->iommu; 1104 int ret = 0; 1105 1106 if (!param) 1107 return -EINVAL; 1108 1109 mutex_lock(¶m->lock); 1110 1111 if (!param->fault_param) 1112 goto unlock; 1113 1114 /* we cannot unregister handler if there are pending faults */ 1115 if (!list_empty(¶m->fault_param->faults)) { 1116 ret = -EBUSY; 1117 goto unlock; 1118 } 1119 1120 kfree(param->fault_param); 1121 param->fault_param = NULL; 1122 put_device(dev); 1123 unlock: 1124 mutex_unlock(¶m->lock); 1125 1126 return ret; 1127 } 1128 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler); 1129 1130 /** 1131 * iommu_report_device_fault() - Report fault event to device driver 1132 * @dev: the device 1133 * @evt: fault event data 1134 * 1135 * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ 1136 * handler. When this function fails and the fault is recoverable, it is the 1137 * caller's responsibility to complete the fault. 1138 * 1139 * Return 0 on success, or an error. 1140 */ 1141 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt) 1142 { 1143 struct dev_iommu *param = dev->iommu; 1144 struct iommu_fault_event *evt_pending = NULL; 1145 struct iommu_fault_param *fparam; 1146 int ret = 0; 1147 1148 if (!param || !evt) 1149 return -EINVAL; 1150 1151 /* we only report device fault if there is a handler registered */ 1152 mutex_lock(¶m->lock); 1153 fparam = param->fault_param; 1154 if (!fparam || !fparam->handler) { 1155 ret = -EINVAL; 1156 goto done_unlock; 1157 } 1158 1159 if (evt->fault.type == IOMMU_FAULT_PAGE_REQ && 1160 (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) { 1161 evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event), 1162 GFP_KERNEL); 1163 if (!evt_pending) { 1164 ret = -ENOMEM; 1165 goto done_unlock; 1166 } 1167 mutex_lock(&fparam->lock); 1168 list_add_tail(&evt_pending->list, &fparam->faults); 1169 mutex_unlock(&fparam->lock); 1170 } 1171 1172 ret = fparam->handler(&evt->fault, fparam->data); 1173 if (ret && evt_pending) { 1174 mutex_lock(&fparam->lock); 1175 list_del(&evt_pending->list); 1176 mutex_unlock(&fparam->lock); 1177 kfree(evt_pending); 1178 } 1179 done_unlock: 1180 mutex_unlock(¶m->lock); 1181 return ret; 1182 } 1183 EXPORT_SYMBOL_GPL(iommu_report_device_fault); 1184 1185 int iommu_page_response(struct device *dev, 1186 struct iommu_page_response *msg) 1187 { 1188 bool needs_pasid; 1189 int ret = -EINVAL; 1190 struct iommu_fault_event *evt; 1191 struct iommu_fault_page_request *prm; 1192 struct dev_iommu *param = dev->iommu; 1193 bool has_pasid = msg->flags & IOMMU_PAGE_RESP_PASID_VALID; 1194 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1195 1196 if (!domain || !domain->ops->page_response) 1197 return -ENODEV; 1198 1199 if (!param || !param->fault_param) 1200 return -EINVAL; 1201 1202 if (msg->version != IOMMU_PAGE_RESP_VERSION_1 || 1203 msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID) 1204 return -EINVAL; 1205 1206 /* Only send response if there is a fault report pending */ 1207 mutex_lock(¶m->fault_param->lock); 1208 if (list_empty(¶m->fault_param->faults)) { 1209 dev_warn_ratelimited(dev, "no pending PRQ, drop response\n"); 1210 goto done_unlock; 1211 } 1212 /* 1213 * Check if we have a matching page request pending to respond, 1214 * otherwise return -EINVAL 1215 */ 1216 list_for_each_entry(evt, ¶m->fault_param->faults, list) { 1217 prm = &evt->fault.prm; 1218 if (prm->grpid != msg->grpid) 1219 continue; 1220 1221 /* 1222 * If the PASID is required, the corresponding request is 1223 * matched using the group ID, the PASID valid bit and the PASID 1224 * value. Otherwise only the group ID matches request and 1225 * response. 1226 */ 1227 needs_pasid = prm->flags & IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID; 1228 if (needs_pasid && (!has_pasid || msg->pasid != prm->pasid)) 1229 continue; 1230 1231 if (!needs_pasid && has_pasid) { 1232 /* No big deal, just clear it. */ 1233 msg->flags &= ~IOMMU_PAGE_RESP_PASID_VALID; 1234 msg->pasid = 0; 1235 } 1236 1237 ret = domain->ops->page_response(dev, evt, msg); 1238 list_del(&evt->list); 1239 kfree(evt); 1240 break; 1241 } 1242 1243 done_unlock: 1244 mutex_unlock(¶m->fault_param->lock); 1245 return ret; 1246 } 1247 EXPORT_SYMBOL_GPL(iommu_page_response); 1248 1249 /** 1250 * iommu_group_id - Return ID for a group 1251 * @group: the group to ID 1252 * 1253 * Return the unique ID for the group matching the sysfs group number. 1254 */ 1255 int iommu_group_id(struct iommu_group *group) 1256 { 1257 return group->id; 1258 } 1259 EXPORT_SYMBOL_GPL(iommu_group_id); 1260 1261 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1262 unsigned long *devfns); 1263 1264 /* 1265 * To consider a PCI device isolated, we require ACS to support Source 1266 * Validation, Request Redirection, Completer Redirection, and Upstream 1267 * Forwarding. This effectively means that devices cannot spoof their 1268 * requester ID, requests and completions cannot be redirected, and all 1269 * transactions are forwarded upstream, even as it passes through a 1270 * bridge where the target device is downstream. 1271 */ 1272 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF) 1273 1274 /* 1275 * For multifunction devices which are not isolated from each other, find 1276 * all the other non-isolated functions and look for existing groups. For 1277 * each function, we also need to look for aliases to or from other devices 1278 * that may already have a group. 1279 */ 1280 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev, 1281 unsigned long *devfns) 1282 { 1283 struct pci_dev *tmp = NULL; 1284 struct iommu_group *group; 1285 1286 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS)) 1287 return NULL; 1288 1289 for_each_pci_dev(tmp) { 1290 if (tmp == pdev || tmp->bus != pdev->bus || 1291 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) || 1292 pci_acs_enabled(tmp, REQ_ACS_FLAGS)) 1293 continue; 1294 1295 group = get_pci_alias_group(tmp, devfns); 1296 if (group) { 1297 pci_dev_put(tmp); 1298 return group; 1299 } 1300 } 1301 1302 return NULL; 1303 } 1304 1305 /* 1306 * Look for aliases to or from the given device for existing groups. DMA 1307 * aliases are only supported on the same bus, therefore the search 1308 * space is quite small (especially since we're really only looking at pcie 1309 * device, and therefore only expect multiple slots on the root complex or 1310 * downstream switch ports). It's conceivable though that a pair of 1311 * multifunction devices could have aliases between them that would cause a 1312 * loop. To prevent this, we use a bitmap to track where we've been. 1313 */ 1314 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1315 unsigned long *devfns) 1316 { 1317 struct pci_dev *tmp = NULL; 1318 struct iommu_group *group; 1319 1320 if (test_and_set_bit(pdev->devfn & 0xff, devfns)) 1321 return NULL; 1322 1323 group = iommu_group_get(&pdev->dev); 1324 if (group) 1325 return group; 1326 1327 for_each_pci_dev(tmp) { 1328 if (tmp == pdev || tmp->bus != pdev->bus) 1329 continue; 1330 1331 /* We alias them or they alias us */ 1332 if (pci_devs_are_dma_aliases(pdev, tmp)) { 1333 group = get_pci_alias_group(tmp, devfns); 1334 if (group) { 1335 pci_dev_put(tmp); 1336 return group; 1337 } 1338 1339 group = get_pci_function_alias_group(tmp, devfns); 1340 if (group) { 1341 pci_dev_put(tmp); 1342 return group; 1343 } 1344 } 1345 } 1346 1347 return NULL; 1348 } 1349 1350 struct group_for_pci_data { 1351 struct pci_dev *pdev; 1352 struct iommu_group *group; 1353 }; 1354 1355 /* 1356 * DMA alias iterator callback, return the last seen device. Stop and return 1357 * the IOMMU group if we find one along the way. 1358 */ 1359 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque) 1360 { 1361 struct group_for_pci_data *data = opaque; 1362 1363 data->pdev = pdev; 1364 data->group = iommu_group_get(&pdev->dev); 1365 1366 return data->group != NULL; 1367 } 1368 1369 /* 1370 * Generic device_group call-back function. It just allocates one 1371 * iommu-group per device. 1372 */ 1373 struct iommu_group *generic_device_group(struct device *dev) 1374 { 1375 return iommu_group_alloc(); 1376 } 1377 EXPORT_SYMBOL_GPL(generic_device_group); 1378 1379 /* 1380 * Use standard PCI bus topology, isolation features, and DMA alias quirks 1381 * to find or create an IOMMU group for a device. 1382 */ 1383 struct iommu_group *pci_device_group(struct device *dev) 1384 { 1385 struct pci_dev *pdev = to_pci_dev(dev); 1386 struct group_for_pci_data data; 1387 struct pci_bus *bus; 1388 struct iommu_group *group = NULL; 1389 u64 devfns[4] = { 0 }; 1390 1391 if (WARN_ON(!dev_is_pci(dev))) 1392 return ERR_PTR(-EINVAL); 1393 1394 /* 1395 * Find the upstream DMA alias for the device. A device must not 1396 * be aliased due to topology in order to have its own IOMMU group. 1397 * If we find an alias along the way that already belongs to a 1398 * group, use it. 1399 */ 1400 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data)) 1401 return data.group; 1402 1403 pdev = data.pdev; 1404 1405 /* 1406 * Continue upstream from the point of minimum IOMMU granularity 1407 * due to aliases to the point where devices are protected from 1408 * peer-to-peer DMA by PCI ACS. Again, if we find an existing 1409 * group, use it. 1410 */ 1411 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) { 1412 if (!bus->self) 1413 continue; 1414 1415 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS)) 1416 break; 1417 1418 pdev = bus->self; 1419 1420 group = iommu_group_get(&pdev->dev); 1421 if (group) 1422 return group; 1423 } 1424 1425 /* 1426 * Look for existing groups on device aliases. If we alias another 1427 * device or another device aliases us, use the same group. 1428 */ 1429 group = get_pci_alias_group(pdev, (unsigned long *)devfns); 1430 if (group) 1431 return group; 1432 1433 /* 1434 * Look for existing groups on non-isolated functions on the same 1435 * slot and aliases of those funcions, if any. No need to clear 1436 * the search bitmap, the tested devfns are still valid. 1437 */ 1438 group = get_pci_function_alias_group(pdev, (unsigned long *)devfns); 1439 if (group) 1440 return group; 1441 1442 /* No shared group found, allocate new */ 1443 return iommu_group_alloc(); 1444 } 1445 EXPORT_SYMBOL_GPL(pci_device_group); 1446 1447 /* Get the IOMMU group for device on fsl-mc bus */ 1448 struct iommu_group *fsl_mc_device_group(struct device *dev) 1449 { 1450 struct device *cont_dev = fsl_mc_cont_dev(dev); 1451 struct iommu_group *group; 1452 1453 group = iommu_group_get(cont_dev); 1454 if (!group) 1455 group = iommu_group_alloc(); 1456 return group; 1457 } 1458 EXPORT_SYMBOL_GPL(fsl_mc_device_group); 1459 1460 static int iommu_get_def_domain_type(struct device *dev) 1461 { 1462 const struct iommu_ops *ops = dev->bus->iommu_ops; 1463 unsigned int type = 0; 1464 1465 if (ops->def_domain_type) 1466 type = ops->def_domain_type(dev); 1467 1468 return (type == 0) ? iommu_def_domain_type : type; 1469 } 1470 1471 static int iommu_group_alloc_default_domain(struct bus_type *bus, 1472 struct iommu_group *group, 1473 unsigned int type) 1474 { 1475 struct iommu_domain *dom; 1476 1477 dom = __iommu_domain_alloc(bus, type); 1478 if (!dom && type != IOMMU_DOMAIN_DMA) { 1479 dom = __iommu_domain_alloc(bus, IOMMU_DOMAIN_DMA); 1480 if (dom) 1481 pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA", 1482 type, group->name); 1483 } 1484 1485 if (!dom) 1486 return -ENOMEM; 1487 1488 group->default_domain = dom; 1489 if (!group->domain) 1490 group->domain = dom; 1491 1492 if (!iommu_dma_strict) { 1493 int attr = 1; 1494 iommu_domain_set_attr(dom, 1495 DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, 1496 &attr); 1497 } 1498 1499 return 0; 1500 } 1501 1502 static int iommu_alloc_default_domain(struct iommu_group *group, 1503 struct device *dev) 1504 { 1505 unsigned int type; 1506 1507 if (group->default_domain) 1508 return 0; 1509 1510 type = iommu_get_def_domain_type(dev); 1511 1512 return iommu_group_alloc_default_domain(dev->bus, group, type); 1513 } 1514 1515 /** 1516 * iommu_group_get_for_dev - Find or create the IOMMU group for a device 1517 * @dev: target device 1518 * 1519 * This function is intended to be called by IOMMU drivers and extended to 1520 * support common, bus-defined algorithms when determining or creating the 1521 * IOMMU group for a device. On success, the caller will hold a reference 1522 * to the returned IOMMU group, which will already include the provided 1523 * device. The reference should be released with iommu_group_put(). 1524 */ 1525 static struct iommu_group *iommu_group_get_for_dev(struct device *dev) 1526 { 1527 const struct iommu_ops *ops = dev->bus->iommu_ops; 1528 struct iommu_group *group; 1529 int ret; 1530 1531 group = iommu_group_get(dev); 1532 if (group) 1533 return group; 1534 1535 if (!ops) 1536 return ERR_PTR(-EINVAL); 1537 1538 group = ops->device_group(dev); 1539 if (WARN_ON_ONCE(group == NULL)) 1540 return ERR_PTR(-EINVAL); 1541 1542 if (IS_ERR(group)) 1543 return group; 1544 1545 ret = iommu_group_add_device(group, dev); 1546 if (ret) 1547 goto out_put_group; 1548 1549 return group; 1550 1551 out_put_group: 1552 iommu_group_put(group); 1553 1554 return ERR_PTR(ret); 1555 } 1556 1557 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group) 1558 { 1559 return group->default_domain; 1560 } 1561 1562 static int probe_iommu_group(struct device *dev, void *data) 1563 { 1564 struct list_head *group_list = data; 1565 struct iommu_group *group; 1566 int ret; 1567 1568 /* Device is probed already if in a group */ 1569 group = iommu_group_get(dev); 1570 if (group) { 1571 iommu_group_put(group); 1572 return 0; 1573 } 1574 1575 ret = __iommu_probe_device(dev, group_list); 1576 if (ret == -ENODEV) 1577 ret = 0; 1578 1579 return ret; 1580 } 1581 1582 static int remove_iommu_group(struct device *dev, void *data) 1583 { 1584 iommu_release_device(dev); 1585 1586 return 0; 1587 } 1588 1589 static int iommu_bus_notifier(struct notifier_block *nb, 1590 unsigned long action, void *data) 1591 { 1592 unsigned long group_action = 0; 1593 struct device *dev = data; 1594 struct iommu_group *group; 1595 1596 /* 1597 * ADD/DEL call into iommu driver ops if provided, which may 1598 * result in ADD/DEL notifiers to group->notifier 1599 */ 1600 if (action == BUS_NOTIFY_ADD_DEVICE) { 1601 int ret; 1602 1603 ret = iommu_probe_device(dev); 1604 return (ret) ? NOTIFY_DONE : NOTIFY_OK; 1605 } else if (action == BUS_NOTIFY_REMOVED_DEVICE) { 1606 iommu_release_device(dev); 1607 return NOTIFY_OK; 1608 } 1609 1610 /* 1611 * Remaining BUS_NOTIFYs get filtered and republished to the 1612 * group, if anyone is listening 1613 */ 1614 group = iommu_group_get(dev); 1615 if (!group) 1616 return 0; 1617 1618 switch (action) { 1619 case BUS_NOTIFY_BIND_DRIVER: 1620 group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER; 1621 break; 1622 case BUS_NOTIFY_BOUND_DRIVER: 1623 group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER; 1624 break; 1625 case BUS_NOTIFY_UNBIND_DRIVER: 1626 group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER; 1627 break; 1628 case BUS_NOTIFY_UNBOUND_DRIVER: 1629 group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER; 1630 break; 1631 } 1632 1633 if (group_action) 1634 blocking_notifier_call_chain(&group->notifier, 1635 group_action, dev); 1636 1637 iommu_group_put(group); 1638 return 0; 1639 } 1640 1641 struct __group_domain_type { 1642 struct device *dev; 1643 unsigned int type; 1644 }; 1645 1646 static int probe_get_default_domain_type(struct device *dev, void *data) 1647 { 1648 const struct iommu_ops *ops = dev->bus->iommu_ops; 1649 struct __group_domain_type *gtype = data; 1650 unsigned int type = 0; 1651 1652 if (ops->def_domain_type) 1653 type = ops->def_domain_type(dev); 1654 1655 if (type) { 1656 if (gtype->type && gtype->type != type) { 1657 dev_warn(dev, "Device needs domain type %s, but device %s in the same iommu group requires type %s - using default\n", 1658 iommu_domain_type_str(type), 1659 dev_name(gtype->dev), 1660 iommu_domain_type_str(gtype->type)); 1661 gtype->type = 0; 1662 } 1663 1664 if (!gtype->dev) { 1665 gtype->dev = dev; 1666 gtype->type = type; 1667 } 1668 } 1669 1670 return 0; 1671 } 1672 1673 static void probe_alloc_default_domain(struct bus_type *bus, 1674 struct iommu_group *group) 1675 { 1676 struct __group_domain_type gtype; 1677 1678 memset(>ype, 0, sizeof(gtype)); 1679 1680 /* Ask for default domain requirements of all devices in the group */ 1681 __iommu_group_for_each_dev(group, >ype, 1682 probe_get_default_domain_type); 1683 1684 if (!gtype.type) 1685 gtype.type = iommu_def_domain_type; 1686 1687 iommu_group_alloc_default_domain(bus, group, gtype.type); 1688 1689 } 1690 1691 static int iommu_group_do_dma_attach(struct device *dev, void *data) 1692 { 1693 struct iommu_domain *domain = data; 1694 int ret = 0; 1695 1696 if (!iommu_is_attach_deferred(domain, dev)) 1697 ret = __iommu_attach_device(domain, dev); 1698 1699 return ret; 1700 } 1701 1702 static int __iommu_group_dma_attach(struct iommu_group *group) 1703 { 1704 return __iommu_group_for_each_dev(group, group->default_domain, 1705 iommu_group_do_dma_attach); 1706 } 1707 1708 static int iommu_group_do_probe_finalize(struct device *dev, void *data) 1709 { 1710 struct iommu_domain *domain = data; 1711 1712 if (domain->ops->probe_finalize) 1713 domain->ops->probe_finalize(dev); 1714 1715 return 0; 1716 } 1717 1718 static void __iommu_group_dma_finalize(struct iommu_group *group) 1719 { 1720 __iommu_group_for_each_dev(group, group->default_domain, 1721 iommu_group_do_probe_finalize); 1722 } 1723 1724 static int iommu_do_create_direct_mappings(struct device *dev, void *data) 1725 { 1726 struct iommu_group *group = data; 1727 1728 iommu_create_device_direct_mappings(group, dev); 1729 1730 return 0; 1731 } 1732 1733 static int iommu_group_create_direct_mappings(struct iommu_group *group) 1734 { 1735 return __iommu_group_for_each_dev(group, group, 1736 iommu_do_create_direct_mappings); 1737 } 1738 1739 int bus_iommu_probe(struct bus_type *bus) 1740 { 1741 struct iommu_group *group, *next; 1742 LIST_HEAD(group_list); 1743 int ret; 1744 1745 /* 1746 * This code-path does not allocate the default domain when 1747 * creating the iommu group, so do it after the groups are 1748 * created. 1749 */ 1750 ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group); 1751 if (ret) 1752 return ret; 1753 1754 list_for_each_entry_safe(group, next, &group_list, entry) { 1755 /* Remove item from the list */ 1756 list_del_init(&group->entry); 1757 1758 mutex_lock(&group->mutex); 1759 1760 /* Try to allocate default domain */ 1761 probe_alloc_default_domain(bus, group); 1762 1763 if (!group->default_domain) { 1764 mutex_unlock(&group->mutex); 1765 continue; 1766 } 1767 1768 iommu_group_create_direct_mappings(group); 1769 1770 ret = __iommu_group_dma_attach(group); 1771 1772 mutex_unlock(&group->mutex); 1773 1774 if (ret) 1775 break; 1776 1777 __iommu_group_dma_finalize(group); 1778 } 1779 1780 return ret; 1781 } 1782 1783 static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops) 1784 { 1785 struct notifier_block *nb; 1786 int err; 1787 1788 nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL); 1789 if (!nb) 1790 return -ENOMEM; 1791 1792 nb->notifier_call = iommu_bus_notifier; 1793 1794 err = bus_register_notifier(bus, nb); 1795 if (err) 1796 goto out_free; 1797 1798 err = bus_iommu_probe(bus); 1799 if (err) 1800 goto out_err; 1801 1802 1803 return 0; 1804 1805 out_err: 1806 /* Clean up */ 1807 bus_for_each_dev(bus, NULL, NULL, remove_iommu_group); 1808 bus_unregister_notifier(bus, nb); 1809 1810 out_free: 1811 kfree(nb); 1812 1813 return err; 1814 } 1815 1816 /** 1817 * bus_set_iommu - set iommu-callbacks for the bus 1818 * @bus: bus. 1819 * @ops: the callbacks provided by the iommu-driver 1820 * 1821 * This function is called by an iommu driver to set the iommu methods 1822 * used for a particular bus. Drivers for devices on that bus can use 1823 * the iommu-api after these ops are registered. 1824 * This special function is needed because IOMMUs are usually devices on 1825 * the bus itself, so the iommu drivers are not initialized when the bus 1826 * is set up. With this function the iommu-driver can set the iommu-ops 1827 * afterwards. 1828 */ 1829 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops) 1830 { 1831 int err; 1832 1833 if (ops == NULL) { 1834 bus->iommu_ops = NULL; 1835 return 0; 1836 } 1837 1838 if (bus->iommu_ops != NULL) 1839 return -EBUSY; 1840 1841 bus->iommu_ops = ops; 1842 1843 /* Do IOMMU specific setup for this bus-type */ 1844 err = iommu_bus_init(bus, ops); 1845 if (err) 1846 bus->iommu_ops = NULL; 1847 1848 return err; 1849 } 1850 EXPORT_SYMBOL_GPL(bus_set_iommu); 1851 1852 bool iommu_present(struct bus_type *bus) 1853 { 1854 return bus->iommu_ops != NULL; 1855 } 1856 EXPORT_SYMBOL_GPL(iommu_present); 1857 1858 bool iommu_capable(struct bus_type *bus, enum iommu_cap cap) 1859 { 1860 if (!bus->iommu_ops || !bus->iommu_ops->capable) 1861 return false; 1862 1863 return bus->iommu_ops->capable(cap); 1864 } 1865 EXPORT_SYMBOL_GPL(iommu_capable); 1866 1867 /** 1868 * iommu_set_fault_handler() - set a fault handler for an iommu domain 1869 * @domain: iommu domain 1870 * @handler: fault handler 1871 * @token: user data, will be passed back to the fault handler 1872 * 1873 * This function should be used by IOMMU users which want to be notified 1874 * whenever an IOMMU fault happens. 1875 * 1876 * The fault handler itself should return 0 on success, and an appropriate 1877 * error code otherwise. 1878 */ 1879 void iommu_set_fault_handler(struct iommu_domain *domain, 1880 iommu_fault_handler_t handler, 1881 void *token) 1882 { 1883 BUG_ON(!domain); 1884 1885 domain->handler = handler; 1886 domain->handler_token = token; 1887 } 1888 EXPORT_SYMBOL_GPL(iommu_set_fault_handler); 1889 1890 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus, 1891 unsigned type) 1892 { 1893 struct iommu_domain *domain; 1894 1895 if (bus == NULL || bus->iommu_ops == NULL) 1896 return NULL; 1897 1898 domain = bus->iommu_ops->domain_alloc(type); 1899 if (!domain) 1900 return NULL; 1901 1902 domain->ops = bus->iommu_ops; 1903 domain->type = type; 1904 /* Assume all sizes by default; the driver may override this later */ 1905 domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap; 1906 1907 return domain; 1908 } 1909 1910 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus) 1911 { 1912 return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED); 1913 } 1914 EXPORT_SYMBOL_GPL(iommu_domain_alloc); 1915 1916 void iommu_domain_free(struct iommu_domain *domain) 1917 { 1918 domain->ops->domain_free(domain); 1919 } 1920 EXPORT_SYMBOL_GPL(iommu_domain_free); 1921 1922 static int __iommu_attach_device(struct iommu_domain *domain, 1923 struct device *dev) 1924 { 1925 int ret; 1926 1927 if (unlikely(domain->ops->attach_dev == NULL)) 1928 return -ENODEV; 1929 1930 ret = domain->ops->attach_dev(domain, dev); 1931 if (!ret) 1932 trace_attach_device_to_domain(dev); 1933 return ret; 1934 } 1935 1936 int iommu_attach_device(struct iommu_domain *domain, struct device *dev) 1937 { 1938 struct iommu_group *group; 1939 int ret; 1940 1941 group = iommu_group_get(dev); 1942 if (!group) 1943 return -ENODEV; 1944 1945 /* 1946 * Lock the group to make sure the device-count doesn't 1947 * change while we are attaching 1948 */ 1949 mutex_lock(&group->mutex); 1950 ret = -EINVAL; 1951 if (iommu_group_device_count(group) != 1) 1952 goto out_unlock; 1953 1954 ret = __iommu_attach_group(domain, group); 1955 1956 out_unlock: 1957 mutex_unlock(&group->mutex); 1958 iommu_group_put(group); 1959 1960 return ret; 1961 } 1962 EXPORT_SYMBOL_GPL(iommu_attach_device); 1963 1964 int iommu_cache_invalidate(struct iommu_domain *domain, struct device *dev, 1965 struct iommu_cache_invalidate_info *inv_info) 1966 { 1967 if (unlikely(!domain->ops->cache_invalidate)) 1968 return -ENODEV; 1969 1970 return domain->ops->cache_invalidate(domain, dev, inv_info); 1971 } 1972 EXPORT_SYMBOL_GPL(iommu_cache_invalidate); 1973 1974 int iommu_sva_bind_gpasid(struct iommu_domain *domain, 1975 struct device *dev, struct iommu_gpasid_bind_data *data) 1976 { 1977 if (unlikely(!domain->ops->sva_bind_gpasid)) 1978 return -ENODEV; 1979 1980 return domain->ops->sva_bind_gpasid(domain, dev, data); 1981 } 1982 EXPORT_SYMBOL_GPL(iommu_sva_bind_gpasid); 1983 1984 int iommu_sva_unbind_gpasid(struct iommu_domain *domain, struct device *dev, 1985 ioasid_t pasid) 1986 { 1987 if (unlikely(!domain->ops->sva_unbind_gpasid)) 1988 return -ENODEV; 1989 1990 return domain->ops->sva_unbind_gpasid(dev, pasid); 1991 } 1992 EXPORT_SYMBOL_GPL(iommu_sva_unbind_gpasid); 1993 1994 static void __iommu_detach_device(struct iommu_domain *domain, 1995 struct device *dev) 1996 { 1997 if (iommu_is_attach_deferred(domain, dev)) 1998 return; 1999 2000 if (unlikely(domain->ops->detach_dev == NULL)) 2001 return; 2002 2003 domain->ops->detach_dev(domain, dev); 2004 trace_detach_device_from_domain(dev); 2005 } 2006 2007 void iommu_detach_device(struct iommu_domain *domain, struct device *dev) 2008 { 2009 struct iommu_group *group; 2010 2011 group = iommu_group_get(dev); 2012 if (!group) 2013 return; 2014 2015 mutex_lock(&group->mutex); 2016 if (iommu_group_device_count(group) != 1) { 2017 WARN_ON(1); 2018 goto out_unlock; 2019 } 2020 2021 __iommu_detach_group(domain, group); 2022 2023 out_unlock: 2024 mutex_unlock(&group->mutex); 2025 iommu_group_put(group); 2026 } 2027 EXPORT_SYMBOL_GPL(iommu_detach_device); 2028 2029 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev) 2030 { 2031 struct iommu_domain *domain; 2032 struct iommu_group *group; 2033 2034 group = iommu_group_get(dev); 2035 if (!group) 2036 return NULL; 2037 2038 domain = group->domain; 2039 2040 iommu_group_put(group); 2041 2042 return domain; 2043 } 2044 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev); 2045 2046 /* 2047 * For IOMMU_DOMAIN_DMA implementations which already provide their own 2048 * guarantees that the group and its default domain are valid and correct. 2049 */ 2050 struct iommu_domain *iommu_get_dma_domain(struct device *dev) 2051 { 2052 return dev->iommu_group->default_domain; 2053 } 2054 2055 /* 2056 * IOMMU groups are really the natural working unit of the IOMMU, but 2057 * the IOMMU API works on domains and devices. Bridge that gap by 2058 * iterating over the devices in a group. Ideally we'd have a single 2059 * device which represents the requestor ID of the group, but we also 2060 * allow IOMMU drivers to create policy defined minimum sets, where 2061 * the physical hardware may be able to distiguish members, but we 2062 * wish to group them at a higher level (ex. untrusted multi-function 2063 * PCI devices). Thus we attach each device. 2064 */ 2065 static int iommu_group_do_attach_device(struct device *dev, void *data) 2066 { 2067 struct iommu_domain *domain = data; 2068 2069 return __iommu_attach_device(domain, dev); 2070 } 2071 2072 static int __iommu_attach_group(struct iommu_domain *domain, 2073 struct iommu_group *group) 2074 { 2075 int ret; 2076 2077 if (group->default_domain && group->domain != group->default_domain) 2078 return -EBUSY; 2079 2080 ret = __iommu_group_for_each_dev(group, domain, 2081 iommu_group_do_attach_device); 2082 if (ret == 0) 2083 group->domain = domain; 2084 2085 return ret; 2086 } 2087 2088 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group) 2089 { 2090 int ret; 2091 2092 mutex_lock(&group->mutex); 2093 ret = __iommu_attach_group(domain, group); 2094 mutex_unlock(&group->mutex); 2095 2096 return ret; 2097 } 2098 EXPORT_SYMBOL_GPL(iommu_attach_group); 2099 2100 static int iommu_group_do_detach_device(struct device *dev, void *data) 2101 { 2102 struct iommu_domain *domain = data; 2103 2104 __iommu_detach_device(domain, dev); 2105 2106 return 0; 2107 } 2108 2109 static void __iommu_detach_group(struct iommu_domain *domain, 2110 struct iommu_group *group) 2111 { 2112 int ret; 2113 2114 if (!group->default_domain) { 2115 __iommu_group_for_each_dev(group, domain, 2116 iommu_group_do_detach_device); 2117 group->domain = NULL; 2118 return; 2119 } 2120 2121 if (group->domain == group->default_domain) 2122 return; 2123 2124 /* Detach by re-attaching to the default domain */ 2125 ret = __iommu_group_for_each_dev(group, group->default_domain, 2126 iommu_group_do_attach_device); 2127 if (ret != 0) 2128 WARN_ON(1); 2129 else 2130 group->domain = group->default_domain; 2131 } 2132 2133 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group) 2134 { 2135 mutex_lock(&group->mutex); 2136 __iommu_detach_group(domain, group); 2137 mutex_unlock(&group->mutex); 2138 } 2139 EXPORT_SYMBOL_GPL(iommu_detach_group); 2140 2141 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) 2142 { 2143 if (unlikely(domain->ops->iova_to_phys == NULL)) 2144 return 0; 2145 2146 return domain->ops->iova_to_phys(domain, iova); 2147 } 2148 EXPORT_SYMBOL_GPL(iommu_iova_to_phys); 2149 2150 static size_t iommu_pgsize(struct iommu_domain *domain, 2151 unsigned long addr_merge, size_t size) 2152 { 2153 unsigned int pgsize_idx; 2154 size_t pgsize; 2155 2156 /* Max page size that still fits into 'size' */ 2157 pgsize_idx = __fls(size); 2158 2159 /* need to consider alignment requirements ? */ 2160 if (likely(addr_merge)) { 2161 /* Max page size allowed by address */ 2162 unsigned int align_pgsize_idx = __ffs(addr_merge); 2163 pgsize_idx = min(pgsize_idx, align_pgsize_idx); 2164 } 2165 2166 /* build a mask of acceptable page sizes */ 2167 pgsize = (1UL << (pgsize_idx + 1)) - 1; 2168 2169 /* throw away page sizes not supported by the hardware */ 2170 pgsize &= domain->pgsize_bitmap; 2171 2172 /* make sure we're still sane */ 2173 BUG_ON(!pgsize); 2174 2175 /* pick the biggest page */ 2176 pgsize_idx = __fls(pgsize); 2177 pgsize = 1UL << pgsize_idx; 2178 2179 return pgsize; 2180 } 2181 2182 static int __iommu_map(struct iommu_domain *domain, unsigned long iova, 2183 phys_addr_t paddr, size_t size, int prot, gfp_t gfp) 2184 { 2185 const struct iommu_ops *ops = domain->ops; 2186 unsigned long orig_iova = iova; 2187 unsigned int min_pagesz; 2188 size_t orig_size = size; 2189 phys_addr_t orig_paddr = paddr; 2190 int ret = 0; 2191 2192 if (unlikely(ops->map == NULL || 2193 domain->pgsize_bitmap == 0UL)) 2194 return -ENODEV; 2195 2196 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 2197 return -EINVAL; 2198 2199 /* find out the minimum page size supported */ 2200 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 2201 2202 /* 2203 * both the virtual address and the physical one, as well as 2204 * the size of the mapping, must be aligned (at least) to the 2205 * size of the smallest page supported by the hardware 2206 */ 2207 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) { 2208 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n", 2209 iova, &paddr, size, min_pagesz); 2210 return -EINVAL; 2211 } 2212 2213 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size); 2214 2215 while (size) { 2216 size_t pgsize = iommu_pgsize(domain, iova | paddr, size); 2217 2218 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx\n", 2219 iova, &paddr, pgsize); 2220 ret = ops->map(domain, iova, paddr, pgsize, prot, gfp); 2221 2222 if (ret) 2223 break; 2224 2225 iova += pgsize; 2226 paddr += pgsize; 2227 size -= pgsize; 2228 } 2229 2230 if (ops->iotlb_sync_map) 2231 ops->iotlb_sync_map(domain); 2232 2233 /* unroll mapping in case something went wrong */ 2234 if (ret) 2235 iommu_unmap(domain, orig_iova, orig_size - size); 2236 else 2237 trace_map(orig_iova, orig_paddr, orig_size); 2238 2239 return ret; 2240 } 2241 2242 int iommu_map(struct iommu_domain *domain, unsigned long iova, 2243 phys_addr_t paddr, size_t size, int prot) 2244 { 2245 might_sleep(); 2246 return __iommu_map(domain, iova, paddr, size, prot, GFP_KERNEL); 2247 } 2248 EXPORT_SYMBOL_GPL(iommu_map); 2249 2250 int iommu_map_atomic(struct iommu_domain *domain, unsigned long iova, 2251 phys_addr_t paddr, size_t size, int prot) 2252 { 2253 return __iommu_map(domain, iova, paddr, size, prot, GFP_ATOMIC); 2254 } 2255 EXPORT_SYMBOL_GPL(iommu_map_atomic); 2256 2257 static size_t __iommu_unmap(struct iommu_domain *domain, 2258 unsigned long iova, size_t size, 2259 struct iommu_iotlb_gather *iotlb_gather) 2260 { 2261 const struct iommu_ops *ops = domain->ops; 2262 size_t unmapped_page, unmapped = 0; 2263 unsigned long orig_iova = iova; 2264 unsigned int min_pagesz; 2265 2266 if (unlikely(ops->unmap == NULL || 2267 domain->pgsize_bitmap == 0UL)) 2268 return 0; 2269 2270 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 2271 return 0; 2272 2273 /* find out the minimum page size supported */ 2274 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 2275 2276 /* 2277 * The virtual address, as well as the size of the mapping, must be 2278 * aligned (at least) to the size of the smallest page supported 2279 * by the hardware 2280 */ 2281 if (!IS_ALIGNED(iova | size, min_pagesz)) { 2282 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n", 2283 iova, size, min_pagesz); 2284 return 0; 2285 } 2286 2287 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size); 2288 2289 /* 2290 * Keep iterating until we either unmap 'size' bytes (or more) 2291 * or we hit an area that isn't mapped. 2292 */ 2293 while (unmapped < size) { 2294 size_t pgsize = iommu_pgsize(domain, iova, size - unmapped); 2295 2296 unmapped_page = ops->unmap(domain, iova, pgsize, iotlb_gather); 2297 if (!unmapped_page) 2298 break; 2299 2300 pr_debug("unmapped: iova 0x%lx size 0x%zx\n", 2301 iova, unmapped_page); 2302 2303 iova += unmapped_page; 2304 unmapped += unmapped_page; 2305 } 2306 2307 trace_unmap(orig_iova, size, unmapped); 2308 return unmapped; 2309 } 2310 2311 size_t iommu_unmap(struct iommu_domain *domain, 2312 unsigned long iova, size_t size) 2313 { 2314 struct iommu_iotlb_gather iotlb_gather; 2315 size_t ret; 2316 2317 iommu_iotlb_gather_init(&iotlb_gather); 2318 ret = __iommu_unmap(domain, iova, size, &iotlb_gather); 2319 iommu_tlb_sync(domain, &iotlb_gather); 2320 2321 return ret; 2322 } 2323 EXPORT_SYMBOL_GPL(iommu_unmap); 2324 2325 size_t iommu_unmap_fast(struct iommu_domain *domain, 2326 unsigned long iova, size_t size, 2327 struct iommu_iotlb_gather *iotlb_gather) 2328 { 2329 return __iommu_unmap(domain, iova, size, iotlb_gather); 2330 } 2331 EXPORT_SYMBOL_GPL(iommu_unmap_fast); 2332 2333 static size_t __iommu_map_sg(struct iommu_domain *domain, unsigned long iova, 2334 struct scatterlist *sg, unsigned int nents, int prot, 2335 gfp_t gfp) 2336 { 2337 size_t len = 0, mapped = 0; 2338 phys_addr_t start; 2339 unsigned int i = 0; 2340 int ret; 2341 2342 while (i <= nents) { 2343 phys_addr_t s_phys = sg_phys(sg); 2344 2345 if (len && s_phys != start + len) { 2346 ret = __iommu_map(domain, iova + mapped, start, 2347 len, prot, gfp); 2348 2349 if (ret) 2350 goto out_err; 2351 2352 mapped += len; 2353 len = 0; 2354 } 2355 2356 if (len) { 2357 len += sg->length; 2358 } else { 2359 len = sg->length; 2360 start = s_phys; 2361 } 2362 2363 if (++i < nents) 2364 sg = sg_next(sg); 2365 } 2366 2367 return mapped; 2368 2369 out_err: 2370 /* undo mappings already done */ 2371 iommu_unmap(domain, iova, mapped); 2372 2373 return 0; 2374 2375 } 2376 2377 size_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova, 2378 struct scatterlist *sg, unsigned int nents, int prot) 2379 { 2380 might_sleep(); 2381 return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_KERNEL); 2382 } 2383 EXPORT_SYMBOL_GPL(iommu_map_sg); 2384 2385 size_t iommu_map_sg_atomic(struct iommu_domain *domain, unsigned long iova, 2386 struct scatterlist *sg, unsigned int nents, int prot) 2387 { 2388 return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC); 2389 } 2390 EXPORT_SYMBOL_GPL(iommu_map_sg_atomic); 2391 2392 int iommu_domain_window_enable(struct iommu_domain *domain, u32 wnd_nr, 2393 phys_addr_t paddr, u64 size, int prot) 2394 { 2395 if (unlikely(domain->ops->domain_window_enable == NULL)) 2396 return -ENODEV; 2397 2398 return domain->ops->domain_window_enable(domain, wnd_nr, paddr, size, 2399 prot); 2400 } 2401 EXPORT_SYMBOL_GPL(iommu_domain_window_enable); 2402 2403 void iommu_domain_window_disable(struct iommu_domain *domain, u32 wnd_nr) 2404 { 2405 if (unlikely(domain->ops->domain_window_disable == NULL)) 2406 return; 2407 2408 return domain->ops->domain_window_disable(domain, wnd_nr); 2409 } 2410 EXPORT_SYMBOL_GPL(iommu_domain_window_disable); 2411 2412 /** 2413 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework 2414 * @domain: the iommu domain where the fault has happened 2415 * @dev: the device where the fault has happened 2416 * @iova: the faulting address 2417 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...) 2418 * 2419 * This function should be called by the low-level IOMMU implementations 2420 * whenever IOMMU faults happen, to allow high-level users, that are 2421 * interested in such events, to know about them. 2422 * 2423 * This event may be useful for several possible use cases: 2424 * - mere logging of the event 2425 * - dynamic TLB/PTE loading 2426 * - if restarting of the faulting device is required 2427 * 2428 * Returns 0 on success and an appropriate error code otherwise (if dynamic 2429 * PTE/TLB loading will one day be supported, implementations will be able 2430 * to tell whether it succeeded or not according to this return value). 2431 * 2432 * Specifically, -ENOSYS is returned if a fault handler isn't installed 2433 * (though fault handlers can also return -ENOSYS, in case they want to 2434 * elicit the default behavior of the IOMMU drivers). 2435 */ 2436 int report_iommu_fault(struct iommu_domain *domain, struct device *dev, 2437 unsigned long iova, int flags) 2438 { 2439 int ret = -ENOSYS; 2440 2441 /* 2442 * if upper layers showed interest and installed a fault handler, 2443 * invoke it. 2444 */ 2445 if (domain->handler) 2446 ret = domain->handler(domain, dev, iova, flags, 2447 domain->handler_token); 2448 2449 trace_io_page_fault(dev, iova, flags); 2450 return ret; 2451 } 2452 EXPORT_SYMBOL_GPL(report_iommu_fault); 2453 2454 static int __init iommu_init(void) 2455 { 2456 iommu_group_kset = kset_create_and_add("iommu_groups", 2457 NULL, kernel_kobj); 2458 BUG_ON(!iommu_group_kset); 2459 2460 iommu_debugfs_setup(); 2461 2462 return 0; 2463 } 2464 core_initcall(iommu_init); 2465 2466 int iommu_domain_get_attr(struct iommu_domain *domain, 2467 enum iommu_attr attr, void *data) 2468 { 2469 struct iommu_domain_geometry *geometry; 2470 bool *paging; 2471 int ret = 0; 2472 2473 switch (attr) { 2474 case DOMAIN_ATTR_GEOMETRY: 2475 geometry = data; 2476 *geometry = domain->geometry; 2477 2478 break; 2479 case DOMAIN_ATTR_PAGING: 2480 paging = data; 2481 *paging = (domain->pgsize_bitmap != 0UL); 2482 break; 2483 default: 2484 if (!domain->ops->domain_get_attr) 2485 return -EINVAL; 2486 2487 ret = domain->ops->domain_get_attr(domain, attr, data); 2488 } 2489 2490 return ret; 2491 } 2492 EXPORT_SYMBOL_GPL(iommu_domain_get_attr); 2493 2494 int iommu_domain_set_attr(struct iommu_domain *domain, 2495 enum iommu_attr attr, void *data) 2496 { 2497 int ret = 0; 2498 2499 switch (attr) { 2500 default: 2501 if (domain->ops->domain_set_attr == NULL) 2502 return -EINVAL; 2503 2504 ret = domain->ops->domain_set_attr(domain, attr, data); 2505 } 2506 2507 return ret; 2508 } 2509 EXPORT_SYMBOL_GPL(iommu_domain_set_attr); 2510 2511 void iommu_get_resv_regions(struct device *dev, struct list_head *list) 2512 { 2513 const struct iommu_ops *ops = dev->bus->iommu_ops; 2514 2515 if (ops && ops->get_resv_regions) 2516 ops->get_resv_regions(dev, list); 2517 } 2518 2519 void iommu_put_resv_regions(struct device *dev, struct list_head *list) 2520 { 2521 const struct iommu_ops *ops = dev->bus->iommu_ops; 2522 2523 if (ops && ops->put_resv_regions) 2524 ops->put_resv_regions(dev, list); 2525 } 2526 2527 /** 2528 * generic_iommu_put_resv_regions - Reserved region driver helper 2529 * @dev: device for which to free reserved regions 2530 * @list: reserved region list for device 2531 * 2532 * IOMMU drivers can use this to implement their .put_resv_regions() callback 2533 * for simple reservations. Memory allocated for each reserved region will be 2534 * freed. If an IOMMU driver allocates additional resources per region, it is 2535 * going to have to implement a custom callback. 2536 */ 2537 void generic_iommu_put_resv_regions(struct device *dev, struct list_head *list) 2538 { 2539 struct iommu_resv_region *entry, *next; 2540 2541 list_for_each_entry_safe(entry, next, list, list) 2542 kfree(entry); 2543 } 2544 EXPORT_SYMBOL(generic_iommu_put_resv_regions); 2545 2546 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start, 2547 size_t length, int prot, 2548 enum iommu_resv_type type) 2549 { 2550 struct iommu_resv_region *region; 2551 2552 region = kzalloc(sizeof(*region), GFP_KERNEL); 2553 if (!region) 2554 return NULL; 2555 2556 INIT_LIST_HEAD(®ion->list); 2557 region->start = start; 2558 region->length = length; 2559 region->prot = prot; 2560 region->type = type; 2561 return region; 2562 } 2563 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region); 2564 2565 void iommu_set_default_passthrough(bool cmd_line) 2566 { 2567 if (cmd_line) 2568 iommu_set_cmd_line_dma_api(); 2569 2570 iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY; 2571 } 2572 2573 void iommu_set_default_translated(bool cmd_line) 2574 { 2575 if (cmd_line) 2576 iommu_set_cmd_line_dma_api(); 2577 2578 iommu_def_domain_type = IOMMU_DOMAIN_DMA; 2579 } 2580 2581 bool iommu_default_passthrough(void) 2582 { 2583 return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY; 2584 } 2585 EXPORT_SYMBOL_GPL(iommu_default_passthrough); 2586 2587 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode) 2588 { 2589 const struct iommu_ops *ops = NULL; 2590 struct iommu_device *iommu; 2591 2592 spin_lock(&iommu_device_lock); 2593 list_for_each_entry(iommu, &iommu_device_list, list) 2594 if (iommu->fwnode == fwnode) { 2595 ops = iommu->ops; 2596 break; 2597 } 2598 spin_unlock(&iommu_device_lock); 2599 return ops; 2600 } 2601 2602 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode, 2603 const struct iommu_ops *ops) 2604 { 2605 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2606 2607 if (fwspec) 2608 return ops == fwspec->ops ? 0 : -EINVAL; 2609 2610 if (!dev_iommu_get(dev)) 2611 return -ENOMEM; 2612 2613 /* Preallocate for the overwhelmingly common case of 1 ID */ 2614 fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL); 2615 if (!fwspec) 2616 return -ENOMEM; 2617 2618 of_node_get(to_of_node(iommu_fwnode)); 2619 fwspec->iommu_fwnode = iommu_fwnode; 2620 fwspec->ops = ops; 2621 dev_iommu_fwspec_set(dev, fwspec); 2622 return 0; 2623 } 2624 EXPORT_SYMBOL_GPL(iommu_fwspec_init); 2625 2626 void iommu_fwspec_free(struct device *dev) 2627 { 2628 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2629 2630 if (fwspec) { 2631 fwnode_handle_put(fwspec->iommu_fwnode); 2632 kfree(fwspec); 2633 dev_iommu_fwspec_set(dev, NULL); 2634 } 2635 } 2636 EXPORT_SYMBOL_GPL(iommu_fwspec_free); 2637 2638 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids) 2639 { 2640 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2641 int i, new_num; 2642 2643 if (!fwspec) 2644 return -EINVAL; 2645 2646 new_num = fwspec->num_ids + num_ids; 2647 if (new_num > 1) { 2648 fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num), 2649 GFP_KERNEL); 2650 if (!fwspec) 2651 return -ENOMEM; 2652 2653 dev_iommu_fwspec_set(dev, fwspec); 2654 } 2655 2656 for (i = 0; i < num_ids; i++) 2657 fwspec->ids[fwspec->num_ids + i] = ids[i]; 2658 2659 fwspec->num_ids = new_num; 2660 return 0; 2661 } 2662 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids); 2663 2664 /* 2665 * Per device IOMMU features. 2666 */ 2667 bool iommu_dev_has_feature(struct device *dev, enum iommu_dev_features feat) 2668 { 2669 const struct iommu_ops *ops = dev->bus->iommu_ops; 2670 2671 if (ops && ops->dev_has_feat) 2672 return ops->dev_has_feat(dev, feat); 2673 2674 return false; 2675 } 2676 EXPORT_SYMBOL_GPL(iommu_dev_has_feature); 2677 2678 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat) 2679 { 2680 const struct iommu_ops *ops = dev->bus->iommu_ops; 2681 2682 if (ops && ops->dev_enable_feat) 2683 return ops->dev_enable_feat(dev, feat); 2684 2685 return -ENODEV; 2686 } 2687 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature); 2688 2689 /* 2690 * The device drivers should do the necessary cleanups before calling this. 2691 * For example, before disabling the aux-domain feature, the device driver 2692 * should detach all aux-domains. Otherwise, this will return -EBUSY. 2693 */ 2694 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat) 2695 { 2696 const struct iommu_ops *ops = dev->bus->iommu_ops; 2697 2698 if (ops && ops->dev_disable_feat) 2699 return ops->dev_disable_feat(dev, feat); 2700 2701 return -EBUSY; 2702 } 2703 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature); 2704 2705 bool iommu_dev_feature_enabled(struct device *dev, enum iommu_dev_features feat) 2706 { 2707 const struct iommu_ops *ops = dev->bus->iommu_ops; 2708 2709 if (ops && ops->dev_feat_enabled) 2710 return ops->dev_feat_enabled(dev, feat); 2711 2712 return false; 2713 } 2714 EXPORT_SYMBOL_GPL(iommu_dev_feature_enabled); 2715 2716 /* 2717 * Aux-domain specific attach/detach. 2718 * 2719 * Only works if iommu_dev_feature_enabled(dev, IOMMU_DEV_FEAT_AUX) returns 2720 * true. Also, as long as domains are attached to a device through this 2721 * interface, any tries to call iommu_attach_device() should fail 2722 * (iommu_detach_device() can't fail, so we fail when trying to re-attach). 2723 * This should make us safe against a device being attached to a guest as a 2724 * whole while there are still pasid users on it (aux and sva). 2725 */ 2726 int iommu_aux_attach_device(struct iommu_domain *domain, struct device *dev) 2727 { 2728 int ret = -ENODEV; 2729 2730 if (domain->ops->aux_attach_dev) 2731 ret = domain->ops->aux_attach_dev(domain, dev); 2732 2733 if (!ret) 2734 trace_attach_device_to_domain(dev); 2735 2736 return ret; 2737 } 2738 EXPORT_SYMBOL_GPL(iommu_aux_attach_device); 2739 2740 void iommu_aux_detach_device(struct iommu_domain *domain, struct device *dev) 2741 { 2742 if (domain->ops->aux_detach_dev) { 2743 domain->ops->aux_detach_dev(domain, dev); 2744 trace_detach_device_from_domain(dev); 2745 } 2746 } 2747 EXPORT_SYMBOL_GPL(iommu_aux_detach_device); 2748 2749 int iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev) 2750 { 2751 int ret = -ENODEV; 2752 2753 if (domain->ops->aux_get_pasid) 2754 ret = domain->ops->aux_get_pasid(domain, dev); 2755 2756 return ret; 2757 } 2758 EXPORT_SYMBOL_GPL(iommu_aux_get_pasid); 2759 2760 /** 2761 * iommu_sva_bind_device() - Bind a process address space to a device 2762 * @dev: the device 2763 * @mm: the mm to bind, caller must hold a reference to it 2764 * 2765 * Create a bond between device and address space, allowing the device to access 2766 * the mm using the returned PASID. If a bond already exists between @device and 2767 * @mm, it is returned and an additional reference is taken. Caller must call 2768 * iommu_sva_unbind_device() to release each reference. 2769 * 2770 * iommu_dev_enable_feature(dev, IOMMU_DEV_FEAT_SVA) must be called first, to 2771 * initialize the required SVA features. 2772 * 2773 * On error, returns an ERR_PTR value. 2774 */ 2775 struct iommu_sva * 2776 iommu_sva_bind_device(struct device *dev, struct mm_struct *mm, void *drvdata) 2777 { 2778 struct iommu_group *group; 2779 struct iommu_sva *handle = ERR_PTR(-EINVAL); 2780 const struct iommu_ops *ops = dev->bus->iommu_ops; 2781 2782 if (!ops || !ops->sva_bind) 2783 return ERR_PTR(-ENODEV); 2784 2785 group = iommu_group_get(dev); 2786 if (!group) 2787 return ERR_PTR(-ENODEV); 2788 2789 /* Ensure device count and domain don't change while we're binding */ 2790 mutex_lock(&group->mutex); 2791 2792 /* 2793 * To keep things simple, SVA currently doesn't support IOMMU groups 2794 * with more than one device. Existing SVA-capable systems are not 2795 * affected by the problems that required IOMMU groups (lack of ACS 2796 * isolation, device ID aliasing and other hardware issues). 2797 */ 2798 if (iommu_group_device_count(group) != 1) 2799 goto out_unlock; 2800 2801 handle = ops->sva_bind(dev, mm, drvdata); 2802 2803 out_unlock: 2804 mutex_unlock(&group->mutex); 2805 iommu_group_put(group); 2806 2807 return handle; 2808 } 2809 EXPORT_SYMBOL_GPL(iommu_sva_bind_device); 2810 2811 /** 2812 * iommu_sva_unbind_device() - Remove a bond created with iommu_sva_bind_device 2813 * @handle: the handle returned by iommu_sva_bind_device() 2814 * 2815 * Put reference to a bond between device and address space. The device should 2816 * not be issuing any more transaction for this PASID. All outstanding page 2817 * requests for this PASID must have been flushed to the IOMMU. 2818 * 2819 * Returns 0 on success, or an error value 2820 */ 2821 void iommu_sva_unbind_device(struct iommu_sva *handle) 2822 { 2823 struct iommu_group *group; 2824 struct device *dev = handle->dev; 2825 const struct iommu_ops *ops = dev->bus->iommu_ops; 2826 2827 if (!ops || !ops->sva_unbind) 2828 return; 2829 2830 group = iommu_group_get(dev); 2831 if (!group) 2832 return; 2833 2834 mutex_lock(&group->mutex); 2835 ops->sva_unbind(handle); 2836 mutex_unlock(&group->mutex); 2837 2838 iommu_group_put(group); 2839 } 2840 EXPORT_SYMBOL_GPL(iommu_sva_unbind_device); 2841 2842 int iommu_sva_get_pasid(struct iommu_sva *handle) 2843 { 2844 const struct iommu_ops *ops = handle->dev->bus->iommu_ops; 2845 2846 if (!ops || !ops->sva_get_pasid) 2847 return IOMMU_PASID_INVALID; 2848 2849 return ops->sva_get_pasid(handle); 2850 } 2851 EXPORT_SYMBOL_GPL(iommu_sva_get_pasid); 2852